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Abstract — Flight planning is the process of producing a flight plan 

which describes a proposed aircraft trajectory. This task is 

typically performed ahead of departure with the intent of 

minimizing operating costs, while accounting for weather, 

airspace, traffic, and comfort considerations. Recent 

improvements in cockpit connectivity present new opportunities 

for flight crews to continuously re-assess the trajectories once in 

the air using the latest information sets (weather observations and 

forecasts, traffic). In turn, this enables flight crews to proactively 

respond to the uncertain evolution of the weather by steering the 

aircraft along optimal trajectories. This also brings new challenges 

as flight crews are ill-equipped to continuously process vast 

amount of information to perform the trajectory optimization. A 

framework is therefore proposed to automate the fusion of various 

sources of information (severe weather, winds aloft, restricted 

airspace) to feed a trajectory optimizer that continuously updates 

the aircraft trajectory. This relies on the implementation of the A* 

algorithm with the objective to minimize cruise fuel burn and 

emissions. Use-cases are investigated by comparing continuously 

updated trajectories with actual flight trajectories retrieved from 

the FAA Traffic Flow Management Systems through consumer-

oriented websites. Promising results are observed with fuel burn 

savings reaching 8%.    

Path planning; convective weather; wind; airspace 

I.  INTRODUCTION  

Flight delays are costing the air transportation industry and 

society billions of dollars owing to additional operating costs, 

lost passenger time, airline schedule padding, forced flight 
rescheduling, and more generally lost productivity [1]. The 

Federal Aviation Administration estimates that an hour of delay 

costs airlines between $1,400 and $4,500 depending on the type 

of aircraft and whether the delay occurs on the ground or in the 

air [2]. There are many causes to these delays and a recent study 

by the Bureau of Transportation Statistics reveals that the 

largest source of delay is weather [3]. Indeed, roughly 38% of 

the total delay-minutes can be attributed to either extreme 

weather, weather-induced late aircraft arrivals, or weather-

induced national aviation system delays. Investigating deeper 

the types of weather causing these delays indicates that the 

reason varies by season: while low ceilings and low visibility 

prevail in the Winter, convective weather prevails in the 

Summer [2]. Focusing closely on the cruise phase, leading 

sources of delays include convective weather, winds, icing, and 

turbulence. One potential avenue to mitigate flight delays is to 

continuously retrieve real-time data about the airspace and the 

evolution of the weather to proactively avoid large weather 

systems and congested areas. 

Flight planning is the process of creating a trajectory aiming 

at minimizing one objective, usually operating expenditures. 

This is a complex multi-disciplinary process that involves 

aircraft performance considerations, airspace-use 

considerations, air-traffic congestion considerations and 

weather considerations. Air carriers employ dispatchers and 

weather forecasters to generate near-optimal routings at the 

time of departure [4]. As the flight progresses, the information 

set (winds aloft, temperature, convective weather, congestion) 

evolves and the predeparture trajectory may no longer be 
flyable, let alone optimal. Larger airliners rely on dispatchers 

on the ground to re-assess trajectories, but the process may be 

slow and tedious. Smaller operators, corporate aviation, and 

general aviation typically do not have dispatchers, and flight 

crews need to reassess the trajectory when conditions change 

significantly. Generating optimum trajectories ‘on the fly’ 

while under high workload conditions in the cockpit is a 

daunting task. A need has thus been identified to automate the 

continuous re-planning of flight trajectories. This is enabled by 

the current convergence of technologies in terms of weather 

product digitization, improved on-board computational power, 

and improved cockpit connectivity through broadband 
communication. The continuous re-planning objective is to 

optimize trajectories to minimize operating costs and carbon 

emissions while concurrently reducing the flight-crew 

workload.  
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This paper describes the implementation of a continuous re-

planning tool named RTOP (Real-time Trajectory 

OPtimization). The second section of this paper reviews prior 
art. The third section describes how airspace and weather data 

from various sources are fused together to provide real time 

data pertinent for the flight planning exercise. The fourth 

section details the modeling required to generate trajectories 

using up-to-date information sets. The fifth section details the 

optimization of trajectories. Finally, the sixth section highlights 

various use-cases to benchmark the proposed approach.  

II. EXISTING WORK AND PROPOSED APPROACH 

Studies have shown that there is a clear benefit for airlines to 

using wind-optimal approach to reduce fuel consumption and 

travel time compared to flying fixed routes [5], [6]. This is a 

problem difficult for humans to solve and there have been 
multiple types of approaches proposed to automatically find 

solutions. 

The first type of approaches formulates the problem as a 

variation of Zermelo’s navigation problem, an optimal control 

problem [7]. The primary goal of these approaches is to find the 

best path through a wind field. Other constraints can be  

introduced by the mean of penalty functions as explained in [8]. 

The problem can then be solved using Pontryagin’s Minimum 

Principle. The solutions obtained by these approaches are the 

aircraft’s optimal heading throughout the flight. However, 

although continuous approaches would work well in a free-
flight paradigm, they are not realistic in the current traffic 

management context where flight plans are defined as a list of 

waypoints that the aircraft is expected to fly straight to or 

predefined routes that the aircraft must follow. 

Local approaches focus on updating a pre-existing flight 

plan based on new information such as convective weather or 

traffic. The Traffic Aware Planner (TAP) was developed as a 

cockpit resource that fuses information from weather, aircraft 

performance, waypoints information and nearby traffic to offer 

pilots alternative routes that would avoid conflicts and bad 

weather or reduce fuel consumption or travel time. The 

optimizer chooses between a list of local maneuvers using a 

genetic algorithm [9].  

Another class of approaches relies on a discretization of the 

problem to represent possible trajectories as a graph and uses 

the A* algorithm to find the shortest path through the network. 

Additional details on the A* algorithm can be found in section 

V. The framework presented here relies on such approaches. 

Distinct strategies within this class of approaches mostly vary 

by how the graph or network is built and the constraints 

incorporated. In [10], the environment is discretized as a grid 

and higher cost is associated to nodes with bad weather. In the 

PARTNER tool introduced in [11], the network is generated by 

discretizing the aircraft commands. These two approaches 

suffer from the same issue as the continuous approach: the 

paths might not be approved by ATC. The company Mosaic 
software creates a Clearable Route Network (CRN) using 

historical flights information, that they then use to generate 

operationally acceptable flight plans [12]. Schilke and Hecker 

propose in [13] the idea for a system architecture that would be 

weather-aware and use A* to find the shortest path. However, 

there is no actual implementation and they do not detail how 

wind and dynamic aspects would be integrated with A*. In [14], 

the altitude and horizontal paths are decoupled. A* is used to 

optimize 2D paths on a grid or using AIRAC waypoints and the 

resulting path is fed to another optimization module. Dynamic 

aspects are ignored in their implementation of A*, and the 

weather is assumed static during the 2D flight path optimization 

step. 

In this paper, A* is used to find the optimal path in a 4D 

network that considers the dynamic aspects of the weather, 

constraints due to waypoints and routes and aircraft 

performance. We fuse data and compare to actual flight to 

estimate the benefits of such a system on long domestic flights 

over the continental US. 

III. DATA COLLECTION 

In order to create a real-time path planning framework, a large 

data amount about the flight environment must be collected: 

information about the weather, the aircraft, and the airspace.  

A. Aircraft Performance 

To determine the best operating speed and cruise altitude for an 

aircraft at a given weight, an aircraft performance model is 

required. The aircraft operating manual contains tables 

representing the fuel flow, operating speed and rate-of-climb 

(ROC) in cruise, climb and descent at different altitudes. With 
this information operators can select the best-range cruise 

altitude. However, in general these manuals are not available. 

In this study, a tool called FLOPS (Flight Optimization System) 

was used to recreate these tables. FLOPS is an aircraft synthesis 

software developed by NASA which can be used to simulate a 

specific mission profile [15].  

In order to obtain a FLOPS-independent framework, a 

surrogate model of the performances of the aircraft is created. 

FLOPS is first run to generate aircraft performance datapoints 

in cruise, climb, and descent for a fixed Mach number. FLOPS 

inputs include detailed information about all the aerodynamic 
characteristics of the aircraft, the engine, the weights, and the 
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flight sequence.  

Then, to explore a large continuous altitude-weight space, 2D-

interpolation is used to model aircraft performance in terms of 

fuel flow, airspeed, and rate-of-climb (ROC) as a function of 

the aircraft’s total weight and altitude. This is done for an 

aircraft similar to an A320neo. After the interpolation, a 

continuous performance model is generated for a fixed aircraft 

and a fixed Mach number.  

B. Wind 

The most well-known weather model products such as Global 

Forecast System (GFS) [16] and Rapid Refresh (RAP) [17] 

were considered. The High-Resolution Rapid Refresh (HRRR) 

model was finally chosen because:  

1) the HRRR model is commercially open,  

2) the HRRR model provides weather information of the 

Contiguous United States (CONUS) territory, and  

3) the HRRR model has the highest resolution among 

weather model products.  

The HRRR model is a National Oceanic and Atmospheric 

Administration (NOAA) real-time 3km resolution and hourly 

updated weather model produced by the National Centers for 

Environmental Prediction (NCEP) [18]. The HRRR model 

provides a set of detailed weather-related properties such as 

temperature and wind speed against longitude, latitude, 

altitude, and time. Among various HRRR weather datasets, the 

authors only focused on the eastward and northward wind 
(measured in m/s) and went through data preprocessing steps 

by using the Python library Pygrib [19]. Figure 2 shows an 

example visualization of the HRRR northward wind at a 

specific time and altitude.  

The information contained in the HRRR model is discrete. 

The wind values are available once per hour and are divided by 

pressure altitude. For a specific time at a specific pressure 
altitude the wind values are stored as a 2D table, and the 

corresponding latitude and longitude are stored in two tables of 

the same size. In a flight path planning framework, it is 

necessary to create a wind model that provides continuous 

information with respect to four-dimensional flight trajectory 

(i.e., timestamp, altitude, latitude, and longitude). A 

Quadrilinear interpolation is performed to obtain wind values 

anywhere in the four-dimensional space.  

C. SIGMET 

The framework presented here focuses on convective weather 

(thunderstorms), which are responsible for a majority of 

weather-related delays in the United States in the summer. 

Thunderstorms usually extend very high in altitude and impact 

commercial flights. 

The Aviation Weather Center (AWC), which is a part of 

NOAA National Weather Service (NWS), publicly issues 

weather alerts in the form of either an Airmen’s Meteorological 
Information (AIRMET), non-convective Significant 

Meteorological Information (SIGMET), or convective 

SIGMET for the contiguous 48 states. The convective SIGMET 

product is human-drawn polygons that denote regions of 

current convective weather that may be potentially hazardous 

to aircraft. The convective SIGMET is issued hourly on a 

scheduled basis when the following conditions are expected to 

occur:  

1) a line of thunderstorms at least 60 miles long with 

thunderstorms affecting at least 40% of its length,  

2) an area of active thunderstorms judged to have a 

significant impact on the safety of aircraft operations covering 
at least 40% of the area concerned and exhibiting a very strong 

radar reflectivity intensity,  

3) embedded or severe thunderstorms expected to occur for 

 

Figure 1: Illustration of the point-based space exploration  

for the climb portion of the flight using FLOPS 

 

Figure 2: HRRR northward wind visualization  

at 2019-10-06 15:00 UTC (altitude = 250 hPa) 
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more than 30 minutes during the valid period regardless of the 

size of the area, and  

4) a special case may be issued when wind gusts greater 

than or equal to 50 knots are reported [20]. 

Figure  shows an example visualization of the convective 

SIGMET at the specific date. Convective SIGMETs are 

represented as convex polygons and they usually include 

information in terms of an initial position, a velocity, and a 

validity period. In general, they are valid for two hours after 

they are published.  

Although AWC publicly issues the convective SIGMET 

products, they have limited access to historical data. For this 

reason, a Python code was developed which automatically 

connects to the AWC TDS at regular intervals to build a 

database for convective SIGMET polygons. 

D. FAA Waypoints and Routes 

The FAA’s Aeronautical Data Delivery Service is used to 

retrieve FAA waypoints and routes and to create the network  

used to define paths in flight plans [21]. 

Airlines and pilots are not restricted to routes and waypoints 
when planning a flight. An analysis of several transcontinental 

flights was conducted and showed that, when there is no 

significant weather, flights stay on a route for on average 80% 

of the total flight. When there is significant weather (SIGMET), 

that number is reduced to an average of approximately 50% of 

the total flight. The results presented in section VI show that 

even though the trajectories generated by the framework are 

more constrained than the reality they still improve the fuel 

consumption and trajectory length in most cases. 

 The choice of using waypoints and routes was driven by 

the fact that when communicating with ATC over radio, using 
named waypoints rather than coordinates would be easier for 

the pilot. It would also allow the route to be compliant with 

ATC requirements and therefore to be easily certified. 

Alternatively, the framework was setup to use a grid.  

A waypoint is a predetermined geographical position 

defined in terms of longitude and latitude coordinates that can 
be used for route definition. Waypoints are often named and 

can be used by ATC and pilots to specify a modification in 

direction, speed or altitude along the current path. In the 

database published by the FAA, each waypoint has many 

different attributes such as latitude, longitude, type (RPT: 

Reporting Point, WPT: Waypoint, RNAV: RNAV Waypoint, 

… [22]), and a unique identifier in the dataset. Figure 4 depicts 

the density of the waypoint distribution over the continental 

US. 

A route or airway has no physical existence; it is a corridor that 

connects two specific locations at a specific altitude. In order to 

fly on a route, the aircraft must meet all the requirements of the 

airway. In the FAA database, each route has many different 

attributes such as a start and end waypoints (referenced by their 

unique identifiers as mentioned above), an altitude (high, low 

or both), a type (CONV: Navaid Based Route, RNAV: Area 
Navigation, … [22]), and its unique identifier in the dataset. 

Figure 5 shows the network of routes over the United States. 

In the framework presented here the waypoint and route 

databases have been locally downloaded, and the routes have 

been cross-referenced with the waypoints to find the latitude 

and longitude at which they start, and identify which routes are 

connected by a common waypoint. This creates a graph 

network over the United States where routes are edges and 

waypoints are nodes. The data can then be filtered based on the 

attributes of the waypoints and the routes depending on the 

aircraft, the flight, and its characteristics to ensure that the right 
data is used to create the flight plan. For example, when dealing 

with commercial aircrafts, high altitude routes must be selected 

 

Figure 3: Convective SIGMET visualization at 2019-10-06 15:00 UTC 

 

Figure 4: FAA waypoints over the United States [21]  
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to comply with ATC requirements. 

The initial and final point of a trajectory are added to the list of 

waypoints. Since there are no route going to or from these 

points, nearby waypoints are queried and considered reachable. 

To find neighboring waypoints quickly, all waypoints are 

stored in a ball tree created using the scikit-learn Python library 

[23]. 

IV. MODELING 

The framework integrates airspace, weather, and vehicle 

performance to create a united data structure that can be used 

to model trajectory length, fuel cost, and feasibility. 

A. Assumptions 

The framework relies on the following assumptions: 

• Aircraft are assumed to cruise at a constant Mach 

number 

• Traffic, turbulences, approach and departure 

procedures are ignored 

• Convective weather is represented by SIGMETs 

which cannot be penetrated by the aircraft 

• Aircraft’s paths are constrained to be on the network 

of waypoints and routes defined by the FAA except at 

the beginning and end of the path 

B. Travel Cost Function 

To associate a cost to traveling along one edge of the graph, a 

travel cost function is required. Given departure time and 

aircraft weight, the travel cost function computes how long it 

would take and how much fuel is needed to travel between two 

connected nodes. 

Because the two nodes can be quite distant, the curvature of 
the Earth must be accounted for. The trajectory between the two 

nodes is discretized every 40 nautical miles. To compute the 

bearing and positions along the great-circle distance paths, the 

formulas from [24] were used. The bearing of the aircraft is 

assumed to be constant on the discretized segment and an 

equirectangular projection is used to convert between 
latitude/longitude and a local cartesian reference frame. The 

aircraft true airspeed (TAS) and fuel flow are determined using 

the performance model based on the aircraft weight and 

altitude. The wind vector is estimated at the start of the segment 

using the wind model at the given time and altitude. The aircraft 

heading required to counter the wind and stay on the ground 

track is determined using [25] and the resulting ground speed is 

computed. With the ground speed and the length of the segment 

known, the time to complete the segment can be found. The 

total fuel used on the segment is obtained by multiplying fuel 

flow with time. The weight of the aircraft is updated, and the 

same operations are repeated for the next segments. This yields 
the total time and fuel required for the aircraft to travel between 

the two nodes.  

To account for climbs and descents, the altitude of the two 

nodes is compared. If both nodes are at different altitudes, an 

additional discretization step is performed at the beginning. The 

altitude is discretized in 1,000ft increments. The rate of climb, 

fuel flow, and true airspeed are computed as functions of 

altitude and aircraft weight and a procedure similar to the one 

explained previously is conducted until the aircraft reaches the 

desired altitude, then the remaining cost to the destination node 

is computed as before. 

C. Availability Function 

In addition to the travel cost function, an availability function 

is needed. Given departure time and aircraft weight, the 

availability function evaluates whether traveling between two 

connected nodes will result in a collision with an obstacle. The 

positions of the aircraft and of the obstacles can be represented 
by piecewise linear functions, since their velocities are constant 

along time segments. To find the time of closest approach of 

two objects A and B with constant velocity the formula can be 

easily derived: 

𝑡𝐶𝑃𝐴 = −
(𝑉𝐵
⃗⃗⃗⃗ − 𝑉𝐴

⃗⃗⃗⃗ ). (𝑃𝐵
⃗⃗⃗⃗ − 𝑃𝐴

⃗⃗⃗⃗ )

‖𝑉𝐵
⃗⃗⃗⃗ − 𝑉𝐴

⃗⃗⃗⃗ ‖
2  

Where 𝑉𝐴
⃗⃗⃗⃗  and 𝑉𝐵

⃗⃗⃗⃗  are the velocities of the objects, 𝑃𝐴
⃗⃗⃗⃗  and 𝑃𝐵

⃗⃗⃗⃗  
are the positions of the objects at time 𝑡0 projected on a local 

cartesian frame, and 𝑡𝐶𝑃𝐴 is the time from 𝑡0 when the objects 

are closest to each other. 

Since the analysis is conducted in a piecewise manner, the 

time is clamped on the time interval where both objects exist 

and have constant velocities. A first check is done using the 

centroid and maximum radius of the polygon. If at the time of 

closest approach, the distance between the two objects is 

greater than the radius of the polygon, there is no collision on 

 
Figure 3: FAA routes over the United States [21] 
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that time segment. If the distance is smaller, then there is no 

simple way to check. A point in polygon check is performed 

using the Shapely Python library [26]. However, it is not 

enough to perform the point in polygon check at the time of 

closest approach of the centroid to know if there is a collision. 

As illustrated on Figure 6, the time of closest approach must be 

determined for all vertices of the polygon and the point of 

closest approach checked for inclusion. The check is performed 

for all objects that have been forecasted and that exist in the 

time segment from when the aircraft leaves the first node to 

when it reaches its destination node. There are some 

approximations due to the conversion from spherical to 

cartesian geometry. 

In the model proposed here, SIGMETs represent hard 

constraints that the aircraft should always avoid. In reality, 

SIGMETs can sometimes be penetrated as their boundaries are 

defined conservatively and there can sometimes be a path clear 

of storms that goes through them. While restricted airspace 

could also be included in the list of obstacles, they were 

neglected since they usually extend to altitudes significantly 

lower than usual commercial cruise altitudes. 

D. Multilinear Interpolation 

Both the data from the aircraft performance model and the wind 

are provided as discrete datasets and structured roughly as a 

grid. However, the travel cost and availability functions must 

query aircraft performance and wind values at any point within 

the envelop. The Scipy 2D interpolation function was used to 

build functions that can be queried at any point [27]. In order to 

query the wind at any altitude and time, the 2D interpolation 

function was wrapped to create a 4D interpolation function. 

E. Validation 

The travel cost function for time was validated by comparing 

actual flights duration to the duration obtained by running these 

flight paths in the proposed model. The actual flight trajectories 

(altitude, latitude, longitude and time) were retrieved from the 
Flight Aware website. Validation cases were selected such that 

they covered days marked by weather events (e.g. 

thunderstorms) and long flights (three hours or longer), but also 

some shorter flights to account for the natural variety of flights. 

The 14 selected validation flights were operated by Spirit 

Airlines on A320neo aircraft. over the continental US on 9 

different days. Corresponding historical weather data was 

retrieved for those days. The analysis focused on the cruise 

portion of the flight, since departure and approach are much 

more constrained. The trajectories were cropped to only keep 
the portion of the flights above 31,000ft. The results, illustrated 

on Figure 7, show a good agreement between simulation and 

reality for flight time, which validates the aircraft speed model 

and the wind model. The fuel model could not be validated due 

to the lack of publicly available data. 

Because the initial weight of the aircraft is not publicly 

available, the take-off weight was computed by making a few 

assumptions for the purpose of the analysis. The aircraft weight 

when landing was determined by assuming a full flight with 

cargo and passengers and the reserve fuel required by 

regulations. The fuel required for the flight is estimated using 
the great-circle distance and an estimate of fuel burn at a 

reasonable cruise altitude of 33,000 ft. The weight at take-off is 

estimated to be the sum of the arrival weight and trip fuel. This 

initial estimate does not consider wind. This could be addressed 

by running the algorithm a first time to get an estimate of the 

fuel required for the trip and iterating the analysis.  

V. OPTIMIZATION 

The final structure of the model is a graph whose nodes are 

associated to a waypoint and an altitude. Pairs of nodes are 

connected if and only if their respective waypoints are 

connected by a route. The availability function is used to check 

if a SIGMET could prevent the aircraft to fly on that route. The 
travel cost function estimates the fuel and time taken by the 

 

Figure 4: Simulated versus actual flight time using the aircraft model 

 

Figure 5: Illustration of the points of closest approach between a polygon 

with zero velocity and an object moving along the direction of the arrow 
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aircraft to travel between the two nodes.  

The A* algorithm is used to perform flight planning in this four-

dimensional space, its goal is to minimize fuel cost. 

The A* algorithm can be shown to be [28]: 

• Complete: the algorithm will find a solution if there is 

one 

• Optimal: the algorithm will find the shortest path if the 

heuristic used is consistent 

• Optimally efficient: given the same heuristic no other 

algorithm can be guaranteed to expand fewer nodes 

These three qualities explain why A* is such a popular 

algorithm to optimize discrete trajectories. A* performance 

degrades as the number of neighbors of a state increase. Here, 

optimizing a cross-country flight takes on the order of ten 

minutes on a laptop PC.  

The heuristic, i.e. an estimate of the minimum amount of 

fuel required to reach the destination, is computed in several 

steps. First the remaining distance to the goal is estimated using 

the great circle distance (haversine formula). Then, an 

optimistic estimate of the aircraft velocity is required. Since the 

goal is to optimize for fuel and not for time, the velocity and 

fuel flow selected are those that maximize the aircraft distance 

per pound of fuel. These values are found using the FLOPS 

data. To account for wind, the maximum current tailwind is 

estimated. The heuristic choice greatly impacts the 

performance of the algorithm in terms of number of expanded 

nodes and hence runtime. 

VI. RESULTS 

The algorithm was run on the 14 test cases. Figure 8 shows the 

result of the optimization when run on an example flight 

operated by Spirit Airlines from Cleveland to Los Angeles. For 

that case, the original and optimized trajectories are similar. 
The optimized altitude is lower than the actual altitude at which 

the aircraft flew. This might be due to a difference between the 

initial weight estimate and the actual weight of the aircraft. The 

initial weight was estimated to be 168,562 lb. for that flight 

using the method explained in section IV.E. According to the 

A320 Flight Crew Operating Manual, the best altitude for the 

aircraft around that weight should be 33,000ft. However, since 

the aircraft was heading west, it was constrained to operate at 

an even flight level such as 34,000ft or 36,000 ft. Using the 

travel cost function on its trajectory the actual flight is 

estimated to have burnt 22,179lb of fuel, whereas the optimized 

trajectory would have burnt an estimated 21,853lb of fuel. This 
corresponds to a 1.5% reduction in fuel burn. The actual cruise 

portion of the Spirit flight took 4.34 hours. Keeping its 

trajectory the same and modeling the flight with our aircraft 

model (similarly to what was done in IV.E for validation), a 

flight time of 4.38 hours is found. When analyzing the 

trajectory proposed by A*, the flight time is 4.34 hours. The 

time length change is computed on the path obtained with the 

aircraft model to be consistent with the fuel computation, and 

results in a 0.9% reduction in travel time, which is not 

significant. 

Figure 9 shows a scatter plot of the performance of the 
optimized trajectory relative to the original trajectory for each 

test case. Each axis shows the percentage of change of the new 

trajectory compared to the original trajectory. The routes 

chosen by the algorithm are shown to improve fuel burn by a 

few percent and improve the duration of the flight in most 

cases. Over the 14 cases the average fuel reduction is -3.4% and 

the 95% confidence interval is [−5.6;−1.1]. For time, the 

 

Figure 9: Comparison of the optimized trajectory against the actual trajectory 

in terms of fuel burn and time 

 

Figure 8: Results for flight NKS185 on October 10, 2019 
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average improvement is only -0.8 and the 95% confidence 

interval [−3.9; 2.3]. 

Cases where the algorithm fails to improve or match the 

performance of the original trajectory may be due to several 

factors. First, if the cruise section of the flight is very short 

(around 1h), constraining the aircraft to fly on routes severely 

limit possibilities and leads to sub-optimal flight plans. Second, 

the SIGMETs forecast used in the model are limited to a 2h 

window, whereas airlines have access to more detailed weather 

forecast. For example, in one case, a thunderstorm line 

extended very widely from north to south and caused the 

algorithm to pick an optimistic route, working under the 

assumption that thunderstorms would dissipate. Because the 

thunderstorm remained, the aircraft finally had to make a 
detour. On the other hand, the airline picked a trajectory that 

avoided the thunderstorm line from the start of the flight 

onwards because it had access to a better weather forecast. 

VII. CONCLUSION 

The preliminary RTOP framework integrates weather, airspace 

rules and aircraft performance and can be used to model and 

optimize flights. The optimization algorithm runs fast enough 

that it could be run multiple time during the flight to account 

for updated weather information, and help pilots request 

updated paths from Air Traffic Control. Large airlines can rely 

on dispatchers, flight specialists, and meteorologists to 
optimize flights. An automated tool such as the one proposed 

here would allow smaller companies or business jets to perform 

the same optimization for a fraction of the cost. 

There are many elements that could be improved to increase 

the accuracy of the solution. Integrating traffic or turbulence 

information in a manner similar to the SIGMETs would not 

change the complexity of the algorithm and would more 

accurately reflect commercial aircraft constraints. 
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