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Abstract

Edges in man-made environments, grouped according to
vanishing point directions, provide single-view constraints
that have been exploited before as a precursor to both scene
understanding and camera calibration. A Bayesian ap-
proach to edge grouping was proposed in the “Manhattan
World” paper by Coughlan and Yuille, where they assume
the existence of three mutually orthogonal vanishing direc-
tions in the scene. We extend the thread of work spawned
by Coughlan and Yuille in several significant ways. We pro-
pose to use the expectation maximization (EM) algorithm
to perform the search over all continuous parameters that
influence the location of the vanishing points in a scene.
Because EM behaves well in high-dimensional spaces, our
method can optimize over many more parameters than the
exhaustive and stochastic algorithms used previously for
this task. Among other things, this lets us optimize over
multiple groups of orthogonal vanishing directions, each of
which induces one additional degree of freedom. EM is also
well suited to recursive estimation of the kind needed for im-
age sequences and/or in mobile robotics. We present exper-
imental results on images of “Atlanta worlds,” complex ur-
ban scenes with multiple orthogonal edge-groups, that val-
idate our approach. We also show results for continuous
relative orientation estimation on a mobile robot.

1. Introduction
We are interested in the problem of 3D scene reconstruction
from a single image. This is as part of a larger project that
has as its goal the automatic creation of a spatially and tem-
porally registered 3D model of the city of Atlanta, based on
historical imagery. The historical nature of the project pre-
cludes the use of satellite imagery and/or laser range find-
ers, and in many cases only a single view of a building in
a given time period is available. This is why it is impor-
tant to recover single-view constraints as a precursor to 3D
reconstruction.

Figure 1: This scene contains two pairs of orthogonal, horizontal
vanishing directions in addition to the vertical. In this paper, we in-
troduce an EM-based method to recover vanishing directions (top)
while simultaneously grouping edges (bottom). Each colored line
segment in the top image is oriented along the vanishing direction
of an identically colored edge group in the bottom image.

The extended nature of edges in man-made environ-
ments, grouped according to only a few vanishing point di-



rections, provide one kind of single-view constraint. This
has been exploited by many authors in the past, both as a
precursor to scene understanding as well as extrinsic [2, 1]
and intrinsic [6, 10] camera calibration.

A Bayesian approach to edge grouping was proposed in
the “Manhattan World” paper by Coughlan and Yuille [2],
where they assume three mutually orthogonal vanishing di-
rections in the scene. They perform a one-dimensional ex-
haustive search over a single camera angle based on a proba-
bilistic classification of each edge, given the gradient image
of the scene. In later work [3], they perform a course-to-
fine search over 3D camera orientation. This same Bayesian
approach has since been applied to the problem of camera
calibration using a stochastic search algorithm [6].

In this paper we extend the thread of work spawned by
Coughlan and Yuille in several significant new ways. We
propose to use the expectation maximization (EM) algo-
rithm to perform the search over the continuous unknowns
that influence the classification of the edges along vanish-
ing directions. Because we replace exhaustive or stochas-
tic search with a continuous optimization approach, we are
now able to optimize over many more parameters. Both ex-
haustive search as well as importance sampling suffer dras-
tic performance losses in high-dimensional spaces. The EM
algorithm, in contrast, is an iterative optimization method
that is guaranteed to converge to a (local) maximum of the
log-posterior. EM has been used in the past for estimat-
ing and classifying vanishing directions in both calibrated
[1] and uncalibrated cases [10]. However, while previous
EM-based methods have optimized directly over vanish-
ing directions, we optimize over the unknown parameters
that determine the position of these vanishing directions,
rather than obtaining those parameters in a separate post-
processing step.

A second extension, afforded to us by the use of EM,
is the "Atlanta world" assumption, whereby we extend the
"Manhattan world" assumption to include multiple groups
of orthogonal vanishing directions, each of which induces
one additional degree of freedom. This allows our method
to correctly group edges for scenes in which not all build-
ings are aligned along the same Manhattan grid. Finally, the
use of EM is well suited to recursive estimation of the kind
that needs to be done for image sequences, as the result for
one time-step can be used to initialize the EM algorithm in
the next time-step, thereby converging much more quickly
to the optimally estimated vanishing points.

2. Approach
2.1. Assumptions
Our approach is based on the existence of a set of dominant
vanishing directions in the scene, a commonly used scene
constraint in man-made environments [2, 4, 9, 6, 10]. We

do not require these vanishing directions to be mutually or-
thogonal. In fact, the only assumption we make about the
vanishing points (VPs) of the scene is that there is a finite
set

���������
	����������
of them, where the number

�
might or might not be known beforehand.

Given a gradient image � , we wish to estimate a set of
unknown parameters � that influence the location of the set
of vanishing points

�
. In general, this can be a probabilistic

connection, through some conditional density ��� ��	 ��� , or a
functional relationship

����� � ��� . Given this, we now wish
to obtain the maximum a posteriori (MAP) estimate �"! for
the parameters � by maximizing the posterior ��� � 	 �#� , i.e.,� ! �

argmax$ ���%� 	 �#�'&����(� 	 ���)���%����
argmax$ ���%��� *,+ ���-� 	 � �)��� �.	 ���

In what follows, we always assume a functional relationship���/� �%��� , in which case the above simplifies to� ! �
argmax$ ���%� 	 �#�'&����(� 	 � � ���0�)��� ��� (1)

Note that, in both these cases, if not enough constraints are
available from the image, the parameters � might not be
determined uniquely from the above formulation. For ex-
ample, without an orthogonality constraint, we can never
hope to recover metric calibration from a single image.

Without loss of generality, this problem formulation
holds for a wide variety of situations. Examples include:1 a “Manhattan world” scene assuming three mutually

orthogonal vanishing directions and a single unknown
camera angle1 a more complex “Atlanta world” scene with multi-
ple pairs of orthogonal vanishing directions where un-
knowns include a 3D camera rotation and focal length1 a model where we assume no orthogonality constraints
whatsoever between the vanishing points1 any of the above, with unknown radial distortion

2.2. An Expectation Maximization Approach
In line with the original “Manhattan World” paper [2], in
order to evaluate the MAP criterion (1) we need to integrate
over all possible ways of assigning each site 2 in the gradi-
ent image � to one of a finite set of models. In what follows
we denote the model at a site 2 as 3�4 . Either a site has no
edge ( 3.4 �65�787 � , it is assigned to one of the vanishing
points in the finite set

�
( 3 4:9 �<;=; �

), or it is classified as
being an edge but not belonging to any of the VPs in

�



( 3 4 �>5@?BA:C#D � . The posterior ��� � 	 �#� is then a sum
over all possible model configurations E ,���%� 	 �#� � ��� ���GFIHJ���(� 	 ELK � �%���M�M���-EN� (2)

where we assume that the prior ���-EN� does not depend
on � . The summation above over all configurations E
is intractable for all but the smallest images. If we as-
sume conditional independence and a simple single-site
prior ���-EN� �PO 4 ���Q3 4 � as in [2], the above factors and
Equation 2 becomes somewhat more tractable:��� � 	 �#� � ���%���GR 4 F S ���UTV4 	 3WK � �%���M�M���Q3X�
Here ���UTY4 	 3ZK � � is a site-specific density on the gradient
measurement TY4 at site 2 , given the model 3 and the set
of vanishing points

�
. Given this model, in [2] the param-

eter space was discretized and searched over exhaustively,
whereas in [6] a stochastic search was done (iterated impor-
tance sampling).

Instead of these search strategies, and inspired by [1, 10],
we propose the use of expectation maximization (EM)
[5, 11] to locate the MAP estimate �#! . When � is high-
dimensional, or worse, the prior on E does not factor (e.g.,
we could use a Markov Random Field (MRF) prior), both
exhaustive search and importance sampling are not efficient
enough for practical use. Using EM enables us to perform
continuous optimization over � , i.e. to use efficient non-
linear optimization methods.

An EM formulation leads to an algorithm where we iter-
ate the following two steps until convergence:

1. In the E-step, we keep the current estimate �#[)\=] for the
parameters fixed, and calculate a conditional posterior���-E 	 �^K_��[M\=]`� over model configurations E :���-E 	 �^K_� [M\=] �'&/���-� 	 ELK � [M\=] �)��� EN� (3)

where
� [)\=] �a� � ��[M\=]`� and the vanishing points are

constant. A detailed description follows in section 2.4.

2. In the M-step, we maximize the expected log-posteriorb � �dce� [)\f] � with respect to � to obtain a new set of
parameters ��gihkj :b �%�dc_� [M\=] �ml��n(o=p<q ���(� 	 ELK � �%���M�Mrts ofpiq ��� ��� (4)� g<hkj �

argmax$ b � �dce� [)\f] �
where

n0; r denotes expectation, and the expectation is
taken with respect to the distribution ��� E 	 �^Ke�8[M\=]`�
over model configurations E obtained in the E-step.
Section 2.5 provides the details for the M-step.

2.3. The Likelihood Model
The likelihood model ���-� 	 ELK � � we use is nearly identi-
cal to the one used in [2], and is shared between the E-step
and the M-step. As was pointed out in [6], conditional inde-
pendence of the gradient measurements in � does not hold
for two adjacent pixels as the gradient operation averages
over a window. Thus, we subsample the image at sites 2 to
make the measurements T 4 conditionally independent givenE and

�
, and obtain the following likelihood model:���(� 	 ELK � � � R 4 ��� C 4 	 3.4i�)���-u,4 	 3v4wK � � (5)

where
C 4 and u 4 are respectively the gradient magnitude

and perpendicular edge orientation at site 2 . Magnitude and
orientation are modeled independently and hence the likeli-
hood at a given site 2 is the product of two components:

The gradient magnitude likelihood ��� C.	 3X� models the
fact that the gradient magnitude is higher on average if an
edge is present. Hence, it depends only upon the edge
model 3 , and is defined as

��� C.	 3�� �yx � [0g � C � if 3 �N�i;f;=; � K 5@?zA:C#D� [
{V{ � C � if 3 ��5�787
In contrast to [2], we do not use histograms but fitted a
Gaussian mixture distribution, � [
{V{ ��| �(} �~�i;f��� K0� �� ;��i� � and � [Mg ��| �(} ���,;���� K0� �/�G; �,� � .

The edge orientation likelihood ���-u 	 3ZK � � models the
distribution over orientation given the edge model 3 and
the set of vanishing points

�
, and is defined asx ��� gY� �-u.���G� � S KM���M� if 3 ���i;f; ��Y���Y�

otherwise

where � ��� �tK � K ���U� is the location of the site 2 in homoge-
neous coordinates, and

� S
is the 3��(� vanishing point in

�
.

The predicted edge orientation � � �G� � S KM��� is computed
by taking the cross product� S�� � �N� � K0��K ��� �
and computing � as �i�
�� 
�i¡¢�Q� �V� � . For the density �£� gY� �-�
we use a zero-mean Gaussian on the difference u:�¤� be-
tween the measured and predicted edge orientations. As
standard deviation we use � � � ;=�`�

from a fitted Gaussian.

2.4. E-Step
The E-step’s only dependence on the current parameter esti-
mate ��[M\=] is through the corresponding location of the van-
ishing points

� [M\=] . Hence, since both �8[M\=] and
� [M\=] are

kept fixed throughout the E-step, the E-step is completely
general and independent of the functional dependence

� � ���
or the representation of � .



The goal of the E-step is to obtain the posterior distribu-
tion ���-E 	 �^K_�8[)\=]`� over model configurations E defined
in Equation 3 on the preceding page,���-E 	 �^K_� [M\=] �'&/��� EN�GR 4 ��� C 4 	 3v4<�)��� u,4 	 3.4¥K � [M\=] �
where we use the likelihood model (5). In the results below
we assume a simple single-site prior ���(3�� over the edge
model 3 . Hence, the posterior on E factors as���-E 	 �^K_� [M\=] �'&¦R 4 ��� C 4 	 3.4i�)���-u,4 	 3v4,K � [)\=] �M���Q3.4i�
Note that this is without loss of generality: an alternative
way to proceed is to use an MRF formulation and approxi-
mate the E-step through sampling or belief propagation.

In both cases it is sufficient for the E-step to obtain a
set of weights §¨4 S for each site 2 , equal to the marginal
posterior probability of the edge model 3 at site 2 :§ 4 S l� ���Q3 4 	 �^K_� [M\=] � (6)

In the simplified non-MRF case the weights § 4 S can be
calculated exactly as (with © 4 a normalization factor):

§¨4 S � �© 4 ��� C 4 	 3.4i�)���-u,4 	 3v4,K � [)\=] �M���Q3.4i�
2.5. M-Step
In the M-step we re-estimate the parameters � through a
non-linear optimization process, but here too the depen-
dence on the chosen parameterization of � is limited: only
the function

� � ��� and its derivative depend upon it.
The objective function to be minimized with respect to �

is the expected log-posterior
b � �dc_�#[)\f]ª� , which simplifies

to a non-linear weighted least-squares optimization. Start-
ing from (4) and using the likelihood model (5) we obtain:b �%�dc_� [M\=] �l� nQofpiq ���(� 	 ELK � � ���0�Mr«s ofpiq ���%���� F 4 nQofpiq ��� u,4 	 3.4¥K � � ���M�0r«s o=p<q ��� ���� F 4 F S¬§¨4 S o=p<q ���-u,4 	 3WK � �%���M�¢s o=p<q ��� ���
where the equality is only up to a constant, and we dropped
the terms ���Q3.4i� and ��� C 4 	 3v4<� as they do not depend on� . The last equality can be easily verified by plugging in the
definition (6) of the weights §4 S . A further performance
improvement can be obtained by realizing that in the sum
above the terms for 3 �®5�787

and 3 �N5@?BA¯C#D
do not

depend on � , as they have no predicted orientation. Thus,

the re-estimated parameters ��gihkj can be obtained by min-
imizing the weighted least-squares error obtained by sum-
ming only over the cases 3 ���i;f;f; �

, for all sites 2 :F 4 FSB°²±_³e´�´�´ g<µ §¨4 S �-u,4��W�G� � S �%���eK0�,4i�M�M¶¨s ofpiq ��� ���
where

� S �%��� is vanishing point
� S

, a function of � .

3. Different Worlds
Different world models, i.e., assumptions we make about
the scene and the chosen parameterization of the camera,
can be fully described in terms of the above problem for-
mulation by specifying three things:

1. the nature of the unknown parameters �
2. the function

� �%��� that defines the number
�

of vanish-
ing points and their functional dependence on �

3. the prior ���(3�� on the edge models

Below we discuss three such models in more detail.

3.1. Manhattan World
As a first application, we consider Coughlan & Yuille’s
original “Manhattan world” model [2]. In this case,

1. the only unknown parameter is the pan · of the camera¸
, hence � �®� · �

is one-dimensional,

2. the vanishing points
�¹�º� � ��� are assumed to be

mutually orthogonal and hence are simply the projec-
tions in

¸
of the 3D homogeneous points

� � K � K � K � � � ,�=� K � K � K � �U� , and
� � K � K � K � �U� lying on the plane at in-

finity. These vanishing directions are assigned model
indices 1, 2, and 3, respectively;

3. the prior over the edge models was taken from [2]:

���Q3X� �¼»½ ¾ � ; � �¿�)� 3 �N� K � K �� ; �iÀ �)� 3 ��5@?zA:C#D� ; Á � �)� 3 ��5�787
3.2. Including Camera Calibration
Next, we consider the case described in [6], where they op-
timize over a larger set of camera parameters. In this case,

1. the parameters � �N�V� K D"�
, where

�
is the focal length

of the camera
¸

, and the 3D orientation of
¸

is given
as a

� � �
rotation matrix

D 9¯ÂmÃ � � � . Since
D

has 3
degrees of freedom, the dimensionality of � is 4.

2. the vanishing points
����� �%��� are the same as above;

3. the prior over the edge models is the same as above



3.3. Atlanta World
Finally, our EM formulation allows us to introduce much
richer sets of constraints. The final model we describe here
allows for multiple sets of orthogonal pairs of vanishing di-
rections in the horizontal plane, all orthogonal to the main
vertical orientation in the scene (typically defined by grav-
ity). This gives rise to the following modeling assumptions:

1. the parameters � �6�V� K D KYÄÅ �
now include one angleÅ � 9�ÂmÃ � � � per additional orthogonal pair of horizon-

tal VPs, relative to the original “Manhattan” triple of
vanishing directions;

2. we can easily compute each additional orthogonal pair
of vanishing points from their corresponding orthog-
onal vanishing directions, which are given by the fol-
lowing expressions in the extra parameter Å �

:� � p<Æ � Å � ��K Æ0Ç ¡«� Å � �eK � K � � � K � � p<Æ � Å � s � � ��K Æ0Ç ¡È� Å � s � � ��K � K � � �
As before, the VPs themselves can be found by pro-
jecting these points at infinity in the camera

¸
.

3. we generalize the original model prior by distributing
the probability mass for horizontal edges over a possi-
bly larger number

�
of vanishing directions:

���(3�� � »ÉÉ½ ÉÉ¾
� ; � �Ê�)� 3 �®�Ë ´ Ë
Ìg¥Í ³ �)� 3 �/�w;f; �� ; ��À �)� 3 �/5@?BA:C"D� ; Á � �)� 3 �/5�787 (7)

4. Results
We obtained good results with our method on a number of
challenging images, some of which we include here. In
all cases, we initialized EM with the result of a quick low-
resolution brute-force search over the pan · of the camera,
similar to [2]. However, EM is known to be sensitive to the
initial estimate for the parameters, and hence this was not
always successful for all images. Hence, strategies for ini-
tializing the EM algorithm remain an important component
of a fully automatic method.

Images shown below were taken by a hand-held digi-
tal camera, except for the robot sequence, which was ac-
quired from a Videre Design firewire camera mounted on an
ATRV-mini mobile robot. In addition to sub-sampling each
image as described above, we also adaptively threshold on
edge magnitude to get a manageable subset of (around 500-
1000) image points on which to operate.

The M-step is implemented using Levenberg-Marquardt
non-linear optimization in conjunction with a sparse QR
solver. To compute the (sparse) Jacobian

A
, defined asA l�yÎ b �%�dc_��[M\=]��Î �

we use an automatic differentiation (AD) framework. AD
is neither symbolic nor numerical differentiation, and cal-
culates the Jacobian at any given value exactly, efficiently,
and free of numerical instabilities. See [8] for more details.

4.1. Manhattan World Results

Figure 2: Recursive estimation of relative orientation for a
mobile robot in a simple “Manhattan world.”

One advantage of using EM is that it is easy to use in
a recursive setting, as we can use the MAP estimate �"!� at
time Ï to initialize the EM search for �#!�QÐ ³

at time Ï`s �
. The

images in Figure 2 demonstrate this on an image sequence
captured by a mobile robot. These results were obtained us-



ing the “Manhattan world” modeling assumptions described
in Section 3.1. Note that the use of EM enables us to incor-
porate a motion model for the robot, and/or to perform a
batch optimization of the parameters

� � � 	Ñ�" Ï Ò?8�
over

a large number of images. In that setting it would be easy
to keep some of the parameters constant over the sequence,
while others are allowed to vary (within bounds).

4.2. Including Camera Calibration

Figure 3: Estimated vanishing directions and edge group-
ings for a “Manhattan world” scene for which focal length
and 3D rotation were unknown.

The main advantage of using EM is that we can include
many parameters and simultaneously optimize over all of
them, without the need for either discretizing or sampling
from the parameter space. To illustrate this, we imple-
mented the model with additional camera parameters (de-
scribed in Section 3.2). We tested it on a number of outdoor
images taken in an urban setting and obtained high-quality
vanishing direction estimates and edge groupings within 20-
30 iterations of EM. The image in Figure 3 took about 12
seconds for 24 iterations, including initialization.

In contrast to [6], where a quaternion representation is
used, we incrementally update the rotation matrix

D
using

Rodrigues’ formula [7]. This implements the exponential
map from the three-dimensional tangent space, in which our
update vector lives, to the space of valid 3D rotation matri-
ces ÂmÃ � � � .
4.3. Atlanta World Results

Figure 4: Estimated vanishing directions for an “Atlanta
world” scene. Note the correctly identified vanishing points
in the image, indicated by small circles where each street
vanishes into the distance.

Finally, we take advantage of our method’s ability to
impose a richer set of constraints on images of complex
scenes. In Figure 4 we show a typical city scene where two
streets converge, and hence two pairs of orthogonal vanish-
ing directions can be perceived in the scene, which are suc-
cessfully recovered by the EM algorithm. Figure 1 shows
a second example with two dominant VP pairs. As a final
example, consider the two images in Figure 5. The left im-
age was recovered using 2 VP pairs, while the right image
was recovered assuming 3 VP pairs (in addition to vertical,
in both cases). As one can tell from the images, the incor-
rect assumption of the former case caused some edges to
be grouped together although they are clearly not parallel.
The image on the right shows the correct grouping and illus-
trates how our method could potentially be used in a model
selection scheme.

5. Conclusions
We have presented a general EM framework for estimating
edge groupings, camera parameters, and vanishing direc-
tions. In addition, we have demonstrated the success of this
framework for a number of different world models. Our
method is fast even in continuous parameter spaces of high



Figure 5: Edge groupings for a complex urban scene under different world models. The world models for the left and right
images assume 2 and 3 horizontal vanishing point pairs, respectively, resulting in different edge classifications.

dimensionality. The resulting edge groupings provide an
excellent basis for future work on single-view 3D scene re-
construction.

Potential improvements to our method include more ro-
bust initialization schemes for camera orientation and hor-
izontal vanishing directions. As illustrated above, it would
also be advantageous to include model selection in our
framework, enabling us to choose between world models
for a scene. Finally, employing an MRF prior in the E-step
could reduce the apparent noise in the above edge-grouping
images by letting neighboring sites influence each other’s
edge classification.
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