VRLA BATTERY SEPARATOR: POLYMER PRODUCTION

Group 10

Ryan Amos

Lindsey Bergman

Gina Bunster

Travis Giebler

Ben Pyle

April 28, 2010

PROJECT OVERVIEW

- Current Technology: AGM separator
- Project Objective: Replace AGM with polymer separator
 - Forecasted 2012 Production Volume: 1.75 MM m² separator mat
 - Chosen Polymer System:
 0.6 wt % maleated polypropylene (PP-MAH)
- Two Processes Considered Simultaneously
 - PP Plant (20,000 kg/hr)
 - MAH Grafting of PP (34 kg/hr)
- Recommendation:
 Buy PP-MAH pellets from an outside supplier

SPHERIPOL POLYPROPYLENE PRODUCTION

3/12

• Specific PP production: 400 kg/hr-m³

o Prepolymerization (R-100)

20 °C, 4 MPa, 0.5 m³

Bulk polymerization (R-101)

70 °C, 4 MPa, 49.5 m³

- $o L/D_i = 160$
- Recycle ratio = 30
 - Re = 6.2×10^6
- Low-alloy steel

$$V = 0.25\pi D_i^2 L$$

$$Q = \dot{m}\Delta H_{rxn} = UA\Delta T_m$$

$$A = 0.80\pi L \left(D_i + 2t_S\right)$$

$$U = 1.745 \text{ kJ} / m^2 \cdot K \cdot S$$

POLYPROPYLENE PURIFICATION

- o Heater (E-100)
- o Flash (V-100)
- Adjunct Heater (E-101)
- Cooler (E-102)
- Pneumatic Conveyor (LPS)
- Direct-Heat RotaryDryer (E-7)

For 3<L/D<5:

$$\left(u_{V}\right)_{\max} = K_{V} \sqrt{\frac{\rho_{l} - \rho_{V}}{\rho_{V}}}$$

$$A_{cross, \min} = \frac{Q_V}{\left(u_V\right)_{\max}}$$

Watkins, R.N., "Sizing Separators and Accumulators", Hydrocarbon Processing, November 1967, p. 253. GPSA Engineering Data Book

MALEATION OF POLYPROPYLENE

Three Segments

- Melting/Preheating
- First DBHA injection (0.001 M)
- Second DBHA injection (0.001 M)

$$\frac{-d[M]}{dt} = \frac{k_g}{1+f} \sqrt{\frac{2k_d(1+k_dt)e^{-k_dt}[I_0]}{k_t}} [M]$$

- Each segment 0.6 m in length
- o L/D = 42
- Extruder operates at 180 °C
- Overall MAH conversion: 13 %
- 10 kW heating provided by electricity

SEPARATIONS

Devolatizer

- Modeled products as tert-Butanol and MAH only
- Operate at 190 °C

Distillation Case

- Vacuum pump (P-200)
- Cooler (E-200) condense vapor
- Pump (P-201) –
 raise pressure to 101 kPa
- Column (T-200) –
 separate tert-Butanol and MAH
- MAH is recycled to extruder

Alternative Separation Schemes

- Flash separation
- Strictly waste disposal

SAFETY & ENVIRONMENTAL Considerations

Process Hazards

- Exothermic polymerization
- High pressures (BLEVE & VCE)
- High temperatures

Material	Health	Flammability	Reactivity
Propylene	1	4	I
Hydrogen	0	4	0
MAH	3	I	1
DBHA	I	2	2
tert-Butanol	I	3	0

ECONOMIC ANALYSIS OF SPHERIPOL PROCESS

PP Production

- C_{TCI}: \$41 MM
 - Working Capital: 73%
- Annual Sales: \$276 MM

- Annual Production Cost: \$245 MM
 - o 3.5 operators per shift
 - o Feedstocks: 83%
- Annual Royalties: \$8.3 MM
- IRR: 93%
- Payback Period: ~0.5 years

ECONOMIC ANALYSIS OF GRAFTING

Grafting

- C_{TCI}: \$1.01 MM
 - No storage
 - o Extruders: 48%
- Annual Sales: \$1.40 MM

- Annual Production Cost: \$1.27 MM
 - o 0.5 operators per shift
 - o Operations: 20%
- IRR: 30%
- Payback Period: ∼6 years

ECONOMIC ANALYSIS OF GRAFTING

• PP-MAH purchase

- C_{TCI}: \$0.353 MM
 - Storage Tank: 37%
 - Working Capital: 49%
- Annual Sales: \$1.40 MM

- Annual Production Cost: \$1.15 MM
 - o 0.5 operators per shift
 - Feedstock costs comparable
- IRR: 80%
- Payback Period: ~2 years

PRICE SENSITIVITY

11/12

IRR as a function of ...

PP-MAH Purchase Price

PP-MA' profitability ean Polypropylene Price (\$/kg) withstand price changes

Propylene Purchase Price

Propylene Price (\$/kg)

SUMMARY & RECOMMENDATIONS

Scenario	C _{TCI} (\$MM)	Annual Production Cost (\$MM/yr)	Maximum Net Earnings (\$MM/yr)	IRR (%/yr)	Approximate Payback Period (yr)	Risk
Spheripol + Grafting	41.7	245	19.6	93	0.5	High
Grafting Only	1.01	1.27	0.123	30	6	Low
PP-MAH Purchase	0.35	1.15	0.164	80	2	Low

Option I

- Manufacture PP
- Graft with MAH

Option 2

- Purchase PP from Distributor
- Graft with MAH

Option 3

Purchase PP-MAH from Distributor

QUESTIONS

• Thank you to Exide Technologies for sponsoring this project.

