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Abstract

Our goal is to facilitate the design, analysis, optimization, and additive manufacturing of a specific class of 3D lattices
that may comprise an extremely large number of elements. We target curved lattices that exhibit periodicity and uniform
geometric gradations in three directions, along possibly curved axes. We represent a lattice by a simple computer program
with a carefully selected set of exposed control parameters that may be used to adjust the overall shape of the lattice,
its repetition count in each direction, its microstructure, and its gradation. In our Programmed-Lattice Editor (PLE), a
typical lattice is represented by a short program of 10 to 50 statements. We propose a simple API and a few rudimentary
GUI tools that automate the creation of the corresponding expressions in the program. The overall shape and gradation
of the lattice is controlled by three similarity transformations. This deliberate design choice ensures that the gradation
in each direction is regular (i.e., mathematically steady), that each cell can be evaluated directly, without iterations,
and that integral properties (such as surface area, volume, center of mass and spherical inertia) can be obtained rapidly
without having to calculate them for each individual element of the lattice.

Keywords: Lattice, Periodic Structure, Steady Pattern, Microstructure, Architected Material, Additive
Manufacturing, Integral Properties, Similarity Transforms.

1. Introduction

Additive manufacturing (AM) is making it possible to
fabricate parts with unprecedented structural complexity
and optimized mechanical properties. To realize the trans-
formational promise of this technology, the Solid Modeling
community must address several challenges [1, 2]. In this
paper, we focus on two of these: design and processing. We
also conjecture that the theoretical and practical results
proposed here may help advance analysis and improve the
mechanical properties of the designed artifacts.

A key design challenge is the specification of microstruc-
tures of new architected materials [3]. Engineers and sci-
entists who design such microstructures often use periodic
lattices [4, 5], because these are simple to represent, are
easy to analyze, and may provide a high strength-to-weight
ratio [6]. When using fine granularity, these lattices may
contain billions of beams and hence cannot be designed
manually one-beam-at-a-time. They may be specified by
procedural models [7, 8, 9, 10] or by designing one cell and
replicating it. Our goal is to facilitate the design, analy-
sis, optimization, and additive manufacturing [11, 12] of a
class of such lattices.
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Figure 1: Steady lattices with detail shown at the top: Octet (left)
with 1853280 beams and honeycomb with 57641 beams.

Specifically, we support curved lattices that exhibit peri-
odicity and steady [13] shape gradation in three directions,
along possibly curved axes. Steady gradation, curved over-
all shape, and the ability to align anisotropic mechanical
properties with the different axes is essential for structural
optimization in many application domains [14].

We propose to represent a lattice by a simple computer
program that has a user-defined set of exposed control pa-
rameters. These may be used to adjust the overall shape,
the repetition count in each direction, the microstructure,
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and the precise nature of the steady gradation.
To facilitate the writing of such programs, we propose a

simple API and rudimentary GUI tools that automate the
creation of program statements. In this Programmed-
Lattice Editor (PLE), a typical lattice is defined by a
program of 10 to 50 statements.

To illustrate the benefits of steadiness and to accelerate
analysis and optimization, we propose efficient algorithms
that evaluate integral properties (such as surface area, vol-
ume, center of mass and spherical inertia), without having
to calculate them individually for each element of the lat-
tice.

We make three assumptions:
(1) The lattice is made of nodes (balls) and beams (trun-

cated cones), each smoothly connecting two balls.
(2) Nodes are arranged into a three-directional grid of

clusters, in which all pairs of consecutive clusters in any
one direction are related by the same similarity transform.

(3) Beams are grouped into racks, each connecting the
same two nodes in each cluster or in each pair of clusters
separated by constant index differences.

Examples of such lattices are shown in Fig. 1. Though
the class of lattices described above have limited degrees of
freedom, they offer substantial computational advantages
over lattices produced by other more flexible approaches
[9, 15]. These advantages are the key for viably modeling
and analyzing lattices with billions or trillions of elements.

2. Terminology and notation

Research on mechanical analysis and homogenization of
complex microlattices often considers periodic lattices, de-
fined as a regular pattern of identical copies of an irre-
ducible unit cell [16]. Authors of such analysis articles
discuss lattices as being mono- or multi-atomic, i.e. hav-
ing one or more nodes per cell. They also discuss lattices
being one-, two-, or three-dimensional by considering a lat-
tice to be an assembly of unit cells repeating in one, two
or three directions respectively. We suggest a more precise
terminology for several reasons.

(1) Mathematically speaking, the lattices are always
three-dimensional, since they are made of solid primitives.
Therefore we refer to them as rows, slabs, or bricks, based
on the number of dimensions in which they repeat.

(2) In Solid Modeling, the term “assembly” refers to a
set of solids with disjoint interiors. In a typical lattice, each
node (ball) interferes (i.e., has a non-empty intersection)
with one or more beams, and also two beams incident on a
node may interfere with each other. Therefore, the lattice
is not an “assembly of nodes and beams”, but a collection
or the set-theoretic union of them.

(3) The term “assembly of identical cells” is ambiguous
and difficult to interpret in a Solid Modeling setting for two
reasons. Although the dimensions of the axis-aligned cells
and the distance between them, in a lattice with transla-
tional periodicity, are fixed by the periodicity of the lattice,

their alignment (absolute positions) is not. For example,
Fig. 2 shows three options for choosing the unit cell (black
square). The top and middle ones split nodes. The bot-
tom one splits beams. Furthermore, each one is stabbed
by two instances of the orange beams. We argue that
none of these three choices of cell alignment are suitable
for analysis.

(4) One may define a curved lattice by deforming a regu-
lar (axis-aligned) lattice, using a mapping from Euclidean
space to itself. This might lead to nodes and beams being
bent themselves [15], thereby losing the truss-like proper-
ties and becoming much more difficult to analyze.

Because we support curved lattices with multiple nodes
per cell, and because we define them using steady patterns
[13], cell -based terminologies and mathematical formula-
tions that have been proposed for simpler translational
structures or deformations of these are not appropriate
here. Hence, to make our presentation clear and math-
ematically precise, we start by defining, in this section,
a set of key technical terms and notations, which we use
throughout the paper. We group nodes into clusters and
beams into racks. The nodes (balls) in a clusters can have
different radii. We construct steady patterns of clusters.
We define the beams implicitly using the clusters. We then
define the lattice as the union of all nodes in the clusters
and of all beams in the racks.

For geometry, we use the following notation:

O, P, Q, F, Pi: isolated points.
FP : vector from F to P.
I, J , K, N , V , Vi: vectors.
V , FP : normalized (unit) versions of these vectors.
V1ˆV2: angle between V1 and V2.

V N̂
1 V2: angle from V1 to V2 around N
V ◦(α,N): V rotated by α around N
V ◦(N): V rotate by π/2 around N

For transformations, we use the following notation:

S,U ,V ,W ,M : orientation-preserving similarity trans-
forms, which comprise any composition of translation,
rotation, and dilation with a positive scaling factor.

S·C: image of cluster C transformed by S.
Sk: kth integer power of S, i.e., the result of applying S

k times.
Steady pattern : Ordered set of shapes Xi such that

there exists a base-shape, X0, and a similarity S, such
that, for each valid i, Xi = Si·X0. More general
Steady Affine Patterns have been defined in [13]. We
focus on Steady Similarity Patterns, but omit the term
Similarity for conciseness.

F (O, I, J,K, s): Frame (origin O, orthonormal basis vec-
tors I, J,K and scaling s) represents a similarity.

We group the nodes of a lattice into clusters, each hav-
ing the same number n of nodes, and organize these clus-
ters into an array indexed by 3 variables. For this, we use
the following terms. For conciseness, we assume that all
indices (i, j, k) mentioned below are valid.
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Figure 2: Lattice with two nodes (red and blue) per cluster (at dif-
ferent depths) and five beam racks (cyan, lime, orange, red, and
magenta). The three black squares show options for defining the
repeating element (irreducible unit cell).

Valid indices: Index i, (respectively j or k) is valid when
0 ≤ i < i (respectively 0 ≤ j < j or 0 ≤ k < k), where
i (respectively j or k) is a repetition count. (These are:
i = 10, j = 7 and k = 1 in Fig. 2).

Node: A solid ball. Red and blue disks in Fig. 2.
Cluster C: A set of n disjoint nodes with indices

0, 1, . . . , n − 1. (Red/blue node has index 0/1 in
Fig. 2.)

Brick, C[, , ]: 3D array of clusters C[i, j, k], for which
there is a base-cluster, C0, and an array of simi-
larities S[, , ], such that C[i, j, k] = S[i, j, k]·C0.

N[i, j, k, n]: Particular node with index n in cluster
C[i, j, k]. (The blue node inside the top black square
of Fig. 2 is N[7, 4, 0, 1], because it is in the 8th column
from the left, in 5th row from the bottom, in the 1st

layer, and since it is the node with node-index 1.)

We define 2D and 1D subsets of a brick (See Fig. 3).

Slab, C2[, ]: 2D array. Depending on the direction, we
obtain a jk-slab C2[j, k] = C[i, j, k], an ik-slab
C2[i, k] = C[i, j, k], or an ij-slab C2[i, j] = C[i, j, k].

Row, C1[ ]: 1D array. Depending on the direction, we
obtain an i-row C1[i] = C[i, j, k], a j-row C1[j] =
C[i, j, k], or a k-row C1[k] = C[i, j, k].

2.1. Steadiness of balls

We use the following terminology to distinguish steady
bricks, slabs, and rows from unsteady ones. Steadiness
facilitates design, accelerates processing, and may improve
mechanical properties of the lattice.

Steady row: A row for which there exist a similarity U
such that C1[i] = U i·C0. (The shapes C1[i] form a
steady pattern.)

Steady slab: A slab for which there exist similarities U
and V such that C2[i, j] = V j ·U i·C0. (The shapes
C2[i, j] form a steady pattern of steady patterns.)

Steady brick: A brick for which there exist similarities
U , V , and W such that C[i, j, k] = W k·V j ·U i·C0.
(The shapes C[i, j, k] form a steady pattern of steady
patterns of steady patterns.)

(a) Row (b) Slab

(c) Brick

Figure 3: Lattice terminology.

We group the beams into racks and define each rack in
terms of node indices and their offsets as follows.

Beam: Truncated cone connecting two nodes with tan-
gential continuity (Fig. 4).

(a) two balls (b) beam (c) convex hull

Figure 4: The convex hull of two nodes is their union with their
beam.

Rack: The set of beams that each connects a start-node,
N[i, j, k, s], to an end-node, N[i + x, j + y, k + z, e].
(The lattice in Fig. 2 has 5 racks. The magenta rack,
which has index 0, has beams between two balls of the
same cluster. The beams in the other racks, cyan (1),
lime (2), orange (3), and dark red (4), connect balls
from different clusters.)

Set of racks: A set of p racks, where a rack p ∈ [0, p−1] is
defined by five indices identifying: the start-node s[p],
the end-node e[p], and the three start-to-end offsets
x[p], y[p], and z[p] of cluster-indices. (For example, in
the lattice of Fig. 2, the rack count is p = 5 and the
orange rack (p = 3) is defined by: s = 1, e = 0, x =
2, y = 1, z = 0).

B[i, j, k, p]: Particular beam in rack p that starts at node
s[p] of cluster C[i, j, k]. (In Fig. 2, B[7, 4, 0, 3] is the
orange beam that leaves from the blue node in the top
black square.)

We can now define the lattice in terms of its brick and
its set of racks. We distinguish unsteady lattices, steady
lattices, and special cases of these.

Lattice : Union of all nodes in a brick and of all beams
in a set of racks defined on these nodes. When one
repetition count is 1, we call it a slab-lattice. When
two repetition counts are 1, we call if a row-lattice.
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Translational Lattice: A lattice for which S[i, j, k] is a
translation by vector iTi + jTj + kTk. If vectors Ti,
Tj and Tk are orthogonal to each other, we call it an
orthogonal translational lattice. (The lattice in
Fig. 2 is a orthogonal translational lattice.)

Steady Lattice: Lattice with a steady brick. (See Fig. 1
for two examples of steady lattices and their subsets.)

Finally, rather than trying to decompose the lattice into
cells, we follow Wang et al. [17] and decompose it into an
assembly of hubs (which they call unit trusses).

Stump of a node: Half-beam that connects to that
node. It is defined by a cut plane that is orthogonal
to the axis of the beam and, for example, equidistant
from its two nodes. (See Fig. 5.)

Figure 5: A lattice, one of its hubs, and a cross-section showing the
cut, which is a disk that caps a stump.

Hub of a node: The union of a node with all its stumps.
Observe that the lattice is the assembly of its hubs.

Clean lattice: One for which the interiors of different
hubs do not intersect. This condition ensures that
this decomposition is a valid assembly and leads to
efficient analysis and parallelization. It also ensures
that the boundary of a hub can be computed exactly.

3. Prior Art

We divide prior art into (1) Procedural models, (2) Reg-
ular lattices, (3) Conformal lattices, and (4) Irregular mod-
els.

3.1. Procedural Models

Our approach to represent the lattice by a program
builds on early and more general procedural modeling
paradigms [18]. For example, the MAMOUR sys-
tem [19, 20] enabled to define patterns of repeated fea-
tures (such as a string of uniformly spaced rivet holes
around a face of a CAD model), to parameterize them,
and to program parameter expressions in terms of geo-
metric measures. Application of procedural modeling to
repeated patterns and lattice structures are numerous.

The ABCSG system [7] supported a text-based repre-
sentation of a scene-graph that combines solid primitives
with operators (assembly, Boolean, Affine Transformation,
Repetition, and Recursion) that can be edited with a key-
board or a GUI. The OCTOR system [8] provided effective

tools for using the GUI to select sub-structures in such iter-
ative or recursive patterns, so as to edit them or to specify
exceptions at which instances do not follow the pattern.

Procedural methods that define geometry and coordi-
nate systems using analytic implicit functions [9] have also
been used to generate lattices.

3.2. Regular lattices

Orthogonal translational lattices (OTLs) are the most
common type of lattice structures used in the design of
mechanical objects [21].

They consist of copies of a cell template arranged on a
regular grid. These types of lattices have also been used
to design meta materials with microstructures, such as ar-
chitected materials [3]. Interactive modeling and design is
performed by orienting the grid, specifying cell templates,
and selecting cell sizes and cell instance counts.

Solid modeling operations, such as extrude and sweep,
have been applied to the design of lattice cell layouts [22].

R-Functions [9] have also been used to model OTLs and
their variations, that for example include cylindrical and
spherical patterns.

While the simplicity of these structures enables an effi-
cient representation, the regularity of such structures con-
strains the kinds of lattices that can be modeled with this
approach.

3.3. Conformal Lattices

Conformal lattices [23, 24] address the above limitation
by requiring that edges or vertices of one of the faces of
each cell of a base layer be aligned with iso-parametric
curves of a surface. Additional layers of cells may be
added by offsetting the base layer of conformal cells, or
by interpolating between two base conformal layers lying
on different surfaces [23, 24].

Recent work extends the conformal lattice patterning
approach to the volumetric domain [15]. Here, all cells
are aligned according to iso-parametric curves of trivari-
ate B-Splines. In this approach, the geometry of the cell
template is deformed according to the trivariate mapping.

The cell layout [22] may also be defined by a volumet-
ric mesh, such as a tetrahedral or hexahedral mesh. Cell
templates are deformed to match the shape of the cor-
responding volume mesh elements. A variant has been
demonstrated in the Plato software system developed by
Sandia Labs [25].

Alternatively, the vertices and edges of the volume mesh
may themselves be used to define the lattice structure [22].

Implicit functions, including distance fields have also
been used to define lattices [12, 22] and heterogeneous
materials [26].

Warped lattice structures were created in [27] by morph-
ing a 3D rectangular grid according to a warping function.
The warping function was computed from an optimization
procedure. Lattice templates were then morphed into each
grid cell to create a continuous lattice structure.
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Skin lattices that follow a prescribed surface may also
be created [28] by trimming voxelized representation of
functionally graded lattices.

These approaches broaden considerably the design space
of regular lattices. Most of them require storing evalu-
ated models of the supporting representations (such as the
topology and geometry of tetrahedral meshes, the control
points and knots of the control grids of splines, or the coef-
ficients of the basis functions). The associated storage cost
makes memory access expensive when processing lattices
with billions of elements. More importantly, the irregular-
ity of the patterns that they support complicates the task
of identifying which cells lie near a given query (point,
line, or plane) and makes geometric and integral queries
expensive. Finally, we conjecture that the lack of steadi-
ness of the patterns may often result in non-monotonic
gradations of mechanical properties, which, we believe can
make analysis and optimization more challenging, and ul-
timately may reduce the performance of the final product.

3.4. Irregular Models

A large body of literature focuses on procedural gen-
eration of non-periodic structures [29, 30]. These non-
periodic lattices makes it simple to grade the geometry
the microstructure, but does not offer precise control to
define the geometry and topology of the microstructure.
For example, procedural Voronoi Foams [10] is an exam-
ple of a non-fully evaluated lattice representation. Such
lattices are modeled similarly to Voronoi-based, procedu-
ral, cellular textures, which are very efficient to evaluate
and store. However, the method is restricted to modeling
stochastic, open-cell foams.

4. Steadiness

According to the definitions given in Sec. 2, in a Steady
Lattice, each cluster can be expressed in terms of three
similarities as follows: C[i, j, k] = W k·V j ·U i·C0. In this
section, we prove the steadiness of the patterns of clusters
of its rows and discuss the steadiness of the corresponding
patterns of its beams and hubs.

4.1. Steadiness of clusters

Consider the following two steps, through which we re-
formulate W k·V j ·U i·C0:

C[i, j, k] = W k·V j ·U i·C0

= (W k·V j ·U ·V −j ·W−k)i· (W k·V j ·C0)

= M i·C[0, j, k],where M is a similarity.

(1)

The first step can be proven as follows:

• When i = 0, the formula is correct because both U i

and (W k·V j ·U ·V −j ·W−k)i are the identity.

• When i = 1, (W k·V j ·U ·V −j ·W−k)· (W k·V j ·C0)
is W k·V j ·U · (V −j ·W−kW k·V j)·C0 and simplifies
to W k·V j ·U ·C0, which is correct, since i = 1.

• When i > 1, the term V −j ·W−k on the right of
each factor (W k·V j ·U ·V −j ·W−k) cancels with the
term W k·V j on the left of the next factor or of
(W k·V j ·C0).

In the second step, we simply use M to de-
note (W k·V j ·U ·V −j ·W−k) and C[0, j, k] to denote
W k·V j ·C0. This last expression shows that the pattern
defined by clusters C[i, j, k] along an i-row (where j and
k are fixed) is steady. Note that the base-cluster for this
pattern is W k·V j ·C0.

Similarly, we prove below that each j-row of clusters in
a steady lattice is a steady pattern.

C[i, j, k] = W k·V j ·U i·C0

= (W k·V ·W−k)j · (W k·U i·C0)

= M j ·C[i, 0, k]

(2)

Finally, we prove below that each k-row of clusters a
steady lattice is a steady pattern.

C[i, j, k] = W k·V j ·U i·C0

= (W k)· (V j ·U i·C0)

= Mk·C[i, j, 0]

(3)

4.2. Steadiness of beams

In this subsection, we prove that the set of all beams of
a rack that start at a node along a k-row of clusters forms
a steady pattern. For short, we say that each k-row of
beams is steady.

Consider a beam rack p defined by the tuple
(s[p], e[p], x[p], y[p], z[p]) (Sec. 2), which contains beams
connecting the ball N[i, j, k, s[p]] in every cluster to the
ball N[i+ x[p], j + y[p], k+ z[p], e[p]] for the valid range of
indices. We already proved above the steadiness of k-rows
of clusters, hence for balls along k-rows:

N[i, j, k, s[p]] = W k·N[i, j, 0, s[p]]

N[i+ x[p], j + y[p], k + z[p], e[p]] = W k·N[i, j, 0, e[p]]

(4)

As both the balls defining the beams in rack p follow
the steady pattern defined by W along k-rows of clusters,
the beam rack consists of steady k-rows of beams.

4.3. Steadiness of hubs

In Sec. 2 we defined a hub as the union of a ball and its
stumps (half-beams) and we proved above that a steady
lattice consists of steady k-rows of clusters (of balls) and
steady k-rows of beams. Hence, we can conclude that a
steady lattice consists of steady k-rows of hubs. More-
over, as all steady k-rows of clusters, beams and therefore
of hubs are defined by a common similarity W , a steady
lattice consist of steady k-slabs of hubs.

In the next section we describe fast, accurate and direct
evaluation of clusters in a steady lattice.
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5. Computing clusters of a Steady Lattice

To compute a cluster C[i, j, k] = W k·V j ·U i·C0 in a
steady lattice, we need to compute powers of similarity
transforms. We do this accurately and efficiently as fol-
lows.

5.1. Canonical decomposition of a similarity

Given a similarity U , we decompose it into the canonical
commutative product R·T , where R and T are primitive
transformations (translation, rotation and scaling), such
that U t = Rt·T t, for any value of parameter t.

We distinguish two cases, depending on the value of m,
the scaling factor of U , which we assume to be strictly
positive.

When m = 1, U is a rigid body transformation. Then,
R is a rotation and T a translation by a vector parallel
to the axis of R (see for example [31]). In this case, as
t varies, U t defines a screw motion and point U t·P0

traces a helix. (See [13] for the computation of U t.)
When m 6= 1, U is a similarity. Then, R is a rotation

and T a dilation about a fixed point F on the axis of R.
In this case, as t varies, U t defines a swirl motion and
point U t·P0 traces a concho-spiral [32].

Note that in special cases, the screw may reduce to pure
translation (α = 0) or pure rotation (d = 0) and the swirl
may reduce to pure scaling (α = 0).

The precise expressions for these two motions are given
below using the notation presented in Section 2. We eval-
uate them for discrete values of parameter t to produce
steady patterns.

U t·P0 := F + (td)N + (FP0)◦(tα,N) \\Screw (5)

U t·P0 := F +mt(FP0)◦(tα,N) \\Swirl (6)

Here, F is the fixed point of the dilation, N is the unit
vector along the axis of rotation, α is the angle of rotation,
d is the distance of translation, and m is scaling. Please
refer to Appendix A for the derivation of these parameters.

The steady pattern of shapes that are produced using
patterns of similarity frames (along the above screw and
swirl motions) that result from a uniform sampling of t are
called screw-patterns and swirl-patterns.

5.2. Direct computation of cluster balls

To compute the balls of cluster C[i, j, k], we transform
each ball of the base-cluster, C0, by the appropriate simi-
larity. To do so, we pre-compute the canonical decomposi-
tion of each of the similarities U , V and W , that define a
steady lattice. Then, we compute the center and radius of
ball N[i, j, k, n] by transforming the center Cn and radius
rn of the corresponding ball in the base-cluster as follows,
assuming that mu, mv and mw are the scaling factors of
U , V and W .

N[i, j, k, n] = Ball(W k·V j ·U i·Cn, m
k
wm

j
vm

i
urn)

(7)

5.3. Direct computation of interpolating clusters

When the designer programs the parameters of simi-
larities U , V and W explicitly, we say that the corre-
sponding cluster was defined by its incremental similar-
ities. Although this approach may work when U ,V and
W are simple (for example, rotations or translations about
the same or orthogonal axes), it fails completely when at-
tempting to design a pattern that interpolates the first and
last cluster, which may have each been carefully placed to
meet some assembly constraints.

Hence, we propose a tool that computes the incremen-
tal similarities, such that the resulting pattern interpolates
the first and last key-clusters, which are related by a cu-
mulative similarity, say U ′ = U i−1. In this scenario,
the designer may adjust U ′ via the parameterized pro-
gram or GUI to control the overall size, shape, and scaling
of the lattice using the first and last clusters in a particular
direction.

Given U ′ and the repetition count i, we use the canon-
ical decomposition discussed above to compute the incre-
mental similarity as U = (U ′)1/(i−1), i.e. a fractional
power of U

′
. This approach always always yields a valid

solution and is simpler than the one proposed in [13] for
general affinities. Fig. 6 shows a steady row lattice, created
by interpolating between the base frame and a cumulative
similarity frame.

(a) Cumulative similarities (b) Interpolating lattice

Figure 6: Row lattice computation by interpolating clusters

6. Integral properties

In this section, we derive closed form expressions for
computing specific integral properties, namely surface
area, volume, center of mass and spherical inertia of the
lattice, given the corresponding property of the first ij-
slab, which is obtained by computing and then aggregat-
ing the corresponding properties for each hub in that first
ij-slab.

6.1. Integral properties of a hub

Integral properties of a hub may be approximated from
its voxelization or octree decomposition (see for example
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[33]), from ray sampling, or from a triangulation of its
boundary. For example, given that the interior side of
the bounding faces of a hub is completely visible from the
center C of the hub’s ball, we can approximate the hub by
inflating its ball, i.e. approximate that ball surface with
an almost regular triangle mesh ([34]) and then push each
vertex out radially away from the C until it reaches the
boundary of the hub. Then, approximate the volume of the
hub by the sum of the volume of the tetrahedron, one per
triangle. But, this approach produces large approximation
errors (Fig. 7), especially towards the far end of the stump,
away from the center C. Figure 8 shows that we need
a large number of rays (N) to substantially improve our
approximation of each stump.

Figure 7: Hub(transparent) and its discretization

Figure 8: Stump discretization for different number of rays (N)

To improve hub’s approximation with considerably less
number of rays, we propose to split the hub into a core and
clean portions of stumps (Fig. 9), and compute integral
properties of the hub by aggregating integral properties
of its core and clean portions. By clean portions we mean
that interiors of those stump portions are pairwise disjoint.
To identify the clean portion of each stump, we compute in
a pairwise manner, how far the intersection of two stumps
extend along the axis of the two stumps. This is reduced to
a 2D problem of identifying intersection of two lines, that
correspond to the profile of the conical surface of the two
stumps, in the plane containing the axes of the two stumps.
We then split each stump at the farthest intersection, to
extract its clean portion.

The integral properties of the core can then be approxi-

(a) Split hub (b) Core

Figure 9: Hub’s splitting into core and clean portions of stumps

mated from its tetrahedral discretization (Fig. 10) follow-
ing the ray shooting approach described above. For the
clean portions of the stumps (cylinders or cones), the in-
tegral properties can be computed trivially.

Figure 10: Discretized core

Figure 11 shows how the error in computing the vol-
ume of the hub of Figure 9a, by discretizing just its core,
reduces very quickly to a very low value with just few hun-
dred rays per hub. Thus, discretizing only it’s core and not
the whole hub substantially improves performance. For
example, the tetrahedral discretization of the whole hub
shown in Fig. 9a using close to 60000 rays, results in more
than 2.5% error in volume computation, while with just
600 rays, this error is close to 0.22% if we discretize only
the core.

6.2. Surface area of the lattice

Let a0 be the combined surface area of all the hubs
(without the end caps of stumps) in the first ij-slab and
let ak denote the surface area of ij-slab k.

If W k is a screw pattern, each hub of ij-slab 0 undergoes
a rigid transformation, hence the total surface area aL of
the lattice is simply ka0.

If W k is a swirl pattern, hub of of ij-slab k is scaled by
mk

w, hence the total surface area of the lattice is:

aL =
∑

ak = a0
∑

(m2
w)k =

a0((m2
w)k − 1)

(m2
w − 1)

(8)
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(a) Discretized core within actual core volume in transparent.

(b) Hub’s volume error vs number of rays

Figure 11: Improved approximation at small number of rays due to
hub splitting

In the equation above and onwards in this section, we
will use

∑
to denote

∑k−1
k=0 for simplicity.

6.3. Volume of the lattice

Let v0 be the combined volume of all the hubs in the
ij-slab 0 and vk be the volume of ij-slab k.

If W k is a screw pattern, the total volume vL of the
lattice is kv0.

If W k is a swirl pattern, the volume of the lattice is:

vL =
∑

vk = v0
∑

(m3
w)k =

v0((m3
w)k − 1)

(m3
w − 1)

(9)

6.4. Centroid of the lattice

Let G0 be the centroid (center of mass) of the ij-slab
0. Then, assuming uniform material density through out
the lattice, the centroid GL of the whole lattice can be
computed as the weighted average of the centroids of all
the k-slabs:

GL =

∑
vkW

k·G0

vL
(10)

As done earlier, we consider two cases.

6.4.1. Swirl pattern

In case of a swirl pattern of slabs, the volume of the slab
also scales, hence the expression for centroid becomes:

GL =
v0

∑
(m3

w)kW k·G0

v0((m3
w)k − 1)/(m3

w − 1)
(11)

Now, from Eq. 6:

W k·G0 = F +mk
w(FG0)◦(kα,N) (12)

Let V = FG0, V1 = (V.N)N , V2 = V −V1, ck = cos(kα)
and sk = sin(kα), then:

V ◦(kα,N) = (V1 + V2)◦(kα,N)

= V1 + V ◦2 (kα,N)

= V1 + ckV2 + skV
◦
2 (N)

(13)

Using the above expression in Eq. 11, centroid GL can
be expressed as:

GL =

(
∑
m3k

w )F + (
∑
m4k

w )V1 + (
∑
m4k

w ck)V2
+ (

∑
m4k

w sk)V ◦2 (N)

(m
3k
w − 1)/(m3

w − 1)

(14)

While other summations in the above expression are
trivial, the summations with trigonometric terms can be
computed by substituting a = m4

w in the following expres-
sions [35]:

∑
akck =

1− ac1 − akck + ak+1ck−1
1 + a2 − 2ac1∑

aksk =
as1 − aksk + ak+1sk−1

1 + a2 − 2ac1

(15)

6.4.2. Screw pattern

In case of screw pattern of slabs, the volume of each slab
remains constant, thus:

GL =
v0

∑
W k·G0

kv0
(16)

From Eq. 6:

W k·G0 = F + (kd)N + (FG0)◦(kα,N) (17)

Similar to the derivation of centroid in case of swirl rack,
the centroid for the screw case can be expressed as:

GL =

kF + kV1 + (d
∑
k)N + (

∑
ck)V2

+ (
∑
sk)V ◦2 (N)

k
(18)

The summations with trigonometric terms can be com-
puted by substituting a = 1 in Eq. 15.
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6.5. Spherical moment of inertia of the lattice

The spherical moment of inertia, or simply “spher-
ical inertia”, of a body B about a fixed point G is
iG =

∫
B
r2dm, where r is the distance of the infinitesimal

mass dm from G and body’s total mass is m =
∫
B
dm.

For example, for a ball of uniform density ρ, center G and
radius r, iG = ρ(4/5)πr5 and m = ρ(4/3)πr3. The spher-
ical inertia of the body about a different point P can be
transferred from G using iP = iG +m|PG|2.

We compute the spherical inertia of a steady lattice L
about its centroid GL as follows.

We assume, that we can compute the mass m, the cen-
troid G, and the spherical inertia i for each hub of ij-slab 0
about their respective centroid. We can then compute the
mass m0, centroid G0, and spherical inertia i0 of the entire
ij-slab 0 about its centroid G0. The spherical inertia i0 is
computed by using the transfer formula given above and
summing the results. We compute the center of mass, GL

of the lattice and then compute the spherical inertia iL of
the whole lattice about GL, by combining the inertia of all
ij-slabs as follows:

iL =
∑

(ik +mk|GLGk|2) (19)

where, ik is the spherical inertia of ij-slab k about its
centroid Gk and mk is its mass.

To formulate a closed-form expression for this sum, we
use the terms defined in the previous section. For concise-
ness let vector V3 = GLF .

For a swirl pattern, the spherical inertia of the lattice L
about its center of mass is:

iL = q0 +m0(q1 + q2 + q3 + q4 + q5) (20)

where,

q0 = i0
∑

m5k
w , q1 = |V3|2

∑
m3k

w

q2 = |V |2
∑

m5k
w , q3 = 2V3·V1

∑
m4k

w

q4 = 2V3·V2
∑

(m4k
w ck), q5 = 2V3·V ◦2 (N)

∑
(m4k

w sk)

For a screw pattern, it is:

iL = q0 +m0(q1 + q2 + q3 + q4 + q5) (21)

where,

q0 = ki0, q1 = k(|V3|2 + |V |2 + 2V3·V1)

q2 = 2d(V ·N + V3·N)
∑

k, q3 = d2
∑

k2

q4 = 2V3·V2
∑

ck, q5 = 2V3·V ◦2 (N)
∑

sk

Extensions of such closed-form expressions for inertia
about a given axis and hence for inertia tensors appear
significantly more challenging and is a subject of the on-
going research.

6.6. Results

Fig. 12 shows results of comparing volume and centroid
of a brick of clusters, computed by using brute force Vs
using closed form expressions Eq. 9, 14 and 18. The green
ball corresponds to result from the equation, it has volume
equal to that of brick and is placed at the centroid. Sim-
ilarly the red ball corresponds to result from brute force
computation. The red ball’s radius has been reduced by
half to visualize the two balls together. Observe that the
two ball centers are identical and red ball’s radius is half
of the green ball’s radius.

(a) pure rotation (b) screw pattern (c) swirl pattern

Figure 12: Verification of equations for volume and centroid

As for performance, as an example, the closed form com-
putation of volume of all the beams of a bent and graded
brick lattice (Fig. 13) of size 10000× 10000× 10000, with
more than 24× 1012 beams, took under 10 minutes, which
if done by brute force would take several days.

Figure 13: Volume of a large lattice

7. The Programmed Lattice Editor (PLE)

In this section, we discuss the workflow and the pro-
gramming tools that we support.

7.1. Process flow and programming

Typically, the development of a lattice model evolves
through the following stages of design and analysis:

1. Programming: A programmer uses the API and the
GUI to edit a short program that defines a lattice.
Fig. 14 shows a PLE program and the corresponding
lattice for default parameter values.
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2. Rigging: The programmer identifies a small set of
variables as control parameters, provides their default
values, and programs formulae to compute the values
of other parameters from these. Typical control pa-
rameters include the global similarity transforms U ′,
V ′, W ′, the repetition counts, the radii of the various
nodes in the base-cluster. But other control parame-
ters may be easily programmed and may even be used
to trigger conditional branches in the creation of the
lattice. Fig. 15 shows instances produced by an LMA
program for different values of its control parameters.

3. Compiling: The result is compiled into a Lattice
Maker Applet (LMA), which can use the default
values or accept new values of the control parameters
to generate a particular variant of the lattice.

4. Optimizing: A structural engineer uses the LMA in-
side an optimization loop that creates a model of the
lattice that is suitable for analysis, performs analy-
sis, and tweaks the control parameters. The efficient
computation of mass properties discussed above may
help to accelerate this process.

5. Exporting: The engineer then exports the optimized
lattice to another CAD, or AM system for further
processing, simulation, or manufacturing. Currently
we export the whole lattice or a portion of it, as a
text file containing list of center and radius of each
ball and a list of pair of ball indices for each beam.

Note that throughout these design stages, the lattice
need not be evaluated and stored in its entirety. Instead,
it is represented implicitly by a parameterized LMA, which
supports direct querying and lazy (on demand) evaluation
for one Region-of-Interest (RoI) at a time.

7.2. GUI

PLE provides advanced GUI controls for direct ma-
nipulation of the lattice using mouse actions. The user
can add or delete a ball or beam, grow or shrink a ball,
or can bend, twist or scale the whole lattice via mouse
clicks and drags. For example, the user can control
the four frames representing the four similarities, namely
M ,U ′·M ,V ′ ·M ,W ·M , where frame M positions the
base cluster C0 in space and where U ′,V ′,W ′ are the cu-
mulative similarities (Sec. 5.3) defining the lattice. Each
frame can be dragged, rotated and scaled to modify the
lattice in real time. A typical editing session for a row-
lattice is shown in Fig. 16, where the end cluster (red) is
dragged right, rotated around the viewing direction (blue),
scaled and then rotated again respectively.

7.3. Assisted coding

The benefits of combining text editing and graphic ma-
nipulation for changing the transformations in a pattern
have been demonstrated in [7]. In PLE one can use the
mouse to click, one after the other, the two balls that she

Figure 14: A program written in PLE and the corresponding lattice.

(a) Thick beams (b) Thin beams

(c) Different repeti-
tion counts

(d) Different scaling

Figure 15: Parametric lattice instances.
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Figure 16: Interactive editing of a row-lattice.

wishes to join by a new beam. PLE then composes auto-
matically the corresponding program statement and places
it in the clipboard, for the programmer to paste at the
proper place in the program. Similarly, one can manip-
ulate a frame and a string containing the statement that
creates this precise frame is inserted automatically into the
clipboard.

7.4. Selective rendering

PLE supports visualizing a selected contiguous region
of interest (RoI) of an otherwise large lattice. This RoI is
specified by the indices of a starting cluster (i, j, k) and the
span (δi, δj, δk). The user can move and grow or shrink
this region (Fig. 17). To put this RoI in the context of
the overall lattice, we display the outline of the complete
lattice by tracing the centroid of the base cluster C0 in a
regularly sampled subset of rows of the 6 boundary slabs.
For a given sampling of rows in each slab and of sampling of
points along each row, the outline can be drawn in constant
time.

Figure 17: Selectively rendered lattices.

7.5. Examples

Lattices shaped like Michell lattices [36] for optimum
cantilever structure, can be constructed from two spiral
patterns with common fixed point [37]. Figure 18 shows
such a steady lattice slab with U and V being swirl trans-
forms.

Fig. 19 shows example of a tire shaped lattice with
spring shaped elements woven together to form the inter-
nal structure. Note that this lattice is created by defining
a base-cluster of just two balls, four beam racks and three
similarities (screw, rotation, rotation) in a compact PLE
program, similar to the one shown in Fig. 14.

(a) Michell’s solution [36] (b) Steady lattice slab

Figure 18: Steadiness in Michell lattices

(a) Weave structure (b) Spring tire

Figure 19: Woven lattices

Fig. 20 shows a brick lattice with octahedral unit cell,
created by specifying three cumulative similarities. Ob-
serve that the lattice interpolates, while it twists and
grades steadily.

(a) Cumulative similarities (b) Interpolating lattice

Figure 20: Steadily graded interpolating brick lattice

8. Productionisation

The initial research prototype used to validate and
demonstrate the concepts described above was imple-
mented in Processing. As a step towards the broad distri-
bution of the results presented here, we have ported these
tools into Mithril, an environment for the rapid prototyp-
ing, analysis, and 3D printing of highly complex lattices
with graded material structures.

The core of Mithril is written in C/C++ with interfaces
to (1) CPython for interpreting construct programs, (2)
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OpenGL for visualization, and (3) CUDA for parallelizing
computations with GPUs. We have chosen CPython, i.e.,
the C implementation of Python, as our programming lan-
guage for lattice programs as it is an easy-to-use, well sup-
ported, and widely used in both academic and industrial
environments. A design engineer can program complex
lattice structures in Python with loops, conditional state-
ments, and standard Python libraries such as numpy. Fur-
thermore, Python can be extended with custom C/C++
libraries. The C/C++ library becomes an extension mod-
ule that can be directly imported in Python. Efficient
algorithms, such as for computing mass properties, are
implemented in C/C++ libraries, and exposed to Python
with the Boost Python library.

In addition to extending Python, Mithril embeds Python
where the application calls the Python interpreter to ex-
ecute lattice programs and construct corresponding C++
objects. Extracting a C++ object from its Python coun-
terpart is similarly done using Boost Python. The C++
lattice object is then used for visualization and performing
advanced analyses.

With this approach, a design engineer uses the Mithril
UI to program lattice structures in Python, visualize the
lattices using the C++-based rendering engine, and ana-
lyze them using efficient C++-based implementations of
analysis algorithms, all within the same software applica-
tion. This solution provides a powerful rapid-prototyping
interface for engineers and enables a very concise repre-
sentation for complex lattice structures.

Fig. 21 shows a section of the 3D printed spring tire
lattice constructed in Mithril.

Figure 21: 3D printed lattice

9. Advantages

The advantages of the proposed representation, decom-
position and computation of lattice structures are:

1. Simple, compact and capable: Our approach is
simple, yet it has the capability to design complex
bending, twisting and grading lattices (Fig. 1, 15, 19)
with compact programs (Fig. 14).

2. Directly computable: As described in Sec. 5 the
clusters of steady lattice can be computed accurately
and directly, i.e. without an iterative process, by
transforming the base-cluster along screw- or swirl-
motions.

3. Clean decomposition: A clean lattice can be de-
composed into an assembly of non-overlapping hubs
which facilitates processing and parameterization and
reduces boundary evaluation costs.

4. Improved homogenization: The position, orienta-
tion, and size of the clusters along any row of a steady
lattice varies steadily. Since the beam patterns have
a periodic definition in terms of cluster nodes, the ge-
ometry of hubs (or cells) also varies smoothly. We
conjecture that this regularity may improve homoge-
nization [38] and may also yield lattices with better
mechanical properties than those of lattices obtained
by warping a regular grid of cells.

5. Efficient analysis and optimization: Mass prop-
erties of a steady lattice can be computed accurately
and efficiently, i.e. without iterating over all the ele-
ments of the lattice (Sec. 6). Similar advantage can
be derived in performing geometric queries, such as
PMC over a steady lattice ([39]).

The above advantages are crucial to achieve scalabil-
ity required to model and analyze lattices with billions
or trillions of elements.

10. Conclusions

We propose Programmed-Lattice Editor (PLE) - a new
design environment to program, graphically edit, param-
eterize, and export parametric models of lattices. We de-
fine a lattice by a three directional brick of clusters of
balls and by a set of beam patterns. To simplify pro-
cessing and validity formulation and testing, we consider
a decomposition of the lattice into an assembly of quasi-
disjoint hubs. The brick of cluster is fully defined by a
base-cluster (small set of balls), by three similarities, and
by three repetition counts. Each cluster is obtained as the
image of the base-cluster by three consecutive evaluations
of steady similarity patterns. The resulting steadiness of
the brick allows the programmer to expose simple param-
eters that control the bending, twisting, and shrinking of
the overall structure and consequently the gradation of its
cells. More importantly, it may be used for accelerating
the evaluation of mass properties. We conjecture that it
may benefit the accuracy of homogenization, and hence
analysis and optimization, and that it may yield material
structure with smoother gradations of physical properties.
We prove steadiness of all the rows of clusters, provide for-
mulae for exploiting them in mass-property calculations,
and provide formulae for computing the three similarities
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via interpolation of the first and last frames in a row. We
present several simple GUI tools that facilitate and accel-
erate the editing and visualization.
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Appendix A. Decomposition parameters

Given two similarity frames F0 := F (O0, I0, J0,K0, s0)
and Fn := F (On, In, Jn,Kn, sn), we compute the param-
eters describing the screw- and swirl-motions defined by a
special decomposition of the similarity S = Fn·F−10 into
the commutative product, D·R, of a dilation D by scaling
vector m about fixed point F and a rotation R, by angle
α around an axis through F with tangent N as follows.
For simplicity, we assume that S is not a translation nor a
screw motion, as these special cases may be detected triv-
ially and processed separately using previously published
solutions.

We observe that, when a vector V is rotated about N ,
its tip traces an arc in a plane perpendicular to N . Hence,
vector δV = V o(α,N)−V lies in that plane, and so do all
these vectors:

δI = In − I0, δJ = Jn − J0, δK = Kn −K0 (A.1)

Since one of them may be null, we compute N using:

N = δI × δJ + δJ × δK + δK × δI (A.2)

We define T = O0On and compute α, m, and d as fol-
lows:

α1 = IN̂0 In, α2 = J N̂
0 Jn, α3 = KN̂

0 Kn

α = max(α1, α2, α3)
(A.3)

m = sn/s0 (A.4)

d = T.N (A.5)

To compute the fixed point F, we define V0 = FO0 and
Vn = FOn. Hence, we have:

Vn = V0 + T (A.6)

We define K = N and compute I and J forming an
orthonormal triplet (I, J,K). We then write V0 and its
rotated version as follows :

V0 = xI + yJ + zK, and (A.7)

V ◦0 (α,N) = (cx− sy)I + (cy + sx)J + (V0 − xI − yJ) (A.8)

where,

x = V0.I, y = V0.J, z = V0.K, and

c = cos(α), s = sin(α)

For swirl motion, Vn = mV ◦0 (α,N). Using A.8, we solve
for x and y. Further, for swirl motion (Vn·K)/(V0·K) =
m, we use Eq. A.6 to solve for z:

x =
u(mc− 1) + v(ms)

(mc− 1)2 + (ms)2
, y =

v(mc− 1)− u(ms)

(mc− 1)2 + (ms)2

z =
w

m− 1
, where u = T · I, v = T · J,w = T ·K

(A.9)

Then, the fixed point is:

F = O0 − (xI + yJ + zK) (A.10)

14
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