
SYSTEM ABSTRACTIONS FOR RESOURCE SCALING
ON HETEROGENEOUS PLATFORMS

A Thesis
Presented to

The Academic Faculty

by

Vishal Gupta

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
December 2013

Copyright c© 2013 by Vishal Gupta

SYSTEM ABSTRACTIONS FOR RESOURCE SCALING
ON HETEROGENEOUS PLATFORMS

Approved by:

Dr. Karsten Schwan, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Scott Hahn
Systems Architecture Lab
Intel Labs

Dr. Sudhakar Yalamanchilli
School of Electrical & Computer
Engineering
Georgia Institute of Technology

Dr. Ricardo Bianchini
Department of Computer Science
Rutgers University

Dr. George Cox
School of Computer Science
Georgia Institute of Technology

Date Approved: September 5, 2013

oṁ ajñāna-timirāndhasya jñānāñjana-śalākayā

caks.ur unmīlitaṁ yena tasmai śrī-gurave namah.

iii

ACKNOWLEDGEMENTS

There are many people who have been instrumental in helping me complete my Ph.D.

I would like to take this opportunity to formally thank them for their support.

I would like to sincerely thank my thesis advisor Dr. Karsten Schwan for his

guidance and support during my doctoral studies. He always encouraged exploring

ideas, giving me his feedback, and thus, nudging me along at each step from finding a

research topic to shaping this thesis till its completion. I am especially thankful to him

for allowing me to change my research area in the second year of my Ph.D. I also thank

him for for providing excellent lab facilities, hardware equipments, travel assistance,

and support for doing internships which gave me valuable industry exposure.

I feel indebt while expressing my immense gratitude towards Dr. Krishnan for

making me understand the purpose behind doing a Ph.D and giving me the right

focus. His guidance made my graduate studies a wonderful experience which otherwise

felt like a difficult journey at times. His teachings on principle-centered life affected

both my professional and personal life deeply. I dedicate this thesis to him without

whose well-wishes and encouragement, this work would not have completed.

I owe special thanks to Mr. Ganapati Srinivasa and Dr. Scott Hahn for giving me

the opportunity to do internships at Intel Labs which helped me gain momentum in

my Ph.D. The projects initiated and the resources made available at Intel provided me

the building blocks to develop this thesis further. I am also thankful to other team

members including Paul Brett, Dheeraj Reddy, David Koufaty, Eugene Gorbatov,

and Karthik Gururaj for all the insightful discussions regarding internals of Linux

kernel and Intel architecture. Also, many thanks to Intel for donating the QuickIA

system and their financial support through ISTC grants and fellowship award.

iv

I am grateful to my thesis committee members Dr. Sudhakar Yalamanchili, Dr.

George Cox, Dr. Scott Hahn, and Dr. Ricardo Bianchini for their feedback which

was critical in developing a more coherent thesis. In addition, I wish to thank Dr.

Ada Gavrilovska and Dr. Hyesoon Kim for giving their valable guidance at various

junctures during Ph.D. I would also like to acknowledge my MS advisor Dr. Montek

Singh for supporting my decision to move to Georgia Tech for doctoral studies.

I am thankful to my friends Sanket and Vishal for their association, not letting

me lose focus of life beyond academics. I would also like to acknowledge all of my

labmates for their assistance in overcoming various obstacles at work. My special

thanks to Hrishi and Ripal who have been of great help and good friends to me over

the years. I am thankful to my roommates Balaji, Partha, and Pushkar for their

companionship making my stay in Atlanta pleasant. I also thank Susie McClain for

taking care of all the administration work and the devotees for providing us with

‘prasadam’ lunch on-campus, relieving me from cooking on time-constrained days.

Foremost and above all, I thank Lord for His grace and blessings for giving me the

opportunity and ability to get to this point, and His mercy in the form of countless

other things in life for which I feel undeserving. Last but not the least, I would

like to express my deep gratitude towards my parents and brother for their constant

love, guidance, and support all these years. I owe this degree to them without whose

selfless sacrifices, it would not have been possible for me to reach this juncture.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Resource Scaling . 1

1.1.2 Platform Heterogeneity . 2

1.2 Challenges & Approach . 4

1.3 Thesis Statement and Contributions 6

1.4 Thesis Organization . 8

II HETEROGENEOUS CORES: BRAWNY VS. WIMPY 9

2.1 Introduction . 9

2.2 Why heterogeneity? . 11

2.2.1 Why wimpy cores? . 11

2.2.2 Why not wimpy cores? . 12

2.3 Workload Description . 13

2.3.1 Client Workload Suite . 13

2.3.2 Server Workloads . 14

2.4 Evaluation . 15

2.4.1 Experimental Platform . 15

2.4.2 Performance Monitoring . 16

2.4.3 Power Measurement . 16

2.4.4 Methodology . 16

2.4.5 Limitations . 17

vi

2.5 Experimental Results . 17

2.5.1 Client Workload Evaluation 18

2.5.2 Server Workload Analysis . 22

2.5.3 Opportunity Analysis . 24

2.6 Related Work . 26

2.7 Summary . 28

III BEYOND CORE: UNCORE & MEMORY SUBSYSTEM 30

3.1 Uncore subsystem . 30

3.1.1 What is uncore? . 32

3.1.2 Idle State Coordination . 32

3.1.3 Impact of uncore . 33

3.2 Experimental Evaluation . 34

3.2.1 Testbed . 34

3.2.2 Client Workloads . 35

3.2.3 Methodology . 36

3.2.4 Power Model . 36

3.2.5 Results . 38

3.3 Heterogeneous Memory Organization 40

3.4 Implementation . 43

3.4.1 Memory Access Tracking . 43

3.4.2 Memory Allocation Policy 45

3.5 Experimental Evaluation . 46

3.5.1 Heterogeneous Memory Emulation 46

3.5.2 Workloads . 47

3.5.3 Results . 48

3.6 Related Work . 50

3.7 Summary . 52

vii

IV HETEROMATES: PROVIDING HIGH DYNAMIC RANGE ON
MOBILE PLATFORMS . 53

4.1 Introduction . 53

4.2 Motivation . 54

4.2.1 Client Workloads . 55

4.2.2 Client Devices . 57

4.3 Dynamic Power Range . 58

4.4 HeteroMates Design . 59

4.4.1 Core Groups . 59

4.4.2 H-state Controller . 61

4.4.3 Uncore-aware Operation . 63

4.4.4 Remote Behavior Prediction 64

4.5 Implementation . 66

4.6 Experimental Evaluation . 67

4.6.1 Experimental Platform . 67

4.6.2 Workloads . 68

4.6.3 Methodology . 68

4.7 Experimental Results . 69

4.7.1 Performance-driven Policy 69

4.7.2 Power-driven Policy . 71

4.8 Related Work . 73

4.9 Summary . 74

V HETEROVISOR: ELASTIC RESOURCE SCALING ON HETERO-
GENEOUS CLOUD PLATFORMS 75

5.1 Introduction . 75

5.2 Elasticity using Heterogeneity . 77

5.2.1 Elasticity in Clouds . 77

5.2.2 Exploiting Heterogeneity . 79

5.3 Design . 80

viii

5.3.1 Elasticity States . 82

5.3.2 Elasticity Manager . 83

5.3.3 Elasticity Driver . 86

5.3.4 Discussion . 88

5.4 Implementation . 88

5.5 Evaluation . 89

5.5.1 Experimental Setup . 89

5.5.2 Workloads . 90

5.6 Results . 91

5.7 Related Work . 97

5.7.1 Resource Management in Clouds 97

5.7.2 Heterogeneous Processor Scheduling 98

5.8 Summary . 98

VI CONCLUSIONS & FUTURE WORK 100

6.1 Conclusions . 100

6.2 Future Work . 103

APPENDIX A — CLIENT WORKLOAD SUITE 106

APPENDIX B — VIRTUAL CORE SCALING MODELS 109

REFERENCES . 112

VITA . 124

ix

LIST OF TABLES

1 Client workload suite . 13

2 Server workload summary . 14

3 Performance and power comparison for Xeon, Atom, and Heteroge-
neous configurations . 26

4 Core and package idle state coordination 33

5 Client workload summary . 35

6 Workload summary . 47

7 Modern client workloads . 68

8 Thresholds for performance- and power-driven policies 69

9 Mechanisms for elastic resource scaling in clouds 78

10 Thresholds for QoS- and resource-driven scaling policies 90

x

LIST OF FIGURES

1 Platforms consisting of heterogeneous resources 3

2 Resource scaling on heterogeneous platforms 5

3 Best of both latency and throughput using heterogeneous cores 12

4 QuickIA heterogeneous multicore platform 15

5 A comparison of CPU usage profile of client vs. server workloads . . . 18

6 Performance and energy impact of using small vs. big cores for client
workloads . 19

7 A comparison of the behavior of client workloads on big vs. small cores 20

8 User-perceived performance for client applications 21

9 Performance and Performance/Watt comparison of server workloads
on Xeon vs. Atom CPUs. 23

10 Core and uncore in multicore processors 32

11 Effect of uncore power on the energy-efficiency of heterogeneous cores 34

12 Experimental heterogeneous platform 35

13 A comparison of the behavior of several client workloads on big vs.
small cores . 38

14 Application performance comparison on big and small cores 39

15 Uncore evaluation showing energy savings and energy distribution . . 39

16 Heterogeneous memory organization consisting of a combination of on-
chip and off-chip memories. 41

17 Hot page detection using a-bit history 44

18 Emulated heterogeneous memory platform 46

19 Bandwidth and latency comparison for different memory configurations 47

20 WSS curve for SPEC CPU2006 applications (x-axis = time (s), y-axis
= WSS (MB)). 48

21 Comparison of performance impact of memory slow down with different
memory configurations . 49

22 Micro-benchmark results: Memory access latency with and without
hot-page migration . 50

xi

23 Diverse client workload profiles (IPC vs. Time) 56

24 Using a heterogeneous processor provides a wide dynamic power range. 58

25 A core groups consisting of three heterogeneous cores: a big (B), a
small (S), and a tiny (T) core exposed as three H-states. 60

26 H-state and P-state transition state machines. H-state determine the
core for execution, while P-states determine the frequency on that core. 61

27 H-state scaling operations in response to application IPC and CPU load. 62

28 Modeling IPC scaling as a function of IPC 65

29 Experimental heterogeneous platform 67

30 Comparison of performance-driven policy with big core execution . . 69

31 Core and uncore energy distribution 70

32 Comparison of power-driven policy with small core execution 71

33 Residency on big and small cores . 72

34 Big (B) and small (S) core usage profile (x-axis: time(s)) 73

35 Using heterogeneity to enable resource scaling 79

36 System architecture for HeteroVisor 81

37 Elasticity state abstraction for resource scaling 82

38 Models for vCPU scaling using heterogeneity 84

39 Virtual core scaling using heterogeneous cores 85

40 Workload traces based on Google cluster data [40] 91

41 Performance comparison of heterogeneous configurations with the na-
tive platform . 92

42 QoS variation with different E-states 93

43 Elastic scaling experiment using the webserver workload (x-axis = time
(s)) . 94

44 Experimental results for CPU E-state scaling 95

45 E-state residencies for different scaling policies 96

46 E-state switch profiles showing usage of various states (x-axis = time
(s), y-axis = E-states) . 97

xii

SUMMARY

The increasingly diverse nature of modern applications makes it critical for

future systems to have dynamic resource scaling capabilities which enable them to

adapt their resource usage to meet user requirements. Such mechanisms should be

both fine-grained in nature for resource-efficient operation and also provide a high

scaling range to support a variety of applications with diverse needs. To this end,

heterogeneous platforms, consisting of components with varying characteristics, have

been proposed to provide improved performance/efficiency than homogeneous config-

urations, by making it possible to execute applications on the most suitable compo-

nent. However, introduction of such heterogeneous architectural components requires

system software to embrace complexity associated with heterogeneity for managing

them efficiently. Diversity across vendors and rapidly changing hardware make it

difficult to incorporate heterogeneity-aware resource management mechanisms into

mainstream systems, affecting the widespread adoption of these platforms.

Addressing these issues, this dissertation presents novel abstractions and mech-

anisms for heterogeneous platforms which decouple heterogeneity from management

operations by masking the differences due to heterogeneity from applications. By

exporting a homogeneous interface over heterogeneous components, it proposes the

scalable ‘resource state’ abstraction, allowing applications to express their resource

requirements which then are dynamically and transparently mapped to heterogeneous

resources underneath. The proposed approach is explored for both modern mobile

devices where power is a key resource and for cloud computing environments where

platform resource usage has monetary implications, resulting in HeteroMates and

xiii

HeteroVisor solutions. In addition, it also highlights the need for hardware and sys-

tem software to consider multiple resources together to obtain desirable gains from

such scaling mechanisms. The solutions presented in this dissertation open ways for

utilizing future heterogeneous platforms to provide on-demand performance, as well

as resource-efficient operation, without disrupting the existing software stack.

xiv

CHAPTER I

INTRODUCTION

1.1 Motivation

1.1.1 Resource Scaling

The diversity in the behavior of modern applications, both across applications and

within applications, keeps growing. For instance, users perform a wide variety of tasks

on mobile devices, ranging from low activity audio playback to compute-intensive

gaming and media editing. Concerning server systems, the behavior of various appli-

cations can also be highly variable, either due to various phases in the application or

variation in input load at different durations. Apart from the applications, the de-

mands from the users of these platforms can be highly variable as well. For instance,

a user may desire high energy-efficiency when operating the device on battery which

may be less relevant when running on wall-power. Similarly, elastic resource scaling is

a core feature for cloud platforms, due to the cost implications of used resources, par-

ticularly in the IaaS (infrastructure-as-a-service) environments like Amazon Elastic

Compute Cloud (EC2) [5] and Google Compute Engine (GCE) [28].

This diverse nature of applications and user preferences demands systems that

support various operating modes in order to meet their dynamic needs, thus, pro-

viding both high-performance and resource-efficient operation. However, balancing

between these conflicting goals of on-demand performance and resource-efficiency can

be challenging. For instance, supporting high levels of performance on a mobile sys-

tem may affect its battery life negatively. Therefore, these systems should support

dynamic resource scaling capabilities to address both of the requirements. Without

such capabilities, a system has to either sacrifice performance for under allocation

1

scenarios or waste resources as in the case of over allocation. Further, it is non-trivial

to figure out the right resource allocations statically which may require profiling the

application under different configurations.

There are two key features for the resource management methods to be effective.

First, they should be fine-grained in nature, implying that they should allow scaling

resources in small quantities at short timescales for efficient operation. Second, the

mechanisms should provide a large scaling range to meet the requirements of highly

diverse applications. Various scaling mechanisms are already prevalent in existing

systems including dynamic voltage scaling for processors [82], ballooning for mem-

ory [9], and virtual machine (VM) scaling, i.e., varying the number of VM instances

used by an application as done by Amazon EC2 AutoScale [3]. While techniques like

voltage scaling are fine-grained in nature but have limited scaling range, VM-level

scaling options are rather a coarse-grained and heavy-weight operation.

1.1.2 Platform Heterogeneity

The approach used in this work exploits resource heterogeneity to enhance the scal-

ing capabilities of modern platforms. Heterogeneity can exist in various platform

subsystems such as processor, memory, and storage.

Heterogeneous processors, consisting of CPU cores that different in their perfor-

mance/power capabilities, have been proposed as an energy-efficient alternative to

homogeneous configurations [23, 30, 55]. This form of performance heterogeneity can

exist at both levels: cores within a socket or across sockets as shown in Figure 1.

There are several commercial implementations of such heterogeneous CPU architec-

ture [18, 29, 45, 78]. Several studies have shown that different processor architectures

are suited for different applications. For example, prior work has discussed the utility

of low-powered cores for the design of datacenters [6, 48] as well as the need for high-

performance brawny cores [10, 59]. Various scheduling methods for heterogeneous

2

Core-heterogeneity

Socket-heterogeneity

Fast
On-chip
Memory

Low-capacity
3D Die-stacked

Memory

H
ig

h
-ca

p
a
city

O
ff

-ch
ip

 M
e
m

o
ry

Multicore Processor
High-latency
interconnect

Core

Core

D
isa

g
g
re

g
a
te

d
 / P

e
rsiste

n
t

M
e
m

o
ry

High speed
Bus

Core

Core

Heterogeneous Processors Heterogeneous Memory

Figure 1: Platforms consisting of heterogeneous resources

cores have also been investigated [32, 54, 64, 92].

Similarly, introduction of new memory technologies such as die-stacked 3D memo-

ries, non-volatile memories, in addition to traditional DRAM, can result into a hierar-

chy of heterogeneous memory organization shown in Figure 1. 3D stacked memories

can provide lower latency and higher bandwidth, in comparison to traditional off-

chip memories [67]. However, the capacity of such memories is likely to be limited

to only a few hundreds of megabytes [69]. Thus, a combination of both fast on-chip

memory with additional slower off-chip memory is needed for higher capacity and ex-

pansion capabilities, specially for high-end enterprise machines. Further, addition of

disaggregated memory or persistent memory technologies can also result in memory

heterogeneity [21, 88, 49, 65].

Similar heterogeneity can exist in storage subsystem as well composed of persistent

memory, flash memory, and hard disk based components. In this work, we focus

on heterogeneous processors and memories, but the approach is applicable to other

resources as well.

3

1.2 Challenges & Approach

The aim of this dissertation is to enable fine-grained scaling mechanisms on such

heterogeneous platforms taking user requirements into account for intelligent and

efficient allocation. To this end, it provides a scalable resource interface using hetero-

geneous components such that it uses various heterogeneous components dynamically,

according to the scaling requirements expressed by the user. A scale up operation

results into using a larger proportion of the faster resource for execution (a thread

or a page). Similarly, a scale down operation would imply using the slower resource.

This component level scaling enables a fine-grain scaling interface. Moreover, such

scaling can be applied to various platform resources such as processor, memory, and

storage subsystem to provide a highly scalable platform with large scaling range.

However, introduction of heterogeneity on the platforms raises new resource man-

agement challenges regarding the interface for exposing heterogeneity and mechanisms

for allocation of heterogeneous resources to applications. There are two ways to ap-

proach this problem. For instance, in a virtualized environment, both hypervisor

and guest operating system run their resource management operations. One option

would be to expose the heterogeneous components and delegate the responsibility of

heterogeneity-aware resource management to guest VMs. This choice, though giving

more flexibility to applications, can be too disruptive requiring changes across the

stack. An alternative approach would be to manage heterogeneous platforms in the

hypervisor, thus, hiding heterogeneity for easier adoption of these systems. However,

this approach can be too restrictive, not providing user and applications the ability

to express their allocation preferences.

The techniques proposed in this dissertation aim to achieve the advantages of both

the approaches: having flexibility of resource allocation but not overloading the appli-

cations with complexity. The proposed interface, as depicted in Figure 2, is inspired

by the P-state (performance state) abstraction used by modern operating systems to

4

Scale
Down

Heterogeneous Resources

Scaling
Driver

Application

Scale
Up

Homogeneous
Resource Manager

C1
Scaling

Manager

C0

Resource
States

Homogeneous Interface

C2
R0 Rn

Figure 2: Resource scaling on heterogeneous platforms

perform dynamic voltage and frequency scaling (DVFS). Leveraging this, it presents

a ‘resource-state’ interface, defining multiple-levels of resource allocations which can

be requested by the application using a scaling driver, similar to the CPU governor

as in the case of P-states. The input from the scaling driver is used by a scaling

manager to perform heterogeneity-aware resource allocation. Thus, differences due

to component heterogeneity are handled by the manager hidden from the remaining

system. There are several advantages to the proposed abstractions:

• The resource state interface decouples heterogeneity management handled by

the scaling manager from policy management which is handled by the scaling

driver. Thus, it provides a way to hide heterogeneity which is critical to support

legacy software and applications for wider adoption of such platforms.

• The scaling driver mechanism provides a way for each application to guide

resource allocation to suit its own needs by using a driver customized to its

own needs. For example, an application may use a power or cost-driven policy

while the other application which is more sensitive to performance can employ

a performance-driven policy.

5

• The interface shown is generic to be used across different components. Thus, it

can be used to perform resource scaling across processor, memory, and storage

subsystem. Further, it is also applicable to systems involving multiple levels

of heterogeneity such as using stacked DRAM, off-chip DRAM, and persistent

memory.

In this dissertation, we analyze the impact of heterogeneity by considering several

use cases for both server systems and client devices and develop resource manage-

ment methods to intelligently map heterogeneous resources to different workloads.

Approaches, associated methods, and their implementation are evaluated experimen-

tally using representative heterogeneous platforms and workloads from the mobile

and the enterprise spaces.

1.3 Thesis Statement and Contributions

This dissertation aims to support the following hypothesis:

Novel resource management abstractions can exploit platform heterogeneity to en-

hance resource scaling capabilities on future systems, without disrupting the existing

software stack.

To this end, this dissertation makes the following specific contributions:

We first perform a comparative analysis of heterogeneous multicores on the per-

formance and energy efficiency of mobile devices and server systems. Using several

real-world workloads from both the mobile and enterprise domains, experimental

evaluations are carried out on a unique experimental testbed comprised of real het-

erogeneous CPUs that differ in both their core architecture and cache sizes, comparing

the performance and efficiency for these applications. The experimental results pre-

sented in this study provide platform and system software designers a perspective on

the trade-offs involved with these architectures and thus make optimal design choices.

6

Extending the analysis on heterogeneous cores, we also consider the ‘uncore’ sub-

system, which in modern platforms, is an increasingly important contributor to total

SoC power. Using a unique testbed comprised of heterogeneous cores with a shared

uncore, we highlight the need for uncore-awareness and uncore scalability to maximize

intended efficiency gains from heterogeneous cores. Next, going beyond the processor

by considering the memory subsystem, we present an analysis and description of tech-

niques for managing the heterogeneous memory resources of next generation multicore

platforms with fast 3D die-stacked memory and slow off-chip memory. The result-

ing ability to characterize the memory behavior of representative server workloads

demonstrates the feasibility of software-managed heterogeneous memory resources.

We then present HeteroMates, a solution that uses heterogeneous processors to

extend the dynamic power/performance range of client devices. By using a mix of

different processors, HeteroMates offers both high performance and reduced power

consumption. The solution uses core groups as the abstraction that groups a small

number of heterogeneous cores to form a single execution unit. Group heterogeneity

is exposed as multiple heterogeneity (H) states, an interface similar to the P-state

interface already used for frequency scaling. An H-state controller governs H-state

transitions based on dynamic policies maximizing performance or minimizing power

consumption, while a ‘core switcher’ transparently migrates tasks to the appropriate

core, i.e., the one matching the chosen H-state. Thus, HeteroMates decouples hetero-

geneity from scheduling and provides a seamless way for adoption of such platforms

in mobile devices.

Finally, we present HeteroVisor, a heterogeneity-aware hypervisor, that exploits

resource heterogeneity to enhance the elasticity of cloud systems. Introducing the

notion of ‘elasticity’ (E) states, HeteroVisor permits applications to manage their

changes in resource requirements as state transitions that implicitly move their exe-

cution among heterogeneous platform components. Masking the details of platform

7

heterogeneity from virtual machines, the E-state abstraction allows applications to

adapt their resource usage in a fine-grained manner via VM-specific ‘elasticity drivers’

encoding VM-desired policies. The approach is explored for the heterogeneous pro-

cessors evolving for modern server platforms, leading to mechanisms that can manage

these heterogeneous resources dynamically and as required by the different VMs be-

ing run. HeteroVisor is implemented for the Xen hypervisor, with mechanisms to

perform elastic core scaling. Evaluation on an emulated heterogeneous platform uses

workload traces from real-world data, demonstrating the ability to provide high on-

demand performance while also reducing resource usage for these workloads.

In addition, we also present the description of a client workload suite used in this

work along with its implementation details in Appendix A. These workloads include

a diverse set of real-world client applications, representing the usage model of modern

client devices.

1.4 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 begins by pro-

viding an overview of processor heterogeneity and presents experimental evaluation

of modern client and server workloads on a unique heterogeneous multicore platform.

This evaluation is extended beyond CPU cores by analyzing the impact of uncore

subsystem and evaluating heterogeneous memory organization in Chapter 3. Next,

Chapter 4 describes the HeteroMates solution for mobile platforms to enable extended

resource scaling modes. Chapter 5 presents the HeteroVisor system for enhancing the

elasticity of cloud platforms. Finally, Chapter 6 summarizes the conclusions from the

dissertation, along with several directions for future work.

8

CHAPTER II

HETEROGENEOUS CORES: BRAWNY VS. WIMPY

2.1 Introduction

Energy efficiency remains a critical concern for both mobile devices and server sys-

tems. Since the battery capacities of mobile devices are severely restricted due to

constraints on size and weight, energy efficiency is critical to their usability. Simi-

larly, due to cost implications of power and cooling, energy-efficient operation is a

core issue for server systems as well. Desired energy efficiency, however, is challenged

by ever-increasing demands of high-performance from these platforms. To continue

scaling performance, the industry has made a shift towards multicore architectures

for both mobile and enterprise platforms. While thus far these architectures have

incorporated symmetric computational components, heterogeneous processors have

been proposed as a possible alternative to improve power efficiency [23, 42, 55, 73].

This work focuses on heterogeneous processors consisting of a mix of cores that

expose the same instruction-set-architecture (ISA), but differ in their power and per-

formance characteristics. Examples of such platforms include Variable SMP from

NVIDIA [78], Big.LITTLE from ARM [18, 29], and Xeon Phi architecture from In-

tel [45]. Such heterogeneous platforms make it possible for different applications

within a diverse mix of workloads to be run on the most appropriate cores. For ex-

ample, applications that do not produce a result that is time critical to the user can

be run on low-power wimpy cores, while applications with their output visible to the

user can be allocated to high-performance cores. Similar arguments have been made

to utilize low-powered cores for the design of datacenters [6, 48], while others have

discussed the need for high-performance brawny cores as well [10, 59].

9

This chapter investigates the opportunities and limitations in using such heteroge-

neous multicores on the performance and energy efficiency of modern workloads from

both the mobile and enterprise domains. Our goal is to better allow system designers

to assess the trade-offs and merits of moving from homogeneous systems, which are

already well supported, to heterogeneous architectures that require changes across

both hardware and software. We begin by providing the motivation for employing

fast brawny cores and slow wimpy cores and describe advantages and limitations of

using each of them. We then provide a description of the workloads used in our

analysis which consists of a diverse mix of server benchmarks and a client bench-

mark suite targeted towards modern end-user devices like smartphones and tablets.

We characterize the behavior of these applications and compare the performance and

power trade-offs of using different types of processors. While previous studies either

relied on simulators or emulated heterogeneous platforms, this chapter presents real

performance and power data from a real heterogeneous platform.

Experimental evaluations are carried out using a unique, experimental heteroge-

neous multicore platform ‘QuickIA’, comprised of both high and low power CPUs

operating in a coherence domain under shared memory. The processors differ in both

their core architecture and last-level-cache (LLC) sizes. A key element of our analy-

sis includes an evaluation of the power overhead of shared system components such

as memory on the energy efficiency of heterogeneous cores which have been ignored

in prior work. The QuickIA platform allows us to separate the effects of processor

heterogeneity from the rest of the system which is shared by both the processors.

Experimental results demonstrate that heterogeneous architectures can provide per-

formance improvements while also lowering energy consumption for a diverse set of

applications when compared to homogeneous processor configurations. They also in-

dicate the need for novel resource management approaches for heterogeneous CPUs

accounting for non-CPU components and user-perceived performance.

10

2.2 Why heterogeneity?

Users perform a wide variety of tasks on mobile devices, resulting in diverse platform

demands. Similarly, various applications hosted in a datacenter also exhibit highly di-

verse behavior in their processor usage and performance requirements. The presence

of virtualization technologies and server consolidation only exacerbate such diver-

sity. Therefore, underlying platforms hosting these applications should be designed

to accommodate such software diversity. However, modern processors are typically

designed to satisfy only one of the two conflicting requirements: performance vs.

energy efficiency. This chapter explores whether and to what extent the hardware-

based arguments for heterogeneity stated above lead to realistically achievable gains

for modern client devices and server systems. The remainder of this section describes

various scenarios under which different types of processors can be useful.

2.2.1 Why wimpy cores?

Slow wimpy cores can provide higher energy efficiency than the larger high-performance

cores, and thus, they can be used for applications not requiring high performance to

save energy. For example, a small core can be used for background tasks like email

update checks and normal user operation to ensure longer battery life, while the big

core is reserved for performance-critical tasks. Similarly, wimpy cores can be used for

I/O bound applications which consume low levels of CPU resources.

Wimpy cores can also be used to improve application throughput. Since a larger

number of wimpy cores can be employed under a fixed power envelope in comparison

to power-hungry big cores, they can provide higher throughput for parallel appli-

cations which can make use of such cores. For example, Figure 3(a) compares the

response throughput of a web-server microbenchmark as a function of request rate for

three different processor configurations consisting of one big (1B), two small (2S), and

four small (4S) cores on an emulated heterogeneous platform. As seen in the figure,

11

the 4S configuration provides the highest throughput among these configurations at

high request rates.

Request rate

Th
ro

ug
hp

ut
1B
2S
4S

(a) Throughput (higher=better)

Request rate

La
te

nc
y

1B
2S
4S

(b) Latency (lower=better)

Figure 3: Best of both latency and throughput using heterogeneous cores

2.2.2 Why not wimpy cores?

Due to the limited performance of wimpy cores, they may not be suitable for latency-

sensitive applications. For example, user-facing tasks which are CPU-intensive such

as browsing and gaming may require a high-performance processor. Various data-

center applications also have associated latency SLAs (service-level-agreements) and

a wimpy core may not be suitable for these applications. For example, Figure 3(b)

compares the response time of the web-server microbenchmark for the three CPU

configurations (1B, 2S, and 4S) where the big core (1B) provides the lowest latency.

Thus, brawny cores may win over wimpy cores when latency matters.

In addition to such latency improvements, brawny cores may also provide higher

energy efficiency than their low-power counterparts for certain applications. Due

to the power overhead of various system components such as memory, execution on

fast cores may allow various platform components to quickly enter low power modes,

resulting in lower energy consumption. This phenomenon is also known as ‘race-to-

idle’ [72] and is particularly prominent for modern systems with deeper idle states.

12

2.3 Workload Description

A diverse set of applications from mobile and enterprise domain are included in this

study. This section provides an overview of these workloads.

2.3.1 Client Workload Suite

Table 1: Client workload suite

Category Workload Description Metric

Browser
browse Web-page rendering Load time

javascript Javascript operations Load time
palbum Photo album application Load time

Gaming
chess 2D chess game Time
strike 2D browser gaming FPS

Multimedia

animate Image sequence animation Time
convert Image resize Time

mencoder Video encoding Time
mplayer Video playback FPS

Productivity
calc Spreadsheet operations Time

impress Power-point slideshow Time
writer Document editing Time

Utility

7zip File compression Time
diskscan Disk I/O operations Time
gtkperf GUI operations Load time
pguard File encryption Time
sqlite Database access Time
wget File download Time

To assess the viability of using heterogeneity on client devices, it is useful to refer

to prior server-centric research on heterogeneous processors [8, 54, 64, 92], but such

server-centric investigations do not directly address the needs and processor usage

models seen on typical client devices. This section presents representative and typical

client workloads used in our analysis and summarized in Table 1, along with relevant

performance metrics. The benchmarks consists of the following components: browser,

gaming, multimedia, productivity, and utility which we briefly describe below. All of

these workloads are implemented in Linux and completely automated using scripts.

13

Browser workloads are run using the open-source Chromium browser. A more detailed

description along with relevant implementation details is provided in Appendix A.

2.3.2 Server Workloads

Table 2: Server workload summary

Category Workload Description
lusearch Text search against Lucene search engine

Transaction tomcat Webpage retrieval using Tomcat server
processing tradebeans Online stock trading system (Java Beans)
(OLTP) tradesoap Online stock trading system (SOAP)

hsqldb2 Transactions against a banking application
histogram RGB histogram in a set of images

Data linreg Compute the best fit line from points
processing revindex Build reverse index from HTML files

(MapReduce) strmatch Search word in a file with keys
wordcount Determine frequency of words in a file
kmeans Clustering algorithm for classification

Analytics matrix Dense integer matrix multiplication
pca Principal components analysis on a matrix

Other benchmarks
ST-CPU SPECCPU Single-threaded CPU benchmarks
MT-CPU PARSEC Multi-threaded application kernels

A large body of prior work on heterogeneity has relied on high-performance bench-

marks such as SPEC CPU2006 and NAS parallel benchmarks for evaluation [55, 54,

64, 92]. However, applications running on modern servers are more sophisticated and

diverse in their characteristics such as search engines, MapReduce, key-value stores,

etc. In order to evaluate the impact of heterogeneity on the server workloads, there-

fore, a diverse set of server-centric workloads are included in the analysis which are

summarized in Table 2. These workloads include several transactional applications

such as the Lucene search engine, the Tomcat application server, an online trading

system, several MapReduce data processing benchmarks (reverse index, word count,

14

etc.), and data analytics kernels. In addition, CPU-intensive SPEC CPU2006 bench-

marks [41] and multi-threaded PARSEC benchmarks [11] are also evaluated. MapRe-

duce and analytics benchmarks use the shared-memory Phoenix implementation of

MapReduce [89].

2.4 Evaluation

2.4.1 Experimental Platform

The QuickIA heterogeneous multicore platform is used for experimental evaluation [16].

The QuickIA platform is based on a dual socket Intel Xeon 5400 series platform that

has a real Xeon 5450 CPU in one socket and a real Atom N330 CPU in the other

socket (see Figure 4). Both the sockets are fully cache coherent with full access to

the shared platform services like memory and I/O. The processors differ in their core

architecture (in-order vs. out-of-order) as well as LLC sizes, making it a unique ex-

perimental platform for evaluating the impact of CPU heterogeneity. Since various

platform components such as motherboard, memory, disks, etc. are common, it al-

lows us to isolate the effect of differences in CPU power/performance. the system

is configured to run with 4GB of DRAM for client workloads and 16GB for server

workloads. Figure 9(a) shows a performance comparison of the two processors for

SPEC CPU2006 workloads showing an average performance difference of 2.27x.

S
m

al
l C

ac
h
e

Small
 core

La
rg

e
C

ac
h

e

Socket 0 Socket 1

Big
core

Shared Memory

Small
 core

Cache
Coherent Big

core

Processor Atom N330 Xeon 5450
Cores 2 2

H/W Threads OFF N/A
CPU Frequency 1.60GHz 1.60GHz
L1 Inst Cache 32KB 32KB
L1 Data Cache 24KB 32KB

L2 size 512KB/core 2MB/2 cores
C states N/A ON

Figure 4: QuickIA heterogeneous multicore platform

15

2.4.2 Performance Monitoring

We modified the Linux kernel to add performance monitoring support for heteroge-

neous cores. Since the QuickIA system contains heterogeneous cores with different

CPUIDs, standard performance monitoring tools available do not work on this plat-

form. We added a kernel module which periodically reads appropriate performance

monitor counters from the system, taking into account the differences in core archi-

tectures.

2.4.3 Power Measurement

The Wattsup power meter is used to obtain system power/energy consumption data.

It provides instantaneous voltage and current data with a measurement accuracy of

1.5% of reading values. Data is logged to disk using the USB interface available on

the power meter with the help of a Linux driver. Since this work focuses on analyzing

the impact of processor heterogeneity, we use a difference of total system power and

system idle power to obtain active power used by the workload and report in the

results.

2.4.4 Methodology

Experimental evaluation and analysis are carried out as the multiple steps summarized

below.

• Each workload is first evaluated on a system configured to use only Xeon cores.

Multi-threaded applications are configured for a one to one mapping of threads

to cores used.

• Next, the same workloads are run using only Atom processor.

• The metrics collected include: application performance, power, and various

performance counters including instructions retired, unhalted core cycles, LLC

misses, MPERF, and timestamp counters.

16

• With the help of data collected in previous steps, we calculate the performance

improvement provided by Xeon over Atom cores, and the energy savings or

performance/watt that can be obtained by using these processors.

The analysis currently uses Xeon or Atom cores for the entire execution of the

application. In practice, an application can dynamically switch between different

types of cores and achieve higher gains, but the implementation and evaluation of a

dynamic scheduling algorithm remains part of our future work.

2.4.5 Limitations

There are few limitations to the study performed in this work. First, the processors

available on the QuickIA platform may not represent the latest high-performance and

low-power CPUs available in the market. However, these two processors belong to

the same generation. The performance/power profiles of both Intel Xeon and Atom

processors have improved so we expect the relative trends to be comparable to the

results obtained from the QuickIA platform. Second, the network connection used in

the experiments is through the ethernet port available on QuickIA machine. However,

mobile devices commonly use wireless connections which can affect the results for

browser workloads.

2.5 Experimental Results

This section presents experimental results and the analysis of heterogeneous multi-

cores for all of the client and server workloads described in Section 2.3. Results for the

client workloads are presented first in Section 2.5.1, followed by the server workload

evaluation (Section 2.5.2).

17

br
ow

se
ja

va
sc

rip
t

pa
lb

um
ch

es
s

st
rik

e
an

im
at

e
co

nv
er

t
m

en
co

de
r

m
pl

ay
er

ca
lc

im
pr

es
s

w
rit

er
7z

ip
di

sk
sc

an
gt

kp
er

f
pg

ua
rd

sq
lit

e
w

ge
t0

20

40

60

80

100

CP
U

Ut
ili

za
tio

n
(%

)

Xeon Atom

(a) CPU usage of client workloads

hi
st

og
ra

m
lin

re
g

re
vi

nd
ex

st
rm

at
ch

w
or

dc
ou

nt

km
ea

ns
m

at
rix pc

a

hs
ql

db
2

lu
se

ar
ch

to
m

ca
t

tr
ad

eb
ea

ns
tr

ad
es

oa
p0

20

40

60

80

100

CP
U

Ut
ili

za
tio

n
(%

)

Xeon Atom

(b) CPU usage of server workloads

Figure 5: A comparison of CPU usage profile of client vs. server workloads

2.5.1 Client Workload Evaluation

2.5.1.1 Application Behavior

The results shown in Figure 5(a) show the average CPU utilization of all of the

client applications in Table 1 for execution on Xeon and Atom CPUs. As seen in

the figure, applications exhibit diverse behavior in their CPU usage. 7zip, mencoder,

and javascript have high CPU utilization, while other applications like productivity

apps (calc, impress, writer), chess, wget make light use of CPU resources. This

behavior is in contrast to that of typical server applications used by earlier work on

heterogeneity [54, 55, 64, 92] which exhaust the CPU. It can also be noticed that the

average CPU utilization is higher on small cores due to their simpler core architecture,

requiring more processing time for the same task.

For comparison, Figure 5(b) shows the CPU utilization profile of the transac-

tional, MapReduce, and analytics workloads in Table 2 which we collectively call

‘DATACTR’ workloads. These workloads either almost saturate the CPU (transac-

tional applications and analytics kernels) or have much lower CPU-usage as in the

case of MapReduce workloads due to their I/O-bound nature. In comparison, client

applications exhibit much more diverse behavior.

18

2.5.1.2 Performance Analysis

Figure 6(a) evaluates the impact on client application performance of using hetero-

geneous processors. Specifically, it shows the performance ratio of using only Xeon

CPU over using only small Atom for these applications. As evident from the figure,

Xeon provides significant performance improvement for several applications like 7zip,

convert, javascript, browse, etc. Application convert shows the highest gain of 2.67x.

On the other hand, wget, diskscan, mplayer, impress, and chess show only small gains.

The average performance gain for all the applications is observed to be 1.7x.

br
ow

se
ja

va
sc

rip
t

pa
lb

um
ch

es
s

st
rik

e
an

im
at

e
co

nv
er

t
m

en
co

de
r

m
pl

ay
er

ca
lc

im
pr

es
s

w
rit

er
7z

ip
di

sk
sc

an
gt

kp
er

f
pg

ua
rd

sq
lit

e
w

ge
t0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
rf.

 ra
tio

 (X
eo

n/
At

om
)

(a) Performance impact

br
ow

se
ja

va
sc

rip
t

pa
lb

um
ch

es
s

st
rik

e
an

im
at

e
co

nv
er

t
m

en
co

de
r

m
pl

ay
er

ca
lc

im
pr

es
s

w
rit

er
7z

ip
di

sk
sc

an
gt

kp
er

f
pg

ua
rd

sq
lit

e
w

ge
t40

30
20
10
0

10
20
30
40
50

%
 E

ne
rg

y
sa

vi
ng

s
(A

to
m

/X
eo

n)

(b) Energy savings

Figure 6: Performance and energy impact of using small vs. big cores for client
workloads

2.5.1.3 Power Analysis

Results comparing energy consumption on the big and small cores are shown in Fig-

ure 6(b). The results provide energy savings (%) of using Atom cores over Xeon cores.

These results are particularly interesting. Several workloads like pguard, gtkperf,

mplayer, convert, etc. show significant savings by using Atom CPU (maximum 46%

for mplayer). However, many other applications show negative savings during exe-

cution on Atom cores. For example, strike game consumes 38% more energy when

running on small cores while also providing lower performance, in comparison to big

19

core execution. This implies that Xeon provides both higher performance and energy

efficiency for these applications.

br
ow

se
ja

va
sc

rip
t

pa
lb

um
ch

es
s

st
rik

e
an

im
at

e
co

nv
er

t
m

en
co

de
r

m
pl

ay
er

ca
lc

im
pr

es
s

w
rit

er
7z

ip
di

sk
sc

an
gt

kp
er

f
pg

ua
rd

sq
lit

e
w

ge
t0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

In
st

ru
ct

io
ns

-p
er

-c
yc

le
 (I

PC
)

Xeon Atom

(a) Instructions-per-cycle

br
ow

se
ja

va
sc

rip
t

pa
lb

um
ch

es
s

st
rik

e
an

im
at

e
co

nv
er

t
m

en
co

de
r

m
pl

ay
er

ca
lc

im
pr

es
s

w
rit

er
7z

ip
di

sk
sc

an
gt

kp
er

f
pg

ua
rd

sq
lit

e
w

ge
t0

1

2

3

4

5

6

M
is

se
s-

pe
r-i

ns
tr

uc
tio

n
(M

PI
)

Xeon Atom

(b) Misses-per-instruction

Figure 7: A comparison of the behavior of client workloads on big vs. small cores

This behavior is contrary to popular understanding that small cores are more

energy-efficient and can be attributed to the increased execution time and increased

power of non-CPU components. It can be verified using Figure 7(a) and 7(b) which re-

spectively compare average IPC (instructions-per-cycle) and MPI (misses-per-instruction)

for these workloads on two types of CPUs. Most of the applications observe a signif-

icant decrease in their IPC when running on the small core as compared to the big

core. This reduction in IPC results in the small core being active for longer dura-

tions, thereby either causing an increase in core utilization or longer execution time.

Further, Figure 7(b) shows a significant increase in cache miss rate (MPI) for several

applications when run on the small cores, indicating a large increase in the memory

access rate and thus memory power consumption. For example, application browse

and strike have the worst energy impact in Figure 6(b), while they also have a large

increment in their MPI rate in Figure 7(b). The overall behavior is a combination of

several factors including big/small core power ratio, performance difference, and the

application behavior.

20

2.5.1.4 User-perceived Performance

ap
pl

e
ba

id
u

cn
n

cr
ai

gs
lis

t
di

gg
di

sn
ey

fa
ce

bo
ok

fo
xn

ew
s

im
ag

es
m

ap
s

se
ar

ch
go

og
le

m
sn

m
tv

na
ve

r
ni

ke
su

om
i2

4
tc

ru
nc

h
w

ik
i

ya
ho

o
ym

ov
ie

s
yo

ut
ub

e
zi

m
br

a0

200

400

600

800

1000
Pa

ge
 lo

ad
 ti

m
e

(m
s)

Xeon Atom

(a) browse

sm
al

l

m
ed

iu
m

la
rg

e0

5

10

15

20

25

Fr
am

es
-p

er
-s

ec
on

d
(F

PS
)

Xeon Atom

(b) mplayer

Figure 8: User-perceived performance for client applications

In comparison to server systems where typically total work done is used as a

performance metric, user-perceived performance counts on consumer devices. If an

application performs better than what a user wants or can notice, it may not be useful

work. For example, Figure 8(a) shows the average load-time for various web-pages

within the browse workload. It can be seen that the page-load latency is significantly

decreased for these applications when using a big core. For example, the average

page-load time for facebook page is decreased from 841ms to 346ms on the big core.

However, a user may or may not perceive such a change in load-time. If 500ms is

considered as the load-time threshold for the user, various sites like apple, google,

yahoo can be rendered using a small core as well without exceeding the tolerance

limit. On the other hand, other websites like cnn, digg, mtv, etc. strictly require a

big core to be used to meet the desired performance requirement.

Similarly, Figure 8(b) shows the frames-per-second (FPS) metric for the mplayer

workload when playing videos with different resolution quality (480p, 720p, 1080p).

In the case of low resolution 480p video, the small core is able to perform comparable

to the big core by sustaining the 23 FPS rate. Therefore, it can be run on a small core,

21

with only minor performance loss and a decrease in energy consumption. However,

the playback quality degrades for higher resolution videos, demanding a big core for

maintaining the desired quality. Thus, both these examples highlight the challenge

of user-perceived performance associated with client applications which need to be

taken into account for scheduling operations on heterogeneous processors.

2.5.2 Server Workload Analysis

Under the server workload analysis, we first present results for SPEC CPU2006 and

PARSEC applications followed by the DATACTR workloads.

Figure 9(a) shows the performance ratio for SPEC CPU2006 workloads on two

QuickIA processors. The benchmarks are sorted in the order of increasing IPC (left to

right), with average performance gain of 2.27x. The corresponding performance/watt

ratio of Xeon over Atom is shown in Figure 9(b). A ratio greater than one signifies

that the Xeon consumes less energy for the same amount of work, while a ratio lower

than one implies Atom consuming less energy. As evident in the figure, different

applications show affinity towards different processor for energy-efficient execution.

Several applications like bzip2, soplex, sphinx3 etc. take less energy on the big core,

while gamess, namd, sjeng, etc. run more efficiently on the big core. These results

show the need for heterogeneity for these CPU-bound workloads to maximize system

performance/watt.

Further, many applications with low IPC (on left) such as soplex, astar, gcc run

more efficiently on the Xeon core, as opposed to typical understanding that memory-

intensive applications with low IPC can be offloaded to smaller cores. However, these

memory-intensive applications perform better on the Xeon core with larger cache size.

Our ongoing work is further investigating the performance and power predictors which

can be used to make optimal scheduling decisions for such heterogeneous multicores.

22

lb
m

m
ilc

Ge
m

sF
DT

D
ca

ct
us

AD
M

so
pl

ex
as

ta
r

ze
us

m
p

le
sl

ie
3d gc

c
go

bm
k

gr
om

ac
s

sp
hi

nx
3

sj
en

g
ca

lc
ul

ix
po

vr
ay

om
ne

tp
p

bz
ip

2
de

al
II

lib
qu

an
tu

m
na

m
d

xa
la

nc
bm

k
to

nt
o

bw
av

es
hm

m
er

ga
m

es
s

h2
64

re
f0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
rf.

 ra
tio

 (X
eo

n/
At

om
)

(a) CPU2006

lb
m

m
ilc

Ge
m

sF
DT

D
ca

ct
us

AD
M

so
pl

ex
as

ta
r

ze
us

m
p

le
sl

ie
3d gc

c
go

bm
k

gr
om

ac
s

sp
hi

nx
3

sj
en

g
ca

lc
ul

ix
po

vr
ay

om
ne

tp
p

bz
ip

2
de

al
II

lib
qu

an
tu

m
na

m
d

xa
la

nc
bm

k
to

nt
o

bw
av

es
hm

m
er

ga
m

es
s

h2
64

re
f0.0

0.5

1.0

1.5

2.0

Pe
rf/

W
at

t r
at

io
 (X

eo
n/

At
om

)

(b) CPU2006

ca
nn

ea
l

sc
lu

st
er

de
du

p

fe
rr

et

x2
64

bs
ch

ol
es

fa
ni

m
at

e

fa
ce

si
m

bo
dy

tr
ac

k

ra
yt

ra
ce

sw
ap

tio
ns

vi
ps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
rf.

 ra
tio

 (X
eo

n/
At

om
)

(c) PARSEC

ca
nn

ea
l

sc
lu

st
er

de
du

p

fe
rr

et

x2
64

bs
ch

ol
es

fa
ni

m
at

e

fa
ce

si
m

bo
dy

tr
ac

k

ra
yt

ra
ce

sw
ap

tio
ns

vi
ps

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Pe
rf/

W
at

t r
at

io
 (X

eo
n/

At
om

)

(d) PARSEC

hi
st

og
ra

m
lin

re
g

re
vi

nd
ex

st
rm

at
ch

w
or

dc
ou

nt

km
ea

ns
m

at
rix pc

a

hs
ql

db
2

lu
se

ar
ch

to
m

ca
t

tr
ad

eb
ea

ns
tr

ad
es

oa
p0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Pe
rf.

 ra
tio

 (X
eo

n/
At

om
)

(e) DATACTR

hi
st

og
ra

m
lin

re
g

re
vi

nd
ex

st
rm

at
ch

w
or

dc
ou

nt

km
ea

ns
m

at
rix pc

a

hs
ql

db
2

lu
se

ar
ch

to
m

ca
t

tr
ad

eb
ea

ns
tr

ad
es

oa
p0.0

0.5

1.0

1.5

2.0

2.5

Pe
rf/

W
at

t r
at

io
 (X

eo
n/

At
om

)

(f) DATACTR

Figure 9: Performance and Performance/Watt comparison of server workloads on
Xeon vs. Atom CPUs.

23

Similar results are obtained for several multi-threaded applications from the PAR-

SEC benchmark suite, as shown in Figure 9(c) and 9(d). The performance improve-

ment of using the big cores for these applications is 2.15x. The energy profile of these

workloads shows that most of the applications (except fluidanimate, vips, and x264)

consume less energy when run on the Atom cores.

Finally, results comparing the performance and performance-per-watt of the DAT-

ACTR workloads on Xeon vs. Atom processors are presented in Figure 9(e) and 9(f)

respectively. Applications under the transactional and analytics category see large

performance gains from the faster CPUs. The kmeans application kernel observes

a sharp decline in its IPC when run on small cores causing a performance degrada-

tion. Similarly, performance gains for applications like wordcount, tomcat, tradesoap,

tradebeans and matrix kernel can be attributed to high increase in the LLC miss rate

on small cores. In comparison, data processing MapReduce applications (except word-

count) observe only minor performance gains from large Xeon cores, due to their low

CPU requirement.

Comparing the performance/watt ratio of these workloads in Figure 9(f), almost

all the transactional applications show lower energy consumption on the Xeon cores,

thus, favoring them for both performance and energy-efficiency. On the contrary,

analytics applications and many data processing MapReduce applications (except

revindex and wordcount) take less energy when run on small cores. These results again

confirm the original hypothesis that small cores are not always most efficient and by

provisioning the appropriate server configuration for each application, a datacenter

can be optimized for energy-efficient operation.

2.5.3 Opportunity Analysis

A summary of the experimental results for all the workloads is presented in Table 3,

showing the relative performance and power on Xeon and Atom configurations. The

24

results are categorized by workload suites namely SPECCPU, PARSEC, DATACTR,

and CLIENT. We observe that the Xeon processor provides average performance

gains of 2.28x and 2.15x over Atom for SPECCPU and PARSEC workloads. The

corresponding increase in energy consumption is 1.35x and 1.25x. On the other hand,

DATACTR workloads exhibit a performance gain of 2.24x as well as a reduction

in energy consumption (4%) from Xeon over Atom cores. Finally, workloads from

the mobile domain show an average 68% performance gain on the faster CPU, with

a 17% increase in energy consumption. The average performance improvement from

big cores for all the workload categories is 2.09x with 18% higher energy consumption.

Algorithm 1: Hetero-A Policy

1: if Energy gain > 10% (wrt. Xeon) then

2: CPU ← Atom

3: else

4: CPU ← Xeon

5: end if

Algorithm 2: Hetero-B Policy

1: if Energy gain > 10% AND Perf. loss < 50% (wrt. Xeon) then

2: CPU ← Atom

3: else

4: CPU ← Xeon

5: end if

An opportunity analysis is performed to estimate the benefits of using heteroge-

neous processors for these workloads. The analysis assumes knowledge of relative

performance/power of each workload on two processors. Two CPU assignment poli-

cies are evaluated as shown in Algorithm 1 and 2. Hetero-A policy is an energy-centric

policy which selects the CPU for each workload that is more energy efficient, irrespec-

tive of its performance impact. On the other hand, Hetero-B policy is also sensitive

to performance and selects Atom only if it is energy efficient and does not degrade

25

performance by more than 50% when compared to Xeon.

Results from the analysis are shown in Table 3 with several observations. First,

Hetero-A policy provides large energy savings when compared to homogeneous con-

figurations. When compared to Atom-only execution, it provides both higher per-

formance (average 47%) as well as power savings (11%) by opportunistically using

the big core when it is more efficient for all the workload categories. In comparison

to Xeon only execution, it reduces both energy consumption and performance of the

system. On the other hand, Hetero-B policy provides high performance at the cost of

increased energy consumption. Overall, it provides 2x performance with only a 8%

increased energy with respect to Atom, and 8.5% energy savings with a performance

degradation of 4.3% with respect to Xeon-only results.

Table 3: Performance and power comparison for Xeon, Atom, and Heterogeneous
configurations

Workload Performance Energy
suite Atom Xeon Hetero-A Hetero-B Atom Xeon Hetero-A Hetero-B

SPECCPU 1.00x 2.28x 1.42x 2.15x 1.00x 1.35x 0.93x 1.20x
PARSEC 1.00x 2.15x 1.37x 2.09x 1.00x 1.25x 0.92x 1.21x

DATACTR 1.00x 2.24x 1.72x 2.17x 1.00x 0.96x 0.81x 0.90x
CLIENT 1.00x 1.68x 1.35x 1.60x 1.00x 1.16x 0.93x 1.02x
Average 1.00x 2.09x 1.47x 2.00x 1.00x 1.18x 0.89x 1.08x

These results show that heterogeneous multicores can be employed to improve

energy-efficiency of mobile devices and server systems.

2.6 Related Work

Heterogeneous processors have been proposed to provide higher energy-efficiency than

symmetric multicore processors. Using a mix of different types of cores, different

phases within an application can be mapped to the core which can run them most

efficiently [23, 42, 55, 56, 73]. Experimental studies have been performed to analyze

26

the impact of such performance asymmetry on several server workloads [8, 14]. Similar

studies also exist for the mobile domain, characterizing the behavior of several client

applications on heterogeneous multicore platform [32, 35]. However, earlier work

relied on either simulators or emulated heterogeneous platforms for their evaluation

using mechanisms like throttling (T) states, dynamic voltage and frequency scaling

(DVFS), or proprietary techniques like core de-featuring. Such emulations do not

realistically represent the behavior of a real heterogeneous system [54]. Also, the

power data reported was obtained from models instead of real measurements. In

comparison, QuickIA system used in our work contains real heterogeneous processors,

allowing us to obtain real power data.

Several scheduling algorithms for efficient execution of applications on asymmetric

multicore processors have also been proposed [33, 54, 58, 63, 64, 92, 99]. In addition,

several techniques have been described to accelerate critical sections [42, 97] and

virtual machine monitors [52, 57] using heterogeneous cores. Similarly, prior work

has also investigated asymmetric cache-aware scheduling algorithms [50]. A study

of several server workloads was performed by using processors with different cache

sizes [7]. In comparison, our work involves processors with different core architecture

in addition to cache asymmetry. Further, previous work has relied on throughput-

oriented server workloads for evaluating the impact of heterogeneity, while this study

targets server domain as well as client devices where energy is a premium resource,

application behavior and performance metrics are diverse. We also motivate the need

for novel energy-aware scheduling approaches for heterogeneous multicores.

Various benchmark suites for embedded devices are available including MiBench [38]

and EEMBC [85]. However, MiBench was developed during a different era of embed-

ding computing. Modern CPUs found in consumer devices like smartphones and

tablets and the applications run on these platforms have become quite sophisticated.

EEMBC suite is proprietary and is not freely available to academics. Recent work

27

has characterized the behavior of several Android applications on ARM-based mo-

bile devices [39, 60]. However, their work deals with only homogeneous multicore

platforms.

Concerning the datacenter environment, arguments have been made in favor of

low-powered cores for the design of datacenters (e.g., FAWN [6]), while others have

questioned the wisdom of using such cores for server systems [10]. Specific appli-

cations like database and web-search have been analyzed and compared on Atom

and Xeon-based platforms [48, 59]. In this work, we look at a wider range of server

applications from the point of view of server consolidation. Also, we use an evalua-

tion platform which differs only in CPU configuration, with other components being

shared, thus, allowing us to quantify the effect of processor heterogeneity and isolate

it from differences in other components. Further, Polfliet et al. performed a cost

analysis for provisioning datacenters with heterogeneous servers [84]. However, their

work relied on models and simulators. Finally, several techniques have been proposed

to optimize execution of datacenter applications on inherent heterogeneity due to

servers from multiple generations [2, 74, 107]. Our results support their conclusions

stressing the importance of employing heterogeneity for datacenter applications.

2.7 Summary

This chapter investigates the use of heterogeneous, i.e., low-power wimpy and high

performance brawny, processors in modern mobile devices and server platforms. A

unique experimental heterogeneous platform consisting of real Xeon and Atom pro-

cessors with shared system resources is used to study and analyze a diverse mix of

real-world applications from mobile and enterprise domain. Client applications rep-

resent the typical usage of end-user devices such as smartphones, tablets, while server

applications include transactional applications, data processing MapReduce bench-

marks, and data analytics kernel. The behavior of these applications is characterized

28

on heterogeneous CPUs and a power-performance analysis is carried out to quantify

the benefits of using heterogeneity for these applications. Results show that heteroge-

neous CPUs can be used to provide a superior solution for these platforms by enabling

energy-efficient execution of various applications. The importance of power consumed

by non-CPU components, the challenges of user-perceived performance for mobile de-

vices, and its implication on the energy-efficiency of heterogeneous processors are also

highlighted.

29

CHAPTER III

BEYOND CORE: UNCORE & MEMORY SUBSYSTEM

This chapter extends the analysis performed in Chapter 2 on heterogeneous cores by

including the uncore and memory subsystem. A large fraction of CPU resources is

dedicated to uncore on modern multicore platforms which is shared by all the cores.

In this work, we first describe the relevance of uncore in the context of heteroge-

neous processors and study the effect of uncore using an experimental heterogeneous

platform. Going beyond the processor, we also analyze heterogeneity in the memory

subsystem consisting of fast on-chip and slow off-chip memory and discuss mechanisms

required to support them. Specific contributions include hypervisor-level mechanisms

to detect guest memory access patterns using access bit information and transparency

support for managing heterogeneous memory for virtual machines, implemented by

the hypervisor. We also present an evaluation of the sensitivity of several server

workloads to the performance of heterogeneous memory subsystems from an emu-

lated heterogeneous platform.

In the remaining chapter, Sections 3.1 and 3.2 provide details on discussions re-

lated to uncore, followed by mechanisms for heterogeneous memory management in

Sections 3.3 – 3.5. Finally, related work and conclusions are described in Section 3.6

and 3.7 respectively.

3.1 Uncore subsystem

Energy efficiency remains a critical concern for both mobile devices and server sys-

tems. To improve energy efficiency while providing high performance, chip vendors

have adopted heterogeneous multicore processors. Previous work on heterogeneous

30

processors has primarily focused on core power [42, 55], but modern multicore proces-

sors also contain an uncore subsystem (see Figure 10), with components like the last

level cache, integrated memory controllers, etc. With growing cache sizes, increasing

complexity of the interconnection network, various core power optimizations, and the

integration of SoC (system-on-a-chip) components on the CPU die, the uncore is be-

coming a significant power component in total SoC power [68]. For energy efficient

operation, therefore, it becomes increasingly important to account for uncore while

executing on heterogeneous cores.

This work investigates the importance of uncore power on the energy efficiency of

heterogeneous multicore platforms. Unlike previous work on heterogeneous proces-

sors focused on server workloads [23, 54, 55], it targets client devices where energy is

a premium resource and workload profiles are diverse. Since server workloads are not

representative of the usage model of client devices, it characterizes the behavior of a

diverse set of real-world client applications which are typical of end-user mobile de-

vices and describes different ways in which they can exploit heterogeneity. Using these

workloads, it further analyzes the impact of heterogeneity on workload performance

and energy-efficiency, including both core and uncore components.

Experimental evaluations use a unique, experimental, heterogeneous multicore

platform, comprised of both high and low power cores operating in a shared coher-

ence domain. Results demonstrate that heterogeneous core architectures can provide

significant performance improvements while also lowering energy consumption for a

diverse set of applications when compared to homogeneous processor configurations.

They also demonstrate that potential savings are strongly affected by the ‘uncore’

contribution, which motivates the need for uncore-awareness in managing hetero-

geneous multicore platforms and a scalable uncore design to completely realize the

intended gains.

31

3.1.1 What is uncore?

The uncore is a collection of components of a processor not in the core but essential

for core performance. The CPU core contains components involved in executing

instructions, including execution units, L1 and L2 cache, branch prediction logic, etc.

Uncore functions include the last level cache (LLC), integrated memory controllers

(IMC), on-chip interconnect (OCI), power control logic (PWR), etc. as shown in

Figure 10. With growing cache sizes and the integration of various SoC components

on CPU die, the uncore is becoming an increasingly important contributor to total

SoC power.
 C

O
R

E

LAST LEVEL CACHE

IMC

 C
O

R
E

 C
O

R
E

 C
O

R
E

OCI PWR
 C

O
R

E
U

N
C

O
R

E

Figure 10: Core and uncore in multicore processors

3.1.2 Idle State Coordination

Modern multicore processors contain core idle states (C-states) to progressively turn

off components in order to conserve power. These C-states are denoted as Cx, where

x is a digit. C0 is the active C-state when the processor is executing instructions,

while a higher numbered C-state (e.g., C2) is a deeper sleep state consuming lower

power.

In addition to core C-states, processors also contain package idle states (PCx

states) that govern uncore power consumption. These package C-states are related

to core C-states in that the processor can only enter a low-power package C-state

when all of the cores are ready to enter that same core C-state. Table 4 shows this

32

Table 4: Core and package idle state coordination

Package Core 1
PCx C0 C1 C2

C0 PC0 PC0 PC0
Core 0 C1 PC0 PC1 PC1

C2 PC0 PC1 PC2

‘

coordination of core and package idle states for a two-core system with three idle

states. The resultant package C-state is always the lower of the two core C-states.

Thus, the uncore subsystem remains active and consumes power as long as there is

any active core on the CPU.

3.1.3 Impact of uncore

Figure 11 illustrates the impact of uncore power on the energy consumption of an

application executing on heterogeneous cores. A big core running an application

finishes its execution faster and enters a low-power idle state. The same application

when executed on a small core takes longer (tsmall) to finish, which also keeps the

uncore active for a longer period of time. If uncore power is substantial in comparison

to core power, then the energy gains from running on a small core can be strongly

affected by the uncore power. For such a system, energy-efficiency gains from small

core execution may be offset by the increase in uncore energy consumption due to

longer execution time. This observation is in line with prior work that highlights the

tradeoff between CPU and system-level power reduction in the context of frequency

scaling [72].

Energy consumption for big and small core execution for such platforms can be

modeled using Equations 1 and 2, respectively. Here, E refers to the energy consumed,

t denotes execution time, and Pcore and Puncore represent average core and uncore

power, respectively. Pidle is the idle platform power, and tidle is the corresponding

33

Euncore

Ecore
Eidle

Euncore

core

Big Core Execution Small Core Execution

p
o
w

e
r

p
o
w

e
r

tbig t idle t small

E

Figure 11: Effect of uncore power on the energy-efficiency of heterogeneous cores

idle time, as shown in the figure.

Ebig = tbig ∗ (P big
core + P big

uncore) + Pidle ∗ tidle (1)

Esmall = tsmall ∗ (P small
core + P small

uncore) (2)

To understand the impact of uncore power, the analysis in Section 3.2 considers

two uncore configurations: fixed and scalable. The fixed uncore configuration uses

the same uncore subsystem when executing on either big or small cores. The scalable

uncore scenario models an uncore where certain uncore components are turned off or

powered down as we move to the small core. For example, fewer memory channels,

memory controllers, or a smaller cache can be used with a slow small core that

imposes smaller resource requirement on the cache and memory subsystem. Hence,

in this case, the uncore power scales along with core power when a workload moves

to a different core.

3.2 Experimental Evaluation

3.2.1 Testbed

Our experimental platform consists of a quad-core Intel i7-2600 client processor. To

create heterogeneity, we use proprietary Intel tools to defeature a subset of the cores

in order to emulate the performance of low-powered small cores [54]. A block diagram

of the platform configuration is shown in Figure 12. An on-die graphics processor is

used to accelerate graphics workloads. All of the cores operate at a frequency of

34

2.6GHz and share an LLC of size 8MB. All the workloads are run using the Linux

kernel 3.0 and automated using scripts.

Big core

Sm
al

l

U
nc

or
e

Graphics

 c
or

e

Big core

Sm
al

l
 c

or
e

Figure 12: Experimental heterogeneous platform

3.2.2 Client Workloads

Table 5: Client workload summary

Workload Description Metric
browse loads a set of web-pages periodically emulating user’s think time Load time

javascript Javascript benchmark performs standard browser operations Load time
palbum photo-album application that flips through photographs Load time
mplayer a H/W accelerated version of mplayer plays an HD movie clip FPS
mytube plays an H.264 video inside the browser for 120 seconds FPS

openarena plays a benchmarking demo from a 3D first-person-shooter game FPS
strike replays a demo session of a web-based 2D game (120 sec.) FPS
7zip a parallelized version of 7zip compress a text file Time

eclipse Java based benchmark runs performance tests for the Eclipse IDE Time
filescan I/O intensive workload that scans through the Linux source tree Time
gmagick GraphicsMagick application is used to resize a set of images Time

x264 x264 media encoder is used to encode a media file Time

To assess the viability of using heterogeneity for client systems, we choose a diverse

set of real-world applications which are typical of modern end-user devices since

prior server-centric research on heterogeneous processors [23, 54, 55] does not directly

address the needs and processor usage models seen on client devices. Table 5 provides

a summary of the applications used in our analysis and relevant performance metrics.

This section categorizes these applications based on their behavior and discusses

opportunities for exploiting heterogeneity.

35

3.2.3 Methodology

Experimental evaluation and analysis are carried out as the multiple steps summarized

below.

• Each workload is first evaluated on a system configured to use only big cores.

Multi-threaded applications are configured for a one to one mapping of threads

to big cores.

• Next, the workloads are run using only small cores.

• The metrics collected include: application performance, IPC, LLC accesses, and

various core and package C-state residencies.

• With the help of data collected in the previous steps and the power models

described in Section 3.2.4, we calculate the performance improvement and the

energy savings of using small vs. big cores.

Our analysis assumes the use of big or small cores for the entire application run. The

implementation and evaluation of a dynamic scheduling algorithm for client devices

remains part of our future work.

3.2.4 Power Model

The emulated heterogeneous platform mimics the performance of small cores. How-

ever, it does not match the power characteristics of an actual small core built using a

different process technology for low power consumption. We, therefore, rely on power

models to obtain core and uncore energy consumption.

3.2.4.1 Core Power

The average power consumption of a CPU core can be modeled using the following

equations:

Pcore = Ractive ∗ P core
active + Ridle ∗ P core

idle (3)

P core
active = Cdyn ∗ V 2 ∗ f (4)

36

Here, Ractive and Ridle denote core active and idle state residencies (%), and P core
active

and P core
idle are the corresponding power values. Cdyn is the dynamic capacitance, V

denotes the operating voltage, and f represents the switching frequency. Big core

Cdyn is modeled as a function of IPC in Equation 5, as shown and validated by other

researchers [95]. Similarly, Equation 6 models the capacitance for a small core having

three-times smaller area than that of the big core.

Cbig = 0.499 ∗ ipcbig + 0.841 (5)

Csmall = 0.472 ∗ ipcsmall + 0.176 (6)

3.2.4.2 Uncore Power

Similar to core power, uncore power is modeled using package idle state residencies

(Ux) as shown below:

Puncore = Uactive ∗ P uncore
active + Uidle ∗ P uncore

idle (7)

P uncore
active = Pwake + Pactivity ∗ LLCrate (8)

Further, uncore active power (P uncore
active) is modeled as a function of LLC activity in

Equation 8 where Pwake is the fixed power cost of waking up various uncore compo-

nents, while the Pactivity component scales with the LLC access rate LLCrate (relative

to peak access rate including both cache hits and misses).

The analysis uses a value of 0.9V for the voltage (V), and frequency (f) is kept

at 2.6GHz. For this platform, the average big core and small core power for all our

workloads is obtained to be 2.37W and 0.95W respectively. A comparable uncore is

modeled using a value of 1.2W for Pwake and Pactivity in case of a fixed uncore and

scaled down to half for a scalable uncore. Core and uncore idle power are assumed to

be 0.1W and a 1.5W power component is attributed to the on-die graphics processor

which also scales with the LLC activity.

37

3.2.5 Results

The results shown in Figure 13 provide a comparison of application behavior on

heterogeneous cores. Specifically, they compare core and package idle state residency

for all of the workloads in Table 5, for big and small core execution. As evident

from the figure, most of the applications observe a decrease in their idle residency

when running on the small vs. big cores due to the small cores being active for longer

durations. Further, many applications are seen to have almost negligible package

idle residency. These applications either heavily use the graphics processor (e.g.,

openarena), or they always keep one of the cores busy (e.g., 7zip, gmagick, x264),

and thus do not allow the uncore to enter into an idle state.

br
ow

se
ja

va
sc

rip
t

pa
lb

um
m

pl
ay

er
m

yt
ub

e
op

en
ar

en
a

st
rik

e
7z

ip
ec

lip
se

fil
es

ca
n

gm
ag

ic
k

x2
64

0

20

40

60

80

100

Co
re

 Id
le

 R
es

id
en

cy
 (%

)

Big
Small

(a) Core Idle Residency

br
ow

se
ja

va
sc

rip
t

pa
lb

um
m

pl
ay

er
m

yt
ub

e
op

en
ar

en
a

st
rik

e
7z

ip
ec

lip
se

fil
es

ca
n

gm
ag

ic
k

x2
64

0

20

40

60

80

100
Pk

g
Id

le
 R

es
id

en
cy

 (%
) Big

Small

(b) Package Idle Residency

Figure 13: A comparison of the behavior of several client workloads on big vs. small
cores

The results shown in Figure 14 evaluate the impact on performance of using

heterogeneous processors for various client applications in Table 5, categorized by the

respective performance metrics. Figure 14(a) compares the average load-time for the

browse, javascript, and palbum workloads. We see that the latency is significantly

decreased for these applications when using a big core. Thus, a big core provides

a notable performance boost for such intermittent applications. In contrast and as

38

browse

javascri
pt

palbum
0

100
200
300
400
500
600
700

Lo
ad

 ti
m

e
(m

s)

Big
Small

(a) Load time (ms)

mplayer
mytube

openarena
stri

ke0

10

20

30

40

50

60

Fr
am

es
-p

er
-s

ec
on

d
(F

PS
)

Big
Small

(b) Frames-per-second (FPS)

7zip
eclip

se
filesca

n
gmagick x2640.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

Big
Small

(c) Normalized Execution Time

Figure 14: Application performance comparison on big and small cores

depicted in Figure 14(b), when considering the frames-per-second (FPS) metric for

various graphics and media applications, we see only minor performance degradation

on a small core, at levels not perceivable to end-users. Therefore, they can be run

on a small core, to gain potential decreases in energy consumption (discussed further

below). The last graph (see Figure 14(c)) compares the normalized execution times

for various applications. All of the applications except filescan in this category show

a significant improvement in performance with the big core.

bro
wse

javasc
rip

t

palbum

mplayer

mytu
be

openare
na
str

ike 7zip

ecli
pse

file
sc

an

gmagick
x264

10

0

10

20

30

40

50

60

E
n
e
rg

y
 S

a
v
in

g
s

(%
)

C C+UC (Fixed) C+UC (Scal.)

(a) Energy Savings (%)

browse

javascr
ipt
palbum

mplayer
mytube

openarena
stri

ke 7zip
eclip

se
file

sca
n

gmagickx2640

20

40

60

80

100

En
er

gy
 (%

)

Core Uncore

(b) Energy Distribution

Figure 15: Uncore evaluation showing energy savings and energy distribution

Energy savings results computed based on our power models are shown in Fig-

ure 15(a). The figure shows savings for three configurations: core-only savings (C),

total SoC-wide savings (C+UC) with a fixed uncore, and with a scalable uncore.

39

As seen in the figure, all of the applications show significant gains on a small core

in terms of core energy savings. The palbum application has the lowest savings of

17.58%, while openarena has the largest savings of 52.79%. However, these savings

are strongly affected when the power consumption of the uncore is taken into account.

Some applications even exhibit negative energy savings. On the other hand, when a

scalable uncore is used, these savings increase and become comparable to core-only

energy savings. Further, Figure 15(b) shows the relative contribution of core and un-

core energy consumption for all the applications during big core execution, on a fixed

uncore configuration. These results include graphics power in the uncore component.

As evident, CPU-intensive applications (e.g., 7zip, gmagick, x264) show a significant

core power component, while the uncore fraction dominates for other applications like

openarena and mplayer. These results not only demonstrate the importance of taking

uncore power into account for scheduling operations, but they also motivate the need

for a scalable uncore design to obtain large gains from heterogeneous multicores.

Going beyond the processor (core and uncore), heterogeneity can also exist in

memory susbystem using a combination of fast on-chip memory and slow off-chip

memories. In the following sections, we study the effect of such memory architectures

on modern applications and describe mechanisms for managing them efficiently.

3.3 Heterogeneous Memory Organization

Die-stacked memories can provide lower access latency and higher bandwidths at

lower power levels, in comparison to traditional off-chip memories [67]. However,

such die-stacked memories are likely to be constrained in size, i.e., they are projected

to have capacities ranging only to a few hundreds of megabytes [69]. This suggests a

usage model in which they are combined with off-chip memory to provide higher ca-

pacity and low latency capabilities. For enterprise-class or high-performance machines

combining a limited amount of fast on-chip memory with additional slower off-chip

40

Cores

Stacked On-chip Memory

Off-chip Memory (DDR)

Figure 16: Heterogeneous memory organization consisting of a combination of on-
chip and off-chip memories.

memory, will therefore, result in the hybrid or heterogeneous memory systems shown

in Figure 16.

Die-stacked DRAM can be utilized as (i) hardware-managed cache or (ii) software-

managed memory. The former approach has the advantage of being able to quickly

react to changing memory access patterns, and it provides a transparent way to incor-

porate such memory architecture in ways that support legacy applications. Potential

drawbacks and challenges of this approach are that first, it can result in high over-

head for managing the tags of such large sized caches, and second, it would require

extended coherency support. An additional issue is the consequent lack of software

control over memory placement.

Alternative ways to manage stacked DRAM are actively being investigated in the

architecture community, but in this work, we explore how an operating system or

hypervisor can use its information about application behavior to manage the hetero-

geneous memory resources of future multicore platforms. Specifically, we investigate

an approach in which stacked DRAM is explicitly exposed as system-visible memory,

and we then evaluate the feasibility of software-based memory management for the

resulting heterogeneous memory platforms.

41

In particular, given the increasing use of virtualization in server systems, several

challenges need to be investigated for managing heterogeneous memory resources. (1)

Hardware provides only limited visibility into the memory access behavior of guest

virtual machines (VMs), e.g. x86 provides only one-bit information such as access bit

in the page tables. Therefore, efficient methods are required to detect which pages are

critical for a guest’s performance based on such limited information from hardware.

(2) The hypervisor should implement its management scheme transparently to the

guest OSes. This may be challenging since the page tables are owned by the guest in

a paravirtualized environment, thus making it difficult to migrate its pages between

memories transparently without guest involvement. Even with hardware virtualiza-

tion support, such multiple mappings should be handled properly. This also involves

TLB management across cores to prevent stale mappings.

This chapter presents techniques to address these issues. First, we enhance the

hypervisor to build an access-bit history for each VM, by periodically scanning the

access bits available in page tables. This ‘a-bit history’ is then used to detect the

guest’s ‘hot’ pages and determine the guest VM’s page working set. Since hot page

and working set detection requires periodically scanning page tables, which can in-

cur high overhead, we maintain additional data structures for quickly accessing page

table entries. In addition, scans are done in the virtual time of guest virtual ma-

chines, for accurate accounting. Finally, the hypervisor mirrors guest page tables and

transparently uses these mirrors, which allows the hypervisor to manipulate guest

page mappings by simply changing their mirror page tables, without requiring guest

operating systems to be altered in any way, i.e., transparently to guests.

Page access tracking, hot page detection, and mirroring are fully implemented in

the Xen open-source hypervisor, thereby enabling experimental evaluation of over-

heads in realistic server platforms. To emulate such platforms’ future memory het-

erogeneity, we use a multi-socket Intel Westmere platform in which one of its memory

42

controllers is throttled, resulting in the presence of both ‘fast’ (regular DRAM, em-

ulating future 3D stacked DRAM) and ‘slow’ (throttled DRAM, emulating future

off-chip DRAM) memory in the system. Experimental results obtained on this ma-

chine and memory configuration characterize the memory behavior of standard server

workloads, in terms of their working set sizes and the performance impact of memory

heterogeneity. The page migration mechanism is evaluated with micro-benchmarks,

to show the feasibility of software management for future heterogeneous memory sys-

tems.

3.4 Implementation

To leverage die-stacked low latency DRAM to reduce an application’s overall memory

access latencies, it is important to detect and then manage its ‘hot’ pages. This

requires efficient methods for memory access tracking, described next.

3.4.1 Memory Access Tracking

Current multicore platforms provide limited support for detecting applications’ mem-

ory access patterns. Specifically, each entry in the page table is associated with an

access bit. This bit is set by the hardware when the corresponding page is accessed.

Software is provided control to reset this bit. This single-bit information is used in

our work to determine a VM’s memory access pattern, leveraging earlier work on

cache management [62]. Specifically, we periodically scan and collect the access bits

in guest page tables, to form a bitmap termed as ‘A-bit history’ (access-bit history).

If a 32-bit word and a 100ms time interval are used, one word amounts to roughly 3.2

seconds of virtual time. Therefore, a dense A-bit history (i.e., many 1’s) would indi-

cate the presence of hot pages. Several optimizations are used to minimize overheads,

discussed later in this section.

To capture an accurate A-bit history, a process’s virtual time rather than wall-

clock time is used. This avoids unnecessary page table scans and a more accurate

43

detection of hot pages. The hypervisor is extended to track processes’ virtual time

across various events, and each time the 100ms boundary is crossed, its page table is

scanned for A-bit collection.

P20

P21

P23

P25

P28

P30

P31

P33

00010100

10101101

00111010

11010010

01000101

01101101

11100011

10000111

Physical
Pages

Access-bit
History

Count(x)

 2

 5

 4

 4

 3

 6

 5

 4

Access count
Table

Top N
pages

P21

P30

P31

Hot Page
List

P21

P30

Stacked DRAM
Set

>

threshold
(4)

Figure 17: Hot page detection using a-bit history

An implementation in the Xen open-source hypervisor obtains and maintains A-

bit histories for arbitrary guest VMs. Since Xen employs frame tables for memory

management – large tables in which each entry corresponds to some physical page –

we extend this data structure to embed our A-bit history and other information, as

shown in Figure 17. The A-bit history is used to hold each frame’s access bit history.

Next/Prev pointers help form linked lists of pages for efficient access.

In addition, an Rmap structure is used to store reverse mapping information to

make it easy to unmap and map some given page. Each physical page (mfn) has one

Rmap list, which is list of Rmap set. Rmap set is a fixed size array containing pointers

to page table (PT) and page table index (PTI). Therefore by iterating Rmap list and

Rmap set, all mappings to the given page can be found and changed. Without this

Rmap structure it would be too expensive to find mappings to a given physical page,

which is needed to change mappings for page migration.

Further, for guest transparency, the hypervisor mirrors each guest’s page table

which is installed in the hardware base register (CR3). This is very similar to shadow

44

page table, and this allows us to change virtual-to-physical mappings without chang-

ing guest OS. By this, page migrations are transparent to the guest OS.

3.4.2 Memory Allocation Policy

Stacked DRAM memory management is concerned with both intra-VM and inter-VM

memory allocation policies.

Our intra-VM page placement policy aims to utilize a limited allocation of fast

stacked DRAM for a VM. Pages with the highest hit rate are moved to stacked

DRAM. For hot read-only pages, two copies are maintained: a home copy and a

satellite copy. The home copy resides in off-chip DRAM, while the satellite copy

resides in stacked DRAM. When such read-only pages need to be migrated back to

off-chip memory, the satellite copy for these pages is simply discarded, and the home

copy is used for accesses thereafter. This saves a page copy for moving data back to

off-chip memory. For read-write pages, only a single copy is maintained, and a copy

is performed each time when a page is moved back and forth between memories.

In a manner similar to allocating constrained physical memory resources across

VMs using memory ballooning, the inter-VM allocation policy aims to distribute

stacked memory across applications based upon their activity. We consider two poli-

cies in this work.

Share-based allocation: this policy uses pre-defined shares, e.g., set by the admin-

istrator or a cloud allocator, to divide stacked DRAM capacity among VMs. Memory

is distributed as a weighted sum of these shares as shown in Equation 9.

mem(vmi) = memtotal ∗
share(vmi)∑n
i=1 share(vmi)

(9)

WSS-based allocation: this policy uses the working set size (WSS) information for

each VM to control memory allocation. The allocation is performed by using WSS

as the share value in Equation 9.

45

3.5 Experimental Evaluation

3.5.1 Heterogeneous Memory Emulation

Socket 0
(6 – cores)

Socket 1
(6 – cores)

DRAM
Throttled
DRAM

Figure 18: Emulated heterogeneous memory platform

Earlier work on stacked DRAM in the architecture community has relied on ar-

chitectural simulators. In order to conduct heterogeneous memory research on actual

systems with realistic server workloads, we take the alternative approach of emulating

heterogeneous memory on a multi-socket platform.

Our experimental platform consists of a dual-socket 12 core Westmere X5650

server with 12GB DDR3 memory. As shown in Figure 18, cores from the first socket

are used for running programs that can access memory from both sockets, i.e., cores

from the second socket are kept idle. This NUMA configuration provides an approx-

imate 1.5x difference in memory latency between the two nodes. In order to emulate

more heterogeneous configurations, however, we use memory controller throttling on

the remote node to slow it down further.

Memory throttling is enabled by writing to the PCI registers (Integrated Mem-

ory Controller Channel Thermal Control). By applying different amount of throt-

tling, varied memory configurations can be emulated for emerging memory technolo-

gies [86, 106]. Figure 19 shows a comparison of normalized bandwidth and latency for

three memory configurations for the memory-intensive Stream benchmark. The M0

46

memory configuration corresponds to no throttling, while M1 implies small throttling,

and M2 implies higher throttling. As expected, we see progressively lower bandwidth

and higher latency with M1 (2.5x) and M2 (5x) configurations. M0 is used as the

base configuration for evaluation.

M0 M1 M20.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 B

an
dw

id
th

M0 M1 M20

1

2

3

4

5

6

No
rm

al
iz

ed
 L

at
en

cy
Figure 19: Bandwidth and latency comparison for different memory configurations

3.5.2 Workloads

We evaluate the impact of heterogeneity on server workloads by using a diverse set

of server-centric workloads summarized in Table 6. These workloads include CPU-

intensive SPEC CPU2006 benchmarks, multi-threaded PARSEC benchmarks, and

several MapReduce data processing benchmarks and with data analytics kernels. The

MapReduce benchmarks use the shared-memory Phoenix implementation of MapRe-

duce [89], where input datasets are cached in memory.

Table 6: Workload summary

Workloads Description
SPECCPU Single-threaded CPU-intensive benchmarks
PARSEC Multi-threaded application kernels
Phoenix Shared-memory MapReduce kernels

47

3.5.3 Results

The experimental data shown in Figure 20 depicts working-set size (WSS) graphs as a

function of time for several SPEC CPU2006 workloads. As seen in the figure, several

CPU-bound applications have very small WSS, e.g., 0.8MB for namd. In compari-

son, memory-intensive workloads like mcf and lbm have much larger working-sets of

size 200MB and 400MB respectively. Further, WSS dynamically changes over time

for these applications, thereby showing the need for dynamic memory management.

These results highlight the fact that only a fraction of the total memory region is

actively used by the application which is critical for its performance. These pages

should be retained in fast memory, while the remaining pages can be allocated from

slow memory.

0 50 100 150 200 2500

50

100

150

200

250

(a) bwaves
0 2 4 6 8 10 12 14 16 180

50

100

150

200

(b) mcf
0 2 4 6 8 10 12 140.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) namd

0 20 40 60 80 100 120 140 1600
20
40
60
80

100
120
140
160
180

(d) sjeng
0 5 10 15 20 25 30 35 400

50
100
150
200
250
300
350
400

(e) lbm
0 20 40 60 80 100 1200

20
40
60
80

100
120
140
160

(f) astar

Figure 20: WSS curve for SPEC CPU2006 applications (x-axis = time (s), y-axis =
WSS (MB)).

Our next results evaluate the performance impact of memory slowdown for all

of the workloads in Table 6. These applications are executed with different memory

48

configurations, by varying the amount of throttling applied to the memory controller.

Figure 21 shows the performance loss (%) for the applications for two memory config-

urations (M1 and M2) as compared to no throttling (M0) as described in Section 3.5.1.

As we see in the figure, several applications suffer from high performance loss due

to memory slowdown, while many others see small impact. Particularly, the mcf,

milc, GemsFDTD, and lbm workloads from SPEC CPU2006; the facesim, canneal,

and streamcluster benchmarks from PARSEC, and the pca kernel from the Phoenix

suite observe severe degradation. As expected, the performance degradation becomes

smaller with faster M1 memory configurations. The highest impact is observed for

the mcf workloads to be 1431% (15x) and 537% (6x) for the two configurations. Thus,

by managing the active memory pages for these applications in the stacked DRAM,

substantial performance gains can be achieved. These experiments were also per-

formed with different CPU frequencies, to analyze the correlation between processor

speed and memory slowdown on the performance. We observe similar trends for these

applications, but with a smaller magnitude due to a slower CPU.

b
zi

p
2

b
w

a
v
e
s

g
a
m

e
ss

m
cf

m
ilc

ze
u
sm

p

g
ro

m
a
cs

ca
ct

u
sA

D
M

le
sl

ie
3

d

n
a
m

d

g
o
b
m

k

h
m

m
e
r

sj
e
n
g

G
e
m

sF
D

T
D

h
2

6
4

re
f

to
n
to

lb
m

o
m

n
e
tp

p

a
st

a
r

sp
h
in

x
3

b
lk

sc
h
o
le

s

b
o
d

y
tr

a
ck

fa
ce

si
m

fe
rr

e
t

sw
a
p

ti
o
n
s

x
2

6
4

ca
n
n
e
a
l

st
rm

cl
u
st

e
r

ra
y
tr

a
ce

v
ip

s

d
e
d
u
p

w
o
rd

_c
o
u
n
t

st
r_

m
a
tc

h

re
v
_i

n
d
e
x

km
e
a
n
s

p
ca

0

20

40

60

80

100

P
e
rf

.
Lo

ss
(%

)

M2

M1

 M2 1431% 258% 253% 179% 174% 215% 427% 103%
 M1 537% 142% 101% 162%

Figure 21: Comparison of performance impact of memory slow down with different
memory configurations

We evaluate our page migration mechanisms using a micro-benchmark memlat,

which allocates a large region of memory and randomly accesses it. The benchmark

runs for 30 seconds and reports average access latency for each second. Figure 22

shows the experimental results for two scenarios: when memory is statically allocated

49

0 5 10 15 20 25 30
Time (s)

300

400

500

600

700

800

900

1000

Av
g.

 L
at

en
cy

 (c
yc

le
s)

Without migration
With migration

Figure 22: Micro-benchmark results: Memory access latency with and without hot-
page migration

from slow memory and when migrations are enabled to dynamically move hot-pages to

fast memory. When migration is disabled, the access latency remains high throughout

the execution, with an average value of 891 cycles. On the other hand, when hot-page

migration is enabled, latency starts to decrease until it reaches a value of 367 cycles

and then remains fixed. Pages are initially gradually moved to fast memory, thus the

memlat partially accesses pages from fast and slow memory. At t=21s, when all of the

memory has been moved to fast memory, the latency reaches a stable value. These

results show the feasibility and effectiveness of our software-controlled approach for

managing heterogeneous memory resources.

3.6 Related Work

Substantial prior work has proposed the use of heterogeneous processors to improve

the energy efficiency of multicore platforms [23, 42, 55]. Researchers have developed

appropriate scheduling algorithms to efficiently run applications on heterogeneous

cores [23, 54]. However, the previous work has focused only on cores within the CPU,

ignoring the uncore part which accounts for a large fraction of die resources in modern

CPUs. Thus, we focus on the uncore subsystem and highlight the significance of its

power in total SoC power and analyze its impact on the energy efficiency of several

50

real-world client applications.

In addition, arguments have been made in favor of low-powered cores for the

design of datacenters [6, 48] as well as high-performance brawny cores for other ap-

plications [10, 59]. The same argument regarding the impact of uncore on the energy

efficiency of cores applies to these systems as well. Further, the cost of uncore re-

sources in many-core processors has been analytically modeled and analyzed [68],

however, this work offers an experimental evaluation in this regard.

Concerning memory management in virtualized systems, the VMware ESX server

uses a sampling approach to detect working set sizes and manage allocation of sys-

tem memory among virtual machines using shares [102]. Similarly, Geiger explores

mechanisms to monitor the virtual MMU and storage hardware of a VM to provide

meaningful information about the usage of buffer cache and virtual memory sub-

systems [51], while Hypervisor-exclusive cache uses a ghost buffer based approach

to predict page miss rates for virtual machines [70]. In comparison, our work uses

page-table access bits to detect not only working set size of virtual machines, but also

provides ‘hotness’ information of each page to guide page placement.

Several architectural solutions have also been proposed for tracking memory access

patterns and page placement strategies for hybrid memory systems containing tradi-

tional DRAM and other memory technologies such as non-volatile memories [21, 88].

Similarly, hardware approaches for managing DRAM caches have also been inves-

tigated [49, 86]. Further, efforts have been made to investigate page replacement

policies in the context of disaggregated memory platforms, allowing a large pool of

memory to be shared by multiple servers [65]. In comparison, our work focuses on

system software control on memory management for more efficient utilization of the

stacked DRAM. Techniques using sophisticated LRU heuristics for balancing memory

across several virtual machines have also been proposed [108]. This work is comple-

mentary to our work as similar policies can be used with our approach.

51

3.7 Summary

Going beyond CPU cores, this chapter investigates uncore and memory subsystem in

the context of platform heterogeneity. Specifically, it analyzes the impact of uncore

power on the energy-efficiency of heterogeneous multicore processors for client devices.

Using a diverse mix of emerging client applications and an experimental heterogeneous

platform, we highlight the growing importance of uncore power with respect to total

platform power consumption, thereby motivating the need for uncore-awareness and a

scalable uncore design for energy-efficient execution on heterogeneous multicore plat-

forms. Further, it considers a software-managed approach for heterogeneous memory

resources that consist of a combination of fast 3D die-stacked DRAM and off-chip

DRAM. We believe that such stacked DRAM should be managed by software rather

than by hardware (hardware managed cache) for flexible management. To this end,

we propose and evaluate mechanisms for tracking the memory behavior of virtual

machines and managing memory mappings, in a guest-transparent manner. We con-

duct basic research and evaluation on an emulated heterogeneous memory platform.

Preliminary results show the effect of memory heterogeneity on various workloads

and our ability to track guest memory access patterns and improve performance by

managing how stacked DRAM is used by applications.

52

CHAPTER IV

HETEROMATES: PROVIDING HIGH DYNAMIC

RANGE ON MOBILE PLATFORMS

4.1 Introduction

The ubiquity of handhelds is causing an unprecedented increase in the range of per-

formance demands imposed on mobile platforms, and at the same time, battery life

and energy efficiency remain critical concerns. Yet modern processors are typically

designed to meet only one, not both, of these two conflicting goals of performance

vs. efficiency. In response, chip vendors have adopted heterogeneous multicore pro-

cessors (HMPs) as their platforms of choice, which consist of cores with different per-

formance/power characteristics. Examples include Variable SMP from NVIDIA [78]

and Big.LITTLE processing from ARM [29, 18]. HMPs make it possible for different

applications within a diverse mix of workloads to be run on the ‘most appropriate’

cores [42, 54, 55, 92]. For example, applications not time critical to the user can be

run on low-power small cores, while applications with their outputs visible to the user

can be allocated to high-performance big cores.

This chapter presents the HeteroMates system, which uses heterogeneous cores

to provide a wider dynamic power range for client devices, to meet both their high-

performance and low-power demands. Specifically, HeteroMates forms execution units

from core groups, where each group consists of a small number of (e.g., 2-4) hetero-

geneous cores. Cores within a core group are exposed to the system as multiple

heterogeneity (H) states, similar to the P-states used for voltage and frequency scal-

ing. An H-state controller module performs H-state transitions based upon workload

behavior and user-defined policies. Depending on the selected H-state, the workload

53

is transparently migrated to the appropriate core by a core switcher.

H-state abstraction decouples heterogeneity from scheduling such that the sched-

uler perceives only homogeneous cores. The performance/power differences among

cores are transparently handled by a separate H-state driver. H-states can be im-

plemented in hardware, firmware, or software, thereby providing a way to hide het-

erogeneity from the operating system to support legacy software for wider adoption.

Further, core groups allow the system to easily accommodate a variable number of

different heterogeneous cores, by adding an H-state for each core. Finally, core groups

can also be useful in thermal-constrained scenarios (also known as dark silicon [22])

which allow only a fraction of the chip components to be active simultaneously.

HeteroMates is implemented on top of the Linux kernel. Experimental evaluations

use a unique, experimental heterogeneous multicore platform comprised of both high

and low power cores, along with client applications typically seen in modern end-

user devices. Two different usage policies are compared: a performance-driven policy

favors high performance for user-facing applications, whereas a power-driven pol-

icy favors reduced power consumption and longer battery life. Experimental results

demonstrate that by opportunistically utilizing heterogeneous cores, HeteroMates can

provide both improved performance and lowered energy consumption for various client

applications when compared to homogeneous cores. They also highlight the need for

a scalable uncore in order to fully realize the potential gains obtained from the use

of heterogeneity.

4.2 Motivation

Users perform a wide variety of tasks on mobile devices, resulting in diverse platform

demands. Since their battery capacities are severely restricted due to constraints on

size and weight, energy efficiency is critical to their usability. To provide extended

54

battery life and at the same time, meet the rapidly increasing demands of high per-

formance mobile use cases, a client device must offer a wide dynamic power range

– it must be able to operate both in high-performance and in power-savings modes.

As explained in detail in Section 4.3, heterogeneous cores can be used to extend the

dynamic power range offered by homogeneous processor configurations. In that con-

text, this section presents examples of client workloads and the usage patterns of

client devices that motivate the need for a wide dynamic power range and discusses

opportunities for exploiting heterogeneous cores.

4.2.1 Client Workloads

Client applications exhibit highly diverse behavior in their processor usage and perfor-

mance requirements. These applications can be categorized based on their behavior

as described below.

4.2.1.1 Intermittent Workloads

Client devices like cell phones and tablets are typically powered-on for long periods

of time, but often perform their heavy processing in short bursts. Web-browsing is an

example of such usage, and workloads browse and palbum in Table 7 belong to this

category. A timeline trace of IPC (instructions-per-cycle) for the browse workload is

shown in Figure 23(a). Idle periods are marked by low IPC periods, while page-loads

correspond to spikes in the graph. Since page-loads generate high IPC activity, a big

core can be used for rendering the pages and improving page-load performance, while

resorting to a small core during low activity periods to conserve power.

4.2.1.2 Sustained Workloads

These differ from intermittent workloads in that their behavior is uniform over a longer

duration. They can be further classified into two sub-categories: sustained-high and

sustained-low.

55

0 5 10 15 20 25
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(a) Intermittent (browse)

0 10 20 30 40 50 60 70 80 90
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(b) Sustained-low (openarena)

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(c) Sustained-high (x264)

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(d) Multi-threaded (mytube)

Figure 23: Diverse client workload profiles (IPC vs. Time)

Sustained-low: Client applications like gaming and media playback typically run

for a long duration (a few minutes to hours). Moreover, the wide adoption of acceler-

ators allows them to offload significant portions of their computation to accelerators.

Figure 23(b) shows the IPC trace of the openarena gaming benchmark. As the ob-

served IPC is low for the application, it can be run on a small core without significant

degradation in performance and at lower power.

Sustained-high: Mobile devices are also used for compute-intensive tasks such as

media encoding, video editing etc. These applications typically have a high IPC

(e.g., see x264 encoder in Figure 23(c)), and their performance scales well on a big

core. This makes big cores suitable for these applications when they require high

performance, e.g., when they are user-facing, while a small core may provide higher

energy-efficiency when they run in background mode (e.g, virus-scan).

56

4.2.1.3 Multi-threaded Workloads

With increasing numbers of cores on mobile devices, parallelization of client applica-

tions is key to further performance enhancement. Such multi-threaded applications

also present opportunities for exploiting heterogeneity. 7zip, gmagick, and eclipse are

examples of parallel applications. The mytube workload also uses multiple threads

for audio, video decoding, and rendering, for instance. Since such threads differ in

behavior and needs, their performance will be affected by how they are mapped to

different heterogeneous cores. For example, Figure 23(d) shows that various threads

within the mytube workload differ significantly in their IPC, which can be leveraged

by task mapping and scheduling methods.

4.2.2 Client Devices

4.2.2.1 Mobility Constraints

Mobility means that client devices will either be powered via wall-power or by battery.

Wall-power usage does not impose energy constraints, so that big cores can provide

desired high levels of performance. During battery-driven operation, however, a user

may be willing to accept lower performance at the benefit of higher battery life. Low-

powered energy-efficient small cores may be more suitable under such conditions.

4.2.2.2 Thermal Constraints

Client devices like cell phones and tablets rely on natural cooling. Therefore, these

devices are quite sensitive to platform thermal constraints that impose limits on the

extent to which it is possible to use power-hungry big cores for sustained periods of

time. A small core can be used for moving the execution away from a big core when

thermal constraints are violated.

57

4.3 Dynamic Power Range

This section describes the use of heterogeneous cores to enable a wide dynamic power

range, and the role of the uncore subsystem in achieving the same.

Small
core

po
w

er

performance

Big
core

High switching power at
high performance points

High leakage power at
low performance points

Figure 24: Using a heterogeneous processor provides a wide dynamic power range.

Modern processors are typically designed to satisfy only one of the two conflict-

ing requirements: high-performance and energy-efficiency. Current low-power cores

(e.g., Intel’s Atom processor) are energy efficient, but their performance is limited.

More powerful big cores like Intel Core R© processors provide high performance, but at

the cost of higher levels of power consumption. The technological reason for this is

the fact that the power consumption of a processor core consists of static (leakage)

power and dynamic (switching) power. During high activity periods, the total power

consumption of the device is dominated by dynamic power consumption, while dur-

ing low activity periods, leakage power becomes a significant component of the total

power consumption. Current high performance cores are built from transistors on fast

process technologies that have high leakage power and very fast switching times [78].

Such big cores, therefore, consume high leakage power under idle or near-idle con-

ditions, but can provide high performance without significant increase in dynamic

power, as shown in Figure 24. Conversely, low power small cores are built from low

power process technologies with low leakage power but slower switching times [78].

Such processors consume small amounts of leakage power, but significantly increase

58

dynamic power consumption to provide a high-performance mode (see Figure 24).

The intuitive outcome is that by using both types of cores, a single platform can

be optimized for both high performance and low power consumption. The objective

of such a system would be to always use its most efficient cores for the tasks at

hand (shown by the solid line in Figure 24). Such a heterogeneous platform exhibits

a higher power-performance range than individual big or small cores. This chapter

explores whether and to what extent the hardware-based arguments for heterogeneity

stated above lead to realistically achievable gains on client devices.

4.4 HeteroMates Design

HeteroMates enables a wide dynamic power range using heterogeneous cores. This

section describes its key components and concepts.

4.4.1 Core Groups

A heterogeneous core group is a collection of a small number of (e.g., 2-4) heteroge-

neous cores that are grouped together to form a single execution unit. For example,

Figure 25 shows a core group consisting of three heterogeneous cores: a big (B), a

small (S), and a tiny (T) core. The core group appears as a single execution unit

with multiple performance/power levels. Depending on application behavior and

user-defined policies, an appropriate core is dynamically chosen to run the user task

in question, by transparently moving the task’s execution to that core, and by placing

the other inactive cores into a low power idle state to conserve power. For example,

the tiny core can be used for background tasks like email update checks, the small

core for normal user operation, and the big core is reserved for performance-critical

tasks.

Different cores within a core group are exposed using heterogeneity-states (H-

states), an interface similar to the P-state (performance-states) interface defined by

the ACPI standard and used by operating systems to scale the frequency and voltage

59

SB

H-state Controller

Core Switcher

Go
Down

Move
Task

T

Hk

Go
Up

Hk-1 Hk+1

Hetero
Core

Group

H-States

Figure 25: A core groups consisting of three heterogeneous cores: a big (B), a small
(S), and a tiny (T) core exposed as three H-states.

of processors. Higher P-state numbers represent slower processor speeds. Thus, P0

is the highest-performance state, with P1 to Pn being successively lower-performance

states. Similarly, an H-state is assigned to each type of core in the core group. A

high-performance big core corresponds to a lower numbered H-state, while a low-

power small core corresponds to a higher-numbered H-state. Thus, a core group

exposes a set of H-states (H0 . . . Hn) which are controlled by an H-state controller

module. Depending on the state transition logic and the resultant H-state, a core

switcher transparently migrates the execution to the appropriate core. In this manner,

applications perceive only homogeneous cores with larger dynamic power range than

any of the individual cores.

The design of HeteroMates offers multiple advantages. First, H-state interface

decouples heterogeneity from scheduling such that the scheduler need not deal with

performance/power differences among cores. Instead, a separate H-state driver han-

dles this transparently to the scheduler. Second, H-states can be implemented either

in hardware, firmware, operating system, or even hypervisors, allowing a broader

applicability. As an architectural solution, it provides a way to completely hide het-

erogeneity from the operating system, which is critical to support legacy software and

60

applications. Further, core groups provide a unified mechanism to easily accommo-

date a variable number of heterogeneous cores by adding an H-state for each type of

core. Finally, core groups can also be useful when TDP (thermal-design-point) limits

may constrain the number of cores that can be active simultaneously. As transistor

density on modern processors keep increasing, such TDP limits are proving to be a

critical design constraint in the form of dark silicon [22].

4.4.2 H-state Controller

H-states on a core group are controlled by the H-state controller, in a manner similar

to frequency scaling operations performed by a CPU governor. A CPU governor is a

kernel module that changes core P-states based on a policy. In a similar manner, the

H-state controller performs H-state scaling operations. However, instead of changing

voltage and frequency as in the case of P-states, a change in H-state causes the

execution to move to a different core. The functions of the H-state controller and of the

traditional P-state governor complement each other. For example, Figure 26 shows

the combined P-state and H-state transition diagram for a two-core heterogeneous

core group. Here, Hk corresponds to the small core, and Hk−1 corresponds to the

big core. P-state changes within a core are performed by the P-state governor, while

cross-core migrations are governed by the H-state controller.

Small Core
Go

Down

H
UP

DN

Big Core

UP

DN

P0

Go
Up

Pn P0 Pn

kHk-1

Figure 26: H-state and P-state transition state machines. H-state determine the core
for execution, while P-states determine the frequency on that core.

61

CPU governors available in current operating systems (e.g., the ondemand gov-

ernor in Linux [82]) dynamically change CPU frequency in response to CPU load

(utilization). However, CPU load alone is not sufficient to drive H-state scaling oper-

ations, which also require determining whether a bigger or smaller core is more suit-

able for execution. Previous work on heterogeneous processor scheduling [54, 55, 92]

has identified application IPC (instructions-per-cycle) as a key metric to select the

right core for execution. Therefore, HeteroMates uses a combination of CPU load

and application IPC to form the H-state transition logic shown in Figure 27.

The intuition behind the scaling algorithm can be explained as follows. An appli-

cation with high CPU load but low IPC is likely to perform equally well on both big

and small cores due to its low IPC requirements, which can easily be met on a small

core. Applications with high IPC but small CPU load under-utilize the big core. Mov-

ing such applications to a smaller core results in higher utilization of the small core,

but without a significant penalty in application performance. When both of these

conditions are violated, the application is likely to gain performance by executing on

a bigger core.

IPC

Load

LoadHILoadLO

IPCHI

H

k-1

k+1

Hk
IPCLO

H

Figure 27: H-state scaling operations in response to application IPC and CPU load.

The H-state controller monitors application IPC and CPU load at periodic inter-

vals and compares them with pre-defined thresholds to determine the resultant state.

If both the IPC and load are above thresholds IPCHI and LoadHI respectively, the

62

core group is scaled up, i.e, moved to a higher-performance or lower numbered state.

If either IPC or load are lower than thresholds IPCLO and LoadLO, the H-state is

scaled down to a lower-performance state. For values in between these thresholds, no

H-state change is performed. These thresholds are defined for each type of core in

the system. By setting different values for these thresholds, different policies can be

enforced. For example, low values of thresholds force the execution to big cores, and

thus prefer performance over power. Similarly, a policy having thresholds with high

values picks smaller cores more often.

An H-state change operation causes the execution to switch to a different core.

This switching overhead could be substantial due to migration latency and loss of

private cached data if such changes are very frequent. In response, we use history

counters to dampen core switching frequency. A switch is performed only after a

certain number of consecutive identical H-state change requests are received. The

history counter is a simple integer counter associated with each core group, which

is incremented whenever consecutive intervals generate the same requests and reset

otherwise.

4.4.3 Uncore-aware Operation

The energy efficiency of a platform is not only determined by the type of core used

for execution, but also by the power consumption of the shared uncore subsystem.

Workloads for which execution on a bigger core provides both higher performance

and better energy efficiency due to improved performance scaling, should always be

run on big cores as small core degrades both performance and efficiency. HeteroMates

addresses this issue by adding the energy override condition in Equation 10 to the

heuristic described earlier. If the energy consumption of the current H-state (Hcur)

is greater than the energy consumption of the next higher state (Hcur−1), a scale up

operation is performed to move the execution to the bigger core.

63

if
Energy(Hcur−1)

Energy(Hcur)
< 1 then Hnext = Hcur−1 (10)

For energy-aware operation, Equation 10 requires the energy consumption of the

application to be estimated on a different core (H-state). This task can be divided into

two components: processor power prediction and application behavior (e.g., execution

time, IPC) prediction. CPU power visibility to the operating system is becoming

increasingly important, with multiple CPU vendors providing hardware counters to

measure the power of different components on the platform. Further, previous work

has developed light-weight models to accurately predict per-core power using existing

performance events [27]. Using a similar approach, this work also uses power models,

described in Section 3.2.4, to obtain core and uncore power consumption.

In order to understand the impact of a core transition on application behav-

ior, hardware assistance can be provided. For example, HeteroScouts [96] proposes

hardware performance counters to predict workload behavior on a remote core (after-

transition) from the parameters available on the local core (before-transition). Due

to unavailability of such counters in current processors, simple prediction models are

developed using experimental data. The following section provides details of the

modeling methodology.

4.4.4 Remote Behavior Prediction

To model the relationship between application IPC on a big and a small core in our

experimental platform, the client workloads in Table 7 and SPEC CINT2006 bench-

marks are executed on both types of cores. Figure 28 plots the obtained IPCscaling

data, defined as the ratio of the big core IPC and the small core IPC, as a function

of the IPC on the big core. As evident from the figure, a linear curve fits the data

64

well, with the resultant model given by the equations below.

IPCscaling = 0.6 ∗ IPCbig + 1.01 (11)

IPCscaling = 1.31 ∗ IPCsmall + 0.94 (12)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Big Core IPC

1.0

1.5

2.0

2.5

3.0

IP
C

Sc
al

in
g

Figure 28: Modeling IPC scaling as a function of IPC

The impact of IPC scaling on the execution time of an application is workload

dependent. CPU-bound workloads show a proportional relationship between IPC

scaling and execution-time scaling. However, this does not hold true for many client

workloads with significant idle phases, e.g., media and graphics workloads. For such

workloads, execution time is not affected by the core performance. Instead, a change

in core performance translates into change in core idle state residency. These condi-

tions are modeled by applying the scaling function to the product of core active state

(Ractive) residency and execution time (t), as shown in Equation 13. The equation

was experimentally verified using the client workloads in Table 7 as majority of the

workloads closely follow the modeled relationship. In the online model, sampling

interval is substituted for the execution time.

(Rsmall
active ∗ tsmall) = IPCscaling ∗ (Rbig

active ∗ tbig) (13)

Further, the change in core idle residency (Ridle) impacts package idle state (Uidle)

residency in an application dependent manner. Applications for which the package

65

becomes idle, as soon as the core becomes idle, show a strong correlation between

core and package idle states. On the other hand, for multi-threaded applications and

graphics-intensive applications, a core’s idle state does not necessarily translate to

the package idle state since the package can still be busy due to activity in another

core or the graphics processor. Such applications show a weak or negligible correlation

between core and package idle states. These two scenarios are modeled in Equation 14

where a difference of 20% between Uidle and Ridle is assumed as an indicator of weak

correlation. For such cases, Uidle is assumed to be the same irrespective of the type

of core used for execution.

U small
idle =


U big

idle if U big
idle � Rbig

idle,

Rsmall
idle otherwise

(14)

Using the models presented above and the power models described in Section 3.2.4,

an application’s relative energy consumption on two different H-states can be ob-

tained. These values are used to perform energy override operations as defined earlier

by Equation 10.

4.5 Implementation

HeteroMates is implemented for the Linux kernel. The current implementation con-

siders systems involving pairs of heterogeneous cores. H-states are implemented by

customizing the P-state tables on each core to expose two P-states corresponding

to each core in a pair. H-state changes work in lock-step on both of these cores to

avoid conflicting operations. An H-state change causes execution to switch cores in-

stead of performing DVFS. Our current implementation does not consider traditional

voltage and frequency scaling. This is because there is substantial previous work on

DVFS [72, 87, 94, 104], which can be used to perform P-state scaling in addition to

H-state transitions.

The H-state controller is implemented as a kernel module which runs on each

66

active core as a kernel thread. It periodically (40ms) reads various hardware per-

formance monitoring counters (PMCs), applies models, and performs any H-state

changes depending on the policy and thresholds chosen. The overhead of running

models is measured to be small (approximately 2% increase in core active and 5%

increase in package active residency). The core switcher is implemented in the OS

kernel by changing the runqueue pointer for the tasks in the source runqueue to point

to the destination runqueue. The overhead of this operation is minimal when run-

queue length is not large, which we have observed as being the case for the typical

client workloads used in our experiments. We note that similar functionality can

be provided by hardware, to further reduce overheads. Also, only active cores are

made available for scheduling to the Linux CFS scheduler. Inactive cores are put into

an offline mode using a lightweight mechanism. A value of three is used for history

counters.

4.6 Experimental Evaluation

4.6.1 Experimental Platform

Evaluations are carried out on the quad-core Intel i7-2600 client processor using pro-

prietary Intel tools to defeature cores and emulate heterogeneity. A block diagram of

the emulated platform is shown in Figure 29. Details of this platform along with the

power models are described in Chapter 3.

Big core

Sm
al

l

U
nc

or
e

Graphics

 c
or

e

Big core

Sm
al

l
 c

or
e

Figure 29: Experimental heterogeneous platform

67

4.6.2 Workloads

Table 7 provides a summary of client applications used in our analysis which include

browsing, gaming, media, etc. and relevant performance metrics.

Table 7: Modern client workloads

Workload Description Metric
7zip a parallelized version of 7zip is used to compress a text file Time

applaunch launches and executes a series of graphics-intensive applications Load time
browse loads a set of web-pages at 3s interval to emulate user’s think time Load time
canvas HTML5 benchmark performs browser canvasing tests FPS
eclipse Java based benchmark runs performance tests for the Eclipse IDE Time

gmagick Image editing application is used to resize a set of images Time
javascript Javascript benchmark performs standard browser operations Load time
lightsmark renders scenes from a 3D game and measures graphics performance FPS
mplayer a H/W accelerated version of mplayer plays an HD movie clip (60s) FPS
mytube plays an H.264 streaming video inside the browser for 60s FPS

openarena plays a benchmarking demo from a 3D first-person-shooter game FPS
palbum photo album application flips through photographs at 0.5s interval Load time
strike replays a demo session of a web-based 2D game (60s) FPS
x264 x264 media encoder is used to encode a media file Time

4.6.3 Methodology

Two different policies are used, one performance-driven, the other power-driven. This

is done by choosing different threshold values, obtained after experimenting with sev-

eral combinations of thresholds. Table 8 summarizes the various thresholds used

to cater to these policies. For a paired-core system, small cores can only perform

scale up operations and not scale down, therefore, only HI thresholds are relevant

for small cores. Similarly, only LO thresholds are relevant for the big cores. The

first performance-driven policy favors performance over power by using big cores for

execution in an aggressive manner. This is achieved by choosing smaller thresholds in

the table. The power-driven policy, on the other hand, focuses on power by choosing

bigger thresholds and forcing the execution to small cores more often. The evalu-

ation is carried out by comparing the performance and energy consumption of the

performance-driven policy with only big core execution and of the power-driven policy

68

with just small core execution. These two comparison points provide us a perspective

of the advantage of using heterogeneous cores over homogeneous configurations.

Table 8: Thresholds for performance- and power-driven policies

Small Core Big Core
IPCHI LoadHI IPCLO LoadLO

Performance-driven 0.5 70% 0.8 40%
Power-driven 0.7 80% 1.25 50%

4.7 Experimental Results

4.7.1 Performance-driven Policy

7
zi

p

a
p
p
la

u
n
ch

b
ro

w
se

ca
n
v
a
s

e
cl

ip
se

g
m

a
g
ic

k

ja
v
a
sc

ri
p
t

lig
h
ts

m
a
rk

m
p
la

y
e
r

m
y
tu

b
e

o
p
e
n
a
re

n
a

p
a
lb

u
m

st
ri
ke

x
2
6
40

5

10

15

20

P
e
rf

Lo
ss

(%
)

55%

(a) Performance loss wrt. big cores

7
zi

p

a
p
p
la

u
n
ch

b
ro

w
se

ca
n
v
a
s

e
cl

ip
se

g
m

a
g
ic

k

ja
v
a
sc

ri
p
t

lig
h
ts

m
a
rk

m
p
la

y
e
r

m
y
tu

b
e

o
p
e
n
a
re

n
a

p
a
lb

u
m

st
ri

ke

x
2

6
45

0

5

10

15

20

25

30

35

40
E
n
e
rg

y
 S

a
v
in

g
s

(%
)

C C+UC (Fixed) C+UC (Scal.)

(b) Energy savings wrt. big cores

Figure 30: Comparison of performance-driven policy with big core execution

Figure 30 provides results comparing the performance and energy consumption of

the performance-driven policy with execution on big cores. Specifically, Figure 30(a)

shows performance loss (%) with respect to the maximum performance achievable

by using big cores for the entire execution, and Figure 30(b) shows corresponding

energy savings by using small cores for partial execution when big core is not energy-

efficient. Performance is measured based upon the metrics in Table 7, with inverse of

latency as the metric for latency-oriented workloads. As evident from the figures, this

69

policy is able to achieve performance within 15% of the big core performance for all

the workloads except browse and palbum. This high performance loss for these two

workloads is due to their bursty nature, i.e., these applications exhibit sudden bursts

of high activity during page-rendering. HeteroMates uses history counters to dampen

core switching frequency, which requires multiple consecutive state change requests

to be received before actually making the change. Due to this reason, these bursty

applications observe a short delay before they are moved to the big core which incurs

a higher performance degradation. However, the absolute increase in the latency for

these applications may not be user-perceivable.

Figure 30(b) shows corresponding energy savings results for three scenarios: core-

only savings (C), SoC-wide savings (C+UC) with a fixed uncore, and SoC-wide sav-

ings with a scalable uncore. As seen from the figure, it is able to save significant energy

for several applications with a small performance degradation. Workload openarena

achieves highest gains with 39% core energy savings. However, these savings are

strongly affected when the power consumption of the uncore is taken into account.

On the other hand, when a scalable uncore is used, these savings increase and become

comparable (25%) to core-only energy savings.

7z
ip

ap
pl

au
nc

h
br

ow
se

ca
nv

as
ec

lip
se

gm
ag

ic
k

ja
va

sc
rip

t
lig

ht
sm

ar
k

m
pl

ay
er

m
yt

ub
e

op
en

ar
en

a
pa

lb
um

st
rik

e
x2

64

0

20

40

60

80

100

En
er

gy
 (%

)

Core Uncore

Figure 31: Core and uncore energy distribution

To elaborate on the importance of uncore power in total SoC power, Figure 31

70

shows the distribution of core and uncore energy consumption for various applica-

tions. Core energy component dominates for CPU-intensive applications like 7zip,

eclipse, gmagick, and x264, while uncore component is significant for other appli-

cations including lightsmark, mplayer, and openarena. These results highlight the

growing importance of uncore power in the processor power consumption and moti-

vate the need for a scalable uncore design when seeking to obtain large gains from

heterogeneous multicores.

4.7.2 Power-driven Policy

7
zi

p

a
p
p
la

u
n
ch

b
ro

w
se

ca
n
v
a
s

e
cl

ip
se

g
m

a
g
ic

k

ja
v
a
sc

ri
p
t

lig
h
ts

m
a
rk

m
p
la

y
e
r

m
y
tu

b
e

o
p
e
n
a
re

n
a

p
a
lb

u
m

st
ri
ke

x
2
6
40

20

40

60

80

100

P
e
rf

G
a
in

(%
)

123%

(a) Performance gain wrt. small cores

7z
ip

ap
pl

au
nc

h
br

ow
se

ca
nv

as
ec

lip
se

gm
ag

ic
k

ja
va

sc
rip

t
lig

ht
sm

ar
k

m
pl

ay
er

m
yt

ub
e

op
en

ar
en

a
pa

lb
um

st
rik

e
x2

64

5
0
5

10
15
20
25
30
35

En
er

gy
 L

os
s

(%
)

(b) Energy loss wrt. small cores

Figure 32: Comparison of power-driven policy with small core execution

Results for the power-driven policy are presented in Figure 32, where Figures 32(a)

and 32(b) respectively, show performance gain and energy loss (SoC-wide) in com-

parison to small-core-only execution. As results show, this policy is able to achieve

significant performance gains for many applications by selectively using big cores.

Further, it is able to do so with only a small to moderate increase in energy consump-

tion. For example, the browse and canvas workloads observe the highest increases in

energy consumption of 31% and 28% respectively, while most of the other applica-

tions show a smaller increase. However, these two applications also show a 31% and

54% performance gain for the increased energy consumption due to their usage of

71

big cores. We note that some applications like lightsmark, mplayer, and openarena

exhibit negligible performance improvement due to poor scalability.

7z
ip

ap
pl

au
nc

h
br

ow
se

ca
nv

as
ec

lip
se

gm
ag

ic
k

ja
va

sc
rip

t
lig

ht
sm

ar
k

m
pl

ay
er

m
yt

ub
e

op
en

ar
en

a
pa

lb
um

st
rik

e
x2

64

0

20

40

60

80

100

Re
si

de
nc

y
(%

)

Big Small

Figure 33: Residency on big and small cores

Results in Figure 33 show the percentage residency on big and small cores for all

of the applications. Different applications exhibit different degrees of big and small

core usage. For example, applications like 7zip, eclipse, and x264 with good perfor-

mance scalability spend the majority of their execution on big cores. On the other

hand, applications like lightsmark, mplayer, and palbum remain on small cores for a

significant portion of their execution time. Other applications like applaunch, canvas,

and strike make use of both types of cores during their execution. To illustrate this

further, the big and small core usage profiles of the applaunch and strike workloads

are shown in Figure 34. The applaunch workload launches and executes a series of

graphics-intensive applications. The launch operation is CPU-intensive and performs

better on a big-core, while the execution phase is accelerated using the on-die graph-

ics processor and a small core provides comparable performance to the big core at a

lower power. Therefore, this workload transits between big and small cores during

launch and execution phases (see Figure 34(a)). Similarly, Figure 34(b) shows the

execution profile for the strike gaming workload. This workload exhibit several phases

with high activity (e.g., bots shooting) when big cores are used and phases with low

72

activity (e.g., bots aiming and moving) when small cores may suffice. In this manner,

the appropriate core is used depending on the activity.

0 20 40 60 80 100 120 140 160
Time (s)

S

B

(a) applaunch
0 5 10 15 20 25 30

Time (s)

S

B

(b) strike

Figure 34: Big (B) and small (S) core usage profile (x-axis: time(s))

4.8 Related Work

Heterogenous chip multiprocessors (CMPs) have been proposed to achieve higher

energy-efficiency than symmetric multicore processors. Using a mix of big and small

cores, different phases within an application can be mapped to the core which can run

them most efficiently [55, 56]. Similarly, heterogeneous cores can be used to improve

the performance of parallel applications by speeding up sequential phases within

the application [42, 97]. Researchers have also developed appropriate scheduling

algorithms to efficiently run applications on heterogeneous cores [33, 99, 54, 58, 63, 64,

92]. In addition, previous work has proposed runtime mechanisms to leverage different

cores in mobile devices [44, 66] and virtualize heterogeneous multicore systems [52, 57].

There is also substantial previous work on dynamic voltage and frequency scaling

(DVFS). Several techniques have been developed to dynamically select appropriate

voltage and frequency for maximum efficiency [72, 87, 94, 104]. However, others have

questioned the effectiveness of DVFS on modern processors [6].

In comparison, our work targets client devices where energy is a premium resource,

with diverse application behavior and performance metrics. In that context, we ex-

tend the existing DVFS mechanisms to go beyond homogeneous cores and support

core heterogeneity to enable a wide dynamic power range on these client devices. In

73

addition, we highlight the significance of uncore power in total SoC power and moti-

vate the need for a scalable uncore for exploiting maximum gains from heterogeneous

CMPs.

4.9 Summary

This chapter presents the HeteroMates solution, which utilizes heterogeneous multi-

cores in order to provide a wide dynamic power range on client devices. It proposes

core groups, an abstraction that groups together a small number of heterogeneous

cores to form a single execution unit. Cores within a core group are exposed as

multiple heterogeneity (H) states. H-state transitions are governed by an H-state

controller, while a core switcher transparently migrates the task to the appropriate

core depending on the resultant H-state. Using a diverse mix of client applications

and an experimental heterogeneous platform, we show that heterogeneous CMPs can

be used to provide a superior solution for client devices. We also highlight the grow-

ing importance of uncore power in total SoC power consumption and the need for a

scalable uncore design to completely realize the intended gains.

74

CHAPTER V

HETEROVISOR: ELASTIC RESOURCE SCALING ON

HETEROGENEOUS CLOUD PLATFORMS

5.1 Introduction

Elasticity is a key feature of cloud infrastructures, enabling ‘on-demand’ scaling of

resources used by an application to match its requirements and user preferences [24].

Resource scaling techniques used by modern cloud platforms like Amazon’s Elastic

Compute Cloud (EC2) [5] and Google’s Compute Engine [28], however, are coarse-

grained, both in space and in time. These mechanisms involving use of different

types of virtual machines (VMs) have substantial consequent monetary implications

for customers due to the costs they incur for such fixed instances and the frequencies

at which such heavy-weight scaling operations can be performed. Customers could

implement their VM-internal solutions to this problem, but a truly elastic execution

environment should provide ‘fine-grained’ scaling capabilities to frequently adjust the

resource allocation of applications in an incremental manner. Given the competition

among cloud providers for cheaper/better services, fine-grained resource management

may prove to be a compelling feature of future cloud platforms [1, 24].

A clearly emerging trend shaping future cloud computing environments is the

presence of heterogeneity in multiple subsystems of server platforms, including pro-

cessors, memories, and storage. Processors can be heterogeneous in the levels of

performance offered [23, 30, 55], like the big/little cores commonly found in today’s

client systems [18, 29, 78]. Similarly, memory heterogeneity could arise from the joint

use of high speed 3D die-stacked memory, slower off-chip DRAM, and non-volatile

memory [21, 69, 88]. Such heterogeneity presents known challenges to server system

75

management, but in this work, we view it as an opportunity to improve future sys-

tems’ scaling capabilities, by making it possible for execution context to move among

heterogeneous components via dynamic ‘spill up’ and ‘spill down’ operations, in a

fine-grained manner and driven by application needs. A spill-up operation results

in improved performance for the application by making use of the high-performance

components, while a spill-down reduces resource usage by using slower resources.

HeteroVisor virtual machine monitor presented in this work hides the underlying

complexity associated with platform heterogeneity from cloud applications yet pro-

vides them with a highly elastic execution environment. It offers a simple abstraction

of a homogeneous scalable virtual resource to applications, which is then mapped

appropriately to underlying heterogeneous platform components. More specifically,

it exports the abstraction of Elasticity (E) states which provide guest VMs with a

channel for dynamically expressing their resource requirements. The E-state interface

is inspired by the already existing P-state interface [82] used by modern operating

systems to scale the frequency and voltage of processors. In addition to processors,

HeteroVisor incorporates multiple heterogeneous resources under a unified abstraction

of E-states. By triggering transitions on these E-states, system- or application-level

modules called Elasticity drivers (like the Linux CPU governor in the case of P-states)

provide hints to the hypervisor on managing the resources assigned to each VM. Het-

eroVisor incorporates these hints to dynamically manage underlying heterogeneous

resources, thus, making it possible to vary heterogeneous resource allocations, on a

per-VM basis.

While the E-state abstraction is generic to be applicable to various resources,

we specifically explore heterogeneous processors in this work. With heterogeneous

CPUs, E-states are used to provide the abstraction of a scalable virtual CPU (vCPU)

to applications which operate at a requested elastic speed, different than those of

the cores underneath. This is achieved by appropriate mapping of the vCPUs to

76

heterogeneous cores and imposing usage caps on vCPUs, thus, limiting their usage of

the physical processor. Similarly with heterogeneous memories, E-states can provide

an abstraction of performance-scalable memory, where multiple performance levels

are obtained by adjusting the allocation of fast vs. slower memory resources.

HeteroVisor is implemented in the Xen hypervisor, along with a simple E-state

driver for the guest virtual machines. In order to evaluate its utility and overheads

with actual applications and workloads, not relying on architectural simulators, CPU

throttling is used to emulate processor heterogeneity. With workloads that use traces

from Google cluster data [40], experimental evaluations show that by exploiting het-

erogeneity in an unobtrusive way, HeteroVisor makes it possible to achieve on-demand

performance boosts and cost savings for cloud applications with diverse resource re-

quirements. Specifically, the scaling mechanisms provide upto 2.3x improved quality-

of-service (QoS), while also reducing average resource usage and thus cost for these

workloads. Further, two usage policies are compared, showing that different trade-offs

between QoS and cost can be achieved using the proposed mechanisms.

5.2 Elasticity using Heterogeneity

5.2.1 Elasticity in Clouds

Elasticity, i.e., ability to scale resources on-demand to minimize cost is one of the

most attractive feature of the cloud computing environments. The resources can be

scaled either in ‘scale out’ or ‘scale up’ manner [24]. A scale-out operation implies

dynamically varying the number of VM instances used by an application. Commercial

cloud services like Amazon EC2 AutoScale [3] rely on such server-level scaling where

application resources can be increased in the form of additional VMs of fixed instance

types. Further, these instances can only be rented in the order of several minutes to

a full hour and are charged for the whole instance even if partially used [4]. Thus,

scaling out is a rather heavy-weight and coarse-grained operation having high cost

77

implications for the end-user (see Table 9). Server scaling also does not provide

a way to improve the performance of existing resources owned by an application,

e.g., moving from a VM instance to another type of instance with different resources

requires a VM restart in Amazon EC2. Previous work has highlighted the need for

long running instances in datacenters for predictable performance [13].

Table 9: Mechanisms for elastic resource scaling in clouds

Scale out Scale up
Scaling Method VM Instances Resource Shares

Resource Granularity Coarse Fine
Time Granularity Slow Fast
Software Changes High Minimal

Thus, light-weight, fine-grained resource scaling methods can be vital for cloud

systems which can be enabled using ‘scale up’ operations by adjusting the share of

platform resources owned by a VM (refer Table 9). Fine-grained elasticity enables

a user to start a VM with a basic configuration and dynamically build its platform

configuration as needed. Such scaling techniques may be sufficient and in fact, better

suited for many users than VM-level scaling methods, e.g., when a VM goes through

sudden short bursts requiring higher allocation of resources. Thus, a user can simply

request the resources it needs and rent durations can also be much shorter (on the

order of seconds) to reduce costs. Another advantage to this approach is that it can be

transparent to the VM and applications, not requiring sophisticated software changes

to deal with varying resources. Several techniques have been proposed in literature

to enable fine-grained resource management in clouds [13, 83, 81, 93]. However, each

of these focus on a specific approach, without a unifying mechanism to enable their

adoption.

78

5.2.2 Exploiting Heterogeneity

This work exploits platform heterogeneity to enhance the elastic resource scaling ca-

pabilities for cloud systems using ‘spill’ operations, i.e., changing the allocation of VM

resources in heterogeneous components. Consider a resource such as memory with

components of three different performance characteristics, i.e., die-stacked DRAM

as the fast resource, off-chip DRAM as the medium-performance resource, and non-

volatile memory as the slow resource. Each of these components support a different

performance range. However, the performance of memory subsystem can be adjusted

by varying the allocation of memory to an application in these three levels. As a

higher share of the VM resources are allocated in the faster component (e.g., moving

application data to on-chip memory from off-chip DRAM), its performance increases.

This is denoted as a ‘spill up’ operation as shown in Figure 35. Similarly, by spilling

down the application resources (e.g., ballooning out VM pages to persistent memory),

its performance can be dynamically adjusted. In this manner, it provides the abstrac-

tion of a scalable memory using spill operations over heterogeneous components.

Slower

Q
oS

 (
pe

rf
or

m
an

ce
)

Single Component Scaling

Spill up

Spill down

Heterogeneous Components

Q
oS

 (
pe

rf
or

m
an

ce
)

Multiple Component Scaling

Memory
scalingMedium Faster

Processor
scaling

Elasticity
Range

Figure 35: Using heterogeneity to enable resource scaling

Further, these scaling mechanisms can be applied to multiple platform resources

such as processor, memory, or storage components to provide an overall extended

elasticity range to the applications as shown in Figure 35. In this manner, their use for

the joint management of heterogeneous processors and memories, make it possible, for

79

instance, to use a slow processor with rapidly accessible memory for a data-intensive

code, while a CPU-intensive code with good cache behavior may be well-served with

slower memory components. The spill operations, however, may govern diversity in

these components. The processor scaling is achieved by appropriate scheduling of

vCPUs to heterogeneous cores and capping their usage of these cores to achieve a

target speed. Memory spill operations, on the other hand, are not as easily managed

as those for processors since a VM’s performance is sensitive to its memory access

patterns which are not directly visible to the hypervisor. The next section describes

various mechanisms that are incorporated into HeteroVisor to implement these scaling

mechanisms.

5.3 Design

Using heterogeneous platform resources, HeteroVisor provides fine-grained elasticity

for cloud platforms. To incorporate heterogeneity into the scaling methods, there are

several principles that we follow in our design.

• Adhering to the philosophy that cloud platforms should sell resources and not

performance, VMs should explicitly request resources from the cloud provider.

This design requiring application VMs to specify their resource requirements is

common to IaaS platforms where users select different types of VM instances.

• Typically special software support is required for managing heterogeneity. Di-

versity across vendors and rapidly changing hardware make it difficult for op-

erating systems to incorporate explicit mechanisms for managing these compo-

nents. Thus, the complexity of managing heterogeneous components should be

hidden from the users.

• The resource scaling interface should be generic and extensible to allow its use on

various platforms with different heterogeneous configurations. It should allow

80

scaling of resources in incremental ways and should be light-weight in nature

for frequent reconfiguration. It should also work with multiple resources.

Virtual
Machine
Monitor
(VMM)

Heterogeneous Platform

Power
Accounting

Performance
Monitoring

Management
Domain

vCPU

E-states

Small

Big core

 core
Small
 core

O
ff-

ch
ip

M

em
or

y

Guest
Domain

O
n

-c
h

ip
M

em
or

y

Big core

Elasticity
Driver

vCPU vCPU

Guest
Domain

Elasticity
Driver

Hetero-CPU
Scheduler

Hetero-Mem
Manager

Elastic Resource
Scaling Manager

HETERO
VISOR

QoS
Policy
Mgmt.

VM Weights

Figure 36: System architecture for HeteroVisor

Figure 36 shows the overall architecture of the system, including various components

and their interactions. The underlying platform consists of heterogeneous resources

such as CPU, memory and provides capabilities for performance and power moni-

toring. The platform is shared by multiple guest virtual machines where each VM

communicates with the hypervisor about its resource requirements through the elas-

ticity (E) state interface (detailed in Section 5.3.1). These E-states are controlled

by an E-state driver module, allowing the guest VM to communicate its changing

resource usage as state transitions. The hypervisor contains various heterogeneity-

aware resource managers such as CPU scheduler, memory manager, and a scaling

manager. The scaling manager is the higher-level resource allocator which takes into

81

account various E-state inputs from the VMs and policy constraints from the man-

agement domain to partition various resources across all the VMs, while CPU and

memory manager own the responsibility of enforcing these partitions as dictated by

the scaling manager and also managing them efficiently for each VM. Each of these

components are described in detail in the following sections.

5.3.1 Elasticity States

To enable fine-grained resource management, a VM should be allowed to express

its resource requirements. Inspired by the P-state (performance-state) interface [82]

defined by the ACPI standard and used by operating systems to request hardware

to control CPU voltage and frequency (DVFS), we propose E-state (elasticity-state)

abstraction shown in Figure 37. E-states are hints provides by a VM to the hypervisor

to guide its resource allocation which are controlled by a VM-specific E-state driver

(like CPU governor in the case of P-states).

Ve
rti

ca
l S

ca
lin

g
(V

)

Horizontal Scaling (H)

Emn

1U
CPU

M
em

or
y

Base

1U = 1 vCPU (H), 0.2 GHz (V)

1U
 =

 1
6M

 (H
),

10
0K

 (V
)

YU

NU

Ehv

1U

Base

XU

M
U

E00

St
or

ag
e

1U
 = 51

2M
 (H

), 6
4M

 (V
)

Figure 37: Elasticity state abstraction for resource scaling

E-state interface defines multiple states where each state (e.g., Ehv) corresponds

to a different resource configuration. E-states are arranged along two dimensions,

corresponding to horizontal and vertical scaling through a single E-state interface.

Horizontal scaling allows platform scaling, i.e., adding virtual resources to the ap-

plication using hot-plug based mechanisms and vertical scaling implies boosting the

82

performance of existing platform resources. It should be noted that both horizontal

and vertical scaling are scale up methods, separate from the scale out methods which

vary the number of VM instances. As in the case of P-states, a higher numbered

E-state (Emn) represents lower resource configuration, while a lower numbered E-

state (E00) implies high-performance mode. Further, these states are specific for each

scalable component such as processor, memory, and storage subsystems. A change in

the E-state implies a request to change the allocation of resources to that VM by a

certain number of resource units (U). For the CPU component, a horizontal E-state

operation changes the number of vCPUs, while the vertical scaling adjusts its speed

in units of CPU frequency. Similarly, for the memory subsystem, horizontal scaling is

achieved by changing its overall memory assignment while vertical scaling adjusts its

allocation in fast/slow memory (at page granularity). This work focuses on vertical

scaling dimension in the presence of heterogeneous resources.

5.3.2 Elasticity Manager

Heterogeneous resources consisting of components with different speeds can be used

to provide a virtual scalable resource. In this section, we describe in detail how this

can be achieved for heterogeneous cores, however, this notion can be extended to

other resources as well. Further, the formulation is presented for two different types

of cores which can be generalized to multiple levels as well.

Given a platform configuration with heterogeneous cores, the objective of the

elasticity manager is to provide homogeneous virtual cores with a desired speed,

different from the speed of the cores underneath. This can be achieved by appropriate

scheduling of the vCPUs on these heterogeneous cores and assigning a usage cap to

each vCPU, limiting its usage of the physical resources. For such scaling, all the

vCPUs are scheduled on slow cores initially with fast cores kept idle. As vCPUs are

scaled up, the slow core cap of the vCPUs is increased to meet the desired scaling

83

speed. When slow cores cycles are saturated, further scaling results in vCPUs being

scheduled to fast cores, providing higher scaled speeds than that are possible with

slow cores only.

0.0 0.5 1.0 1.5 2.0
Elastic Speed

0

200

400

600

800

Ag
gr

eg
at

e
Po

ol
 U

sa
ge Slow

Fast

(a) 6 vCPU VM

0.0 0.5 1.0 1.5 2.0
Elastic Speed

0

200

400

600

800

Ag
gr

eg
at

e
Po

ol
 U

sa
ge Slow

Fast

(b) 12 vCPU VM

Figure 38: Models for vCPU scaling using heterogeneity

The expressions for the corresponding usage caps of various cores for achieving a

given effective processing speed can be obtained by formulating it as a linear opti-

mization problem, solvable using standard solvers. Since the allocation problem needs

to be computed in kernel-space, instead of relying on external solvers, we obtain a

closed-form solution for a special case of two types of cores, slow (s) and fast (f), where

slow cores have lower ownership-cost than fast cores, i.e., prioritizing allocation to

slow cores before using fast cores. The formulation and derivation of the expressions

are presented in Appendix B. Figure 38 plots the resultant equations for a configu-

ration with 8 slow cores with 1x speed and 4 fast cores with 4x speed. The figure

shows the aggregate slow and fast pool usage for a VM (total percentage utilization

cap assigned collectively to all the vCPUs) as we vary the elastic core speed. Two

different VM configurations are plotted by varying the number of vCPUs in the VM

(vn) to 6 and 12.

In both the cases, slow pool usage first increases linearly as we increase the elastic

core speed (solid lines). Once slow cores are saturated at usage value 600 for 6

84

vCPUs and at 800 for 12 vCPUs (constrained by 8 physical slow cores), fast pool

usage gradually increases (dotted lines) to obtain the requested elastic scaling. For

example, a VM with 12 vCPUs at speed 1U exhibits 800% slow pool utilization (8

slow cores fully utilized) and 100% fast pool usage (1 fast core with speed 4x). We

also see jumps in the CPU usage with vn equal to 6 at speed 1 and 1.5 which happens

due to the shift of a slow pool vCPU to the fast pool.

In order to perform elastic scaling, vCPUs are partitioned into two pools, one

corresponding to the each type of core, i.e., slow and fast pool. Each vCPU executes

within a particular pool and load-balanced among other vCPUs belonging to that

pool as shown in Figure 39. Due to this partitioning of vCPUs in pools, there may

arise performance imbalance among vCPUs. To deal with this, a rotation is performed

periodically among pools to exchange a vCPU, thus, giving every vCPU a chance to

run on the fast cores, resulting into balanced performance. Such migrations have very

little cost if done infrequently and particularly if cores share a last-level cache.

vCPU
exchange

to minimize
imbalance

S1

D

F1

vCPUs

pCPUs
(S=slow, F=fast)

A C
A

B

Scale up
vCPUs

Fill up small cores to
minimize fast core usage

S2 S1 S2 S3

C

D

Load
Balancing

B
Slow
Pool

Fast
Pool

Figure 39: Virtual core scaling using heterogeneous cores

Extending the notion of elasticity to memory subsystem, the spill operations can

be performed by migrating pages between different memories. Thus, it provides

the interface of a performance-scalable memory over heterogeneous components by

85

changing a VM’s allocation in different memories, i.e., use of fast memory for high-

performance E-states and slow memory for slower E-states. Chapter 3 describes

management for heterogeneous memories involving fast die-stacked memory and slow

off-chip DRAMs. Since the die-stacked memory is small in capacity in comparison to

the off-chip DRAM, a subset of pages from application’s memory need to be chosen

to be placed in the stacked-DRAM. For this purpose, it is important to detect and

manage application’s ‘hot’ pages that are critical to its performance. Hot pages can be

detected using page-table access-bit history based mechanisms [61] and then actively

managed by moving them in and out of fast/slow memories. Such migrations require

remapping guest page tables which are hidden from the hypervisor. In order to do

this in a guest-transparent way, guest’s page tables can be mirrored in the hypervisor.

A detailed description of the mechanisms involved in these operations is beyond the

scope of this thesis.

5.3.3 Elasticity Driver

Elasticity drivers are the guest-specific component of the HeteroVisor stack, allowing

guest VM to guide resource allocation by triggering E-state transitions, in a manner

similar to the CPU governor which makes P-state (performance-state) changes in the

context of DVFS (dynamic voltage and frequency scaling) [82]. Various resource man-

agement policies can be implemented by using different implementations of the driver.

Thus, an application can choose a specific driver catered to its requirements. Vari-

ous solutions (e.g., RightScale [91]) are already available which implement resource

scaling controllers for various applications. The E-state driver is a step forward in

this direction, allowing fine-grained resource management. Traditional VMs with

static configurations are supported as well, though with a cost/performance penalty

of over/under-provisioning of resources. We have currently implemented a simple re-

active heuristic in the E-state driver, however, more sophisticated controllers can be

86

designed such as prediction based mechanisms [93] that model application behavior

to determine the resultant E-state changes.

Our driver implementation uses a combination of utility factor (util) and appli-

cation performance (qos) to form the E-state transition logic. The utility factor is

analogous to CPU/memory utilization, i.e., the percentage of resources (CPU usage

cap or fast memory pages) consumed by a VM against its assigned usage. Similarly,

QoS metrics such as response time or response rate can be obtained from the appli-

cation. Using these two metrics, E-state scaling operations are executed as shown in

Algorithm 3. E-state driver defines four thresholds: qoshi, qoslo, utilhi, and utillo. If

qos is lower than minimum required performance qoslo or utility factor is higher than

utilhi mark, E-state scale up operation is requested. Scale down logic requires qos to

be higher than qoshi and util to be lower than utillo thresholds.

Algorithm 3: Elasticity-driver scaling heuristic

Elast ← Ecur

if util > utilhi OR qos < qoslo then
Enext ← Ecur−1 ; // Scale up

else if util < utillo AND qos > qoshi then
Enext ← Ecur+1 ; // Scale down

else
Enext ← Ecur ; // No change

The intuition behind the scaling algorithm can be explained as follows. If the

application performance is lower than its SLA, a scale up operation is issued to

improve performance. Similarly, if the utility factor is too high which may cause

SLA violations, more processing capacity is requested again. On the other hand,

if application performance is higher than its desired SLA, a scale down operation

can be issued to reduce its resource usage. However, it additionally requires the

utility factor to be low so that the scale down operation does not lead to violations

after resources are scaled. In order to avoid oscillations due to transitory application

behavior, history counters are used to dampen switching frequency. A switch is

87

requested only after a fixed number of consecutive identical E-state change requests

are received. The history counter is a simple integer counter, which is incremented

whenever consecutive intervals generate the same requests and reset otherwise.

5.3.4 Discussion

There are few issues that should be mentioned regarding the limitations of our current

implementation.

The evaluation in this work considers only single-VM scenarios. The allocation

problem among competing VMs can be more challenging [108], requiring priority

management and handling over-subscription requests which may need mechanisms

for relinquishing resources owned by a VM. The problem becomes more complex

when considering multi-resource allocation scenarios [26] where different resources

affect the QoS for various applications in an application dependent manner. Similarly,

current E-state driver performs elastic scaling along only one resource axis at a time.

However, a real system can perform scaling across multiple resources simultaneously,

coordinating their usage to optimize application performance/cost. Earlier work can

be leveraged for coordinated scaling in such multi-resource grids [20].

Further, we currently consider systems having two levels of CPU heterogeneity

only but it can be generalized to more heterogeneous systems. Regarding memory het-

erogeneity, it may also need to account for NUMA systems along with heterogeneity,

i.e., moving pages from slow memory to local vs. remote fast memory. Mechanisms

to intelligently handle such cases are not described in this work.

5.4 Implementation

HeteroVisor is implemented by augmenting the Xen CPU scheduler [9] which uses

a credit-based scheduling mechanism to accomplish fair sharing of physical cores

among virtual CPUs. We extend the credit scheduler by adding two different types of

credits: slow and fast. Credits represent the resource right of a VM to execute on the

88

respective types of cores and are distributed periodically (30ms) to each running VM.

A vCPU owns one type of credits during one accounting period. As the VM executes,

its credits are decremented periodically (30ms) based upon the type of cores it uses.

A vCPU can execute as far as it has positive credits available. Once it has consumed

all the credits, it is made offline by putting it into a separate ‘parking queue’ until the

next allocation period. At this point, the credits are redistributed to each VM and its

vCPUs are made available for scheduling again. Further, a circular queue of vCPUs

is maintained to perform a vCPU rotation between slow and fast cores periodically

(10 scheduler ticks, i.e., at a frequency of 300ms). This granularity is found to be

sufficient for long-running server workloads, however, using a faster period is trivial

as well.

The E-state driver is implemented as a Linux kernel module which periodically

changes E-states by issuing a hypercall to the Xen. The E-state driver uses a QoS

interface in the form of a proc file to which the application periodically writes its QoS

metric. In addition, it reads the CPU utility factor from the hypervisor through a

hypercall interface. In our current implementation, a single E-state is assigned to each

individual VM which are shared by all the vCPUs belonging to that VM. However,

the implementation can easily be extended to per-vCPU E-states as well. The E-state

driver runs once every second, with a value of three for the history counter.

5.5 Evaluation

5.5.1 Experimental Setup

Our experimental platform consists of a dual-socket 12 core Intel Westmere server

with 12GB DDR3 memory. In order to experiment with real platform and workloads,

we emulate heterogeneity on this platform. Processor heterogeneity is emulated using

CPU throttling by writing to CPU MSRs which allows changing the duty cycle of

each core independently. For the purpose of experiments, a platform configuration

89

consisting of eight slow cores and four fast cores is considered where slow and fast

cores are distributed uniformly on each socket to minimize migration overheads. The

performance ratio between fast and slow cores is kept at 4x. Experiments are con-

ducted using a VM with 12 vCPUs, providing an elasticity range up to 2U. Having

an E-state step of 0.2U gives us 10 CPU E-states from E0 (2U) to E9 (0.2U) which

are exported by the E-state interface.

Table 10: Thresholds for QoS- and resource-driven scaling policies

qoshi utillo qoslo utilhi

ES-Q 1/5 40 1/10 90
ES-R 1/5 50 1/15 95

In our experiments, response time is chosen as the QoS metric (lower is better),

implying an inverse value of latency is used in the QoS thresholds for the driver. A

latency value of 10ms is chosen as the SLA corresponding to which two policies are

evaluated by using different thresholds for the scaling algorithm. The thresholds for

these policies are shown in Table 10 which are obtained after experimenting with

several different values. The first QoS-driven policy (ES-Q) is performance-sensitive

while the second resource-driven policy (ES-R) has higher affinity for lower speeds,

and thus, is driven by higher resource savings.

5.5.2 Workloads

Evaluation is carried out using the Apache web-server based application which services

a stream of incoming requests by executing a CPU-intensive computation kernel in

response to each request. A change in the input request rate causes a change in the

resources used by the server. In addition, several other benchmarks including SPEC

CPU2006 and SPECjbb are also included in the analysis.

In order to simulate variable resource usage behavior, workload profiles based

on data from Google cluster traces are used [40]. Specifically, Google cluster data

90

0 10 20 30 40 50 60 70
Time

0

50

100

150

200

N
o
rm

a
liz

e
d
 C

P
U

 L
o
a
d

J1 J2 J3 J4

Figure 40: Workload traces based on Google cluster data [40]

provides normalized CPU utilization of a set of jobs over several hours from one

of their production clusters. The dataset consists of four types of jobs from which

we obtain the average CPU load of each type of job, with resultant data shown in

Figure 40. As seen from the figure, workload J1 has constant high CPU usage while

J2 has varying behavior, with phases of high and low usage. In comparison, workload

J3 and J4 have uniform CPU usage, with J3 having significant idle component. These

traces are replayed by varying the input request rate in proportion to the CPU load,

with each data point maintained for 20 seconds. It is to be noted that the data

presented in the graphs is averaged across the entire cluster instead of retrieved from

a single server instance since the dataset does not provide the machine mapping, but

we believe that these jobs provide us a good mix to test different dynamic workload

scenarios present in server systems.

5.6 Results

The key objective of the evaluation is to analyze the performance and resource saving

gains attainable using fine-grained elastic scaling over static allocation schemes.

First, we evaluate the overhead associated with scaling operations in Figure 41(a)

that compares the performance of several SPEC CPU2006 benchmarks with composed

91

bzip2 gcc mcf milc
leslie

3d
namd lbm

astar0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 P

er
fo

rm
an

ce

Native Hetero

(a) SPECCPU

1W 2W 3W 4W 5W 6W
Warehouses

0

10

20

30

40

50

Op
er

at
io

ns
 (K

)

Native Hetero

(b) SPECJBB

Figure 41: Performance comparison of heterogeneous configurations with the native
platform

virtual platforms using heterogeneous cores (8S+4F) against standard homogeneous

configurations (12S). Both the configurations operate at an elastic core speed of 1U.

The data suggests that HeteroVisor provides comparable performance for all of the

benchmarks to that exhibited by the standard homogeneous platform, implying mini-

mal overhead associated with scaling operations. In order to evaluate multi-threaded

execution scenarios, Figure 41(b) shows the performance score for SPECjbb2005, a

Java multi-tier warehouse benchmark, at different configurations by increasing the

number of warehouses. As it can be seen from the results, performance results for

the both the cases closely follow each other with increasing threads, showing its ap-

plicability to multi-threaded applications as well.

We next conduct benchmarking experiments by observing response time and

throughput variation of the web-server in response to increasing request rate at differ-

ent elastic speeds. The corresponding results are shown in Figure 42 where different

curves correspond to elastic core speeds varying from E8 (0.4U) to E0 (2U) in incre-

ments of 0.4U. As evident from the figure, different core speeds behave similarly at

low load points. Further, each curve has a tipping point where throughput starts to

degrade and latency starts to rise quickly. This point corresponds to the maximum

92

20 40 60 80 100 120 140 160 180
Request rate

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut

E0 E2 E4 E6 E8

(a) Throughput

20 40 60 80 100 120 140 160 180
Request rate

0

100

200

300

400

500

La
te

nc
y

(m
s)

E0 E2 E4 E6 E8

(b) Latency

Figure 42: QoS variation with different E-states

service rate of the server while providing acceptable performance. Beyond this point,

a higher core speed provides higher throughput and lower latency. Thus, low speed

cores can be used at low request rates for saving resources, while high-speed cores are

needed to maintain performance when server load is high.

Next, E-state scaling mechanisms are evaluated by executing the web-server appli-

cation with increasing load and observing dynamic scaling of E-states (see Figure 43).

Specifically, Figure 43(a) and 43(b) show the response rate and response time for this

workload. As shown in the figure, the throughput rises gradually as the load is in-

creased. The corresponding latency curve is relatively flat as the E-state driver scales

E-states to maintain latency within SLA (10ms). We also notice few spikes in the

latency graph which happen due to increase in the input load. In response, E-state is

scaled up to bring it back down. The resultant E-state graph is shown in Figure 43(c)

where E-states are scaled from from E9 to E4 in multiple steps. Also shown is the

corresponding slow core and fast core usage in Figure 43(d). Initially, slow core load

is increased which get saturated at time 185s, at which point fast cores are used,

gradually increasing their usage.

Our next results evaluate the four workloads based on Google cluster traces shown

93

0 50 100 150 200 2500
20
40
60
80

100
120
140

(a) Response rate

0 50 100 150 200 2504
6
8

10
12
14
16
18

(b) Response time (ms)

0 50 100 150 200 250

E9
E8
E7
E6
E5
E4
E3

(c) E-state

0 50 100 150 200 2500

20

40

60

80

100 Slow
Fast

(d) Cap

Figure 43: Elastic scaling experiment using the webserver workload (x-axis = time
(s))

in Figure 40. The results in Figure 44 compare the QoS and resource usage for

the base configuration without any elastic scaling (NS-B) with HeteroVisor based

elastic scaling with the two policies ES-Q and ES-R given in Table 10. The base

platform configuration consists of 12 slow cores, each with an elastic speed of 1U.

The QoS score graph shows percentage of queries for which the service latency falls

within SLA (10ms). Similarly, resource usage graphs compare the relative usage of

various configurations where a linear relationship is assumed between E-states and

their resource usage.

As the results demonstrate, both the policies provide much higher QoS than the

base system for workload J1. Specifically, QoS-sensitive policy ES-Q results in 97%

QoS score, with 17% resource usage penalty, while the resource-driven policy ES-R

provides lower QoS (83%), with lower usage (0.96x). In comparison, the base platform

94

J1 J2 J3 J40.0

0.2

0.4

0.6

0.8

1.0

Qo
S

Sc
or

e

NS-B ES-Q ES-R

(a) QoS Score

J1 J2 J3 J40.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
so

ur
ce

 U
sa

ge

NS-B ES-Q ES-R

(b) Resource Usage

Figure 44: Experimental results for CPU E-state scaling

can only sustain 43% QoS. Thus, HeteroVisor can scale up platform resources to

provide better performance when system load is high. For workload J2, ES-Q exhibits

9% higher and ES-R results in 3% lower QoS, while also reducing the resource usage by

21% and 24% respectively. Thus, resources are scaled up and down to meet the desired

performance requirement. For J3 with low input load, HeteroVisor yields resource

savings while also maintaining QoS, i.e., it generates 100% and 91% QoS score with

42% and 61% lower resource usage for the two policies. In this manner, scaling down

resources during low load periods produces savings for these jobs. Finally, uniformly

behaving workload J4 also shows comparable performance with significant resource

savings across these configurations (∼40%). Thus, E-states enable dynamic scaling of

resources providing high-performance when required (as for J1) and resulting in cost

savings for low activity workloads like J3 and J4.

To illustrate the elastic scaling of resources further, Figure 45 shows the residency

distribution (%) in each E-state for each of the four jobs for CPU scaling experiments.

The states are color coded by their gray-scale intensity, meaning a high-performance

E-state is depicted by a darker color in comparison to a low-performing E-state.

The graphs in Figure 45(a) and 45(b) correspond to the ES-Q and ES-R policies.

95

J1 J2 J3 J40

20

40

60

80

100

Re
si

de
nc

y
(%

)

E9
E8

E7
E6

E5
E4

E3
E2

E1
E0

(a) QoS-driven (ES-Q)

J1 J2 J3 J40

20

40

60

80

100

R
e
si

d
e
n
cy

 (
%

)

E9

E8

E7

E6

E5

E4

E3

E2

E1

E0

(b) Resource-driven (ES-R)

Figure 45: E-state residencies for different scaling policies

As seen in the figure, different E-states dominate different workloads. J1 has large

shares of E-states E2, E4, and E5 due to its high activity profile. For low-CPU

J3 workload, slower state E7 is dominant under ES-Q policy while ES-R policy has

highest residency in the state E8. Similarly, J4 spends majority of its execution time

in state E7 and E5, while J2 has mixed usage of E8, E7, E6, and E5 states. Thus,

different workloads make use of different elasticity states. The corresponding E-state

switch profiles for the ES-Q policy are shown in Figure 46. For each workload, a

similarity can be observed between the load profile in Figure 40 and these E-state

changes. Both J1 and J4 stay in lower E-states initially and scale up when the demand

increases. J3 stays in a single E-state, while J2 has several E-state transitions due to

its variable load. Thus, HeteroVisor dynamically scales resources to match the input

load requirement.

In this manner, HeteroVisor exploits platform heterogeneity and enables dynamic

scaling of resources to meet desired application performance/cost trade-offs. As shown

by the experimental data, it not only better services load peaks in comparison to ho-

mogeneous platforms (upto 2.3x) but also provides savings (average 21%) scaling

down resources during idle periods. Also, E-state driver can be customized to meet

96

0 500 1000 1500 2000
E7
E6
E5
E4
E3
E2
E1

(a) J1

0 500 1000 1500 2000E8
E7
E6
E5
E4
E3

(b) J2

0 500 1000 1500 2000E8

E7

E6

(c) J3

0 500 1000 1500 2000E8

E7

E6

E5

E4

(d) J4

Figure 46: E-state switch profiles showing usage of various states (x-axis = time (s),
y-axis = E-states)

different user requirements, either meeting high QoS requirement using an aggressive

policy or reducing resource usage while maintaining performance by using a conser-

vative policy.

5.7 Related Work

5.7.1 Resource Management in Clouds

There has been substantial prior work on elastic resource scaling for server systems.

In comparison to cluster-level scaling solutions [3, 25, 43], HeteroVisor focuses on

platform-level scaling methods for fine-grained resource scaling. RaaS (resource-as-a-

service) computing paradigm argues in favor of fine-grained resource management for

future cloud platforms [1]. Similarly, Kaleidoscope also makes a case for fine-grained

elasticity in clouds and presents techniques based on VM cloning for achieving the

same [13]. The ideas presented by these studies motivate the need for fine-grained

resource management in clouds as explored in this work. Q-clouds described Q-state

97

abstraction to mitigate performance interference effects in shared virtualized plat-

forms [75]. Further, market based allocation methods for datacenter applications

have also been analyzed [31, 103]. These techniques can be incorporated into the de-

sign of elasticity drivers to generate interference-aware or revenue-aware resource bids.

AutoPilot, CloudScale, and VirtualPower proposed hypervisor-level mechanisms for

elastic scaling of cloud resources [76, 81, 93]. All of these techniques motivate the

need for adaptive resource usage for maximizing efficiency. However, none of these

address the presence of platform heterogeneity.

5.7.2 Heterogeneous Processor Scheduling

Heterogeneous multicore processors have been proposed to achieve higher energy-

efficiency than symmetric multicore processors [30, 55]. Earlier work has demon-

strated the need for compute heterogeneity in datacenters to efficiently support a

wide variety of applications [6, 10, 48, 59, 105] and shown its presence in commercial

cloud platforms like EC2 [79]. Several implementations of heterogeneous processor

architecture have been released by CPU vendors [18, 29, 78, 45]. In order to manage

these platforms, appropriate techniques have been developed to efficiently run appli-

cations on heterogeneous cores [32, 54, 64, 92]. Further, mechanisms to effectively

virtualize heterogeneous multicore platforms have also been investigated [52]. Hetero-

Visor adopts an alternative approach by hiding heterogeneity from the OS scheduler,

exposing a homogeneous scalable resource interface. Finally, several cloud schedulers

have also been proposed to incorporate heterogeneity [19, 74]. These cluster-level

techniques are complementary to HeteroVisor that works at the platform level.

5.8 Summary

In summary, this work presents HeteroVisor system for managing heterogeneous re-

sources in elastic cloud platforms, providing fine-grained scaling capabilities for appli-

cations. To manage heterogeneity, it provides the abstraction of elasticity (E) states

98

to the guest machine which an E-state driver could use to elastically request resources

on-demand. The proposed abstractions are applicable to multiple resources and levels

of heterogeneity. Demonstrating its application to the processor subsystem, various

techniques are presented to manage these heterogeneous resources in an elastic man-

ner. The HeteroVisor solution is implemented in the Xen hypervisor along with a

simple E-state driver for two scaling policies, QoS-driven and resource-driven. Eval-

uation is carried out using real-world traces on an emulated heterogeneous platform,

showing that HeteroVisor can provide VMs with the capabilities to quickly obtain

resource for handling load spikes or minimize cost during low load periods.

99

CHAPTER VI

CONCLUSIONS & FUTURE WORK

6.1 Conclusions

This dissertation investigates the use of heterogeneous platform resources to provide

fine-grain resource scaling capabilities on future systems. Using the abstraction of

‘resource states’, it decouples heterogeneity from the resource management operations

to provide both high performance and resource efficiency in a seamless manner. The

work described considers both mobile systems and cloud platforms, focusing on CPU

and memory subsystems. Specific contributions from the thesis include:

• A performance and energy analysis of modern client and server workloads on a

heterogeneous multicore platform.

• Impact of uncore subsystem on the energy-efficiency of heterogeneous cores.

• Mechanisms for software-controlled management of heterogeneous memory plat-

forms consisting of fast die-stacked memory and slow off-chip memory.

• HeteroMates solution for client devices to extend their dynamic range using

‘core groups’ abstraction

• HeteroVisor system to enhance the elastic resource scaling capabilities of cloud

platforms using heterogeneous components.

The proposed solutions and evaluations from this work lead to several conclu-

sions. First, heterogeneity is a viable approach to provide fine-grain and elastic scal-

ing for both client devices and cloud platforms. Using such mechanisms can lead

to higher performance-levels and resource-efficiency gains than that can be obtained

100

using homogeneous configurations. As demonstrated by HeteroMates and HeteroVi-

sor solutions, new system abstractions are required for smoother adoption of such

heterogeneous platforms into mainstream. Moreover, for such methods to be effec-

tive, scalability across various components needs to be explored and employed. A

non-scalable component like uncore can significantly affect the gains achievable from

other scalable components like core.

It should also be mentioned that this thesis evolved from the HeteroMates work on

mobile devices to the HeteroVisor solution for cloud systems. HeteroMates using the

H-state abstraction allows only grouping of CPU cores where a fraction of the cores

are always idle. On the other hand, HeteroVisor uses a more generalized abstraction

of E-states where all of the cores can be used simultaneously. HeteroMates approach

may be feasible for the client devices with small number of cores, but it is not practical

for server systems with large number of cores due to excessive cost implications. This

observation resulted into us exploring the HeteroVisor solution for server systems,

breaking the strict grouping of cores. However, the resultant solution need not be

limited to servers only as the approach can also be used for mobile devices, thus,

improving die utilization over the core groups abstraction used by HeteroMates. We

have not performed this evaluation as part of this thesis.

From the experiences during the course of this study, a fundamental question

regarding heterogeneity arises: whether it is worth the effort. In the author’s opin-

ion, the need for improved performance/efficiency with various technological limits

approaching [12, 22] and competition among various vendors to offer attractive new

features is likely to push in favor of heterogeneity. It is also likely that adoption

of heterogeneous platforms would be dependent on the application domain. For ex-

ample, authors have questioned the effectiveness of certain use cases of heteroge-

neous processors for datacenter applications [36, 37]. This dissertation particularly

focused on mobile devices and datacenter environments. However, another key area

101

related to high-performance computing (HPC) also remains interesting. Desire for

ever-increasing performance, along with strong emphasis on energy-efficiency makes

heterogeneity an attractive option for these systems.

The challenge with heterogeneity lies in managing these platforms which can be

done at various levels. At one extreme, it could be completely hidden from the soft-

ware as in the case of multiple levels of CPU caches. This approach may be suitable

for easier adoption of such platforms, but the need for performance/efficiency requires

software involvement. Another alternative would be to explore scenarios where hetero-

geneity is exposed and explicitly controlled by the user VMs/applications [33]. This

approach provides users more control over the desired allocations, however, requires

sophisticated software support. Thus, hiding heterogeneity within hardware can be

too restrictive while exposing them to applications can be too disruptive. Rather,

a balanced approach is required which gives enough control to the applications, but

does not overload them with complexity.

Orthogonal to the approach taken in this dissertation where underlying platform

has heterogeneous resources, architectural techniques exploring mechanisms for a sin-

gle scalable component which can morph into different types of resources such as a

highly parallel processor vs. a high speed serial execution unit also look quite promis-

ing [46, 53, 71]. Software mechanisms proposed in this thesis become highly relevant

for such platforms where exposing heterogeneity is not an option. Another aspect

of heterogeneity that was not explored as part of this thesis is concerning functional

heterogeneity where various cores differ in their instruction sets as well, having either

shared ISA [90] or disjoint ISA as in the case of accelerators [17, 34, 101]. Though

more challenging in terms of management due to their incompatible functionality, the

level of performance/efficiency provided by these specialized systems makes them the

way to go forward.

102

6.2 Future Work

There are several directions that become open from the work in this dissertation.

First, the elasticity-state concept presented in this dissertation is applicable to

multiple resources, namely processor, memory, and storage. This thesis presented de-

tailed implementation and evaluation for the processor subsystem. Thus, investigat-

ing challenges associated with other components would be an area of research which

has many open questions. For example, managing heterogeneous memory resources

involves efficient page migration mechanisms which needs further investigation [61].

Another related issue is scaling in the presence of multi-level heterogeneity involv-

ing a hierarchy of heterogeneous resources. For instance, managing stacked memory,

off-chip DRAM, and NVRAM together using both hot page migrations and balloon-

ing. Further, it is unclear how these mechanisms can be extended to incorporate

functionally heterogeneous components. A possibility would be to assign a state to

each accelerator and manage them implicitly using fault-and-migrate technique [90].

Such inclusion would make these abstractions even more generic. In addition, efficient

horizontal scaling of platform resources requires more research [98]. First, new OS

mechanisms are required to make such mechanisms efficient as existing mechanisms

are not suitable for frequent reconfiguration [83]. Further, such scaling mechanisms

may not be transparent to the user and thus require additional runtime support.

For example, adding a virtual CPU to a VM may currently require restarting the

application with a different number of threads to match the underlying platform con-

figuration. Solutions like Elastin [77] are a step in this direction, but these frameworks

target specific application domains. More work is required for such mechanisms to

become mainline.

With the introduction of fine-grain resource scaling mechanisms on cloud plat-

forms, a whole new area becomes open concerning the design of policies for requesting

103

and allocating resources in the presence of multiple competing users. For the applica-

tions, controllers should be designed to bid for resources taking into account desired

QoS and budget constraints. The controllers described in this thesis are reactive which

may lead to performance violations or can be slow to reach a stable state. So further

work exploring predictive controllers such as AutoScale, CloudScale, etc. [80, 81, 93]

can improve such methods. Similarly, the host system should perform QoS-aware dis-

tribution of constrained platform resources across VMs, trying to maximize its gain.

Market-based allocation mechanisms based on game theory become relevant in this

context [31]. The problem becomes more complex when considering multi-resource

allocation scenarios, along with heterogeneity, where different resources affect QoS for

various applications in an application dependent manner [26]. Further, cluster-level

scheduler mechanisms need to be integrated into platform-level scaling mechanisms

for QoS-aware placement and migration of virtual machines [15, 43].

Finally, detailed analysis is required to determine what constitutes an ideal het-

erogeneous platform, i.e., the characteristics of various components and the size of

each of them to be included on the platform. The analysis should include the cost

of each component, the performance/power properties of them, the nature of appli-

cations for the target domain, the willingness of customers to buy such systems and

corresponding gains. In addition, heterogeneity can be incorporated at different levels

such as socket-, platform-, or cluster-level in the case of processors. Each level pro-

vides different level of flexibility and complexity, thus, determining the appropriate

level of heterogeneity needs further investigation. For the architecture researchers,

it would also be an interesting venue of research to look into the design of scalable

uncore, analyzing which components can be scaled and what the associated perfor-

mance overheads would be. Also, novel uncore-aware scheduling algorithms need to

be devised such as delayed execution to coordinate core idle states, thus, maximizing

104

uncore sleep time and energy savings. Another related issue is the challenge of man-

aging heterogeneous resources while taking user-perceived performance into account.

A solution to deal with this problem would be to maintain a history of previous

allocations and corresponding performance metrics, and thus, scaling resources for

different applications to meet the desired performance levels [100].

Overall, heterogeneity is still an evolving space, with several innovations likely

to appear in future platforms. A hardware/software co-designed approach is key in

making them a favorable element in the computing eco-system.

105

APPENDIX A

CLIENT WORKLOAD SUITE

A.1 Browser

Web-browsing is the most common usage of mobile devices. Users perform various

tasks using their browsers. We pick multiple applications under this category to

evaluate different use cases.

• browse: This workload fetches a set of popular web pages from a web server

and renders them in the browser. Performance metric is the average load time

of a page which it measures by inserting JavaScript commands into the pages.

The onload event is used to know when the browser finishes loading the page.

• javascript: This workload is based on the sunspider benchmark which performs

various standard javascript tests including math, string, crypto operations etc.

• palbum: A photo-album application that flips through a set of photographs in

the browser using Javascript. Performance metric is defined as the average load

time for a photograph.

Web-based workloads are executed with a client-server setup, i.e., browser and a web-

server running on two different systems. The client machine is the machine-under-test

with a heterogeneous CPU configuration where we focus on the browser performance.

A second machine acts as the web-server serving the requests from the client machine.

A.2 Gaming

Gaming is another popular usage of mobile devices. Two games are included under

this component which are representative of the games played in low-power devices.

106

• chess: GNU Chess game is used to evaluate 2D gaming scenario. Various moves

from a previously played game session are stored in a file and loaded into the

game at start up. The benchmarking part replays these moves automatically

by sending key strokes using xautomation utility.

• strike: A benchmarking demo of a shooting game is played for 30s to evaluate

this usage scenario. The demo simulates a scrolling shooter similar to the Raiden

arcade game and displays the achieved frame-rate at the end of demo.

A.3 Multimedia

Multimedia is an integral component of end-user devices where users perform a variety

of operations ranging from media consumption, creation, and editing. Several use-

case scenarios involving images and videos are included in this component.

• animate: Picture animation is used to animate a pre-defined sequence of im-

ages. Picture animation is a command-line executable, which is part of the

ImageMagick software package.

• convert: Convert command-line utility from the ImageMagick program is used

to resize a set of 100 images in batch mode.

• mencoder: A media file is encoded from H.264 format to AVI format with

MPEG4 codec using mencoder utility in command-line mode.

• mplayer: To evaluate video-playback performance, mplayer plays an HD clip of

the popular Elephant’s Dream movie for a total of 1000 frames in noframedrop

mode and measures the achieved frame rate.

A.4 Productivity

Productivity applications are also increasingly used on various smart mobile devices.

This benchmark is adopted from TMAPP suite [47] and assesses various functions of

OpenOffice applications using Office macro scripts for automation.

107

• calc: The Calc module consists of starting the application, opening a Calc

document with tables and graphs, calculating various data points in multiple

tables and automatically creating graphs in the document, saving it, and closing

the document and the application.

• impress: The Impress module consists of starting the application, opening a

presentation document with animation, modifying it and saving it, showing a

slideshow from first to last page and closing the document and application.

• writer: The Writer module consists of launching the application, opening a

document, saving after modifying it, scrolling through from top to bottom, and

closing the document and the application.

A.5 Utility

Several utilities are also included in the analysis to evaluate the performance of various

operations performed on client devices.

• 7zip: A parallelized version of popular 7zip application is used to compress a

text file (20MB chunk from Wikipedia text) using LZMA compression.

• diskscan: To evaluate the behavior of I/O intensive applications, this workload

simulates disk I/O operations common in reading/compiling kernel trees.

• gtkperf: This benchmark evaluates the performance of various GUI elements

such as text box, progress bar, buttons, etc. and measures average latency.

• pguard: GNU Privay Guard app is used to encrypt a large file (512MB) using

a given passphrase

• sqlite: This lightweight database application is used in mobile applications for

storing useful information (e.g., cookies in browser). This workload performs a

series of mysql operations.

• wget: To evaluate download performance, wget utility is used to download a

large media file from the web-server.

108

APPENDIX B

VIRTUAL CORE SCALING MODELS

The expressions for the corresponding usage of various cores for achieving a given

effective processing speed can be obtained as follows. Consider a heterogeneous CPU

configuration consisting of H types of cores with ni cores of type i and processing

speed pi. To compose vn virtual cores with speed pv, various types of cores can

be utilized partially. It is assumed that sufficient cores are available to meet the

processing requirement. Let us denote the number of virtual cores that belong to

the pool of core type i as vi and the fraction of that core assigned to the virtual

core as ui. Thus, the total processing capacity of the virtual cores should match

the processing speed of the physical cores as shown in Equation 15, subjected to the

constraints in Equation 16. If each core type has a corresponding cost (infrastructure

and operational) given by the function tco(i), an objective function for minimizing the

TCO can be expressed as in Equation 17. This formulation is a linear optimization

problem which can be solved using standard solvers.

H∑
i=1

vi ∗ ui ∗ pi = vn ∗ pv (15)

∑
i

vi = vn 0 ≤ ui ≤ 1 0 ≤ vi ∗ ui ≤ ni (i : 1→ H) (16)

minimize

(
H∑

i=1

vi ∗ ui ∗ tco(i)

)
(17)

Since the allocation problem needs to be computed in the kernel-space, and thus,

should be fast, instead of relying on external solvers, we obtain a closed-form solution

for a special case of two types of cores, slow (s) and fast (f), where slow cores have

lower TCO than faster cores. Since abundant slow cores are utilized first, using scarce

109

fast resources only when necessary, if the total required processing capacity (vn ∗ pv)

is smaller than that of all the slow cores (ns ∗ ps), only slow cores are used, i.e., both

vf and uf become zero. Thus, nthe umber of slow cores vs becomes equal to vn, with

us calculated as shown below.

us =
vn ∗ pv

vs ∗ ps

(18)

If, however, both types of cores should be utilized for higher core speeds, a fraction

of the virtual cores are run on the slow pool, while the remaining are run on the fast

pool. Using Equation 15, fast core utilization uf can be expressed in the form of

Equation 19. Since core usage can not be greater than 1, solving this equation for

vf gives us Equation 20. vf is thus chosen to be the smallest integer satisfying this

condition to minimize fast core usage.

uf =
vn ∗ (pv − ps ∗ us) + vf ∗ ps ∗ us

vf ∗ pf

(19)

vf ≥
vn(pv − ps ∗ us)

pf − ps ∗ us

(20)

It further leads into two cases: first when the number of virtual cores is smaller

than the number of slow cores (vn < ns) and second when they are larger in number.

Since slow cores are used fully to minimize fast core usage, when there are enough

physical cores available for all the virtual cores, us becomes 1 for the first scenario.

On the other hand, slow core resources are shared by all the virtual cores belonging

to the slow core pool in the second case, implying us is set equal to the ratio of ns

and vs.

Substituting and solving these equations bring us to the complete results in Equa-

tion 21 which shows the slow and fast core usage for various scenarios. Using this

equation along with Equations 15 and 16, all the required variables (vs, us, vf , uf) can

be obtained.

110

{us, uf} =



pv

ps
, 0 if pv ≤ min(1, ns∗ps

vn
),

1,
vn∗pv−(vn−vf)∗ps

vf∗pf

∣∣∣ vf = dvn(pv−ps)
pf−ps

e else if ns

vn
≥ 1,

ns

vn−vf
, vn∗pv−ns∗ps

vf∗pf

∣∣∣ vf = dvn∗pv−ns∗ps

pf
e otherwise

(21)

The maximum core speed is determined by maximizing the fast core usage and

using slow cores for the remaining capacity as given below.

vmax
p =

min(nf , vn) ∗ pf + (vn −min(nf , vn)) ∗ ps

vn

(22)

Using this maximum speed, formulation can be extended to multi-level heteroge-

neous cores by using two levels of cores upto this maximum speed and moving a level

higher in the heterogeneity for larger speeds.

111

REFERENCES

[1] Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., and Tsafrir,
D., “The resource-as-a-service (RaaS) cloud,” in Proceedings of the 4th USENIX
conference on Hot Topics in Cloud Ccomputing, HotCloud’12, (Berkeley, CA,
USA), pp. 12–12, USENIX Association, 2012.

[2] Ahmad, F., Chakradhar, S. T., Raghunathan, A., and Vijaykumar,
T. N., “Tarazu: optimizing MapReduce on heterogeneous clusters,” in Proceed-
ings of the seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVII, (New York,
NY, USA), pp. 61–74, ACM, 2012.

[3] Amazon.com, “Amazon EC2 Auto Scaling.” http://aws.amazon.com/

autoscaling/. [Online].

[4] Amazon.com, “Amazon EC2 Pricing.” http://aws.amazon.com/ec2/

pricing/. [Online].

[5] Amazon.com, “Amazon Elastic Compute Cloud (EC2).” http://aws.

amazon.com/ec2/. [Online].

[6] Andersen, D. G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan,
L., and Vasudevan, V., “FAWN: a fast array of wimpy nodes,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP
’09, (New York, NY, USA), pp. 1–14, ACM, 2009.

[7] Apparao, P., Iyer, R., and Newell, D., “Implications of cache asymme-
try on server consolidation performance,” in Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, pp. 24–32, 2008.

[8] Balakrishnan, S., Rajwar, R., Upton, M., and Lai, K., “The impact of
performance asymmetry in emerging multicore architectures,” in Proceedings of
the 32nd annual international symposium on Computer Architecture, ISCA ’05,
(Washington, DC, USA), pp. 506–517, IEEE Computer Society, 2005.

[9] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A., Neugebauer, R., Pratt, I., and Warfield, A., “Xen and the art of
virtualization,” in Proceedings of the nineteenth ACM symposium on Operating
systems principles, SOSP ’03, (New York, NY, USA), pp. 164–177, ACM, 2003.

[10] Barroso, L. A., “Brawny cores still beat wimpy cores, most of the time,”
Micro, IEEE, vol. 30, pp. 20 –24, july-aug. 2010.

112

http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

[11] Bienia, C., Kumar, S., Singh, J. P., and Li, K., “The PARSEC bench-
mark suite: characterization and architectural implications,” in Proceedings
of the 17th international conference on Parallel architectures and compilation
techniques, PACT ’08, (New York, NY, USA), pp. 72–81, ACM, 2008.

[12] Borkar, S. and Chien, A. A., “The future of microprocessors,” Commun.
ACM, vol. 54, pp. 67–77, May 2011.

[13] Bryant, R., Tumanov, A., Irzak, O., Scannell, A., Joshi, K.,
Hiltunen, M., Lagar-Cavilla, A., and de Lara, E., “Kaleidoscope: cloud
micro-elasticity via VM state coloring,” in Proceedings of the sixth conference
on Computer systems, EuroSys ’11, (New York, NY, USA), pp. 273–286, ACM,
2011.

[14] Cao, T., Blackburn, S. M., Gao, T., and McKinley, K. S., “The yin
and yang of power and performance for asymmetric hardware and managed soft-
ware,” in Proceedings of the 39th Annual International Symposium on Computer
Architecture, ISCA ’12, (Washington, DC, USA), pp. 225–236, IEEE Computer
Society, 2012.

[15] Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., and Zhao, F.,
“Energy-aware server provisioning and load dispatching for connection-intensive
internet services,” in Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, NSDI’08, (Berkeley, CA, USA), pp. 337–
350, USENIX Association, 2008.

[16] Chitlur, N., Srinivasa, G., Hahn, S., Gupta, P. K., Reddy, D., Ko-
ufaty, D., Brett, P., Prabhakaran, A., Zhao, L., Ijih, N., Sub-
haschandra, S., Grover, S., Jiang, X., and Iyer, R., “QuickIA: Explor-
ing heterogeneous architectures on real prototypes,” in Proceedings of the 2012
IEEE 18th International Symposium on High-Performance Computer Architec-
ture, HPCA ’12, (Washington, DC, USA), pp. 1–8, IEEE Computer Society,
2012.

[17] Chung, E. S., Milder, P. A., Hoe, J. C., and Mai, K., “Single-chip hetero-
geneous computing: Does the future include custom logic, FPGAs, and GPG-
PUs?,” in Proceedings of the 2010 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO ’43, (Washington, DC, USA), pp. 225–
236, IEEE Computer Society, 2010.

[18] Cole, B., “Samsung reveals big-little 8-core ARM for mo-
biles.” http://www.embedded.com/electronics-news/4404964/

Samsung-reveals-big-little-8-core-ARM-for-mobiles, 2013. [Online].

[19] Delimitrou, C. and Kozyrakis, C., “Paragon: QoS-aware scheduling for
heterogeneous datacenters,” in Proceedings of the eighteenth international con-
ference on Architectural support for programming languages and operating sys-
tems, ASPLOS ’13, (New York, NY, USA), pp. 77–88, ACM, 2013.

113

http://www.embedded.com/electronics-news/4404964/Samsung-reveals-big-little-8-core-ARM-for-mobiles
http://www.embedded.com/electronics-news/4404964/Samsung-reveals-big-little-8-core-ARM-for-mobiles

[20] Deng, Q., Meisner, D., Bhattacharjee, A., Wenisch, T. F., and
Bianchini, R., “CoScale: Coordinating CPU and memory system DVFS in
server systems,” in Proceedings of the 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’12, (Washington, DC, USA),
pp. 143–154, IEEE Computer Society, 2012.

[21] Dong, X., Xie, Y., Muralimanohar, N., and Jouppi, N. P., “Simple but
effective heterogeneous main memory with on-chip memory controller support,”
in Proceedings of the 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’10, (Washington,
DC, USA), pp. 1–11, IEEE Computer Society, 2010.

[22] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and
Burger, D., “Dark silicon and the end of multicore scaling,” in Proceeding of
the 38th annual international symposium on Computer architecture, ISCA ’11,
(New York, NY, USA), pp. 365–376, ACM, 2011.

[23] Fedorova, A., Saez, J. C., Shelepov, D., and Prieto, M., “Maximizing
power efficiency with asymmetric multicore systems,” Commun. ACM, vol. 52,
pp. 48–57, Dec. 2009.

[24] Galante, G. and Bona, L. C. E. d., “A survey on cloud computing elastic-
ity,” in Proceedings of the 2012 IEEE/ACM Fifth International Conference on
Utility and Cloud Computing, UCC ’12, (Washington, DC, USA), pp. 263–270,
IEEE Computer Society, 2012.

[25] Gandhi, A., Zhu, T., Harchol-Balter, M., and Kozuch, M. A.,
“SOFTScale: stealing opportunistically for transient scaling,” in Proceedings
of the 13th International Middleware Conference, Middleware ’12, (New York,
NY, USA), pp. 142–163, Springer-Verlag New York, Inc., 2012.

[26] Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S.,
and Stoica, I., “Dominant resource fairness: fair allocation of multiple re-
source types,” in Proceedings of the 8th USENIX conference on Networked sys-
tems design and implementation, NSDI’11, (Berkeley, CA, USA), pp. 24–24,
USENIX Association, 2011.

[27] Goel, B., McKee, S. A., Gioiosa, R., Singh, K., Bhadauria, M., and
Cesati, M., “Portable, scalable, per-core power estimation for intelligent re-
source management,” in Proceedings of the International Conference on Green
Computing, GREENCOMP ’10, (Washington, DC, USA), pp. 135–146, IEEE
Computer Society, 2010.

[28] Google, “Google Compute Engine.” https://cloud.google.com/products/
compute-engine/. [Online].

[29] Greenhalgh, P., “Big.LITTLE Processing with ARM CortexTM-A15 &
Cortex-A7.” White paper, ARM, Sept 2011.

114

https://cloud.google.com/products/compute-engine/
https://cloud.google.com/products/compute-engine/

[30] Grochowski, E., Ronen, R., Shen, J., and Wang, H., “Best of both
latency and throughput,” in Proceedings of the IEEE International Conference
on Computer Design, ICCD ’04, (Washington, DC, USA), pp. 236–243, IEEE
Computer Society, 2004.

[31] Guevara, M., Lubin, B., and Lee, B. C., “Navigating heterogeneous pro-
cessors with market mechanisms,” in High Performance Computer Architecture
(HPCA2013), 2013 IEEE 19th International Symposium on, pp. 95–106, 2013.

[32] Gupta, V., Brett, P., Koufaty, D., Reddy, D., Hahn, S., Schwan,
K., and Srinivasa, G., “HeteroMates: Providing high dynamic power range
on client devices using heterogeneous core groups,” in Green Computing Con-
ference (IGCC), 2012 International, pp. 1 –10, june 2012.

[33] Gupta, V., Knauerhase, R., Brett, P., and Schwan, K., “Kinship: effi-
cient resource management for performance and functionally asymmetric plat-
forms,” in Proceedings of the ACM International Conference on Computing
Frontiers, CF ’13, (New York, NY, USA), pp. 16:1–16:10, ACM, 2013.

[34] Gupta, V., Schwan, K., Tolia, N., Talwar, V., and Ranganathan, P.,
“Pegasus: coordinated scheduling for virtualized accelerator-based systems,” in
Proceedings of the 2011 USENIX conference on USENIX annual technical con-
ference, USENIXATC’11, (Berkeley, CA, USA), pp. 3–3, USENIX Association,
2011.

[35] Gupta, V., Brett, P., Koufaty, D., Reddy, D., Hahn, S., Schwan,
K., and Srinivasa, G., “The forgotten ‘uncore’: on the energy-efficiency of
heterogeneous cores,” in Proceedings of the 2012 USENIX conference on An-
nual Technical Conference, USENIX ATC’12, (Berkeley, CA, USA), pp. 34–34,
USENIX Association, 2012.

[36] Gupta, V. and Nathuji, R., “Analyzing performance asymmetric multicore
processors for latency sensitive datacenter applications,” in Proceedings of the
2010 international conference on Power aware computing and systems, Hot-
Power’10, (Berkeley, CA, USA), pp. 1–8, USENIX Association, 2010.

[37] Gupta, V., Nathuji, R., and Schwan, K., “An analysis of power reduc-
tion in datacenters using heterogeneous chip multiprocessors,” SIGMETRICS
Perform. Eval. Rev., vol. 39, no. 3, pp. 87–91, 2011.

[38] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge,
T., and Brown, R. B., “MiBench: A free, commercially representative embed-
ded benchmark suite,” in Proceedings of the Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop, WWC ’01, (Washington, DC,
USA), pp. 3–14, IEEE Computer Society, 2001.

[39] Gutierrez, A., Dreslinski, R. G., Wenisch, T. F., Mudge, T., Saidi,
A., Emmons, C., and Paver, N., “Full-system analysis and characterization

115

of interactive smartphone applications,” in Proceedings of the 2011 IEEE Inter-
national Symposium on Workload Characterization, IISWC ’11, (Washington,
DC, USA), pp. 81–90, IEEE Computer Society, 2011.

[40] Hellerstein, J. L., “Google cluster data.” Google research blog,
Jan. 2010. Posted at http://googleresearch.blogspot.com/2010/01/

google-cluster-data.html.

[41] Henning, J. L., “SPEC CPU2006 benchmark descriptions,” SIGARCH Com-
put. Archit. News, vol. 34, pp. 1–17, Sept. 2006.

[42] Hill, M. D. and Marty, M. R., “Amdahl’s law in the multicore era,” Com-
puter, vol. 41, pp. 33–38, July 2008.

[43] Hong, Y.-J., Xue, J., and Thottethodi, M., “Dynamic server provisioning
to minimize cost in an IaaS cloud,” in Proceedings of the ACM SIGMETRICS
joint international conference on Measurement and modeling of computer sys-
tems, SIGMETRICS ’11, (New York, NY, USA), pp. 147–148, ACM, 2011.

[44] Hruby, T., Bos, H., and Tanenbaum, A. S., “When slower is faster: On het-
erogeneous multicores for reliable systems,” in Proceedings of the 2013 USENIX
conference on Annual Technical Conference, USENIX ATC’13, (Berkeley, CA,
USA), USENIX Association, 2013.

[45] Intel, “Intel Xeon Phi Coprocessor - the Archi-
tecture.” http://software.intel.com/en-us/articles/

intel-xeon-phi-coprocessor-codename-knights-corner, 2013. [On-
line].

[46] Ipek, E., Kirman, M., Kirman, N., and Martinez, J. F., “Core fusion:
accommodating software diversity in chip multiprocessors,” in Proceedings of
the 34th annual international symposium on Computer architecture, ISCA ’07,
(New York, NY, USA), pp. 186–197, ACM, 2007.

[47] Issa, J. and Figueira, S., “Performance and power-consumption analysis of
mobile internet devices,” in Proceedings of the 30th IEEE International Perfor-
mance Computing and Communications Conference, PCCC ’11, (Washington,
DC, USA), pp. 1–6, IEEE Computer Society, 2011.

[48] Janapa Reddi, V., Lee, B. C., Chilimbi, T., and Vaid, K., “Web search
using mobile cores: quantifying and mitigating the price of efficiency,” in Pro-
ceedings of the 37th annual international symposium on Computer architecture,
ISCA ’10, (New York, NY, USA), pp. 314–325, ACM, 2010.

[49] Jiang, X., Madan, N., Zhao, L., Upton, M., Iyer, R., Makineni, S.,
Newell, D., Solihin, D., and Balasubramonian, R., “CHOP: Adaptive
filter-based DRAM caching for CMP server platforms,” in High Performance
Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on,
pp. 1–12, 2010.

116

http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

[50] Jiang, X., Mishra, A., Zhao, L., Iyer, R., Fang, Z., Srinivasan, S.,
Makineni, S., Brett, P., and Das, C. R., “ACCESS: Smart scheduling for
asymmetric cache CMPs,” in Proceedings of the 2011 IEEE 17th International
Symposium on High Performance Computer Architecture, HPCA ’11, (Wash-
ington, DC, USA), pp. 527–538, IEEE Computer Society, 2011.

[51] Jones, S. T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H.,
“Geiger: monitoring the buffer cache in a virtual machine environment,” in
Proceedings of the 12th international conference on Architectural support for
programming languages and operating systems, ASPLOS XII, (New York, NY,
USA), pp. 14–24, ACM, 2006.

[52] Kazempour, V., Kamali, A., and Fedorova, A., “AASH: an asymmetry-
aware scheduler for hypervisors,” in Proceedings of the 6th ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environments,
VEE ’10, (New York, NY, USA), pp. 85–96, ACM, 2010.

[53] Khubaib, Suleman, M. A., Hashemi, M., Wilkerson, C., and Patt,
Y. N., “MorphCore: An energy-efficient microarchitecture for high perfor-
mance ILP and high throughput TLP,” in Proceedings of the 2012 45th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO ’12,
(Washington, DC, USA), pp. 305–316, IEEE Computer Society, 2012.

[54] Koufaty, D., Reddy, D., and Hahn, S., “Bias scheduling in heterogeneous
multi-core architectures,” in Proceedings of the 5th European conference on
Computer systems, EuroSys ’10, (New York, NY, USA), pp. 125–138, ACM,
2010.

[55] Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P., and
Tullsen, D. M., “Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction,” in Proceedings of the 36th an-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO 36,
(Washington, DC, USA), pp. 81—-, IEEE Computer Society, 2003.

[56] Kumar, R., Tullsen, D. M., Ranganathan, P., Jouppi, N. P., and
Farkas, K. I., “Single-ISA heterogeneous multi-core architectures for mul-
tithreaded workload performance,” in Proceedings of the 31st annual inter-
national symposium on Computer architecture, ISCA ’04, (Washington, DC,
USA), pp. 64—-, IEEE Computer Society, 2004.

[57] Kwon, Y., Kim, C., Maeng, S., and Huh, J., “Virtualizing performance
asymmetric multi-core systems,” in Proceedings of the 38th annual international
symposium on Computer architecture, ISCA ’11, (New York, NY, USA), pp. 45–
56, ACM, 2011.

117

[58] Lakshminarayana, N. B., Lee, J., and Kim, H., “Age based scheduling for
asymmetric multiprocessors,” in Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC ’09, (New York, NY,
USA), pp. 25:1—-25:12, ACM, 2009.

[59] Lang, W., Patel, J. M., and Shankar, S., “Wimpy node clusters: what
about non-wimpy workloads?,” in Proceedings of the Sixth International Work-
shop on Data Management on New Hardware, DaMoN ’10, (New York, NY,
USA), pp. 47–55, ACM, 2010.

[60] Lee, C., Kim, E., and Kim, H., “The AM-Bench: An Android multimedia
benchmark suite,” Tech. Rep. GIT-CERCS-12-04, Georgia Institute of Tech-
nology, 2012.

[61] Lee, M., Gupta, V., and Schwan, K., “Software-controlled transparent
management of heterogeneous memory resources in virtualized systems,” in
Proceedings of the 2013 ACM SIGPLAN Workshop on Memory Systems Per-
formance and Correctness, MSPC ’13, (New York, NY, USA), ACM, 2013.

[62] Lee, M. and Schwan, K., “Region scheduling: efficiently using the cache
architectures via page-level affinity,” in Proceedings of the seventeenth inter-
national conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’12, (New York, NY, USA), pp. 451–462, ACM,
2012.

[63] Li, T., Baumberger, D., Koufaty, D. A., and Hahn, S., “Efficient oper-
ating system scheduling for performance-asymmetric multi-core architectures,”
in Proceedings of the 2007 ACM/IEEE conference on Supercomputing, SC ’07,
(New York, NY, USA), pp. 53:1—-53:11, ACM, 2007.

[64] Li, T., Brett, P., Knauerhase, R., Koufaty, D., Reddy, D., and Hahn,
S., “Operating system support for overlapping-ISA heterogeneous multi-core ar-
chitectures,” in High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, pp. 1–12, 2010.

[65] Lim, K., Turner, Y., Santos, J. R., AuYoung, A., Chang, J., Ran-
ganathan, P., and Wenisch, T. F., “System-level implications of disaggre-
gated memory,” in Proceedings of the 2012 IEEE 18th International Sympo-
sium on High-Performance Computer Architecture, HPCA ’12, (Washington,
DC, USA), pp. 1–12, IEEE Computer Society, 2012.

[66] Lin, F. X., Wang, Z., LiKamWa, R., and Zhong, L., “Reflex: using low-
power processors in smartphones without knowing them,” in Proceedings of
the seventeenth international conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XVII, (New York, NY, USA),
pp. 13–24, ACM, 2012.

118

[67] Loh, G. H., “3D-stacked memory architectures for multi-core processors,” in
Proceedings of the 35th Annual International Symposium on Computer Architec-
ture, ISCA ’08, (Washington, DC, USA), pp. 453–464, IEEE Computer Society,
2008.

[68] Loh, G. H., “The cost of uncore in throughput-oriented many-core proces-
sors,” in In Proc. of Workshop on Architectures and Languages for Throughput
Applications (ALTA), 2008.

[69] Loh, G. H., Jayasena, N., McGrath, K., O’Connor, M., Reinhardt,
S., and Chung, J., “Challenges in heterogeneous die-stacked and off-chip mem-
ory systems,” in In Proc. of 3rd Workshop on SoCs, Heterogeneity, and Work-
loads (SHAW), (New Orleans, LA, USA), Feb 2012.

[70] Lu, P. and Shen, K., “Virtual machine memory access tracing with hypervisor
exclusive cache,” in 2007 USENIX Annual Technical Conference on Proceedings
of the USENIX Annual Technical Conference, ATC’07, (Berkeley, CA, USA),
pp. 3:1–3:15, USENIX Association, 2007.

[71] Lukefahr, A., Padmanabha, S., Das, R., Sleiman, F. M., Dreslinski,
R., Wenisch, T. F., and Mahlke, S., “Composite cores: Pushing hetero-
geneity into a core,” in Proceedings of the 2012 45th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO ’12, (Washington, DC,
USA), pp. 317–328, IEEE Computer Society, 2012.

[72] Miyoshi, A., Lefurgy, C., Van Hensbergen, E., Rajamony, R., and
Rajkumar, R., “Critical power slope: understanding the runtime effects of
frequency scaling,” in Proceedings of the 16th international conference on Su-
percomputing, ICS ’02, (New York, NY, USA), pp. 35–44, ACM, 2002.

[73] Mogul, J. C., Mudigonda, J., Binkert, N., Ranganathan, P., and
Talwar, V., “Using asymmetric single-ISA CMPs to save energy on operating
systems,” IEEE Micro, vol. 28, pp. 26–41, May 2008.

[74] Nathuji, R., Isci, C., and Gorbatov, E., “Exploiting platform hetero-
geneity for power efficient data centers,” in Proceedings of the Fourth Inter-
national Conference on Autonomic Computing, ICAC ’07, (Washington, DC,
USA), pp. 5–, IEEE Computer Society, 2007.

[75] Nathuji, R., Kansal, A., and Ghaffarkhah, A., “Q-clouds: managing
performance interference effects for QoS-aware clouds,” in Proceedings of the
5th European conference on Computer systems, EuroSys ’10, (New York, NY,
USA), pp. 237–250, ACM, 2010.

[76] Nathuji, R. and Schwan, K., “VirtualPower: coordinated power manage-
ment in virtualized enterprise systems,” in Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, SOSP ’07, (New York,
NY, USA), pp. 265–278, ACM, 2007.

119

[77] Neamtiu, I., “Elastic executions from inelastic programs,” in Proceedings of
the 6th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’11, (New York, NY, USA), pp. 178–183, ACM,
2011.

[78] nvidia Corporation, “Variable SMP: A multi-core CPU architecture for low
power and high performance.” White paper, 2011.

[79] Ou, Z., Zhuang, H., Nurminen, J. K., Ylä-Jääski, A., and Hui, P.,
“Exploiting hardware heterogeneity within the same instance type of Amazon
EC2,” in Proceedings of the 4th USENIX conference on Hot Topics in Cloud
Ccomputing, HotCloud’12, (Berkeley, CA, USA), pp. 4–4, USENIX Association,
2012.

[80] Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang, Z.,
Singhal, S., and Merchant, A., “Automated control of multiple virtualized
resources,” in Proceedings of the 4th ACM European conference on Computer
systems, EuroSys ’09, (New York, NY, USA), pp. 13–26, ACM, 2009.

[81] Padala, P., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal,
S., Merchant, A., and Salem, K., “Adaptive control of virtualized re-
sources in utility computing environments,” in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys
’07, (New York, NY, USA), pp. 289–302, ACM, 2007.

[82] Pallipadi, V. and Starikovskiy, A., “The ondemand governor: Past,
present and future,” Linux Symposium, vol. 2, pp. 223–238, 2006.

[83] Panneerselvam, S. and Swift, M. M., “Chameleon: operating system sup-
port for dynamic processors,” in Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVII, (New York, NY, USA), pp. 99–110, ACM, 2012.

[84] Polfliet, S., Ryckbosch, F., and Eeckhout, L., “Optimizing the datacen-
ter for data-centric workloads,” in Proceedings of the international conference
on Supercomputing, ICS ’11, (New York, NY, USA), pp. 182–191, ACM, 2011.

[85] Poovey, J. A., Conte, T. M., Levy, M., and Gal-On, S., “A benchmark
characterization of the EEMBC benchmark suite,” IEEE Micro, vol. 29, pp. 18–
29, Sept. 2009.

[86] Qureshi, M. and Loh, G., “Fundamental latency trade-off in architecting
DRAM caches: Outperforming impractical SRAM-tags with a simple and prac-
tical design,” in Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on, pp. 235–246, 2012.

[87] Rajamani, K., Hanson, H., Rubio, J., Ghiasi, S., and Rawson, F.,
“Application-aware power management,” in 2006 IEEE International Sympo-
sium on Workload Characterization, pp. 39–48, IEEE, Oct. 2006.

120

[88] Ramos, L. E., Gorbatov, E., and Bianchini, R., “Page placement in
hybrid memory systems,” in Proceedings of the international conference on Su-
percomputing, ICS ’11, (New York, NY, USA), pp. 85–95, ACM, 2011.

[89] Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., and
Kozyrakis, C., “Evaluating MapReduce for multi-core and multiprocessor
systems,” in High Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on, pp. 13–24, 2007.

[90] Reddy, D., Koufaty, D., Brett, P., and Hahn, S., “Bridging functional
heterogeneity in multicore architectures,” SIGOPS Oper. Syst. Rev., vol. 45,
pp. 21–33, Feb. 2011.

[91] RightScale, “RightScale Cloud Management.” http://www.rightscale.

com. [Online].

[92] Saez, J. C., Prieto, M., Fedorova, A., and Blagodurov, S., “A com-
prehensive scheduler for asymmetric multicore systems,” in 5th EuroSys, (New
York, NY, USA), pp. 139–152, 2010.

[93] Shen, Z., Subbiah, S., Gu, X., and Wilkes, J., “CloudScale: elastic re-
source scaling for multi-tenant cloud systems,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, (New York, NY, USA), pp. 5:1–
5:14, ACM, 2011.

[94] Snowdon, D., Le Sueur, E., Petters, S., and Heiser, G., “Koala: A
platform for OS-level power management,” in Proceedings of the 4th ACM Eu-
ropean conference on Computer systems, pp. 289–302, ACM, 2009.

[95] Spiliopoulos, V., Kaxiras, S., and Keramidas, G., “Green governors: A
framework for continuously adaptive DVFS,” in Proceedings of the 2011 Inter-
national Green Computing Conference and Workshops, IGCC ’11, (Washington,
DC, USA), pp. 1–8, IEEE Computer Society, 2011.

[96] Srinivasan, S., Iyer, R., Zhao, L., and Illikkal, R., “HeteroScouts: hard-
ware assist for OS scheduling in heterogeneous CMPs,” SIGMETRICS Perform.
Eval. Rev., vol. 39, pp. 341–342, June 2011.

[97] Suleman, M. A., Mutlu, O., Qureshi, M. K., and Patt, Y. N., “Ac-
celerating critical section execution with asymmetric multi-core architectures,”
in Proceeding of the 14th international conference on Architectural support for
programming languages and operating systems, ASPLOS ’09, (New York, NY,
USA), pp. 253–264, ACM, 2009.

[98] Suleman, M. A., Qureshi, M. K., and Patt, Y. N., “Feedback-driven
threading: power-efficient and high-performance execution of multi-threaded
workloads on cmps,” in Proceedings of the 13th international conference on Ar-
chitectural support for programming languages and operating systems, ASPLOS
XIII, (New York, NY, USA), pp. 277–286, ACM, 2008.

121

http://www.rightscale.com
http://www.rightscale.com

[99] Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., and Emer,
J., “Scheduling heterogeneous multi-cores through performance impact estima-
tion (PIE),” in Proceedings of the 39th Annual International Symposium on
Computer Architecture, ISCA ’12, (Washington, DC, USA), pp. 213–224, IEEE
Computer Society, 2012.

[100] Vasić, N., Novaković, D., Miučin, S., Kostić, D., and Bianchini, R.,
“DejaVu: accelerating resource allocation in virtualized environments,” in Pro-
ceedings of the seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVII, (New York,
NY, USA), pp. 423–436, ACM, 2012.

[101] Venkatesh, G., Sampson, J., Goulding, N., Garcia, S., Bryksin, V.,
Lugo-Martinez, J., Swanson, S., and Taylor, M. B., “Conservation
cores: reducing the energy of mature computations,” in Proceedings of the fif-
teenth edition of ASPLOS on Architectural support for programming languages
and operating systems, ASPLOS XV, (New York, NY, USA), pp. 205–218,
ACM, 2010.

[102] Waldspurger, C. A., “Memory resource management in VMware ESX
server,” in Proceedings of the 5th USENIX conference on Operating systems
design and implementation, OSDI’02, (Berkeley, CA, USA), USENIX Associa-
tion, 2002.

[103] Wang, W., Liang, B., and Li, B., “Revenue maximization with dynamic auc-
tions in IaaS cloud markets,” in Quality of Service (IWQoS), 2013 IEEE/ACM
21st International Symposium on, pp. 1–6, 2013.

[104] Weissel, A. and Bellosa, F., “Process cruise control: event-driven clock
scaling for dynamic power management,” in Proceedings of the 2002 interna-
tional conference on Compilers, architecture, and synthesis for embedded sys-
tems, CASES ’02, (New York, NY, USA), pp. 238–246, ACM, 2002.

[105] Wong, D. and Annavaram, M., “KnightShift: Scaling the energy propor-
tionality wall through server-level heterogeneity,” in Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO ’12, (Washington, DC, USA), pp. 119–130, IEEE Computer Society, 2012.

[106] Woo, D. H., Seong, N. H., Lewis, D., and Lee, H.-H., “An optimized 3D-
stacked memory architecture by exploiting excessive, high-density TSV band-
width,” in High Performance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on, pp. 1–12, 2010.

[107] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R., and Stoica, I.,
“Improving MapReduce performance in heterogeneous environments,” in Pro-
ceedings of the 8th USENIX conference on Operating systems design and im-
plementation, OSDI’08, (Berkeley, CA, USA), pp. 29–42, USENIX Association,
2008.

122

[108] Zhao, W. and Wang, Z., “Dynamic memory balancing for virtual machines,”
in Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, VEE ’09, (New York, NY, USA), pp. 21–30,
ACM, 2009.

123

VITA

Vishal Gupta was born and grew up in Sri Ganganagar, Rajasthan, India. He earned

his Bachelor of Technology degree in Computer Science & Engineering in 2006 from

the Indian Institute of Technology Madras, India. Subsequently, he received his M.S.

in Computer Science from the University of North Carolina at Chapel Hill in year 2008

before moving to the Georgia Institute of Technology, Atlanta for his Ph.D. During his

doctoral studies at Georgia Tech, he was a member of the CERCS systems research

group, working as a research assistant with his advisor Dr. Karsten Schwan. His

research interests lie within systems software, particularly focused on virtualized and

distributed systems. He currently works as a software developer with VMware, Inc.

124

PUBLICATIONS

A list of Vishal Gupta’s publications from his doctoral studies:

1. Gupta, V., Brett, P., Koufaty, D., Reddy, D., Hahn, S., Schwan,
K., and Srinivasa, G., “Core groups: System abstractions for extending the
dynamic range of client devices using heterogeneous cores,” Sustainable Com-
puting: Informatics and Systems, vol. 3, no. 3, pp. 194 – 206, 2013.

2. Lee, M., Gupta, V., and Schwan, K., “Software-controlled transparent
management of heterogeneous memory resources in virtualized systems,” in
Proceedings of the 2013 ACM SIGPLAN Workshop on Memory Systems Per-
formance and Correctness, MSPC ’13, (Seattle, WA, USA), ACM, June 2013.

3. Gupta, V. and Schwan, K., “Brawny vs. Wimpy: Evaluation and analysis
of modern workloads on heterogeneous processors,” in Proceedings of the IEEE
22nd International Heterogeneity in Computing Workshop, HCW’13, (Boston,
MA, USA), IEEE Computer Society, May 2013.

4. Gupta, V. and Schwan, K., “PowerTune: Differentiated power allocation
in over-provisioned multicore systems,” in Proceedings of the IEEE The Ninth
Workshop on High-Performance, Power-Aware Computing, HPPAC ’13, (Boston,
MA, USA), IEEE Computer Society, May 2013.

5. Gupta, V., Kim, H., and Schwan, K., “A power-performance analysis of
memory-intensive parallel applications on a manycore platform,” in Proceedings
of the 2012 19th International Conference on High Performance Computing:
Student Research Symposium, HIPC:SRS ’12, (Pune, India), Dec 2012.

6. Gupta, V., Brett, P., Koufaty, D., Reddy, D., Hahn, S., Schwan, K.,
and Srinivasa, G., “HeteroMates: Providing high dynamic power range on
client devices using heterogeneous core groups,” in Proceedings of the IEEE In-
ternational Green Computing Conference (IGCC), 2012, (San Jose, CA, USA)
pp. 1–10, IEEE Computer Society, June 2012.

7. Gupta, V., Brett, P., Koufaty, D., Reddy, D., Hahn, S., Schwan,
K., and Srinivasa, G., “The forgotten ‘uncore’: On the energy-efficiency of
heterogeneous cores,” in Proceedings of the 2012 USENIX conference on An-
nual Technical Conference, USENIX ATC’12, (Boston, MA, USA), pp. 34–34,
USENIX Association, June 2012.

8. Gupta, V., Brett, P., Koufaty, D., Reddy, D., Hahn, S., Schwan, K.,
and Srinivasa, G., “Extending the dynamic power range of client devices using
heterogeneous multicore processors,” in 3rd Workshop on SoCs, Heterogeneous
Architectures and Workloads, SHAW-3, (New Orleans, LA, USA), Feb 2012.

125

9. Gupta, V., Nathuji, R., and Schwan, K., “An analysis of power reduc-
tion in datacenters using heterogeneous chip multiprocessors,” SIGMETRICS
Perform. Eval. Rev., vol. 39, no. 3, pp. 87–91, 2011. [Also accepted in ACM
SIGMETRICS 2011 GreenMetrics Workshop (San Jose, CA, USA), June 2011].

10. Gupta, V. and Nathuji, R., “Analyzing performance asymmetric multi-
core processors for latency sensitive datacenter applications,” in Workshop on
Power aware computing and systems, HotPower’10, (Vancouver, BC, Canada),
USENIX Association, Oct 2010.

126

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Motivation
	Resource Scaling
	Platform Heterogeneity

	Challenges & Approach
	Thesis Statement and Contributions
	Thesis Organization

	Chapter 2 — Heterogeneous Cores: Brawny vs. Wimpy
	Introduction
	Why heterogeneity?
	Why wimpy cores?
	Why not wimpy cores?

	Workload Description
	Client Workload Suite
	Server Workloads

	Evaluation
	Experimental Platform
	Performance Monitoring
	Power Measurement
	Methodology
	Limitations

	Experimental Results
	Client Workload Evaluation
	Server Workload Analysis
	Opportunity Analysis

	Related Work
	Summary

	Chapter 3 — Beyond Core: Uncore & Memory Subsystem
	Uncore subsystem
	What is uncore?
	Idle State Coordination
	Impact of uncore

	Experimental Evaluation
	Testbed
	Client Workloads
	Methodology
	Power Model
	Results

	Heterogeneous Memory Organization
	Implementation
	Memory Access Tracking
	Memory Allocation Policy

	Experimental Evaluation
	Heterogeneous Memory Emulation
	Workloads
	Results

	Related Work
	Summary

	Chapter 4 — HeteroMates: Providing High Dynamic Range on Mobile Platforms
	Introduction
	Motivation
	Client Workloads
	Client Devices

	Dynamic Power Range
	HeteroMates Design
	Core Groups
	H-state Controller
	Uncore-aware Operation
	Remote Behavior Prediction

	Implementation
	Experimental Evaluation
	Experimental Platform
	Workloads
	Methodology

	Experimental Results
	Performance-driven Policy
	Power-driven Policy

	Related Work
	Summary

	Chapter 5 — HeteroVisor: Elastic Resource Scaling on Heterogeneous Cloud Platforms
	Introduction
	Elasticity using Heterogeneity
	Elasticity in Clouds
	Exploiting Heterogeneity

	Design
	Elasticity States
	Elasticity Manager
	Elasticity Driver
	Discussion

	Implementation
	Evaluation
	Experimental Setup
	Workloads

	Results
	Related Work
	Resource Management in Clouds
	Heterogeneous Processor Scheduling

	Summary

	Chapter 6 — Conclusions & Future Work
	Conclusions
	Future Work

	Appendix A — Client Workload Suite
	Browser
	Gaming
	Multimedia
	Productivity
	Utility

	Appendix B — Virtual Core Scaling Models
	References
	Vita

