Practical Data-Leak Prevention for Legacy
Applications in Enterprise Networks

Yogesh Mundada, Anirudh Ramachandran, Mukarram Bin Tariq, and Nick Feamster
School of Computer Science, Georgia Institute of Technology
{yhm, avr, mtariqg, feamster}@cc.gatech.edu

ABSTRACT

Organizations must control where private information
spreads; this problem is referred to in the industry as
data leak prevention. Commercial solutions for DLP
are based on scanning content; these impose high over-
head and are easily evaded. Research solutions for this
problem, information flow control, require rewriting ap-
plications or running a custom operating system, which
makes these approaches difficult to deploy. They also
typically enforce information flow control on a single
host, not across a network, making it difficult to imple-
ment an information flow control policy for a network of
machines. This paper presents Pedigree, which enforces
information flow control across a network for legacy
applications. Pedigree allows enterprise administrators
and users to associate a label with each file and process;
a small, trusted module on the host uses these labels to
determine whether two processes on the same host can
communicate. When a process attempts to communi-
cate across the network, Pedigree tracks these informa-
tion flows and enforces information flow control either
at end-hosts or at a network switch. Pedigree allows
users and operators to specify network-wide informa-
tion flow policies rather than having to specify and im-
plement policies for each host. Enforcing information
flow policies in the network allows Pedigree to operate
in networks with heterogeneous devices and operating
systems. We present the design and implementation of
Pedigree, show that it can prevent data leaks, and inves-
tigate its feasibility and usability in common environ-
ments.

1. Introduction

Enterprise networks continually face the threats of
data “leaks”, where sensitive information travels to
some part of the network where it should not have gone.
The insider-initiated leak at Goldman Sachs in July
2009 [11] and the leaks of classified military videos [46]
are recent prominent examples, but such mishaps are
all-too frequent. Verizon’s recent data breach investiga-
tion report found that 43.2% of data breaches occurred
through deliberate actions of insiders and 38% were due
to malware [45]. Ponemon Research estimates the av-
erage total cost of each data breach incident to be $6.75

million in 2009 in the United States [32]. Existing com-
mercial data leak prevention (DLP) systems focus on
regulatory compliance and are not equipped to defend
against malware and insider threats. For example, an at-
tacker may be able to evade these DLP systems simply
by encrypting the sensitive document. Our challenge is
to design a breach-prevention system that provides more
comprehensive control of information flow within and
outside the enterprise, without requiring the deployment
of new applications or operating systems.

Information flow control—controlling information
exchange between principals according to some secu-
rity policy—is a well-established field: “lattices” were
introduced nearly 40 years ago [7], and many systems
have attempted to implement some type of support for
information flow in programming languages, applica-
tions, or even the operating system itself. Despite a
long history and deep theory, however, today’s systems
for implementing information flow control fail to stop
even simple data leak scenarios, not because they lack
sound theory or implementation, but rather because they
are too difficult to use and deploy. Existing information
flow control systems often require an application to be
rewritten [19], often in a specialized programming lan-
guage [26]; sometimes, these systems require deploying
an entirely new operating system [44,50]. These sys-
tems are useful for new applications or controlled set-
tings, but, unfortunately, not every application people
need (or want) to use can be rewritten, and, in reality,
users may run their own software on a heterogeneous set
of devices that run a variety of operating systems. Com-
mercial information-flow control products must resort to
enforcing information-flow control policies by inspect-
ing the contents of network traffic [24,36,41], but many
of these systems can actually be circumvented with en-
cryption or other obfuscation techniques.

We present Pedigree, a practical information-flow
control system for enterprise networks that applies to
legacy applications and operating systems. In design-
ing Pedigree, we recognize that information-flow con-
trol has two functions—propagating labels and enforc-
ing policy. Previous systems have not been able to de-
couple these two functions, resulting in systems that
are somewhat difficult to deploy or manage in practice.
In contrast, Pedigree decouples how and where these

two functions are implemented: a small, trusted labeler
propagates and manages labels on each host, and a cen-
tral controller manages policy and enforces information
flow. Pedigree separates the “data plane” (the functions
that forward data and associated labels) from the “con-
trol plane” (the elements that decide whether the infor-
mation should be forwarded in the first place). Net-
work designers have recognized the benefits of this de-
coupling for simplifying various network management
tasks [29]. Pedigree leverages these emerging func-
tions and technologies for separating the network data
plane and control plane, making it much easier to build
an information-flow control system that both operates
across the network (rather than only on a single host)
and allows users to specify and control policy indepen-
dently of how it is enforced. Recent developments in
this area, such as the realization of the OpenFlow spec-
ification in commodity switches, have made it possible
to implement designs that enforce this separation and
deploy them on production networks.

Pedigree has many advantages over existing
information-flow control systems. First, it works
for unmodified legacy applications in heterogeneous
environments. To our knowledge, Pedigree is the first
lattice-based information-flow control system that can
work with legacy applications (i.e., without requiring
them to be rewritten or recompiled).

Second, Pedigree performs information-flow control
across a network of end-hosts running commodity op-
erating systems and unmodified applications; earlier re-
search on networked information-flow control requires
all hosts to run a specialized operating system [51]. Fi-
nally, it is simple and manageable. Having policy at a
central controller allows users and operators to specify
information flow policies for their own data and applica-
tions that can then be centrally managed, instead of hav-
ing applications themselves manage policy as in other
information-flow control systems [19, 50].

Pedigree’s design goals present several challenges.
First, centralized policy and label management implies
that hosts must continually communicate with a central
controller, which poses scalability concerns. Second,
instrumenting legacy applications and operating sys-
tems implies that label propagation interposes on system
calls; this approach not only imposes system-call over-
head, but it also means that entire processes, rather than
individual variables or regions of memory, acquire se-
curity labels. Practically speaking, an application may
become unusable if it acquires a high security label (e.g.,
if it reads a sensitive file), making it unable to commu-
nicate with any other resource. We evaluate scalability
and overhead of Pedigree in Section 7 and show that it
is acceptable for practical usage scenarios.

Looking forward, we believe that Pedigree’s approach
to data-leak prevention allows centralized policy speci-
fication with distributed enforcement across heteroge-

3/4. Bob's

< 2 attempt to
Interne?\r— R securely email
{\,« ,_/J-) Mallor the file to Mallory
iy Y is also denied.

1. Alice copies
labeled file to
a fileserver.

5. Carol's attempt to
"""""" view the file is denied

retrieves & 6. Bob's
file. attempt to

g/& A “ copy the file
¥ to aremovable
Bob device is denied.

Figure 1: Example data-leak scenario. Bob can attempt to leak
data in a number of ways, including copying the file over the net-
work (either inside or outside the network), or copying the file to
a removable drive. Data-leak prevention software should prevent
leaks in both cases.

neous network devices can lead to practical information-
flow control systems in many emerging settings. In this
paper, we focus on Pedigree’s applicability for data-leak
prevention in an enterprise network setting, but a simi-
lar approach might also help control data propagation
in other settings with heterogeneous software and appli-
cations that the infrastructure administrator cannot fully
control (e.g., “cloud” infrastructure).

The rest of the paper proceeds as follows. Section 2
describes an motivating data-leak scenario that we will
appeal to throughout the paper. Section 3 describes
Pedigree’s design, including a comparison to existing
systems. Section 4 explains how Pedigree implements
information flow control policies both on a single host
and across a network. Section 5 describes the details of
label management. Section 6 describes our implemen-
tation of Pedigree, and Section 7 evaluates Pedigree’s
overhead and usability. Section 8 explains the extent to
which Pedigree can defend against a range of attacks.
Section 9 compares Pedigree to related work, and Sec-
tion 10 concludes.

2. Example and State of the Art

Figure 1 shows a concrete use case that we will use
to discuss the capabilities of Pedigree in comparison to
existing systems. Suppose that Alice wishes to share a
secret idea with her colleague, Bob, who is authorized
to see it. Alice copies the file to the company’s network
file server (Step 1), which Bob then directly accesses
(Step 2). At this point, secret data can traverse the net-
work freely, since both users are allowed to view the
secret data.

Now suppose that Bob wishes to send the secret to an
outsider, Mallory, against company policy. Bob’s first
attempt is to attach the file to a message in his email
client and send it; a network device recognizes that the
traffic contains secret data, but this time prevents it from
leaving the network. Frustrated, Bob then tries to down-

load the file to his local machine and send it as an en-
crypted email attachment. Again, the network switch
recognizes that the email message contains secret data
and thwarts his attempt (Steps 3 and 4). Bob then tries
to send the file to his colleague Carol to see if she can
help him transport the file out of the network (Step 5);
however, Carol is not authorized to see the file, so a
trusted module on Carol’s host blocks the transfer. As
a last resort, Bob tries to copy the encrypted version of
the secret file off his machine using an auxiliary device,
such as a USB drive or over Bluetooth (Step 6); at this
point, the trusted module on Bob’s machine recognizes
that Bob does not have the privilege and prevents the
transfer from happening.

Table 1 compares Pedigree to existing information
flow control systems. Granularity refers to the gran-
ularity at which the system tracks information flow.
Pedigree tracks information flow at the granularity of
files and processes, which is coarse relative to Taint-
Tracker [27], Panorama [49], and the recent mobile OS
taint-tracking system, TaintDroid [9], which track in-
formation flow at byte-level granularity (albeit within
an emulator or a virtual machine). RSA DLP [36] at-
tempts to control information by inspecting the contents
of a resource or message; this approach can be evaded
using encryption (e.g., Bob would be able to send his
file outside of the enterprise network by first encrypt-
ing it). Like Pedigree, both Flume [19] and Dstar [51]
track resources at the granularity of processes, but nei-
ther Flume nor Dstar work with unmodified applica-
tions. TaintEraser [53] allows users to track sensitive
input (e.g., passwords entered using the keyboard), but
it is limited to a single host, and its taints are not as
expressive as with Pedigree; it does not allow users to
define arbitrary labels of their own (e.g., Alice could not
create a “secret” label for a file that she creates). Be-
cause Pedigree can run on a commodity operating sys-
tem, is more vulnerable to covert channels than Dstar;
we discuss these vulnerabilities in Section 8.

3. Pedigree Design

This section presents the design of Pedigree, after
briefly discussing the threat model.

Threat Model. We make some assumptions regard-
ing the enterprise and user behavior. We assume, as in
other threat models [1, 38], that the typical enterprise
user will not take extreme measures to subvert Pedi-
gree: specifically, we assume that the user will not at-
tempt to remove internal storage media or bypass the
operating system to read the physical storage (if such
attacks are feasible, we assume that techniques such as
full-disk encryption can be applied in defense). Pedigree
also runs a trusted module—the labeler—in the OS ker-
nel on end-hosts in the enterprise; we assume that this
module cannot be compromised by enterprise users or

malicious programs. Finally, we assume that routers and
switches in the enterprise forward traffic with new IP op-
tions (e.g., for Pedigree-related protocol messages). We
discuss potential attacks against Pedigree in the context
of this threat model in Section 8.

3.1 Overview

Pedigree tracks and controls the propagation of labels,
associated with every resource, which may be a file or
a process. Either a user or an administrator can specify
an initial label for a resource. Pedigree has two com-
ponents: a labeler and an enforcer. The labeler that re-
sides on each host manages, tracks, and updates labels
as resources interact with one another. Based on these
labels, an enforcer decides whether a particular infor-
mation flow between two resources can take place. We
first provide an overview of these functions. We then
describe how Pedigree’s labels help enforce information
flow control (“IFC”) using our running example.

Label management and maintenance. Every resource
(i.e., process or file) has a label, and the user who owns
the resource can modify a label to specify information-
flow policy. Labelers reside on end-hosts and medi-
ate all interactions between resources in the enterprise,
whether within a single host or between hosts. If in-
formation flows from a resource p to a resource ¢ on a
single host (e.g., a process writes to a file), the labeler
on that host retrieves the labels for both p and ¢ before
initiating IFC checks. If p and ¢ are on different hosts
in the enterprise (e.g., a process sends data to a remote
server), the remote host’s labeler initiates the IFC check:
only the remote host can determine which process ac-
cepts data sent by p and hence its label. Because the
remote host also needs p’s label to perform checks, the
labeler on p’s machine pushes p’s current label to a cen-
tral location that the remote labeler can access; we call
this central repository the global label store.

Policy enforcement. Enforcers perform information-
flow checks; they may be located in the network (“net-
work enforcer”), or as part of the Pedigree module on
host OSes (“host enforcer””). Host enforcers prevent in-
formation leaks that occur at a host, for example, a ma-
licious process attempts to read a confidential file, or
it tries to write the contents of a confidential file to a
removable drive. For each information flow where the
labels of the sender resource p and receiver ¢ differ, the
labeler queries the host enforcer to decide whether an
information flow is permitted. Network enforcers con-
trol the propagation of information based only on the
sender’s label and network flow attributes. For exam-
ple, the network enforcer could prevent traffic flows that
may contain secret information from reaching insecure
networks (e.g., an open wireless network, or the outside

System Granularity | Legacy Execution Environment | Expressive]| Network- User-role Covert Channels
Apps Labels wide
RSA DLP [36] Coarse! v in commodity OS X v none many
Panorama [49] Fine v within an emulator X X none some
TaintEraser [49] Fine v in commodity OS X X some control few
Flume [19] Coarse X in commodity OS v X none few
Dstar [51] Coarse X in new OS v /2 none very few
Pedigree | Coarse |V | in commodity OS % [v | direct control | few

Table 1: Comparison of related information-flow control systems. Pedigree can enforce information-flow control for legacy applications
that run on a commodity operating system. It also enforced information-flow control across the network (rather than on a single host), and

allows individual users to define security classes (rather than only a network or system administrator.

Internet).

Challenges. Pedigree’s design entails several chal-
lenges. The first challenge concerns how principals can
manage and manipulate labels. Earlier approaches [19,
50, 51] expect processes to manage their own labels
and associated policies, which requires rewriting appli-
cations. Because Pedigree is designed to work with
legacy applications on commodity OSes, we separate
policy management (i.e., who is allowed to read what)
and from propagation and maintenance of labels. Pedi-
gree’s principals are enterprise users; Pedigree delegates
management of policies to users. The actual tracking
of labels as information flows between resources is per-
formed automatically by in-kernel labelers, as is pol-
icy enforcement when an information flow violation oc-
curs A second challenge entails addressing the trade-
off between centralized and decentralized policy man-
agement: decentralized policy (e.g., capabilities with
Flume [19] or “clearance” in messages with DStar [51])
has the advantage of limited compromise, but requires
individual hosts to manage their own policy. Pedigree
has a centralized policy management infrastructure that
is easier to deploy, maintain, and audit, because most en-
terprises are already used to enterprise-wide centralized
services (e.g., email servers, authentication portals).

3.2 Labels

Pedigree associates labels with processes and files
(specifically, inodes). A label is a set of taints, each
of which is a 64-bit integer. The first two bits of a taint
denote the secrecy and integrity status of the resource
with respect to that taint. If secrecy or integrity bits
are set for one or more taints in a label, the labeled re-
source will require information flow checks when com-
municating with other resources. If a resource’s label
acquires one or more taints with the secrecy bit set,
we say that the resource’s secrecy has been “raised”;
similarly, removal of one or more secret taints is re-
ferred to as “lowering secrecy” or ‘“declassification”.
We will use S, to denote the set of taints in the label
of a resource p for which the secrecy bit is set, and
I, to denote the set of taints that have the integrity bit
set. According to the access control model proposed by

the Bell-LaPadula model [4]—which most information-
flow control systems adopt [19, 50]—information can
flow from resource p to resource q if

S, C
I, C

Sq (i.e., no read “up”, no write “down”)(1)

1, (i.e., no read “down”, no write “up”)(2)

The C relation represents “can flow to”, ie., S, C
Sy, = pcanwritetog. Labels form an information
flow lattice under the partial order of the C relation [7].
Pedigree also follows these rules for information-flow
control, with exceptions as described in Section 4. Be-
cause the relations imply that data can only flow towards
higher secrecy levels, processes may ultimately be un-
able to export secret data without a mechanism to de-
classify it. Thus, Pedigree also allows users and their
processes to declassify information if they have the cor-
responding capabilities; we briefly explain label man-
agement in the next section. Section 5 describes label
management processes in more detail.

3.3 Label Management

Enterprise users assume the responsibility of creat-
ing taints, and initially adding taints to the label of a
resource they own. Users can create new taints or mod-
ify the labels of processes and files based on the user’s
capabilities with respect to each taint. We introduce
three components to enable information flow tracking
and control within the enterprise: an authentication ser-
vice, the label stores, and a policy database called the
capability database.

Before a user can create taints or modify labels, he
must be authenticated. The authentication service (auth-
serv) is centrally managed by a trusted enterprise admin-
istrator. Once authenticated, the authserv allows users to
(1) create new taints; (2) manage a taint that they own;
and (3) modify labels of a resource that they own by
adding or removing taints from the label.

The label store is a repository that stores the labels
associated with resources. Each host has a local label
store—usually an encrypted partition accessible only to
the host’s in-kernel labeler—that stores the labels of
resources on the host. In addition, if a process with
a non-null label communicates over the network, its
host labeler pushes the process’s label to the centrally-

managed global label store to enable network-wide in-
formation flow control. The global label store exposes
the labels for networked applications to network en-
forcers, as well as any host enforcer that might want
to enforce an IFC policy at to the receiving host. The
sending host’s labeler ensures that, before a process is
allowed to send data to the network, its latest label is
written back to the global label store.

The capability database manages the capabilities that
users have for manipulating taints. Each record in the
capability database pertains to one taint, and is stored as
a list of (user, capability) tuples. Each user can have six
capabilities for manipulating a taint:

e set the secrecy bit (sT), or unset it (s7)
e set the integrity bit (i 1), or unset it (i ™)
e add/remove users who can manage capabilities of

the taint
(i.e., the “capability set”) (o™ and 07).

A user who first creates a taint has all six capabilities.
Taints may also have an entry with the username set to
a “wildcard” entry, to specify capabilities for users not
explicitly listed in the capability set; this wildcard ca-
pability is how Pedigree implements provenance, which
helps prevent confidential enterprise-wide information
(e.g., projected earnings, internal memos) from being
leaked. For example, the user that creates a file may set
a wildcard entry with only s™ rights; this implies that
while any other user will be able to open and read the
file using their reader application, the application will
not be able to remove the taint, essentially restricting the
file to dissemination only within the enterprise network
boundary.

In this paper, we focus on examples using secrecy bits
alone, because these are most useful in a data loss pre-
vention scenario. Integrity bits, however, can be used
as illustrated in previous work on information-flow con-
trol, such as for preventing untrusted processes or appli-
cations from editing critical system files and directories
(e.g., /etc/rc [19]).

3.4 Policy Enforcement

Figure 2(a) shows how Pedigree enforces information
flow control on a single host. Suppose p is a process
that wishes to read a secret file f; the user that owns f
can mark f as secret to all other users. When p attempts
to read f (Step 1), the labeler retrieves the labels for f
and p from the local label store (Step 2). The local la-
bel store is an in-memory structure that is buffered on
disk and maintains labels of all active and persistent re-
sources, such as running processes and files. The local
label store is also stored persistently on disk. The labeler
then queries the host enforcer with the labels of p and f
to check if the information flow from f to p is permissi-
ble (Step 3). The enforcer first retrieves the capabilities

Process p

User @read(z)

Store | ' Enforcer e~ | Capability

| Do IF U Policy | DB
Host Check i

(a) Information flow control within a host.

' Process p
User @ send (2)

Kernel ,-======-p-=-7---------- N

Process q

User Tecv(2

Network
Enforcer

. -l 2]

Labeler Retrieve sender Labeler

label and Jooo-
40¢2.anC Caps Retrieve

sender Ibl|

Kernel --wwnnnf--o il .

Do IFC
Checks

Global Label Store |, () o o

C ; | Retrieve sender; Enforcer |

H ost1 i Capability
DB

Information flow between two hosts.

Figure 2: Pedigree can control information flow either between
processes on a single host, or between processes across a network.

of the users that own p and f for all taints in the labels of
p and f (Step 4) from the capability database, and then
checks whether p reading f would cause a violation of
Equations (1) or (2) (Step 5). The enforcer returns the
result of the check in Step 6.

Figure 2(b) shows how Pedigree enforces information
flow control policies across a network. Suppose the ma-
licious process p on Host 1 is attempting to exploit a
trusted server process ¢ on Host 2. Because p’s data is
sent over the network, the labeler on p’s machine pushes
p’s latest label to the global label store at a location ac-
cessible to the network enforcer and the labeler on Host
2 (Step 2). The network enforcer, if it wishes, can check
whether the attributes of the flow and p’s labels per-
mit the send to take place (Step 3). If the network en-
forcer allows the flow to reach Host 2, the labeler on
Host 2 first retrieves p’s label from the global label store
(Step 4). After this point, the information flow is equiv-
alent to a local inter-process communication on Host 2,
and Host 2’s labeler subsequently invokes its enforcer
to perform the IFC check using p’s and ¢’s labels, which
the enforcer completes after retrieving appropriate capa-
bilities from the capability database (Steps 5 and 6).

The authserv (not shown in Figure 2) allows users to:
(1) create and add a new taint to a file or process with
the secrecy or integrity bit set; (2) change the capabil-
ities of users on any given taint; or (3) remove a taint

from a file’s or process’s label. Section 5 details these
operations.

4. Pedigree in Practice

We explain how Pedigree provides information flow
control both on a single host and across the network.

4.1 Single-Host Information Flow Control

Enforcing information flow policies at a host involves
propagating labels for resources using the labeler, and
enforcing information flow using the host enforcer. To
track information flow between resources, the host la-
beler intercepts system calls where information flows
between resources (e.g., read (2), send (2), execve (2),
etc.). After intercepting a system call, the labeler first
retrieves labels of the two resources, say A and B, from
the label store. It then queries the host enforcer, sup-
plying the two labels and the user IDs of the owners of
A and B as arguments. The host enforcer retrieves the
capability sets of all taints in each resource’s label from
the capability database, and checks to see whether the
information flow from A to B is allowed.

To reduce user intervention and to allow new pro-
cesses to read secret files, Pedigree slightly modifies the
conventional rules for information flow control. Specif-
ically, the labeler tries to automatically allow informa-
tion flows that only raise a resource’s secrecy (or in-
tegrity); lowering secrecy (i.e., declassification), how-
ever, must always require user intervention. For an in-
formation flow from resource A to B, the labeler tries
the following options: (1) setting Sp to Sp U Sy, i.e.,
automatically “raising” the secrecy of B to match A’s
secrecy label; (2) setting I4 to I4 U (Ip — Ia), Le.,
automatically raising the integrity of A. The process’s
secrecy label is raised to the file’s own set, provided the
user who owns the process has the s capability with
respect to every secrecy taint in the file’s label. Without
this modification to IFC rules, a user would have to ex-
plicitly raise the secrecy of her editor application before
reading a sensitive document.

If the above conditions are not satisfied, the enforcer
denies the information flow, returning the decision “not
allowed” to the labeler, which the labeler then returns to
the process through an appropriate return code. This au-
tomated re-labeling function represents a significant de-
parture from existing DIFC systems, which do not face
the same problem because they typically apply to only a
few specific processes with a limited set of capabilities.

Declassification. Resources may automatically acquire
many secrecy taints and be unable to communicate to
less-secret resources or the outside network. To allow
users with appropriate capabilities to “declassify” their
processes and files, the labeler exposes the declassify
system call, which sets a bit in the process’s label indi-
cating that the process can have a lower secrecy level for

subsequent resource interactions. For example, consider
awrite (2) call by process A on file B invoked after first
invoking declassify. Instead of the default behavior of
raising Sp to Sp U Sy, the labeler would lower S 4 to
Sa — (Sa — Sg), (i.e., secrecy taints in A that are not
present in B are declassified). All information flow from
the process will be performed under declassify until the
bit is explicitly unset with another syscall.

Preventing Host-based Information Leaks. The la-
beler marks all potential avenues for information leaks,
including network interfaces, secondary or removable
hard drives, and other communication mechanisms such
as Bluetooth, Infrared, or Firewire, as “dummy” re-
sources with immutable taint sets S = ¢ and I = ¢.
When a process or user that does not have s~ for one
of its taints tries to write to a removable drive, the host
enforcer prevents the action. Exceptions to this rule are
the primary network interface (i.e., the network inter-
face connected to the network enforcer and the rest of
the enterprise) and the primary hard disk (i.e., on which
the operating system is installed); for writes to these de-
vices, the labeler does not perform the usual IFC checks.
Our threat model assumes that the primary hard disk is
not an avenue for leaks. Data sent to the network over
the primary interface is checked by a host enforcer on
the remote host or by the network enforcer in the net-
work. The labeler discovers the primary hard disk at OS
install time; it discovers the primary network interface at
boot time using a two-way bootstrap protocol between
the labeler and a labeler authentication service, which
is described in Section 5.1.

At boot time, the host enforcer builds a list of all out-
put devices (except the display device) as potential av-
enues for information leaks, and sets the immutable se-
crecy taint sets for these devices as ¢ to prevent tainted
resources from writing to these devices. It excludes
from this list the primary NIC and the primary hard
disk; these devices receive a special “master” taint, i.e.,
Snrc = {master}. The master taint indicates that
send(2) and recv (2) through this interface do not in-
volve IFC checks, nor do they change the taint sets of
the calling process, irrespective of a process’s secrecy
set S.

Example. Suppose Alice writes a confidential report f
on a multi-user machine. She wants to get feedback on
the report but does not want other users to copy it off the
machine. After creating the document, she authenticates
herself to the authserv, creates a new taint ¢, sets the
secrecy bit, and applies it to f’s label. In addition, she
changes the taint’s capability set to include a wildcard
entry that gives any user the capability s™ on the taint
(we call this a provenance taint).

When Bob then uses his untainted editor process e
to open f, his host’s labeler sees that Sc(= ¢) Z Sy.

It first checks whether the capabilities of all taints in
S; — Se(= {t}) allow the capability s* for Bob. Be-
cause Alice added an entry with s™ for any user on taint
t, the host enforcer allows Bob’s editor to read f af-
ter raising S, to {t}. Bob’s editor may fork other pro-
grams and write copies of files (all of which retain the
taint t), but because he does not have s—, he cannot ex-
port any portion of the file through a removable drive
or a secondary network device. After receiving com-
ments from Bob, if Alice wishes to take a copy of the
file home using a removable drive, a command such as
“cp £ /usbdrive”, will fail because the secrecy taint
set of the USB drive is empty and immutable. However,
if she executes “declassify cp f /usbdrive”, the la-
beler first sets the declassify bit for the cp process, and
subsequently drops S, to Sy, because Alice possesses
s~ for all taints in S¢p — Suse, ie., {t}.

4.2 Network-Wide Information Flow Control

The challenge in enforcing IFC at the network or a re-
mote host is that the receiver’s enforcer needs to make
IFC decisions but it does not have the labels associ-
ated with the sending process. To uniquely associate
a sender process with a label, the sender’s labeler an-
notates each packet with a resource ID and a version
number. The network enforcer or the enforcer on the
receiving host can retrieve the sending process’s label
using the sender’s IP address, resource ID, and version
number from the global label store. The resource ID
is unique during a process’s lifetime; we use the pro-
cess ID as the resource ID. Version numbers increment
from zero and indicate the version of the sending pro-
cess’s label; if the sending process’s label changes, the
sender’s labeler annotates subsequent packets with the
incremented version number to indicate to the receiving
labeler that the sender’s label has changed.

IFC checks at the Remote Host. The remote labeler
first extracts the resource ID and version number from
the packet header for incoming flows and retrieves the
sender’s label from the global label store. Because it
also knows the label for the receiving process, it can per-
form IFC checks using the remote host enforcer, similar
to the single-host IFC scenario. Specifically, operations
such as declassify can also work across the network:
if a user invokes a send (2) call in a declassified process
p, the receiving process g will be able to read the data if
the sending process’s owner possesses s~ for all taints
in S, — 9. Section 5 sketches a protocol that allows the
sending process to be declassified after the enforcer at
the remote host verifies that the declassification would
successfully allow information flow.

IFC checks at the Network Enforcer. The network en-
forcer typically resides at boundaries between networks
of different trust levels, such as at the edge of the en-
terprise leading to the Internet, or between wired and

wireless network boundaries within the enterprise. The
enforcer has policies that designate immutable secrecy
and integrity taint sets to certain destination prefixes,
or perhaps to specific ports of the network device. For
example, the enforcer can designate traffic destined to
the Internet as Siemet = ¢. When a network enforcer
sees a new data flow, it extracts the resource ID and ver-
sion number from the packet header and retrieves the
sender’s label from the global label store. It then per-
forms IFC checks to ensure that the data flow is per-
mitted. For example, the policy of setting Siyemet = ¢
would indicate that an outgoing flow generated by a pro-
cess with any secrecy taints at all will be dropped. Once
a flow passes IFC checks, the network enforcer typically
installs a rule that allows future packets with the same
resource ID and version number through without under-
going any checking. This functionality is provided by
the popular Openflow switch platform [29] in combina-
tion with a NOX controller.

Example. Let us revisit the previous example in a net-
worked setting (Figure 3). Alice creates her confidential
file f, applies the taint ¢, and deposits the file on a pub-
licly accessible directory on the enterprise file server.
The labeler on the fileserver ensures that the label of
the file contains S = {t}.> Now suppose Alice wishes
to collaborate with Bob in editing the file, but wishes
to keep the file secret from everyone else. Using the
authentication service and the capability database, she
modifies ¢’s capability set to include Bob’s user ID with
the associated capabilities {s}, as shown below.

username | capability
alice st.s—,it,i",07, 0"
bob st

Now, Alice and Bob can read the file within the enter-
prise, but Bob cannot export the file’s data, and a mali-
cious user, Carol, cannot read the file, since ¢’s capabil-
ity set for {s*} does not contain Carol.

Now suppose that after some collaboration, Bob for-
gets that the file is secret and tries to send it to his
friend Mallory using encrypted email through his ma-
chine’s primary network interface card. His email client
acquires the taint {t} as soon as it reads the file. Al-
though no IFC checks are performed on his host, the
network enforcer, after comparing the sending process’s
label ({t}) with Spyemer = ¢ discovers the information
flow violation and blocks the traffic; the same violation
occurs irrespective of the method Bob uses for exfiltra-
tion over the primary interface. Frustrated, Bob tries to

3We assume that the fileserver is either an untainted process that forks
new processes to service each incoming connection (e.g., sshfs), or a
kernel-resident server (e.g., NFS). This assumption is needed because
the label of a single-process fileserver may accumulate a large num-
ber of taints as different processes write to it such that IFC rules are
violated.

4. The network enforcer
drops Bob's email because
his email process has a

—TT T 2
<|nternet j?—_ % non-empty label, but

7,,,@{,‘ Mallory S_Internet = { }

1. Alice copies
file f with secrecy
label {t} to

afileserver. _.--3

i

3. Carol's attempt to
view the file is denied
----- because the CapDB for
“~~._ {t} does not include her|

5. Copying to a

2. Bob can read f

because Alice set 4
- a CapDB entry for removable drive is
denied, again becauge

yar (t} with s+ forBob O, %
Server {1} With s+ for Bob 4 || the removable drive
Bob N has S_drive = { }

Figure 3: Example data-leak scenario, with explanations of the
IFC violations that prevent the data leak attempt.

run declassify before attempting to leak the file. Al-
though the email client’s process will then have its de-
classify bit set, it does not have any effect because Bob
does not have the s~ capability for the taint ¢.

Pedigree can also protect against leaks of data by mal-
ware in the same fashion: if the malware is running as
Bob’s user, it is limited by the same capabilities as Bob.
Even if the malware is running on Alice’s machine as
Alice, Pedigree can prevent it from leaking f: unless a
process performs the data leak under declassify, the
taint ¢ will stay in the process’s label, preventing it from
leaving the enterprise boundary. Thus, the malware has
to not only run as Alice, but also have Alice invoke
declassify on it. Because we expect that declassify
will be implemented similar to a sudo operation, re-
quiring a password (or a proof-of-human test such as
a CAPTCHA), a malicious program will not be able to
stealthily leak f without Alice’s explicit approval.

5. Secure Label Management

This section describes secure protocols for associating
the labeler with a host (Section 5.1) and allowing users
to manage the capabilities of taints for resources that
they own (Section 5.2).

5.1 Associating a Labeler with a Host

Although the global label store may contain labels
from various hosts, a particular labeler must be able to
manipulate labels in the global label store only for re-
sources that are associated with its host. Labelers must
be uniquely identifiable so that Pedigree can associate
each labeler with some host, even as hosts enter and
leave the network or change IP addresses. Thus, an ad-
ministrator assigns a unique private/public key pair to
each labeler when the OS is installed. The operating
system and labeler also have a unique Host ID, which is
usually its public key (or a hash of the public key); the
Host ID can thus be used for self-certification.

When a host enters the network, its labeler regis-
ters with a labeler authentication service. The labeler
authentication service knows each Host ID and corre-

- View Capabilities for
Authenticated @the "Salary Reports" Taint
Taintmgmt. | =~——————————— =
Application

@

User requests the ‘‘Salary Reports’’
taint to be applied to file F

Userspace Capabillty
Kernel l :
] ® - be
@ Authenticated | Get ID for ““Salary Repurtx”i

Add taint to F’s label Labeler

Figure 4: Steps involved in applying a taint to a resource.

sponding public key; this public key is used to prove the
labeler’s identity and also to securely establish an ex-
pirable session key for use between the labeler and the
enterprise services (label store, capability database, and
the user authentication service, authserv). The labeler
also interacts securely with the global label store in or-
der to register storage for itself, and to push and retrieve
labels for network communication.

In some cases, a host may have multiple network in-
terfaces, with only one is connected to the enterprise
network (the “primary” interface). The labeler must de-
termine the primary interface so that it can denote all
other interfaces as potential avenues for data leaks (i.e.,
assign them immutable taint sets of S = ¢). To dis-
cover the primary interface, the host labeler broadcasts
the message to all configured interfaces, and designates
the interface on which it receives a signed response from
the labeler authentication service as the primary NIC.

5.2 Allowing Users to Manipulate Labels

To allow users to create and manipulate labels for their
files and declassify resources, we provide a userspace li-
brary and application. For all operations, the user first
authenticates himself to the authserv using his enterprise
credentials and potentially a proof-of-human test. Once
the user is authenticated, the application contacts the ca-
pability database and presents the user a list of opera-
tions, including (1) create a taint; (2) manage capabili-
ties for taints that the user has the o* capability; (3) add
a taint to the label a resource running on his local host,
such as a file or a process. The label management appli-
cation replaces taint IDs with mnemonics (e.g., “Salary
Reports”). Users can manage capabilities on taints di-
rectly through the application, but to apply a taint to a
local resource, the application requires help from the la-
beler.

Figure 4 shows the sequence of messages exchanged
when a user adds a taint he owns to the label of a file
on his machine; we require this mediated because we do
not wish to give any malicious users or malware direct
visibility or control over the labels of their resources.
Once the user has chosen a taint to be applied to a spe-

Syscall Type Example syscalls

Inter-process Communication | send(2), shmat(2), msgsnd(2),

kill(2)

File/device operations read(2), unlink(2), mknod(2)

Process creation fork(2), execve(2), clone(2)

Memory operations mmap(2), mprotect(2)

Kernel configuration sysctl(2), init_module

Table 2: Types of system calls that are monitored by the labeler,
with examples of each system call type.

cific resource on his host (Step 1), the taint management
application invokes a system call to its local enforcer,
providing as arguments the user ID, the type of request
that the user wishes to perform, and any extra arguments
necessary to complete the request. For example, to add
a secret taint with the mnemonic “Salary Reports” to a
local file, the system call will be a TAINT MANAGE request
that includes the mnemonic of the taint, and the full path
to the local file (Step 2). The labeler communicates with
the capability database using its own encrypted channel
to ensure that the user is authorized to perform the re-
quested operation. If so, the labeler receives the actual
taint ID for “Salary Reports” (Step 3), which it adds to
the local file (Step 4). If all steps succeed, a “success”
code is returned to the taint management application.
Other functions of the taint management application in-
clude a TAINT_CREATE request to create a new taint (and
a name for the taint), and TaINT MODIFY, which modifies
the capability sets of a taint.

6. Implementation

We describe the implementation of Pedigree’s label
management services: the labeler, the label store, and
the capability database. We then describe the implemen-
tation of the host and network enforcers.

6.1 Label Management and Maintenance

The labeler is a Linux Security Module (LSM) [48] in
Linux kernel version 2.6.22. LSM is a framework within
the Linux kernel that allows various security models to
be added-on without changing core kernel code. LSM
provides hooks within system call handlers that can
be implemented by a security module; thus, a third-
party module can implement mandatory access control
for a system call (e.g., read(2)) without changing the
core implementation of the system call handler (e.g.,
sys_read). Using LSM hooks, the labeler intercepts all
system calls that transfer information between resources
on a host. We have implemented hooks to track infor-
mation flow for the system calls listed in Table 2. The
labeler enforces IFC checks using the host enforcer—
which, although currently implemented as a kernel mod-
ule, could also be implemented “below” the kernel (e.g.,
in a hypervisor or on a trusted platform module). An en-
terprise administrator first installs the labeler module on
the OS when the system is in some known “clean” state

struct label {
/* Version number of this label =/
int version;
/+ Is resource a process or an inode? x/
int is_process;
/+ The identifier for the resource */
union {
pid_t pid;
unsigned long inode_num;
}i
/+ Taints associated with this label x/
taintset_t xtaintset;
/+ Enterprise-wide uid of the owner */
uid_t uid;
/+ Called under ‘declassify’? =/
int can_declassify;

Figure 5: Structure of a label.

(e.g., as might be determined by an audit, virus scanner,
or simply by using a Linux distribution with the pre-
loaded labeler for installation). On reboots, the labeler
is loaded shortly after init during the boot sequence.

The hooks for the system calls are 1,500 lines of C
code, and the logic for the labeler and the host enforcer
is another 6,500 lines, so the total module implemen-
tation is about approximately 8,000 lines of code. We
have not yet implemented hooks for certain system calls
that transfer information such as semaphore operations,
mounting or unmounting of superblocks, and ptrace; we
plan to implement these hooks for future work.

Label Implementation. The labeler maintains a la-
bel for every resource. Figure 5 shows the structure of
the label, which has structure for a set of taints (called
taintset) that is implemented as a sorted set allowing
taint addition, deletion, and lookup in O(log n) time,
and unions in linear time. A taint is described by the
taint ID and its current setting of secrecy and integrity
bits. The local labeler does not maintain capabilities of
the user that owns the resource, since those are main-
tained in the capability database. For efficiency, the la-
beler does not create or maintain labels for files and di-
rectories that have no taints in their label, assigning such
resources a “null” label.

Label Store. The local label store is a partition that is
encrypted using a key embedded in the kernel image,
and is stored in a partition not readable to user space
processes (enforced using LSM checks). On disk, labels
are indexed by the inode numbers or process IDs of the
resources to which they map. Label reads and writes are
buffered using an in-memory cache of approximately
1,000 entries. At shutdown, labels for files and direc-
tories are written to disk; process labels are discarded.
To prevent loss of sensitive labels in the event of a ma-
chine crash, we use a journaling filesystem on the label
store partition, and write back a file’s labels to the label
store before the file’s inodes themselves are written to
disk. Pedigree kernel modules implement additional se-
curity features to ensure that user-space processes (even

i3 Src MAC Dst MAC Src IP Dst IP L4 Src | L4 Dst | Pedigree | Pedigree | O/P Port | Action
Port Port Port Version PID
4 00:1a:a0:3b:7a:2d | 00:50:56:c0:00:01 | 10.1.1.17 | 10.1.1.37 | 5000 443 5 882 12 Permit

Table 3: An example of a flow table rule for the modified OpenFlow Switch with two extra fields: label version and process ID.

superuser processes) cannot interfere with the operation
of the labeler, which we describe in more detail in Sec-
tion 8.

Capability Database and Global Label Store. The
capability database and global label store are hash ta-
bles that allow clients to look up values of keys. We
implement both services using Redis [34], a high-
performance key-value store. Redis supports about
110,000 seTs per second, about 81,000 GeTs per sec-
ond [35], outperforming many relational databases (e.g.,
MySQL) and key-value stores (e.g., memcached). Redis
supports only string keys, but values can be of any type.
Keys for the capability database are the taint IDs; each
value is a structure that contains the name for the taint,
and a list of users and their capabilities over the taint.

6.2 Policy Enforcement

Host enforcer. The host enforcer is a kernel module
with the same security and privileges as the labeler. The
labeler invokes the host enforcer when it detects infor-
mation flow between two resources that have incompati-
ble labels. The enforcer communicates with the capabil-
ity database to retrieve the appropriate capabilities, but
it can sometimes make a decision without querying the
capability database (e.g., if the sender’s label has one or
more secrecy taints, but the can.declassify bit is not
set and the destination is a removable drive, the enforcer
can deny the information flow).

Network enforcer. The network enforcer uses a
slightly-modified OpenFlow [29] switch implementa-
tion, and a custom NOX [13] controller that commu-
nicates with the switch over a secure channel. The con-
troller queries the capability database and global label
store to make information flow decisions and installs
rules on the switch to forward or block flows based on
the result. We modified OpenFlow switches to augment
flow table entries with label version numbers. When a
new flow arrives, the switch forwards the traffic to the
controller. The network enforcer at the controller per-
forms the checks described in Section 4.2. If the flow
is permitted, the controller inserts a flow table entry in
the switch as shown in Table 3, and data packets that
match this entry are forwarded. If the version number
embedded in data packets change mid-flow, the flow ta-
ble entry no longer matches; at this point, the controller
performs a new IFC check on the new version of the
sender’s label.

10

7. Evaluation

We evaluate the overhead and usability of Pedigree in
various scenarios. We used the Emulab [8] testbed for
all experiments; our test machines were dual-core In-
tel Xeon 3 GHz machines with 2 GB of physical mem-
ory. We set up a network of hosts connected through
a software OpenFlow switch, and verified that Pedigree
satisfied information flow policies according to Equa-
tion 1. We evaluated the overhead that Pedigree imposes
on both local system calls and on network connections.
We are running Pedigree on several machines in our lab
and have found the implementation to be stable and us-
able.

7.1 Host Overhead

Because the labeler creates a new label for each new
resource, Pedigree introduces overhead for workloads
that create many resources. We perform two bench-
marks to evaluate this overhead: First, we perform
a controlled experiment with a series of read(2) and
write (2) to evaluate the individual overheads on the
system calls alone with and without Pedigree. Second,
we compile several source packages and compare the
total times taken with and without Pedigree.

Microbenchmark: System Call Overhead. We mea-
sure the overhead of Pedigree using two benchmarks:
a file read/write benchmark that measures read (2) and
write (2) overhead, and a networking benchmark that
measures send (2) and recv (2) overhead. For the file
benchmark, we create 1,000 8 MB files with random
data and apply a label to each file. We then use read (2)
to read the contents of each file and write (2) to write
the data to a new file. We measure the time for each
system call in user space, as well as the primary sources
of Pedigree’s overhead in the kernel. We average these
measurements over the total number of system calls, for
all files. To benchmark network socket calls, we set up
a TCP client and server, send 10,000 small packets from
the client to the server, and measure the average time for
a send (2) at the client and recv (2) at the server.

Table 4 shows the average time taken for each sys-
tem call, with and without Pedigree. The read (2) and
write(2) system calls incur only minimal overhead:
15% and 6%, respectively. The additional time is spent
mostly in fetching the label of a file being read or writ-
ten from the local label store on disk. The write times
are smaller than read times because the operating system
does not write inodes to disk immediately; however, the

System call Time w/o Pedigree (ms) Time with Pedigree (ms)

write(2) 6.471 Retrieve lgt?;?: 6<—>869535 l(%;erhmd: o07%)
send (2) 0.0048 Marshall labels & Push to label Z?J:; (2()939%4{2(3710)”}!““1: 0208
recv(2) 0.0016 Fetch labels from label store and Unmarzﬁzﬁ (:399995.4{?2710)”}!““1: 18018.73%)

Table 4: Average time taken for system calls with and without Pedigree. We also show the time overhead of Pedigree, and the percent time

spent in the most time-consuming activity when using Pedigree.

measurement represents the time for the write (2) sys-
tem call to return both with and without Pedigree.

The overhead for individual send(2) and recv(2)
calls are understandably larger with Pedigree because
send(2) and recv(2) involve one round-trip time to
the label store: send (2) experiences about a 63x slow-
down, and recv (2) has about an 187 x slowdown. Over
99% of this time—approximately 0.29 milliseconds—
is spent in from pushing the sending process’s label to
the label store in the case of send (2), or retrieving the
sending process’s label from the label store in the case
of recv (2). This measurement represents a worst-case
scenario where every send (2) Or recv (2) requires con-
tacting the global label store; as we show in Section 7.2,
this overhead is negligible for large flows with many
sends and receives.

Macrobenchmark: Compilation. To compare the
overhead for read- and write-intensive applications, we
compare the time to compile three packages—GNU
wget, GNU bash, and Apache. httpd. These packages
have 69, 112, and 254 C header files and 65, 241, and
564 C source files respectively; after compilation, they
generate 180, 227, and 912 new files. We add a label
to each C header file so that the label propagates to all
compiled object files and binaries. Figure 6 presents
the average system, user, and wall-clock times taken
for compilation on our test machine with and without
the Pedigree labeler. The user and system times do
not increase appreciably with Pedigree, implying that
most of the overhead is in I/O, such as retrieving labels
for files from the on-disk local label store as opposed
to CPU-bound tasks. The relative increase in compi-
lation times is smaller for the larger packages: httpd
compilation with Pedigree takes 172.4 ms instead of
165.57 ms (overhead: 4.1%), whereas wget compila-
tion with Pedigree takes 19.55 ms instead of 16.39 ms
(overhead: 19.2%). The lower percentage overhead for
compiling httpd results from amortization of disk access
times: for httpd, the label of a header file fetched from
disk remains in the in-memory label cache and can be
accessed quickly for compiling many other source files;
on the other hand, wget has fewer C source files than
header files.

11

180
160 | 1
[System
140 User H 7
g 120 - ‘Wall-=clock
=
§ 100
=80
E
£ 6]
40 |
20 .
N B i
KRS %, %,
% %, % ",
4 (cN & v (s
wget bash httpd

Figure 6: Average time to compile three software packages with
and without Pedigree.

7.2 Network Enforcer Overhead

In this section, we compare the overhead of Pedigree’s
network enforcer with other setups, as shown in Fig-
ure 7. Our baseline is the total time taken to forward
a flow across a switch without any extra logic (“Direct
forwarding”). Next, we measure the overhead with a
software OpenFlow switch in conjunction with a simple
NOX controller that reads the first packet of a flow and
installs a permit flow table entry for the flow without any
processing (“OpenFlow/Controller”’). Third, we mea-
sure the overhead of Pedigree’s network enforcer, im-
plemented as a custom controller; this scenario is sim-
ilar to the previous setting, except that the network en-
forcer retrieves the sending process’s labels and capabil-
ities from the global label store and capability database
before permitting it to proceed. We compare these ap-
proaches to a traditional DLP approach of applying a
regular expression on the content of every packet; in this
case, the switch forwards each packet of the flow to the
controller before proceeding.

Figure 7 shows the worst-case transfer time with each
setup over 100 runs. Pedigree adds measurable overhead
to the transfer time of small flows due to the time to fetch
the sending process’s label and capabilities; as the flow
size increases, this overhead is amortized. For a large
flow of 128 MB, the transfer time with the network en-
forcer is 2.052 seconds, compared to 1.587 seconds for

=3y 1000 ‘ ‘

2= 100 F DL 3
s.s OF/Pedigree %+

g9 10 F OF/simple 1
8 =z 1E Direct — & . e | Bl
9&; 0.1 f E
g g 0.01 F [e— — E
g j: 0.001 L L L L L L

100 1000 10000 100000 1e+06 1e+07 1e+08 le+09

Flow size (bytes)

Figure 7: Transfer times for three flow sizes (512 bytes, 2 MB, and
128 MB) using direct forwarding, OpenFlow with a simple con-
troller, OpenFlow with a Pedigree network enforcer, and a deep-
packet inspector that inspects the content of each packet for DLP.

direct forwarding, 1.995 seconds for a simple controller,
and 154.24 seconds with deep packet inspection.

7.3 Lived-in Experience

A few members of our lab have used Pedigree on
their GNU/Linux desktops and laptops to evaluate us-
ability issues including: (1) Is the system-call over-
head of Pedigree noticeable in day-to-day activities; and
(2) Does dealing with sensitive-labeled files using com-
mon applications work as expected?

System-call overhead is noticeable only for read- or
write intensive applications operating on files with non-
empty labels, such as copying a large file or compiling a
package. Interactive activities such as opening or editing
documents introduces no noticeable delay. Users did not
observe overhead with networked applications such as
opening a Web page or sending an email. Certain appli-
cations, however, tend to “leak” labels to resources that
should not typically be reading or accessing sensitive
data. For example, a Gnome editor (gedit) may com-
municate the title of an open file with the system-wide
applet gnome-panel after it reads the file contents. If the
file is labeled sensitive, gnome-panel will automatically
acquire this label. If gnome-panel subsequently com-
municates to another application, that process may also
unintentionally acquire the label. Although we cannot
prevent such label “leakage”, we find that few applica-
tions (e.g., gnome-panel, the D-Bus protocol, etc.) are
responsible for most leaks. If the in-kernel labeler is
aware of these applications, it can ensure that they are
not allowed to read data from sensitive processes.

8. Attacks and Defenses

We describe how Pedigree handles attacks against the
local label store, the labeler, and the OS kernel.

Attacks on the label store and kernel binaries. Al-
though standard OS APIs protect the labeler and label
store from malicious applications, physical attacks, such
as removing the primary hard disk, or booting off sec-
ondary media to read the primary disk, are possible. To
prevent unauthorized access to labels, we store the lo-
cal label store on an encrypted partition that is not ac-
cessible from user space. Before shutdown, the labeler

12

flushes all persistent resource labels to the local store.
It then negotiates an encryption key with the labeler au-
thentication service for encrypting the local store. This
key and checksum of the label store are sent to the au-
thentication service and are not stored in plaintext on the
host. When the labeler authenticates itself at bootup, it
retrieves this key and the label store’s checksum; it can
detect tampering if the checksums do not match.

An additional stage of encryption can prevent mali-
cious users from reading or modifying the kernel bi-
naries (including the labeler and enforcer code): After
the label store is encrypted, the kernel encrypts the boot
partition (e.g., /boot) using another per-boot key that is
either pushed to a central location, or stored in sealed
storage on a local Trusted Platform Module (TPM) [3].
A custom bootloader can retrieve the key to decrypt the
boot partition at boot time.

Attacks on the running OS or the Pedigree module.
Although rare, OS vulnerabilities may allow attackers
to remove or disable protections provided by the labeler
or the OS. The attacker can disable the labeler or cause
it to not properly label resources that read secret infor-
mation. Fortunately, an attacker who compromises only
a single host cannot access or modify labels on other
hosts. A privilege-escalation vulnerability may occur
either due to kernel bugs, or bugs in applications run-
ning as a privileged user. To defend against such attacks,
we separate superuser privileges from those required to
modify the kernel. Superusers can perform privileged
tasks such as installation of system-wide programs and
raw socket I/O, but only enterprise administrators retain
full control over the kernel (in contrast to current sys-
tems, where the superuser also fully controls the kernel).
The Pedigree kernel prevents operations that attempt to
remove core kernel modules (including Pedigree) or re-
instrument certain functionality (e.g., inserting a module
without a valid signature from an enterprise administra-
tor [39]). In a typical enterprise, most users do not re-
quire privileges for kernel modifications, so even an ex-
ploit that allows a malicious program to attain superuser
privileges cannot disable IFC checks.

Pedigree cannot defend against a vulnerability that al-
lows the attacker to insert code into the kernel through
non-standard channels. This attack is serious in mono-
lithic kernels such as Linux, because every kernel com-
ponent is equally “trusted”. Fortunately, serious kernel
vulnerabilities have at most resulted in privilege escala-
tion in user-space [20,21], so the possibility for kernel
compromise itself is low. To stem the impact of these
types of vulnerabilities, groups have been working to
harden the Linux kernel to better contain covert chan-
nels, such as grsecurity [12]; Pedigree could be imple-
mented on these kernels.

Covert Channels. A malicious process could attempt to

covertly transfer information to another, for example, by
modulating its memory usage. Covert channels are dif-
ficult to disable without OS re-design (e.g., HiStar [50]).
Pedigree (and the DIFC OS Flume [19]) runs on Linux,
which has no inherent support to detect or prevent covert
channels, but Pedigree could also be run on a secure OS
that better defends against covert channels such as HiS-
tar.

9. Related Work

Distributed information flow control has been applied
to various systems since the 1970s [7]. Static tainting
approaches [15, 25, 30, 43] can taint certain variables
or portions of memory with security classes, but these
methods require the programmer to assign security la-
bels at programming time. Many operating systems
have attempted to secure a single host against exploits
or to prevent security breaches (e.g., exfiltration), start-
ing as early as 1975 with the Hydra operating system [6]
to more recent work (e.g., Taos [47]). Also in the operat-
ing systems layer are Tripwire [42] to discover changes
to critical files, and mandatory access control models
such as SELinux [37] and AppArmor [2]. While these
frameworks also leverage system call hooks to enforce
access control, they implement static policies based on
type- or role-based access control.

Dynamic taint analysis techniques have seen a resur-
gence recently, with TaintTracker [27], a mechanism
to monitor information flows at the instruction level to
detect potential exploits on a host; and process color-
ing [16], which focuses on tracking interactions between
resources (“‘color diffusion”) used for early detection of
resources on a host that possess “colors” of a vulnera-
ble process. More recent efforts include Panorama [49],
Privacy Oracle [17], TaintDroid [9], and Neon [52]. Al-
though these systems work to track information leakage
from legacy applications, they, unlike Pedigree, (1) track
information flow using a fixed set of non-expressive
taints, (2) all concentrate on leakage prevention from a
single host, and (3) have static policies (e.g., data in-
put from sensors is automatically tainted), which lim-
its user control and applicability. These systems also
run with some form of instruction-level instrumenta-
tion which can cause more overhead than Pedigree’s
system call interposition; on the other hand, these sys-
tems also track taints at a finer granularity than Pedigree.
LIFT [33] reduces the overhead of propagating taint in-
formation; others have targeting reducing tainting over-
head for Web applications [14,28,31]. Hardware de-
fenses include preventing tainted data from being used
at a jump destination address in a branch or jump in-
struction [18,40], and tracking instances when tainted
pointers are dereferenced [5]. Tainting has also been ap-
plied to other areas, including program understanding,
software testing, and debugging (e.g., [10,22,23]).

Pedigree bridges the gap between dynamic taint anal-

13

ysis on legacy applications, and systems that are in-
spired by the use of labels for information flow con-
trol [25]. Operating systems such as Asbestos [44] and
HiStar [50] are designed to allow containment of appli-
cations that can be separated into trusted and untrusted
processes. Flume [19] modifies Linux to allow similar
policies, at the price of a large trusted computing base
and any covert channels present in the kernel. Dstar [51]
is an attempt to extend HiStar’s decentralized informa-
tion flow control to the network, using signed messages
to transfer labels and capabilities between hosts. Al-
though Dstar is similar in concept to our work, it re-
quires HiStar on both machines to understand and al-
low label transfers. Pedigree is more general, because
(1) it allows unmodified applications to acquire labels,
(2) policy is centralized, which allows for easy auditing
and enforcement, and (3) users and administrators man-
age capabilities instead of processes.

10. Conclusion

Enterprises remain vulnerable to data leaks that cost
network administrators countless hours and billions of
dollars. It has been difficult to achieve network-wide
information-flow control, primarily because most exist-
ing solutions require modifications to operating systems,
applications, or both. Unfortunately, most enterprise
networks have legacy applications, operating systems,
and infrastructure, making many existing solutions un-
tenable. We presented Pedigree, a system that tracks
and controls information flow as data travels between
processes, both on a single host and across the network.
Pedigree can enforce information flow policy either on
the hosts themselves or in the network.

Pedigree makes information flow control more prac-
tical for legacy systems and across networks; its design
and mechanisms may also apply in other settings where
administrators cannot constrain the applications or op-
erating systems that users run, such as cloud environ-
ments. Perhaps the most significant remaining chal-
lenge is the issue of granularity: assigning labels at
the granularity of files and processes may sometimes be
too coarse-grained, but byte-level tainting or labeling in
memory is unlikely to scale. One possible avenue for
future work would be to create a hybrid approach that
combines Pedigree with byte-level tainting.

REFERENCES

[1] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker. Accountable Internet Protocol (AIP). In Proc. ACM
SIGCOMM, Seattle, WA, Aug. 2008.

[2] AppArmor Application Security for Linux. http://www.novell.
com/linux/security/apparmor/.

[3] S. Bajikar. Trusted Platform Module (TPM) based Security for Notebook

PCs. http://www.intel.com/design/mobile/platform/

downloads/trusted_platform_module_white_paper.

pdf.

D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical

Foundations. Technical Report 2547, MITRE Corporation, 1976.

[4

http://www.novell.com/linux/security/apparmor/
http://www.novell.com/linux/security/apparmor/
http://www.intel.com/design/mobile/platform/downloads/trusted_platform_module_white_paper.pdf
http://www.intel.com/design/mobile/platform/downloads/trusted_platform_module_white_paper.pdf
http://www.intel.com/design/mobile/platform/downloads/trusted_platform_module_white_paper.pdf

[5]

[6]
(7]

(8]
91

[10]

[11]

[12]

[13]

[14]

[15

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. Iyer. Defeating memory
corruption attacks via pointer taintedness detection. In Proceedings of The
International COnference on Dependable Systems and Networks, 2005.
E. S. Cohen and D. Jefferson. Protection in the hydra operating system.
pages 141-160, 1975.

D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236-243, May 1976.

Emulab. http://www.emulab.net/.

W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In Symposium on Operating
Systems Principles (SOSP), Oct. 2010.

V. Ganesh, T. Leek, and M. C. Rinard. Taint-based directed whitebox
fuzzing. In 31st International Conference on Software Engineering (ICSE
2009), pages 474-484, 2009.

Goldman’s Secret Sauce Could be Loose Online. http://is.gd/
dmah?Z.

grsecurity: Enhancing Security for the Linux Kernel. http://
grsecurity.net.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: towards an operating system for networks. ACM
SIGCOMM Computer Communication Review, 38(3):105-110, July
2008.

V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation for
Java. In Proceedings of the 13th International World Wide Web
Conference (WWWO04), pages 40-52, 2005.

B. Hicks, S. Rueda, T. Jaeger, and P. McDaniel. From Trusted to Secure:
Building Applications that Enforce System Security. In Proceedings of
the USENIX Annual Technical Conference, Santa Clara, CA, June 2007.
X. Jiang, A. Walters, F. Buchholz, D. Xu, Y.-M. Wang, and E. H.
Spafford. Provenance-Aware Tracing of Worm Break-in and
Contaminations: A Process Coloring Approach. In /ICDCS, June 2006.

J. Jung, A. Sheth, B. Greenstein, D. Wetherall, and T. K.

Gabriel Maganis. Privacy Oracle: a System for Finding Application
Leaks with Black Box Differential Testing. In ACM Conference on
Computer and Commnications Security, 2008.

J. Kong, C. C. Zou, and H. Zhou. Improving Software Security via
Runtime Instruction-level Taint Checking. In ASID ’06: Proceedings of
the 1st Workshop on Architectural and System Support for Improving
Software Dependability, pages 18-24, New York, NY, USA, 2006. ACM
Press.

M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information flow control for standard os abstractions. In
Proc. 21st ACM Symposium on Operating Systems Principles (SOSP),
Stevenson, WA, Oct. 2007.

Linux kernel 32 bit compatibility mode vulnerability. http://web.
nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2010-3081.

Linux kernel RDS protocol vulnerability. http://www.kb.cert.
org/vuls/id/362983.

'W. Masri. Exploiting the empirical characteristics of program
dependences for improved forward computation of dynamic slices.
Empirical Softw. Eng., 13(4):369-399, 2008.

'W. Masri, D. Leon, and A. Podgurski. An empirical study of test case
filtering techniques based on exercising information flows. In /[EEE
Transactions on Software Engineering, pages 454-477, Piscataway, NJ,
USA, 2007. IEEE Press.

McAfee Data Loss Prevention. http://www.mcafee.com/us/
enterprise/products/data_protection/data_loss_
prevention/data_loss_prevention.html.

A. C. Myers. Jflow: practical mostly-static information flow control. In
POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 228-241, New York, NY,
USA, 1999. ACM.

A. C. Myers and B. Liskov. A decentralized model for information flow
control. In Proc. 16th ACM Symposium on Operating Systems Principles
(SOSP), pages 129-142, Saint-Malo, France, Oct. 1997.

J. Newsome and D. X. Song. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity
Software. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), San Diego, CA, 2005.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically Hardening Web Applications Using Precise Tainting. In
Proceedings of the 20th IFIP International Information Security
Conference, 2005.

14

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

OpenFlow Switch Consortium. http://www.openflowswitch.
org/,2008.

P.Broadwell, M.Harren, N.Sastry. Scrash: A system for generating
security crash information. In Proc. 12th USENIX Security Symposium,
Washington, DC, Aug. 2003.

T. Pietraszek and C. V. Berghe. Defending Against Injection Attacks
Through Context-Sensitive String Evaluation. In Proceedings of Recent
Advances in Intrusion Detection (RAID 2005), 2005.

Ponemon Institute. Fifth Annual US Cost of Data Breach Study.
http://www.ponemon.org/local/upload/fckjail/
generalcontent/18/file/US_Ponemon_CODB_09_012209_
sec.pdf.

F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu. LIFT: A
Low-Overhead Practical Information Flow Tracking System for
Detecting Security Attacks. In MICRO ’06: Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitecture, pages
135-148, Washington, DC, USA, 2006. IEEE Computer Society.

Redis. http://redis.io/.

Redis Benchmarks. https://code.google.com/p/redis/
wiki/Benchmarks.

RSA Data Loss Prevention. http://www.rsa.com/node.aspx?
id=3426.

Security-Enhanced Linux. http://www.nsa.gov/research/
selinux/.

M. Shaw. Leveraging good intentions to reduce unwanted network traffic.
In Proc. USENIX Steps to Reduce Unwanted Traffic on the Internet
workshop, San Jose, CA, July 2006.

Signed Kernel Modules. http://www.linuxjournal.com/
article/7130.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In Proceedings of the
11th international conference on Architectural support for programming
languages and operating systems (ASPLOS 04), pages 85-96, New York,
NY, USA, 2004. ACM.

Symantec Data Loss Prevention. http: //www.symantec.com/
business/products/family. jsp?
familyid=data-loss-prevention.

Tripwire Configuration Audit. http://www.tripwire.com/,2009.
U.Shankar, K.Talwar, J.Foster, D.Wagner. Detecting format string
vulnerabilities with type qualifiers. In Proc. 10th USENIX Security
Symposium, Washington, DC, Aug. 2001.

S. VanDeBogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,

D. Ziegler, F. Kaashoek, R. Morris, and D. Mazieres. Labels and event
processes in the Asbestos operating system. ACM Transactions on
Computer Systems, 25(4):1-43, Dec. 2007.

Verizon 2010 Data Breach Investigations Report. http://www.
verizonbusiness.com/go/2010databreachreport/.
Army Broadens Inquiry Into WikiLeaks Disclosure. http://www.
nytimes.com/2010/07/31/world/31wiki.html.

E. Wobber, M. Abadi, and M. Burrows. Authentication in the Taos
operating system. ACM Transactions on Computer Systems, 12(1):3-32,
1994.

C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman.
Linux Security Modules: General Security Support for the Linux Kernel.
In Proc. 11th USENIX Security Symposium, San Francisco, CA, Aug.
2002.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:
capturing system-wide information flow for malware detection and
analysis. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, Oct. 2007.

N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazieres. Making
Information Flow Explicit in HiStar. In Proc. 7th USENIX OSDI, Seattle,
WA, Nov. 2006.

N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Securing Distributed
Systems with Information Flow Control. In Proc. 5th USENIX NSDI, San
Francisco, CA, Apr. 2008.

Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable, A. C. Snoeren,
G. M. Voelker, S. Savage, and A. Vahdat. Neon: System Support for
Derived Data Management. In ACM Conference on Virtual Execution
Environments, Mar. 2010.

D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. TaintEraser:
Protecting Sensitive Data Leaks Using Application-Level Taint Tracking.
In ACM Conference on Computer and Communications Security, Nov.
2010.

http://www.emulab.net/
http://is.gd/dmahZ
http://is.gd/dmahZ
http://grsecurity.net
http://grsecurity.net
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-3081
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-3081
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-3081
http://www.kb.cert.org/vuls/id/362983
http://www.kb.cert.org/vuls/id/362983
http://www.mcafee.com/us/enterprise/products/data_protection/data_loss_prevention/data_loss_prevention.html
http://www.mcafee.com/us/enterprise/products/data_protection/data_loss_prevention/data_loss_prevention.html
http://www.mcafee.com/us/enterprise/products/data_protection/data_loss_prevention/data_loss_prevention.html
http://www.openflowswitch.org/
http://www.openflowswitch.org/
http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/US_Ponemon_CODB_09_012209_sec.pdf
http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/US_Ponemon_CODB_09_012209_sec.pdf
http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/US_Ponemon_CODB_09_012209_sec.pdf
http://redis.io/
https://code.google.com/p/redis/wiki/Benchmarks
https://code.google.com/p/redis/wiki/Benchmarks
http://www.rsa.com/node.aspx?id=3426
http://www.rsa.com/node.aspx?id=3426
http://www.nsa.gov/research/selinux/
http://www.nsa.gov/research/selinux/
http://www.linuxjournal.com/article/7130
http://www.linuxjournal.com/article/7130
http://www.symantec.com/business/products/family.jsp?familyid=data-loss-prevention
http://www.symantec.com/business/products/family.jsp?familyid=data-loss-prevention
http://www.symantec.com/business/products/family.jsp?familyid=data-loss-prevention
http://www.tripwire.com/
http://www.verizonbusiness.com/go/2010databreachreport/
http://www.verizonbusiness.com/go/2010databreachreport/
http://www.nytimes.com/2010/07/31/world/31wiki.html
http://www.nytimes.com/2010/07/31/world/31wiki.html

	Introduction
	Example and State of the Art
	Pedigree Design
	Overview
	Labels
	Label Management
	Policy Enforcement

	Pedigree in Practice
	Single-Host Information Flow Control
	Network-Wide Information Flow Control

	Secure Label Management
	Associating a Labeler with a Host
	Allowing Users to Manipulate Labels

	Implementation
	Label Management and Maintenance
	Policy Enforcement

	Evaluation
	Host Overhead
	Network Enforcer Overhead
	Lived-in Experience

	Attacks and Defenses
	Related Work
	Conclusion

