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SUMMARY

High dimensional data is often accompanied by inherent low dimensionality that can

be leveraged to design scalable machine learning and signal processing algorithms. Devel-

oping efficient computational frameworks that take advantage of the underlying structure

in the data is crucial. In this thesis, we consider a particular form of inherent low dimen-

sionality in data: subspace models. In many applications, data is known to lie close to a

low dimensional subspace. The underlying subspace itself may or may not be known a

priori. Incorporating this structure into data acquisition systems and algorithms can aid in

scalability.

We first consider two specific applications in the field of array signal processing where

subspace priors on the data are commonly used. For both these applications, we develop

algorithms that require a number of measurements that scale with only the dimension of the

underlying subspace. This is achieved by using linear dimensionality reduction maps on the

signals received by the antenna array. In doing so, we show that such applications impose

constraints on the way dimensionality reduction may be performed. In particular, arrays

demand dimensionality reduction maps that can operate on individual subsets or blocks of

data at a time, without having access to other blocks. We show how such a constraint can

be incorporated into designing data acquisition systems that can still scale with the inherent

low dimensionality.

Inspired by the block constraints imposed by an antenna array, we consider more gen-

eral problems in numerical linear algebra where the data has a natural partition into blocks.

This is common in applications with distributed or decentralized data. We study the prob-

lems of sketched ridge regression and sketched matrix multiplication under this constraint

and give sample optimal theoretical guarantees on block diagonal sketching matrices.

Extending the block model to low-rank matrices, we then study the problem of recover-

ing a low-rank matrix from compressed observations of each column. While each column

xvi



itself is compressed to a point that is beyond recovery, we leverage their joint structure

to recover the matrix as a whole. To do so, we establish a new framework to design es-

timators of low-rank matrices that obey the constraints imposed by different observation

models. Using this framework, we develop an algorithm to recover low-rank matrices from

column-wise compressed observations. We also give favorable theoretical guarantees on

our algorithm and provide a fast implementation using the Alternating direction method of

multipliers (ADMM) framework.

Finally, we extend our framework to design low-rank matrix estimators for the appli-

cation of blind deconvolution. Since it is a special instance of the general low-rank matrix

recovery problem, we apply our previously established framework to design a low-rank

estimator to this problem. This yields a novel estimation algorithm for which we provide

uniform recovery guarantees that are sample optimal.

xvii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

The famous curse of dimensionality states that as the dimension of data grows, statistically

reliable inference requires an amount of data that grows exponentially in the dimension.

A crucial observation that aids in circumventing such an unrealistic demand for data is

that high dimensional data is very often highly structured, thus resulting in an inherent low

dimensionality. Sparsity, subspaces, low dimensional manifolds, low-rank matrices are

among the many ways in which low-dimensionality can be effectively modeled. Inherent

low dimensional structure when incorporated into algorithms directly obviates the need for

an exponential amount of data in the original dimension.

In this thesis, we focus on one particular form of structure found in high dimensional

data, namely the subspace model. Under such a model, data in n dimensions is assumed

to lie close to a subspace of dimension d such that d ! n. The subspace itself may or

may not be known a priori. In either scenario, a natural question is how to incorporate

the knowledge of the existence of such a structure into both data acquisition systems and

inference algorithms. The hope in doing so is to reduce the requirement on data acquisition,

data storage and algorithm run-time from Opfpnqq to Opfpdqq where fp¨q is any suitable

function.

A clear motivating example arises in application from array signal processing. In a

standard setting, an array of antenna elements sample and collect incoming signals. Some

of the common goals are to identify the direction of the incoming signal or to reconstruct

an image of the signal source. Let us consider an antenna array with 64x64 elements. If

the elements are sampled at 25GHz, a completely reasonable rate in many applications,

1



the rate of acquisition is 12.8TB per second, more than 100 times the rate at which data is

uploaded to YouTube worldwide! Another related example is the Square Kilometer Array

(SKA) [1], where antenna elements are spread across the continents of Africa and Australia

collecting data at rates of about 157TB/s! It is clear that even basic algorithms might fail at

such a scale. However, as we shall see in the sequel, for many array processing tasks, the

subspace-based prior provides a very realistic model and directly helps reduce the scale of

the required operations.

In the rest of the thesis, we will present several problems where the subspace-based

modeling is relevant and design data acquisition methods and algorithms to take advantage

of the inherent low-dimensionality. In all of the problems we discuss, the method of choice

will be linear dimensionality reduction of the data to a dimension that depends only on the

subspace dimension and a tolerance parameter. We then develop algorithmic solutions that

solve the original problem and attain the desired accuracy level. In designing such a linear

map, we take inspiration from a range of methods loosely termed sketching, developed by

the theoretical computer science community.

1.2 Sketching for numerical linear algebra

Large scale linear algebraic computations form the backbone of most signal processing and

machine learning algorithms. Accelerating such computations is key to scale them to large

real-world datasets. With this goal in mind, the sketching paradigm aims to solve problems

in linear algebra only approximately, but with much smaller time and space complexities.

They employ randomization of the data as a tool to reduce the dimensionality of the data

while preserving the information required by downstream tasks. A fundamental result in

theoretical computer science that captures this spirit is the famous Johnson-Lindenstrauss

lemma, a version of which is stated below.

Theorem 1 (Johnson-Lindenstrauss Lemma [2]) Let ui P Rn, i P t1, ¨ ¨ ¨ , mu and

let R P Rkˆn such that Rij „ N p0, 1q and consider vi “
1?
k
Ru @i. Then, if k “

2



Oplogpmq{ε2q, we have

p1´ εq }ui ´ uj}
2
ď }vi ´ vj}

2
ď p1` εq }ui ´ uj}

2 (1.1)

for all i, j with probability at least 0.9.

Algorithms that depend on the Euclidean distance between the data points can then be

directly designed in the lower dimensional space. The Johnson-Lindenstrauss lemma caters

to any discrete set of m data points. Generalizing such dimensionality reduction maps

to more complex sets of points (including subspaces) forms the core of sketching based

methods. In this section, we briefly review sketching methods in the context of linear

regression and matrix multiplication. They have a direct relationship with the methods

developed in the rest of the thesis.

Let A P Rnˆd be a matrix with n " d, y P Rn be a vector of observations. The linear

regression problem then tries to find the best fit for y in the column space of A by solving

the problem

arg min
x

}y ´Ax}2 . (1.2)

Solving (Equation 1.2) requires Opnd2q time, which can be slow for large datasets. Now

let S P Rmˆn with d ă m ! n and consider the optimization problem

arg min
x

}pSyq ´ pSAqx}2 . (1.3)

This optimization problem takes only Opmd2q time. If Sij „ N p0, 1{mq, then the follow-

ing result guarantees that the solutions of the two optimization programs are close in terms

of the prediction error.

Theorem 2 [3] Let 0 ă ε ă 1 and δ ă 1, and Sij „ N p0, 1{mq. Let x0, px be the solutions

3



to (Equation 1.2) and (Equation 1.3) respectively and m “ Oppd` logp1{δqqε´2q. Then,

p1´ εq }Ax0 ´ y}2 ď }Apx´ y}2 ď p1` εq }Ax0 ´ y}2 (1.4)

with probability at least 1´ δ.

This can be restated as a subspace embedding guarantee that preserves all pairwise dis-

tances between points in a subspace:

p1´ εq }z}2 ď }Sz}2 ď p1` εq }z}2 (1.5)

with probability at least 1 ´ δ for all vectors z in the subspace spanned by the columns

of the matrix rA ys. Choosing S as in Theorem 2 will not actually result in an overall

algorithm that is faster than Opnd2q, since computing SA itself takes Opmdnq ą Opnd2q.

However, it captures the core idea of sketching. When S is such that the product SA can

be computed quickly, the algorithmic contributions are more tangible.

More recent results show that S can be drawn from a suite of sparse and structured

distributions that reduce the overall of complexity of computing SA, resulting in a program

that solves (Equation 1.3) in OpnnzpAqq ` rOpd3ε´2q time where nnz() denotes the number

of non-zeros. One category of such distributions on Sare the sampling matrices, where

each row in S samples a single row from the matrix A in a randomized fashion. For such

sampling methods, the distribution from which the rows are sampled determines if the

corresponding sketch generates a subspace embedding. One particular distribution that is

guaranteed to do so is given by the leverage score. Let U be an orthobasis for the column

space of the matrix A. Then the leverage score of the k-th row is defined as }Upk, :q}2. If

the sampling distribution is proportional to the leverage scores, then the sketching process

will generate a subspace embedding with high probability for Opd log d{ε2q number of

samples. In chapter 3, we will encounter a similar notion of block leverage scores that

determine how effective block diagonal sketching matrices are in solving the regression

4



problem.

Other distributions include sparse (but not sampling) matrices that take sparse linear

combinations and Subsampled Randomized Hadamard Transforms (SRHT). A detailed ac-

count of these families of sketching matrices and their use in regression is provided in [3].

Further, when rankpAq ă d, similar sketching based methods can be used to solve the more

stable ridge regression problem. In this case, [4] shows that the reduced dimension m can

depend only on the effective rank of A (a notion that captures spectral decay), which can

be much smaller than d.

The second problem of interest is that of computing approximate matrix products.

Given two matrices A P Rnˆp, B P Rnˆq with n " p, q, computing the product AJB

takes Opnpqq time. Taking the sketching route as before, we seek a matrix S P Rmˆn with

m ! n such that
›

›pSAqJpSBqJ ´AJB
›

›

X
ď ε }A}X }B}X (1.6)

where }¨}X can denote any matrix norm. A special case is where B “ A and the goal is to

compute a Grammian matrix of the form AJA. Computing the product pSAqJpSBqJ takes

only Opmpqq time, not accounting for the time taken to compute the individual sketched

matrices SA and SB.

Sampling methods view the product AJB as a sum of outer products of the rows of A

and B:

AB “

n
ÿ

k“1

Apk, :qJBpk, :q. (1.7)

The idea of sampling then aims to sample and rescale m rows of A and B and approximate

the above sum by the outer product of just the m sampled rows. By using an appropriate

distribution such as length-square distribution it can be shown that (Equation 1.6) hold in a

Frobenius norm sense when m “ Ωp1{ε2q [5, 6]. One particular distribution that has been

shown to be effective is the so-called length-squared distribution: each row is sampled with

a probability pk “ }Apk, :q}
2
{ }A}2F .
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A similar guarantee in the spectral norm sense can be achieved by drawing S from any

of distributions with subspace embedding guarantees (as for regression) and m “ Oppr `

logp1{δqq{ε2q. Further, when the matrices A and B are only approximately low-rank, [4]

provides a bound onm that depends only on the stable rank of the matrices A and B. Here,

stable rank is defined as

stable rankpAq “
}A}2

}A}2F
(1.8)

and is always upper bounded by the rank. This provides a tighter upper bound on the

required sample complexity.

Finally, sketching methods are also highly useful in many related problems such as

low-rank approximations of matrices, tensor regression and general `p-regression. [3].

1.3 Subspace learning for array signal processing

Subspace models are highly relevant to the field of array signal processing. In this the-

sis, we address two particular applications: i) Active imaging of range-limited targets and

ii) Broadband source localization. For both applications, we will use sketching-inspired

methods to design data acquisition systems that scale with the inherent dimensionality of

the data rather than the ambient dimension.

Active array imaging

In active array imaging, a transmitter emits an excitation signal and an image of the target

is reconstructed using reflections collected at an array of sensors. This is illustrated in

Figure 1.1, where a target at coordinates pr0, θ0q is reflecting the signals emitted by the

array. Let x0 P RN denote the target scene to be imaged. For an array withM elements, the

measurements obtained with an excitation signal of wavelength λi follow a linear model:

yλ “ Aλx0 (1.9)

where Aλ P CMˆN models the signal propagation and depends on the physical location
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Figure 1.1: The array imaging setup in the 1D case. R represents a point on the target image. The
antenna array, illustrated using the set of dots, lies on the X-axis in the region r´D2 , D2 s. A single
point target at pr0, θ0q reflects the signals emitted by the array.

and extent of the target scene x0. Under broadband imaging, the excitation wavelength

ranges over tλmin “ λ1, ¨ ¨ ¨ , λK “ λmaxu and we obtain a total MK measurements of

the target scene. The linear model for this ensemble of measurements is given as

y “

»

—

—

—

—

—

—

—

–

y1

y2

...

yK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

A1

A2

...

AK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x0 “ Ax0. (1.10)

Let us consider a specific signal model, namely range-limited target scenes. Range-

limited implies that the extent or the depth of the scene along a radial direction from the

center of the array is limited. For such a signal model, the induced linear model A is of a

much lower rank than MK. Owing to this structure, a common sketching operator across

all the wavelengths can reduce the number of measurements to be collected, thus reducing

the cost of operating the array. The resulting linear model follows that of (Equation 1.3),
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but the sketching matrix has a very unique structure:

Φy “

»

—

—

—

—

—

—

—

–

φ 0 ¨ ¨ ¨ 0

0 φ ¨ ¨ ¨ 0

¨ ¨ ¨ ¨

0 0 ¨ ¨ ¨ φ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

A1

A2

...

AK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x0 (1.11)

where φ P R`ˆM with ` ! M and each row in φ contains the weights to obtain a sin-

gle linear combination of the array outputs. The goal is then to design Φ such that the

minimum-norm solutions to the two optimization problems below match:

pxLS “ arg min
x

}y ´Ax}2 ; pxSLS “ arg min
x

}Φy ´ ΦAx}2 . (1.12)

It is worth noting here that the minimum norm solutions to the two optimization problems

coincide when the row spaces of the matrices A and ΦA coincide. It is equivalent to learn-

ing the row space of the matrix A using structured low dimensional projections. Hence,

active array imaging using coded measurements is equivalent to solving a sketched least

squares problem. We address this problem in chapter 2 and provide theoretical guarantees

on the sample complexity ` for which the row spaces of the matrices A and ΦA coincide.

Broadband source localization

Let a signal xptq be bandlimited to r´∆,∆s. Further, let it be sampled at a frequency fs ą

2∆ and consider N consecutive samples. Such a sampled signal has a ‘digital bandwidth’

W “ 2∆{fs ă 0.5 and lies in a subspace of dimension approximately 2NW . The basis

for such a signal is given by the eigenvectors of the so-called Prolate matrix, defined as

BN,W pm,nq “
2πW sinpm´ nq

πpm´ nq
. (1.13)

Most real-world broadband signals bandlimited to W ă 0.5 lie in the subspace spanned

by the top roughly 2NW eigenvectors of the above matrix. If the signal xptq is modulated
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to a frequency fc, the resulting subspace also gets modulated by the corresponding digital

sinusoid, given by efcrns “ exp´j2πnfc{fs.

Given a superposition of a number of broadband signals, broadband source localization

seeks to identify the frequency support of each of the signals. For sampled signals, we can

model the superposition as

xrns “
L
ÿ

`“1

xirns, n “ 1, ¨ ¨ ¨ , N. (1.14)

where xirns’s are uniform samples of a broadband signal xiptq. Although there are N

available samples of x, the inherent dimensionality of such a signal can be much lower, de-

pending on the bandwidth of the signals xi. Since each of the vectors xi lies approximately

in a subspace of dimension 2NW , their superposition will lie in a union of subspaces with

a number of degrees of freedom upper bounded by 2NLW .

Unlike in active array imaging, the underlying subspaces are unknown in the source

localization problem. We only have knowledge of the set of candidate subspaces charac-

terized by the center frequencies of each of the signals and the eigenvectors of the Prolate

matrix. In chapter 2, we develop methods to learn the active subspaces using compressed

measurements.

1.4 Sketched regression for decentralized data

The dimensionality reduction maps considered in the standard sketching literature usu-

ally require access to all or arbitrary subsets of the data matrices, as shown in Figure 1.2.

However, in many applications, the data matrices are not available as a whole at a single

location. For example, sketching for active imaging (section 1.3) required a block diagonal

sketching matrix with repeated blocks on the diagonal.

We extend our previous results on sketching with block diagonal matrices: we assume

that the blocks are no longer constrained to be the same or even have the same size and
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analyze the Tikhonov regularized least squares problem. Also known as ridge regression,

it is a commonly used method in regularizing linear regression problems, especially when

the linear model has a decaying spectrum.

Formally, if A P R rNˆd is the matrix of covariates and b P R rN contains labels, the ridge

regression problem is

min
xPRd

fpxq :“ }Ax´ b}2 ` λ }x}2 . (1.15)

The parameter λ is chosen to provide stability by overriding small singular values of A. As

before, the main idea is to expedite solving for x by applying a compression matrix S and

then solving

min
xPRd

fSpxq :“ }SAx´ Sb}2 ` λ }x}2 , (1.16)

where S P RĂMˆ rN with ĂM ! rN . Of course, the solution x˚ to (Equation 1.15) and the solu-

tion x̂ to (Equation 1.16) will not be exactly the same. But if A has effective rank (defined

as
ř

i
σ2
i

σ2
i`λ

) r, then simply drawing the entries of S independently from a subgaussian

distribution with ĂM “ Ωpr{εq results in [4]fpx̂q ď p1 ` εqfpx˚q for small ε. Guarantees

for sketching matrices that are sparse (and so can be applied efficiently) can also be found

in [4], although with slightly worse sample complexities.

W are interested in a more structured sketching matrix. We consider an S that is block

diagonal and under mild assumptions on A, show that it can be as effective as standard

sketching matrices. In particular, we let S assume the following structure:

S “ SD “

»

—

—

—

—

—

—

—

–

S1 0 ¨ ¨ ¨ 0

0 S2 ¨ ¨ ¨ 0

...
... ¨ ¨ ¨

...

0 0 ¨ ¨ ¨ SJ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1.17)

with Sj of size Mj ˆ N and JN “ rN . Each Sj provides Mj random projections that are

localized, to the data block Aj , with a total sample complexity of ĂM “
ř

jMj .
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Figure 1.2: Existing sketching strategies such as dense sub-Gaussian, SRHT matrices (left) and
sparse sketching matrices (center) assume access to all or a few arbitrarily placed rows of A. How-
ever, our localized model (right) needs access to only well-separated parts of the data matrix.

Our motivation to study this problem is multifold. First, computing the product SDA

can be much cheaper when compared with an unstructured random projection. For generic

Sj , the sketch SDA can be computed in time (OpNdĂMq), as compared to the Op rNdĂMq

required for a dense, unstructured sketch. Second, the sketching computation is trivial to

parallelize into J blocks, each requiring OpNdMjq time. Along with these computational

advantages, the fact that the subsketches SjAj can be computed independently gives us

a method for sketching when the data is acquired in a distributed fashion. In fact, our

block diagonal sketching framework can be thought of as a generalization of row sampling

methods that randomly select rows of A based on their norms (i.e., leverage scores). The

Sj for row sampling would be diagonal, with only 1’s and 0’s on the diagonals (modulo

scaling).

En route to establishing theoretical guarantees on block diagonal sketching matrices for

ridge regression, we establish guarantees on their utility in the approximate matrix product

problem. For any two matrices W P Rnˆm and Y P Rnˆp, we consider approximating the

product WJY with pSDWqT pSDYq and give bounds on the error as below.

›

›pSDWq
T
pSDYq ´WTY

›

› ď ε }W} }Y} , (1.18)

with high probability. The state of the art results show that the sample complexity (number

of rows in S) depends only on the stable ranks of the matrices W and Y. Stable rank of a
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matrix is defined as

srpMq “
}M}

2
F

}M}
2
2

. (1.19)

Note that srpMq ď rankpMq. We are able to provide similar bounds for block diagonal

matrices.

To demonstrate that block diagonal matrices can have optimal sample complexity, we

show simulation results on synthetic data: N “ 2000, J “ 10, d “ 50. We design the

singular values such that for λ “ 0.15, sdλ “ 8.5, but rankpAq “ 50. For each trial,

we generate S with entries drawn from N p0, 1{
a

ĂMq and SD with the entries of Sj drawn

fromN p0, 1{
a

Mjq. In Figure 3.2, we plot the quantity fpx̂q{fpx˚q averaged over 10 trials

for different values of ĂM .

Figure 1.3: fpx̂q{fpx˚q for three sketching matrices: a dense matrix with standard Gaussian en-
tries, a block diagonal matrix with equal sized blocks (uniform diagonal matrix) and a block di-
agonal matrix with block sizes chosen as Mj “ M0ΓpUjq. A ratio close to 1 indicates that the
sketching matrix is effective in solving (Equation 3.3). When Mj’s are chosen appropriately, block
diagonal matrices can be as effective as a general matrix.

1.5 Decentralized sketching for low-rank matrices

In this problem, we are interested in recovering data points that belong to a low dimen-

sional subspace from compressed observations of each data point. We assume that the

subspace itself is unknown a priori. By themselves, each of the vectors is compressed past

the point where it can be recovered, but by recovering them jointly, their mutual structure

12



can be taken advantage of. The compression itself takes the form of a randomized linear

dimensionality reducing map, similar to sketching.

Let xi P Rd1 for i “ 1, ¨ ¨ ¨ , d2 be vectors from a subspace of dimension r and let

X0 “ rx1 ¨ ¨ ¨ xd2s. We observe L ă d1 noisy random linear measurements of each

column of X0:

yl,i “ xAl,i,X0y ` zl,i, (1.20)

Al,i “
1
?
L

bl,ie
J
i (1.21)

for l “ 1, ¨ ¨ ¨ L and i “ 1, ¨ ¨ ¨ d2, where pbl,iq vectors of length d1 and ei P Rd2 is the lth

standard basis vector of length d2. We assume that zl,i is noise drawn from N p0, σ2q. Our

main motivation for this work is to address problems of distributed data acquisition and

high dimensional PCA. For the sequel, we define d “ d1 ` d2.

Mixed-norm as a novel convex relaxation

Since the matrix X0 is of rank-r, we can cast the problem of recovering the vectors as a

low-rank matrix recovery problem. We propose a novel relaxation for the set of low-rank

matrices, using which X0 can be recovered from yl,i in (Equation 1.20) with almost optimal

sample complexity L.

For a matrix X P Rd1ˆd2 we define the maximum `2-norm of the columns of X as

}X}1Ñ2 “ max
j“1¨¨¨d2

}Xej}2 , (1.22)

where ej is the j th standard basis vector. We also define the “mixed-norm” of a matrix X

as

}X}mixed “ inf
U,V:UVJ“X

}U}F
›

›VJ
›

›

1Ñ2
. (1.23)

The above pair of norms arise as a result of interpreting a matrix X P Rd1ˆd2 as an operator

between the Banach spaces `d21 and `d12 . Their utility in characterizing the set of low-rank
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matrices follows from the following property:

Lemma 1 Let X P Rd1ˆd2a satisfy rankpXq ď r. Then

}X}1Ñ2 ď }X}mixed ď
?
r }X}1Ñ2 . (1.24)

For matrices whose column norms are bounded uniformly by a constant α, their mixed-

norm norm is bounded by
?
rα. Hence, the pair of norms }¨}1Ñ2 and }¨}mixed together

characterize the set of low-rank matrices with bounded column norms. To recover X0, we

optimize a suitable loss function over the following set:

κpα,Rq “ tX : }X}1Ñ2 ď α, }X}mixed ď Ru . (1.25)

Note that the set of rank-r matrices with column norms bounded by α is a subset of κpα,Rq

when R ě α
?
r. We use the following optimization to recover X0:

minimize
X

ÿ

l,i

|yl,i ´ xAl,i,Xy|
2

subject to X P κpα,Rq.

(1.26)

Our main result, stated in chapter 4, provides an upper bound on the Frobenius norm

of the error between the estimate X̂ obtained from solving (Equation 1.26) and the ground

truth matrix X0 that holds simultaneously for all matrices X P κpα,Rq. Enroute to proving

our guarantee, we indeed show that
ř

l,ixAl,i,My2 is well concentrated around its expected

value of }M}
2
F for all M P κpα,Rq. Hence, the measurements result in an embedding of

the set κpα,Rq.

Scalable algorithm for mixed-norm based optimization
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The mixed-norm of any matrix X can be computed in polynomial time as

minimize
W

R

subject to tracepW11q ď R, }diagpW22q}8 ď R.
(1.27)

where diagp¨q denotes the vector of the diagonal elements of a matrix. Any optimization

routine of the form
minimize

X
fpXq

subject to X P κpα,Rq
(1.28)

can be reformulated as

minimize
W11,W22,X

fpXq

subject to tracepW11q ď R, }diagpW22q}8 ď R,
›

›WJ
12

›

›

2,8
ď α, Ŵ ľ 0

(1.29)

where Ŵ “ r
W11 X
XJ W22

s. The program in (Equation 1.29) is now a constrained convex

optimization problem over the set of positive semidefinite matrices when fp¨q is convex.

Experimental comparison of mixed nuclear norm based methods

We performed simulations to compare our proposed mixed-norm based optimization in

(Equation 4.26) with the standard nuclear norm based estimator, where a LASSO type

formulation minimizes the least square loss along with the nuclear norm of the matrix. We

performed simulations on matrices of 1000 ˆ 1000, at different noise levels and measured

the relative Frobenius norm error between the estimate and the ground truth. As a pre-

processing step, we normalize each column of the ground truth matrix to have the same

norm. We perform Monte-Carlo simulations with randomly generated data, with 5 trials

for each combination of noise level and sample complexity L. The results are summarized

in Table 1.1.
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Table 1.1: Each box contains two entries: the left is the relative Frobenius norm between the
estimate obtained using the mixed-norm optimization and the ground truth, the right is that for
estimate obtained using nuclear norm minimization. The size of the test matrices was 1000ˆ 1000
and their rank was 5. Each column was pre-processed to have the same `2-norm. The error values
shows are average values obtained over 5 trials.

SNR \L 50 150 200
0 dB 0.5180; 0.7518 0.2812; 0.6866 0.2527; 0.7157
10dB 0.1665; 0.2705 0.0876; 0.1978 0.0779; 0.1997
20dB 0.0532; 0.0746 0.0284; 0.0519 0.0248; 0.0482

1.6 Subspace based blind deconvolution

The column-wise sketching model developed in section 1.5 can also be used in a very

specialized application commonly found in signal processing: blind deconvolution. Let

w P RL and x P RL be two signals lying in known lower dimensional subspaces D and C

respectively:

w “ Dh (1.30)

x “ Cm (1.31)

where w,x P RL, D P RLˆK , C P RLˆN , h P RK and m P RN . D and C are known a

priori. The standard blind deconvolution observation model is given as:

y “ w ˚ x` ν, (1.32)

where ν is additive noise, y are the measurements and ˚ denotes circular convolution de-

fined as

pw ˚ xqris “
L
ÿ

l“1

wrlsxri´ l ` 1s.

where i “ 1, ¨ ¨ ¨ , L and the index i´l`1 is assumed to be modulo t1, ¨ ¨ ¨ , Lu. Given y, we

are interested in recovering the signals h and m. After applying the Fourier transform on

both sides and after further simplification, it can be shown that the problem of recovering h
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and m can be restated as a rank-1 matrix recovery problem. Let Z0 “ mh˚ and pD “ FD,

where F is the unitary discrete Fourier transform matrix. Then, the blind deconvolution

problem can be recast as recovering Z0 from measurements given as

yr`s “ xpcle
J
l ,Z0

pDy ` ν (1.33)

where pcJl is the lth row of the matrix FC.

We need a few more assumptions on the subspaces D and C before we can proceed.

In particular, we assume that the subspace D is time-limited to K: the last L ´ K rows

od D are zeros. Further, we assume C is generic. In other words, we assume C is drawn

randomly from r-dimensional subspaces in RL. So we let the entries of the matrix C be

drawn from the standard Gaussian distribution.

Under these assumptions, (Equation 1.33) is equivalent to the decentralized sketching

model developed in (Equation 1.20), except for the additional subspace constraint on the

right factor of the ground truth matrix. Similar to section 1.5, we develop a new convex

relaxation for the set of low-rank matrices to account for the very specialized observation

model in (Equation 1.33). Using such a relaxation, we provide sample optimal and uniform

guarantees on the recovery error of our proposed estimator.

Both the column-wise sketching of low-rank matrices studied in section 1.5 and the

blind deconvolution model in (Equation 1.33) are specific instances of the more general

low-rank matrix recovery problem. Although standard methods to perform low-rank re-

covery use the nuclear norm as a convex proxy for the rank of a matrix, we note that this

not the only choice. In many cases, the observation model can dictate the design of the

recovery algorithm. Using the models in (Equation 1.20) and (Equation 1.33) as specific

examples, we develop a general framework by which knowledge of the observation model

can be used to tailor specific recovery algorithms for the set of low-rank matrices.
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1.7 Organization of the thesis

This thesis studies and usage of subspace models in large scale signal processing and ma-

chine learning algorithms. It explores techniques to incorporate subspace priors into data

acquisition systems and algorithms and aims to reduce the time and space complexity of

the systems/algorithms to being proportional to the subspace dimension rather than the

ambient dimension of the data.

In chapter 2, we consider two common problem in the field of array signal processing,

namely active array imaging and source localization. For active array imaging, we first

identify the underlying subspace model and then use structured random projections to re-

duce the number of spatial measurements required to image range-limited target scenes.

With regards to source localization, we identify that existing methods do not address the

broadband nature of real-world signals. By using a subspace model to describe band-

limited signals, we develop algorithms to perform broadband source localization.

In chapter 3, we identify that existing matrix sketching techniques to generate subspace

embeddings require access to all or arbitrary subsets of data to perform dimensionality

reduction. We consider a block diagonal model on randomized sketching matrices and

show theroetically and experimentally that they can be as efficient as standard sketching

matrices, while also being amenable to applications where data is only available in parts.

In chapter 4, we consider extend the application of randomized sketching to applica-

tions where the underlying subspace is unknown a priori. We consider linear compression

and recovery of a series of data points from a low dimensional subspace. By designing a

convex relaxation of the set of low-rank matrices that is tailored for our particular obser-

vation model, we obtain theoretical guarantees and experimental performance that is better

than standard nuclear-norm based low-rank estimators.

In chapter 5, we extend the framework of tailoring low-rank estimators that depend on

the observation model developed in chapter 4 to the problem of blind deconvolution. By
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posing the it as a low-rank matrix recovery problem, we develop a recovery algorithm that

caters to the specifics of the blind deconvolution observation model. We provide uniform

theoretical guarantees for our proposed estimator, thus improving upon existing methods

that are able to provide only instance based guarantees.
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CHAPTER 2

SKETCHED REGRESSION AND SUBSPACE LEARNING IN ARRAY SIGNAL

PROCESSING

2.1 Active imaging of range-limited targets

2.1.1 Introduction

In active array imaging, a transmitter emits an excitation signal and then forms an image

using the reflections collected at an array of sensors. This technique has been employed

in a multitude of fields ranging from medicine to security and surveillance, among many

others. Array imaging offers an observation window outside of the visible spectrum, which

can prove crucial in applications where visible light cannot penetrate. However, a high cost

barrier has prevented widespread adoption of array imaging in commercial products [7].

Nevertheless, applications such as autonomous vehicles, depth sensing, gesture recogni-

tion [8], and others have caused an increase of interest in commercializing active imaging

modalities such as LiDAR and RADAR, leading to efforts aimed at reducing the cost and

increasing the efficiency of array imaging systems. In such endeavors, developing a good

signal model is key in designing efficient reconstruction algorithms. For example, sparsity

based signal models naturally yield themselves to algorithms from the compressed sensing

literature.

We are interested in a different model on the target scene where we assume that the

targets are “range-limited”: targets that have limited range or depth along each angle from

the antenna array. When such targets are subjected to active imaging using illumination

with a finite bandwidth, the reflected signals captured by the antenna array are nothing

but the band-limited Fourier domain measurements of the range-limited target. Such a

concentration in both the spectral and spatial domains imposes low dimensionality in the
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received signals, leading to a limited number of degrees of freedom. This naturally leads

to the question of whether spatially undersampled arrays can yield reconstructions as good

as those obtained with full arrays. While this is reminiscent of compressed sensing, an

important distinction between our work and the compressed sensing paradigm is that we

do not require the scene to be sparse, but only to be range-limited.

Consider an antenna array system withM elements, exciting a scene with a narrowband

signal of wavelength λ. Mathematically, the measurement process can be expressed as a

linear model (we develop this model in more detail in subsection 2.1.2):

yλ “ Aλx0 (2.1)

where x0 P RN denotes the sampled target reflectivity and Aλ is the linear operator (MˆN

matrix) mapping the scene to the measurements and yλ P CM denotes the set of array out-

puts. Similar set of measurements collected across a discrete set of excitation wavelengths

λ1 ¨ ¨ ¨λK can be denoted as y “ ryJλ1 ¨ ¨ ¨ yJλK s
J. While these measurements can be ob-

tained by sequentially exciting the scene with different wavelengths, a standard approach is

to use a single broadband excitation signal, collect the output of the M array elements and

then obtain y by computing a temporal Fourier transform of the output of each element.

In order to take advantage of the low-dimensionality of the array outputs, we rely on

the standard practice of obtaining linear combinations of array outputs as measurements in

lieu of obtaining direct array element read-outs. This can be modeled as:

zλ “ ψλyλ “ ψλAλx0 (2.2)

where ψλ is typically an invertibleMˆM matrix. For example, a standard array processing

method called beamforming collects linear combinations of the array elements’ outputs to

induce spatial directivity. In traditional beamforming the weights are chosen to induce spa-

tial selectivity where each of the M measurements collects reflections from distinct spatial
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sectors. Beamforming can be considered as a special case of aperture coding: collecting

linear combinations of the array outputs across the aperture. Henceforth, we refer to any

linear combination of array outputs as a spatial measurement or beam.

Our motivation in this work is based on the observation that sampling and storing all

of the array elements’ outputs, or obtaining all of the M independent linear combinations

required for traditional beamforming can be challenging and is in fact wasteful when the

target scene is range-limited. We show that by taking fewer generic linear combinations (or

aperture codes) or even by spatial subsampling, one can obtain reconstructions of the same

quality as that of using full measurements. Our measurement model can be mathematically

described as obtaining the following set of measurements at each of the K wavelengths:

yλ “ φAλx0 where φ is a compressive LˆM matrix (L ăM ).

Since we do not impose any additional structure on the target scene such as sparsity,

when the model Aλ is designed to incorporate the knowledge of the range-limit, the target

scene can be reconstructed from the full set of measurements y using the ordinary least

squares estimator:

min
x
}y ´Ax}2

where A “ rA˚
λ1
¨ ¨ ¨A˚

λK
s˚ and ˚ denotes conjugate transpose of a matrix. Our goal

is to show that a similar reconstruction performance can be obtained using a subsampled

set of measurements. We take inspiration sketching techniques and provide theoretical

justification for the proposed signal acquisition method. We show that image reconstruction

with a few generic aperture codes is equivalent to a sketched least squares problem of the

form

min
x
}Φy ´ ΦAx}2 (2.3)

where Φ is a highly structured compressive matrix and then establish equivalence between

the solutions of the ordinary least squares method and the sketched least squares method.

As an example, consider an imaging setup where the array is two dimensional and has
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(a) full imaging (b) 160 generic beams

(c) 80 generic beams (d) 50 generic beams

Figure 2.1: Aperture coded imaging for images at a constant range. (a) represents the conventional
method, which uses 1100 beams. (b),(c) and (d) show the reconstruction results using only 160, 80
and 50 generic linear combinations of the antenna array outputs. Aperture coding can be used to
reduce the number of spatial measurements to as low as 80. Reducing the number of measurements
further to 50 leads to poor reconstruction.

40ˆ40 sensors with sensors placed λ{2 “ 3.75cm apart and a target scene having a span of

r´45˝, 45˝s in both elevation and azimuthal angles. Let the scene have delta thickness: only

one reflector per each angle, present at a constant known depth. Standard ways of imaging

such a scene would require around 1100 beams at wavelength λ “ 7.5cm. By introducing

bandwidth in the excitation signal, we show that the scene can be imaged with as few as 80

spatial linear combinations. This is illustrated in Figure 2.1. For target scenes with higher

range limits with multiple reflectors per angle, standard imaging methods need bandwidth

for imaging [9]. We however show that this bandwidth can be used to obtain similar gains

in the number of spatial linear combinations and provide theoretical justification for the

gains that aperture coding can provide [10].
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2.1.2 Propagation model and Fourier domain samples

We develop the broadband array imaging model for a one-dimensional (1D) antenna array,

which can be easily extended to 2D arrays. Consider a uniform linear array of aperture

length D placed on the x-axis, spanning r´D{2, D{2s. For now, we assume that the aper-

ture is continuous. The time delay of arrival is measured with respect to the origin. We

assume that the scene to be imaged lies in the X-Y plane and is in the far-field region of

the array. Imaging the scene is equivalent to reconstructing its reflectivity map, which is a

function of the distance of the target from the array center and the angle from the broad-

side, to be denoted as ppr, θq. The system consists of a single transmitting element which is

co-located with the receiver at the array center. Let t be the continuous time index. For an

excitation signal sptq, the signal received at the array location d is spt´r0{c´d sin θ0{cq for

a unit-strength reflector at pr0, θ0q. For a general reflectivity map, the narrowband response

at this location for the excitation signal sptq “ ej2πct{λ is

ryd,λptq “ ej2πct{λ

π{2
ż

´π{2

ż

ppr, θqe´j2πpr`2d sin θq{λ dr dθ. (2.4)

By making the substitution τ “ psin θq{2, the complex amplitude of the signal received

at location d P r´D{2, D{2s for excitation wavelength λ can be written as

yd,λ “

π{2
ż

´π{2

ż

ppr, θqe´j2πpr`2dτq{λ dr dθ “ pxc pωr, ωτ q . (2.5)

where ωr “ 1
λ
, ωτ “

2d
λ

, and pxc denotes the Fourier transform of xcpr, τq “
ppr,sin´1p2τqq
?

1´4τ2
.

This shows that the antenna aperture measures the Fourier transform of the target scene

(after a coordinate transformation). yd,λ can be obtained by computing the Fourier trans-

form of the temporal signal ryd,λptq received at the array after sampling it at a suitable rate,

or by measuring the complex amplitude of the received signal. We do implicitly assume
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Figure 2.2: The coordinate system used for the 2D array setup. R represents a point on the target
image. The antenna array, illustrated using the set of dots, lies in the X-Y plane in the region
r´D2 , D2 s ˆ r

´D
2 , D2 s.

that we are sampling these time-domain signals fast enough that the Fourier transform of

the received signal can be computed at the required frequencies. This implicit assumption

is there in both the coded and full imaging scenarios. As a direct consequence of the finite-

ness of the aperture, we have that at any excitation wavelength λ, the accessible interval in

the Fourier domain for ωτ is limited to r´D{λ,D{λs.

For an imaging system with a 2D array in the X-Y plane and a 3D scene, the extension

of the setup is straightforward to derive. The coordinates in 3D can be denoted as pr, θ1, θ2q,

where r is the roundtrip distance to the array center, θ1 is the angle with respect to the Y-

Z plane, and θ2 is the angle with respect to the X-Z plane, as shown in Figure 2.2. The

scene reflectivity is denoted as xcpr, τ1, τ2q where τ1 “ psin θ1q{2 and τ2 “ psin θ2q{2. At

excitation wavelength λ, the 2D array outputs yd1,d2,λ “ pxcp1{λ, 2d1{λ, 2d2{λq are samples

of the Fourier transform of the scene sampled in the region bounded by
`

˘D1

λ
, ˘D2

λ

˘

, where

D1 andD2 are the dimensions of the 2D array. From now on, we use the 1D array to discuss

our model for the sake of notational brevity. However, all our discussion and results hold

for both cases and all simulations use 2D arrays.

We are mainly interested in a broadband excitation scenario. We assume that the exci-

tation signal is a broadband pulse bandlimited to rλmin, λmaxs. If the broadband signal used
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(a) (b)

Figure 2.3: (a) shows the region in the Fourier domain of a target scene acquired by using broad-
band excitation and a finite 1D aperture. (b) shows the same for a 2D array imaging a 3D scene.

is sbptq, then the received signal at location d is

rydptq “

π{2
ż

´π{2

ż

ppr, θqsbpt´ r{c´ d sin θq dr dθ. (2.6)

The complex amplitudes at different wavelengths, yd,λ can then be obtained as the

Fourier coefficients of pyd after taking its temporal Fourier transform. Since the lateral fre-

quency support increases with decrease in the excitation wavelength, the accessible Fourier

domain has a trapezoidal shape as illustrated in Figure 2.3a. Similarly, for a 2D antenna,

the region in the Fourier domain measured is shown in Figure 2.3b. Broadband imaging

is hence the task of collecting Fourier measurements in a bandlimited region and inferring

the target reflectivity profile using these measurements.

Array measurement model Our discussion above describes what can be observed through

a finite but continuous aperture. In practice, we must measure this signal using a discrete

array of sensors. This limits the Fourier domain measurements considered in the previous

section to only a discrete set of samples. Let the 1D antenna considered in the previ-

ous section be an array of M discrete antenna elements placed uniformly at coordinates
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Figure 2.4: With a discrete array, we can only collect discrete samples in the Fourier domain of
the target scene. These samples are placed uniformly along the lateral frequency axis and and at
regular intervals on the vertical frequency axis. Each sample denotes the output at a single array
element, at a single excitation frequency. The limits for ωτ at each ωr depends on the aperture size
and spans the region r´ωrD, ωrDs. A discrete set of temporal wavelengths is assumed instead of
a continuous support.

d´M
2
, ¨ ¨ ¨ , dM

2
P r´D{2, D{2s. We also consider a discrete set of K excitation wave-

lengths tλ1 “ λmin, λ2, ¨ ¨ ¨ , λK “ λmaxu. When the complex amplitudes are measured

at these wavelengths, the Fourier samples obtained are located on a pseudopolar grid, as

shown in Figure 2.4. Measurements at these wavelengths can be obtained by using a sin-

gle broadband excitation, as explained earlier. The set of all measurements tym,λu where

m “ 1, ¨ ¨ ¨ ,M , λ P tλ1, ¨ ¨ ¨ , λKu can be denoted by a vector y P CMK . The set of

measurements at each wavelength λ is denoted by yλ P CM .

Traditional imaging involves collecting the samples shown in Figure 2.4 to reconstruct

the target reflectivity profile. This can be achieved in many ways. One way is to directly

read out the output of each antenna element. This amounts to measuring y directly. Phys-

ically, this can be realized by using a broadband pulse as before and then taking a Fourier

transform. Alternatively, one could cycle through a set of narrowband excitation signals

(stepped frequency excitation) and collect array measurements at each wavelength. In ei-

ther case, this method would require M array element readouts.

Another standard method for acquiring the measurements is to collect linear combina-

tions of the array outputs. In this method, the output of each array element is weighted

and then added to the output of other elements. In particular, the procedure known as

beamforming obtains specific linear combinations of the array outputs that induce spatial

directivity. In narrowband beamforming, the weights are chosen such that the time delays
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for signals coming from a particular spatial direction are compensated for, hence “focus-

ing” the array in that physical direction, as outlined in [9]. Instead of acquiring M direct

read-outs, M linear combinations are acquired. Beamfoming is also use in wideband array

signal processing and examples of such practice can be found in [11, 12, 13, 14, 15].

Acquiring linear combinations at each excitation wavelength separately is equivalent to

acquiring linear combinations of samples along each row of points in Figure 2.4. A differ-

ent set of linear combinations may be used for each excitation wavelength. Mathematically,

if the excitation wavelength is λ, the measurements made in time domain are

rzi,λptq “
M
ÿ

m“1

φλpi,mqpym,λptq (2.7)

for i “ 1, ¨ ¨ ¨ ,M . The vector of complex amplitudes zλ P CM is then given by

zλ “ φλyλ (2.8)

where φλ is in general an M ˆ M well-conditioned matrix whose pi,mqth element is

φλpi,mq. If a single broadband pulse is used for excitation, then the set of weights for

the linear combinations at different wavelengths are constrained to be the same and the

vector of complex amplitudes at different wavelengths are given by:

zλ “ φyλ (2.9)

where φ is now common across all wavelengths. In general, we refer to acquiring linear

combinations of the array elements as coded aperture acquisition. A variant of aperture

coding was considered in [16] where the authors propose using different subarrays at dif-

ferent times and then using interpolation techniques to acquire all the samples shown in

Figure 2.4. Subsampling the array is equivalent to using binary codes on the aperture.

However, their signal model is different from ours and they do not consider imaging with
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fewer than M measurements.

2.1.3 Degrees of freedom of range-limited targets

A finite bandwidth and aperture allow us to observe only a part of the Fourier transform of

the image. A finite range restricts the number of degrees of freedom of this observed region

of the Fourier transform. We intend to take advantage of this to achieve a more efficient

sampling of the bandlimited spectrum of the image and achieve hence faster imaging. We

now demonstrate the effect of range-limitedness using a target scene at a constant known

distance, with delta thickness: where the scene has only one reflector per angle, with each

reflector present at a constant known distance from the array. The underlying effect on the

Fourier domain samples extends to scenes with a more general range limit.

Consider a scene with delta thickness at a constant range R0 from the antenna array.

Considering just the amplitude as before, we have

ympλq “

1{2
ż

´1{2

ppR0, τqe
´j2π2dmτ{λ dτ. (2.10)

Now define

gpωτ q “

1{2
ż

´1{2

ppR0, τqe
´j2πωτ τ dτ. (2.11)

The array outputs ympλq are then just samples of the same function gpωτ q sampled

uniformly in r´D{λ,D{λs (modulo known scaling factors). This is illustrated in Fig-

ure 2.5. In the 2D array case, the “slices” of the trapezoid corresponding to different ex-

citation wavelengths sample a common function. As the range limit increases but remains

finite, the functions sampled at different wavelengths start to differ, but still have limited

degrees of freedom.

From the above discussion, it is clear that for scenes with delta thickness, collecting

the full set of samples at the lowest excitation wavelength provides all available informa-
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Figure 2.5: For an image at a constant range, the array measurements at different wavelengths are
samples of a common function

tion. Collecting further samples at higher wavelengths offers no advantage. At the smallest

wavelength (largest ωτ ), even though the samples are less dense, array element spacing

of λmin/2 guarantees that only the samples at λmin are enough for reconstruction. This

redundancy can be used to collect fewer spatial samples but with broadband excitation.

For scenes with larger range-limits, the outputs at higher wavelengths do offer extra infor-

mation since they no longer sample the same function. However, the ensemble of array

outputs across all the wavelengths lie in a low-dimensional subspace. This redundancy

again implies that collecting the full set of broadband measurements for scenes with higher

but finite range limits results in a number of measurements greater than the number of de-

grees of freedom. It is thus natural to expect that the target scene can be reconstructed with

a number of measurements l !M , owing to the limited number of degrees of freedom.

For computational purposes, we can discretize the target scene and the array imaging

operator. For a scene with delta thickness at a depth R0, let xR0 P RN denote the target

scene xc sampled uniformly with N ěM . Similarly, the integral mapping the target scene

to the array measurements at wavelength λ can be discretized as a matrix AR0,λ P CMˆN

operating on xR0:

AR0,λpm,nq “ exp´j2πR0{λ exp´j2π2dmp´0.5`n{Nq{λ . (2.12)
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With this notation in place, the array measurements can be expressed as

yR0,λ “ AR0,λxR0 . (2.13)

Similarly, a more general scene with a range limit R can be discretized as a vector of

reflectivities as xR P RNˆD where N represents the number of discrete samples along the

τ axis and D the number of samples along the r axis. Let the scene lie between the range

limits Rmin and Rmax. Define dr “ tn{N ` 1u, nτ “ mod pn,Nq. Then the discretized

array operator can be expressed as a matrix AR P CMˆND as

AR,λpm,nq “ exp´j2πp2dmp´0.5`nτ {Nq`pRmin`drR{Dqq{λ (2.14)

and the array outputs can be expressed as

yR,λ “ AR,λxR. (2.15)

Since our signal model considers only range-limited scenes, we drop the subscripts R

and R0 for further discussion. We will denote antenna array measurements at excitation

wavelength λ as yλ P CM , the discretized target scene as vector x0 P RND (or RN for

scenes with delta thickness) and the array imaging operator as Aλ P CMˆND (or CMˆN

for scenes with delta thickness). Aλ will incorporate knowledge of the target range pro-

file, which is assumed to be known a priori. This helps us focus on the advantage of

range-limitedness in itself. We later show how unknown range profiles can be handled

algorithmically.

When the measurements at all the K wavelengths are considered, we obtain the linear
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Figure 2.6: Eigenvalue decomposition of operator A in the 1D array case for a range limit of R,
aperture size D and excitation frequency range of rω1{c, ω2{cs.

system

y “

»

—

—

—

—

—

—

—

–

yλ1

yλ2
...

yλK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

Aλ1

Aλ2

...

AλK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x0 “ Ax0. (2.16)

The collection of array outputs at all the wavelengths lie in the column space of A. The

effective dimension of this subspace determines the number of degrees of freedom in y.

When the measurements are acquired with a coded aperture, we can model the measure-

ments as

z “ Φy “ ΦAx0. (2.17)

where

Φ “

»

—

—

—

—

—

—

—

–

φ 0 ¨ ¨ ¨ 0

0 φ ¨ ¨ ¨ 0

...
... . . . ...

0 0 ¨ ¨ ¨ φ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.18)

is a block diagonal matrix with repeating diagonal blocks. We refer to such a matrix as

a repeated block diagonal (RBD) matrix. Our main goal is to show that the target scene

can be constructed using highly underdetermined matrices Φ with no loss in resolution

compared to the reconstruction obtained using the full set of measurements y.
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The reduction in the number of degrees of freedom in the case of range-limited targets

described above is a consequence of the simultaneous concentration of energy in both spa-

tial and spectral domains. Signals with such a property can be well approximated by a num-

ber of basis functions that is proportional to the product of the area/volume of the spatial

and spectral supports. This has been studied in a set of seminal papers by Slepian, Landau

and Pollock [17, 18, 19, 20, 21, 22] and by Simons et.al., in [23, 24]. In essence, the range

space of space-limiting, band-limiting operators is approximately finite dimensional. This

approximate dimension is the number of effective degrees of freedom of signals well con-

centrated in spatial and spectral domains. An efficient basis for the representation of such

signals is the prolate basis [17]. The Smaller the spatial and spectral supports, the smaller

is the number of degrees of freedom. See [25, 26, 27] for a quantitative non-asymptotic

characterization of these properties in the discrete case.

Since the array imaging operator obtains band-limited measurements of range-limited

target scenes, its range space has a low dimensional structure. To illustrate this, we present

the singular values of A for target images with a finite range limit in Figure 2.6, where we

consider two different range limits of 0.3m and 0.1m. The product of spatial and spectral

supports in this case is approximately 2RDpω2 ´ ω1qpω2 ` ω1q. For these plots, an array

with 213 elements was used and samples were collected at 25 wavelengths placed uniformly

between 2GHz and 4GHz. The total number of samples collected is hence 5325, but these

samples lie in a subspace of dimension approximately only 640 or 320, for the two range

limits considered. For the same antenna array, we show the singular values of the operators

associated with target scenes that have delta thickness in Figure 2.7. As expected, such

scenes lie subspaces of even smaller dimensions.

A special case of range-limitedness is when the target has delta thickness. Figure 2.7

shows the singular value decomposition of the array operator for two examples of such

scenes: one where all the reflectors are at a constant known distance from the array center;

the other where each reflector is at a known but different distance from the array center. We
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Figure 2.7: Spectra of the operators for scenes with delta thickness. ‘Constant range’ describes
a scene where the reflectors at all angles are at a constant depth from the array center and ‘Multi-
depth’ describes a scene in which each reflector is at a different depth from the array. In each case,
the infinite dimensional continuous domain image can be efficiently represented using a subspace
of relatively small dimension

Figure 2.8: Spectra of the top eigenvectors of ATA. The eigenvectors have a frequency support
that is mostly concentrated in the trapezoidal area and a spatial support limited to R as defined by
the model.

also show the Fourier transforms of the eigenvectors of ATA associated with the most and

least significant eigenvalues in Figure 2.8.

The low dimensional structure in the array measurements forms the basis of our pro-

posed imaging method. We show that this structure enables imaging with very few array

measurements. In the following sections, we set up the reconstruction problem and provide

theoretical guarantees for image reconstruction.

The limited number of degrees of freedom of broadband measurements leads us to ask

the following question: what is the number of broadband measurements required to image

range-limited target scenes? In order to answer that question, we first set up our recon-

struction method. We do not assume any structure on the target scene such as sparsity, low

total variation norm, or other structure apart from it being range-limited. Hence, with the
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measurement model used in (Equation 2.17), we solve the ordinary least squares problem

arg min
x

}Φy ´ ΦAx}22. (2.19)

Our standard of comparison is the ordinary least squares estimate obtained using the full

data:

arg min
x

}y ´Ax}22. (2.20)

The theoretical question we answer is: If each diagonal block φ in (Equation 2.17) is of

size lˆM , what is the sample complexity l that can achieve the same reconstruction result

as (Equation 2.20) using (Equation 2.19)?

2.1.4 Linear algebraic interpretation of range-limitedness

The least squares program in (Equation 2.20) searches for an image that best explains the

measurements obtained, and lies in the row space of A. The row space of A is not only

approximately low dimensional for range-limited images but has a second tier of structure

that makes aperture coding a very efficient way of obtaining fewer measurements. In partic-

ular, the relationship between the subspaces associated with the linear operators at various

excitation wavelengths for range-limited images determines the number of aperture codes

required. Consider array imaging at a single wavelength Aλi . The least squares estimate

in this case looks for a target in the row space of Aλi that best explains the measurements.

We denote this subspace as Si. Similarly, imaging using wideband excitation results in

an estimate that lies in the union of subspaces S1,S2, ¨ ¨ ¨ ,Sk. The sample complexity of

aperture coding depends highly on the relationship between these subspaces.

Let A now denote a general kM ˆN matrix of a finite rank r such that

A “

„

AT
1 AT

2 ¨ ¨ ¨ AT
k

T
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where each Ai is M ˆ N . Let the rank of Ai be ri. Without loss of generality, we can

assume that ri ě rj for i ą j, since the ordering of the row groups does not matter. We can

then obtain the following factorization:

»

—

—

—

—

—

—

—

–

A1

A2

¨

Ak

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

C11 0 ¨ ¨ ¨ 0

C21 C22 ¨ ¨ ¨ 0

...
... . . . ...

Ck1 Ck2 ¨ ¨ ¨ Ckk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

VT
1

VT
2

...

VT
k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ CVT (2.21)

where Cij P RMmˆdj , each Cii is full column rank when di ‰ 0, and V is an r ˆ N

orthonormal matrix. The factorization is such that the row space of A1 is the span of the

orthobasis V1, the row space of A2 is included in the span of V1 and V2. In general,

rV1 V2 ¨ ¨ ¨Vis includes an orthobasis for the row space of Ai. This factorization is equiv-

alent to a block QR factorization of AT and can be obtained for any general matrix A.

We are particularly interested in the di’s, as they capture the relationship between various

subspaces. The diagonal blocks Cii’s represent the energy in the subspace orthogonal to

the union of the row spaces of the previous blocks A1, ¨ ¨ ¨ ,Ai´1. Hence, smaller values of

di indicate that the subspaces have a high degree of overlap.

A special case of high overlap is when the row spaces have a nested structure: rowpAi´1q Ă

rowpAiq @i “ 2, ¨ ¨ ¨ , K. In this case, the off-diagonal blocks Cij, i ă j and the orthog-

onal blocks V1, ¨ ¨ ¨ ,Vi´1 capture a significant part of rowpAiq. For low-rank systems,

this naturally leads to smaller values of di. In contrast, when the row spaces are all almost

orthogonal, the di’s are all large and the off-diagonal blocks Cij, i ‰ j « 0. We will

later show that the broadband array imaging operator has the nested subspace structure for

certain range-limited scenes.

Let us now relate the above factorization to the context of imaging. To begin, suppose

that we use wavelengths up to λi. Then, di`1 represents the rank of the update required to

incorporate information from a new, lower wavelength λi`1. It represents the innovation
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added by the measurements at the new wavelength.

As the range limit decreases, the overlap between the subspaces Si increases, increasing

the redundancy across wavelengths. This leads to the possibility of higher subsampling

rates in the physical array domain. In the limiting case of only one reflector per angle,

the subspaces have a nested structure. As we will observe in subsection 2.1.5, this plays a

crucial role in determining the number of aperture codes required for successful imaging.

Our theoretical results formally state the effect of the relationship between the sub-

spaces Si on the number of aperture codes required for imaging. Theorem 3 provides a non-

trivial estimate of the number of measurements needed for a given excitation bandwidth.

Theorem 5 provides conditions under which a given set of K excitation wavelengths allow

the number of spatial measurements to be reduced by a factor of K. Using these conditions

and a given bandwidth of excitation, one can choose the set of excitation wavelengths and

very few coded measurements to achieve imaging with no loss in resolution.

2.1.5 Random projections in nested subspaces

In the previous section, we set up the aperture coding problem as a sketched least squares

problem that has a particular structure dictated by the physical problem of array imaging.

In this section, we derive mathematical guarantees for such sketched systems and provide

estimates of the required sample complexity. Let

xLS “ argminx }y ´Ax}2 (2.22)

xSLS “ argminx }Φy ´ ΦAx}2 , (2.23)

where xLS and xSLS are the solutions to the full and the sketched linear systems of equations

erspectively. We start by reviewing the conditions that any general sketching operator has

to satisfy in order for the solution to the sketched least squares problem xSLS to be close to
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the solution of the original ordinary least squares solution xLS. In the noiseless case

xLS “ A:y “ A:Ax0 “ VV˚x0 (2.24)

where A “ UΣV˚ is the SVD of the linear operator and A: denotes the pseudoinverse of

A. (Equation 2.24) shows that the least squares solution is a projection of the true solution

onto the row space of A. Hence, any sketching operator Φ should preserve the row space

of A. It has been well established in literature that a number of random projections of the

rows of A greater than or equal to its rank capture the row space in case of exactly low-

rank matrices [28]. When A of size KM ˆ N and rankpAq “ r ! minpM,Nq, if Φ is a

L ˆ KM dense standard normal random matrix with L ě r, then rowpAq Ă rowpΦAq.

Since by construction we also have rowpΦAq Ă rowpAq, we have

VΦAV˚
ΦA ´VV˚

“ 0.

Let

xSLS “ pΦAq:φy “ VΦAV˚
ΦAx0.

The least squares estimate from the sketched measurements φy is same as that from the

full observation y, since

}xLS ´ xSLS} ď }VV˚
´VΦAV˚

ΦA}}x0} “ 0.

This idea forms the basis of using sketched measurements to solve a least squares problem.

For any sketching matrix φ, a necessary and sufficient condition in the noiseless case is

}pI´PpφAq˚qA
˚} “ 0.

Our goal is to replicate the above result for an RBD sketching matrix. For such a matrix

(shown in (Equation 2.18)), if l random projections are obtained per block, the equivalent

result would be that a total number of measurements Kl ě r suffice to capture the row
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space of the matrix A. However, due to the highly structured nature of a block diagonal

matrix, such a result does not hold uniformly for all matrices A. We analyze the conditions

on A under which such a result holds and show that array imaging matrices do obey these

conditions, thus allowing for spatial subsampling.

RBD matrices obtain localized random projections: they take linear combinations of

only a subset of the rows. In this section, we provide guarantees on the the error }pI ´

PpΦAq˚qA
˚} when Φ is an RBD matrix. The focus will be on the sample complexity l

required to drive this error to 0 with high probability.

It is immediately clear how to achieve this when we take l ě max
i

rankpAiq. Let

A “ rAT
1 AT

2 ¨ ¨ ¨ AT
Ks

T where each Ai is of size M ˆ N and has rank ri. Let Y “ ΦA.

Hence

Y “

»

—

—

—

—

—

—

—

–

φAK

φAK´1

...

φA1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

Yk

Yk´1

...

Y1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since

}pI´PY˚qA
˚
} ď

k
ÿ

i“1

}pI´PY˚i
qA˚

i }, (2.25)

and }pI´PY˚i
qA˚

i } “ 0 for l ě ri, we obtain

}pI´PY˚qA
˚
} “ 0 (2.26)

for l ě maxi ri.

Compared to using a dense random matrix, this can be worse by a factor of K. Intu-

itively, this straightforward application of results from [28] leads to capturing of the sub-

space spanned by each group of rows Ai individually, without considering the overlap

between the subspaces. This is addressed in our first analytical result (Theorem 3), which

provides a simple but non-trivial estimate of the number of random projections required.
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We then improve this result in Theorem 4 and Theorem 5.

Theorem 3 For a given matrix A of sizeKMˆN , let the di be defined as in (Equation 2.21).

Let Φ be a block diagonal matrix with repeated diagonal block φ of size l ˆM and whose

entries are chosen i.i.d. from the standard normal distribution. Let Y “ ΦA. Define

d0 “ maxi di. For l ě d0, }pI´PY˚qA
˚} “ 0 with probability 1.

Proof We have

ΦA “ ΦCVT
“

»

—

—

—

—

—

—

—

–

φC11 0 ¨ ¨ ¨ 0

φC21 φC22 ¨ ¨ ¨ 0

...
... . . . ...

φCk1 φCk2 ¨ ¨ ¨ φCkk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

VT
1

VT
2

...

VT
k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then, if each diagonal block is full rank, the matrix ΦC and hence ΦCVT is full rank,

since V is just an orthonormal matrix. Consider each diagonal block of ΦC, φCii. Since

l ě d0, rankpφCiiq “ di with probability 1. Since the rank of any block triangular matrix is

at least the sum of ranks of the diagonal blocks, rankpΦCq “ rankpΦCVT q “
ř

i di “ r.

Since rowpΦCVT q Ă rowpCVT q and rankpΦCVT q “ rankpCVT q, rowpΦCVT q “

rowpCVT q. Hence, PY˚ “ PA˚ and the conclusion follows.

To understand this theorem, we can first consider the intuition behind random projec-

tions: owing to the randomness of the projections, a linearly independent set of vectors

in the row/column space of the original matrix is obtained and hence the subspace is cap-

tured. With an RBD sketching matrix, one can only obtain random projections within the

subspace of each group of rows. However, if the subspaces spanned by these row groups

overlap, we may obtain a linearly independent set of vectors that capture the row space of

the whole matrix by using a few random projections of each row group. The factorization

in (Equation 2.21) captures this dependence between the subspaces spanned by the row

groups.
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Spectrum of Y = Φ A

Figure 2.9: (a) shows the error }pI´PY˚qA
˚} and (b) shows logarithm of the spectrum of A and

Y for l “ 40. The number of significant singular values of A and Y can be seen to be approximately
the same and hence they have approximately the same rank and row space.

The bound in Theorem 3 can be tight or loose depending on the candidate matrix A.

The bound is tight when the row spaces span non-overlapping subspaces, since in this case,

random projections within a row group do not provide any information about the other row

groups. When the subspaces do overlap the bound can be significantly improved, even

though it is already better than the trivial bound l ě maxi ri. For example, consider a

scenario where the subspaces spanned by the Ai’s are nested in the subspaces spanned by

the Aj’s for all i ă j. In such a case, by obtaining random projections within the span of

Ai, we are also already obtaining random projections in the subspace spanned by Aj for

all i ă j. This allows for l to be much smaller, even if some of the di are large, contrary to

what Theorem 3 predicts. As we note in the next subsection, this is precisely the case for

the linear operator associated with range-limited images.

Although our result concerns exactly low-rank matrices, it can be generalized to matri-

ces that are approximately low-rank using perturbation theory for projection matrices [29].

In general, for matrices with numerical ranks much smaller than the ambient dimensions,

the subspaces spanned by the Ai’s will overlap. This overlap reduces the number of ran-

dom vectors needed per block. Figure 2.9 shows the error }pI ´ PY˚qA
˚} and the spectra

of the matrices A and ΦA for a randomly generated test matrix of size 2000 ˆ 1000, with

maxipriq « 300 and d0 “ 110. We observe empirically that the row space was captured

with l « 40.

Consider a 1D array and a 2D image. For an image with delta thickness with reflectors
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Figure 2.10: Normalized spectra of the full operator with multiple excitation wavelengths and of
the operator at just the highest frequency. It is clear that the row spaces of the operators at the higher
wavelengths are nested in that of the operator at the lowest wavelength. The same relationship is
observed between the operator at any other excitation wavelength and higher wavelengths.

at a known fixed depth R0, the rows of Aλi are unit-length sinusoids in the frequency range

r´D{λi, D{λis, with a modulation term e´j2πR0{λi . The row space of Ai is therefore well

approximated by the first 2D{λi discrete prolate spheroidal sequences (DPSS) [18]. As the

wavelength progresses from the highest λmax to the lowest λmin, the subspace spanned by

the rows of Aλi is nested in the subspace spanned by Aλj for all j ą i. This is shown

in Figure 2.10 where the full operator with all wavelengths has a row space of the same

dimension as the operator at only the highest frequency.

Although Theorem 3 is appealing because of its simplicity, it can lead to suboptimal

estimates of l. For example, if λmin “ 7.5cm and λmax “ 15cm, one could only hope for a

reduction in the number of measurements by a factor of 2. But as we have already seen in

Figure 2.1, we can easily achieve better subsampling.

The following two theorems provide much stronger results: they directly address the

question of when l ě r{K random projections suffice to achieve }pI ´ PYT qAT } “ 0. In

the context of array imaging, they address the question of when usingK different excitation

wavelengths can offer the luxury of imaging with roughly only M{K measurements. Their

proofs are deferred to the appendix.

Theorem 4 Let A “
“

A1
A2

‰

and H “
“

φA1

φA2

‰

, with rowpA1q Ď rowpA2q. Assume A2

is full row rank and define U “ A1A
T
2 . If the entries of φ are drawn from a continuous
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distribution, then with probability 1, }pI´PHT qAT “ 0} for l ěM{2, if no real eigenvalue

of U has an algebraic multiplicity greater than M{2.

Theorem 4 provides the necessary and sufficient conditions on an ensemble of two

matrices with a nested subspace structure under which only r{2 projections of each block

are sufficient to capture the row space. The condition prohibits the existence of an invariant

subspace of dimension greater the M{2 that is common to both A1 and A2.

The eigenvalue distribution for the array imaging matrices is shown in Figure 2.11a

when λmin “ 7.5cm and λmax “ 10cm. It is clear that the matrices meet the required

condition and hence only M{2 measurements suffice, in contrast to what is predicted by

Theorem 3, which would be at least 3M{4.

In our next result, we extend the result to the case with more than two blocks and

provide a sufficient condition on the ensemble of K matrices tAiu under which only l ě

r{K random projections per block can capture the full row space. To do this, we define the

following matrices:

H “

»

—

—

—

—

—

—

—

–

φA1

φA2

...

φAK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and pH “

»

—

—

—

—

—

—

—

–

VSA1

VSA2

...

VSAK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.27)

where VS is any orthonormal matrix of size l ˆM .

Theorem 5 Given an ensemble of K matrices tAiu for i “ 1, ¨ ¨ ¨ , K, each of size M ˆN

and a matrix φ P RlˆM with entries drawn from the standard normal distribution, with

probability 1, }pI ´ PHT qAT } “ 0 for l ě r{K, if there exists an orthonormal basis

VS P RlˆM such that pH has full row rank.

Intuitively, Theorem 5 requires that there is at least one subspace of dimension l “ r{K,

which when projected onto the matrices Ai results in a set of K linearly independent sub-

spaces. In Figure 2.11b, we show the histogram of the smallest singular values of the
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(a) (b)

Figure 2.11: (a) The eigenvalue distribution of A1A
T
2 for two exctiation wavelengths 7.5cm and

10cm. The eigenvalue distribution ensures that l “ M{2 random projections suffice (b) Histogram
of the smallest singular value of xM over 1000 realizations of randomly generated orthobases VS ,
for the array imaging operator with 8 excitation wavelengths were used between 7.5cm and 10cm.
There exist many orthobases such that the sufficient condition of Theorem 5 holds. In this case,
hence, l “M{8 random aperture codes are enough for imaging.

matrix pH for the array imaging operator with K “ 8 excitation wavelengths placed uni-

formly between λmin “ 7.5cm and λmax “ 15cm, for 1000 realizations of randomly chosen

orthonormal basis VS . In this case, the number of array elements was M “ 213 and the

scene considered had delta thickness. Hence, approximately only 30 spatial measurements

suffice in imaging any such scene. As the range extent of the images increases, the nested

structure in the row spaces ceases to exist. However, the subspaces still have a high degree

of overlap and a number of aperture codes much smaller than the number of conventional

beams used suffice for imaging.

The conditions stated in Theorem 4 and Theorem 5 ensure that the lack of diversity

among the diagonal blocks of the RBD matrix is compensated for by the data matrix A

itself. As we show in further sections, the array imaging operator satisfies these conditions,

thus lending itself to spatial subsampling.

2.1.6 Imaging experiments using coded aperture arrays

We now provide experimental results to show the effectiveness of aperture coding. Various

experiments were conducted: aperture coding simulations were conducted with images at

a constant depth from the antenna array, for flat images parallel to the 2D array and delta

thickness images that are multi-depth with known and unknown range profiles. The next
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set of experiments deal with subsampling the array for the same class of images. These

are followed by simulations in the presence of noise. We then provide simulation results

for objects whose range limits are not thin and span a range of 15cm. The following array

parameters were used in all the simulations: an array of 40 ˆ 40 elements were used with

15 excitation wavelengths placed regularly in the bandwidth of 7.5cm and 15cm. The

elements were placed at half the smallest wavelength. The scene was assumed to be within

the angular span of r´π{4, π{4s in both directions. For this configuration the number of

beams/ measurements needed at each frequency for conventional imaging is about 1100.

Quantitative error values for all the experiments are given in Table 2.1. 1

Constant range and multi-depth images

Figure 2.1 shows reconstruction results for images at a constant, known range. Conven-

tional beamforming requires about 1100 beams in this case to scan over the entire image. It

is clear that similar reconstruction performance can be obtained using as few as 80 beams

with wideband excitation. The relative reconstruction error is almost negligible up to 80

aperture codes. (shown in Table 2.1).The row space of A in this case is 1100. Hence, with

only 50 codes and 15 excitation frequencies, the coded aperture system ΦA has a maxi-

mum rank of only 750 and does not capture the full row space of A. This results in a poor

reconstruction, as seen in Figure 2.1d.

Aperture coding is also effective for multi-depth images. A scene with three segments,

each at a different depth was considered. The depth map of the scene used in the simulations

is shown in Figure 2.12. In Figure 2.13, we present simulation results when the depth

profile was assumed to be known a priori. Again only about 80 beams are sufficient to get

good quality reconstructions.

We further explore the performance of coded aperture imaging when the depth profile

is unknown. Boufounos in [30] describes a method to infer the depth profile of an image

using CoSaMP algorithm. The algorithm uses full array measurements in the least squares

1The simulations were performed in MATLAB and our code can be found at the following link: https:
//github.com/rsharma20/Aperture coded imaging
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Figure 2.12: Depth map of the multi-depth image used in simulations.

step. We replace this step with sketched least squares and coded measurements. Simulation

results are shown in Figure 2.14. We note that aperture coding still performs well, with the

relative error being negligible even for 160 generic beams.

Imaging with noise

We simulated an imaging scenario at 20dB input SNR level. In Figure 2.15, we show

reconstruction results of these simulations. The corresponding signal reconstruction error

values and output SNR are given in Table 2.1. The impact of noise on an aperture coded

system is similar to its impact on the conventional system, except that the characterization

depends on the coding matrix Φ as well. However, we have shown that this dependence can

be predicted a priori once a Φ has been instantiated. The same analysis holds for any input

SNR level. It is clear from Table 2.1 that aperture coded measurements can be used under

noisy regimes as well and a desired level of performance can be achieved by studying the

system ΦA a priori and tuning the system parameters.

Imaging scenes with higher range limits

Aperture coding can be highly effective even when imaging scenes with higher range limits.

As predicted by our theorems, when the range limit increases, more measurements are

required, but it can still less be than that used in conventional imaging. We demonstrate

this in our next set of simulations. We consider an object made up of five layers as shown

in Figure 2.16a. These layers lie in a region of width 15cm, in the far-field of a 2D array
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(a) full imaging (b) 320 generic beams

(c) 160 generic beams (d) 80 generic beams

Figure 2.13: Aperture coded imaging for a multi-depth image. (a) represents the conventional
method, which uses about 1100 beams. (b), (c) and (d) show reconstruction results with 320, 160
and 80 generic beams.

(a) full imaging (b) 320 generic beams

(c) 160 generic beams (d) 80 generic beams

Figure 2.14: Aperture coded imaging for a multi-depth image with an unknown range profile. (a)
represents the conventional method, which uses about 1100 beams.

at a depth of 20m. We again use 15 excitation wavelengths between 7.5cm and 15cm. In

Figure 2.16, we present reconstruction results by using 640, 480, and 320 aperture codes
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Table 2.1: Relative reconstruction error values for different classes of images. Aperture codes with
weights chosen from standard normal distribution were used.

Imaging mode (CR) (FS) (MD) (MDUR) Constant range noisy

Signal error OP SNR

Full (1100 beams) NA NA NA NA NA 16.09
320 codes 2.7e-5 4.4e-4 3e-4 1.1e-2 2.5e-5 16.0117
160 codes 7.4e-5 3.3e-4 1.2e-3 3.1e-2 6.3e-5 15.9112
80 codes 4.2e-4 5.1e-4 4.8e-2 1.6e-1 4.9e-4 15.3206

Table 2.2: Relative reconstruction errors with subsampled array: The array was randomly subsam-
pled to have 320, 160 and 80 elements. Abbreviations are as in Table 2.1.

Imaging mode CR FS MD MDUR

320 elements 2e-4 1e-4 1e-3 3.8e-2

160 elements 9e-4 4e-4 3.1e-2 6.8e-2

80 elements 1.6e-3 1.1e-3 5.8e-3 18.4e-2

in place of 1100 beams used in conventional imaging.

2.2 Broadband source localization

2.2.1 Introduction

One of the main applications of antenna arrays is source localization. A typical application

is that there are a number of signal sources present in the far-field region of an antenna array,

each at a particular angle in space θ with respect to the array. Each source transmits a signal

centered at some freqeuncy fc (also known as the channel frequency), and the elements of

the antenna array receive noisy, delayed versions of the superposition of these signals.

Under the assumption that the pair pf ic , θ
iq uniquely identifies the ith source, the task is to

estimate the parameters f ic and θi for each source. We henceforth refer to this problem

as the source localization problem. When the source signals are narrowband and the f ic’s

and θi’s are on the continuum, this problem is the same as the line spectral estimation or

the super-resolution problem [31, 32]. To develop a formal model of the problem, let us
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(a) full imaging (b) 320 generic beams

(c) 160 generic beams (d) 80 generic beams

Figure 2.15: Aperture coding in the presence of noise. The regularization parameters was varied
in each case to match the SNR of the full imaging scenario. The noise performance was preserved
without compromising on the signal reconstruction quality, as seen in Table 2.2.

consider a linear array with M elements placed uniformly at intervals of length d. Let

us further restrict the problem to identifying only the Direction Of Arrival (DOA) θi, by

fixing the center frequencies of all the sources to a known frequency f0. Assuming that

each source emits a pure tone at frequency f0, the signal received at the mth element can be

written as

xmptq “
L
ÿ

i“1

exppj2πfpt´
md sin θi

c
qq

“ exppj2πftq
L
ÿ

i“1

expp´j2πm
fd sin θi

c
q

“ exppj2πftq
L
ÿ

i“1

expp´j2πm
fd sin θi

c
q

where c is the speed of light an we assume L sources are present. Note that the com-

plex amplitude of the M -length vector of outputs at any time instant t is spatial sinusoid
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(a) Full reconstruction„ 1100 measurements (b) 640 generic beams, relative error: 0.0168

(c) 480 generic beams, relative error: 0.0298 (d) 320 generic beams, relative error: 0.0466

Figure 2.16: Reconstruction results for a target object with (at 20m) with aperture coded acquisi-
tion. The target scene consists of five discs one behind the other. In the figure above, the 2D array
would face the discs from below. Using a set of 15 excitation wavelengths between 7.5cm and 15cm
such a scene can be reconstructed using only about 320 spatial measurements, unlike conventional
beamforming which would require about 1100 measurements.

of frequency fd sin θi
c

. Hence, both DOA estimation and channel frequency estimation are

instances of the line spectral estimation problem: given finite number of samples of a su-

perposition of sinusoids, the task is to estimate the active frequencies.

Although a well studied problem, the assumption that sources emit narrowband signals

seldom holds true. When the source signals have a non-trivial bandwidth, existing algo-

rithms discussed above often tend to fail in correctly identifying the sources. Figure 2.17

illustrates this phenomenon, with the percentage of sources detected decaying with an in-

crease in the signal bandwidth. Our goal in this section is to develop algorithms that ad-

dress this gap between the state-of-the-art algorithms and the common practical scenario

of broadband sources.
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Figure 2.17: An illustration of how iterative narrowband source localization algorithms fail when
the underlying sources are broadband. In the figure, a bandwidth of greater than 1 indicates broad-
band signals. The percentage of sources detected by the narrowband algorithms decays for broad-
band sources.

2.2.2 Broadband source localization as a subspace estimation problem

Our approach to perform broadband source localization relies on the fact that any bandlim-

ited signal observed over a finite time window lies approximately in a low dimensional

subspace. These subspaces are characterized by the center frequency f ic of the active band

the signal occupies, and the source localization process is then a search over the set of

candidate subspaces.

It is well known that a signal with finite temporal support must have infinite spectral

support. In other words, a finite length signal cannot be bandlimited. Since most real-world

signals are of finite time, how is it then possible for any of them to be bandlimited? The

answer to this dilemma was the subject of a series of seminal papers by Slepian, Landau and

Pollock [17, 20, 21, 22, 18, 19]. The answer lies in the fact that signal can be approximately

bandlimited and time limited simultaneously. A natural question then is regarding the best

representation of such signals. In other words, how can the simultaneous structure be best

captured?

Signals that are “well supported” on compact intervals both temporally and spectrally
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can in fact be shown to lie close to a low-dimensional subspace. Let xrns, n “ 0, ¨ ¨ ¨ , N´

1 be the vector of N uniformly spaced samples of a signal bandlimited to W ă 0.5. Then,

any such x can be “well-approximated” by 2NW number of the so-called Discrete Prolate

Spheroidal Sequences (DPSS’s) when they are time limited to N samples [33]. We now

give a brief overview of the DPSS’s and their ability to act as low dimensional models of

simultaneously bandlimited and time-limited signals.

Definition 1 [21] Given N and W ă 0.5, the Discrete Prolate Spheroidal Sequences

(DPSS’s) are a sequence of N real-values discrete sequences sp0qN,W , s
p1q
N,W , ¨ ¨ ¨ , s

pN´1q
N,W that

along with their associated scalar eigenvalues

1 ą λ
p0q
N,W , λ

p1q
N,W , ¨ ¨ ¨ λ

pN´1q
N,W ą 0

satisfy

BW
´

TN
´

s
p`q
N,W

¯¯

“ λ
p`q
N,W s

p`q
N,W ,

where BW p¨q denotes the bandlimiting operator to W and TNp¨q is the time-limiting oper-

ator that restricts a discrete sequence to length N .

Note that each sequence sp`qN,W has infinite-support. The N -dimensional DPSS vectors

are defined as follows.

Definition 2 [33] Given N , W , the DPSS vectors are defined by time restricting the dis-

crete prolate spheroidal sequences to the first N indices.

s
p`q
N,W rns “ TN

´

s
p`q
N,W

¯

rns (2.28)

for `, n “ 0, ¨ ¨ ¨ , N ´ 1.

The N DPSS vectors generated as above are orthogonal and form an orthobasis for RN .

The DPSS vectors provide an efficient way to represent a finite numbet of samples ob-

tained frmo bandlimited signals. In particular, given N and W , the first k “ 2NW
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DPSS vectors span the “best” k-dimensional subspace that can uniformly approximate

signals bandlimited to W and time limited to N samples. This notion of uniform ap-

proximation of bandlimited signals is captured in the following result provided in [33]. Let

Ef “ diagpej2πfcnq, “ 0, 1 ¨ ¨ ¨ , N ´ 1 for any digital frequency 0 ď fc ď 0.5 and let

SN,W “ rs
p0q
N,W s

p1q
N,W ¨ ¨ ¨ s

pN´1q
N,W s be the N ˆN matrix containing the N DPSS vectors.

Theorem 6 [33] Let xptq denote a continuous-time, zero-mean, wide sense stationary ran-

dom process with power spectrum

PxpF q “

$

’

’

&

’

’

%

1
Bband

, F P rFc ´
Bband

2
, Fc `

Bband
2
s,

0, otherwise

and let x “ rxp0q xpTsq ¨ ¨ ¨ xppN ´ 1qTsqs
J P CN denote a finite vector of samples

acquired from xptq with a sampling interval Ts ď 1{p2 maxt|Fc˘
Bband

2
|uq. Then, the space

spanned by the first k columns of the matrix Q “ EfcSN,W best approximates x among all

k-dimensional subspaces in an MSE sense and the MSE is given by:

Er}x´ PQx}22s “
1

2NW

N´1
ÿ

`“k

λ
p`q
N,W , (2.29)

where Er}x}22s “ N due to suitable normalization.

Note that this result only suggests in a probabilistic sense that most bandpass signals that

are sampled and time-limited can be well-approximated by the k DPSS vectors. There will

always be a relatively small number of bandpass signals that cannot be well approximated.

Considering that the fraction of such signals is small, we will henceforth assume that ban-

dlimited signals that are sampled and time-limited can be well approximated by the top

k « 2NW eigenvectors modulated to the center frequency of the band.

Let us denote the k-dimensional subspace spanned by the first k columns of the matrix

EfSN,W by Sf . Then, the problem of broadband source localization is to identify the
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collection of subspaces that make up the received signal. This is highly reminiscent of the

standard compressed sensing problem, where signals are modeled to lie in the union of a

number of 1-dimensional subspaces. In our case however, the union is of k-dimensional

subspaces with each subspace being a member of a candidate set of subspaces, given by the

span of roughly the first k columns of the matrix EfSN,W where f P r0, 0.5s. As we will see

shortly, our proposed algorithm is a natural extension of the iterative algorithms proposed

in the compressed sensing literature. These iterative algorithms rely on fast computational

tools that allow fast projections onto the candidate subspaces and fast solution to linear

systems involving the DPSS vectors that were recently developed in [34].

2.2.3 Computational tools for Slepian subspace coefficients

In order to identify the active subspaces, a basic operation that is necessary is the projection

of the observations onto the candidate subspaces. One may note that for any given band of

frequencies rfc ´W, fc `W s, one can use a set of uniformly spaced sinusoids as a proxy

for the basis of the space of bandlimited signals. In particular, consider the matrix formed

by columns of the form

em “ r1 ej2πm1{N
¨ ¨ ¨ ej2πmpN´1q{N

s
˚ (2.30)

wherem{N P rfc´W, fc`W s andm P t0, 1, ¨ ¨ ¨ , N´1u. By leveraging the Fast Fourier

Transform (FFT), one could compute projections onto the subspaces in OpN logNq time.

However, as we shall see in subsection 2.2.5, the Fourier basis is easily outperformed by

the DPSS vectors. We will now briefly review two main results from [34] that address the

important problem of designing fast computational tools to work with the DPSS vectors.

Let us define the matrix SK “ rs
p0q
N,W s

p1q
N,W ¨ ¨ ¨ s

pKq
N,W s. The first result considers pro-

jecting a given N -dimensional signal x onto the subspace spanned by the columns of SK .

Naive matrix multiplication to compute SKx requires OpN2W q computations, which may
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be prohibitive for large scale applications including array signal processing. However, as

shown in [34], the projection matrix SKS˚K can be re-written as

SKS˚K “ BN,W `U1U
˚
2 ` E (2.31)

where

BN,W pm,nq “
sin 2πW pm´ nq

πpm´ nq
, (2.32)

is theNˆN prolate matrix, U1,U2 areNˆr2 matrices with r2 ď
`

8
π2 logp8Nq ` 12

˘

log
`

15
ε

˘

and }E} ď ε. Note that BN,W is a Toeplitz matrix and computing BN,Wx can be done in

OpN logNq time due to the fact that it can be diagonalized by the FFT matrix. Since U1

and U2 areNˆOplogN log 1
ε
qmatrices, they can be applied to a vector inOpN logN log 1

ε
q

time. Hence, by computing BN,Wx ` U1U
˚
2x, we can compute an ε-approximation to

SKS˚Kx in only OpN logN log 1
ε
q time. This directly gives us a fast (OpN logN log 1

ε
q)

algorithm to project onto any candidate subspace given by the matrix Q “ EfcSK , since

Efc is a diagonal matrix.

The second computational tool that we will leverage is an analog of the Fast Fourier

Transform itself. Let us define the tapered spectral estimate of an N -length vector x:

pSkpfq “ |
N´1
ÿ

n“0

skrnsxrnse
´j2πfn

|
2. (2.33)

We can then define the following multitaper spectral estimate:

pSKpfq “
1

K

K´1
ÿ

k“0

pSkpfq. (2.34)

We also have the following equivalence between pSKpfq and the projection of x onto the

K-dimensional Slepian subspace centered at f :

pSKpfq “
›

›S˚KE˚fx
›

›

2
. (2.35)
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Computing pSKpfq at all the grid frequencies f “ m{N, m P t0, 1, ¨ ¨ ¨ , N´1u then gives

an alternate spectral estimate of the signal x and lets us evaluate the projection of x onto

different candidate subspaces. We will show in subsection 2.2.5 that the multitaper spectral

estimate forms a crucial tool in accurate broadband source localization. However, com-

puting the spectral estimate pSKpfq, f P t0, 1{N, ¨ ¨ ¨ , N ´ 1{Nu requires OpKN logNq

operations. But, as shown in [35], it is possible to compute an approximation ĂSkpfq at all

grid frequencies such that

|pSKpfq ´ĂSkpfq| ď
ε

K
}x}2 (2.36)

in OpN log2 log 1
ε
q time. Armed with both of the above tools for fast computations with the

DPSS vectors, we are now ready to develop our algorithms for broadband source localiza-

tion.

2.2.4 Iterative algorithms for broadband DOA

The problem of broadband source localization has many similarities with the classical com-

pressed sensing problem setup. For a k-sparse signal z P Rn and a suitable “sensing” matrix

A P Rnˆn, consider noisy linear measurements of the form

x “ Az` η “
k
ÿ

iPtj:zrjs‰0u

Aizi ` η (2.37)

where η is additive noise. The vector y is then a sparse linear combination of the “dictionary

element” given by the columns of A. Similarly, we can model a multiband signal as a sparse

linear combination of subspaces:

x “
L
ÿ

`“1

Ef`SKα` (2.38)
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where Ef`SK denotes the basis for the `th band and α` denotes the corresponding set of

coefficients. Note that we do not make recommendation on the value of K to be used, but

(Equation 2.38) instead emphasizes that multiband signals are sparse linear combinations

of subspaces.

Owing to the resemblance compressed sensing, we propose to adapt two algorithms

from the compressed sensing literature, Orthogonal Matching Pursuit (OMP) [36] and

Compressed Sampling Matching Pursuit (CoSaMP) [37]. Both these algorithms make use

of the sparse linear combination signal model. In order to develop the algorithms for multi-

band signals, we use the following notation.

• ΨL represents a dictionary of L subspaces and takes the form

ΨL “

„

S1 S2 ¨ ¨ ¨ SL.


(2.39)

Si denotes the ith subspace and contains a basis for the subspace. In the sequel, we

make use of two particular choices for the basis: one given by Fourier vectors, the

other by DPSS vectors.

• Specp¨q computes a spectral estimate of the input signal. For the purpose of this

article, it could be either the Fourier transform or the multitaper spectral estimate.

• P∆ppS,Kq represents a peak-picking operator. Given a spectral estimate pS, it picks

K peaks, with a minimium spacing of ∆

• PpΦq denotes the projection operator that projects a given signal onto the union of

the subspaces in the dictionary Φ. This involves solving a least squares problem to

determine the coefficients of the active bands that generate the given signal.

• Given an estimate of a band located at f , G∆f pS, fq estimates the bandwidth of that

source, if unknown a priori and also refines the estimate of f .
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• Dεpf ,Wq creates the dictionary element corresponding to the band centered at f

with a bandwidth of W. The dictionary can either be a set of Fourier vectors from

the band rf ´ W, f ` Ws or be the set of DPSS vectors spanning the subspace of

N -dimensional signals that are most concentrated in the band rf ´W, f `Ws.

• Prunepx, f ,W, Lq is a pruning operator that selects the L sources with the most

energy out of the identified support set f ,W.

OMP for broadband source localization

Our first algorithm follows the general the general structure of the OMP algorithm. It

is an iterative algorithm that operates on the spectrum of the signal. In each iteration,

the frequency band centered around the largest peak in the spectrum selected and along

with all such previously selected bands, is “nulled out” using a projection operation. Fast

spectral estimation is possible due to the fast multitaper spectral estimation algorithm and

fast nulling out is possible due to the fast projection algorithm discussed in the previous

section. The algorithm is presented in detail in Algorithm 1.

Algorithm 1 OMP for Broadband Signals

1: x Ð multibandpN,Lq Ź Assume L Sources
2: rp0q Ð x
3: Ψp0q ÐH

4: iÐ 0
5: while Not Converged do
6: iÐ i` 1
7: v “ rpi´1q Ź Form Proxy
8: Spfq ÐSpec(v) Ź Spectral Estimate
9: f̂1 Ð P∆pSf , 1q Ź Identify Largest Peak

10: f1, W1 Ð G∆f pSf , f̂1q Ź Estimate Bandwidth/Refine Center Frequency
11: Ψ1 Ð Dεpf1,W1q

12: Ψpiq Ð rΨpi´1qΨ1s ŹMerge Support
13: f piq Ð rf pi´1q f1s

14: Wpiq Ð rWpi´1qW1s

15: xpiq Ð PΨpiqpxq Ź Estimation
16: rpiq Ð x´ xpiq Ź Update Residual
17: f , W Ð Prunepxpiqq, f piq,Wpiq, Lq Ź Pruning
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CoSaMP for broadband source localization

The next algorithm follows the general the general structure of the CoSaMP algorithm.

As opposed to the OMP algorithm, CoSaMP chooses 2L peaks in every iteration, where

L is the number of sources being localized. The 2L candidates are then merged with a

previously identified set of L candidates. This is followed by a projection onto the set of

the 3L candidates, followed by a pruning step that chooses the L sources with the most

energies. The CoSaMP algorithm has a higher computational complexity per iteration, but

generally requires fewer iterations than the OMP algorithm.

Algorithm 2 CoSaMP for Broadband Signals

1: x Ð MultibandpN,Lq Ź Assume L Sources
2: rp0q Ð x
3: Ψp0q ÐH

4: iÐ 0
5: while Not Converged do
6: iÐ i` 1
7: v “ rpi´1q Ź Form Proxy
8: Spfq ÐSpec(v) Ź Spectral Estimate
9: f̂2L Ð P∆f pSf , 2Lq Ź Identify 2L Largest Peaks

10: f2L, W2L Ð G∆f pSf , f̂2Lq Ź Estimate Bandwidth/Refine Center Frequency
11: Ψ2L Ð Dεpf2L,W2Lq

12: Ψ̂ Ð rΨpi´1qΨ2Ls ŹMerge Support
13: f̂ Ð rf pi´1q f2Ls

14: Ŵ Ð rWpi´1qW2Ls

15: xpiq Ð PΨ̂pxq Ź Estimation
16: f piq, Wpiq Ð SΨ̂px̂, f̂ , Ŵ, Lq Ź Pruning
17: Ψpiq Ð Dεpf

piq, Wpiqq

18: rpiq Ð x´ PΨpiqpxq Ź Update Residual

2.2.5 Source localization performance under noise and subsampling

We present a series of experiments to show the efficacy of our proposed broadband source

localization algorithms. We compare algorithms based on the percentage of sources de-

tected correctly and accuracy of the center frequencies estimated. The number of sources

L was chosen to 10, and we set the total occupied bandwidth to be
řL
`“1W` “ 0.04, thus
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(a) CoSaMP Slepian (b) OMP Slepian

(c) CoSaMP Fourier (d) OMP Fourier

Figure 2.18: Comparison of broadband OMP and CoSaMP algorithm’s detection percentages when
using a Fourier and Slepian dictionary. The vertical axis represents the inputs channel SNR and the
horizontal axis represents the amount of oversampling w.r.t. to the inputs degrees of freedom.

setting 2NW ! N .

2.2.6 Detection Results

The detection results in Figure (Figure 2.18) depict the results of detection percentages

for the CoSaMP and OMP algorithm when using either a Fourier or Slepian Dictionary

to perform the estimation and nulling step. It is clear from these results that the Slepian

dictionary yields far better detection performance across a wider variety of channel SNRs

and oversampling factors. This is expected, since the DPSS vectors are more aptly suited

for capturing the energy generally lost due to spectral leakage.
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Figure 2.19 shows the center frequency estimation performace of the algorithms under

both DPSS and Fourier dictionaries. For OMP and CoSaMP the average normalized fc

error is lower bounded by 1.03
N

which is very close to the approximate Rayleigh limit of

« 1
N

. For the Fourier dictionary however, the resolution is well outside the Rayleigh limits.

(a) CoSaMP Slepian (b) OMP Slepian

(c) CoSaMP Fourier (d) OMP Fourier

Figure 2.19: Comparison of broadband OMP and CoSaMP algorithm’s center frequnecy estimates
f̂c when using a Fourier and Slepian dictionary. The vertical axis represents the inputs channel
SNR and the horizontal axis represents the amount of oversampling w.r.t. to the inputs degrees of
freedom. The error units are in normalized frequency.

61



CHAPTER 3

SKETCHED REGRESSION FOR DECENTRALIZED DATA

3.1 Randomization as an algorithmic tool

Efficient linear algebraic computations are of fundamental importance in machine learning

and signal processing applications. The problems in array signal processing described in

chapter 2 are among the many examples of real-world optimization problems that rely

on linear-alegbraic routines. However, a massive rise in the amount of data calls for a

rethinking of many classical algorithms. For example, solving a linear system of equations

y “ Ax using classical methods takes Op rNd2q time, where A P R rNˆd and this is already

prohibitive for many large scale applications.

One particular algorithmic paradigm that aims to address this problem is the so-called

“sketch and solve” method. This usually entails obtaining an approximation of the so-

lution, while improving the time complexity of algorithms. These set of methods utilize

randomization as a powerful tool to reduce the dimensionality of data and then apply the

classical algorithms in the reduced dimension [38, 39, 40, 41]. In this work, we consider

two specific examples: sketched matrix multiplication [5] and ridge regression [4] under a

scenario where the data matrices have a natural partition, making it difficult to store them

at a single location before applying dimensionality reduction.

Formally, if W P R rNˆm and Y P R rNˆp, computing the product WTY takes Opmp rNq

time, which can be prohibitive for large rN . The sketched version then aims to find matrices

S P RĂMˆ rN such that

›

›pSWq
T
pSYq ´WTY

›

› ď ε }W} }Y} . (3.1)

Computing the sketched matrix product pSWqT pSYq then takes only OpmpĂMq time (not
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accounting the time to compute SW and SY themselves). State-of-the-art bounds show

that ĂM “ OpmaxpsrpWq, srpYqq{ε2q suffices, where srp¨q is the stable rank of a matrix

(defined in subsection 3.2.1 and is a stable alternative for the rank). Similarly, given A P

R rNˆd with rN " d and b P R rN , the ridge regression problem is

x˚ “ arg min
xPRd

fpxq :“ }Ax´ b}2 ` λ }x}2 (3.2)

and can be solved in Op rNd2q time. The sketched problem instead seeks to find matrices

S P RĂMˆ rN such that solving

x̂ “ arg min
xPRd

fSpxq :“ }SAx´ Sb}2 ` λ }x}2 (3.3)

yields

fpx̂q ď p1` εqfpx˚q. (3.4)

The state-of-the-art bounds show that for small ε, ĂM “ Opsdλ{εq suffices, where sdλ is

the statistical dimension and is again a more stable alternative to the rank of A (We define

the statistical dimension in subsection 3.2.1).

With this background in place, let us consider a scenario where the data matrix A is

naturally divided into J blocks that are not all available at a single location. Let each block

then be of size N ˆ d, where Ñ “ JN . Such partitioning of data into different blocks

occurs naturally in many applications. For example, dynamic systems produce data that

evolve over time. To store the entire data before sketching it would require large amounts

of memory [9]. It would be of use to sketch the system as it evolves, leading to a natural

partition. In yet another application, consider the square kilometer array [11]. This array

consists of antennas distributed across the continents of Australia and Africa. To handle

the massive data rates (157 TB/s), it is desirable to sketch the data locally at each antenna

and then transmit to the central processing location. In distributed systems that use edge-
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cloud architecture, edge nodes collect data that needs to be communicated to the cloud for

inference. The communication requirements can be made smaller if the data at each edge

node is compressed to an “optimal” dimension.

A feature of existing sketching methods (including fast Johnson-Lindenstrauss matrices

such as Subsampled Randomized Hadamard Transform (SRHT) [42] and sparse sketching

matrices [43]) is that they need access to all or an arbitrary subset of the rows of A (See

Figure 1.2). Clearly, this is unsuitable for an application where high dimensional data

is available only in a decentralized manner, making it impossible to apply the standard

dimensionality reducing techniques. This leads us to ask the following questions: Is there

a way to adapt sketching techniques to such applications? What is the best way to model

dimensionality reduction for such applications? Two naı̈ve ways are readily available: i)

Since each block is of size N ˆ d, its rank is upper bounded by d. One could obtain a

subspace embedding for each block and communicate these sketched blocks to the central

node. The resulting dimension of the aggregated data is then OpJd{ε2q, since each block

needs to be sketched toOpd{ε2q, ii) Sketch each data block separately, and add the resulting

sketches at the central node instead of aggregating them. In fact, this results in a sketch of

the entire data matrix A. Using existing bounds, one can conclude that the final sketch

needs to be Opd{ε2q, which again requires each data block also to be sketched to Opd{ε2q.

A major drawback of both of the above approaches is that they do not take advantage of

the inherent low dimensionality of the entire matrix A, resulting in a sketch size ofOpd{ε2q

for each data block. Our observation is that it should be possible to lose information locally,

while still retaining all the information about A globally. We show theoretically that it is

possible for each of the blocks to be sketched to Opd{Jε2q. This implies that the sketch

obtained from a single block may not be big enough to provide a subspace embedding for

that block. Yet, an embedding of the entire matrix A can be obtained, once the sketches

from the individual blocks are aggregated. Hence, our work aims to initiate a study of how

to extend sketching methods to distributed data acquisition scenarios [44].
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Our proposal is to impose a block diagonal structure on the sketching matrix S. We

denote such a sketching matrix as SD. We then partition the data matrices W, Y and A

analogously. This results in sketches of the form

SDA “

»

—

—

—

—

—

—

—

–

S1 0 ¨ ¨ ¨ 0

0 S2 ¨ ¨ ¨ 0

...
... ¨ ¨ ¨

...

0 0 ¨ ¨ ¨ SJ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

A1

A2

...

AJ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

S1A1

S2A2

...

SJAJ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.5)

We assume that Aj P RNˆd where rN “ JN and Sj P RMjˆN such that
ř

jMj “ ĂM ,

although our results extend to the case where the Aj’s are of different sizes. We will also

assume that the non-zero entries of the matrix SD are drawn from the Gaussian distribution.

Our goal is to derive upper bounds on the sample complexities ĂMj required to achieve

similar guarantees as those in (Equation 3.1) and (Equation 3.4) when the sketching matrix

S is of the form of SD shown in (Equation 3.5).

Apart from the structural advantages described above, computing the product SDA can

also be much cheaper when compared to an unstructured random projection. For generic

Sj , the sketch SDA can be computed in time OpNdĂMq, as compared to the Op rNdĂMq re-

quired for a dense, unstructured sketch. Second, the computation is trivial to parallelize into

J blocks, each requiringOpNdMjq time. For large problems with low effective rank, when

we can take Mj “ OplogNq, this gives us a sketch with structured randomness compet-

itive with methods that use SRHT and sparse embedding matrices [38]. Furthermore, the

blocks themselves could be designed to be fast transforms. Owing to these computational

advantages, blocking could be a strategy by itself.

3.1.1 Related work

There is a vast and growing literature on sketching techniques. Here we briefly review some

of the work most relevant to ours in the context of our setting. Note that while sketching

can also be used as a pre-conditioning method [40], here we will only address “sketch
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and solve” methods where the original problem is (approximately) solved in a reduced

dimension.

Sketching methods for solving ordinary least squares problems are well summarized

in [38]. However, as noted in [4], solutions for sketched ridge regression problems are

more relevant in practice since regularization is often necessary. Similar to [4], we address

this problem but in the setting where the sketching matrix is block diagonal. We provide

conditions on the matrix
„

A b



under which such structured matrices can have the same

sample complexity as [4].

Our work is closely related to that of [45] which studies the restricted isometry property

(RIP) of block diagonal matrices. These results can be used to directly obtain subspace em-

bedding guarantees for block diagonal matrices. However, this approach requires a sample

complexity dependent on the rank of A and not its approximate rank. For large matrices

with fast spectral decay, this dependency can lead to sub-optimal sample complexity. An-

other difference is that we consider block diagonal matrices that have different sized blocks,

while [45] assumes that all the blocks are of the same size. One of the main conclusions

of our paper is that choosing the block sizes in a data dependent fashion leads to improved

(optimal) sample complexity.

A statistical analysis of sketched ridge regression in a distributed setting is provided in

[39]. This work considers the ridge regression problem in the multivariate setting (where

b and x are matrices) and analyzes model averaging in the case of distributed computation

of the sketched ridge regression solution. In this setting, various processors each solve

the problem with a part of the data and the estimators are then communicated to a central

agent. In contrast, we consider a scenario where the estimate is computed by the central

agent with only sketched data sent from various nodes.

Another work that is similar in spirit to ours and addresses sketched regression in a

distributed setting is [46]. The setting considered in this work lies somewhere between

that of [39] and ours. It considers multiple processors solving the ridge regression problem
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with different parts of the data similar to [39], but also assumes that the data used by each

processor is available to all other processors in a sketched form. In contrast, in our work,

the sketched data from all the nodes is available to only a central computing agent.

A complimentary line of work focuses on the same problem but where rN ! d. In [47],

a sketching based algorithm is proposed that achieves a relative error guarantee for the so-

lution vector. This result is further improved in [41]. Sketching has also been applied in the

context of kernel ridge regression, where the data points are mapped to higher dimensional

feature space before solving the regression problem. Sketching is used to reduce the num-

ber of such high dimensional features in [48] and [49]. Sampling and rescaling of features

is considered in [48]. Random feature maps are also used to construct pre-conditioners in

[49] to solve kernel ridge regression, where it is shown that a number of random feature

maps proportional to the effective rank of the kernel matrix suffices to obtain a high quality

pre-conditioner. While our work targets a different setting (where rN " d) and requires

a different set of analytical tools, it is noteworthy that our guarantees involve a similar

dependence on the stable rank of the underlying data matrix.

3.2 Localized sketching for regression and matrix multiplication

Our main contribution is theoretical analysis of the block model described in (Equation 3.5).

A naı̈ve strategy to analyze block diagonal matrices is to treat each block Aj separately and

use a number of random projections proportional to its effective rank. But this would not

take advantage of the low dimensional structure of the full matrix A, resulting in a highly

suboptimal sample complexity. Instead, we show that under mild assumptions on A, the

total sample complexity of ĂM of the matrix SD can match the existing bounds mentioned

above.
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Figure 3.1: The stable rank of a matrix captures the inherent low dimensionalty of approximately
low-rank matrices. In this figure, we show the singular values of a 100ˆ 100 matrix that is techni-
cally full rank. However, the singular values decay, resulting in an effective rank of about 15.

3.2.1 Stable rank, statistical dimension and incoherence

Before we can state our main results, we first define a few quantities that characterize the

complexity of matrix multiplication and ridge regression problems.

Stable rank of a matrix:

The stable rank of a matrix W is defined as

srpWq “
}W}

2
F

}W}
2 . (3.6)

Note that srpWq ď rankpWq. For matrices with a flat spectrum, the stable rank equals the

rank of the matrix. However, if the singular values decay, then the stable rank captures the

effective low dimensionality of the matrix, even when it is technically full rank.

Statistical dimension of the ridge regression problem:

The ridge regression problem defined in (Equation 3.2) can be reformulated as

min
xPRd

›

›

›

›

›

›

›

»

—

–

A
?
λId

fi

ffi

fl

x´

»

—

–

b

0

fi

ffi

fl

›

›

›

›

›

›

›

2

ô min
xPRd

›

›

›

rAx´ rb
›

›

›

2

.

The scalar multiple of the identity on the bottom of rA means it will technically be rank

d. But in some sense, a more nuanced notion of rank would count dimensions in the

column space of rA that have singular values greater than
?
λ differently that those with

singular values less than
?
λ. One way to bring about this distinction through the statistical
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dimension

sdλ “
ÿ

i

σ2
i

σ2
i ` λ

.

In the sum above, if σ2
i " λ, then the contribution for that term is approximately one, while

if σ2 ! λ, it is essentially zero. This allows us to interpret sdλ as a kind of “effective

rank”. Note that sdλ ď rankpAq and can be much lower than rankpAq. While making

λ very large can of course make sdλ very small, this also introduces a larger bias in the

estimates provided by (Equation 3.2) and (Equation 3.3), driving both of their solutions

to zero. Choosing the λ that balances this bias-variance trade-off is equally important in

sketched and non-sketched ridge regression.

Incoherence of the data matrices:

In randomized sampling schemes, the sampling probability of each row depends on the cor-

responding leverage score, which is the `2 norm of the corresponding row of an orthobasis

U for A. Leverage scores highlight the relative importance of each row of A. Block di-

agonal matrices can be thought of as a generalization of sampling matrices. Instead of a

single row, each block now accesses a submatrix of A. Instead of using uniformly sized

diagonal blocks Sj , we show that a relative importance term associated with each block Aj

similar to leverage scores dictates the number of random projections Mj required to attain

optimal sample complexity. Let U be an orthobasis for the column space of the matrix A.

Let U “ rUT
1 UT

2 ¨ ¨ ¨ UT
J s
T , where Uj P RNˆd. We will show that the corresponding

relative importance parameter, which we term as coherence of Uj , is

ΓpUjq “ min
`

}Uj}
2
8
N, }Uj}

2
2

˘

.

Here, }Uj}8 denotes the element-wise infinity norm and }Uj}2 denotes the spectral norm.

We can observe that
1

J
ď max

j
ΓpUjq ď 1. (3.7)

When the ΓpUjq’s are all close to 1{J , the columns of U are incoherent, or not too aligned
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with respect to the standard basis vectors. On the contrary, when they are close to 1, then

there are vectors in the column space of U which are close (in an inner product sense) to

the standard basis vectors. We describe bases U that have small coherence parameters as

being incoherent. We will show that as long as the coherence is not too high, the sample

complexity of block diagonal matrices can match that of generic sketching matrices.

3.2.2 Sample complexity bounds for localized sketching

Low values of the coherence parameter (highly incoherent bases) indicate relative unifor-

mity in the importance of the blocks. For such subspaces, it would be reasonable to expect

that roughly the same number of random projections can be drawn from each data block

Aj . On the other hand, when the coherence parameters ΓpUjq have are uneven, it can be

expected that the number of random projections from each block should be proportional to

the corresponding ΓpUjq. This is precisely our proposed strategy to design the number of

random projections Mj . We propose that Mj can be chosen as

Mj “M0ΓpUjq (3.8)

for some constant M0 that we will determine later. This results in a total sample complex-

ity of M0

ř

j ΓpUjq. Our theoretical results state that block diagonal sketching matrices

can achieve optimal sample complexity when Mj’s are designed as in (Equation 3.8). This

is also reminiscent of sampling algorithms, where the sampling probability of each row is

proportional to the corresponding leverage score.

Localized sketching for matrix multiplication

Since matrices with high ranks can still be approximately low dimensional, we will char-

acterize the sample complexity in terms of the stable rank of the multiplicands. When

the sketching matrices are dense and contains entries drawn from the Gaussian random

distribution, [5] shows that the sample complexity of S in (Equation 3.1) (under certain

distributions) depends only on the stable ranks of the matrices. For optimal sample com-
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plexity, the distributions D from which the sketching matrices S are drawn need to satisfy

P
S„D

`
›

›pSWq
T
pSYq ´WTY

›

› ą ε }W} }Y} p1` srpWq{kq1{2p1` srpYq{kq1{2
˘

ă δ

(3.9)

for any desired k and a suitable ĂM . When S is a dense matrix with sub-Gaussian en-

tries, this holds for ĂM “ Ωpk`logp1{δq
ε2

q. Then, for k “ maxpsrpWq, srpYqq, S satisfies

(Equation 3.1). Hence, to achieve a relative error in the spectral norm, S only needs to have

a number of rows that is proportional to the stable ranks of W and Y.

Our first main result is a similar guarantee for block diagonal sketching matrices. Un-

like the distributions proposed in [5], block diagonal distributions cannot be both obliv-

ious to the data matrices and have optimal sample complexity. A naı̈ve way to achieve

(Equation 3.9) when S is block diagonal is to use triangle inequality:

›

›

›
pSDWq

T
pSDYq ´WTY

›

›

›
ď
ÿ

j

›

›pSjWjq
T
pSjYjq ´WT

j Yj

›

› (3.10)

where Wj and Yj are corresponding blocks as in (Equation 3.5). However, this requires

that Mj “ Ω
´

srpWjq`srpYjq

ε2

¯

for each j. This can lead to suboptimal sample complexities,

as srpWjq and srpYjq can be as high as srpWq and srpYq themselves. We show in our

analysis that we can in fact achieve

ĂM “
ÿ

j

Mj “ Ω

ˆ

srpWq ` srpYq

ε2

˙

for incoherent matrices. With Mj designed as in (Equation 3.8), we have the following

result for computing approximate matrix products:

Theorem 7 Fix matrices W and Y and let SD be a block diagonal matrix as in (Equation 3.5)

with the entries of Sj are drawn from the distributionN p0, 1{Mjq. Let U be an orthobasis

for the matrix rW Ys and ΓpUjq be the corresponding incoherence terms. Then the tail
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bound (Equation 3.9) holds with S “ SD when Mj are taken as in (Equation 3.8) with

M0 “ Ω

ˆ

k logp2{δq

ε2

˙

. (3.11)

We can examine the total sample complexity of SD. Consider a highly incoherent

basis U: each entry of such a basis is bounded away from 1. Examples of such bases

include orthobases of matrices with entries drawn from the Gaussian distribution and any

subset of the Fourier basis. Since each column of U has an `2-norm of 1, for such bases,

}Uj}8 « 1{
a

rN . Then we have Mj «
M0

J
and ĂM “ Ω

´

maxpsrpWq,srpYqq logp2{δq
ε2

¯

. We

see that even though SD has a block diagonal structure, it can still have an optimal sample

complexity.

Block diagonal sketching for ridge regression

Let us now consider the sketched ridge regression problem shown in (Equation 3.3). Let

U1 P RĂMˆd comprise the first n rows of an orthobasis for the matrix r A?
λId
s. Then,

(Equation 3.4) holds with constant probability, if S satisfies the following two conditions:

›

›UT
1 STSU1 ´UT

1 U1

›

› ď
1

4
, (3.12)

›

›UT
1 STSr˚ ´UT

1 r˚
›

› ď

c

εfpx˚q

2
, (3.13)

where r˚ “ b´Ax˚ and we recall that fpx˚q “ }Ax˚ ´ b}2` λ }x˚}2. These conditions

are well known in the randomized linear algebra community. (See [4] Lemma 9.) Both of

the above conditions on S can be re-expressed as approximate matrix product guarantees

by choosing the pair of matrices as W “ Y “ U1 for (Equation 3.12) and W “ U1 and

Y “ pb ´ Ax˚q for (Equation 3.13). We now state our main result for block diagonal

sketching of ridge regression problems. Let A and b be as defined above and let U be an

orthobasis for a basis for the range of rA bs of size at most rN ˆpd`1q with ΓpUjq’s being

the corresponding incoherence terms.

Theorem 8 Let U be an orthobasis for the matrix rA bs and ΓpUjq be the corresponding

incoherence terms. Let SD be a block diagonal matrix as in (Equation 3.5) with the entries
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of Sj are drawn from the distributionN p0, 1{Mjq. Let x˚ be the solution to (Equation 3.2),

and x̂ be the solution to (Equation 3.3). Then

fpx̂q ď p1` εqfpx˚q,

with constant probability when Mj obeys (Equation 3.8) with M0 “ Ω
`

sdλ
ε

˘

.

As before, if A and b are such that the basis U is incoherent, then the total sample complex-

ity ĂM “
ř

jMj “ Op sdλ
ε
q. We are hence able to establish that though highly structured,

block diagonal random matrices can in fact have optimal sample complexities.

Estimating the incoherence terms

An important question is about how the coherence parameters ΓpUjq’s can be estimated.

Note that the main challenge is in computing an orthobasis for the data matrix A. We

develop an algorithm to empirically estimate the ΓpUjq’s to within a constant factor of

the true values using a sketching based algorithm. The algorithm uses Opdq fast localized

random projections of the blocks Aj’s and computes an estimate of the QR factorization

of A at a central processing unit. Using the approximate R factor, the blocks Uj’s are

estimated locally. The algorithm has a worst case time complexity of Op rNd logNq. Note

that this is less than the sketch compute timeOp rNdĂM{Jq forN not too large. In Figure 3.3,

we show the estimated incoherence parameters and the true parameters for a test matrix

with J “ 100, rN “ 10000. We can see that the estimated values are within a constant

factor of the true ΓpUjq’s. An important note here is that in many applications, an estimate

of the ΓpUjq’s may be obtained using a priori domain knowledge. Yet another insight is

that if distributional assumptions on the data can be made, as common in machine learning,

then ΓpUjq’s can be very reliably estimated a priori [45]. Any such prior information will

lead to better sample complexities as compared to the naı̈ve techniques described in the

introduction.

Algorithm for estimation of the incoherence parameters ΓpUjq

Our algorithm for estimating the block incoherence parameters is inspired by the algorithms
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Algorithm 3 Estimation of incoherence parameters up to constant factor error
Input: Blocks Aj .
Initialize Ω P ROp1qˆN ,Q “ 0,R “ 0, Â “ 0 where Ω is drawn from any subsampled
randomized FJLT.
While rank(R) not converged
Compute Âj “ ΩA.
Aggregate Â “ rÂJ

1 ÂJ
2 ¨ ¨ ¨ Â

J
J s
J at the central processing unit with previous estimate

Update QR = qr(Â)
Draw a new independent realization of Ω
Compute Γ̂pUjq “ }AR´1}

2
F

Output: Normalized estimates Γ̂pUjq{
ř

j Γ̂pUjq

for leverage score estimation in the row sampling literature [50, 38] and from randomized

SVD algorithms [51]. The main idea is the following: suppose we had access to the QR

factorization of the data matrix A P rN ˆ d:

A “ QR. (3.14)

Then, an orthobasis can be obtained by computing Q “ AR´1. However, computing the

QR-factorization is as expensive as the matrix multiplication or ridge regression problems.

We use a similar approach, but we only aim to capture the row space of A in a distributed

fashion. However, we take random projections in an iterative fashion, until theg row space

of the sketch “converges”. We estimate the QR factorization from this resulting sketch.

Our algorithm is described in Algorithm Algorithm 3. Note that we only aim to compute

a constant factor approximation of the QR factors. Hence, computing the R takes, in the

worst case, OpJdN logNq “ Op rNd logNq time. The QR factorization in each iteration

can be updated from its previous estimates efficiently. Computing the final estimate takes

aboutOpJd3q time. Finally computing Γ̂pUjq’s takesOp rNdq time, resulting in a total worst

case time complexity of Op rNd logNq.
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Figure 3.2: fpx̂q{fpx˚q for three sketching matrices: a dense matrix with standard Gaussian en-
tries, a block diagonal matrix with equal sized blocks (uniform diagonal matrix) and a block diago-
nal matrix with entries designed as in (Equation 3.8) (non-uniform diagonal matrix). A ratio close
to 1 indicates that the sketching matrix is effective in solving (Equation 3.3). WhenMj’s are chosen
appropriately, block diagonal matrices can be as effective as a general matrix.

3.3 Simulations

We demonstrate the effectiveness of block diagonal sketching matrices by performing ex-

periments on both synthetic and real data. In our first experiment, we demonstrate the

importance of choosing the size of the diagonal blocks according to our proposed method

given in (Equation 3.8). We use the following parameters: N “ 2000, J “ 10, d “ 50. We

design the singular values such that for λ “ 0.15, sdλ “ 8.5, but rankpAq “ 50. For each

trial, we generate S with entries drawn from N p0, 1{
a

ĂMq and SD with the entries of Sj

drawn from N p0, 1{
a

Mjq. In Figure 3.2, we plot fpx̂q{fpx˚q averaged over 10 trials for

different values of ĂM . In particular, we show that when Mj “M0ΓpUjq, SD has the same

rate of decay for fpx̂q{fpx˚q as S, and has a worse rate otherwise.

In our next set of experiments, we study performance in terms of prediction accuracy

on the YearPredictionMSD dataset. It contains 89 audio features of a set of songs and the

task is to predict their release year. The dataset has 463,715 training samples and 51,630

test samples. In this case, we use diagonal blocks of the same size. Across 10 independent

realizations of S and SD, we compute the empirical probability of fpx̂q{fpx˚q ď p1`εq for
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various values of ε and ĂM . We show phase transition plots in Figure 3.4 which demonstrate

that block diagonal matrices are as effective as dense matrices in terms of accuracy, for the

same sample complexity.

Figure 3.3: For a test matrix with J “ 100, rN “ 10000, the true incoherence values and the
estimated values are within a constant factor of each other, shown here in a sorted. Choosing
the block sizes Mj proportional to the estimated coherence parameters results in optimal sample
complexities.

We also seek to highlight the computational advantages provided by block matrices. To

this end, we compare the sketch compute times for block diagonal matrices with that of

SRHT sketching matrices. We consider matrices A of sizes 218ˆ 40, 220ˆ 40 and 222ˆ 40

and divide them into J “ 210, 212, 214 blocks respectively. In order to ensure fair compari-

son, we replace the SRHT matrix with randomly subsampled Fast Fourier transform (FFT)

matrix, since both have the same theoretical sketch compute time, but the FFT matrix has

very efficient software implementations. The sketch compute times are shown in Table 3.1.

Our choice of J renders each block small enough for very efficient computations. This

results in block diagonal matrices being much faster compared to the FFT matrix.
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Figure 3.4: Each plot shows the empirical probability of fpx̂q ď p1 ` εqfpx˚q for various values
of ĂM , computed using an average over 10 trials. The left pane is for results with dense matrices
with sub-Gaussian entries, the right pane for results with block diagonal sketching matrices.

Table 3.1: Sketch compute time in sec. for various matrix sizes rN and sketch sizes ĂM . In each
cell, the left figure for FFT sketch and the right figure in boldface is for block diagonal matrices.

Sketch compute time in seconds for large scale matrices

rN, J ĂM “ 600 ĂM “ 1400 ĂM “ 2200 ĂM “ 3000

218, 210 0.26; 1.4ˆ 10´2 0.26; 2ˆ 10´2 0.26; 3.88 ¨ 10´2 0.26; 4.2ˆ 10´2

220, 212 1.16; 2.7ˆ 10´2 1.16; 3.9ˆ 10´2 1.16; 5.1ˆ 10´2 1.16; 6.3ˆ 10´2

222, 214 5.87; 7.9ˆ 10´2 5.87; 9.1ˆ 10´2 5.87; 11ˆ 10´2 5.86; 11ˆ 10´2
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CHAPTER 4

LOW RANK MATRIX RECOVERY FROM DECENTRALIZED SKETCHES

4.1 Identifying low dimensional subspaces from compressed measurements

A fundamental structural model for data is that the data points lie close to a subspace. In

chapter 2, we saw two instances of subspace based models in the domain of array signal

processing. For active array imaging, the low-dimensional subspace model helped in de-

signing a more efficient signal acquisition method and for broadband direction-of-arrival

estimation, the search over the candidate subspaces could be made sample-efficient due to

the low dimensionality.

In both of the above applications, we assumed knowledge of the low-dimensional sub-

space model that described the observed data. However, identifying the subspace is by

itself an interesting problem. When data points lie close to an unknown subspace, the ma-

trix created by concatenating the data vectors has low rank. Identifying the subspace, or

equivalently the principal components that best describe the data points is one of the most

fundamental problems in signal processing, data science and machine learning, and is usu-

ally termed Principal Component Analysis (PCA). In this chapter, we develop a method

to perform subspace identification and signal reconstruction from compressed observations

when the underlying subspace if unknown.

While PCA is a common tool for dimensionality reduction, denoising, feature extrac-

tion and in many other signal processing and machine learning pipelines, we focus here on

its usage a tool for linear dimensionality reduction. Consider a set of points in Rd1 , drawn

from an approximately r-dimensional subspace and let there be d2 such data points. Then

we could first compute the principal components, with a cost of Opd3
1q, and then project

data onto the first r ` Op1q principal components. While this offers a viable path for both
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estimating the principal components and data compression, the Opd3
1q cost can easily be

prohibitive. In this chapter, we will develop a method to compress and recover data points

belonging to an unknown low-dimensional subspace from signal-agnostic, random projec-

tions of the data.

We cast this problem as a low-rank matrix recovery problem where we wish to recover

a set of vectors from a low-dimensional subspace after they have been individually com-

pressed (or “sketched”). More concretely, let x1, ¨ ¨ ¨ ,xd2 be vectors from an unknown

r-dimensional subspace in Rd1 . We observe the vectors indirectly via linear sketches by

corresponding sensing matrices B1, . . . ,Bd2 P Rd1ˆL, where L ! d1, i.e., the observed

measurement vectors are written as

yi “ BJ
i xi ` zi, i “ 1, . . . , d2. (4.1)

Our goal is to leverage the low-dimensionality of the ensemble of points and recover them

from a number of ‘per-vector’ measurements L ! d1. Although individual recovery of

each vector is ill-posed, it is still possible to recover x1, . . . ,xd2 jointly by leveraging their

mutual structure without knowing the underlying subspace a priori. This indeed results in

a low-rank matrix recovery problem with a column-wise observation model.

We are motivated mainly by large-scale inference problems where data is collected in a

distributed network or in a streaming setting. In both cases, it is desired to compress the data

to lower the communication overhead. In the first scenario, the data is partitioned according

to the network structure and each data point must be compressed without accessing the

remainders. In the second scenario, memory or computational constraints may limit access

to relatively small number of recent data points.

Such compressive and distributive acquisition schemes arise frequently in numerous

real-world applications. In next generation high-resolution astronomical imaging systems,

an antenna array may be distributed across a wide geographical area to collect data points

that have a high dimension but are also heavily correlated (and hence belong to a low-
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dimensional subspace). Compression at the node level relieves the overhead to transmit

data to a central processing unit [1]. In scientific computing, it is common to generate

large scale simulation data that has redundancies that manifest as low-rank structures. For

example, simulations in a fluid dynamic system generate large state vectors that have low-

rank dynamics [52]. Our observational model describes a kind of on-the-fly compression,

where the states are compressed as the system evolves, resulting in efficient communication

and storage.

In each of these applications, if the underlying low-dimensional subspace were known a

priori, then the projection onto that subspace could have implemented an optimal distortion-

free linear compression. Alternatively if the uncompressed data were available, the stan-

dard Principal Component Analysis (PCA) might have been used to discover the subspace.

Unfortunately, neither is the case. Therefore we approach the recovery as sketching with-

out knowing the latent subspace a priori. It can also be interpreted as a blind compressed

sensing problem that recovers the data points and underlying subspace simultaneously from

compressed measurements.

The measurement model in (Equation 4.1) is equivalently rewritten as follows: Let

X0 P Rd1ˆd2 be a matrix obtained by concatenating x1, . . . ,xd1 . It follows that the rank of

X0 is at most r. The entries of y1, . . . ,yd2 then correspond to noisy linear measurements

of X0, i.e., for l “ 1, . . . , L and i “ 1, . . . , d2, the lth entry of yi denoted by yl,i is written

as

yl,i “ xAl,i,X0y ` zl,i with Al,i “
1
?
L

bl,ie
J
i , (4.2)

where zl,i, bl,i, and ei respectively denote the lth entry of zi, the lth column of Bi, and the

ith column of the identity matrix of size d2. We propose a convex optimization method to

recover X0 from tyl,iu and provide theoretical analysis when bl,i and zl,i are independent

copies of random vectors drawn according to N p0, Id1q and N p0, σ2q respectively.
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4.2 Tensor products of Banach spaces

4.2.1 Introduction

Recasting the problem of compressing data points drawn from a subspace into a low rank

matrix recovery problem opens up many possibilities for designing recovery algorithms

and perform theoretical analysis to determine the requires sample complexity L. A popular

framework to recover low rank matrices from certain types of linear observations is to use

the nuclear norm based recovery algorithms [53, 54]. In this framework, the nuclear norm

of a matrix is used as a convex surrogate for the rank of a matrix, thus opening up convex

optimization methods as tools for low rank matrix recovery.

While nuclear norm minimization has seen a lot of success, there exist other character-

izations of the set of low rank matrices. For example, alternate convex surrogates for low

rank matrix recovery have been proposed in the more recent literature [55, 56]. In partic-

ular, [57] proposes to use the “max-norm” of a matrix as a convex relaxation to solve the

matrix completion problem, whereas [56] used the “mixed-norm” of a matrix to solve for

the column-wise observation model described in (Equation 4.2).

All of the above methods can be seen as particular instances of a unifying framework

to design recovery algorithms for low rank matrices. We will develop this framework in

this section and then focus on the column-wise observation model of (Equation 4.2) in the

remainder of the chapter. The unifying framework can be developed by describing matrices

as operators between Banach spaces endowed with suitable norms. These norms can then

be used to ascribe the matrix itself with certain norms to capture the low-rankness, and

further be used to design recovery algorithms for low rank matrices.

Let X P Rd1ˆd2 be a matrix. We can then interpret it as a linear operator from a

vector space Rd2 to another vector space Rd1 . Then let the domain and range spaces be

respectively endowed with the `p norm and the `q norm. The vector space of all d1 ˆ

d2 matrices can then be identified as the tensor product of the two Banach spaces P “
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pRd2 , }¨}pq and Q “ pRd1 , }¨}qq and is denoted as `p1b `q (e.g., [58]), where 1{p`1{p1 “ 1.

More generally, the set of linear operators from a Banach space S to another space T can

be denoted as S˚ b T , where S˚ is the Banach space dual of S.

4.2.2 Tensor product norms

For any given pair of Banach spaces, we can define many norms on their tensor product.

[58, 59]. We consider two specific norms: the injective and projective tensor norms, defined

respectively as

}X}
_
“ sup

uPRd1 ,}u}p“1

}Xu}q (4.3)

and

}X}^ “ inf

#

ÿ

k

}uk}p1}vk}q

ˇ

ˇ

ˇ

ˇ

ˇ

X “
ÿ

k

vku
˚
k

+

. (4.4)

The injective (resp. projective norm) norm is the smallest (resp. largest) norm among the

class of all tensor norms. The main insight driving the unified perspective on low rank

matrix recovery is that, when we restrict linear operators to those of rank at most r, certain

tensor norms become equivalent up to a function of r. This property can then be used to

design convex relaxations for the set of rank-r matrices. For example, when p “ q “ 2,

it can be easily verified that }X}_“}X}2 and }X}^“}X}˚ . It follows from the singular value

decomposition that }X}2ď}X}˚ďr}X}2 . In yet another example, let p “ 1, q “ 8. Then it

can be shown that the injective norm }X}_“}X}8 , which is the element-wise infinity norm.

Further, define the max-norm of a matrix as

}X}max “ inf
U,V:UVJ“X

›

›UJ
›

›

1Ñ2

›

›VJ
›

›

1Ñ2
. (4.5)

Then, it can be shown that [55]

}X}
8
ď }X}max ď

?
r }X}

8
. (4.6)

In this case, it has been shown that the max norm is equivalent up to a constant to the pro-

jective norm. For p “ 2, q “ 2 (p “ 1, q “ 8), the sets tX : }X}
_
ď α, }X}

^
ď rαu
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(tX : }X}
_
ď α, }X}

^
ď
?
rαu) are convex relaxations of the set of rank-r matrices.

Thus, the convex relaxations proposed in [53, 55, 56] are all particular instances of inter-

preting matrices as members of the tensor product of of Banach spaces, with each frame-

work adopting particular choices of the Banach spaces.

4.2.3 Tailoring convex regularizations for low rank matrices

With the unifying framework described above in place, a natural question is how to choose

the pair of Banach spaces to design a convex relaxation for the set of low rank matrices.

This choice is somewhat clear when the rank-r matrix we are trying to recover has a known

structured factorization. For example, if X “ UVJ where U P Rd1ˆr, V P Rrˆd2 and are

both sparse, then an intuitive choice is to use the tensor product `8 b `1, since the `1 norm

is known to be sparsity promoting. An extensive numerical study on this subject can be

found in [60], where it is demonstrated that knowledge of structured factors can indeed be

successfully used in choosing the pair of Banach spaces.

Another potential determining factor in the choice of the Banach spaces is the obser-

vation model itself. Consider the matrix completion problem [54, 61], where the goal is

to complete a low rank matrix using only noisy observations of a subset of the entries. It

is now well understood that matrix completion can be achieved from an optimal number

of samples only under certain incoherence conditions that ensure the none of the entries

are relatively very large. Constraining the }¨}
8

and max-norm is then the natural choice to

impose low rankness along with the uniform bound on the entries. It is precisely based on

this property that the authors in [55] are able to use the set tX : }X}
8
ď α, }X}max ď Ru

to effectively constrain the optimization for low rank matrix completion.

Considering the column-wise compression model defined in (Equation 4.2), we can

again use a similar argument to design a novel convex relaxation meant for this particular

observation model. Since (Equation 4.2) obtains inner products of individual columns,

an equivalent notion of incoherence might be that none of the columns have a relatively
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large norm compared to the other columns. This indicates that for this observation model,

constraining the maximum column `2 norm, denoted as X1Ñ2 might be the natural choice.

The above discussion forms the basis of the rest of this chapter. We choose p “ 1, q “

2, resulting in }X}
_
“ }X}1Ñ2. Along with this, we define the “mixed-norm” of a matrix,

which shares an interlacing property with }¨}1Ñ2 characterized by the rank of the matrix.

The mixed-norm is equivalent up to a constant to the projective norm of `8b `2. Further, it

is interesting that unlike many tensor norms, the mixed norm can be computed efficiently

in a polynomial time, similar to the nuclear norm.This enables efficient implementation of

mixed-norm-based low-rank recovery programs. Using the pair t}X}1Ñ2 , }X}mixedu, we

design a new convex relaxation method for low rank matrix recovery. We provide upper

bounds on the error between the estimate so obtained, and also provide a minimax error

bound that shows that the error rate we obtain is tight (up to log factors). Finally, we provide

an algorithm to implement our method and also show a strong empirical performance over

nuclear norm for the observation model in (Equation 4.2).

4.3 Mixed-norm-based low-rank recovery

Owing to our intuition developed in the previous section, we will now develop the “mixed-

norm” based framework for low rank matrix recovery. Our approach is a convex relaxation

based approach that is better suited than those found in the literature for the particular

observation model described in (Equation 4.2). We propose to use a convex relaxation for

the set of low rank matrices that uses two specific matrix norms, the maximum column `2

norm and the mixed-norm, both of which we define below. For a matrix X P Rd1ˆd2 , the

maximum `2 column norm is defined as

}X}1Ñ2 “ max
j“1¨¨¨d2

}Xej}2 , (4.7)

where ej is the j th standard basis vector. This can be interpreted as the operator norm from

the vector space `d21 to that of `d12 . We define the following matrix norm as the mixed-norm:
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}X}mixed “ inf
U,V:UVJ“X

}U}F }V
J
}1Ñ2. (4.8)

We use the term mixed-norm, since the above definitions is a hybrid of the definitions of

the nuclear norm and the max-norm, with nuclear norm using }}2 on both the factors, and

the max-norm using }}1Ñ2 on both the factors. The two norms described above provide a

convex relaxation of the set of rank-r matrices because of the interlacing property given in

the following lemma.

Lemma 2 Let X P Rd1ˆd2 satisfy rankpXq ď r. Then

}X}1Ñ2 ď }X}mixed ď
?
r }X}1Ñ2 . (4.9)

For matrices whose column norms are uniformly bounded by a constant α, their mixed

norm is bounded by
?
rα. For R ě

?
rα. By Lemma 2, the set κpα,Rq defined by

κpα,Rq “ tX : }X}1Ñ2 ď α, }X}mixed ď Ru (4.10)

contains the set of rank-r matrices with column norms bounded by α. Our proposed method

to estimate the ground truth matrix X0 is given by the following convex optimization pro-

gram:

X̂ P argmin
XPκpα,Rq

ÿ

l,i

|yl,i ´ xAl,i,Xy|
2. (4.11)

We have attempted to use the nuclear norm instead of the mixed norm but it was not

successful with providing a guarantee at a near optimal sample complexity. Furthermore

it also demonstrates worse empirical performance compared to our approach, as we show

soon.

Another appealing property of the mixed-norm is that it can be computed in polyno-

mial time using a semidefinite formulation. This renders our proposed estimator readily

implementable using general purpose convex solvers. However, to address scalability, we

propose an ADMM based framework. We defer further details on efficient computation to

section 4.8.
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4.4 Related work

The model in (Equation 4.2) has been studied in the context of compressed principal com-

ponents estimation [62, 63, 64]. These works studied a specific method that computes the

underlying subspace though an empirical covariance estimation. While being guaranteed

at a near optimal sample complexity, this approach is inherently limited to the linear ob-

servation model. On the other hand, our method is more flexible in terms of its potential

extension to nonlinear observation models.

Negahban and Wainwright [65] considered the multivariate linear regression problem

where a similar model to (Equation 4.2) arises but with a fixed sensing matrix A, i.e.,

Ai “ A for all i “ 1, . . . , d2. They showed that a nuclear-norm penalized least squares

provides robust recovery at a near optimal sample complexity within a logarithmic factor of

the degrees of freedom of rank-r matrices. However, their guarantees applies to an arbitrary

fixed ground truth matrix and not to all matrices within the model simultaneously. Our aim

is to work with an embedding of the model set κpα,Rq and we obtain a uniform theoretical

guarantee over the entire model set at the cost of using different sensing matrices Ai’s and

incoherence of the matrices.

Our solution approach is partly inspired by earlier works on low-rank matrix comple-

tion using the max-norm [66, 67, 55]. The pair of max-norm and `8 norms is used to relax

the set of low-rank matrices to a convex model. We generalize this approach to that of

using tensor norms as a proxy for low rank regularization and show that the max-norm and

the mixed-norm are particular instances of this general framework. In particular we choose

a specific pair of tensor norms in accordance with the structure in the observation model.

This leads to a new convex relaxation model of low-rankness, a corresponding optimiza-

tion formulation, algorithm, and its performance guarantee. Finally, we point out that our

method of proofs and the technical tools we use to establish our results are significantly
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different from that of [55].

4.5 Recovery guarantees on the mixed-norm based estimator

4.5.1 Upper bound on sample complexity

Our main result, stated in Theorem 9, provides an upper bound on the Frobenius norm

of the error between the estimate X̂ and the ground truth matrix X0. This guarantee holds

simultaneously for all matrices X P κpα,Rq rather than for just a fixed arbitrary matrix X0.

En route to proving our guarantee, we indeed show that
ř

l,ixAl,i,Xy
2 is well concentrated

around its expectation }X}2F for all X P κpα,Rq and hence, the measurements result in an

embedding of the set κpα,Rq into a low dimension.

Theorem 9 Let κpα,Rq be defined as in (Equation 4.10). Suppose that the bl,i are drawn

independently from N p0, Id1q, pzi,lq are i.i.d. following N p0, σ2q, d “ d1 ` d2 and d2 ď

Ld2 ď d1d2. Then, for R ď α
?
r, there exist numerical constants c1, c2 such that the

estimate pX satisfies

}pX´X0}
2
F

}X0}
2
F

ď c1 ¨
α2

}X0}
2
F {d2

¨max

ˆ

1,
σ
?
L

α

˙

¨

d

rpd1 ` d2q log6 d

Ld2

(4.12)

with probability at least 1´ 2 expp´c2R
2d{α2q for all X0 P κpα,Rq.

There are a few remarks in order:

• The factor α2d2{ }X0}
2
F is the ratio between the maximum and the average of the

squared column `2 norm of the ground truth matrix X0 and represents its degree of

incoherence. A ratio close to 1 indicates that the columns have similar `2-norms

and results in a lower sample complexity than when the ratio is much larger than 1.

This is similar to the dependence on the relative magnitude of each entry in the max-

norm-based estimator [55] and the dependence on incoherence in matrix completion

problems.
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• The second factor is written as maxp1, ηqwhere η “ σ
?
L

α
accounts for the noise level

in the measurements. Since we take L measurements per column and the measure-

ment operator is isotropic, α2 is compared against the corresponding noise-variance

σ2L.

• If the incoherence term is upper-bounded by a constant and the normalized noise

level η satisfies η “ Ωp1q, then pX obtained from Opη2rd log6
pdqε´2q measurements

satisfies }pX´X0}
2
F ď ε }X}2F with high probability.

4.5.2 Proof sketch

We state the key lemmas involved in proving Theorem 9 and point to the tools we use

and defer finer details of the proof to the appendix . We begin with the basic optimality

condition that relates the estimate X̂ to the ground truth X0. Let M “ X̂ ´ X0. By the

triangular inequality, we have M P κp2α, 2Rq. For notational brevity, we assume from

now on that M P κpα,Rq. (Neither the main result nor the proofs are affected by this since

they involve multiplication with some numerical constants.)

We adapt the first step in the analysis framework of the analogous matrix completion

problem [55]. By optimality of the solution and (Equation 4.2), we have

ÿ

l,i

´

yl,i ´ xAl,i, pXy
¯2

ď
ÿ

l,i

pyl,i ´ xAl,i,X0yq
2 . (4.13)

After substituting X̂´X0 by M and rearranging the terms, we obtain

ÿ

l,i

xAl,i,My
2
ď 2

ÿ

l,i

xAl,i,Myzl,i. (4.14)

As in [55], we rely on the stochastic nature of the noise. Our strategy is to obtain a lower

bound on the quadratic form
ř

l,ixAl,i,My2 in terms of }M}
2
F and a uniform upper bound

on the linear form
ř

l,ixAl,i,Myzl,i over the set κpα,Rq. We can then bound }M}
2
F uni-

formly over the set.

Lower bound on the quadratic form
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We observe that
ř

l,ixAl,i,My2 can be reformulated as a quadratic form in standard Gaus-

sian random variables. Let us define

ξ “

»

—

—

—

—

–

b1,1

...

bL,d2

fi

ffi

ffi

ffi

ffi

fl

P RLd1d2 . (4.15)

Then it follows that ξ „ N p0, ILd1d2q. Therefore, the left-hand side of (Equation A.46) is

rewritten as
ÿ

l,i

xAl,i,My
2
“ }QMξ}

2 , where

QM “
1
?
L

»

—

—

—

—

—

—

—

–

ĂMJ
1 0 ¨ ¨ ¨ 0

0 ĂMJ
2 ¨ ¨ ¨ 0

...
... . . . 0

0 0 ¨ ¨ ¨ ĂMJ
d2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, ĂMJ
j “ IL b pMejq

J
P RLˆLd1 . (4.16)

We also have

E }QMξ}
2
“ }M}

2
F

We compute a tail estimate on supMPκpα,Rq }QMξ}
2
2 by using the results on suprema of

chaos processes [68]. The main result in [68] provides a sharp tail estimate on the supre-

mum of a Gaussian quadratic form maximized over a given set A, which is written as

sup
APA

ˇ

ˇ}Aξ}2 ´ E }Aξ}2
ˇ

ˇ ,

by using a chaining argument. By adapting their framework, we obtain the following result.

Lemma 3 Under the assumptions of Theorem 3, if QM and ξ are as defined in (Equation A.61)

and (Equation A.60), then

sup
MPκpα,Rq

ˇ

ˇ

ˇ

ˇ

ˇ

}QMξ}
2

d2

´
}M}

2
F

d2

ˇ

ˇ

ˇ

ˇ

ˇ

ď cR

c

d

Ld2

˜

α `
R
?
d

?
Ld2

¸

log3
pdq

with probability at least 1´ 2 expp´cR2dα2q.
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From Lemma 3, in the regime where Ld2 ą R2d{α2, we can obtain
ř

l,ixAl,i,My2

d2

ě
}M}

2
F

d2

´ cRα

c

d

Ld2

log3 d. (4.17)

Upper bound on the right-hand side of (Equation A.46)

We obtain the following uniform upper bound
ř

l,ixAl,i,Myzl,i:

Lemma 4 Under the assumptions of Theorem 3, with probability at least 1´2 expp´cR2d{α2q,

sup
MPκpα,Rq

ř

l,ixAl,i,Myzl,i

d2

ď cpσ
?
LqR

c

d

Ld2

log3 d. (4.18)

To derive Lemma 4, we first express the left-hand side of (Equation 4.18) using a matrix

norm. Define

|||M||| :“
}M}1Ñ2

α
_
}M}mixed

R
.

Then by the definition of κpα,Rq in (Equation 4.10) it follows that the unit ball B :“ tM :

|||M|||| ď 1u with respect to ||| ¨ ||| coincides with κpα,Rq. Therefore, we obtain

sup
MPκpα,Rq

ÿ

l,i

xAl,i,Myzl,i “ sup
MPκpα,Rq

x
ÿ

l,i

zl,iAl,i,My “ |||
ÿ

l,i

zl,iAl,i|||˚

where ||| ¨ |||˚ denotes the dual norm. Then, conditioned on Al,i’s, it follows from Theorem

4.7 in [69] that with probability 1´ δ

|||
ÿ

l,i

zl,iAl,i|||˚ ď Ez |||
ÿ

l,i

zl,iAl,i|||˚

looooooooomooooooooon

T1

` π

d

logp2{δq

2
sup

MPκpα,Rq

ÿ

l,i

xAl,i,My2

looooooooooooooooooooomooooooooooooooooooooon

T2

. (4.19)

The first term T1 is the Gaussian complexity of the sample set tAl,iu over the function

class txM, ¨y : M P κpα,Rqu. This can be (up to a logarithmic factor of the size of the

summation) upper-bounded by the corresponding Rademacher complexity ([70], Equation

(4.9)) as

T1 ď cσ
a

logpLd2 ` 1qEprl,iq |||
ÿ

l,i

rl,iAl,i|||˚, (4.20)

where prl,iq is a Rademacher sequence and the expectation is conditioned on pAi,lq. Then
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by the symmetry of the standard Gaussian distribution, we obtain

Eprl,iq |||
ÿ

l,i

rl,iAl,i|||˚ “
1
?
L

sup
MPκpα,Rq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

l,i

xrl,ibl,i,Mely

ˇ

ˇ

ˇ

ˇ

ˇ

“
1
?
L

sup
MPκpα,Rq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

l,i

xbl,i,Mely

ˇ

ˇ

ˇ

ˇ

ˇ

looooooooooooomooooooooooooon

(§)

,

(4.21)

where the second equation holds in the sense of distribution.

Note that (§) is the maximum of linear combinations of Gaussian variables and an upper

bound can be obtained using Dudley’s inequality [70]. Once we obtain a tail estimate of

(§), since (§) no longer depends on the Rademacher sequence prl,iq, it can be used to upper-

bound T1 through (Equation 4.20) and (Equation 4.21). An upper bound on T2 has been

already derived in Lemma 3. Combining these upper estimates on T1 and T2 results in

Lemma 4. From the lower bound on
ř

l,ixAl,i,My2, we have

}M}
2
F

d2

´ cαR

c

d

Ld2

log3 d ď
1

d2

ÿ

l,i

xAl,i,My
2
ď sup

MPκpα,Rq

ř

l,ixAl,i,Myzl,i

d2

.

From Lemma 4, we get the following inequality, which then leads to the final result.

}M}
2
F

d2

ď c log3 dR

c

d

Ld2

pα _ σ
?
Lq

4.6 Role of entropy numbers in providing theoretical guarantees

Both of Lemma 3 and Lemma 4 rely on a key quantity that captures the “complexity” of

the set κpα,Rq. In particular, we need an estimate of the entropy number of the set κpα,Rq

with respect to the }}1Ñ2 unit ball, which is given by the following Lemma.

Lemma 5 Let κpα,Rq be as in (Equation 4.10) and let B1Ñ2 be the unit ball with respect

to }¨}1Ñ2. Then there exists a numerical constant c such that
ż 8

0

a

logNpκpα,Rq, ηB1Ñ2qdη ď cR
?
d log3{2

pd1 ` d2q. (4.22)

HereNpκpα,Rq, ηB1Ñ2q denotes the covering number of κpα,Rqwith respect to the scaled

unit ball ηB1Ñ2.
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Let B^ denote the unit ball with respect to the projective tensor norm in `d28 b `
d1
2 . The

injective tensor norm in `d28 b `d12 reduces to } ¨ }1Ñ2. By its construction, κpα,Rq is given

as the intersection of two norm balls αB1Ñ2 and RB^. The proof of Lemma Equation 28

reduces to the computation of the entropy number of the identity map on `d28 b `
d1
2 from the

Banach space with the projective tensor norm to that with the injective tensor norm.

4.7 Information-theoretic lower bound

Theorem 9 provides the rate of convergence for the mixed-norm constrained least squares

estimator proposed in (Equation 4.11). A natural question is whether this rate of conver-

gence is optimal, at least over the constraint set κpα,Rq. We provide such a guarantee by

establishing a minimax lower bound for column-wise low rank matrix sensing on the the

constraint set κpα,Rq.

Theorem 10 Let M P Rd1ˆd2 be a rank-r matrix and let yl,i “ xAl,i,X0y`zl,i with Al,i “

1?
L
bl,ie

J
i , where b „ N p0, Id1{Lq, zl,i „ N p0, σ2q. Further, 48α2

d1_d2
ď R2. Then the min-

imiax }¨}F -risk is lower bounded as

inf
xM

sup
MPκpα,Rq

1

d2

E
›

›

›

xM´M
›

›

›

2

F
ě
α2

16
¨min

˜

1,
σ
?
L

α

d

rpd1 ` d2q

Ld2

¸

. (4.23)

where κpα,Rq “ tX : }X}1Ñ2 ď α, }X}mixed ď Ru.

The rate of convergence in our earlier result in Theorem 9 is:

}xM´M}2F

d2

ď c1 ¨ α
2
¨max

ˆ

1,
σ
?
L

α

˙

¨

d

rpd1 ` d2q log6 d

Ld2

(4.24)

Comparing the results in (Equation 4.23) and (Equation 4.24), we can conclude that the

convergence rate in Theorem 9 is rate-optimal under noise regimes, when σ
?
L

α
ą 1. The

proof of Theorem 10 is provided in appendix.
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4.8 Algorithms for mixed norm based low rank recovery

Apart from enjoying optimal sample efficiency for the model in (Equation 4.2), the mixed-

norm based convex relaxation also be implemented efficiently. To develop the computa-

tional algorithm, we first describe how to compute the the mixed-norm of any matrix X.

For any given factorization of X “ UVJ, we have }U}2F “ tracepUJUq and }V}1Ñ2 “

›

›diagpVJVq
›

›

8
. Further, for any such factorization, we can set }U}F “ }V}1Ñ2 by rescal-

ing the factors without loss of generality. As a result, the mixed-norm of X can be computed

as

}X}mixed “ min
W11,W22

maxptracepW11q, }diagpW22q}8q

s.t.

»

—

—

—

—

–

W11 X

XJ W22

fi

ffi

ffi

ffi

ffi

fl

ľ 0,

(4.25)

where diagpW22q denotes the vector of the diagonal entries of W22. This semi-definite

matrix based formulation comes about by setting UUJ “ W11, VVJ “ W22, UVJ “

X. Then the optimization routine in (Equation 4.11) can be written as

minimize
W11,W22,X

ř

l,i |yl,i ´ xAl,i,Xy|
2

subject to tracepW11q ď R, }diagpW22q}8 ď R,

}X}1Ñ2 ď α, W “

»

—

—

—

—

–

W11 X

XJ W22

fi

ffi

ffi

ffi

ffi

fl

ľ 0.

(4.26)

The program in (Equation 4.26) is now a constrained convex optimization problem over a

set of semidefinite (PSD) matrices.
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4.8.1 ADMM based fast algorithm

The program in (Equation 4.26) can be implemented using standard convex optimization

solvers like SeDuMi. [71]. However, this could result in scaling issues, as run times could

be prohibitive in higher dimensions. To address this, we propose to use the ADMM based

algorithm [72] which breaks down the optimization problem into smaller problems that can

be solved efficiently. Our approach is similar to [73], where the positive semidefinite con-

straint on W in (Equation 4.26) is treated separately from the other constraints. We provide

an algorithm for the norm-penalized version of (Equation 4.26). By Lagrangian duality, the

penalized version and the constrained version are equivalent when the Lagrangian multi-

pliers λ1 and λ2 are chosen appropriately.

By introducing an auxiliary variable T, it is straightforward to show that the optimiza-

tion problem (Equation 4.26) is equivalent to

minimize
W,T

ř

l,i |yl,i ´ xAl,i,W11y|
2
` λ1 tracepT11q ` λ2 }diagpW22q}8

subject to }W12}1Ñ2 ď α, T “ W “

»

—

–

W11 W12

W21 W22

fi

ffi

fl

, T ľ 0.
(4.27)

In (Equation 4.27), we carry the constraints on tracepT11q and }diagpW22q} to the objec-

tive function by using the Lagrangian formulation. Note that there are other variations

possible, with more or fewer constraints carried over to the objective function. The formu-

lation in (Equation 4.27) is amenable to the ADMM algorithm. The augmented Lagrangian

of (Equation 4.27) is given by

LpT,W,Zq “
ÿ

l,i

|yl,i ´ xAl,i,W11y|
2
` λ1 tracepT11q ` λ2 }diagpW22q}8

` xZ,T´Wy `
ρ

2
}T´W}

2
F ` χtTľ0u ` χt}W12}1Ñ2ďαu

,

where Z is the dual variable and χS is the indicator function of the set S given as χSptq “ 0

if t P S and χSptq “ 8 otherwise. The ADMM algorithm then iterates by alternating

among T, W and Z, as shown in Algorithm 4.
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Algorithm 4 ADMM algorithm

Initialize: T0, W0, Z0

while not converged do
Tk`1 “ argmin

Tľ0
LpT,Wk,Zk

q

Wk`1 “ argmin
}W12}1Ñ2ďα

LpTk`1,W,Zk
q

Zk`1 “ Zk ` ρpTk`1 ´Wk`1q =0

Update for T

Tk`1
“ arg min

T

LpX,Wk,Zk
q

“ arg min
Tľ0

λ1xr
I 0
0 0 s,Ty ` xZ,T´Wy `

ρ

2
}T´W}

2
F

“ πSd`pW
k
´ ρ´1

`

Zk
` λ1r

I 0
0 0 s

˘

q

where πSd` denotes the projection operator and Sd` s the set of PSD matrices of size d.

Update for W

Wk`1
“ arg minWLpTk`1,W,Zk

q

This optimization can be separate into four sub-problems. Let C “ Tk`1` ρ´1Zk. Let

ĂM be the matrix obtained by setting the diagonal elements of any matrix M to 0 and let

q “ diagpC22q The four sub-problems are

1. Wk`1
12 “ arg min

}W12}1Ñ2ďα

fpW12q`xZ
k
12,T

k`1
12 ´W12y`

ρ
2

›

›Xk`1
12 ´W12

›

›

2

F
where fpW12q “

ř

l,i |yl,i ´ xAl,i,W12y|
2

2. Wk`1
11 “ arg minW11

}W11 ´C11}
2
F

3. ĂWk`1
22 “ arg min

ĂW22

›

›

›

ĂW22 ´ rC22

›

›

›

2

F

4. diagpWk`1
22 q “ arg min

uPRd2
λ2 }u}8 `

ρ
2
}u´ q}22

Sub-problem 1 is a least-squares problem which has a closed form solution. Sub-problems

2 and 3 are readily solved by setting Wk`1
11 “ C11 and ĂWk`1

22 “ rC22. Sub-problem 4 has a

closed form solution as described in [73].
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4.9 Experiments

To complement our theoretical results, we observe the empirical performance of the mixed-

norm-based method in a set of Monte Carlo simulations. Matrices are set to be of size

1, 000 ˆ 1, 000 and of rank 5. In our experiments we normalize the columns to have the

same energy. We observe the estimation error by varying the degree of compression and

the signal-to-noise (SNR) ratio. We compare the proposed method to the popular matrix

LASSO, which minimizes the least squares loss with a nuclear norm regularizer. We used

Algorithm 4 to implement the mixed-norm based method. The nuclear norm minimization

approach was implemented using the algorithm provided in [74]. Figure 4.1 shows the

obtained simulation results. The estimation error is averaged over 5 trials. The result indi-

cates that the mixed-norm-based estimator outperforms the nuclear-norm-based estimator

at both the SNR levels considered.
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Figure 4.1: Simulation results comparing the proposed mixed-norm based estimator and the nu-
clear norm based estimator. The test matrices were of size 1, 000 ˆ 1, 000 with rank 5. Each data
point is computed as an average of 5 trials. Mixed norm estimator is able to achieve much lower
errors with fewer measurements compared to the nuclear norm estimator.
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CHAPTER 5

UNIFORM GUARANTEES ON BLIND DECONVOLUTION

5.1 Blind deconvolution as a low rank recovery problem

Blind deconvolution is a fundamental problem that arises in signal processing, communi-

cations, imaging. An unknown signal (from a possibly known model family) is convolved

with an unknown kernel (also possibly from a known model family) and we only observe

this convolution. The task is to then estimate the unknown signal and the kernel. A simple

application is image deblurring, where we observe a blurry version of an unknown image

and the goal is to reconstruct the underlying sharp image. More complex applications in-

clude communication channels, where the receiver must extract the message sent by the

transmitter after it has been convolved with the channel response [75]. By itself, the blind

deconvolution problem is ill-posed. However, assumptions on the class of signals may lead

to a tractable problem.

In this chapter, we will develop a framework to solve the blind deconvolution problem

under the assumption that the unknown signal and the convolution kernel lie in known

lower-dimensional subspaces. Our problem formulation is similar to that in [75]. However,

unlike existing results in the literature, our framework also comes with uniform guarantees

over the entire signal class that we consider and also has an optimal noise scaling. This

makes our proposed method a viable choice for blind deconvolution under noisy regimes.

Let w,x P RL be two signals that are convolved with each other. The standard model

of observation for blind deconvolution is then given as

y “ w ˚ x` ν, (5.1)

where ν P RL is additive noise, y P RL are the measurements and ˚ denotes circular
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convolution defined as

pw ˚ xqris “
L
ÿ

l“1

wrlsxri´ l ` 1s. (5.2)

where i “ 1, ¨ ¨ ¨ , L and the index i´ l ` 1 is assumed to be modulo t1, ¨ ¨ ¨ , Lu. Given y,

we are interested in recovering the signals h and m.

For observation model above, is it evident that for arbitrary w and x, the recovery

problem is highly ill-posed and there exist many solutions that generate the same set of

observations y. To circumvent this, we assume that these two signals w and x lie in known

subspaces D and C respectively, which results in the following form:

w “ Dh (5.3)

x “ Cm (5.4)

where D P RLˆK , C P RLˆN , h P RK and m P RN . The bases D and C are assumed to

be known a priori.

After applying the Fourier transform on both sides the observations y can be written as

linear observations of the rank-1 matrix mh˚ (See [75]). Let Z0 “ mh˚ and pD “ FD,

where F P CLˆL is the unitary discrete Fourier transform matrix defined as

Fpm,nq “
1
?
L

e´j2πpm´1qpn´1q{L. (5.5)

Then the blind deconvolution problem can be recast as recovering Z0 from measurements

given as

y “ ApZ0
pD˚
q ` ν (5.6)

where A : X ÞÑ txpcle
J
l ,Xyu

L
l“1 and pcJl is the lth row of the matrix FC. Hence, the blind

deconvolution problem can be recast as a rank-1 matrix recovery problem.

Assumptions on the bases D and C: In order to develop a theoretical analysis of the prob-

lem, we will assume C is generic, with its entries drawn independently from the standard

99



Gaussian random distribution. We will also assume that

D “

»

—

–

IK

0L´KˆK

fi

ffi

fl

. (5.7)

Note that our choice of D is time-limited to length K. Our results will also depend on a

certain incoherence parameter, that describes how uniform the energy spread of the signal

w “ Dh is in the Fourier domain. We denote this parameter as µ and we consider the class

of signals h such that
}FDh}

8

}FDh}2
ď

µ
?
L

(5.8)

for 1 ď µ ď
?
L. If µ “ 1, then we have signals that are perfectly “flat”. But as we allow

µ to increase, we allow the signal to be more “spiky”.

5.2 Tailoring a convex relaxation for blind deconvolution

This reinterpretation of the blind deconvolution problem as a low rank matrix recovery

problem opens up a number of low-rank matrix recovery methods as possible tools. These

set of tools include the standard nuclear norm based low rank matrix recovery methods that

cast the problem as a convex optimization problem. Such a convex relaxation is studied

in both [75, 76], where a sample-optimal but instance based theoretical guarantee on the

recovery error is given: the theoretical analysis holds for a fixed pair of signal and kernel.

We are interested in developing a method that can offer a uniform guarantee over the set of

all candidate signals and kernels.

Our approach to solve the blind deconvolution by using a convex relaxation of the

set of rank-1 matrices. However, we will use a different convex relaxation than [75, 76].

The convex relaxation we propose is built on the interpretation of matrices as members

of tensor products of Banach spaces that we introduced in section 4.2. In fact, the blind

deconvolution measurement model developed in (Equation 5.6) is exactly the same as the

column-wise matrix sensing model we considered in Equation 4.2, except for the following
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additional structure on the right factor of the underlying low-rank matrix Z0
pD˚:

• The matrix is always of rank 1.

• The right factor always lies in a known K-dimensional subspace

• The right factor obeys the incoherence condition in (Equation 5.8)

While the rank being fixed to 1 can easily be incorporated into the framework developed in

chapter 4, the latter pair of differences necessitate a more deliberate convex relaxation. Let

us define the X0 “ Z0
pD˚ and consider factorization of X0 as

X0 “ UV˚. (5.9)

Then, the nuclear norm of X0 can be written as

}X0} “ inf
U,V:X0“UV˚

}U}F }V}F . (5.10)

Therefore, minimizing the nuclear norm results in minimizing the Frobenius norm of the

right factor (equivalently, the `2 norm, in the rank-1 case). Similarly, from (Equation 4.8),

minimizing the mixed norm of X0 results in minimizing the `8 norm of the right factor (in

the rank-1 case).

In order to design a suitable convex relaxation for the blind deconvolution problem, we

develop over previous approaches by explicitly using the incoherence criteria (Equation 5.8).

A bound on the Frobenius norm (or `2-norm) on the right factor imposed by the nuclear

norm, along with (Equation 5.8) implies that the }¨}1Ñ2 (or `8-norm of rank-1 factors) is

also bounded. Intuitively, this results in a bound on both of the norms of the right factor.

This forms the basis of our new convex relaxation to solve the blind deconvolution prob-

lem: We penalize both the norms on the right factors, or equivalently, the maximum of the

Frobenius norm and the }¨}1Ñ2 norms.

We first define tensor products with respect to two separate pairs of Banach spaces and

then combine them to obtain our characterization of the set of rank-1 matrices. Firstly, The
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vector space of N ˆL matrices with their row space in the span of FD can be identified to

the tensor product of the following pair of Banach spaces:

V8 :“ pspanpFDq, } ¨ }8q (5.11)

U2 “ `N2 (5.12)

Then, the vector space of the matrices of interest can be identified to V ˚8bU2. Alternatively,

if we define

V2 :“ pspanpFDq, } ¨ }2q, (5.13)

then the vector space of the matrices of interest can also be identified to V2 b U2. Further,

each such tensor product can itself be endowed with a unique norm, including the injective

and projective norms defined in chapter 4.

To design a convex relaxation for the blind deconvolution problem, we consider the

following combinations of V8 b U2 and V2 b U2 with the norm scaled by µ
?
L

:

• We define the “ε-interpolation space” as

Xε :“ V8 bε U2 X
µ
?
L
V2 bε U2, (5.14)

where bε indicates the usage of the injective norm on the tensor product (See chap-

ter 4). For a matrix X interpreted as a member of this Banach space, the corre-

sponding norm is the maximum of the two norms corresponding to each of the tenor

product spaces. For the particular tensor products above, the norm of a matrix in

the V8 bε `N2 space is }X}1Ñ2 and the norm of a matrix in the µ
?
L
V2 bε `

N
2 space is

µ
?
L
}X}2. The norm in the interpolation space then is given as

}X}ε “ maxp}X}1Ñ2

µ
?
L
}X}2Ñ2q. (5.15)

• We define “π-interpolation space” as

Xπ :“ V8 bπ U2 X
µ
?
L
V2 bπ U2, (5.16)
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Figure 5.1: Unit-balls w.r.t the nuclear norm, mixed norm and the π-norm can be visualied by
considering 2ˆ 2 symmetric matrices. The unit ball w.r.t the π-norm is given by the intersection of
the unit balls w.r.t the nuclear and the mixed norms.

wherebπ indicates the usage of the projective norm on the tensor product (See chap-

ter 4). The corresponding norm of a matrix in this Banach space is given as

}X}π “ maxp}X}mixed

µ
?
L
}X}

˚
q (5.17)

where the the mixed norm of a matrix is defined as in (Equation 4.8) and }X}
˚

de-

notes the nuclear norm.

As before, the pair of t}¨}ε , }}πu help characterize the set of rank-r matrices due to the

following property:

Lemma 6 Let X P RNˆL be such that rankpXq ď r. Then,

}X}ε ď }X}π ď r }X}ε . (5.18)

The unit ball of the interpolation-space is given by the intersection of the unit balls w.r.t

each of the constituent Banach spaces. For example, the unit ball of the π-interpolation

space is given as the intersection of the unit balls w.r.t the mixed norm and the scaled

nuclear norm. We illustrate this in the case of 2ˆ 2 symmetric matrices in Figure 5.1.
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5.3 Blind deconvolution using hybrid norms

From (Equation 5.18), it is clear that the set of rank-r matrices with }X}ε ď α is contained

in the set κpα,Rq “ tX : }X}ε ď α, }X}π ď Ru when R ě rα. Furthermore, if

rankpXq “ 1, then }X}π ď }X}ε. The ε-norm is then inactive and the π-norm bound

sufficiently characterizes the set κpα, αq. Our estimator for the ground truth rank-1 matrix

Z0 is given as the following convex optimization problem:

pZ “ argmin
ZPCNˆK

1

2
}ŷ ´ApZpD˚

q}
2
2

subject to }ZpD˚}π ď α,

(5.19)

where α “
›

›

›
Z0

pD˚

›

›

›

ε
and can be tuned as a hyperparameter. We now state our main result

that bounds the estimation error as a function of dimension of the signals and signal-to-

noise ratio.

Theorem 11 Let D be the matrix containing the first K columns of the identity matrix of

sizeL and let C be anLˆM matrix with entries drawn from the standard Gaussian random

distribution. For any set of coefficients h P RK that obeys (Equation 5.8) and m P Rm, let

y be given as in (Equation 1.32) and let Z0 “ mh˚. Then, the solution obtained by solving

the program in (Equation 5.19) obeys
›

›

›
Ẑ´ Z0

›

›

›

2

F

}Z0}
2
F

À

c

K `N

L

ˆ

µ`
σ
?
L

}Z0}F

˙

logp1{δq (5.20)

with probability at least 1 ´ δ and À denotes that the inequality holds modulo log factors

in the dimensions.

We can make the following observations on the recovery error.

• Uniform guarantee: Unlike existing results on blind deconvolution, the abive theo-

rem provides a uniform recovery guarantee for all h that obey (Equation 5.8) and all

m.
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• Noise scaling: Under the regime of large noise (σ
?
L

}Z0}
ě µ), the relative error scales

linearly with the noise to signal ratio σ
?
L

}Z0}F
. This is dimension free (up to log factors)

and matches the state of the art results on the noise performance for blind deconvo-

lution [76] with instance guarantees. However, we note that Theorem 3 does not

guarantee perfect recovery in the noiseless case.

• Finally, our proposed method can also be extended to the “blind demixing problem”,

which is a rank-r version of the blind deconvolution problem. In this problem, r

number of individual convolutions are summed to obtain a super-position. Such a

model is useful when dealing with multi-channel blind deconvolution in applications

such as underwater communication and imaging.

5.3.1 Proof sketch

We state the key lemmas involved in proving Theorem 11 and point to the tools we use

and defer finer details of the proof to the appendix. We begin with the basic optimality

condition that relates the estimate Ẑ to the ground truth Z0. Let M “ Ẑ ´ Z0. By the

triangular inequality, we have M P κp2α, 2αq. For notational brevity, we assume from now

on that M P κpα, αq. (Neither the main result nor the proofs are affected by this since they

involve multiplication with some numerical constants.)

By optimality of the solution and (Equation 5.19), we have

ÿ

l

´

yl ´ xĉeJl , Ẑy
¯2

ď
ÿ

l

`

yl ´ xĉeJl ,Z0y
˘2

(5.21)

After substituting pZ´ Z0 by M, since py “ ApZ0
pDq ` ν, we obtain

L
ÿ

l“1

xpcle
T
l ,M

pD˚
y

2
ď 2

L
ÿ

l“1

xpcle
T
l ,M

pD˚
yνl. (5.22)

We then use the following pair of results that provide and upper and lower bound on the

right and left hand side of (Equation 5.22).
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Lemma 7 For the setting in (Equation 5.22),

ÿ

l

xpcle
T
l ,M

pD˚
y

2
ě

›

›

›
M pD˚

›

›

›

2

F
´ α2

?
N `K

?
L

µ
log3

pN `Kq
a

logp2ζq´1 (5.23)

with probability at least 1´ ζ

Lemma 8 For the setting in (Equation 5.22),

ÿ

l

xAl,MpD˚
yνl À σα

?
L

µ

?
K `N

a

logp1{δq`

σ

d

α2
L

µ2
` α2

?
N `K

?
L

µ

a

logp1{δq logp1{2ζq (5.24)

(up to log factors ) with probability 1´ ζ ´ δ.

From Lemma 8, the upper bound on the linear term can be summarized as

ÿ

l

xAl,MpD˚
yνl À σα

?
L

µ

?
K `N ` σ

d

α2
L

µ2
` α2

?
N `K

?
L

µ
(5.25)

(up to log factors ) with probability 1´ ζ ´ δ.

From Lemma 7, the lower bound on the quadratic term from Lemma 7 can be summarized

as :

ÿ

l

xAl,MpD˚
y

2
ě

›

›

›
MpD˚

›

›

›

2

F
´ α2

?
N `K

?
L

µ
log3

pN `Kq
a

logp2ζq´1 (5.26)

Finally, the result in Theorem 11 can be obtained the results of Lemma 8 and Lemma 7.

5.3.2 Entropy estimates

(Equation 5.22) shows that in order to derive the main result, we need to provide uniform

bounds on the random processes
řL
l“1xpcle

T
l ,M

pD˚y2 and
řL
l“1xpcle

T
l ,M

pD˚yνl over the set

of matrices M P κpα, αq. Obtaining such a uniform bound ultimately requires a bound on

the following entropy integral:
ż 8

0

b

lnN pαBπ, }¨}ε , tqdt, (5.27)
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where N pS, d, tq denotes the covering number of the set S with respect to the metric d

and balls of radius t. The entropy integral provides a notion of the complexity of the set

αBπ and plays a role in obtaining the final sample complexity bounds. Once a bound on

the entropy integral is obtained, the uniform bounds required above can be derived using

standard bounds on random processes such as the Dudley’s inequality and the result by

krahmer et.al, in [77] that provides a generic bound on quadratic Gaussian processes.

Before we provide upper bounds for the entropy integral, we will develop background on

some related quantities.

Covering and packing numbers: For symmetric convex bodies D and E, the covering

number NpD,Eq an the packing number MpD,Eq are defined as below:

NpD,Eq “ mint`|Dx1,x2, ¨ ¨ ¨ , x` P D, D Ă
ď

1ďjď`

pxj ` Equ (5.28)

MpD,Eq “ maxt`|Dx1,x2, ¨ ¨ ¨ , x` P D, xi ´ xj R E,@i ‰ ju (5.29)

Dyadic entropy number:Let X , Y be Banach spaces. For an operator T : X Ñ Y , the

dyadic entropy number is defined as

ekpT q :“ inftη ą 0 |MpT pBXq, εBY q ď 2k´1
u, (5.30)

where BX , BY denote the unit balls in X, Y respectively. A property of the dyadic entropy

number that we will use is

ekpRSq ď }R} ekpSq (5.31)

ekpRSq ď }S} ekpRq (5.32)

where }R} , }S} denote the operator norms.

Let id : Xπ Ñ Xε denote the identity operator from the Banach spaces Xπ and Xε de-

fined in (Equation 5.17) and (Equation 5.14). The entropy integral in (Equation 5.27) is

equivalent up to a constant to the following sum of dyadic entropy numbers [69]:

E2,1pid : Xπ Ñ Xεq :“
8
ÿ

k“0

ekpid : Xπ Ñ Xεq
?
k

, (5.33)
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where ekpid : Xπ Ñ Xεq is the identity operator. Hence, we seek to bound E2,1pid : Xπ Ñ

Xεq to obtain an upper bound on the entropy integral itself. In order to do so, we make

use of the following result that establishes a bound on E2,1pT : X Ñ Y q where X “ `n1 ,

Y “ `m8, where T is any linear operator.

Lemma 9 (Maurey’s empirical lemma, [78]) For any linear operator T : `n1 Ñ `m8,

E2,1pT q À
a

1` logpm_ nqp1` logpm^ nqq3{2 }T } (5.34)

where }T } is the operator norm.

In order to use the above lemma, our strategy is to first show that there exist maps R :

Xπ Ñ `n
1

1 and S : Xε Ñ `m
1

8 for some n1,m1. We can then use the property (Equation 5.31)

to obtain

ekpid : Xπ Ñ Xεq ď }R} }S} ekpid : `n
1

1 Ñ `m
1

8 q. (5.35)

Maurey’s empirical lemma can be used to bound ekpid : `n
1

1 Ñ `m
1

8 q. If n1,m1 are not too

large compared to dimensions ofXπ andXε and the operator norms }R} , }S} are not large,

then we can obtain a non-trivial upper bound on the entropy integral. This strategy is illus-

trated as a schematic in Figure 5.2. We provide a detailed construction of the embedding

`m
1

1 `n
1

8

Xπ Xε

id

SR

Figure 5.2: Our strategy to use Maurey’s empirical lemma to obtain entropy estimates for operators
between Xπ and Xε.

maps R, S in the appendix. With this construction, we obtain the following bound on the

entropy integral:
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Lemma 10 For the Banach spaces Xπ, Xε defined in (Equation 5.17), (Equation 5.14) the

entropy integral in (Equation 5.27) is upper bounded as
ż 8

0

a

logpαBπ, ηBεqdη À α
?
N `K log3{2 L. (5.36)

The bound on the entropy integral is proportional to only N `K, which represents the

number of degrees of freedom of the underlying signal to be recovered. Such a favorable

scaling allows us to derive sample optimal theoretical guarantees on the blind deconvolu-

tion recovery algorithm.

109



CHAPTER 6

CONCLUSIONS

In this thesis, we considered several problems where the underlying data could be modeled

using low dimensional subspaces. For each application, we showed that using randomized

linear dimensionality reduction the data could be mapped to a dimension roughly propor-

tional to the underlying subspace dimension. This leads to more efficient data acquisition

and faster algorithms that can then be scaled to large scale data.

Active array imaging

The first contribution is the development of a signal model for imaging range-limited targets

using antenna arrays. While imaging such a target with an array of M elements and using

a set of K excitation wavelengths, the received array measurements are drawn from a set

K overlapping subspaces. We show that random projections can then be used to collect far

fewer than M spatial measurements, owing to the overlap between the subspaces.

Broadband source localization We consider the problem of identifying the spectral sup-

port of a superposition of a number of broadband signals. By identifying the a set of N

samples of a signal approximately bandlimited to W ă 0.5 lies approximately in a sub-

space of dimension 2NW , we develop algorithms that sequentially identify each source

in the signal. Owing to the low-dimensionality, we show that the number of samples re-

quired to perform reliable source localization scales as 2N
ř

iWi where N is the number

of samples, Wi ă 0.5 is the bandwidth of each source. When
ř

iWi ! 0.5, this can lead to

sample-efficient broadband source localization.

Sketching using block diagonal matrices We consider the problem of sketched linear

regression and sketched matrix multiplication. For each of these problems, we study the

utility of block diagonal sketching matrices. For linear regression, we show that the total

sample complexity needs to scale only as Opeffective rankq of the linear model. For matrix
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multiplication, we show that the sample complexity needs to scale only as Opstable ranksq

of the multiplicands. This matches existing bounds that use more generic sketching matri-

ces, while allowing for blocked sketching of data.

Low rank matrix recovery for column-wise observations

Low rank matrix recovery is a well-studied problem in the compressed sensing literature.

The nuclear norm of a matrix is used as a standard proxy for the rank of a matrix. Our

next contribution is to identify that when the underlying matrix, or the observation model

have unique structure, it can be used to design tailored estimators of the low rank matrix.

We use this framework to design a novel low rank matrix recovery algorithm that enjoys

sample optimal theoretical guarantees for the column-wise observation model. We provide

tight upper bounds on the estimator error and provide an ADMM based fast algorithm to

carry out our proposed optimization program.

Uniform guarantees on blind deconvolution Our final contribution is a novel algorithm to

address the problem of blind deconvolution. By following the framework developed earlier

to design unique estimators of low rank matrices, we develop a new convex relaxation for

the set of low rank matrices. We show that such a convex relaxation can be used to design

algorithms that enjoy favorable noise scaling and sample complexity uniformly across the

signal class we consider.
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Appendices



APPENDIX A

PROOFS

A.1 Proofs of results in chapter 2

A.1.1 Proof of Theorem 4

The main tool we use to prove Theorem 4 and Theorem 5 is polynomial identity testing: a

polynomial of a finite total degree is said to be identically zero if the coefficient of every

monomial term is zero. Any polynomial which is not identically zero, when evaluated at a

random point drawn from a continuous distribution, is non-zero with probability 1, since the

set of roots of the polynomial has measure zero with respect to the field of real numbers. In

conclusion, a multivariate polynomial evaluated at a multi-dimensional point drawn from a

continuous distribution is non-zero with probability 1, if any of the polynomial coefficients

are non-zero.

To show that a given matrix is of rank r, we choose a suitable submatrix of size r ˆ r

and show that it has a determinant with at least one non-zero coefficient and therefore

not identically zero. For random projections whose entries are drawn from the standard

normal distribution, we hence need to show that the sketched matrices have submatrices of

desirable sizes that have a non-zero determinant with probability 1.

For ease of notation, we prove the result on the transposed matrices: A “ rA1 A2s,

}pI ´ PHqA} “ 0, H “ rA1P A2P s, and P is the sketching matrix with entries drawn

from the standard normal distribution. For ease of explanation, we assume that A1 and A2

are orthonormal matrices: ATi Ai “ I and RpA1q “ RpA2q. We later explain how our

proof holds for any two general matrices.

Consider the matrix Z “ AT1H “ rP UP s where U “ AT1A2 is an orthogonal matrix.

If Z is full column rank, then rankpHq is full column rank. Any orthogonal matrix can be
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decomposed as

U “ QTRQ (A.1)

where Q is an orthobasis and R is a block diagonal matrix with 2ˆ 2 or 1ˆ 1 blocks. The

2ˆ 2 blocks are of the form

Ri “

»

—

–

cos θi ´ sin θi

sin θi cos θi

fi

ffi

fl

with cos θi ˘ j sin θi being a pair of complex conjugate eigenvalues of U , j “
?
´1. The

1 ˆ 1 diagonal blocks are equal to ˘1 and are also eigenvalues of U . (Equation A.1) is

referred to as the canonical decomposition of U .

Notice that rankprP UP sq “ rankpQrP UP sq “ rankprQP RQP sq. Since Q is

orthogonal, QP is also a matrix with i.i.d. standard normal variables due to the rotational

invariance of the standard normal distribution. Thus we can directly work with the matrix

Z “ rP RP s. The following lemma provides the necessary condition on the multiplicity

of any real eigenvalue for rP RP s to be full column rank.

Lemma 11 Let there be a real eigenvalue of U that has an algebraic multiplicity M1 ą

M{2. Then for some M ´M1 ă l ăM{2, Z “ rP RP s is not full column rank.

Proof Let λo be a real eigenvalue with algebraic multiplicity M1 ą M{2 and let M2 “

M ´M1. Then

Z “ rP RP s “

»

—

–

P1 λoP1

P2 R2P2

fi

ffi

fl

(A.2)

where P1 is the submatrix formed by the firstM1 rows of P andR2 is the submatrix formed

by the last M2 rows and columns of R. Let l “M2{2` q, q ąM2{2. Then, the submatrix

rP2 R2P2s has a null space N1 of dimension 2q ą M2 and the submatrix rP1 λoP1s

has an l dimensional null space N2 given by the range of

»

—

–

´λoI

I

fi

ffi

fl

. Since 2q ` l ą 2l,

N1 XN2 ‰ φ. The result follows.
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We now prove some lemmas that provide sufficient conditions onR for which rP RP s

is full column rank. We state the lemmas along with their proofs and then use them to prove

Theorem 4.

Lemma 12 Let there be lo pairs of complex conjugate eigenvalues of R with non-zero

imaginary part. Then for any l ď lo, Z “ rP RP s has full column rank.

Proof Let P be expressed as

P “

»

—

—

—

—

—

—

—

–

P1

P2

...

Pn
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where Pi P R2ˆl. Let Pi,j,k denote the pj, kqth element of Pi. Rearranging the columns of

Z, we obtain

pZ1 “

»

—

—

—

—

—

—

—

—

—

—

–

p1,1,1 cos θ1p1,1,1 ´ sin θ1p1,2,1 ¨ ¨ ¨

p1,2,1 sin θ1p1,1,1 ´ cos θ1p1,2,1 ¨ ¨ ¨

...
...

pn
2
,1,1 cos θ1pn

2
,1,1 ´ sin θ1pn

2
,2,1 ¨ ¨ ¨

pn
2
,2,1 sin θ1pn

2
,1,1 ´ cos θ1pn

2
,2,1 ¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.3)

Expanding the determinant of pZ, the coefficient of the term
ś

i“1,2,¨¨¨ ,l

p2
i,1,i is

ś

i“1,2,¨¨¨ ,l

sin θi.

For any l ď M{2, detp pZp2lj ´ 2j ` 1 : 2lj, 2lj ´ 2j ` 1 : 2ljqq has a term of the form
ś

i“2j´1...2j`l´1

p2
j,1,j with coefficient

ś

i“2j´1...2j`l´1

sin θi. If there is a set of l rotations Ri

such that θi ‰ 0 @ i, then clearly, the determinant associated with this 2l ˆ 2l diagonal

block in pZ is not equal to 0 with probability 1 and the result follows.

Let the number of complex conjugate pairs of eigenvalues be M1. We next group as

many real eigenvalues as possible into pairs such each pair has distinct eigenvalues. Let the
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number of such eigenvalue pairs be M2. The remaining eigenvalues are all real and equal

to each other. Let the number of such eigenvalues be 2M3 (this number will be even since

M is even).

Lemma 13 For l ďM2, Z “ rP RP s has full column rank.

Proof Again rearranging the columns of Z as

pZ2 “

»

—

—

—

—

—

—

—

–

P1,1,1 λ1,1P1,1,1 ¨ ¨ ¨ P1,1,l λ1,1P1,1,n2

P1,2,1 λ1,2P1,2,1 ¨ ¨ ¨ P1,2,l λ1,2P1,2,n2

...
...

...
...

Pn
2
,2,1 λn2,2Pn

2
,2,1 ¨ ¨ ¨ Pn

2
,2,n2 λn2,2Pn

2
,2,n2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.4)

Here λi,j denotes the j th eigenvalue of the ith pair. The coefficient of the 2l the degree term
ś

i“1,..,l

Pi,1,iPi,2,i is
ś

i“1,..,l

λi2 ´ λi1 ‰ 0. The determinant associated with this 2lˆ2l diagonal

block in pZ is not equal to 0 with probability 1. The result follows.

Lemma 14 If M3 ă M1, then for l ă 2M3, Z “ rP RP s has full column rank with

probability 1.

Proof Consider the submatrix of Z shown below, after rearranging the rows and columns

pZ3 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

P1,1,1 cθ1P1,1,1 ´ sθ1P1,2,1 ¨ ¨ ¨

Pn1`n2`1,1,1 λoPn1`n2`1,1,1 ¨ ¨ ¨

P1,2,1 sθ1P1,1,1 ` cθ1P1,2,1 ¨ ¨ ¨

Pn1`n2`1,2,1 λoPn1`n2`1,2,1 ¨ ¨ ¨

...
...

Pn3,2,1 sθn3Pn3,1,1 ` cθn3Pn3,2,1 ¨ ¨ ¨

Pn1`n2`n3,2,1 λoPn1`n2`n3,2,1 ¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.5)

The coefficient of the 2lth degree term
ś

i“1,..,l{2

ś

k“1,2

Pn1`n2`i,k,pi´1q˚2`kPi,2,pi´1q˚2`k in

the determinant of pZ3 is equal to
ś

i“1,..,l{2

sin2 θi.
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Lemma 15 If M3 ą M1, then there is a real eigenvalue λo with algebraic multiplicity

greater than M{2.

Proof of Theorem 4:

With eigenvalues grouped as before, let θi parametrize the 2ˆ2 diagonal block of R due to

the ith pair of complex conjugate eigenvalues, λj1, λj2 denote the 2ˆ 2 diagonal block due

to the j th pair of real eigenvalues with λj1 ‰ λj2, and let the rest of eigenvalues be equal λo

(repeated at least M3 times). Due to Lemma 15, M3 ă M1. Let M4 “ M1 ´M3, and let

l “M{2 “M3`M2`M1 “ 2M3`M2`M4. Rearranging the columns of Z, we obtain

pZ “

„

p1 Rp1 p2 Rp2 ¨ ¨ ¨ pl Rpl



(A.6)

Then, using Lemma 12, Lemma 13, Lemma 14, the 2lth degree term in the determinant of

pZ of the form
M4
ź

i“1

P 2
M3`i,1,M3`i

M2
ź

j“1

PM1`j,1,M1`jPM1`j,2,M1`j

M3
ź

k1“1

ź

k2“1,2

PM1`M2`k1,k2,pk1´1q˚2`k2Pk1,2,pk1´1q˚2`k2

“

M4
ź

i“1

M2
ź

j“1

M3
ź

k1“1

ź

k2“1,2

P 2
M3`i,1,M3`i

PM1`j,1,M1`jPM1`j,2,M1`jPM1`M2`k1,k2,pk1´1q˚2`k2Pk1,2,pk1´1q˚2`k2

has a coefficient given by
M4
ź

i“1

sin θM3`i

M2
ź

j“1

λM1`j,2´λM1`j,1

M3
ź

k“1

sin2 θk “
M4
ź

i“1

M2
ź

j“1

M3
ź

k“1

sin θM3`i sin
2 θkpλM1`j,2´λM1`j,1q ‰ 0.

Therefore, there is a 2l ˆ 2l submatrix in Z with non-zero determinant, which renders Z

full column rank. Finally, since rankpAq “ rankpA2q “M , we have for l “M{2, rank(H)

= M and }pI ´ PHqA “ 0} for l ě M{2. We have hence proved Theorem 4 for the case

where Ai’s are orthogonal and span the same subspace.

The same result can be extended to any general square matrix U “ ATB. The proof

for this can be obtained using methods exactly as above, but by operating on the real Schur
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decomposition of U . The real Schur decomposition of U can be expressed as

U “ QRQT

where R is no longer block diagonal but is a pseudo-upper triangular matrix with either

2ˆ 2 or 1ˆ 1 blocks along the diagonal that reflect the eigenvalue structure of U .

A.1.2 Proof of Theorem 5

Again for ease of notation, we prove the result on the transposed matrices. We now provide

a sufficient condition on an ensemble of matrices A1, A2, ¨ ¨ ¨Ak P RNˆM such that for a

random matrix P of size M ˆ l, the matrix H “

„

A1P A2P ¨ ¨ ¨ AkP



is full column

rank.

Towards this end, note that we have

H “

„

A1P A2P ¨ ¨ ¨ AkP



“

„

A1V V
TP A2V V

TP ¨ ¨ ¨ AkV V
TP



Due to the rotational invariance of the standard normal distribution, we can denote V TP as

P and also denote AiV as Ai itself without loss of generality. With this in place, we can

rearrange the columns of H as

pH “

„

A1p1 A2p1 ¨ ¨ ¨ Akp1 A1p2 ¨ ¨ ¨ Akpl



Expanding the determinant of the first klˆkl submatrix of pH , we can obtain the coefficient

of the term pk11p
k
22 ¨ ¨ ¨ p

k
ll as

C “ detp

„

A
p1q
1 A

p1q
2 ¨ ¨ ¨A

p1q
k A

p2q
1 ¨ ¨ ¨ A

plq
k



“ detp

„

A1S A2S ¨ ¨ ¨ AkSq



“ detp

„

A1VS A2VS ¨ ¨ ¨ AkVS



q

where we assume S “ t1, ¨ ¨ ¨ , luwithout loss of generality andApjqi denotes the j th column

of Ai. If
„

A1VS A2VS ¨ ¨ ¨ AkVS



is full column rank, then C ‰ 0 and the result

follows. Finally, for l “ r{K, we have rank of H “ r and hence pI ´ PHAq “ 0
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When r is not a multiple ofK, the same result can be extended to show that if there exist

index sets S1 and S2 such that |S2| “ tr{Ku, |S1| “ tr{Ku` 1, S2 Ă S1 and an orthobasis

V such that xM “

„

A1VS1 A2VS1 ¨ ¨ ¨ AqVS1 Aq`1VS2 AkVS2



is full column rank,

then for l “ tr{Ku` 1,RpZq “ RpAq.

A.2 Proofs of results in chapter 3

A.2.1 Proof of Theorem 7

The fundamental property of a distribution of matrices D that enables any S „ D to satisfy

(8, main paper) is the subspace embedding moment property, defined in [4]:

E
S„D

›

›pSUqT pSUq ´ I
›

›

l
ď εlδ, (A.7)

for some l ě 2, where ε and δ are tolerance parameters that determine the sample complex-

ity and U is any orthobasis for the span of the columns of W and Y. Thus, our main goal

is to prove the subspace embedding moment property holds for block diagonal sketching

matrices.

Our methods differ from the common ε-net argument, since using union bound for

block diagonal matrices results in a suboptimal sample complexity. The main tools we use

are the estimates for the suprema of chaos processes found in [68] and an entropy estimate

from the study of restricted isometry properties of block diagonal matrices computed in

[45]. We first establish tail bounds on the spectral norm of the matrix

∆ “ pSDUqT pSDUq ´ I, (A.8)

where U is an orthobasis for a subspace of dimension d and then bound its moments to

establish the subspace embedding moment property.
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Suprema of chaos processes

We briefly state here the main result from [68] that provides a uniform bound on the de-

viation of a Gaussian quadratic form from its expectation. Obtaining a tail bound on the

spectral norm of ∆ is just a particular application of this general framework.

For a given set of matrices P , we define the spectral radius d2pPq, the Frobenius norm

radius dF pPq, and the Talagrand functional γ2pP , } ¨ }2q as

d2pPq “ sup
PPP

}P} ,

dF pPq “ sup
PPP

}P}F ,

γ2pP , } ¨ }2q “
ż d2pPq

0

a

logNpP , }}2, uqdu,

whereNpP , }}2, uq denotes the covering number of the set P with respect to balls of radius

u in the spectral norm. The main result of [68] then is the following theorem.

Theorem 12 [Theorem 3.1, [68] ] Let P be a set of matrices and let φ be a vector of i.i.d.

standard normal entries. Then for t ě 0,

P
ˆ

sup
PPP

|}Pφ}2 ´ E }Pφ}2| ą c1E ` t

˙

ď 2e´c2 mint t
2

V 2 ,
t
U
u (A.9)

where

E “ γ2pPqrγ2pPq ` dF pPqs ` d2pPqdF pPq,

V “ d2pPqrγ2pPq ` dF pPqs,

U “ d2
2pPq.

A similar approach of using the results from [68] to analyze block diagonal random ma-

trices was first used in [45] in the context of compressed sensing. However, we target a

different set of problems that result in different theoretical considerations and proof tech-

niques.
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Tail bound on the spectral norm of the matrix ∆

We first express }∆} as

}∆} “ sup
zPRd
}z}“1

ˇ

ˇzT pSDUqT pSDUqz´ 1
ˇ

ˇ (A.10)

“ sup
zPRd
}z}“1

ˇ

ˇ}SDUz}2 ´ E }SDUz}2
ˇ

ˇ . (A.11)

For the matrices Sj , let vecpSjq denote their vectorized versions, obtained by stacking the

columns one below the other. Let Sv “ rvecpS1q
T vecpS2q

T ¨ ¨ ¨ vecpSJq
T sT be the vector

containing all of the vecpSjq’s. Note that Sv is a vector with entries drawn from N p0, 1q.

We can then express (Equation A.10) as

}∆} “ sup
PzPP

ˇ

ˇ}PzSv}
2
´ E }PzSv}

2
ˇ

ˇ

where P is defined

P “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Pz “

»

—

—

—

—

—

—

—

–

P1pzq 0 ¨ ¨ ¨ 0

0 P2pzq ¨ ¨ ¨ 0

...
... . . . ...

0 0 ¨ ¨ ¨ PJpzq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

,

Pjpzq “
1

a

Mj

»

—

—

—

—

—

—

—

–

pU1zq
T 0 ¨ ¨ ¨ 0

0 pU1zq
T ¨ ¨ ¨ 0

...
... . . . ...

0 0 ¨ ¨ ¨ pU1zq
T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where z P Rd and }z} “ 1. Observe that }∆} is then the supremum of the deviation of a

Gaussian quadratic form from its expectation, taken over the set P .

We can then compute the corresponding quantities d2pPq, dF pPq and γ2pP , }¨}2q as
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follows. The spectral radius d2pPq is defined as

sup
PzPP

}Pz} “ max
j,}z}2“1

}Ujz}
a

Mj

ď min

˜?
N }Uj}8 }z}1

a

Mj

,
}Uj} }z}2
a

Mj

¸

ď min

˜?
N }Uj}8 }z}1

a

Mj

,
}Uj} }z}1
a

Mj

¸

ď }z}1 {
a

M0 ď
d1
?
M0

where the fourth line follows from the definition of Mj .

The radius in the Frobenius norm dF pPq is defined as

sup
PzPP

}Pz}F “
ÿ

j

}Ujz}
2
“ 1.

The upper bound for γ2pP , }¨}q can be obtained from the Equation (34) in Eftekhari

et al., 2015).. In their derivation, they consider a full orthobasis and the set of d-sparse

vectors. This bound also holds for a fixed d-dimensional subspace. Hence,

γ2pP , }¨}q À
c

d

M0

log d log ĂM (A.12)

Plugging these quantities into Theorem 12, we can obtain Lemma 1.

Lemma 16 For any orthonormal matrix U P R
rNˆd and a block diagonal matrix SD as in

Theorem 1, there exists a constant c such that

P

˜

}∆} ď c

d

d logp2{δq

M0

¸

ě 1´ δ. (A.13)

For a desired tolerance ε, if M0 “ Ω
´

d logp2{δq
ε2

¯

, P p}∆} ď εq ě 1 ´ δ. This is similar

to a subspace embedding guarantee. We now show that this tail bound naturally induces a

bound on the moments of }∆}, from which the main theorems in Section 2 can be proved.
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Moment bound on }∆}

Tail bounds for certain random variables can be translated into bounds on their moments

using the following result:

Lemma 17 (Proposition 7.13, [79]) Suppose that a random variable q satisfies, for some

γ ą 0,

P
`

|q| ě e1{γαu
˘

ď βe´u
γ{γ

for all u ą 0. Then, for p ą 0,

E |q|p ď βαppeγqp{γΓ

ˆ

p

γ
` 1

˙

where Γp¨q is the Gamma function.

To adapt this result to bound the moments of the spectral norm of the random matrix ∆,

we can choose q “ }∆}, γ “ 2, β “ 1 and e´u
2{2 “ δ. We can then obtain the following

result.

Lemma 18 For any orthonormal matrix U P R
rNˆd and a block diagonal matrix SD as in

Theorem 1 and M0 “ Ω
´

d logp2{δq
ε2

¯

, then

E }∆}p ď εpδ (A.14)

for p “ p logp1{δq
ε2

q.

Approximate matrix product guarantee

With the moment bound established above, we can now use the framework given by [5] to

establish (8, main paper). However, we cannot use their proof directly, since the sample

complexity ĂM in the moment bound in (Equation A.14) is not oblivious to the matrix U.

However, once we fix the data matrix, we can adapt the argument used in [5] to show that

(8, main paper) holds.
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Let W and Y be as in (8, main paper). As explained in [5], we can assume that

they have orthogonal columns. For a given k as in (8, main paper), let W and Y be

partitioned into groups of k columns, with Wl and Yl1 denoting the lth groups. [5] then use

the following result in their argument, which follows from (Equation A.14):

E
›

›pSWlq
T
pSYl1q ´WT

l Yl1
›

›

p
ď εp }Wl}

p
}Yl1}

p δ (A.15)

for all pairs pl, l1q. This holds since in their setting, the sketching matrices are oblivious to

the data matrices.

Although block diagonal matrices are not oblivious, this result holds with for M0 “

Ω
´

2k logp2{δq
ε2

¯

. This is because of the observation that if U is an orthobasis for the span of

W and Y and Ul,l1 is an orthobasis for the span of Wl and Yl1 , then

ΓpUl,l1

j q ď ΓpUjq (A.16)

for all pairs pl, l1q. Hence, a given block diagonal sketching matrix SD can satisfy (Equation A.15)

as well. The rest of the proof remains the same as [5]. This concludes the proof for The-

orem 1. Extending this to prove Theorem 2 is straightforward, with SD being a particular

case of their framework.

A.3 Proofs of results in chapter 4

A.3.1 Proof of Lemma 2

Let pU,Vq be a minimizer to (4). Then by the feasibility it satisfies X “ UVJ. Therefore

}X}1Ñ2 “
›

›UVJ
›

›

1Ñ2

“ max
i

›

›UVJei
›

›

2
ď max

i
}U}

›

›VJei
›

›

2

ď max
i
}U}F

›

›VJei
›

›

2

“ }U}F }V}2,8 “ }X}mixed .

Suppose that pU,Vq satisfies M “ UVJ and UJU “ Ir. Such pU,Vq always exists.
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For example, think about the SVD of M. Since pU,Vq is feasible to (3), it follows that

}X}mixed ď }U}F
›

›VJ
›

›

1Ñ2
ď
?
r }U}

›

›VJ
›

›

1Ñ2
“
?
r
›

›VJ
›

›

1Ñ2
.

On the other hand,

}X}1Ñ2 “ max
i

›

›UVJei
›

›

2
“ max

i

›

›VJei
›

›

2
“
›

›VJ
›

›

1Ñ2
.

We have shown

}X}mixed ď
?
r }X}1Ñ2 .

In summary, we have

}X}1Ñ2 ď }X}mixed ď
?
r }X}1Ñ2 .

That is, the pair of }¨}mixed and }¨}1Ñ2 can be also used for a surrogate of the rank of a

matrix.

A.3.2 Proof of Lemma 3

We derive a tail estimate on supM }QMξ}
2
2 by using the results on suprema of chaos pro-

cesses [68] summarized in the following theorem.

Theorem 13 (Theorem 3.1 in [68]) Let ξ P Rn be a Gaussian vector with Erξs “ 0 and

ErξξJs “ In, ∆ Ă Rmˆn, and 0 ă ζ ă 1. There exists a numerical constant C such that

sup
QP∆

| }Qξ}22 ´ Er}Qξ}22s|

ď C
´

E ` V
a

logp2ζ´1q ` U logp2ζ´1
q

¯

holds with probability 1´ ζ , where

E :“ γ2p∆, }¨}q rγ2p∆, }¨}q ` dFp∆qs ,

V :“ dSp∆q rγ2p∆, }¨}q ` dFp∆qs ,

U :“ d2
Sp∆q.
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We apply Theorem 14 to the set ∆ “ tQM : M P κpα,Rqu. The radii of ∆ with

respect to the Frobenius norm and to the spectral norm are respectively upper-bounded as

follows:

dFp∆q ď α
a

d2

and

dSp∆q ď
α
?
L
.

Let BS denote the unit ball with respect to the spectral norm. Then the γ2-functional of ∆

with respect to the spectral norm is upper-bounded through Dudley’s inequality by

γ2p∆, }¨}2q ď c

ż 8

0

a

logN p∆, ηBSq dη

ď
c
?
L

ż 8

0

a

logN pκpα,Rq, ηB1Ñ2q dη

ď
c1R
?
d log3{2 d
?
L

,

where the last inequality follows from Lemma 4.

Then E, U , and V in Theorem 14 are upper-bounded by

E ď αR

c

pd1 ` d2qd2

L
log3{2 d

`
R2

L
d log3 d

U ď
α2

L

V ď
α
?
d2

?
L

˜

R
?
d

Ld2

log3{2 d` α

¸

.
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By plugging in these upper estimates to Theorem 14, we obtain

sup
MPκpα,Rq

ˇ

ˇ

ˇ

ˇ

ˇ

}QMξ}
2

d2

´
}M}

2
F

d2

ˇ

ˇ

ˇ

ˇ

ˇ

ď c

˜

αR
?
d log3{2 d
?
Ld2

`
R2d log3 d

Ld2

¸

` t

ď
cR
?
d

?
Ld2

˜

α log3{2 d`
R
?
d log3 d
?
Ld2

¸

` t

with probability at least 1´ 2 expp´ĉminpt2{V 2, t{Uqq.

We take t “ αR
?
d log3{2 d{Ld2 not to increase the upper bound in order. This leads to

the Lemma 2.

A.3.3 Upper bound on T1 and T2

A tail bound for T1 can be derived by the following lemma [80], which is a direct conse-

quence of the moment version of Dudley’s inequality (e.g., p. 263 in [79]) and a version of

Markov’s inequality (e.g., Proposition 7.11 in [79]).

Lemma 19 Let µ P Cn be a standard complex Gaussian vector with Eµµ˚ “ In, and let

∆ Ă Cn, 0 ă ζ ă e1{2. Then, there exists constant c such that

sup
fP∆

|f˚µ| ď c
a

logpζ´1q

ż 8

0

a

logNp∆, } ¨ }2, tqdt

with probability 1´ ζ .

We apply Lemma 29 to the maximum of linear forms of a Gaussian vector µ “ rbJ1,1 ¨ ¨ ¨b
J
L,d2
sJ

over the set F “ tfM : M P κpα,Rqu, where fM is defined by

fM :“

„

11,L b pMe1q
J . . . 11,L b pMed2q

J

J

.

Here 11,L is the row vector of length L with all entries set to 1. Then we have

}fM ´ fM1}2 “ }M´M1
}F

?
L

ď }M´M1
}1Ñ2

a

Ld2.

127



Hence,

NpF , ηB2q ď N

ˆ

κpα,Rq,
η
?
d2

Bε

˙

.

Combining these quantities and the entropy estimate for Npκpα,Rq, η
?
d2
Bεq with the

above lemma, we get

sup
MPκpα,Rq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

l,i

xbl,i,Meiy

ˇ

ˇ

ˇ

ˇ

ˇ

ď c log1{2 d
?
LR
?
d
a

d2.

Using this, we get

T1 “ E |||
ÿ

l,i

νl,iAl,i|||˚ ď cσ
a

d2R
?
d log3{2 d

with probability at least 1´ 2 expp´cdq

Using Lemma 2, we have

T2 ď α

g

f

f

ed2

˜

cR

α

c

d1 ` d2

Ld2

` 1

¸

log3 d

Note that T1 dominates T2 when Ld2 ă d1d2. In this case, we conclude that

|||
ř

l,i νl,iAl,i|||˚

d2

ď cσ
?
LR

c

d

Ld2

log3 d.

A.3.4 Entropy Estimates of Tensor Products

For symmetric convex bodies D and E, the covering number NpD,Eq and the packing

number MpD,Eq are respectively defined by

NpD,Eq :“ min
!

l
ˇ

ˇ Dy1, . . . , yl P D, D Ă
ď

1ďjďl

pyj ` Eq
)

,

MpD,Eq :“ max
!

l
ˇ

ˇ Dy1, . . . , yl P D, yj ´ yk R E, @j ‰ k
)

.

Let X, Y be Banach spaces. For T P LpX, Y q, the dyadic entropy number [81] is

defined by

ekpT q :“ inftε ą 0 |MpT pBXq, εBY q ď 2k´1
u.

where BX and BY denote unit balls. We will use the following shorthand notation for the
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weighted summation of the dyadic entropy numbers:

E2,1pT q :“
8
ÿ

k“1

k´1{2ekpT q,

which is up to a constant equivalent to the entropy integral
ş8

0

a

lnNpT pBXq, εBY qdε [69],

which plays a key role in analyzing properties on random linear operators on low-rank

matrices.

In this section, we derive the E2,1 of the identity operator from the injective tensor

product to the projective tensor product of a set of Banach space pairs. Note that these

tensor product spaces are valid Banach spaces too. The main machinery in deriving these

estimates is Maurey’s empirical method [78], summarized in the following lemma.

Lemma 20 Let T P `d28 b `
d1
8 . Then

E2,1pT q ď C
a

1` lnpd1 _ d2q p1` lnpd1 ^ d2qq
3{2
}T }_.

In order to apply Lemma 20 to `n8 b `m8, we use the fact that `m8 qb `n8 is isometrically

isomorphic to `mn8 . In fact,

}M}`m8 qb`n8
“ max

1ďjďn
}Mej}8 “ }vecpMq}8,

where ej denotes the jth column of the n-by-n identity matrix and vecp¨q : Rmˆn Ñ Rmn

vectorizes M P Rmˆn by stacking its columns vertically. On the other hand, the trace dual

and Banach space dual of `n1 pb`
m
1 are `m1 qb`n1 and `n8 qb`m8, respectively. Therefore, we also

have that `m1 pb `n1 is isotropically isomorphic to `mn1 . With these isometric isomorphisms,

Lemma 20 provides the following estimate.

Proposition 1 There exists a numerical constant C such that

E2,1pid : `m8 pb `n8 Ñ `m8 qb `n8q ď C
?
m` n p1` lnpmnqq3{2.

To apply Lemma 20 to `d28 b `d1p with 2 ď p ă 8, we need the following result that

shows embedding of finite dimensional `p space to `1 up to a small Banach-Mazur distance.
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Lemma 21 ([78, Lemma 5]) Let 1 ă p ď 2 and ε ą 0. There is a constant cpp, εq ą 0

for which the following property holds: For each d1, there exists k ě cpp, εqd1 so that `d11

contains a subspace p1 ` εq-isomorphic to `kp, i.e., the Banach-Mazur distance is upper-

bounded by p1` εq.

Then we obtain the following entropy estimate for `d28 b `d1p with 2 ď p ă 8 by

combining Lemma 20 and Lemma 21.

Let 2 ď p ă 8. Then

E2,1pid : `d28 pb `d1p Ñ `d28 qb `d1p q ď C
a

d1 ` d2 p1` lnpd1d2qq
3{2.

A.3.5 Proof of Theorem 10

We use the following general strategy to establish the lower bound. We first show that there

a packing set of κpα,Rq of a desirable size and packing density. We then use a multiway

hypothesis testing argument and Fano’s inequality to establish the minimax lower bound.

We use the same argument as used in [55] to show that there is a packing set.

Lemma 22 Let r “ R2{α2 and γ ď 1 satisfy r ď γ2pd1 ^ d2q is an integer(?). Then there

exists a subsetM Ă κpα,Rq with cardinality

|M| “
R

exp

"

rpd1 _ d2q

16γ2

*V

with the following properties:

1. Every M PM satisfies that rankpMq ď r{γ2 andMkl P t˘γα{
?
d1u for all k P rd1s

and l P rd2s, thereby

}M}1Ñ2 “ γα, and }M}
2
F {d2 “ γ2α2.

2. Any two distinct Mi,Mj PM satisfy

›

›Mi
´Mj

›

›

2

F
ě
γ2α2d2

2
.
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Proof We adapt the proof of [55, Lemma 3.1] to our setting. The idea is to leverage the

empirical method. Without loss of generality, we may assume that d2 ě d1. (Otherwise we

only need to flip d1 and d2 in the first assumption.) Let N “ expprd2{16γ2q, B “ r{γ2,

and for each i “ 1, ¨ ¨ ¨ , N , we draw a random matrix Mi as follows: The matrix Mi

consists of i.i.d. blocks of dimensions B ˆ d2, stacked up from top to bottom, with entries

of the first block being i.i.d. symmetric random variables, taking values in ˘αγ{
?
d1 such

that

M i
kl “M i

k1l, @l, @k, k1 : k1 ” k pmodBq.

It can be verified that all the matrices M1, . . . ,MN drawn in such a manner satisfy the first

property above.

For any Mi ‰ Mj , we have

›

›Mi
´Mj

›

›

2

F
“
ÿ

k,l

pM i
kl ´M

j
klq

2 (A.17)

ě

Z

d1

B

^ B
ÿ

k“1

d2
ÿ

l“1

pM i
kl ´M

j
klq

2 (A.18)

“
4α2γ2

d1

Z

d1

B

^ B
ÿ

k“1

d2
ÿ

l“1

δkl, (A.19)

where pδklq denotes an array of i.i.d. Bernoulli random variables with mean1{2. Hoeffd-

ing’s inequality implies

P

˜

B
ÿ

k“1

d2
ÿ

l“1

δkl ě
Bd2

4

¸

ď e´Bd2{8.

By using the union bound argument over all
`

N
2

˘

possible pairs, we obtain that

min
i‰j

›

›Mi
´Mj

›

›

2

F
ą α2γ2

Z

d1

B

^

Bd2

d1

ě
α2γ2d2

2

holds with probability at least 1 ´
`

N
2

˘

exp p´Bd2{8q ě 1{2. In other words, the second

property is satisfied with nonzero probability, thereby, there exists such an instance. This

concludes the proof.
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Lemma 23 (Equivalence to multiple hypothesis testing) We have

inf
xM

sup
MPκpα,Rq

E
›

›

›

xM´M
›

›

›

2

F
ě
δ2

4
min
ĂMPM

P
´

ĂM ‰ M˚
¯

, (A.20)

where M˚ is uniformly distributed over the packing setM and δ is the packing density.

Proof Let ĂM “ arg minMPM

›

›

›
M´xM

›

›

›

F
. If there exists Mj P M such that Mj ‰ ĂM,

then there exists Mk PM such that Mk ‰ Mj and

›

›

›

xM´Mk
›

›

›

F
ď

›

›

›

xM´Mj
›

›

›

F
. (A.21)

By (Equation A.21) together with the triangle inequality, we obtain

›

›

›

xM´Mj
›

›

›

F
ě
›

›Mj
´Mk

›

›

F
´

›

›

›

xM´Mk

›

›

›

F
ě
›

›Mj
´Mk

›

›

F
´

›

›

›

xM´Mj
›

›

›

F
, (A.22)

which implies
›

›

›

xM´Mj
›

›

›

F
ě

›

›Mj ´Mk
›

›

F

2
.

Thus, since every distinct pair inM is at least δ-separated, we obtain

›

›

›

xM´Mj
›

›

›

2

F
ě
δ2

4
.

Hence we deduce that

ĂM ‰ Mj
ùñ

›

›

›

xM´Mj
›

›

›

2

F
ě
δ2

4
. (A.23)

Finally, we have

inf
xM

sup
MPκpα,Rq

E
›

›

›

xM´M
›

›

›

2

F
ě inf

xM

max
MjPM

E
›

›

›

xM´Mj
›

›

›

2

F

paq

ě inf
xM

max
MjPM

δ2

4
P

ˆ

q p

›

›

›

xM´Mj
›

›

›

2

F
ą
δ2

4

˙

pbq

ě
δ2

4
min
ĂMPM

max
MjPM

P
´

q pĂM ‰ Mj
¯

pcq

ě
δ2

4
min
ĂMPM

P
´

q pĂM ‰ M˚
¯

,

where M˚ is drawn uniformly randomly fromM. Here (a) holds by Markov’s inequality;

(b) follows from (Equation A.23); and (c) holds since the worst-case error probability is
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larger than the error probability with respect to the uniformly distributed random matrix

M˚. This completes the proof.

Lemma 24 (Application of Fano’s inequality)

PpĂM ‰ M˚
q ě 1´

`

|M|

2

˘´1 ř

k‰j Ebl,iKLpMk||Mjq ` log 2

log |M|
(A.24)

(A.25)

where KLpMk||Mjq denotes the KL divergence between the distributions of measurements

yl,i’s, conditioned on the measurement model Equation A.26 and M is the packing set

derived in Lemma 22.

KL divergence for our model

To apply Fano’s inequality, we need to compute the KL divergence in (Equation A.24).

Note that the measurements are generated as per the model in (Equation A.26):

yl,i “

B

1
?
L

bl,ie
J
i ,M

F

` zl,i (A.26)

Lemma 25 The KL divergence between the distributions of the measurements generated

using two different matrices Mk and Ml, conditioned on the sensing vectors bl,i’s is given

as

KLpMk
||Mj

q “
1

2Lσ2

ÿ

l,i

xbl,i,m
k
i ´ml

iy (A.27)

and

Ebl,iKLpMk
||Mj

q “
1

2σ2
}Mk

´Mj
}

2
F (A.28)

Proof We have

P pY |tbl,iuq “
L
ź

l“1

d2
ź

i“1

1
?

2πσ2
e´pYl,i´xbl,i,miyq

2
{2Lσ2

.
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Hence,

KLpMk
||Mj

q “

ż

P
`

q pY|Mk
˘

log

˜

P
`

q pY|Mk
˘

P pq pY|Mjq

¸

dY (A.29)

“

ż

ź

l

ź

i

1
?

2πσ2
e´pYl,i´xbl,i,m

k
i y

2q
2
{2Lσ2

(A.30)

«

´
ÿ

l

ÿ

i

pYl,i ´ xbl,i,m
k
i y

2q

2Lσ2
`
ÿ

l

ÿ

i

pYl,i ´ xbl,i,m
j
i y

2q

2Lσ2

ff

dY (A.31)

“
1

2Lσ2

ÿ

l

ÿ

i

xbl,i,m
k
i ´m

j
i y

2 (A.32)

We also can conclude that

Ebl,iKLpMk
||M j

q “
1

2σ2

›

›Mk
´M j

›

›

2

F
(A.33)

Further note that
›

›Mk ´M j
›

›

2

F
ď 4α2γ2d2 for any distinct k, j. Substituting this,

(Equation A.33) and Lemma 22 in (Equation A.24), we get

PpĂM ‰M˚
q ě 1´

4α2γ2d2

2σ2

16γ2

rpd1 _ d2q
´

16γ2 log 2

rpd1 _ d2q
(A.34)

ě
1

2
(A.35)

provided that γ4 ď
σ2rpd1_d2q

128α2d2
, and rpd1 _ d2q ě 48.

If σ2rpd1_d2q

128α2d2
ě 1, we can choose γ2 “ 1. In this case, we obtain

inf
xM

sup
MPκpα,Rq

E
›

›

›

xM ´M
›

›

›

2

F
ě
δ2

4

1

2
(A.36)

ě
α2d2

16
, (A.37)

since δ “ αγ
a

d2{2. Hence

inf
xM

sup
MPκpα,Rq

E
1

d2

›

›

›

xM ´M
›

›

›

2

F
ě
δ2

4

1

2
(A.38)

ě
α2

16
. (A.39)
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Otherwise, we choose γ2 “

b

σ2rpd1_d2q

128α2d2
and we obtain

inf
xM

sup
MPκpα,Rq

E
›

›

›

xM ´M
›

›

›

2

F
ě
δ2

4

1

2
(A.40)

ě α2σ

c

rpd1 _ d2q

128

1

α
?
d2

d2

2

1

4
(A.41)

ě ασ

c

rpd1 _ d2q

128

?
d2

2
. (A.42)

since δ “ αγ
a

d2{2. Hence

inf
xM

sup
MPκpα,Rq

E
1

d2

›

›

›

xM ´M
›

›

›

2

F
ě
α2

16

σ
?
L

α

d

rpd1 _ d2q

Ld2

(A.43)

Finally, combining the two results, we have

inf
xM

sup
MPκpα,Rq

1

d2

E
›

›

›

xM ´M
›

›

›

2

F
ě min

˜

α2

16
,
α2

16

σ
?
L

α

d

rpd1 ` d2q

Ld2

¸

(A.44)

A.4 Proofs of results in chapter 5

A.4.1 Proof of Theorem 11

Let Z0
pDJ and pZpDJ denote the ground-truth matrix and its estimate, respectively. Due to

optimality of pZ, we have

›

›

›
py ´AppZpDJ

q

›

›

›

2

2
ď

›

›

›
py ´ApZ0

pDJ
q

›

›

›

2

2
. (A.45)

After substituting pZ´ Z0 by M, since py “ ApZ0
pDq ` ν, we obtain

L
ÿ

l“1

xpcle
T
l ,M

pDJ
y

2
ď 2

L
ÿ

l“1

xpcle
T
l ,M

pDJ
yνl. (A.46)

We then use the following pair of results that provide and upper and lower bound on the

right and left hand side of (Equation A.46).

Lemma 26 For the setting in (Equation A.46),

ÿ

l

xpcle
T
l ,M

pDJ
y

2
ě

›

›

›
M pDJ

›

›

›

2

F
´ α2

?
N `K

?
L

µ
log3

pN `Kq
a

logp2ζq´1 (A.47)
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with probability at least 1´ ζ

Lemma 27 For the setting in (Equation A.46),

ÿ

l

xAl,MpDJ
yνl À σα

?
L

µ

?
K `N

a

logp1{δq

` σ

d

α2
L

µ2
` α2

?
N `K

?
L

µ

a

logp1{δq logp1{2ζq (A.48)

(up to log factors ) with probability 1´ ζ ´ δ.

From Lemma 8, the upper bound on the linear term can be summarized as

ÿ

l

xAl,MpDJ
yνl À σα

?
L

µ

?
K `N ` σ

d

α2
L

µ2
` α2

?
N `K

?
L

µ
(A.49)

(up to log factors ) with probability 1´ ζ ´ δ.

The lower bound on the quadratic term from Lemma 7 can be summarized as :

ÿ

l

xAl,MpDJ
y

2
ě

›

›

›
MpDJ

›

›

›

2

F
´ α2

?
N `K

?
L

µ
log3

pN `Kq
a

logp2ζq´1 (A.50)

Combining the upper and lower bounds, we have (up to log factors)

›

›

›
MpDJ

›

›

›

2

F
À α2

?
N `K

?
L

µ
` σα

?
L

µ

?
K `N ` σ

d

α2
L

µ2
` α2

?
N `K

?
L

µ
(A.51)

À α

?
L

µ

¨

˝α
?
N `K ` σ

?
K `N ` σ

d

1`
µ
?
K `N
?
L

˛

‚ (A.52)

À α2 L

µ2

¨

˝

µ
?
K `N
?
L

`
µσ
?
K `N

α
?
L

`
µσ

α
?
L

d

1`
µ
?
K `N
?
L

˛

‚ (A.53)

À α2 L

µ2

¨

˝

µ
?
K `N
?
L

`
σ
?
L

α
?
L{µ

c

K `N

L
`

σ
?
L

α
?
L{µ

d

1

L
`
µ
?
K `N

L

˛

‚

(A.54)
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À α2 L

µ2

¨

˝

µ
?
K `N
?
L

`
σ
?
L

α
?
L{µ

¨

˝

c

K `N

L
`

d

1

L
`
µ
?
K `N

L

˛

‚

˛

‚ (A.55)

À α2 L

µ2

¨

˝

µ
?
K `N
?
L

`
σ
?
L

α
?
L{µ

¨

˝

c

K `N

L
`

d

µ
?
L

c

K `N

L

˛

‚

˛

‚ (A.56)

À α2 L

µ2

˜

µ
?
K `N
?
L

`
σ
?
L

α
?
L{µ

c

K `N

L

¸

. (A.57)

where (Equation A.55) follows from the fact that µ
?
K `N ą 1 and t he last line follows

from the assumption K`N
L

ą
µ2

L
. We then obtain the following result:

›

›

›
MpDJ

›

›

›

2

F
À α2 L

µ2

c

K `N

L
pµ`

σ
?
L

α
?
L{µ

q. (A.58)

By setting
›

›

›
Z0

pDJ

›

›

›

F
“ α

?
L

µ
, we get

›

›

›
M pDJ

›

›

›

2

F
›

›

›
Z0

pDJ

›

›

›

2

F

À

c

K `N

L

¨

˝µ`
σ
?
L

›

›

›
Z0

pDJ

›

›

›

F

˛

‚ (A.59)

holds with high probability.

A.4.2 Proof of Lemma 7

We observe that
řL
l“1xpcle

T
l ,M

pDJy2 can be reformulated as a quadratic form in standard

Gaussian random variables. Let us define

ξ “

»

—

—

—

—

–

pc1

...

pcL

fi

ffi

ffi

ffi

ffi

fl

P CLN . (A.60)

Then it follows that ξ „ CN p0, ILNq. Therefore, the left-hand side of (Equation A.46) can

be rewritten as
L
ÿ

l“1

xpcle
T
l ,M

pDJ
y

2
“ }QMξ}

2 ,
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where

QM “

»

—

—

—

—

—

—

—

–

pMpDJe1q
J 0 ¨ ¨ ¨ 0

0 pMpDJe2q
J ¨ ¨ ¨ 0

...
... . . . ...

0 0 ¨ ¨ ¨ pMpDJed2q
J

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (A.61)

We also have

E }QMξ}
2
“

›

›

›
MpDJ

›

›

›

2

F

We compute a tail estimate on the supremum of }QMξ}
2
2 over the set tM : MB̂˚ P αBπu

where Bπ is the π-norm unit ball by using the results on suprema of chaos processes [77].

They derived a sharp tail estimate on the supremum of a Gaussian quadratic form maxi-

mized over a given set S, stated below.

Theorem 14 (Theorem 3.1 in [77]) Let ξ P Rn be a Gaussian vector with Erξs “ 0 and

ErξξJs “ In, ∆ Ă Rmˆn, and 0 ă ζ ă 1. There exists a numerical constant C such that

sup
QP∆

| }Qξ}22 ´ Er}Qξ}22s| ď C
´

E ` V
a

logp2ζ´1q ` U logp2ζ´1
q

¯

holds with probability 1´ ζ , where

E :“ γ2p∆, }¨}q rγ2p∆, }¨}q ` dFp∆qs ,

V :“ dSp∆q rγ2p∆, }¨}q ` dFp∆qs ,

U :“ d2
Sp∆q.

where dF is the diameter of ∆ in the Frobenius norm, dS is the diameter in the spectral

norm and γ2 is the gamma funcional.

We can use Theorem 14 to bound }Qξ}2 by defining ∆ “ tQM :
›

›

›
MpDJ

›

›

›

π
ď αu. The

diameters and the gamma functional for the set ∆ are computed below.

Spectral radius of S:

dsp∆q “ sup
QMP∆

}QM}2Ñ2 “

›

›

›
MpDJ

›

›

›

1Ñ2
ď

›

›

›
MpDJ

›

›

›

ε
ď α. (A.62)
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Frobenius radius:

dF p∆q ď
›

›

›
MpDJ

›

›

›

F
ď

›

›

›
MpDJ

›

›

›

˚
ď
α
?
L

µ
(A.63)

γ2-functional: To bound the gamma functional, we use the following upper bound [77]:

γ2 À

ż 8

0

a

logpαBπ, ηBεqdη. (A.64)

We provide an upper bound on the right hand side of (Equation A.64) in Lemma Equa-

tion 28. We defer the proof of Lemma Equation 28 to subsection A.4.4.

Lemma 28 The γ2-functional of the set ∆ “ tQM : }MpDJ}π ď αu with respect to the

spectral norm is upper-bounded by

γ2p∆q À

ż 8

0

a

logpαBπ, ηBεqdη À α
?
N `K log3{2 L. (A.65)

We can now substitute for these quantities in Theorem 14:

E :“ γ2p∆, }¨}q rγ2p∆, }¨}q ` dFp∆qs À α2
pN `Kq log3

pN `Kq ` α2
?
N `K

?
L

µ

V :“ dSp∆q rγ2p∆, }¨}q ` dFp∆qs À α2
?
N `K log3{2

pN `Kq ` α2

?
L

µ

U :“ d2
Sp∆q ď α2.

Hence,

sup
QMP∆

| }QMξ}
2
2 ´ E }QMξ}

2
2 | À E ` V

a

logp2ζ´1q ` U logp2ζ´1
q

À α2
pN `Kq log3

pN `Kq ` α2
?
N `K

?
L

µ

a

logp2ζq´1q

(A.66)

with probability at least 1 ´ ζ . We ignore the last term, since it is dominated by the other
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two terms. We can then obtain the bound in Lemma 7 as below:

ÿ

l

xpcle
T
l ,M

pDJ
y

2
Á

›

›

›
M pDJ

›

›

›

2

F
´ α2

pN `Kq log3
pN `Kq ´ α2

?
N `K

?
L

µ

a

logp2ζq´1q

Á

›

›

›
M pDJ

›

›

›

2

F
´ α2

?
N `K

?
L

µ
log3

pN `Kq
a

logp2ζq´1

where the last line follows from the fact that L ą N `K.

A.4.3 Proof of Lemma 8

In order to prove Lemma 8, we will make use of the following inequality from [69]:

Theorem 15 (Theorem 4.7, [69]) Let gk be an i.i.d sequence of Gaussian normal random

variables on some probability space pΩ,Y ,Pq. Let E be a Banach space and let pzkq be a

sequence of elements of E. Let X “
ř8

k“1 gkzk and let

σpXq “ sup
!

p
ÿ

|ζpzkq|
2
q
1{2
|ζ P E˚, }ζ} ď 1

)

. (A.67)

Then,

@t ą 0,P p| }X} ´ E }X} | ą tq ď 2 expp´Kt2{σpXq2q, (A.68)

where K is a numerical constant.

In order to apply this theorem to our problem, we can define the corresponding quantities

in the context of our problem. Conditioning on the pcl’s, the entries of the noise vector, νl’s

correspond to gk’s, pcleT
l ’s correspond to the zk’s. Further, let us define the following matrix

norm:

|||M||| “ ||MpDJ
||π{α. (A.69)

Then, we characterize the linear form in (Equation A.46) as

sup
M:M pDJPαBπ

ÿ

l

xpcle
T
l ,M

pDJ
yνl “ |||

ÿ

l

pcle
T
l νl|||˚.
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Under this setting, from Theorem Equation 15, we have

|||
ÿ

l

pcle
T
l νl|||˚ ď Eν |||

ÿ

l

pcle
T
l νl|||˚

looooooooomooooooooon

T1

`σπ

g

f

f

ec logp2{δq sup
M:M pDJPαBπ

L
ÿ

l“1

xpcleT
l ,M

pDJy2

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

T2
(A.70)

holds with probability 1´ δ.

Bound on T1:

In order to bound the first termT1, we use the equivalence (up to a log factor) between the

Gaussian and Rademacher complexities of any set. Since the first term in (Equation A.70)

is the Gaussian complexity of the set of pcleT
l ’s, we can replace it with the Rademacher

complexity:

Eν |||
ÿ

l

pcle
T
l νl|||˚ ď cσ

a

logLEr |||
ÿ

l

pcle
T
l rl|||˚

ď cσ
a

logLEr sup
M :M pDJPαBπ

|
ÿ

l

xrlpcle
T
l ,M

pDJ
y|,

where rl’s are i.i.d. Rademacher random variables. Due to symmetry of pcl, we have

|
ÿ

l

xrlpcle
T
l ,M

pDJ
y|

d
„ |

ÿ

l

xpcle
T
l ,M

pDJ
y|. (A.71)

Hence, it suffices if we bound supM :M pDJPαBπ
|
ř

lxpcle
T
l ,M

pDJy|. Note that

|
ÿ

l

xpcle
T
l ,M

pDJ
y| “ |xvecpMpDJ

q, vecptpcluqy| “ |xfM , vecptĉluqy| (A.72)

where fM :“ vecpMpDJq. It can be characterized as a mean-zero Gaussian process over

the set tM : MpDJ P αBπu. A tail bound can now be derived by the following lemma [80],

which is a direct consequence of the moment version of Dudley’s inequality (e.g., p. 263

in [79]) and a version of Markov’s inequality (e.g., Proposition 7.11 in [79]).

Lemma 29 Let µ P Cn be a standard complex Gaussian vector with Eµµ˚ “ In, and let

∆ Ă Cn, 0 ă ζ ă e1{2. Then, there exists constant c such that

sup
fP∆

|f˚µ| ď c
a

logpζ´1q

ż 8

0

a

logNp∆, } ¨ }2, tqdt
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with probability 1´ ζ .

With fM defined as in (Equation A.72), we have

}fM}2 “
›

›

›
M pDJ

›

›

›

F
ď α

?
L

µ
(A.73)

ż 8

0

d

logN

ˆ

αBπ,
η
?
K
Bε

˙

dη “ α

?
L

µ

ż 8

0

a

logN pBπ, ηBεqdη

À α

?
L

µ

?
K `N log3{2

pK `Nq.

From Lemma 29, we have

sup
M :MB̂˚PαBπ

|
ÿ

l

xpcle
T
l ,M

pDJ
y| À

a

logp1{δqα

?
L

µ

?
K `N log3{2

pK `Nq (A.74)

holds with probability 1´ δ. Owing to (Equation A.71), we can conclude that

sup
M :MB̂˚PαBπ

|
ÿ

l

xrlpcle
T
l ,M

pDJ
y| À

a

logp1{δqα

?
L

µ

?
K `N log3{2

pK `Nq (A.75)

holds with probability 1´ δ. Therefore,

Er sup
M :M pDJPαBπ

|
ÿ

l

xrlpcle
T
l ,M

pDJ
y| À σ

a

logp1{δqα

?
L

µ

?
K `N log3{2

pK`Nq (A.76)

holds with probability 1´ δ.

Hence,

Eν |||
ÿ

l

pcle
T
l νl|||˚ À σα

?
K `N

?
L

µ

a

logp1{δq (A.77)

holds with probability 1´ δ.

Bound on T2: From (Equation A.66), we also have
L
ÿ

l“1

xcle
J
l ,M

pDJ
y

2
ď

›

›

›
MpDJ

›

›

›

2

F
` α2

?
N `K

?
L

µ
log3

pN `Kq
a

logp2ζq´1 (A.78)

ď α2 L

µ2
` α2

?
N `K

?
L

µ
log3

pN `Kq
a

logp2ζq´1 (A.79)
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with probability at least 1´ ζ . Hence T2 is upper-bounded as

σπ

g

f

f

ec logp2{δq sup
M :M pDJPαBπ

L
ÿ

l“1

xAl,MpDJy2 À σ

d

α2
L

µ2
` α2

?
N `K

?
L

µ
(A.80)

up to a logarithmic factor with probability 1´ ζ ´ δ.

A.4.4 Proof of Lemma 10

Recall that the γ2-functional in the left-hand side of (Equation A.65) is upper-bounded by

Dudley’s integral, i.e.

γ2p∆, }¨}q À

ż 8

0

a

logNp∆, }¨} , tqdt. (A.81)

Note that, for QM,QM1 P ∆, we have

}QM ´QM1}2 “

›

›

›
MpDJ

´M1
pDJ

›

›

›

1Ñ2
ď

›

›

›
MpDJ

´M1
pDJ

›

›

›

ε
,

where the inequality follows from the definition of }¨}ε in (Equation 5.15). Therefore, by

the injectivity of the map M ÞÑ MpDJ, it follows that

Np∆, }¨} , tq ď NpαBπ, }¨}ε , tq.

Plugging in this to (Equation A.81) provides

γ2p∆, }¨}q À

ż 8

0

b

logNpαBπ, }¨}ε , tqdt. (A.82)

Recall that the dyadic entropy number of a linear operator T : X Ñ Y between two Banach

spaces X and Y is given by

ekpT : X Ñ Y q “ inf

#

ε ą 0 : Dy1, . . . , y2k´1 P Y s.t. T pBXq P
ď

1ďlď2k´1

pyl ` εBY q

+

.

(A.83)

Indeed, the right-hand side of (Equation A.82) is equivalent (up to a numerical constant) to

the following weighted sum of dyadic entropy numbers:

E2,1pid : Xπ Ñ Xεq :“
8
ÿ

k“0

ekpid : Xπ Ñ Xεq
?
k

. (A.84)
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Therefore it suffices to derive an upper bound on E2,1pid : Xπ Ñ Xεq.

Maurey’s empirical method

To derive an upper bound on E2,1pid : Xπ Ñ Xεq, we make use of Maurey’s empirical

method that upper-bounds the dyadic entropy numbers of a linear operator from `n1 to `m8,

summarized in the following lemma.

Lemma 30 ([78], [82, Lemma 3.4]) Let T : `n1 Ñ `m8 be a bounded linear operator. Then

we have

E2,1pT q À
a

1` logpm_ nq p1` logpm^ nqq3{2 }T }op .

Our strategy is to embed the domain Xπ (resp. co-domain Xε) of T “ id into `n1 (resp.

`m8) for some suitable n,m P N. To simplify notation, we introduce two Banach spaces

defined by

W8 :“
`

CK ,
›

›FD
›

›

8

˘

(A.85)

W2 :“
`

CK ,
›

›FD
›

›

2

˘

. (A.86)

Note that FD is an isometry from W8 (resp. W2) to V8 (resp. V2). Furthermore, pDJ is an

isometry from V8 (resp. V2) to W8 (resp. W2). It follows that W8 and V8 (resp. W2 and

V2) are equivalent via an isometric bijection. Therefore we have

ekpid : Xπ Ñ Xεq “ ek

ˆ

id : W8 bπ `
N
2 X

µ
?
L
W2 bπ `

N
2 Ñ W8 bε `

N
2 X

µ
?
L
W2 bε `

N
2

˙

.

(A.87)

In the remainder, we derive an upper bound on the right-hand side of (Equation A.87).

We achieve this via a series of embedding maps as shown in the commutative diagram in

Figure A.1.

We proceed by deriving the operator norm of each of the embedding maps in the com-

mutative diagram.
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`2m
1

8 bε `
2N
1

8

`m
1

1 bπ `
N 1

1 `m
1

1 bε `
N 1

1

`m2 bπ `
N
2 `m2 bε `

N
2

W8 bπ `
N
2 X

µ
?
L
W2 bπ `

N
2 W8 bε `

N
2 X

µ
?
L
W2 bε `

N
2

ι˚

id

Ψ´1bΥ´1ΨbΥ

ΦbidΦ:bid

id

Figure A.1: Commutative diagram

Embedding W8 bπ `
N
2 X

µ
?
L
W2 bπ `

N
2 into `m2 bπ `

N
2

Our first map embeds W8 bπ `
N
2 X

µ
?
L
W2 bπ `

N
2 into `m2 bπ `

N
2 for a suitable m ą k. We

construct such an embedding map by using a random matrix whose entries are i.i.d. with

respect to the standard normal distribution. The following lemma presents the construction

of the embedding map and an upper bound on its operator norm.

Lemma 31 Let

Φ “
1
?
m

pDJG˚, (A.88)

where G is an m ˆ L matrix with i.i.d. entries drawn from N p0, 1q. Then there exists a

numerical constant C such that
›

›

›

›

Φ:
b id : W8 bπ `

N
2 X

µ
?
L
W2 bπ `

N
2 Ñ `m2 bπ `

N
2

›

›

›

›

op

ď

?
L

µ

ˆ

?
1` δ

1´ δ

˙

holds with probability 1´ 4 expp´δ2mq provided

m ě δ´2K.

Proof Note that D̂JD̂ “ IK . Due to the construction of Φ, it has entries drawn from the

complex Gaussian distribution.
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Lemma 32 ([83, Theorem 5.65]) Let S “ 1?
m

R, where R P Rmˆd, with Ri,j drawn iden-

tically and independently from a sub-Gaussian distribution. If m ě d{δ2, then

›

›I´ SJS
›

› ď δ (A.89)

with probability at least 1´ 2 exppδ2mq

From Lemma 32, we deduce that

}I´ΦΦ˚
} ď δ (A.90)

holds with probability at least 1´ 2 exppδ2mq. This also implies

}Φ} ď
?

1` δ

with probability at least 1´ 2 exppδ2mq.

We now derive an upper bound on the operator norm of Φ: b id in terms of the the

operator norms of the following operators:

Φ: : W8 X
µ
?
L
W2 Ñ `m2 and id : `N2 Ñ `N2 .

The operator norm is rewritten as
›

›

›

›

Φ:
b id : W8 bπ `

N
2 X

µ
?
L
W2 bπ `

N
2 Ñ `m2 bπ `

N
2

›

›

›

›

“
›

›Φ:
b id : W8 bπ `

N
2 Ñ `m2 bπ `

N
2

›

›^

›

›

›

›

Φ:
b id :

µ
?
L
W2 bπ `

N
2 Ñ `m2 bπ `

N
2

›

›

›

›

“
›

›Φ: : W8 Ñ `m2
›

›^

›

›

›

›

Φ: :
µ
?
L
W2 Ñ `m2

›

›

›

›

“

›

›

›

›

Φ: : W8 X
µ
?
L
W2 Ñ `m2

›

›

›

›

.

where the second and the last line follows from the norm associated with the interpolation

space, and the third line is due to the following:

}T b T 1}op “ }T }op ¨ }T
1
}op

Thus it suffices to derive an upper bound on the operator norm of Φ:. Since the norm
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dual of W8 is W1 and W2 is self-dual, we obtain

›

›Φ:
›

›

op
“

›

›

›

›

Φ˚
pΦΦ˚

q
´1 : W8 X

µ
?
L
W2 Ñ `m2

›

›

›

›

op

“

›

›

›

›

pΦΦ˚
q
´1Φ : `m2 Ñ W1 `

?
L

µ
W2

›

›

›

›

op

“
›

›pΦΦ˚
q
´1Φ : `m2 Ñ W1

›

›

op
^

›

›

›

›

pΦΦ˚
q
´1Φ : `m2 Ñ

?
L

µ
W2

›

›

›

›

op

ď

›

›

›

›

pΦΦ˚
q
´1Φ : `m2 Ñ

?
L

µ
W2

›

›

›

›

op

“

?
L

µ

›

›Φ˚
pΦΦ˚

q
´1
›

›

ď

?
L

µ
}Φ}

›

›pΦΦ˚
q
´1
›

› . (A.91)

By plugging in the estimates of }Φ} and }pΦΦ˚q´1} into (Equation A.91), we obtain

›

›Φ:
›

›

op
ď

?
L

µ
}Φ˚

}
›

›pΦΦ˚
q
´1
›

›

ď

?
L

µ

ˆ

?
1` δ

1´ δ

˙

with probability a least 1´ 4 expp´δ2mq.

Embedding `m2 bπ `
N
2 into `1

Next we embed `m2 bπ`
N
2 a finite dimensional `1 space so that we can apply Lemma 30. This

can be done by embedding each factor of the tensor product `m2 bπ `
N
2 into corresponding

`1 space. Specifically we embed `m2 (resp. `N2 ) into `m11 (resp. `N 11 for suitable m1 and N 1.

Then since `m11 bπ `
N 1

1 “ `m
1N 1

1 , we obtain the desired embedding. In fact, the embedding

between these two particular Banach spaces is well studied in the literature. We use the

version by Carl [78] in the following lemma.

Lemma 33 ([78, Lemma 5]) Let 1 ă p ď 2. For each ε ą 0, there exists a constant cpp, εq

such that for eachm1, `m
1

1 contains a subspace p1`εq-isomorphic to `mp withm ě cpp, εqm1.
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Let Ψ : `m2 Ñ `m
1

1 and Υ : `N2 Ñ `N
1

1 denote ε-accurate embedding maps given by

Lemma 33, which satisfy

}Ψ}op ď 1` ε and }Υ}op ď 1` ε. (A.92)

Then, since }ΨbΥ}op “ }Ψ}op }Υ}op, we have

›

›

›
ΨbΥ : `m2 b `

N
2 Ñ `m

1

1 b `N
1

1

›

›

›
ď p1` εq2. (A.93)

Let

E “ Ψp`m2 q Ă `m
1

1

and

E 1 “ Υp`N2 q Ă `N
1

1 .

In the next section, we derive an upper bound on the operator norm of an embedding map

from E bε E
1 to W8 bε `

N
2 X

µ
?
L
W2 bε `

N
2 .

Embedding E bε E 1 into W8 bε `
N
2 X

µ
?
L
W2 bε `

N
2

To complete the commutative diagram in Figure A.1, we derive an upper bound on the the

embedding map given by

ΦΨ´1
bΥ´1 : E bε E

1
Ñ W8 bε `

N
2 X

µ
?
L
W2 bε `

N
2 .

By the construction of the interpolation space, we have
›

›

›

›

ΦΨ´1
bΥ´1 : E bε E

1
Ñ W8 bε `

N
2 X

µ
?
L
W2 bε `

N
2

›

›

›

›

(A.94)

“
›

›ΦΨ´1
bΥ´1 : E bε E

1
Ñ W8 bε `

N
2

›

›_

›

›

›

›

ΦΨ´1
bΥ´1 : E bε E

1
Ñ

µ
?
L
W2 bε `

N
2

›

›

›

›

(A.95)

“
›

›ΦΨ´1 : E Ñ W8

›

›

›

›Ψ´1 : E 1 Ñ `N2
›

›_

›

›

›

›

ΦΨ´1 : E Ñ
µ
?
L
W2

›

›

›

›

›

›Ψ´1 : E 1 Ñ `N2
›

› .

(A.96)
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The following lemmas provide upper bounds on the operator norms in the right-hand side

of (Equation A.96).

Lemma 34 For the Φ and Ψ operators defined above, the operator norm of ΦΨ´1 : E Ñ

W8 X
µ
?
L
W2 is upper bounded by

›

›

›

›

ΦΨ´1 : E Ñ W8 X
µ
?
L
W2

›

›

›

›

op

À
maxpµ, log3{2 Lq

?
L

c

K

m
. (A.97)

Proof Due to the definition of the interpolation space, we have
›

›

›

›

ΦΨ´1 : E Ñ W8 X
µ
?
L
W2

›

›

›

›

op

ď
›

›ΦΨ´1 : E Ñ W8

›

›

op
loooooooooooomoooooooooooon

§

_

›

›

›

›

ΦΨ´1 : E Ñ
µ
?
L
W2

›

›

›

›

op
loooooooooooooomoooooooooooooon

§§

Each of the quantities § and §§ is upper-bounded as follows.

Claim 1: The operator norm of ΦΨ´1 : E Ñ W8 is upper bounded as

›

›ΦΨ´1 : E Ñ W8

›

›

op
À

c

K

mL
log3{2 L.

Proof [Proof of Claim 1] In order to obtain an upper bound, we make use Chevet’s inequal-

ity, stated below:

Chevet’s inequality: Let A be an mˆn random matrix with its entries being independent

standard Gaussian random variables. Then,

sup
xPT
yPS

xAx,yy ď wpT qrpSq ` wpSqrpT q ` µ rptqrpSq (A.98)

with probability at least 1´2 exppµ2q, where T, S are arbitrary bounded sets, wp¨q denotes

the Gaussian width of a set and rp¨q denotes the radius of a set with respect to the Euclidean

norm.

We have

›

›ΦΨ´1 : E Ñ W8

›

›

op
loooooooooooomoooooooooooon

A

“
1
?
m

sup
zPΨ´1E

yP p̄D pD˚BL1

xy, pGzy
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Let T “ tx “ Ψ´1pEqu and S “ tx P p̄DpD˚BL
1 u, where BL

1 is the `1-unit ball. Then

radpT q “ sup
xPT

}x}2 ď 1.

Note that this is due to the construction of the map Ψ in Lemma 33, which stipulates that

}Ψ} }Ψ´1} ď 1` ε. Then, we can design Ψ such that }Ψ} “ 1` ε, resulting in }Ψ´1} ď 1.

The conclusion then follows.

wpT q “ sup
xPT
xx,gy ď c

a

logm1

by standard computation of the Gaussian width of the `1-unit ball. Similarly, the radius of

S is upper-bounded by

radpSq “ sup
xPS

}x}2 ď sup
yPBL1

›

›

›

pD˚y
›

›

›

2
“

›

›

›

pD˚

›

›

›

1Ñ2
ď
a

K{L.

Moreover by Dudley’s inequality we obtain an upper bound on the Gaussian width of S

given by

wpSq “ E sup
xP pD pD˚BL1

xx,gy À

c

K

L

ż

b

logNpS, }¨}1Ñ2 , ηqdη À

c

K

L
log3{2 L.

Finally, we have

›

›ΦΨ´1 : E Ñ W8

›

› À
1
?
m
wpT qradpSq ` wpSqradpT q ď

c

K

mL
log3{2 L.

Claim 1: The operator norm of ΦΨ´1 : E Ñ µ
?
L
W2 is upper-bounded by

›

›

›

›

ΦΨ´1 : E Ñ
µ
?
L
W2

›

›

›

›

op

ď
µ

?
Lm

´?
K `

a

logm1

¯

.
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Proof [Proof of Claim 2] The operator norm can be written in a variational form as follows:
›

›

›

›

ΦΨ´1 : E Ñ
µ
?
L
W2

›

›

›

›

“
µ

?
Lm

sup
vP p̄DBK2
xPBE

xv, pDJG˚Ψ´1xy

“
µ

?
Lm

sup
yP p̄DBK2 “:S

zPΨ´1BE“:T

xy,G˚zy,

where BE denotes the unit ball in E. We again use Chevet’s inequality ((Equation A.98))

to compute an upper bound on the above quantity. The Gaussian width and radius in the

`2-norm of S satisfy

wpSq “ E sup
xPS
xx,gy ď

?
K; radpSq “ sup

xPBK2

}x}2 “ 1.

Moreover we have

wpT q “ sup
xPT
xx,gy ď

a

logm1; radpT q “ sup
yPT

}y}2 “ 1.

Then Chevet’s inequality implies

›

›ΦΨ´1 : E Ñ W2

›

› À wpT qradpSq ` wpSqradpT q ď
µ

?
Lm

´?
K `

a

logm1

¯

.

We obtain the results in (Equation A.97) by combining the results of Claims 1 and 2.

Concluding the proof of Lemma 10

To combine the results in the previous sections with Lemma 30, we utilize the following

properties of the dyadic entropy numbers (see e.g. [81]): For any linear operatorsR and S

and for any k P N, we have

ekpRSq ď }R}op ekpSq and ekpRSq ď ekpRq }S}op . (A.99)
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Then, by applying (Equation A.99) to the commutative diagram in Figure A.1, we obtain

E2,1

ˆ

id : W8 bπ `
N
2 X

µ
?
L
W2 bπ `

N
2 Ñ W8 bε `

N
2 X

µ
?
L
W2 bε `

N
2

˙

(A.100)

ď E1,2

´

id : `m
1

1 bπ `
N
1 Ñ `m

1

1 bε `
N
1

¯

›

›Φ:
b id

›

› }ΨbΥ}
›

›ΦΨ´1
bΥ´1

›

› (A.101)

where Φ: b id : W8 bπ `
N
2 X

µ
?
L
W2 bπ `

N
2 Ñ `m2 bπ `

N
2 , ΨbΥ : `m2 b `N2 Ñ `m

1

1 b `N
1

1

and ΦΨ´1 bΥ´1 : E bε E
1 Ñ W8 bε `

N
2 X

µ
?
L
W2 bε `

N
2 .

Furthermore, there exists an isometric embedding ι˚ from `m
1

1 bπ `
N 1

1 into `2m
1

8 bπ `
2N
1

8

[84]. Therefore the map ι˚ in Figure A.1 restricted on the image of `m11 bπ `
N 1

1 has the unit

operator norm. Then Lemma 30 and the surjectivity of the dyadic entropy number imply

E1,2

´

id : `m
1

1 bπ `
N
1 Ñ `m

1

1 bε `
N
1

¯

ď E2,1

´

id : `m
1

1 b `N
1

1 Ñ `2m
1

8 b `2N
1

8

¯

À
?
m1 `N 1 p1` logpm1N 1

qq
3{2
.

By the definition of the injective and projective tensor products, we have

`m
1

1 bπ `
N 1

1 “ `m
1N 1

1

and

`2m
1

8 bε `
2N
1

8 “ `2m
1`N 1

8 .

Then, by the direct application of Lemma 30, we obtain

E2,1

´

id : `m
1

1 b `N
1

1 Ñ `2m
1

8 b `2N
1

8

¯

ď c
a

1` logp2m12Nqp1` logpm1Nqq3{2

À
?
m1 `N

À
a

K{δ2 `N

À
?
K `N (A.102)

where the last line follows by using a suitable constant multiplication factor.

Finally, we substitute the results of the (Equation A.102) (Equation A.92) and (Equation A.97)
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in (Equation A.101) to obtain

E2,1

ˆ

id : W8 bπ `
N
2 X

µ
?
L
W2 bπ `

N
2 Ñ W8 bε `

N
2 X

µ
?
L
W2 bε `

N
2

˙

(A.103)

À
?
K `N

K

m

p1` εq2

1´ δ
log3{2 L

À
?
K `N log3{2 L (A.104)

where the last line follows from the fact that K ă m and by taking suitable constants to

replace ε and δ. This proves Lemma 10.
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