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SUMMARY

This work is devoted to the study of the phenomenon of spontaneous synchroniza-

tion in systems of coupled nonlinear oscillators. The first chapter provides a step by step

introduction to the basic concepts associated with oscillations, nonlinearity, coupling, col-

lective dynamics and corresponding phenomena, especially synchronization. Examples from

diverse natural and technological systems are given in order to demonstrate the importance

of an understanding of such phenomena.

However, the main focus of the following chapters is on a special type of oscillator array

with a non-trivial dynamical coupling. Although such systems are quite common, they

have been studied relatively little. Most researchers typically consider models with direct

coupling of some nature. In contrast, this work dials with nonlinear oscillators coupled

through a dynamical object, which can provide a resonant structure or other benefits for

the overall synchronization. Two contemporary experimental systems considered in the

thesis are particularly interesting from this perspective.

Chapter 2 is devoted to the problem of Josephson junctions embedded in a transmission

line. It is a transmission line that plays the role of dynamical coupling. This chapter

includes introductory sections with historical background and detailed derivations of all

necessary equations, which are then used to provide theoretical description of the system.

One of the most interesting results of this chapter is a new pairing phenomenon, which is

explained by both analytical and numerical analysis.

Another interesting phenomenon of weak-link synchronization is presented in chapter 3

in the context of a system of coupled fiber lasers. In this case the dynamical coupling is

provided by the oscillators themselves. Basically, this is a hybrid system of qualitatively

different oscillators. This new phenomenon can be potentially important for systems where

conventional direct coupling fails to produce a synchronized state due to intrinsic variations

of oscillator parameters.

viii



Although the Josephson transmission line and coupled fiber lasers are very different

systems, both of them demonstrate the advantages of dynamical coupling and corresponding

resonant structures, which will hopefully motivate further fundamental studies in this field

as well as useful industrial application.
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CHAPTER I

INTRODUCTION

1.1 Nonlinear Oscillators

Many processes evolving in the real world can be understood as an oscillatory behavior

in one way or another. From the theoretical point of view, oscillation is a basic concept

expressed in terms of various differential equations and iterated maps to model diverse

physical problems [1, 2].

Practical problems in physics can be described by linear equations only in rare situa-

tions. Usually a nonlinear approach is required for description of a real physical system.

Though quantum mechanical wave functions obey the superposition principle, very often

the description in terms of wave functions requires infinite dimensionality, which makes the

problem as hard as nonlinear ones. Actually, many finite-dimensional nonlinear problems

can be adequately represented as infinite-dimensional linear systems by some transforma-

tion. As a rule, linearization of a nonlinear process leads to a correct description of this

system only locally in phase space. A linear description is a matter of exceptional cases;

generic systems in nature are rather nonlinear.

Many different oscillating systems have in common the property of keeping their own

rhythm of oscillations even after being isolated. This rhythm must be maintained by some

internal source of energy that compensates for the dissipation, and it is determined by

properties of the system itself. These oscillators are called autonomous and belong to a

class of nonlinear problems known as self-sustained oscillations [3].

The principal features of self-sustained oscillators modeling natural phenomena are dis-

sipation, stability and nonlinearity. There are some systems in nature, such as orbiting

planets or vibrating molecules, that can be accurately described as conservative systems.

But in most cases the dissipation of system energy takes place because of electrical resis-

tance, mechanical friction or some other process. Thus, such an oscillation would eventually
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decay without a constant energy supply. The most important difference between dissipative

and conservative systems is the stability of oscillations with respect to small perturbations.

From the mathematical point of view, the stability in dissipative systems is a result of

phase volume decrease, which is not the case for conservative systems that preserve the ini-

tial phase volume and, consequently, have no attractors. The key concept in the theory of

self-sustained oscillators is the stable limit cycle, and an essential ingredient for maintaining

limit cycle oscillations is nonlinearity. As a rule, linear systems with periodic oscillations

are conservative. Moreover, linear systems that have an energy source but no dissipation

or visa versa cannot have a limit cycle, but only growing or decaying solutions.

There are many examples of nonlinear self-sustained oscillators. One of the most studied

is the driven Van der Pol oscillator [4]:

ẍ− γ(1− x2)ẋ + ω2
0x = g cos(ωDt). (1)

It has a dissipation term, which is negative for small amplitudes, supplying energy to the

system, and positive for large amplitudes. Therefore, spontaneous self-sustained oscillations

can be observed even without periodic driving. Van der pol and van der Mark studied a

simple electronic circuit where the negative dissipation was provided by a negative resistance

region in the I-V characteristic of a neon tube. When this oscillator is driven at a frequency

which is different from its free oscillation frequency, the nonlinear phenomenon of frequency

locking is observed.

Another well-known nonlinear oscillator used to model various physical, engineering and

even biological problems is the Duffing oscillator [5, 6]:

ẍ + γẋ± ω2
0x + βx3 = g cos(ωDt), (2)

which provides a demonstration of several interesting phenomena such as nonlinear reso-

nance, bifurcations, hysteresis and secondary resonances. The driven Duffing oscillator also

shows chaotic behavior.

Such a rich variety of interesting phenomena and complex behavior that has no coun-

terpart in linear systems provides a strong motivation for studying nonlinear self-sustained
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oscillators.

1.2 Coupled Nonlinear Oscillators

Many systems, both natural and artificial, consist of oscillating components interacting

with each other and producing a collective behavior in the form of complex spatio-temporal

patterns. Researchers have been studying cooperative behavior of interacting nonlinear

oscillators in relation to different phenomena such as nonlinear waves, collective trans-

port, clustering and synchronization. Systems that produce such behavior include: arrays

of Josephson junctions, central pattern generators in biological systems, arrays of cou-

pled lasers, communication systems via chaotic oscillators, charge-density waves, chemical

reactions and cardiac tissue, competing species in population dynamics, thin film fabrica-

tion, bubble behavior in fluidization and mixing processes, fireflies that emit rhythmic light

pulses, earthquakes, and active nonlinear antenna and radar systems [7, 8, 9, 10, 11].

This thesis is devoted to the detailed study of Josephson junction and fiber laser arrays,

but in this introduction I would also like to describe briefly several other systems mentioned

above.

A number of unusual nonlinear phenomena can be generated by inherently nonlinear

systems of active antennas. Over the years, researchers have developed extensive analysis

and new control techniques to manipulate these dynamical systems. Active antenna and

radar systems consist of coupled nonlinear cells, such as van der Pol oscillators, interacting

with each other dynamically, to form an amplitude and phase pattern creating a specific

beam characteristic. In contrast, traditional antenna and radar systems consist of passive

linear elements that act independently, and they require a lot of external components, such

as steering mechanisms and phase shifters, to control the beam position and shape [12, 13,

14].

The study of earthquake faults is very important [15, 16, 17, 18], but a deep under-

standing of such complex phenomena as earthquakes is a serious challenge for physicists

and mathematicians. The most spectacular feature of earthquakes is that they occur over

an enormous range of scales. The observed distribution of sizes of seismic activity is a
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power law over more than ten orders of magnitude. This power-law distribution of event

sizes is known as the Gutenberg-Richter law. It is one of the most fundamental discoveries

in the field of seismology. Earthquake faults occur as a result of frictional instabilities in the

upper ten kilometers of the Earth crust. Accumulated over hundreds of years, stress is then

suddenly relieved in a stick-slip fashion. Tectonic plates move in response to large-scale

convective flows in the mantle.

Figure 1: Schematic of the Burridge-Knopoff model.

In 1967 Burridge and Knopoff proposed a simple nontrivial model of earthquakes [19].

They introduced a chain of blocks harmonically interacting with their nearest neighbors.

These blocks represent a lubricant between sliding surfaces. Each block interacting with

the lower surface by a phenomenological dry-friction law, but the interaction with the

upper surface is modelled by springs. The upper surface moves horizontaly with very small

constant velocity V , called the sliding velocity (See Fig. 1):

ẍj + Ffric(ẋ) = xj+1 − 2xj + xj−1 + k(V t− xj), (3)

Ffric(V ) =
sign(V )

1 + 2α|V | .

Though this spring-block model is spatially uniform and has no built in irregularities or
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added noise, it has a deterministically chaotic dynamics and behavior that is quite similar

to the behavior of real earthquake faults. Most important is that the model produces

spatially localized earthquake events with a broad spectrum of scales from small to large.

These earthquake events relocate stress from one point to another, but they do not relieve

stress in the whole system. The model also shows large spatially extended events that have

epicenters of strong slipping pulses, which then propagate along the fault and unload the

stress on large parts of the system. The small events fit a power-law size distribution similar

to the Guntenberg-Richter law. But the large events occur randomly on a time period of

the order of loading time. After Bak, Tang and Wiesenfeld discovered that crustal faults

exhibit self-organized criticality [20, 21], the behavior of nontrivial spring-block models of

earthquake fault regained the attention of the scientific community.

Chemical oscillations have been present in nature since the beginning of the existence of

life. Actually, living organisms have hundreds of chemical oscillators. However, the study of

nonlinear chemical dynamics in general and oscillating chemical reactions in particular is a

relatively young discipline [1, 22]. Chemical oscillations are different from, for example, the

traditional pendulum in that they never pass through their equilibrium point. Therefore,

a chemical reaction oscillates in a far-from-equilibrium regime and should be described by

non-equilibrium thermodynamics. The model of diffusively coupled cells turns out to be a

useful approximation of a continuous medium. In principle, this approximation can be made

as accurate as required. The dynamics of chemical oscillators and other diffusive systems

have been successfully described by such reaction-diffusion models. The best known and

studied oscillating reaction is the Belousov-Zhabotinsky reaction [23]. If we isolate a small

element of this chemical solution from the whole medium, it will still produce limit cycle

oscillations. This suggests that the behavior of the total system can be understood as the

collective dynamics of diffusively coupled limit cycle oscillators.

Obviously, systems in the real world such as in living organisms are never ideally ho-

mogeneous. They always have spatial structures of some sort. Naturally, the behavior of

identical oscillators interacting through a short-range diffusive coupling exhibits ordered

motions of different types (modes). Indeed, since the interaction range is finite, any local
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event will affect distant points of the medium with some time delay. As a result, the dynam-

ics of distributed systems produce various kinds of coherent modes in the form of chemical

waves [24]. For instance, tho classical wave patterns observed in the Belousov-Zhabotinsky

reaction are expanding target waves and rotating spiral waves [25, 26, 27].

These are just a few well-known examples of systems successfully modelled by coupled

nonlinear oscillators, that can generate an amazing range of behaviors such as entrainment,

quenching (oscillator death) [28, 29], rhythmogenesis, birhythmicity, compound and com-

plex oscillations, and chaos. However, the main focus of this thesis is the phenomenon of

synchronization.

1.3 Synchronization of Coupled Nonlinear Oscillators

For decades considerable attention has been devoted to the problems of coordinated motion

of interacting autonomous units [3, 30]. Research efforts in diverse disciplines such as

ecology, control theory, statistical physics, social sciences, and computer graphics have been

devoted to the study of collective behavior of a large number of dynamical units without a

centralized individual control. Examples of such coordination can be observed in collections

of autonomous robots or vehicles as well as in crowds of people, flocks of birds, schools of

fish and so on.

1.3.1 Synchronization in Social and Natural Sciences

Synchronization as an adjustment of rhythms due to an interaction is an example of the

emergence of a coherence between initially irregular oscillations of coupled self-sustained

units. The phenomenon of synchronization is represented in nature on a great range of

scales from electrons and photons to planets and galaxies. Synchronization can be observed

among lifeless objects as well as among living organisms, including creatures of widely differ-

ent complexity from fireflies to humans. It is quite natural to expect intelligent organization

or some centralized rule, enforced on oscillating elements, to be responsible for any kind

of coordinated behavior. Actually, this is not always the case, though such systems indeed

exist in nature. For example, we all live experiencing the cycle of day and night. Conse-

quently, human beings and other species have daily variations in their physiology, which
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affect their behavior as well [31, 32, 33]. These changes are not simply a direct response to

the environmental conditions, but rather an adjustment of internal temporal cycles of the

organism to the external day and night rhythm. This internal temporal mechanism, known

as a biological clock, regulates the timing of various processes in the organism in accordance

with the 24-hour cycle of the physical environment. The biological clock is also responsible

for the coordination of the internal processes themselves. Therefore, the survival of an or-

ganism strongly depends on its ability to synchronize internal rhythms to each other and

to the external environment.

But synchronization is not necessarily a good thing; it can have destructive consequences

for human beings. For example, external periodic signals of a specific frequency might have

dangerous effects on electrical rhythms in the human brain. This kind of scenario occurred

with Japanese children during an episode of Pokemon on December 16, 1997, when they

watched an explosion of bright colors flashing at 12 Hz for five seconds [34, 35, 36]. Hundreds

of children got instantly sick with symptoms like seizure, breathing problems and vomiting.

Flashing red, white and blue lights apparently produced strong optical stimulation, which

triggered so called photosensitive epilepsy [37]. This type of epilepsy is understood as

a synchronization disorder, when light pulses repeated at a particular frequency entrain

the firing neurons in the human brain. There are many other examples of undesirable

synchronization in social life including the emergence of fads, mobs and traffic jams, which

we all experience on a daily basis.

Another example of synchronization in the human brain is the mind itself [38]. Though

an understanding of how neural activity forms our thoughts is still quite primitive, scientists

believe that neural synchrony is responsible for such processes as face recognition or word

memorization. Experiments show that during these acts of cognition millions of firing

neurons lock in-phase, forming an oscillating signal at 40 Hz for a short period of time,

and then a new pattern of neurons synchronizes for the next act. From this perspective,

memory, perception, and cognition are the result of a sequence of synchronized states among

large collections of distributed neurons.
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Very surprising examples of synchronization phenomena come from spontaneous co-

operation of a large number of oscillating units, when they do not have any centralized

pacemakers controlling the rhythm of every agent. This scenario can be observed on the

riverbanks in Southeast Asia, when millions of fireflies manage to organize their flashing in

phase [39, 40]. This type of synchronization is not a consequence of any external rhythm

imposed on independent fireflies. Instead, individual insects adjust their own rhythms in ac-

cordance with flashing of surrounding fireflies, so that overall synchronization spontaneously

emerge after a short period of time, and then it is maintained for a long time.

Fortunately, we do not have to travel Southeast Asia each time we want to enjoy that

kind of phenomenon. The same type of synchronization occurs in our hearts. The sinoatrial

node is a cluster of about 10000 pacemaker cells, which collectively generate a rhythm

to control beating of the rest of the heart [41]. These pacemaker cells are self-sustained

oscillators and produce electrical rhythm even if they are isolated from the node. Nature is

using synchronization to provide a reliable pace by spontaneous cooperation of thousands

of oscillating cells, so that the failure of a few cells does not affect the functioning of the

whole system.

Synchronization phenomena are quite common among other living organisms too. For

example, cicadas hide themselves underground for almost two decades before they simulta-

neously start their short mating season [42]. Male fiddler crabs attract the attention of a

female by waving their huge claws in unison [43]. It was also observed that human females

communicating on a daily basis (i.e. roommates, coworkers, sisters or just close friends)

exhibit the phenomenon of menstrual synchronization [44]. In this case coupling is probably

provided by pheromones - odorless chemicals, that transmit synchronizing signals from one

person to another [45, 46].

1.3.2 Synchronization in Engineering

The first time the phenomenon of synchronization was observed and described by Christiaan

Huygens in the seventeenth century. He discovered the synchronization of two pendulum
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clocks coupled through a common support [47, 48]. After some transient time the pendu-

lums started to move in opposite directions with the same frequency. Huygens accurately

described his observations and suggested that this anti-phase synchronization was estab-

lished because of the movement of the beam, which the pendulums were hanging from. The

original intention of the Huygens’ experiment with clocks was to determine the longitude

during a sea trial.

Later in the nineteenth century the discovery of synchronization in acoustic systems was

made by Lord Rayleigh [49], when he observed that two distinct organ-pipes start to sound

in unison if they are similar enough. He also discovered quenching, which is the suppression

of oscillations occurring when the coupling becomes too strong.

With the development of radio and electrical engineering the study of synchronization

reached a new level. Eccles and Vincent showed that two coupled generators oscillate

with the same frequency even though their natural frequencies were different before the

interaction was turned on [50]. Shortly after that, Appleton and van der Pol developed the

first theoretical analysis of this phenomenon [51, 52]. They proved that a weak external

signal of some frequency entrains the oscillations of a generator with a slightly different

frequency. This research was of particular significance since triode generators were the

main elements of radio devices. Over time scientists realized that various systems exhibiting

synchronization phenomena obey some universal laws despite the differences in the nature

of the nonlinearity, coupling and dynamics of the individual elements.

Modern technology has many examples of useful implications of synchronization. For

instance, the coherent laser beam is a combined light of trillions of atoms synchronized the

emitting in phase [53]. Superconductivity occurs when an ensemble of Cooper pairs spon-

taneously form the synchronized state, known as a Bose-Einstein condensate, and passes

through a metal carrying electrical current without resistance [54]. Josephson junctions

(simple devices that consist of two superconductors separated by a thin insulating layer)

are used for the most sensitive detectors of magnetic field [55]. Indeed, superconducting

quantum interference devices (SQUIDs), which rely on the synchronization of two Joseph-

son junctions, measures magnetic fields 100 billion times weaker than the Earth’s field.
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The power grid is also an example of the implementation of synchronization. It consists of

thousands of generators interconnected with each other to form one huge generator with all

component units rotating in synchrony [56, 57].

For centuries the solution of the longitude problem has required the existence of accurate

enough clocks. In our day atomic clocks allow one to determine position anywhere on the

Earth to within meters [58]. The global positioning system (GPS), which is roughly a

system of several distinct synchronized atomic clocks, is widely used to calculate the fastest

routes for fire-trucks and ambulances, to find locations of rental cars, for precise farming,

and even for blind landing of airplanes in heavy fog [59].

Despite some progress in the understanding of synchronization phenomena and their

important applications in technology, the study of synchrony has not lost its relevance in

our day, and many questions in the context of different practical compound systems still

have to be answered.
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CHAPTER II

JOSEPHSON JUNCTIONS IN A TRANSMISSION LINE

The topic of this chapter is an array of Josephson junctions coupled through a transmission

line. The first three sections provide the background essential for an understanding of

the basic system elements and their properties. Specifically, in Section 2.1 I describe the

Josephson effect and different types of devices whose operation is based on the supercurrent

phenomenon. A simplified derivation of the principal equations is provided as well.

The next section introduces the concept of Josephson junction arrays and their synchro-

nization due to a conventional global coupling architecture. This section also summarizes

the results obtained by various research teams who have studied this system.

Another principal element of the system of interest is a transmission line, introduced in

the Section 3. A brief historical review of the field is provided with a detailed derivation of

the equations governing the dynamics of an electrical transmission line.

The model for the dynamics of Josephson junction embedded in a transmission line is

given in the Section 4, where the analysis of the system is based on a perturbation technique;

first, in a general form, and then in a special case of equally-spaced junctions. Additional

symmetry of the problem allows one to obtain a full analytical solution and investigate a

particular synchronized state in different regimes, including the transition from relatively

small frequencies to high ones.

The theoretical analysis of the resonant architecture of the Josephson transmission line

with an arbitrary positioning of the junctions leads to a new phenomenon: the creation of

inert oscillator pairs. This is described in the last section of this chapter.

2.1 Josephson Junction

The discovery of the peculiar properties of tunnelling between superconductors has led to

the development of many useful applications.
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Figure 2: Schematic of a Josephson junction (SIS).

In 1962 a graduate student at Cambridge University, Brian Josephson, suggested that

a weak electrical contact between two superconductors (see Fig. 2) should produce a phe-

nomenon, the supercurrent Is, which is a part of total electrical current passing through

the contact [60]. Later this weak electrical contact was called a Josephson junction [61, 62].

Josephson derived a specific relationship between the supercurrent and the voltage across

the junction from the main principles of quantum mechanics, so that the formula explicitly

contains the Planck’s constant [63].

The next year Josephson’s prediction was experimentally confirmed [64], which trig-

gered an extensive study of the Josephson effect and other related processes with a goal to

understand the underlying physical laws, as well as necessary and sufficient conditions for

its observation in the laboratory. Later Brian Josephson was awarded the Nobel Prize for

his discovery. The importance of the Josephson effect went well beyond its interest in the

field of superconductivity. Based on Josephson junctions, researchers have developed new

devices with surprising features useful in many areas such as medicine, physics, biology and

chemistry, as well as radio-astronomy and metrology. Thus, the Josephson effect turned
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out to be very important for both fundamental and applied studies [65].

Let me give here a rather simple physical picture of the phenomenon and then demon-

strate the classical derivation of the Josephson equations [66, 67, 68]. Suppose we have two

superconductors placed close to each other. If the distance between them is large enough,

then the Cooper pairs in each superconductor are described by a macroscopic wave function

ψ1,2, which can be written as

ψi = |ψi(~r)| exp{i[θi(~r)− 2EF

~
t]},

where EF is the Fermi energy and θi(~r) are the phases of the wave functions and defined up

to an arbitrary constant [69]. In this case the phases are independent and unrelated. When

we reduce the distance between superconductors, the wave functions start to penetrate the

barrier and this couples the condensates on each side. As a result, coupling reduces the

total system energy, while the energy associated with coupling increases. When the coupling

energy becomes larger than thermal fluctuations, the phases get locked and Cooper pairs

start to flow from one superconductor to the other one without energy loss. This scenario

occurs even if we apply a voltage across the junction. But in this case, the wave function

phases are not locked, instead they slip relative to each other at a rate proportional to the

voltage.

A simple way to describe the dynamics of the interacting wave functions in each super-

conductor of a Josephson junction is:

i~
∂ψ1

∂t
= U1ψ1 + κψ2,

i~
∂ψ2

∂t
= U2ψ2 + κψ1,

where U1,2 are the energies of the wave functions, and κ characterizes the coupling strength

between them. Since the voltage source V is applied across the junction, then U2 − U1 =

−2eV and, therefore:

i~
∂ψ1

∂t
= +eV ψ1 + κψ2,

i~
∂ψ2

∂t
= −eV ψ2 + κψ1.
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The next step is to express the wave function in terms of the pair density and the phase:

ψk = n
1/2
k exp(iθk) so that

i~
2
√

n1

∂n1

∂t
− ~√n1

∂θ1

∂t
= eV

√
n1 + κ

√
n2e

i(θ2−θ1),

i~
2
√

n2

∂n2

∂t
− ~√n2

∂θ2

∂t
= −eV

√
n2 + κ

√
n1e

−i(θ2−θ1).

Separating real and imaginary parts, one gets

∂n1

∂t
=

2κ

~
√

n1n2 sinφ, (4)

∂n2

∂t
= −2κ

~
√

n1n2 sinφ, (5)

∂θ1

∂t
= −eV

~
− κ

~

√
n2

n1
cosφ, (6)

∂θ2

∂t
=

eV

~
− κ

~

√
n1

n2
cosφ, (7)

where φ = θ2 − θ1.

It is assumed that there is a current in the circuit, containing the Josephson contact,

so that the change of pair density does not create an imbalance between the electrons and

the ions in the superconductors. The density of the current I flowing through the contact

is proportional to the time derivative of the pair charge density, 2en. Hence, from Eq.(4)

one finds the first Josephson expression

I = Ic sinφ, (8)

where Ic is the critical current. In this analysis the value of κ was not specified. Thus, Ic

cannot be estimated in this way. However, with a microscopic theory the critical current

density was found to be

Jc =
Gn

A

(
π∆(T )

2e

)
tanh

∆(T )
2kBT

,

where ∆(T ) is the temperature dependent gap parameter, Gn is the tunnelling conductance

and A is the junction area [70].

The evolution of the phase difference of the junction can be found by subtracting Eq.(6)

from Eq.(7), and then equating n1 and n2, so that

∂φ

∂t
=

2e

~
V, (9)

14



which is the second Josephson relation.

In the case when V is a dc voltage, Eq.(9) gives φ = 2e
~ V t + φ0 and therefore, from

Eq.(8) one obtains

I = Ic sin(ωJ t + φ0),

where

ωJ =
2e

~
V = 303.9 · 1013

(
Hz

V

)
· V.

is the frequency of the ac-current, flowing through the Josephson contact.

One of the applications of Josephson junctions (SQUID) was mentioned in the intro-

duction with respect to synchronization. Extremely high frequencies of the supercurrent

provide other important applications, especially in digital circuits. Indeed, the Josephson

junction can switch from a state with zero voltage in a matter of a few picoseconds. Thus,

the junction can be used in logic circuits and memory cells. It was demonstrated experi-

mentally that memory cells based on the junctions perform state changes in times ¿100

ps. Potentially, these high speed and low power digital circuits can be very useful for signal

processors and high-performance computers [71].

So far I have described the current which is produced by the flow of the Cooper pairs. In

reality, the current through the Josephson contact usually consists of several components,

only one of which is the supercurrent.

First of all, if I take into account very small but non-zero temperatures T , then I should

consider thermal motion of charges with energies of the order of kBT . This motion makes

some pairs break apart, which would form a finite density of single electrons. Actually, the

properties of these electrons are not exactly the same as those in normal metals, because of

the influence of the superconducting condensate. For this reason they are called quasipar-

ticles. Nevertheless, the IV -dependence of the apparent normal current IN is very close to

the usual Ohm’s law:

IN =
V

RJ
,

where the parameter RJ is known as the normal resistance of the junction.

Another contribution to the net current comes when the voltage across the junction is

15



not constant (V̇ 6= 0). In this case the displacement current ID appears in the circuit. This

current effectively sums with the other currents, though formally it does not flow through

the Josephson contact itself. The displacement current can be expressed in terms of the

junction capacitance CJ in the usual form:

ID = CJ V̇ .

The capacitance depends on the geometry of the junction, its size, and it is the same as the

capacitance of the contact in the normal state.

Collecting all mentioned components of the total current, one gets

I = Is(φ) + IN (V ) + ID(V̇ ),

which can be written in the form of a differential equation for the equivalent circuit element

(see Fig. 3):

I = Ic sin(φ) +
V

RJ
+ CJ

dV

dt
. (10)

Using Eq(9), one obtains an expression describing the evolution of the junction phase

difference:
~CJ

2e
φ̈ +

~
2eRJ

φ̇ + Ic sinφ = I. (11)

Figure 3: Equivalent circuit of a Josephson junction.

In the previous analysis I described a tunnel junction of the SIS type. This is a junction

which consists of two superconductors (S) and a thin insulating layer (I) in between. Usually,
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vacuum-deposited superconducting films are used for this type of junction, and the oxide of

the lower electrode serves as the insulator. When the thickness of the oxide layer is about

ten to thirty atomic sizes, the electrons penetrate from one electrode to the other with a

small non-zero probability, p ∼ 10−5−10−3, due to quantum tunnelling, while the insulator

provides the energy barrier.

It turns out that the Josephson relations can be observed in a whole family of devices that

exhibit a Cooper pair current. The so called weak link (SNS sandwich) is an example of such

a device. This consists of superconductors separated by a normal metal (N), semimetal or

even another weak superconductor. Although the structure and fabrication of these contacts

are very similar to the SIS sandwiches, their properties are quite different. The fact that

the superconducting condensate of the pairs conserves the amplitude and the phase in a

normal metal at a depth of the order of the coherence length is known as the proximity

effect, which is responsible for creating the supercurrent Is in the SNS contacts. Indeed,

if the thickness of a link layer is about a coherence length, then the wave functions of the

superconductors can still interact and produce a current proportional to sinφ. Typical

superconductors have a coherence length of the order of hundreds of nanometers, which

is much greater than the thickness of the usual oxide layers. Therefore, weak links have

relatively small specific capacitance C/A.

I should also mention one more type of Josephson junction - the point contacts. The

important feature of point contacts is that their fabrication technology is very simple. Actu-

ally, in order to make the contact one just needs to press a sharply pointed superconducting

needle against a flat surface of another superconductor with some sort of adjusting mecha-

nism. If the pressure is small, the superconductors are separated by the oxide layer covering

their surfaces. But if the pressure is strong enough, the oxide layer breaks and forms an

irreproducible complex system of microshorts between the superconductors. These point

contacts exhibit the same dynamical behavior as the sandwich-type Josephson junctions.
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2.2 Josephson Junction Arrays

Arrays of Josephson junctions represent a very interesting and important example of coupled

non-linear oscillators.

The interest in such systems is motivated by their intriguing physical properties such as

phase transitions, macroscopic quantum phenomena, locking and chaos, which are attrac-

tive from the perspective of many physical and biological problems. Moreover, Josephson

junction arrays are important from the technological point of view due to the production of

useful electronic devices with unique properties, for example, Josephson voltage standards,

fast logic elements, photofluxonic detectors, hyperfrequency cryodevices and vortex-flow

transistors [72, 73, 74, 75, 76, 77, 78].

Modern electronic circuits may consist of hundreds of Josephson junctions with param-

eters that can be identical to within a few per cent of their average values. The discovery of

high-temperature superconductors increased the interest in such devices even more because

of their potential to work at liquid nitrogen temperatures.

Milliwatt output power and small linewidths (< 1MHz) at frequencies of the order of

hundreds of GHz are the usual requirements for some applications in metrology , astronomy

and high-speed electronics. Josephson junctions are very attractive as potential microwave

sources in a unique range of frequencies, because typical Josephson oscillations have fre-

quencies up to several hundreds gigahertz. However, single junctions have very low power

outputs, and impedances which do not match typical loads. This produces a problem for

practical implementations of single Josephson junctions. Fortunately, arrays of Josephson

contacts have sufficient output power (> 0.1mW) and useful impedance for most appli-

cations, if the junctions in these arrays are phase-locked. Therefore, one-dimensional and

two-dimensional arrays of phase-locked junctions can provide high-amplitude fast oscilla-

tions with narrow linewidth to a matched load. However, the locking mechanism requires

the study of the complex nonlinear dynamics produced by many interacting units and,

consequently, many degrees of freedom.

An array of globally coupled junctions is an important class of Josephson junction arrays.

The situation when each cell is coupled to all others with the same strength can happen in
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the context of electrical circuits as well as in some laser and classical mechanical systems.

While studying large populations of self-sustained oscillators, Winfree discovered that

synchronization occurs in a way similar to a thermodynamic phase transition [79]. Later

Kuramoto proposed an exactly solvable model of coupled oscillators with distributed natu-

ral frequencies and confirmed Winfree’s observation [1, 80]. Since the Kuramoto model was

analytically tractable, it stimulated a lot of theoretical progress [81, 82] but had no con-

nection with any experimental system. Later Wiesenfeld et al. showed that the Josephson

junction array shunted by a load and subjected to a bias current Ib is a practical realization

of the Kuramoto model [83].

In this case the array length was assumed to be much smaller than the radiation wave-

length. The coupling was described by Kirchhoff’s laws and understood as the interaction

between the oscillating junctions and the ac-current in the external load [84, 85, 86]. For ex-

ample, if the load consists of a series of resistance, capacitance and inductance (see Fig. 4),

then the described system can be modelled with the following equations:

~CJ

2e
φ̈i +

~
2eRJ

φ̇i + Ic sinφi + I = Ib, (12)

LÏ + Rİ +
1
C

I =
~
2e

N∑

i=1

φ̈i. (13)

Such problems with global coupling belong to the one of the simplest classes of many

body systems because of a high degree of symmetry. As a rule, there are three types of

periodic solutions for any array of globally coupled identical oscillators. The first solution

corresponds to an in-phase state, when all oscillators produce the same waveform, and when

they also oscillate in phase with each other. Another solution represents a state when all

N oscillators have the same waveform with period T , but each waveform has a T/N phase

shift with respect to the next closest wave form. This state is called a splay state or an

antiphase state or ponies on a merry-go-round. All other states are considered to be out of

phase. This solution is usually a mixture of in-phase and antiphase states [87, 88].

Systems with a large number of antiphase states can be used in applications as a

high content addressable memory [89]. Indeed, 11 identical oscillators may produce 10! =

3628800 antiphase states, while for a binary system, there would be only 211 = 2048 states.
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Figure 4: Circuit schematic for the shunted Josephson array.

Thus, memory elements based on antiphase states would have sufficiently larger capacity.

Several authors analytically studied Eqs.(12,13) [90, 91, 92]. It was shown that for a

purely resistive load, weak coupling, and capacitance-free junctions (CJ = 0) these equations

are integrable [93]. Later, researchers showed that this integrability was destroyed by a slight

variation in the individual junction parameters. Wiesenfeld and Swift analytically proved

that identical Josephson contacts with negligible capacitance and small coupling exhibit

stable synchronous solution when the load is inductive [86]. This solution becomes unstable

if the load is predominantly capacitive. Other authors have also obtained this result with

a different mathematical approach [94]. The threshold between the stable and unstable

regimes corresponds to the resonance case, when the load frequency 1√
LC

coincides with the

Josephson junction frequency. However, computer simulations showed that the stability

of the synchronous solution strongly depends on the junction capacitance even when it is

very small: β ≡ 2eR2
jCJIc

~ ¿ 1. Chernikov and Schmidt developed a powerful perturbation

method which allows one to take into account arbitrarily large values of both β and the

coupling strength, α ≡ ~
e`LIc

[95]. Moreover, their results are in very good agreement the

direct numerical calculations.
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2.3 Transmission Line

In situations when frequencies are low, circuit theory gives a proper description of the

dynamics of electronic components interconnected by inactive wires. However, when fre-

quencies become large enough, the circuit approach fails for two reasons. The first reason is

that the energy stored in electronic components produces electromagnetic fields in the space

around them, and the fields of different reactive components start to overlap. The second

reason is that wires are actually reactive components themselves, and they store energy too.

Therefore, the separation of the circuit into individual reactive components interconnected

by non-reactive wires is just an approximation, which is called the lumped circuit limit.

The speed of light in vacuum is finite and is about 30 cm per nanosecond, which imposes an

obvious limitation, because it is the maximum speed with which any event can propagate

in a circuit. When frequencies are very high, such as in the case of Josephson junctions,

the linear dimensions of the circuit can be sufficiently larger than the wavelength of the

oscillations. Thus, for a proper description of these distributed circuit systems one has to

take into account the impedance properties of the wires, that is consider the wires as a

transmission line [96, 97].

The first electrical transmission line came into existence in 1747, when William Watson

showed that using the Earth as a conductor electric current can be sent through a wire.

Based on this result the idea of a telegraph was proposed in 1753. However, the development

of the overland telegraph took almost a century. The first telegraph cable connecting Calais

and Dover was constructed in 1851. This coaxial cable consisted of a central wire surrounded

by insulation typically made of gutta-percha. Extra layers of tarred hemp and steel armoring

were also used to protect the insulator and strengthen the cable. In turn, the armoring was

protected from corrosion by a tarred jute tape. Eventually the idea of very long cables

including a 2000 mile long transatlantic cable, led to the necessity of a theoretical analysis

of the signal propagation in transmission lines [98].

The first mathematical description for coaxial cables was developed by William Thomson

in 1854. He took into account ohmic losses in the wires by considering a resistance per unit

length R. The Kirchhoff laws applied to an infinitesimal length of the cable give the following
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result (see details at the end of this section):

∂V

∂x
= −RI, (14)

∂I

∂x
= −C

∂V

∂t
, (15)

where V = V (x, t) is the voltage along the cable and I = I(x, t) is the current in it.

Substituting I from Eq.(14) into Eq.(15), one obtains the diffusion equation:

∂V

∂t
=

1
RC

∂2V

∂x2
.

In 1858 the first transatlantic cable went into operation, but the cable insulator degraded

in a few weeks, because it was not suitable for operating voltages as high as 2000 volts. An

earlier attempt, in 1857, had also failed because the cable broke and was lost. Nevertheless,

the 1858 cable allowed one to send the first message across the ocean and receive it on the

other side in several seconds, while the fastest conventional way to deliver messages in those

days was by boat, which usually took about 10 days.

In 1865 another attempt to span the ocean was made with a new type of cable, but

it also broke about one third of the way across the Atlantic. This cable was repaired the

next year and became the first successfully operated transatlantic cable. It was operated at

low voltages. The cable was 3593 km long, weighted 5080 tons, and had Thomson’s mirror

galvanometer as a signal detector.

It was Oliver Heaviside who corrected Thomson’s equations (14,15) by considering the

conductance G of the insulator due to its leakage [99]. In 1876 Heaviside took also into

account the inductance L of the cable and derived final and correct transmission line equa-

tions:

∂V

∂x
= −L

∂I

∂t
−RI, (16)

∂I

∂x
= −C

∂V

∂t
−GV. (17)

These linear equations can be uncoupled to obtain individual equations for the current and

voltage:

∂2V

∂x2
− LC

∂2V

∂t2
− (RC + GL)

∂V

∂t
−GRV = 0, (18)

∂2I

∂x2
− LC

∂2I

∂t2
− (RC + GL)

∂I

∂t
−GRI = 0. (19)
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These expressions are known as the telegraphers equations. Eqs. (16,17) were obtained by

Heaviside from circuit principles, while James Maxwell was developing his electromagnetic

vector field theory [100]. A few year later, Heaviside applied Maxwell’s theory to the

transmission line problem as well.

Since the first cables were operated by an ordinary telegraph key, so that signal fre-

quencies were low (10 Hz), the inductive properties of the line and losses due to insulation

leakage could be ignored. For this reason Thomson’s equations (14,15) gave a good approx-

imation for the signal transmission. However, at high frequencies both inductive effects and

losses become very important. For example, the typical attenuation in a cable, just due to

resistive losses, were of the order of 0.1 dB/km at high frequencies.

In 1956, cables with repeaters were used to make the first transatlantic cable with

voice transmission. This cable was able to carry 36 telephone conversations. In 1988 the

first optical-fiber cable allowed one to transmit 8000 simultaneous conversations across the

ocean [101].

Figure 5: Equivalent circuit of an element of a transmission line with a length of ∆x.

As was mentioned above, the description of the circuit with parameters distributed
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throughout a transmission line gives a good approximation for the line dynamics. Let me

consider a segment of the line with the length ∆x, represented by the equivalent circuit as

shown in Fig. 5. Using Kirchhoff’s voltage law for this circuit, one finds the equation:

V (x, t)−R∆x I(x, t)− L∆x
∂I(x, t)

∂t
− V (x + ∆x, t) = 0,

which can be written as

V (x + ∆x, t)− V (x, t)
∆x

= −RI(x, t)− L
∂I(x, t)

∂t
.

Now taking the limit ∆x → 0 one obtains the first transmission equation (16):

∂V (x, t)
∂x

= −RI(x, t)− L
∂I(x, t)

∂t
.

In order to get the other equation, one should apply Kirchhoff’s current law to the

segment, so that

I(x, t)−G∆x V (x + ∆x, t)− C∆x
∂V (x + ∆x, t)

∂t
− I(x + ∆x, t) = 0,

which is equivalent to the expression:

I(x + ∆x, t)− I(x, t)
∆x

= −GV (x + ∆x, t)− C
∂V (x + ∆x, t)

∂t
.

Finally, I let ∆x → 0 and get the second transmission equation (17):

∂I(x, t)
∂x

= −GV (x, t)− C
∂V (x, t)

∂t
.

The characteristic impedance (that is the ratio between the voltage and the current) for

both lossy and lossless transmission lines does not depend on the line length. It can be

expressed in terms of L, R, C, and G as

Z0 =

√
R + iωL

G + iωC
.

In other words the impedance depends only on the properties of the metal of the conductor,

the dielectric material of the insulator, and the geometry of the line cross-section.
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2.4 Josephson Transmission Line

Almost all theories developed so far to study synchronization and phase locking in Josephson

junction arrays use the lumped approach. These theories require feedback through an

external load for phase locking. However, as was explained in the previous section, when

arrays are pushed to larger numbers of junctions and higher operating frequencies, lumped

circuit theories break down. When the wavelength of the emitted radiation becomes smaller

than the spatial extent of the array, new physical aspects become important which are

ignored in the lumped limit [102, 103, 104, 105, 106, 107]. Actually, experimentalists have

tried to take advantage of the fact that spatial positioning of the elements is important in

the high frequency regime. Han et al. and Booi and Benz demonstrated that clustering

junctions at strategic locations along the wire connecting them can increase the emitted

power [108, 109]. This strategy is based on a simple physical picture where the clusters lie

at antinodes of a particular standing wave of the junction-free wire.

Despite its importance, our present theoretical understanding of synchronization in the

high-frequency regime is relatively primitive. Detailed spatiotemporal information is un-

available from experiments on real Josephson arrays. Models of Josephson junctions coupled

to a single-mode resonant cavity, which picks up some of the character of the distributed

problem, have also been studied [105, 110, 111, 112], but as will be shown in the next sec-

tion, the single-mode approach may not properly represent the behavior of the current in a

transmission line.

One goal of this thesis is to make the first step towards a physical and mathematical

understanding of spontaneous synchronization in a Josephson transmission line. To do this,

I consider a current biased transmission line interrupted by N identical junctions [102, 113].

A nice feature of the load free system is that in the low-frequency limit the junctions are

dynamically uncoupled. In this sense, the system is ideally suited for exploring those new

dynamical features that emerge only at higher frequencies.

In this section I consider mainly equally-spaced junctions and frequencies that allow me

to study Josephson transmission lines in the high-frequency limit, and also in the intermedi-

ate regime for better understanding of the transition from lumped to distributed behavior.
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In the next section I will show results for even higher frequencies and will allow arbitrary

positioning of the junctions.

Mathematically, the distributed problem is more difficult to analyze than the corre-

sponding lumped one, since the governing dynamical equations have much lower symmetry.

One consequence is the absence of a perfectly synchronized state in which all oscillators

have precisely the same output at all times. This raises the question of what dynamical

state(s) to track and how high a degree of synchronization can be achieved even in principle.

To analyze the problem I apply a perturbation technique which has proven to be very

useful in earlier studies on lumped arrays [95, 114]. The calculation leads to the identification

of the synchronized dynamical state, and the development of an N -dimensional map, which

I use to explore the stability of this state. Numerical simulations of the full dynamical

system are used both as a check of the analytic results and as a means of exploring the

dynamics where the most-synchronized state is unstable.

Let me begin by setting up the problem and putting it in a form suitable for the method

of analysis. The perturbation scheme I use leads to somewhat lengthy algebraic expressions,

but since the idea of the calculation and its structure are simple, it is worthwhile to discuss

the main features before presenting the detailed calculation.

Consider a wire of length ` interrupted by identical Josephson junctions at positions

x1, x2, ..., xN . A constant bias current Ib is maintained at one end of the line and removed

at the other. At low frequencies, the current within the wire is spatially uniform and equal

to the value at its ends. At higher frequencies, the wire becomes an active dynamical entity,

and can be modelled as a transmission line of inductance per unit length L and capacitance

per unit length C.

The partial differential equation governing the dynamics of the Josephson transmission

line can be determined by considering the finite element representation shown in Fig. 6.

Each inductor-capacitor segment represents a short length ∆x of the wire. Some segments

also contain a Josephson junction in series with the inductor. We assume that each junction

is small enough that it can be treated as a lumped element, although the system as a whole

is spatially extended. Current conservation implies
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Figure 6: Finite-element schematic of a piece of the transmission line. The “X” denotes a
Josephson junction. In the piece shown, only one of the segments contains a junction.

Ii−1 = q̇i + Ii, (20)

where qi is the charge on the ith capacitor, Ii is the current in the ith inductor, and the

overdot denotes differentiation with respect to time. Equating voltage drops of two paths

from node i to ground yields

qi

C∆x
= L∆xİi +

qi+1

C∆x
+
~
2e

Φ̇jδi,ij , (21)

where, as before, ~ is Planck’s constant divided by 2π, e is the magnitude of the electronic

charge and Φj is the difference in the phase of the macroscopic quantum wave function

across the jth junction. The Kronecker delta is used to include the voltage drop across the

jth Josephson junction if it happens to appear in segment i of the transmission line; for

example, if the 3rd junction appears in the 89th segment, i3 = 89. Combining Eqs.(20) and

(21) gives

v2 Ii+1 − 2Ii + Ii−1

∆x2
= Ïi +

~
2eL∆x

Φ̈jδi,ij , (22)

where I have used v2 = 1/(LC). Passing to the limit ∆x → 0 yields an equation for the

current I(x, t)
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∂2I

∂t2
− υ2 ∂2I

∂x2
+

N∑

j=1

~
2eL

Φ̈jδ(x− xj) = 0. (23)

The boundary conditions are

I(0, t) = I(`, t) = Ib.

Meanwhile, since the current through the jth junction is I(xj , t), we have from Eq.(11)

~CJ

2e
Φ̈j +

~
2eRJ

Φ̇j + Ic sinΦj = I(xj , t). (24)

Recall that CJ , RJ , and Ic are the junction capacitance, resistance, and critical current,

respectively.

To put these in dimensionless form, I first make the rescalings

xj → rj`,

t → ~
2eRIc

t,

I → IcI,

so that from Eqs.(23,24) one gets

∂2I

∂t2
− ~2υ2

4e2`2R2I2
c

∂2I

∂r2
+

N∑

j=1

~
2e`IcL

Φ̈jδ(r − rj) = 0, (25)

βΦ̈j + Φ̇j + sin Φj = I(rj , t), (26)

where β = 2eCIcR2

~ .

The next step is to turn the partial differential equation into a set of ordinary differ-

ential equations by expanding I(r, t) in spatial modes. A convenient choice is to use the

eigenfunctions for the unloaded transmission line, so that

I = Ib +
∞∑

k=1

Ak(t) sin(πkr). (27)

It is easy to see that this automatically satisfies the boundary conditions, for arbitrary

values of the {Ak}. Expand the δ-function in the same basis:

δ(r − rj) =
∞∑

k=1

2 sin(πkrj) sin(πkr), (28)
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so that Eqs.(25,26) become

Äk + c2k2Ak + α
N∑

j=1

Φ̈j sin(πkrj) = 0 (29)

and

βΦ̈j + Φ̇j + sinΦj = Ib +
∞∑

k=1

Ak sin(πkrj), (30)

where

c =
π~υ

2e`RIc
, α =

~
e`LIc

,

and Ak, Ib, t, β are dimensionless.

I am going to construct a perturbation expansion based on the small parameter b = 1
Ib

,

so one more rescaling is needed: t → 1
Ib
· t and Ak → Ib · Ak. Hence, the governing system

of equations becomes

Äk + c̃2k2Ak + α̃
N∑

j=1

Φ̈j sin(πkrj) = 0, (31)

β̃Φ̈j + Φ̇j + b sin Φj = 1 +
∞∑

k=1

Ak sin(πkrj), (32)

where c̃ = cb, α̃ = αb, and β̃ = β
b .

I expect the following perturbation method to be consistent if

b ¿ 1, α̃, β̃, c̃2. (33)

Let me estimate these coefficients. Taking typical experimental values of a junction, Ic ∼
100µA, R ∼ 1Ω, C ∼ 1pF , and of a transmission line, l ∼ 100µm, L ∼ 10−8H/m, Ctr ∼
10−8F/m, one finds that υ = 1√

LCtr
∼ 108m/s, β ∼ 0.1, α ∼ 10, c ∼ 10. Thus, I will

use the values b = 0.05, β = 0.5, α and c from ∼ 10 to ∼ 100 when displaying numerical

results later on, in keeping with the condition (33). I note in passing that the characteristic

frequency of the solution of Eq.(32) is

ωo =
2eRIc

~b
∼ 1011Hz.

In the next subsection, I will develop an analytic calculation based on a small b expan-

sion. Specifically, I assume that

29



Ak = A
(0)
k + bA

(1)
k + b2A

(2)
k + . . . , (34)

Φk = Φ(0)
k + bΦ(1)

k + b2Φ(2)
k + . . . . (35)

Since b is the coefficient of the only nonlinear term, the expansion reduces the problem to

a set of linear equations, which allows me to get an explicit representation of the solution.

The structure of the solutions is as follows. To lowest order, the junction phases Φj

increase at a constant rate. In the familiar pendulum analogy for Josephson junctions, this

corresponds to pendulums which overturn with uniform angular velocity. To this order,

there are no voltage oscillations and the transmission line modes are inactive. The first

order corrections merely introduce oscillations at the overturning frequency. The crucial

interactions show up in second order, and govern the stability of the state in which the

junction oscillations are synchronized.

In fact, I find a family of solutions which depend on the initial values of the junction

phases, and this allows me to derive an N -dimensional return map involving the N phases,

and it is this map that I use to investigate dynamical stability. Note that this map is not

a bona fide Poincare return map since it doesn’t explicitly involve the other phase space

coordinates. Nevertheless, I expect it to be a good approximation to the dynamics after

an initial transient time, as the other dynamical variables are effectively slaved by the N

phase variables. This expectation is borne out by direct comparisons between the analytic

solution and numerical simulations of the full set of equations.

2.4.1 Perturbation analysis

To lowest order equations (31) and (32) are

Ä
(0)
k + c̃2k2A

(0)
k + α̃

N∑

j=1

Φ̈(0)
j sin(πkrj) = 0,

β̃Φ̈(0)
j + Φ̇(0)

j = 1 +
∞∑

k=1

A
(0)
k sin(πkrj).

One can readily identify the following N -parameter family of steady state solutions where

the junction phases overturn at a constant rate,
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A
(0)
k = 0 and Φ(0)

j = t + θj ,

where the θj are constants. One might wonder whether there are also uniformly overturning

solutions but with non-zero A
(0)
k . Indeed, there can be: for example if all of the junctions

are placed at nodes of a particular spatial mode, say k = K, then there are solutions with

AK(t) ∼ sin(c̃Kt) and all other Ak = 0. These solutions persist indefinitely only because

I have assumed that the transmission line is perfectly lossless, and for this reason I ignore

them in the ensuing analysis. (Including a small amount of damping in the line would result

in more complicated expressions later on without any compensating insight.)

To first order in b,

Ä
(1)
k + c̃2k2A

(1)
k + α̃

N∑

j=1

Φ̈(1)
j sin(πkrj) = 0, (36)

β̃Φ̈(1)
j + Φ̇(1)

j + sin(t + θj) =
∞∑

k=1

A
(1)
k sin(πkxj). (37)

The solution of Eqs.(36,37) can be found in the form

A
(1)
k = ck sin t + dk cos t, (38)

Φ(1)
k = ak sin t + bk cos t. (39)

Let me substitute Eqs.(38,39) into Eqs.(36,37) and in each equation equate separately the

terms proportional to sin t and cos t. This yields four sets of equations for the coefficients

aj , bj , cj , dj ,

ck(1− c̃2k2) + α̃
N∑

j=1

aj sin(πkrj) = 0, (40)

dk(1− c̃2k2) + α̃
N∑

j=1

bj sin(πkrj) = 0, (41)

−β̃aj − bj + cos θj =
∞∑

k=1

ck sin(πkrj), (42)
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−β̃bj + aj + sin θj =
∞∑

k=1

dk sin(πkrj). (43)

Multiplying Eq.(42) by β̃ and subtracting the result from Eq.(43) gives, upon solving for

aj ,

aj =
1

1 + β̃2
(β̃ cos θj − sin θj) +

1
1 + β̃2

∞∑

k=1

(dk − β̃ck) sin(πkrj), (44)

whereas multiplying Eq.(43) by β̃ and adding the result to Eq.(42) leads to an expression

for bj :

bj =
1

1 + β̃2
(β̃ sin θj + cos θj)− 1

1 + β̃2

∞∑

k=1

(β̃dk + ck) sin(πkrj). (45)

Let Sk′k =
∑N

j=1 sin(πk′rj) sin(πkrj). Then substituting Eqs.(44,45) into Eqs.(40,41) gives

ck(1− c̃2k2) +
α̃

1 + β̃2

N∑

j=1

(β̃ cos θj − sin θj) sin(πkrj)

+
α̃

1 + β̃2

∞∑

k′=1

(dk′ − β̃ck′)Sk′k = 0,

dk(1− c̃2k2) +
α̃

1 + β̃2

N∑

j=1

(β̃ sin θj + cos θj) sin(πkrj)

− α̃

1 + β̃2

∞∑

k′=1

(β̃dk′ + ck′)Sk′k = 0.

This calculation is good for any spatial distribution of junctions. But now I specialize to

the important case of equally-spaced junctions: rj = j
N+1 , where j = 1, 2, . . . , N . Then

Sk′k = N+1
2 δk′k, and the last expressions decouple in k. Then it is straightforward to solve

them, with the following result

ck = P
N∑

j=1

β̃H + Mk

M2
k + H2

sin θj sin
(

πkj

N + 1

)
+ P

N∑

j=1

H − β̃Mk

M2
k + H2

cos θj sin
(

πkj

N + 1

)
,

dk = −P

N∑

j=1

β̃H + Mk

M2
k + H2

cos θj sin
(

πkj

N + 1

)
+ P

N∑

j=1

H − β̃Mk

M2
k + H2

sin θj sin
(

πkj

N + 1

)
,
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where

Mk ≡ 1− c̃2k2 − β̃H,

P ≡ 2H

N + 1
,

H ≡ α̃(N + 1)
2(1 + β̃2)

.

Finally, substituting this back into Eqs.(44,45), I get:

aj =
P

α̃
(β̃ cos θj − sin θj)

+
P 2

α̃

N∑

i=1

∞∑

k=1

H(1− β̃2)− 2β̃Mk

M2
k + H2

sin θi sin
(

πki

N + 1

)
sin

(
πkj

N + 1

)

− P 2

α̃

N∑

i=1

∞∑

k=1

Mk(1− β̃2) + 2β̃H

M2
k + H2

cos θi sin
(

πki

N + 1

)
sin

(
πkj

N + 1

)
,

bj =
P

α̃
(β̃ sin θj + cos θj)

− P 2

α̃

N∑

i=1

∞∑

k=1

H(1− β̃2)− 2β̃Mk

M2
k + H2

cos θi sin
(

πki

N + 1

)
sin

(
πkj

N + 1

)

− P 2

α̃

N∑

i=1

∞∑

k=1

Mk(1− β̃2) + 2β̃H

M2
k + H2

sin θi sin
(

πki

N + 1

)
sin

(
πkj

N + 1

)
.

The second order expansion of Eqs.(31,32) gives

Ä
(2)
k + c̃2k2A

(2)
k + α̃

N∑

j=1

Φ̈(2)
j sin(πkrj) = 0, (46)

β̃Φ̈(2)
j + Φ̇(2)

j + cos(t + θj)Φ
(1)
j =

∞∑

k=1

A
(2)
k sin(πkrj). (47)

Now, the third term on the left hand side of Eq.(47) is equal to the sum of a constant term

plus second harmonic terms. Thus, the solution is of the form

Φ(2)
j = −〈b cos(t + θj)Φ

(1)
j 〉t + Ej sin 2t + Fj cos 2t, (48)

A
(2)
k = Gk sin 2t + Hk cos 2t, (49)

where the angular bracket denotes a time average over one period. In subsection 2.4.3, where

I consider the stability of solutions, it will turn out that I won’t need explicit expressions
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for the coefficients Ej , Fj , Gj , and Hj . On the other hand, the stability hinges crucially on

the coefficient of the term proportional to t, which is:

〈cos(t + θj)Φ
(1)
j 〉 =

1
2
(bj cos θj − aj sin θj)

=
P

2α̃
− P 2

2α̃

N∑

i=1

∞∑

k=1

H(1− β̃2)− 2β̃Mk

M2
k + H2

cos(θj − θi) sin
(

πki

N + 1

)
sin

(
πkj

N + 1

)

+
P 2

2α̃

N∑

i=1

∞∑

k=1

Mk(1− β̃2) + 2β̃H

M2
k + H2

sin(θj − θi) sin
(

πki

N + 1

)
sin

(
πkj

N + 1

)
. (50)

2.4.2 Synchronized State

In this subsection I explore the characteristics of the obtained solution to first order in b in

the case when θj = θ, for all j. As noted previously, this system does not admit the type of

fully symmetric inphase state that is found in many lumped circuit problems. However, the

solution with θj = θ is the synchronized state in the sense that, in the limit b → 0, this is the

solution branch which coincides with the inphase state. As one will see, the waveforms for

this state can line up virtually perfectly even though the amplitudes can differ substantially

from one oscillator to the next.

It is convenient to introduce the following notation

σij = P

∞∑

k=1

H(1− β̃2)− 2β̃Mk

M2
k + H2

sin
(

πki

N + 1

)
sin

(
πkj

N + 1

)
, (51)

ρij = P
∞∑

k=1

Mk(1− β̃2) + 2β̃H

M2
k + H2

sin
(

πki

N + 1

)
sin

(
πkj

N + 1

)
. (52)

Then I can rewrite the coefficients aj and bj in the form

aj =
P

α̃

[
(β̃ −

N∑

i=1

ρij) cos θ − (1−
N∑

i=1

σij) sin θ

]
, (53)

bj =
P

α̃

[
(β̃ −

N∑

i=1

ρij) sin θ + (1−
N∑

i=1

σij) cos θ

]
. (54)

Note that as k → ∞, the terms in Eqs.(51,52) tend to zero as 1
k2 . Hence, for numerical

purposes I can consider finite sums choosing kmax big enough for any required accuracy.
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Next, I define an order parameter which represents the degree of synchronization of the

array. The quantity of direct physical interest is the voltage across a junction which is

proportional to Φ̇. To first order in the perturbation expansion I have

Φ̇j = 1 + bΦ̇(1)
j + O(b2) = 1 + b(aj cos t− bj sin t) + O(b2).

To study the effects of phase locking, I write this as

Φ̇j = 1 + bej sin(t + fj) + O(b2),

so that a natural order parameter is

p = | < exp(ifj) > | =
∣∣∣∣∣∣
1
N

N∑

j=1

exp(ifj)

∣∣∣∣∣∣
. (55)

I want to express fj in terms of the derived quantities σij , ρij . Equating the last two

expressions for Φ̇j gives

fj = − arctan
aj

bj
(56)

and so, in view of Eqs.(53,54)

tan fj =
(1−∑

i σij) sin θ − (β̃ −∑
i ρij) cos θ

(1−∑
i σij) cos θ + (β̃ −∑

i ρij) sin θ

=
tan θ − tan θ̃j

1 + tan θ tan θ̃j

= tan(θ − θ̃i),

where for the moment I have introduced the quantity

tan θ̃j =
β̃ −∑

i ρij

1−∑
i σij

.

Finally, I get the desired formula for the phase of the voltage waveform

fj = θ − arctan
β̃ −∑

i ρij

1−∑
i σij

. (57)
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Meanwhile, the amplitude of the voltage waveform is

ej =
√

a2
j + b2

j =
P

α̃

√
(β̃ −

∑

i

ρij)2 + (1−
∑

i

σij)2. (58)

20 40 60 80 100 120

5

10

15

20

25

30

35

α

c

1 

2 

3 

p ≈ 1 

p ≈ 0.56 

p ≈ 0.11 

p ≈ 1 

Figure 7: Contour plot of the order parameter, p, as a function of α and c using the
analytic result Eq.(55). Here b = 0.05, β = 0.5, n = 10, kmax = 40. The symbols 1, 2 and 3
indicate the points of the parameter space that I used for the following Figs. 8, 9, and 10
correspondingly.

The order parameter Eq.(55) is equal to one when all of the voltage waveforms line up

and it tends to zero if the waveform phases fj are randomly distributed on the interval

[−π, +π]. Fig. 7 shows the dependence of p on α and c. There are regions where the order

parameter is approximately 1 (to within a few percent), where it is relatively small (∼ 0.1)

and where it has intermediate values. The next three figures demonstrate the behavior of

the solution Φ̇j in these different regions of parameter space. Also shown in these figures

are the corresponding results generated from direct numerical integration of the nonlinear

differential equations (31,32). These are in good agreement with the analytically derived
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Figure 8: Functions Φ̇j(t) corresponding to the point 1 on Fig.7 (α = 48, c = 9.6) from
the region with p ≈ 1.00. Although there are 9 junctions, only 5 curves are seen since the
waveforms of junctions symmetrically located about the midpoint are identical.

2.4.3 Stability of the Synchronized State

Through second order, the solution for Φj is

Φj(t) = t + θj + b(aj sin t + bj cos t)− b2(〈cos(t + θj)Φ
(1)
j 〉t + Ej sin 2t + Fj cos 2t) + O(b3).

From Eqs.(50,51,52), I obtain

〈cos(t + θj)Φ
(1)
j 〉 =

P

2α̃

(
1−

∑

i

σij cos(θj − θi) +
∑

i

ρij sin(θj − θi)

)
.

Hence, evaluating this at t = 0 and t = 2π leads to, :

Φj(2π) = Φj(0) + 2π
(

1− b2P

2α̃
+

b2P

2α̃

N∑

i=1

σij cos[Φj(0)− Φi(0)]−

− b2P

2α̃

N∑

i=1

ρij sin[Φj(0)− Φi(0)]

)
,
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Figure 9: Functions Φ̇j(t) corresponding to the point 2 on Fig.7 (α = 48, c = 15.6) from
the region with p ≈ 0.56.

where I have used the fact that Φj(0) = θj +O(b). I can view this as an N -dimensional map

for the phase dynamics. The fact that it involves “only” N variables is significant, since

this is much smaller than the phase space dimension of the original problem. In effect, the

map treats the other degrees of freedom as being slaved to the junction phases.

Consider now orbits that are infinitesimally close to the synchronized solution I identified

previously, so that θj = θ + δθj , where |δθj | ¿ |θ|. Then one gets Φj = Φ0
j + δΦj , where

Φ0
j (2π) = Φ0(0) +

(
2π − πb2P

α̃
+

πb2P

α̃

N∑

i=1

σij

)
, (59)

δΦj(2π) = δΦj(0)− πb2P

α̃

N∑

i=1

ρij(δΦj(0)− δΦi(0)), (60)

with Φ0(0) = θ and δΦj(0) = δθj . Now I ask whether the perturbations grow or shrink.
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Figure 10: Functions Φ̇j(t) corresponding to the point 3 on Fig.7 (α = 48, c = 19.2) from
the region with p ≈ 0.11.

One can rewrite Eq.(60) in matrix form:

δ
−→
Φ(2π) = Tδ

−→
Φ(0),

where

Tij = δij

(
1− πb2P

α̃

∑
m

ρmj

)
+

πb2P

α̃
ρij . (61)

If I denote by λm the eigenvalue of this matrix which has the largest magnitude, the stability

condition is λm < 1.

Fig. 11 summarizes the behavior of λm over the (α, c)-parameter plane. I can identify

four qualitatively different regions of parameters space. Region (I) corresponds to a resonant

regime, with both λm and the order parameter p varying in a complicated fashion. The next

section will be devoted exclusively to this region. Region (II) corresponds to an unstable

regime, with the minimum eigenvalue of Tij equal to one and all the other eigenvalues
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Figure 11: Schematic (based on the contour plot of the maximum eigenvalue of Tij as a
function of α and c for b = 0.05, β = 0.5, n = 10, kmax = 40), identifying qualitatively
different regions of parameter space.

greater than one. Region (III) corresponds to a stable regime where the maximum eigenvalue

is equal to one and all the other eigenvalues are less than one. Region (IV) also corresponds

to a stable regime, but it is qualitatively different from region (III) by virtue of the fact that

all of the eigenvalues here are close to one, so that this is a region of very weak stability.

Figures 12 and 13 demonstrate the behavior of the solution with parameters taken from

opposite sides of the stability threshold. Fig. 12 corresponds to the point A in region (II),

so that the initially perturbed solution never tends to the synchronized state Φ̇0
j . Fig. 13

corresponds to the point B in region (III) where the initially perturbed solution converges

to the inphase state.
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Figure 12: Functions Φ̇j(t) and Φ̇0
j (t) corresponding to the point A on Fig.11 (α =

32, c = 6.00 : unstable regime).

2.4.4 Discussion

My primary motivation was to develop some fundamental theoretical understanding of the

synchronization dynamics when the spatial extent of the array is a significant factor. As a

practical matter, this is an important issue if arrays are to produce greater power levels and

operate at very high frequencies, since in this case the system gets pushed out of the lumped

circuit limit. I have chosen a relatively simple situation to underscore the new physics that

“turns on” in this regime. By considering a series array without an additional load, I have

isolated the new coupling effects; without them (i.e. at low frequencies) the junctions are

dynamically uncoupled, and no synchronization – inphase, splay phase, or otherwise – is

possible.

One property of the distributed system is that the totally synchronized state is not a
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Figure 13: Functions Φ̇j(t) and Φ̇0
j (t) corresponding to the point B on Fig.11 (α =

40, c = 8.16 : stable regime).

possible solution. This makes the problem more subtle to study than the corresponding

load-coupled lumped arrays, where the high degree of symmetry of the inphase state can

be exploited. One nice feature of the perturbation expansion I employed is that it naturally

identifies a highly synchronized solution, which may be thought of as the continuation of the

solution branch containing the totally synchronized state. It is this state whose properties

I analyzed.

Another interesting and somewhat unexpected result is that the array can show signifi-

cant synchronization even when the most-synchronized state is unstable. The contour plot

Fig. 7 summarizes this aspect of the problem. It is consistent with the stability diagram

Fig. 11, and in some respects is equally useful. I also found a large region of parameter

space where the most-synchronized state is stable but only very weakly so, and presumably
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in this regime the coherence would be easily corrupted by the presence of quenched disorder

and dynamical noise.

One obviously interesting variation of the problem is to consider spatially clustered

junctions, an architecture which experiments have shown can result in significantly higher

output powers than arrays in which the junctions are equally spaced [108, 109, 102](see the

next section). This presents a great challenge for the theorist, since a non-uniform spacing

of junctions lowers the symmetry of the problem still further.

A natural question to ask is whether the results are sensitive to weak disorder. I have

presented results only for the case where the junctions are identical and equally spaced. The

question of disorder deserves careful and systematic investigation, and I have not undertaken

such a study. As a general rule, in regions of parameter space where the synchronized state

is attracting, one expects the system behavior to be robust with respect to the addition of

at least a small amount of disorder. Indeed, if the attractors are hyperbolic – the usual

case except at bifurcation points – one is guaranteed that the attractors persist and vary

continuously with arbitrary changes in the parameter values. To test this, I have run

numerical simulations for the system (Eqs. 31,32) including a 5% spread in the parameters

βj and xj , where βj involves the junction parameters and xj is the junction position. The

behavior is not greatly changed: for example, for the conditions in Fig. 8, the disorder

has a negligible effect on phase synchronization, and introduces variations of about 2% in

the amplitudes. One might expect the most significant changes to occur at the stability

boundary of the synchronized state, and in the region where the synchronized state is (in

the ideal case) only weakly stable.

Finally, I point out that the same considerations which motivated the present work

also apply to other physical realizations of coupled oscillator arrays. Of particular note are

arrays of semiconductor oscillators which are being used to implement new strategies for

power combining, beam steering, and beam shaping [115, 116, 117, 118, 119]. These arrays

typically operate in the distributed-coupling limit in direct analogy with the Josephson

system I studied here. The spatial variations of current in the stripline connecting the

array elements acts as an intermediary which couples the various oscillators. Just as in
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the Josephson problem, the various desirable dynamical states are highly synchronized. An

analysis carried out along the lines here could determine which stripline conditions would

be most favorable for achieving the target attractors.

2.5 Pairing Phenomenon

In this section, I describe a new phenomenon that arises in a particular architecture of an

array of localized nonlinear oscillators coupled via the linear wave equation. Since I was first

drawn to consider this problem by experimental schemes [108, 109] which use a resonant

cavity architecture, where the spatial separation of the elements are matched to a particular

normal mode of the transmission line and the junctions’ temporal frequency is matched to

that of the normal mode, in my analysis I do not make any assumptions about junction

positions a priori, as I did in the previous section.

In my simulations, I find that pairs of oscillators very quickly synchronize (inphase),

but that the synchronized pairs behave as though they are uncoupled [120]. This behavior

is attracting: during the initial (transient) period, the various elements exhibit complicated

interactions. Wiesenfeld has suggested the following analogy: roughly, the behavior is akin

to a gas of interacting monatomic atoms which form a nearly inert gas of diatomic molecules.

Before starting the calculations, I will demonstrate the pairing effect in a specific case.

Once again, let me consider a transmission line interrupted by N identical Josephson junc-

tions. A constant current Ib is applied, which causes voltage oscillations in the individual

junctions, and these drive the transmission line in turn. The dynamics is described by the

system of dimensionless differential equations (31,32)

Äk + c̃2k2Ak + α̃
N∑

j=1

Φ̈j sin(πkrj) = 0,

β̃Φ̈j + Φ̇j + b sin Φj = 1 +
∞∑

k=1

Ak sin(πkrj),

with the boundary conditions I(0, t) = I(1, t) = 1 and where Φj is the difference in the

phase of the macroscopic quantum wave function across the jth junction, and Ak(t) are the
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amplitudes of the transmission line spatial modes:

I(r, t) = 1 +
∞∑

k=1

Ak(t) sin(πkr). (62)

Here, the transmission line wave velocity is c̃/π.

Consider the kth standing wave of the transmission line. It has wavelength 2`/k and

thus circular frequency ω = (2π)(c̃/π)(k/2`). Since in my units ω = ` = 1, the resonant

architecture requires c̃k = 1, so that c̃−1 is also equal to the total number of half-wavelengths

of the standing wave.

Now suppose the junctions are evenly spaced: ri − ri−1 = c̃m, where m is an odd

integer, i.e. the spacing equals an odd multiple of half-wavelengths of some transmission

line mode. One can readily show that in this case there exists an inphase periodic solution

for the junction voltages ∼ Φ̇j . But it turns out this is not an attractor; instead the array

forms inphase pairs; the phase relationship between pairs can be anything, depending on

the initial conditions. Technically, the attracting set is an N/2-dimensional torus foliated

by periodic orbits.

Fig. 14 shows the results of a simulation which illustrates the pairing phenomenon. An

array of 10 equally spaced junctions with close but different initial conditions were placed at

positions corresponding to antinodes of the bare transmission line mode having wavelength

1/5, so that c̃ = 1/10 (and m = 1). Plotted are the time series of Φ̇j . After a complicated

transient, the system settles into a pairwise synchronized state. All elements oscillate with

the same period, but the five paired waveforms are shifted one from another. In Fig. 14

the shifts are roughly uniform, but for different initial conditions the various shifts between

paired waveforms will be different from those in Fig. 14.

Actually, the emergence of this dynamical state does not require equally spaced oscilla-

tors. The distance between pairs can be significantly altered, but as long as the size of each

pair is equal to an odd multiple of c̃, synchronized pairs form and thereafter act indepen-

dently. In fact, the fully symmetric case (all oscillators equally spaced) can also show far

more complicated (non-pairing) dynamics owing to a kind of dynamical frustration effect.

No such complications appear when the extra symmetry is removed; an example is shown
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Figure 14: Simulation results of Eqs.(31,32), demonstrating the emergence of the paired
state. The synchronized pairs are all nearest neighbors. Plotted are Φ̇j vs. t. Parameter
values: b = 0.05, α̃ = 0.05, β̃ = 0.5, c̃ = 0.1.

in Fig. 15, with junction spacing alternating between c̃ and c̃/2. The figure shows a typical

time series, as well as histograms generated from the final states for 500 different initial

conditions. In almost all runs, the final state has very small phase shifts within each pair

(left panel) but virtually arbitrary phase shifts between pairs (right panel).

Now I present an analysis of the problem which ultimately explains this peculiar dynam-

ical state, and establishes the key links between resonant interactions of the transmission

line, synchronization of oscillator pairs, and the resulting non-interaction between estab-

lished pairs. I also find that these links do not rest on the particular nonlinearity of the

Josephson junction, at least to first order; consequently, one can expect the same phe-

nomenon for other types of nonlinear oscillator.

Although I will use the same perturbation approach as in the previous section, the

calculations are quite different due to the fact that this problem does not have the symmetry
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Figure 15: (Top) Same as Fig. 14, but for a system of 10 unevenly spaced junctions.
Parameter values: b = 0.05, α̃ = 0.7, β̃ = 0.07, c̃ = 0.1. (Bottom) Histograms generated
from the final states of 500 different initial conditions. Left: phase shift (in radians) between
two oscillators a distance c̃ apart. Right: phase shift between oscillators a distance c̃/2 apart.

of equally-spaced junctions.
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To lowest order in b the solution was found to be:

A
(0)
k = 0,

Φ(0)
j = t + θj ,

where the θj are constants. The junction phases advance with uniform angular velocity,

and the transmission line is inactive.

The first order solution has the form

A
(1)
k = ck sin t + dk cos t, (63)

Φ(1)
k = ak sin t + bk cos t,

which yields four sets of equations for the coefficients aj , bj , cj , dj

ck = α̃
N∑

j=1

aj sin(πkrj)
c̃2k2 − 1

, dk = α̃
N∑

j=1

bj sin(πkrj)
c̃2k2 − 1

, (64)

−β̃aj − bj + cos θj = −
N∑

i=1

aiUij , (65)

−β̃bj + aj + sin θj = −
N∑

i=1

biUij , (66)

where

Uij = α̃

∞∑

k=1

sin(πkri) sin(πkrj)
(1− c̃2k2)

. (67)

From these equations one sees that Uij plays the role of a coupling constant between junc-

tions i and j.

Formally, the values of Uij are infinite at the resonance c̃ = 1/K. Hence, in the following

analysis it is assumed that c̃ = 1/K + ε, so that the final equations can be estimated at the

resonance by taking the limit ε → 0.

2.5.1 Single pair analysis

In order to get insight into the pairing phenomenon, I consider first the case of two junctions

(N=2), and return to general N later. Then Eqs.(65,66) have the solution

a1 = −TM + RL

KM − L2
, b1 =

PM + SL

KM − L2
,

a2 = −TL + RK

KM − L2
, b2 =

PL + SK

KM − L2
, (68)
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where

K = 1 + U2
12 + (U11 − β̃)2,

M = 1 + U2
12 + (U22 − β̃)2,

L = U12(2β̃ − U11 − U22),

T = sin θ1 + (U11 − β̃) cos θ1 + U12 cos θ2,

R = sin θ2 + (U22 − β̃) cos θ2 + U12 cos θ1,

P = cos θ1 − (U11 − β̃) sin θ1 − U12 sin θ2,

S = cos θ2 − (U22 − β̃) sin θ2 − U12 sin θ1.

Rather than focus on the (monotonically increasing) phases Φj(t), things are clearer if

one considers the time derivatives Φ̇j (which are also more physically relevant, being pro-

portional to the voltage across the jth junction). In the notation of the previous section

Φ̇j = 1 + bΦ̇(1)
j + O(b2) = 1 + bej sin(t + fj) + O(b2), where e2

j = a2
j + b2

j and tan fj = −aj

bj
.

Note in particular that the waveforms generally have different amplitudes ej as well as

different phase-shifts fj . The oscillations fully and constructively add if these phase-shifts

are equal, so I define f1 = f2 as the synchronization condition. Hence, synchronization is

achieved when

0 =
a1

b1
− a2

b2
=

TM + RL

PM + SL
− TL + RK

PL + SK

=
(TM + RL)(PL + SK)− (TL + RK)(PM + SL)

(PL + SK)(PM + SL)

=
TSMK + RPL2 − TSL2 −RPMK

(PL + SK)(PM + SL)

=
(TS −RP )(MK − L2)
(PL + SK)(PM + SL)

. (69)
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Note that

MK − L2 = (1 + U2
12)

2 + (1 + U2
12)(U11 − β̃)2 + (1 + U2

12)(U22 − β̃)2

+ (U11 − β̃)2(U22 − β̃)2 − U2
12(U11 − β̃ + U22 − β̃)2

= 1 + 2U2
12 + U4

12 + (U11 − β̃)2 + (U22 − β̃)2

+ (U11 − β̃)2(U22 − β̃)2 − 2U2
12(U11 − β̃)(U22 − β̃)

= 1 + 2U2
12 + (U11 − β̃)2 + (U22 − β̃)2 + [U2

12 − (U11 − β̃)(U22 − β̃)]2.

Therefore, MK − L2 − 1 is the sum of positive values, so that MK − L2 ≥ 1. Using (69) I

conclude that the synchronization condition can be written as

TS −RP = 0.

Up until now the oscillator positions have been arbitrary. But in order to get a fully

symmetric solution, their spacing cannot be arbitrary. Specifically, if I set θ1 = θ2 = θ,

then the in-phase condition becomes

0 = TS −RP = [sin θ + (U11 − β̃ + U12) cos2 θ][cos θ + (U22 − β̃ + U12) sin2 θ]

− [sin θ + (U22 − β̃ + U12) cos2 θ][cos θ + (U11 − β̃ + U12) sin2 θ]

= (U11 − β̃ + U12) cos2 θ − (U22 − β̃ + U12) sin2 θ

− (U22 − β̃ + U12) cos2 θ + (U11 − β̃ + U12) sin2 θ

= (U11 − β̃ + U12)− (U22 − β̃ + U12) = U11 − U22,

so that U11 = U22 = U , which is equivalent to r2 = r1 + mc̃, where m = 1, 2, 3, ..., [1−r1
c̃ ].

That is, the distance between oscillators must be an integer multiple of half-wavelengths of

the transmission line’s resonant mode. Moreover, in this case M = K, and the resonant

configuration implies U12 = (−1)mU .

If m’s are odd integers, then

T = R = sin θ − β̃ cos θ,

P = S = cos θ + β̃ sin θ.
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Substituting this into Eqs.(68), I obtain

a1 = a2 = −T (M + L)
M2 − L2

= − T

M − L
,

b1 = b2 =
P (M + L)
M2 − L2

=
P

M − L
,

where

M − L = 1 + U2 + (β̃ − U)2 + 2U(β̃ − U) = 1 + β̃2.

Finally, for the amplitudes e1,2 and phases f1,2, I get the following expressions:

e2
1 = e2

2 =
T 2 + P 2

(M − L)2
=

1
1 + β̃2

,

tan f1 = tan f2 =
T

P
=

tan θ − β̃

1 + β̃ tan θ
= tan(θ − arctan β̃).

Similarly, for even m’s:

T = R = sin θ − (β̃ − 2U) cos θ,

P = S = cos θ + (β̃ − 2U) sin θ,

and

M − L = 1 + U2 + (β̃ − U)2 − 2U(β̃ − U) = 1 + (β̃ − 2U)2,

so that

e2
1 = e2

2 =
1

1 + (β̃ − 2U)2
,

f1 = f2 = θ − arctan(β̃ − 2U).

Therefore, there are two types of the synchronized solution: the first one for odd m’s,

and the second for even m’s:

[1] Φ̇1,2 = 1− b
sin(t + θ − arctan β̃)√

1 + β̃2

, (70)

[2] Φ̇1,2 = 1− b
sin(t + θ − arctan(β̃ − 2U))√

1 + (β̃ − 2U)2
. (71)

However, the even-m solution is extremely sensitive: the amplitude etot of the total

voltage Φ̇1+Φ̇2 varies wildly depending on the precise position of the pair in the transmission
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line. In contrast, for odd m’s the amplitude etot is always equal to the value 2b
1+β̃2

. For this

reason, I robustly observe synchronization for odd m only.

The above assumed that θ1 = θ2. But in fact synchronization is insensitive to small

disturbances when the transmission line is driven resonantly. I can readily show that if I

introduce perturbations θi = θ + δθi, where δθ1 6= δθ2 and |δθi| ¿ 1, then in the resonant

limit |U | → ∞ the phases are both shifted but by the same amount. Note that the resonant

condition |U | → ∞ is equivalent to the statement that 1/c̃ (or the number of the current

standing half-wavelengths in the transmission line without junctions) is an integer number.

I now prove the above statement. Indeed,

T = T0 + (cos θ + (β̃ − U) sin θ)δθ1 − (−1)mU sin θδθ2,

R = T0 + (cos θ + (β̃ − U) sin θ)δθ2 − (−1)mU sin θδθ1,

P = P0 − (sin θ − (β̃ − U) cos θ)δθ1 − (−1)mU cos θδθ2,

S = P0 − (sin θ − (β̃ − U) cos θ)δθ2 − (−1)mU cos θδθ1,

where T0 and P0 are the unperturbed values. Thus,

TM + RL = T0(M + L) + [M(cos θ + (β̃ − U) sin θ)− (−1)mLU sin θ]δθ1

+ [L(cos θ + (β̃ − U) sin θ)− (−1)mMU sin θ]δθ2

and

PM + SL = P0(M + L) − [M(sin θ − (β̃ − U) cos θ) + (−1)mLU cos θ]δθ1

− [L(sin θ − (β̃ − U) cos θ) + (−1)mMU cos θ]δθ2.

To first order in δθ1,2

TM + RL

PM + SL
=

T0

P0

[
1 +

M(cos θ + (β̃ − U) sin θ)− (−1)mLU sin θ

T0(M + L)
δθ1

+
L(cos θ + (β̃ − U) sin θ)− (−1)mMU sin θ

T0(M + L)
δθ2

+
M(sin θ − (β̃ − U) cos θ) + (−1)mLU cos θ

P0(M + L)
δθ1

+
L(sin θ − (β̃ − U) cos θ) + (−1)mMU cos θ

P0(M + L)
δθ2

]
,
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which can be written as

TM + RL

PM + SL
=

T0

P0

[
1 +

MP0 + (−1)m(M − L)U sin θ

T0(M + L)
δθ1

+
LP0 − (−1)m(M − L)U sin θ

T0(M + L)
δθ2

+
MT0 − (−1)m(M − L)U cos θ

P0(M + L)
δθ1

+
LT0 + (−1)m(M − L)U cos θ

P0(M + L)
δθ2

]
.

Finally, for odd m’s, in the limit |U | → ∞, we have finite T0 and P0, and lim|U |→∞ M
L = 1.

Therefore:

tan f1 = tan f2 =
T0

P0

(
1 +

(T 2
0 + P 2

0 )(δθ1 + δθ2)
2T0P0

)
.

Having established the link between pair synchronization and resonant modes I now

ask why such a pair might be “dynamically inert”. Since all interactions are carried by the

current oscillations in the transmission line, let’s calculate I(r, t). Combining Eqs.(62,63,64)

yields

I(r, t) = 1− b
N∑

j=1

Φ(1)
j (t)Uj(r) + O(b2), (72)

where Uj(r) = α̃
∞∑

k=1

sin(πkrj) sin(πkr)
(1− c̃2k2)

. (73)

For a perfectly synchronized pair of junctions, with r2 − r1 = mc̃ and m odd, the spatial

dependence of current is

I(r) = bα̃
∑

k

sin(πkr1) + sin(πkr2)
1− c̃2k2

sin(πkr) (74)

=





πbα̃
2c̃ sin

[
π
c̃ (r − r1)

]
; if r1 < r < r2,

0; otherwise.

Thus, to leading order the current changes its value only in the piece of transmission

line between the two synchronized junctions!

Numerical simulations of the full nonlinear equations show that the current is not strictly

zero outside the oscillator pair, but it is very small. It is plausible that one could add another
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synchronized pair elsewhere on the transmission line without the two pairs affecting each

other; moreover, the precise placement of the second pair (relative to the first) should be

irrelevant.

2.5.2 Multi-junction resonant array

These plausibility arguments for the array case (N > 2) can be put on a firm analytic

footing. Specifically, I now explicitly construct pairwise synchronized solutions and show

that these yield a spatially localized current profile which generalizes Eq.(74).

Guided by the single pair analysis, I choose the oscillator positions so that ri − ri−1 =

c̃mi, for i = 2, 3, . . . , N . Thus, the junctions need not be equally spaced, but the distance

between any two adjacent elements is an integer multiple of half-wavelengths of a transmis-

sion line mode. (This condition is rather restrictive: numerical simulations show that it is

enough if it is satisfied for even i only. I use the stronger constraint in order to make the

problem analytically tractable.) It follows that (see Eq.(67)) Uij = (−1)i+jU, where U is a

function of three parameters α̃, c̃ and r1. In this case the solution of Eqs.(65,66) is

aj =
− sin θj + β̃ cos θj

1 + β̃2
− U

(1 + β̃2)[1 + (β̃ −NU)2]
(75)

×
N∑

i=1

(−1)i+j
[
cos θi(1− β̃2 + β̃NU) + sin θi(2β̃ −NU)

]
,

bj =
cos θj + β̃ sin θj

1 + β̃2
− U

(1 + β̃2)[1 + (β̃ −NU)2]
(76)

×
N∑

i=1

(−1)i+j
[
sin θi(1− β̃2 + β̃NU)− cos θi(2β̃ −NU)

]
.

The pairwise synchronized state corresponds to θ1 = θ2, θ3 = θ4, etc., so that f1(t) =

f2(t), f3(t) = f4(t), and so on. To find the current profile I(r, t) for this state, note first

that Eqs.(72,73) remain true for an array. It follows that through O(b2)

I(r, t) = 1− bα̃
∑

j even,k

Φ(1)
j

sin(πkrj) + sin(πkrj−1)
1− c̃2k2

sin(πkr),
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since Φj = Φj−1 for all even j. The sum over k can be performed as before, with result

I(r, t)− 1 =
∑

j even

Φ(1)
j (t)

×





πbα̃
2c̃ sin

[
π
c̃ (r − rj−1)

]
; if rj−1 < r < rj ,

0; otherwise,

for j = 2, 4, . . . , N . This generalizes the previous result for N = 2: in between each

synchronized pair, the current in the transmission line takes on its constant boundary

value, as if there were no junctions at all.

Figure 16: Simulation results for n = 6, showing the spatial profile of the transmission
line current once the paired state is formed. Parameter values: b = 0.05, α̃ = 0.05, β̃ =
0.5, c̃ = 0.1.

Fig. 16 shows the actual transmission line current found via direct numerical simulation

of Eqs.(4,5) for N = 6. The junction positions are self-evident; note that there is no

particular symmetry in the placement of the junctions along the transmission line. The

current is greatly reduced outside the junction pairs (though not strictly zero) indicating

55



the pairs are very weakly interacting. Although not shown in the figure, the paired junctions

are strongly synchronized, having virtually identical and inphase waveforms.

My analysis suggests that the pairing phenomenon is insensitive to the detailed dynam-

ical properties of Josephson junctions per se. Rather, it hinges on the resonant coupling

architecture inherent to the transmission line. I was thus led to consider an array of van

der Pol oscillators embedded in a transmission line:

Äk + c̃2k2Ak + α̃
N∑

j=1

V̇j sin(πkrj) = 0,

β̃V̈j − b1V̇j(1− εV 2) + b2Vj =
∞∑

k=1

Ȧk sin(πkrj).

I set up a simulation just as before, with oscillators spaced at odd-integer multiples of

1
2λ, where λ is the wavelength of some resonant mode of the bare transmission line. The

emergence of inert, synchronized oscillator pairs was readily observed.

Fig. 17 shows the results from one run, using 4 oscillators. The spatial profile for the

transmission line current shows substantially reduced magnitude outside the two synchro-

nized pairs. The reduction is not as complete as in the Josephson array, indicating that

the pair interactions are not as weak. The inset shows the steady state time series for all

four oscillators: the waveforms show a fair degree of amplitude meandering. Even so, the

pairing behavior is unmistakable.

Perhaps the closest thing in the coupled nonlinear oscillator literature to this pairing

behavior is the phenomenon of clustering. The term clustering is actually used to describe

a rather broad set of circumstances where one or more subsets of the population display

some type of synchronous behavior. In some cases such cluster(s), once formed, effectively

decouple from the remaining population. In other cases, synchronized clusters interact

strongly with each other, much like domains in a magnetic material. Examples may be

found in various dynamical settings, including coupled map lattices, neural networks, and

chaotic differential equations [121, 122, 123].

Broadly speaking, the pairing phenomenon in my problem might be viewed as another

example of clustering; however, it seems to differ in two fundamental respects from existing

examples. First, the pairs have an intrinsic spatial size. This is a consequence of the
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Figure 17: Transmission line current vs. position with Van der Pol oscillators at positions
r1 = 0.15, r2 = 0.25, r3 = 0.3, r4 = 0.4. Other system parameters are b1 = 0.01, α̃ =
0.05, β̃ = b2 = ε = 1, c̃ = 0.1. Inset: Vj vs. t for all 4 oscillators.

interaction being mediated by the transmission line rather than direct coupling between

elements. The other difference is the nature of the paired state, in which the elements are

synchronized in phase. More commonly, when clustered subsets decouple from the remaining

population, their phases are staggered in a way which naturally results in a cancelling effect.

Perhaps the most famous such case is variously termed splay-phase or anti-phase clustering

(an early example of which, as it happens, was reported in a different Josephson junction

array [91, 93]). In contrast, an in-phase pairing would normally be expected to reinforce

their effect on the remaining population, rather than cancel out.
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CHAPTER III

FIBER LASER ARRAYS

The main subject of this chapter is the phenomenon of weak-link synchronization, which

is another important example of synchronization due to a nontrivial dynamical coupling.

Although this phenomenon will be described in context of coupled fiber lasers, the general

idea might be very useful for the study of other array systems, especially those that require

avoiding the idealized assumption of identical oscillators.

The first section contains the basic information about individual fiber lasers and ampli-

fiers which is necessary for the development of the model I use later as a tool to investigate

the behavior of an array of such lasers.

This model of a specific experimental setup is introduced in the second section. A

step by step derivation of the governing equations is provided with a clear statement of all

assumptions made.

The next section presents coupled mode theory, which is used to describe the dynamics

of electric fields interacting in closely placed waveguiding fibers. The basic results of this

theory are fundamental for the model construction.

The results of analytical and numerical analysis of the system are presented in Section

4, which also includes a discussion of the general concept of weak-link synchronization.

Since the calculations essential for the understanding of the observed phenomena are quite

tedious and lengthy, I have placed them in Appendix.

3.1 Fiber Lasers and Amplifiers

In some sense fiber lasers [124, 125] can be considered as a logical miniaturization of solid-

state lasers. In 1963, Koester and Snitzer demonstrated the first fiber amplifier made of

a one-meter neodymium-doped fiber wrapped around a flash lamp [126]. Still, the idea of

using an optical fiber as a laser medium did not receive much attention until the development
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of fiber-optic communication systems came to a point when further progress required new

ways to boost signals in extended transmission lines.

However, the concept of optical communication was born a time long ago, in the 1870s,

when John Tyndall showed that light can follow a specific path by a series of internal

reflections. In the 1880s, Alexander Bell created a so called photophone. It took about

70 years before fiber optics really became useful in applications. In the 1950s an image-

transmitting device - the fiberscope - was developed mainly for weld inspections. It used

glass-coated glass fiber as a signal transmitter. When (in the 1970s) improved technology of

glass fabrication allowed one to satisfy all practical requirements, fiber optics also became

a feasible method of communication [127].

The operation of fiber optics is based on the principles of total internal reflection, which

means that all of the light gets reflected within the fiber cable. The angle at which light hits

the surface is known as the angle of incidence. The critical angle is the angle of incidence

at which the angle of refraction is equal to π/2. Total internal reflection is achieved when

the angle of incidence is bigger than the critical angle (see Fig. 18).

Figure 18: General schematic of refraction.

Fiber-optic cables consist of very thin threads of ultra-pure glass, which are called the

cores. The region surrounding the core is known as the cladding. It is the cladding that
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is responsible for reflecting the light back into the core. In order to do that, the cladding

must have a smaller index of refraction than the refractive index of the core. Protection

and strength of the fiber is provided by the outer region called the coating, which can be

made of Kevlar, for instance.

There are two basic types of fiber cable. The first commercially available fiber-optic

cables were multimode fibers with a relatively large core, allowing hundreds of modes to

pass through the fiber simultaneously. The other fiber cables belong to a class of singlemode

fibers. These fibers have a smaller core than that of multimode cables, but they allow one

to transmit more information by retaining better fidelity of light pulses over long distances.

One should always take into account transmission losses. In the case of fiber optics,

these losses come from scattering, absorption, and dispersion, which lead to an overall

signal attenuation. To solve this problem, engineers use fiber laser amplifiers to maintain

the signal in optical communication systems.

Figure 19: Schematic of a fiber amplifier.

Fig. 19 shows the basic concept of a fiber amplifier. It is made of a solid-state laser

material such as glass, doped with ions that emit the light of a desired wavelength, let’s
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say λ1. Suppose the fiber has a weak signal with wavelength λ1 at one end, and it is

illuminated by a strong steady beam, which has wavelength λ2 and excites the doped ions

to their upper level. While the weak signal propagates along the amplifier, it stimulates

emission of excited ions at λ1 and, consequently, get amplified. The remaining light from the

pump passes through the cable with much stronger attenuation than the amplified signal,

so that only the desired signal gets transmitted.

High-performance optical fiber systems utilize mainly two windows of operation. Some

cables works at the wavelength 1.3µm, when step-index single-mode fibers have almost zero

pulse dispersion. The other operating regime is at 1.55µm, when silica fibers have the lowest

attenuation. Scientists have found proper solid-state laser ions for each of these regimes.

Neodymium is used for the 1.3µm fibers, while the 1.54µm line of erbium is suitable for

the longer wavelength signals in silica glasses. However, other materials also have been

tested in experiments. In principle, materials such as fluoride-based and phosphate glasses

can provide less excited-state absorption, better wavelengths or other features useful in

applications.

There are several important advantages of fiber lasers compared to other laser types.

Fiber lasers have low losses, simple doping procedures and can be pumped with compact,

efficient diodes. Since the fiber itself provides the waveguide, it minimizes the necessity of

mechanical alignments and bulk optics. Fiber lasers have different cavity designs such as

linear Fabry-Perot, ring or a combination of those two. Another advantage of fiber lasers

is a strong nonlinearity of the media because of long interaction lengths and relatively

large signal intensities. The nonlinearity is important for the mode-locking mechanism.

In the last decades, fiber lasers have motivated a lot of research effort due to their po-

tential implementations as compact fiber-compatible optical sources with a simple diode

pumping [128, 129, 130, 131].

3.2 Coupled Fiber Lasers

An important and challenging area of laser physics is coherent combination of laser beams [132,

133, 134, 135, 136, 137, 138, 139]. In many industrial and scientific applications researchers
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pursue the goal of obtaining a single high-power output from a number of moderate-power

lasers and to control its deflection without mechanical movements.

An array of lasers that has constant relative phases between its elements provides the

output with maximum spatial brightness. The brightness of an incoherent array increases

in direct proportion to the number of lasers. However, the brightness of a phase-locked

array increases as the square of this number, which makes coherent arrays of lasers very

attractive from the technological point of view.

Rare-earth-doped fiber lasers are excellent candidates for such coherent arrays for a

number of reasons. Although the power of individual fiber lasers is lower than the power of

solid-state or gas lasers, fiber lasers have compact transverse dimensions, relative freedom

from thermal problems and single-mode beam structure [140, 141, 142, 143, 144, 145, 146,

147].

Recently, researchers have been especially interested in the development of field-coupled

multicore fiber laser arrays, when the system exhibits collective mode structures due to the

periodic exchange of power between the cores.

Figure 20: Schematic of the laser array.

Fig. 20 shows an experimental setup that will be studied in the following sections [148,

149, 150]. All N fiber laser are connected to a 100% reflective mirror on one end (z = 0) and
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to a partially reflective mirror with reflectivity r on the other side (z = zL). The parameter

r is assumed to be small (about 0.2), which means that this is a high-loss/high gain system.

The lasers are separated and independent everywhere except a relatively small region (from

zl to zL), where they are placed together in a coupler and allowed to interact through fiber

crosstalk (see the next section). Each fiber also has a gain region from zg1 to zg2, where the

field gets amplified.

In the following subsections I will describe the gain dynamics as well as the changes

of the field amplitudes over one round trip (this analysis follows closely that presented in

Ref. [149]). These results will provide us with one step of the iterative map that I will use

later to study the long-time behavior of the system.

3.2.1 Round trip dynamics of the electric fields

Let E+
i (z) and E−

i (z) be the complex amplitude of an electromagnetic plane wave propa-

gating from z = 0 to z = zL and from z = zL to z = 0, respectively. Formally the round

trip can be started from an arbitrary point, but I choose the 100% reflective mirror as the

starting point for reasons that will become clear later, during the map construction.

Since the left mirror has the 100% reflectivity, at point z = 0 the fields satisfy the

condition

E+
i (0) = −E−

i (0),

where the minus sign comes from the π phase shift due to the reflection.

When the fields propagate through the gain region, they are amplified by a factor

exp(Gi/2), where Gi are the gain variables that will be determined separately. Hence,

passing the gain section the fields change as

E+
i (zg2) = eGi/2E+

i (zg1).

Similarly, for the left-going wave I obtain:

E−
i (zg1) = eGi/2E−

i (zg2).

Then, the right-going waves propagate through the coupling region, so that the fields

get mixed according to coupled-mode theory [151], which is considered in the next section.
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Using the results of this theory I can write that

E+
i (zL) =

N∑

i=1

Sij(zc)E+
j (zl),

where zc ≡ zL − zl. A similar expression is valid for the left-going wave:

E−
i (zl) =

N∑

i=1

Sij(zc)E−
j (zL).

Hence, taking into account partial reflection at the point z = zL I find

E−
i (zL) = −rE+

i (zL),

and therefore,

E−
i (zl) = −r

N∑

i=1

Sij(zc)E+
j (zL) =

−r
N∑

i=1

Sij(zc)
N∑

j=1

Sjk(zc)E+
k (zl).

Using the fact that S = UDU−1, where D is a diagonal matrix with exponents on the

diagonal, I immediately obtain

S(zc)S(zc) = UD(zc)U−1UD(zc)U−1 =

UD(zc)D(zc)U−1 = UD(2zc)U−1 = S(2zc),

so that

E−
i (zl) = −r

N∑

i=1

Sik(2zc)E+
k (zl).

Both waves propagate freely between the coupler and the gain region, as well as between

the gain region and the left mirror.

Thus, combining all previous expression I find that after one round trip the fields change

as

E′
i(0) = reGi/2

N∑

k=1

Sike
Gk/2Ek(0). (77)

The usual step at this point is to assume that the changes in the field amplitudes over

one round trip are very small, which allows one to approximate the discrete map as a

differential equation. But I will not make the assumption of slowly varying amplitudes. As
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was mentioned earlier, due to the low reflectivity of the output mirror the system operates

in the high-gain/high-loss regime. The iterative map is a natural tool for studying such

systems.

3.2.2 Dynamics of the gain variables

In this subsection the equation for the evolution of the gain variables will be derived using

the Rigrod method [152].

The counterpropagating laser fields have the corresponding intensities:

I+
i (z, t) = |E+

i (z, t)|2,

I−i (z, t) = |F−
i (z, t)|2.

Having 100% reflectivity of the mirror at z = 0, one obtains the following boundary

condition:

I+
n (0, t) = I−n (0, t). (78)

The Rigrod analysis for the counter propagating waves is based on two partial differential

equations for intensities and one equation for the time evolution of the atomic gain:

∂I+
i (z, t)
∂z

= Ni(z, t)σI+
i (z, t), (79)

∂I−i (z, t)
∂z

= −Ni(z, t)σI−i (z, t), (80)

∂Ni(z, t)
∂t

= Rp
i (z, t)− Ni(z, t)

τ
− σ

~ω
Ni(z, t)

[
I+
i (z, t) + I−i (z, t)

]
, (81)

where Nn(z, t) is the number of inverted atoms per unit length distributed along the ith fiber,

σ is the stimulated emission cross section, τ is the relaxation time, and Rp
i is the pumping

rate of the ith fiber. In the Rigrod analysis one ignores time derivatives in Eqs.(79) and

(80) assuming that they are small with respect to the exponential spatial dependence of the

gains.

These equations allow one to determine the temporal evolution of the gains by integrat-

ing Ni(z, t) over the gain section having length zg;

N̂i(t) =
∫ zg

0
Ni(z, t)dz.
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Substituting Eqs. (79) and (80) into Eq.(81) gives

∂Ni(z, t)
∂t

= Rp
i (z, t)− Ni(z, t)

τ
− 1
~ω

[
∂I+

i (z, t)
∂z

− ∂I−i (z, t)
∂z

]
.

After integrating this result over the gain region z ∈ [0, zg] one obtains

dN̂i(t)
dt

= R̂p
i (t)−

N̂i(t)
τ

− 1
~ω

[
I+
i (zg, t)− I+

i (0, t)− I−i (zg, t) + I−i (0, t)
]
, (82)

where the total pumping rate R̂p
n(t) is defined as

R̂p
i (t) =

∫ zg

0
Rp

i (z, t)dz.

Using Eq.(78) I eliminate the intensities at the mirror (z = 0) in Eq.(82), so that

dN̂i(t)
dt

= R̂p
i (t)−

N̂i(t)
τ

+
1
~ω

[
I−i (zg, t)− I+

i (zg, t)
]
. (83)

The next step is to express I−i in terms of I+
i . First, integrate Eq.(80) over the gain region

z ∈ [0, zg] to find

ln
[
I−i (zg, t)
I−i (0, t)

]
= −σN̂i(t). (84)

Then from Eq.(79) one gets

ln
[
I+
i (zg, t)
I+
i (0, t)

]
= σN̂i(t). (85)

Finally, substracting Eq.(85) from Eq.(84) gives

ln
[
I−i (zg, t)I+

i (0, t)
I+
i (zg, t)I−i (0, t)

]
= −2σN̂i(t).

Once again using Eq.(78) one can cancel the intensities at the mirror and obtain the following

dependence:

I−i (L, t) = e−2σN̂i(t)I+
i (zg, t). (86)

Defining the gain variable as

Gi(t) = 2σN̂i(t),

then using Eq.(86), one eliminates I−i (L, t) from Eq.(83) and finds the governing differential

equations for the gains

dGi

dt
=

1
τ

[
Gp

i (t)−Gi(t) +
2

Isat

(
e−Gi(t) − 1

)
|Ei(zg, t)|2

]
, (87)
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where

Gp
n(t) = 2στR̂p

n(t),

Isat =
~ω
στ

.

3.2.3 Iterated map for the coupled laser model

Together Eqs.(77) and (87) provide a quantitative description for the dynamics of the fiber

laser array. However, in order to use these equations as an iterated map I need to make a

few simplifying assumptions.

First, I assume that the round trip times of all fiber lasers in the array are equal. This

is a reasonable approximation since in the laboratory fibers are several meters long and can

be cut accurately enough. Therefore, I assume all round trip times to be the same to within

a negligible error.

The evolution equation for the electric fields (77) can be rewritten as

Ei(t + T ) = reGi(t)/2
N∑

k=1

Sike
Gk(t)/2Ek(t). (88)

Then, instead of using a hybrid dynamical system which involves the iterated map

Eq.(88) and the differential equation Eq.(87), I can recast the latter into an iterated map.

In order to do this, I assume that the gain variables change slowly over intervals comparable

to the round trip time T . The pumping parameters Gp
i are assumed to be constants. Hence,

integrating Eq. (87) over time T we obtain the following map:

Gi(t + T ) = Gi(t) +
T

τ

[
Gp

i (t)−Gi(t)− 2
Isat

(
1− e−Gi(t)

)
〈Ii(t)〉

]
, (89)

where

〈Ii(t)〉 =
1
T

∫ t+T

t
|Ei(t)|2dt

is a time average of the field intensity in the ith fiber over the round trip.

The best way to approximate the average intensity is to use the value of the field at the

100% reflective mirror |E+(z = 0)|2, because at this point the propagating wave has been

amplified one time, so that its intensity is in between the minimum value |E−(zL)|2 and
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maximum value |E+(zL)|2. This explains the choice of starting point I made for the round

trip.

Substituting this into Eq.(89) I obtain the final equations of motion,

Ei(t + T ) = r
N∑

k=1

eGi(t)/2Sike
Gk(t)/2Ek(t), (90)

Gi(t + T ) = Gi(t) + ε
[
Gp

i (t)−Gi(t)− 2
(
1− e−Gi(t)

)
|Ei(t)|2

]
, (91)

where I have normalized the field so that Ei√
Isat

→ Ei, and introduced the parameter ε =

T
τ . Typically the fluorescence time τ is much longer than the round trip time T , so the

parameter ε is a small number.

3.3 Coupled-Mode Theory (Fiber Crosstalk)

Coupled-mode theory is a mathematical tool useful for the description of electromagnetic

waves propagating and interacting with media in optical waveguides. The advantages of

the coupled-mode theory are its physical intuitiveness and mathematical simplicity, which

help one to understand the behavior of systems with different designs [151, 153, 154, 155,

156, 157, 158, 159].

In the 1950s Pierce and Miller [160, 161] started the development of coupled-mode

theory, which received rigorous formulations later, when Schelkunoff and Haus [162, 163]

applied, respectively, a mode expansion and a variational principle. Originally, the theory

was applied to the problems of microwave propagation. In the 1970s, Snyder et al. applied

coupled mode theory to waveguiding optical systems [151, 159].

The coupled-mode equations were used to analyze new optical devices such as dis-

tributed feedback lasers and coupler switches, created at Bell Laboratories by Herwig Ko-

gelnik [164, 165]. Moreover, coupled-mode theory was a fruitful approach for the analysis of

nonlinear optical phenomena, including modulation instability, second harmonic generation,

and parametric amplification.

The operation of some optical devices is based on coupled waveguide systems, which

consist of several dielectrical waveguides placed close to each other. These waveguides are

not necessarily parallel. They can also have built-in gratings, tapers, nonlinearities, or other
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index perturbations as well as losses or gain along their axes.

In some cases, these index perturbations are the result of fabrication or material imper-

fections, which can be avoided or at least minimized. In other cases, the index perturbations

are built intentionally, for example, to produce switching, reflection or modulation of the

light in the waveguides.

The conventional approach in the analysis of coupled waveguide systems is, first, to

determine the propagation constants and field patterns in the individual uncoupled waveg-

uides. Then the amplitudes of the modes can be found by solving the coupled-mode equa-

tions. These equations describe both the mode propagation and coupling in the system.

Therefore, combining the results of coupled-mode theory with analysis of the cross sec-

tional field distribution, one gets a rigorous and simple description of electromagnetic wave

propagation in the interacting waveguides.

Let me consider a simple model of the coupled waveguide system, which consists of

two uniform and parallel waveguides placed close to each other. We can assume that the

transverse cross sections of the fibers are arbitrary. Suppose each waveguide has a mode

with amplitude Ei(z) and time dependence exp(iωt). Then the modes in the individual

wavequides without crosstalk obey the amplitude equations:

dE1

dz
+ iβ1E1 = 0,

dE2

dz
+ iβ2E2 = 0,

where β1 and β2 are the propagation constants of these independent modes passing through

each fiber.

If the waveguides are placed close enough, their fields start to interact with each other,

so that the modes are not really independent but coupled and their amplitudes modify each

other while propagating along the waveguides. When the coupling is weak, the amplitude

equations can be written in the form:

dE1

dz
= −i(β1 + C11)E1 − iC12E2, (92)

dE2

dz
= −i(β2 + C22)E2 − iC21E1, (93)
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where C12 and C21 are the mutual coupling coefficients, while C11 and C22 represent the

self-coupling of the modes.

In the following analysis I will also assume that this system of coupled waveguides is

lossless, which implies power conservation:

d

dz
P (z) = 0.

Since the power of each mode is proportional to the square of its amplitude, the total power

in the system is

P (z) ∼ |E1|2 + |E2|2.

Using Eqs.(92,93) one finds that

d

dz
P (z) ∼ i(C∗

11 − C11)|E1|2 + i(C∗
22 − C22)|E2|2 +

i(C∗
12 − C21)E1E

∗
2 + i(C∗

21 − C12)E∗
1E2 = 0,

for any z. Therefore, the coefficients C11 and C22 have to be real, and the mutual coupling

coefficients satisfy the condition:

C12 = C∗
21 = κ.

If the coupled waveguides are uniform, then all coupling coefficients and propagation

constants are independent of z, so that Eqs.(92,93) can be integrated by the diagonaliza-

tion method. In order to keep notation simple, it is convenient to introduce the detuning

parameter,

δ =
β1 − β2

2
+

C11 − C22

2

and a common phase factor, so that

Ei(z) = εi(z)e−iβ0z,

where

β0 =
β1 + β2

2
+

C11 + C22

2
.

In this notation Eqs.(92,93) can be written as

dε1

dz
= −iδε1 − iκε2, (94)

dε2

dz
= +iδε2 − iκε1, (95)
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or even in more compact vector form

d

dz
~ε = −iC~ε, (96)

where

~ε =




ε1

ε2


 ,

C =




+δ κ

κ −δ


 .

The matrix C can be diagonalized by a unitary matrix

U =




cos(q̃/2) − sin(q̃/2)

sin(q̃/2) cos(q̃/2)


 ,

so that

U−1CU = D.

Here I have introduced a parameter q̃, which is defined as

tan(q̃) =
κ

δ
.

The diagonal matrix D consists of the propagation constants of the normal modes. Indeed,

let

~ε = U~ξ,

then from Eq.(96) one obtains

U
d

dz
~ξ = −iCU~ξ,

and finally:
d

dz
~ξ = −iD~ξ, (97)

where

D =



√

δ2 + κ2 0

0 −√δ2 + κ2


 .

Therefore, the vector ~ξ can be considered as a vector of the amplitudes for the composite

modes, which are not coupled.
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Eq.(97) can be now readily solved, so that

~ξ(z) =




exp(−i
√

δ2 + κ2z) 0

0 exp(+i
√

δ2 + κ2z)


 ~ξ(0).

Hence, one can express the mode amplitudes in terms of the propagation matrix S in the

following way:

~E(z) = U~ξ(z)e−iβ0z = S ~E(0),

where

S = U




exp(−iβsz) 0

0 exp(−iβaz)


U−1.

Here the propagation constant of the symmetric normal mode is

βs = β0 +
√

δ2 + κ2,

while the propagation constant of the antisymmetric mode is

βa = β0 −
√

δ2 + κ2.

In explicit form the matrix elements of the propagation matrix are

S11 = S∗22 = cos(p)− i sin(q) sin(p), (98)

S12 = S21 = −i cos(q) sin(p), (99)

where the parameter p = z
√

δ2 + κ2 characterizes the coupling strength, while q is the

modified deturning parameter:

q =
π

2
− q̃ = arctan

(
δ

κ

)
.

3.4 Weak Link Synchronization

Besides its intrinsic interest for the field of nonlinear dynamics, the goal of synchronization

is important in many practical contexts. In some cases, the desired behavior can be achieved

by so-called injection locking, so that (for example) a generator is entrained by a controlled

external signal which is weak but very precise [3]. In contrast to this master-slave situation
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there is the problem of mutual synchronization among a population of nominally identical

oscillators, of which the Kuramoto model is the archetype[1].

In this section I describe a kind of mutual synchronization which occurs in the model

of high-gain/high-loss fiber lasers (90,91). Typically, the search for highly coherent output

states considers schemes where the individual elements are as identical as possible, and

driven identically. In contrast, I investigate arrays where such uniformity is intentionally

avoided by driving some elements more strongly than others. I find that these inhomo-

geneous arrays can operate in a highly coherent way via a mechanism I call weak link

synchronization [166]. The weak link synchronized states, though sub-optimal compared

with the uniformly pumped array, is far more robust with respect to parameter mismatch

among the individual elements. The practical advantage of weak link synchronization may

therefore be especially pronounced for very large arrays.

Weak link synchronization represents a trade-off between optimization in principle and

optimization in practice. In principle, a fully symmetric coherent state is ideal. In practice,

it may be difficult to achieve the necessary tolerances. I find that employing a strategy

of intentionally non-uniform (but patterned) driving yields an attractor with both a high

degree of coherence and robustness under parameter mismatch. Our numerical simulations

suggest that the scheme can be applied to very large arrays without substantial degradation.

Based on the result of the previous section I describe the system of coupled fiber lasers

by the dynamical model (90,91)

En(t + T ) = r
N∑

m=1

e
Gn(t)+Gm(t)

2 SnmEm(t),

Gn(t + T ) = Gn(t) + ε[Gp
n −Gn(t)− 2(1− e−Gn(t))|En(t)|2].

The coupling matrix elements Snm were derived in the section 3.3 for the case of two

fibers (N = 2). In general, to determine the matrix S for arrays (i.e. N > 2), I integrate

the equation
dEn

dz
= iAnmEm,

where z is the spatial coordinate along the fiber, Anm = βnδnm + C(dnm), and dnm is the

distance between the centers of nth and mth fibers. Integrating over the total coupling
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length 2zc yields En(z + 2zc) = SnmEm(z). Typically, I take nearest neighbor coupling:

C(dnm) =





0 if dnm > 2R,

κ if dnm = 2R,

where R is the radius of each fiber. However, the following results are essentially unchanged

for other functions C(dnm) provided they decay fast enough. Anyway, the matrix elements

Cnm depend only on the architecture and properties of the coupler.

Ultimately, one would like to identify the conditions (if any) under which very large

arrays will be behave in a highly coherent manner. The most common strategy is to consider

a system of identical elements, identically driven and with fully symmetric coupling, then

explore the linear stability of the fully symmetric solution in which all elements behave

identically [132]. I used a similar strategy in the previous chapter to study the Josephson

transmission line, but now I take a different approach, since I want to look more broadly at

other types of synchronized solutions and test their sensitivity with respect to disordering

effects, such as detuning and parameter mismatch.

In fact, the case of just two elements yields important insight, and my present analytic

understanding of weak link synchronization rests on a careful analysis of the N = 2 problem.

This case yields the simplest incarnation of the weak link idea, and demonstrates the relative

pros and cons of weak link synchronized states as compared with the inphase states of the

uniformly driven array. Later, I use this insight to design arrays with much larger N , and

explore these numerically.

3.4.1 Two laser analysis

The detailed derivation of all possible fixed-point solutions for N = 2 is given in the Ap-

pendix, which also includes a stability analysis of these solutions. Here, I will discuss the

obtained solutions in context of weak-link synchronization.

Let En(t) = εn(t)eiψn(t), where εn and ψn are real. I seek solutions for which ψ(t) =

ψ1(t)−ψ2(t) is constant. I do not require that the lasers be pumped identically, viewing Gp
1

and Gp
2 as independent control parameters. Meanwhile, any intrinsic disorder in the system

is due to a non-zero value of the detuning parameter q.
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Consider first the limit where there is no detuning (q = 0). A straightforward calculation

yields several constant-ψ solutions. The overall situation is illustrated in Fig. 21. The first

branch of solutions exists only within a narrow strip of parameter space corresponding to

nearly identically pumped lasers. It is natural therefore to introduce a small parameter ρ

to express these solutions: I have

ψ̃ = arcsin[ρ/ tan p] + O(ρ2),

ε̃1
2 = ε̃2

2 = I + O(ρ2), (100)

G̃1 = G0 + ρ + O(ρ2),

G̃2 = G0 − ρ + O(ρ2),

where ρ = Gp
1−Gp

2
2(1+2rI) , I = Gp−G0

2(1−r) , Gp = Gp
1+Gp

2
2 and G0 = − ln r.

This is the synchronized solution corresponding to states where both lasers operate

with (nearly) equal and optimal intensity and a constant phase difference. If the lasers are

identically pumped, these states are the familiar inphase and antiphase states ψ̃ = 0, π,

respectively, described e.g. for coupled semiconductor lasers in Ref. [134].

A careful analysis (see Appendix) shows that this solution is attracting in its narrow

region of existence as long as

0 < I < Im ≡ 1/
√

4− 6r ; (G0 < Gp < Gm ≡ G0 +
1− r

2− 3r
),

p | cos ψ̃| <
√

ε

2

(
1− I

Im

)
.

Now suppose I allow for a small amount of detuning (q 6= 0), to find the corresponding

corrections to this solution. Of particular importance is the correction to the relative phase,

which is

sin(ψ) =
Gp

1 −Gp
2

2p(1 + 2rI)
− q(Gp −G0)

p(1 + 2rI) cos ψ̃
.

Recall that p represents the coupling strength, which is a small quantity. It is evident that
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Figure 21: Schematic summarizing the regions of stability for the various fixed point
solutions: A – weak link solutions, B – well-pumped solutions Eq. (100), C – near-threshold
transitional solutions.

these solutions are very sensitive to parameter mismatch, and might be difficult to observe

in practice. All of the foregoing refers to the fixed points labelled “B” in Fig. 21.

Now consider another set of fixed point solutions, labelled “A” in Fig. 21. These are

given by (in the limit of zero detuning)

ψ̃ = π/2, ψ̃ = −π/2,

ε̃1 =
√

I1 + O(p2), ε̃1 = p

√
rI2 exp Gp

1

1−r exp Gp
1

+ O(p2),

ε̃2 = p

√
rI1 exp Gp

2

1−r exp Gp
2

+ O(p2), and ε̃2 =
√

I2 + O(p2),

G̃1 = G0 + O(p2), G̃1 = Gp
1 + O(p2),

G̃2 = Gp
2 + O(p2) G̃2 = G0 + O(p2) .

The corresponding regions of stability are, respectively
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G0 < Gp
1 < Gm, and 0 < Gp

1 < G0,

0 < Gp
2 < G0 G0 < Gp

2 < G′
m.

These solutions correspond to a state where one laser is well pumped (Gp > G0) and

operates with relatively large intensity, while the other laser is under-pumped (Gp < G0)

and has a very small amplitude (of order of p). Even so, these are synchronized states

because the two lasers maintain a constant π
2 -phase shift. For reasons that will become

clear when I turn to larger arrays, I call this the “weak link solution”. The fact that the

under-pumped laser has non-zero intensity is important, because it is how phase information

is transmitted across larger arrays.

Although the total intensity of the weak link solution is less than the intensity of the

“fully pumped” branch of solutions, the weak link solution has significant benefits: 1) it

has a very broad region of existence and stability; and 2) it is extraordinarily robust with

respect to parameter mismatch. Corrections to first order in q do not have any serious

influence on this solution, in contrast to the fully pumped solution. In particular, the phase

difference is only slightly modified

ψ̃ = ±
(

π

2
+

rpq

exp (−Gp)− r

)
.

There is yet one more fixed point solution, which is labelled “C” in Fig. 21. However,

its region of stable existence is extremely small and I don’t consider it further. It may hold

some mathematical interest, in some sense providing a continuous transition between the

other solution branches. (See Appendix)

3.4.2 Many laser analysis

The situation that I have just described suggests a scheme for how one might try to syn-

chronize a large array of lasers if the uniformly pumped configuration is too sensitive to

be successfully synchronized. Suppose I have three lasers, with the outer two well-pumped

and the middle under-pumped. If each of the well-pumped lasers easily synchronizes with

the under-pumped one, then they will synchronize with each other. Thus, by sacrificing the
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intensity of one laser, one might robustly and effectively synchronize the other two through

a weak link, which would be otherwise fail.

To test this idea, I consider first a linear array of coupled fiber lasers, and compare the

configuration when all the lasers are well-pumped against the configuration when every other

laser is under-pumped. For this and other large arrays to follow, I use near-neighbor coupling

to generate the matrix elements Snm, as described in the Appendix. As a convenient

quantitative measure of the output, I use the power spectrum of the total electric field:

P (ω) =
∣∣∣∣
∫ ∞

−∞
Etot(t)eiωtdt

∣∣∣∣
2

,

where

Etot =
∑
n

εn(t)eiψn(t)

.

Figure 22 shows the results for an array of N = 19 lasers. There I have introduced

a small amount of intrinsic disorder (δ ∼ 10−4). The upper panel is the result when all

lasers are pumped with Gp = 1.9; the lower panel is the result when I reduce the pump

for 9 of the lasers to Gp = 0.4, a value below the single-laser threshold value. The other

parameters are listed in the figure caption. Repeated trials indicate that these results are

independent of initial conditions. The uniformly pumped configuration doesn’t generate a

coherent output; consequently, the contrast is considerably lower than for the corresponding

weak-link pumping scheme, whose power spectrum has a single sharp line.

There are other strategies one can try to get the fully pumped array to synchronize.

For example, one can individually trim the pump parameters of each laser in the hope of

somehow compensating for the intrinsic disorder. I tried this: I was unable to get anything

even approaching the clean output of the weak-link synchronized state; there are reasons

to suspect that it is impossible in practice.

Yet another strategy is to change the topology of the array, e.g. by introducing periodic

boundary conditions. This strategy works: a one-dimensional ring of these lasers can ro-

bustly synchronize. On the other hand, using a ring architecture begs the question of still
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Figure 22: Power spectrum P (ω) for a linear array of 19 lasers with near-neighbor coupling,
with r = 0.2, ε = 0.005, δ ∼ 10−4, κ = 0.015, and zc = 1. Initial conditions were chosen
randomly with εn ∈ (0, 1), ψn ∈ (0, 2π), and Gn ∈ (1.6, 2.3). The upper plot is for the case
when all lasers are strongly pumped, with Gp = 1.9. The lower plot is for the case when
instead every other laser is under-pumped, with Gp = 0.4 (weak link synchronization).

larger arrays. After all, a large ring takes up a large cross-sectional area, most of which is

empty space. From the perspective of total power, a more attractive possibility is to use a

large bundle of fiber lasers. I consider, therefore, a bundle comprising four concentric rings

of 1, 6, 12, and 18 lasers. The resulting arrangement of 37 lasers is illustrated in Fig. 23. In

view of the robust synchronization of a single ring, I choose for my weak-link configuration

one where every other ring is under-pumped. I compare the output against the output

of the corresponding fully-pumped configuration, as shown in Fig. 24. In the well-pumped

array I find no synchronization; the other array readily falls into the weak-link synchronized

attractor.

The same strategy works for even larger arrays. I have observed robust weak link

79



Figure 23: Cross section of the 37-fiber system and the pumping scheme used to achieve
weak link synchronization. Black and gray circles represent the well-pumped and under-
pumped lasers, respectively.

synchronization in simulations with as many as 91 elements (comprising 6 concentric rings)

with no apparent degradation.

3.4.3 General oscillator analysis

Is the behavior of the fiber laser array unique, or is weak-link synchronization a more

general phenomenon? Most of the principle ingredients of the laser system can be observed

in an archetypical model which describes a broad range of physical problems. Consider

the general equations of a chain of coupled Hopf oscillators with slowly varying complex

amplitudes [3, 167]:

Ȧi = iωiAi + µiAi − (γi + iαi)|Ai|2Ai +
∑

j

Sij(Aj −Ai).

For simplicity I restrict myself to nearest-neighbor coupling: Sij = iκ(δj,i+1+δj,i−1), with

the same nonlinear frequency shift αi
γi
≡ α for all oscillators. Introducing real amplitudes

and phases according to Ai = ri√
γi

eiθi , I get:
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Figure 24: Same as Fig. 22 but for a two dimensional (N = 37) array. Upper plot is for
the all-pumped configuration; lower plot is for the weak link arrangement.

ṙi = µiri − r3
i + κri−1 sin(θi − θi−1)− κri+1 sin(θi+1 − θi),

θ̇i = ωi − αr2
i − 2κ + κ

ri−1

ri
cos(θi − θi−1) + κ

ri+1

ri
cos(θi+1 − θi).

Note that without coupling (κ = 0), each oscillator obeys the normal form equation for

a supercritical Hopf bifurcation: when µ < 0 the origin r = 0 is a stable spiral; when µ > 0

there is an unstable spiral at the origin and a stable circular limit cycle at r =
√

µ.

For N = 2 these equations show similar behavior to two fiber lasers: if both oscillators

are “turned on” (i.e. µ1,2 > 0) then they synchronize to each other in terms of frequency

entraining and constant phase difference only if the detuning ∆ω = |ω1−ω2| and mismatch

∆µ = |µ1 − µ2| are small enough; but if one of them is turned off (so µ1 < 0 and µ2 > 0)
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then they synchronize regardless of ∆ω and ∆µ, with the first oscillator having very small

(but non-zero) amplitude.

What happens to a linear array of these oscillators with every other one under-pumped,

i.e. taking µ2i < 0 and µ2i+1 > 0, and some distribution of ωi? Such a system indeed

synchronizes, though there are significant differences with the laser system. First of all,

even in the case of the weak-link configuration the Hopf array is still sensitive to the width

of natural frequency distribution, ∆ω. Moreover, for some small ∆ω the configuration of

all-turned-on oscillators with close positive µ’s also readily synchronizes, which was not the

case for the fiber lasers. This means that although weak-link synchronization occurs in the

Hopf array, it does not provide the obvious benefit of superior robustness when compared

against the conventional strategy of using uniformly pumped arrays.

That said, one sees that weak-link synchronization is not a peculiar property of the

fiber-laser system, and may provide a useful alternative scheme for synchronizing other

nonlinear oscillator arrays where conventional synchronization is troublesome or elusive.
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CHAPTER IV

CONCLUSIONS

This thesis considered examples of nonlinear oscillator arrays with a coupling which is a

dynamical unit by itself. Each of the two systems analyzed in the thesis led to the discovery

of new and interesting phenomena, and also might have promising scientific applications.

It was shown that taking advantage of proper positioning of oscillating elements in a

distributed array can provide a resonant architecture and a situation when weak physical

coupling is effectively amplified, increasing the degree of coherence. I set up the problem

of synchronization in the load-free Josephson transmission line and analyzed the effects

of the coupling, which is intrinsically distributed. A somewhat peculiar phenomenon of

the formation of inert oscillating pairs was observed and explained from both physical and

mathematical points of view.

Despite the progress I made in the understanding of the properties of this system, there

are still open questions concerning the frustration behavior among equally-spaced junctions

and possible simultaneous effects of a transmission line and a load on the synchronization

in general, and the paired state in particular.

By considering van der Pol oscillators instead of Josephson junctions I have confirmed

that the paring phenomenon does not come from some special characteristics of single

Josephson junctions or its nonlinearity type, which implies that the problem can be viewed

from a much broader fundamental perspective.

The study of a different system of coupled nonlinear oscillators, namely an array of in-

teracting fiber lasers, disclosed an even more promising phenomenon that I called weak-link

synchronization. Such arrays can also take an advantage of coupling through a dynami-

cal object, though this time the mechanism is quite different. In this case the coupling

is provided by oscillators of the same nature but driven in a different way than the ones

contributing most to the total coherent field.
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The important feature of this system is that conventional direct coupling of equally

driven oscillators does not provide a robust synchronized state, contrary to the weak-link

configuration, which not only makes the coherence possible, but also guarantees its robust-

ness with respect to frequency detuning or other parameter mismatch.

Testing the idea of the weak-link synchronization on oscillators of a more general type

supported my expectation that this phenomena can be observed in other physical or bi-

ological systems. However, determination of the conditions for the robustness or other

desired properties require additional research and deeper understanding of the underlying

mechanisms.

Hopefully, my work will motivate other scientists to explore structurally similar systems

in regard to these or other interesting phenomena. As was described in the Introduction,

synchronization phenomena already have been implemented in many useful applications.

Therefore, theoretical discoveries of new aspects in technologically motivated problems such

as arrays of Josephson junctions or fiber lasers have potential importance for future engi-

neering developments.
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APPENDIX A

DETAILED ANALYSIS OF THE TWO COUPLED

SINGLE-MODE LASER MODEL

In this appendix I present a thorough mathematical analysis of the equations which were

discussed in Chapter 3. Since these equation are strongly nonlinear and have 5 degrees of

freedom, finding even the fixed point solutions is not trivial.

The method of solution is the following. First, I rewrite the equations in a convenient

form, so that I can find all possible interactions of some nonlinear functions, which allows me

to determine the number of solutions in each parameter regime. Moreover, the asymptotic

behavior of these functions provides an initial guess for the solution values. Then, having

a knowledge of the leading terms of all solutions, I find the corresponding corrections up to

second order in the small parameter of the problem, namely the coupling parameter p.

The stability of the solutions is also an important issue, which is addressed in Sec-

tion (A.2).

Since the motivation for the analysis of this model was to consider the effects of non-zero

detuning (q 6= 0), I have found the q-corrections to the solution as well (Appendix A.3).

According to Eqs.(90) with Eqs.(98,99)

E1(t + T ) = reG1+iφ1S11E1(t) + re
G1+G2

2 S12E2(t),

E2(t + T ) = reG2+iφ2S22E2(t) + re
G1+G2

2 S21E1(t),

where

S11 = S∗22 = cos(p)− i sin(q) sin(p),

S12 = S21 = −i cos(q) sin(p).
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Let En(t) = εn(t)eiψn(t), where εn ≡ |En| and ψn ≡ arg (En), then

ε1(t + T ) cos[ψ1(t + T )] = reG1ε1(t) cos(p) cos[ψ1(t)]

+ reG1ε1(t) sin(q) sin(p) sin[ψ1(t)]

+ re
G1+G2

2 ε2(t) cos(q) sin(p) sin[ψ2(t)], (101)

ε1(t + T ) sin[ψ1(t + T )] = reG1ε1(t) cos(p) sin[ψ1(t)]

− reG1ε1(t) sin(q) sin(p) cos[ψ1(t)]

− re
G1+G2

2 ε2(t) cos(q) sin(p) cos[ψ2(t)], (102)

ε2(t + T ) cos[ψ2(t + T )] = reG2ε2(t) cos(p) cos[ψ2(t)]

− reG2ε2(t) sin(q) sin(p) sin[ψ2(t)]

+ re
G1+G2

2 ε1(t) cos(q) sin(p) sin[ψ1(t)], (103)

ε2(t + T ) sin[ψ2(t + T )] = reG2ε2(t) cos(p) sin[ψ2(t)]

+ reG2ε2(t) sin(q) sin(p) cos[ψ2(t)]

− re
G1+G2

2 ε1(t) cos(q) sin(p) cos(ψ1(t)). (104)

I consider two lasers synchronized if the phase difference of the fields is a constant in

time. Thus, in order to explore synchronization I have to rewrite the last equations in terms

of phase difference ψ(t) = ψ1(t)− ψ2(t).

From (101)*(103)+(102)*(104), one gets

ε1(t + T )ε2(t + T ) cos[ψ(t + T )] = r2eG1+G2ε1(t)ε2(t) cos2(q) sin2(p) cos[ψ(t)]

+r2eG1+G2ε1(t)ε2(t)[cos2(p)− sin2(q) sin2(p)] cos[ψ(t) + φ]

+2r2eG1+G2ε1(t)ε2(t) sin(q) sin(p) cos(p) sin[ψ(t)]

+re
G1+G2

2 [reG1ε2
1(t)− reG2ε2

2(t)] sin(q) cos(q) sin2(p). (105)

(102)*(103)-(101)*(104):
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ε1(t + T )ε2(t + T ) sin[ψ(t + T )] = −r2eG1+G2ε1(t)ε2(t) cos2(q) sin2(p) sin[ψ(t)]

+r2eG1+G2ε1(t)ε2(t)[cos2(p)− sin2(q) sin2(p)] sin[ψ(t)]

−2r2eG1+G2ε1(t)ε2(t) sin(q) sin(p) cos(p) cos[ψ(t) + φ]

+re
G1+G2

2 [reG1ε2
1(t)− reG2ε2

2(t)] cos(q) cos(p) sin(p). (106)

(101)*(101)+(102)*(102):

ε2
1(t + T ) = r2e2G1ε2

1(t)[cos2(p) + sin2(q) sin2(p)]

+r2eG1+G2ε2
2(t) cos2(q) sin2(p)

+2r2e
3G1+G2

2 ε1(t)ε2(t) sin(q) cos(q) sin2(p) cos[ψ(t)]

−2r2e
3G1+G2

2 ε1(t)ε2(t) cos(q) cos(p) sin(p) sin[ψ(t)]. (107)

(103)*(103)+(104)*(104):

ε2
2(t + T ) = r2e2G2ε2

2(t)[cos2(p) + sin2(q) sin2(p)]

+r2eG1+G2ε2
1(t) cos2(q) sin2(p)

−2r2e
G1+3G2

2 ε1(t)ε2(t) sin(q) cos(q) sin2(p) cos[ψ(t)]

+2r2e
G1+3G2

2 ε1(t)ε2(t) cos(q) cos(p) sin(p) sin[ψ(t)]. (108)

In this form the equations are still quite complicated. Hence, I will start with a sim-

ple particular case of equal modes (β1 = β2), before considering the general situation (in

Appendix A.3).

Let δ = 0, so that p = 2zcκ and q = 0, then one can rewrite Eqs.(105,106,107,108) as
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ε1(t + T )ε2(t + T ) cos[ψ(t + T )] = r2eG1(t)+G2(t)ε1(t)ε2(t) cos[ψ(t)], (109)

ε1(t + T )ε2(t + T ) sin[ψ(t + T )]

= r2eG1+G2ε1(t)ε2(t)[cos2(p)− sin2(p)] sin[ψ(t)]

+re
G1+G2

2 [reG1ε2
1(t)− reG2ε2

2(t)] sin(p) cos(p), (110)

ε2
1(t + T ) = r2e2G1ε2

1(t) cos2(p) + r2eG1+G2ε2
2(t) sin2(p)

−2r2e
3G1+G2

2 ε1(t)ε2(t) sin(p) cos(p) sin[ψ(t)], (111)

ε2
2(t + T ) = r2e2G2ε2

2(t) cos2(p) + r2eG1+G2ε2
1(t) sin2(p)

+2r2e
G1+3G2

2 ε1(t)ε2(t) sin(p) cos(p) sin[ψ(t)], (112)

G1(t + T ) = G1(t) + ε[Gp
1 −G1(t)− 2(1− e−G1(t))ε2

1(t)], (113)

G2(t + T ) = G2(t) + ε[Gp
2 −G2(t)− 2(1− e−G2(t))ε2

2(t)], (114)

where I have also added Eqs.(91).

A.1 Fixed point solutions

Let me denote the fixed point solution as (ψ̃, ε̃1, ε̃2, G̃1, and G̃2). From now on I will

assume that ε̃1, ε̃2, G̃1, and G̃2 are strictly positive. Then Eq.(109) gives:

cos(ψ̃)[1− r2eG̃1+G̃2 ] = 0,

and I have two possible cases:

Case 1(cos(ψ̃) 6= 0)

In this case r2eG̃1+G̃2 = 1 and from Eqs.(110-114) I have:
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2 sin(p) sin(ψ̃)− r cos(p)
[
ε̃1

ε̃2
eG̃1 − ε̃2

ε̃1
eG̃2

]
= 0, (115)

r2e2G̃1 cos2(p) +
(

ε̃2

ε̃1

)2

sin2(p)− 2r
ε̃2

ε̃1
eG̃1 sin(p) cos(p) sin(ψ̃) = 1, (116)

r2e2G̃2 cos2(p) +
(

ε̃1

ε̃2

)2

sin2(p) + 2r
ε̃1

ε̃2
eG̃2 sin(p) cos(p) sin(ψ̃) = 1, (117)

ε̃1
2 =

Gp
1 − G̃1

2(1− e−G̃1)
, ε̃2

2 =
Gp

2 − G̃2

2(1− e−G̃2)
. (118)

Substituting sin(ψ̃) from Eq.(115) into Eqs.(116, 117) gives the following result:

ε̃1 = ε̃2,

so that

sin(ψ̃) =
r(eG̃1 − eG̃2)

2 tan(p)
, (119)

Gp
1 − G̃1

1− e−G̃1
=

Gp
2 − G̃2

1− e−G̃2
. (120)

In order to find G̃1 and G̃2 , let me use the following notation:

x = e−G̃1 , y = e−G̃2 , xp = e−Gp
1 , yp = e−Gp

2 ,

so that xy = r2 and from Eq.(120)

ln x− ln xp

1− x
=

ln y − ln yp

1− y
,

where x, y, xp, yp ∈ (0, 1).

Actually, since ε̃1 and ε̃2 are positive, then xp < x and yp < y, so that xpyp < xy = r2.

Substituting y = r2/x into the last expression I get

ln x− lnxp

1− x
=

ln r2 − ln x− ln yp

1− r2/x
,

which is equivalent to
ln(x/xp)

1− x
=

ln[r2/(xpyp)]− ln(x/xp)
1− r2/x

.

The next step is to right this as

1− r2/x

1− x
=

ln[r2/(xpyp)]− ln(x/xp)
ln(x/xp)

=
ln[r2/(xpyp)]

ln(x/xp)
− 1,
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or
ln[r2/(xpyp)]

ln(x/xp)
= 1 +

1− r2/x

1− x
=

2− x− r2/x

1− x
=

2x− x2 − r2

x(1− x)
,

and finally

ln(x/xp)
ln(r/√xpyp)

=
2x(1− x)

(1− r2)− (1− x)2
. (121)

The right-hand side of Eq.(121) decreases from 0 to −∞, when x ∈ (0, x0), and decreases

from +∞ to 0, when x ∈ (x0, 1), where x0 = 1−√1− r2. Since xpyp < r2, then the left-hand

side of Eq.(121) increases from −∞ to 0, when x ∈ (0, xp), and continues to increase from

0 to ln(1/xp)
ln(r/

√
xpyp) , when x ∈ (xp, 1). Hence, there are two solution of Eq.(121): x− ∈ (0, xp)

and x+ ∈ (xp, 1). Therefore, the physically meaningful solution is x+.

Now, since | sin(ψ̃)| ≤ 1, then from Eq.(119) I find that

|eG̃1 − eG̃2 | ≤ 2 tan(p)
r

¿ 1.

On the other hand from Eq.(120) I find that G̃1 = G̃2 if and only if Gp
1 = Gp

2, which means

that a fixed point solution exists only for small values of |xp − yp|.
Let me first consider the special case when yp = xp = e−Gp

, then simply by inspection

I find that the solution of Eq.(119) is x+ = r, and thus, the fixed point solution is

ψ̃ = 0, π, (122)

ε̃1
2 = ε̃2

2 =
Gp + ln r

2(1− r)
, (123)

G̃1 = G̃2 = ln
1
r
. (124)

Now I can find the corrections to this solution assuming that |Gp
1 −Gp

2| is small enough

(the explicit expression for this condition must be also derived).

So let x = r(1− ρ), where ρ ¿ 1, then from Eq.(119) I get

ln(r/xp) + ln(1− ρ)
ln(r/√xpyp)

=
2r(1− ρ)(1− r + rρ)

(1− r2)− (1− r + rρ)2

=
2r(1− r + 2rρ− ρ) + O(r2ρ2)

(1− r2)− (1− r)2 − 2(1− r)rρ + O(r2ρ2)
=

1− ρ1−2r
1−r + O(ρ2))

1− ρ + O(ρ2)

= (1− ρ
1− 2r

1− r
)(1 + ρ) + O(ρ2) = 1 + ρ

r

1− r
+ O(ρ2).
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Hence, to first order in ρ,

ln(r/xp)− ρ = (1 + ρ
r

1− r
) ln(r/

√
xpyp),

and therefore,

ρ =
ln(

√
yp/xp)

1 + r ln(r/
√

xpyp)

1−r

=
(Gp

1 −Gp
2)/2

1 + r(Gp+ln r)
1−r

,

ψ̃ = arcsin
[

ρ

tan(p)

]
+ O(ρ2),

ε̃1
2 = ε̃2

2 =
Gp + ln r

2(1− r)
+ O(ρ2),

G̃1 = ln
1
r

+ ρ + O(ρ2),

G̃2 = ln
1
r
− ρ + O(ρ2),

where Gp = Gp
1+Gp

2
2 .

Case 2 (cos(ψ̃) = 0)

In this case sin(ψ̃) = ±1 ≡ g0, so that Eqs.(110,111,112) give the following equations for a

fixed point:

g0 = g0r
2eG̃1+G̃2 [cos2(p)− sin2(p)] + r2e

G̃1+G̃2
2

[
ε̃1

ε̃2
eG̃1 − ε̃2

ε̃1
eG̃2

]
sin(p) cos(p) = 0,

r2e2G̃1 cos2(p) + r2eG̃1+G̃2

(
ε̃2

ε̃1

)2

sin2(p)− 2g0r
2eG̃1e

G̃1+G̃2
2

(
ε̃2

ε̃1

)
sin(p) cos(p) = 1,

r2e2G̃2 cos2(p) + r2eG̃1+G̃2

(
ε̃1

ε̃2

)2

sin2(p) + 2g0r
2eG̃2e

G̃1+G̃2
2

(
ε̃1

ε̃2

)
sin(p) cos(p) = 1.

I can write this result in the earlier introduced notations as

r2

xy
[cos2(p)− sin2(p)] + g0r cos(p)

[
r sin(p)ε̃1

xε̃2
√

xy
− r sin(p)ε̃2

yε̃1
√

xy

]
= 1, (125)

(
r cos(p)

x
− g0

r sin(p)ε̃2

ε̃1
√

xy

)2

= 1,

(
r cos(p)

y
+ g0

r sin(p)ε̃1

ε̃2
√

xy

)2

= 1.
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From the last two expressions I find that

g0
r sin(p)ε̃2

ε̃1
√

xy
=

r cos(p)
x

− g1, (126)

g0
r sin(p)ε̃1

ε̃2
√

xy
= g2 − r cos(p)

y
, (127)

where g1 = ±1 and g2 = ±1.

Substituting Eq.(126,127) into Eq.(125) I get

1 +
r2

xy
= r cos(p)

[
g2

x
+

g1

y

]
,

so that

g1x = r
g2y cos(p)− r

g1y − r cos(p)
.

Dividing Eq.(127) by Eq.(126) I obtain

yε̃1
2

xε̃2
2 =

g2y − r cos(p)
r cos(p)− g1x

.

Finally using the fact that

r cos(p)− g1x = r cos(p)− r
g2y cos(p)− r

g1y − r cos(p)
= r

(g1 − g2)y cos(p) + r sin2(p)
g1y − r cos(p)

,

I find
yε̃1

2

xε̃2
2 =

(g1y − r cos(p))(g2y − r cos(p))
(g1 − g2)ry cos(p) + r2 sin2(p)

.

On the other hand from Eqs.(113,114) I have

ε̃1
2

ε̃2
2 =

ln(x/xp)(1− y)
ln(y/yp)(1− x)

,

so that I get two equations with two variables (x,y):

ln(x/xp)(1− y)y
ln(y/yp)(1− x)x

=
(g1y − r cos(p))(g2y − r cos(p))
(g1 − g2)ry cos(p) + r2 sin2(p)

, (128)

x = r
g2y cos(p)− r

y − g1r cos(p)
. (129)

Let me define functions L(y, xp, yp) and R(y) as:
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L(y, xp, yp) =
ln[x(y)/xp](1− y)y

ln(y/yp)[1− x(y)]x(y)
,

R(y) =
[g1y − r cos(p)][g2y − r cos(p)]
(g1 − g2)ry cos(p) + r2 sin2(p)

.

Now I have to consider 3 different cases: g1 = g2 = +1, g1 = −g2 = ±1 and g1 = g2 = −1.

Case 2.1 (g1 = g2 = +1)

In this case

L(y, xp, yp) =
ln[x(y)/xp](1− y)y

ln(y/yp)[1− x(y)]x(y)
,

R(y) =
[y − r cos(p)]2

r2 sin2(p)
,

x(y) = r
y cos(p)− r

y − r cos(p)
.

Note that x(y) increases from Y2 to 1, when y ∈ (0, Y1), where Y1 = r cos(p)−r
1−r cos(p) < r cos(p)

and Y2 = r
cos(p) > Y1, and it increases from 0 to Y1, when y ∈ (Y2, 1). For y ∈ (Y1, Y2),

x(y) < 0 or x(y) > 1, which is beyond physical values, because x = e−G̃. If cos(p) < r, then

Y1 < 0, Y2 > 1 and there can be no solutions at all, so that p must be less then arccos(r).

Moreover if both xp and yp bigger than Y1, then there are no solutions. And the last remark

is that x(y, p) = xp at y = Y3 = r
xp cos(p)−r
xp−r cos(p) . Since I restricted myself to cos(p) > r, then

Y3 ∈ (0, Y1) for xp > Y2 and Y3 ∈ (Y2, 1) for xp < Y1.

Hence, the function L(y, xp, yp) has four characteristic points, Y1, Y2, Y3 and yp, and I

have to consider five different possibilities:

(1) 0 < xp < Y1 and 0 < yp < Y1,

(2) 0 < xp < Y1 and Y1 < yp < Y2,

(3) 0 < xp < Y1 and Y2 < yp < 1,

(4) Y1 < xp < Y2 and 0 < yp < Y1,

(5) Y2 < xp < 1 and 0 < yp < Y1.

The function R(y,p) is a parabola, which is positive and symmetrical with respect to

y = Y2, where it is zero.
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So, let me first consider the possibility (1). We have yp < Y1 < Y2 < Y3, L(y, xp, yp) →
+∞ at y → (yp)+ and at y → (Y1)−, and L(y, xp, yp) → −∞ at y → (Y2)+. Hence,

L(y, xp, yp) has a positive minimum on y ∈ (yp, Y1) and positive maximum on y ∈ (Y3, 1).

When p and yp are small enough, R(y, p) > min[L(y, p)] and I have two solutions, y1

and y2, on y ∈ (yp, Y1). Similarly, when p and xp are small enough, R(y, p) < max[L(y, p)]

and I have two more solutions, y3 and y4, on y ∈ (Y2, 1). In the limit p → 0, y1 ≈ yp and

y2 ≈ y3 ≈ y4 ≈ r.

Let

∆1(xp, yp) = min [L(y, xp, yp)−R(y)],

y ∈ (yp, Y1)

∆2(xp, yp) = max [L(y, xp, yp)−R(y)],

y ∈ (Y3, 1)

then the equations ∆1,2(xp, yp) = 0 produce two bifurcation curves in the (xp, yp)-parameter

space, so that I have:

4 solutions (y1, y2, y3, y4), when ∆1(xp, yp) < 0 and ∆2(xp, yp) > 0;

2 solutions (y1 and y2), when ∆1(xp, yp) < 0 and ∆2(xp, yp) < 0;

2 solutions (y3 and y4), when ∆1(xp, yp) > 0 and ∆2(xp, yp) > 0;

and 0 solutions, when ∆1(xp, yp) > 0 and ∆2(xp, yp) < 0.

Now for the possibility (2), I have Y1 < yp < Y2 < Y3, so that I can have solutions only

for y ∈ (Y2, 1), where the function L(y, xp, yp) has a positive maximum. Therefore I find

two solutions, y3 and y4, for ∆2(xp, yp) > 0 and no solutions for ∆2(xp, yp) < 0. Note that

L(y, xp, yp) changes continuously on y ∈ (Y3, 1), when the parameter yp passes Y1. Hence,

the curve ∆2(xp, yp) is continuous at yp = Y1, as well as the solutions y3 and y4.

My next step is to find solutions for the possibility (3), when both Y3 and yp bigger

then Y2. Let

∆3(xp, yp) = yp − Y3 = yp − rxp cos(p)− r2

xp − r cos(p)
.

If ∆3(xp, yp) > 0, then L(y, p) → +∞ at y = (yp)+ and I have only one solution, y5,
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for y ∈ (yp, 1). In the limit p → 0, y5 ≈ y1 ≈ yp. If ∆3(xp, yp) < 0, then L(y, p) →
−∞ at y = (yp)+ and L(Y3, xp, yp) = L(1, xp, yp) = 0, so that L(y, xp, yp) has a positive

maximum on y ∈ (yp, 1). Hence I obtain two solutions, y3 and y4, when ∆3(xp, yp) < 0

and ∆2(xp, yp) > 0, and zeros solutions when ∆3(xp, yp) < 0 and ∆2(xp, yp) < 0. Note

that ∆3(xp, yp) < 0 at yp = Y2 for 0 < xp < Y1 and L(y, xp, yp) changes continuously on

y ∈ (Y3, 1), when the parameter yp passes Y2. Therefore, the curve ∆2(xp, yp) is continuous

at yp = Y2.

Here is a good place to recall that Eqs.(109-114) stay the same if I exchange indices 1

and 2. This means that if (x, y) is a solution for parameters (xp, yp), then (y, x) is also a

solution for parameters (yp, xp). Thus, the bifurcation curves ∆1,2,3(xp, yp) are symmetric

in the (xp, yp)-parameter space with respect to the line xp = yp. So that I don’t even need

to consider separately the possibilities (4) and (5).

I can estimate the values of y1, y2, y3 and y4 in the limit p → 0, where y1 ≈ yp and

y2 ≈ y3 ≈ y4 ≈ r. In this limit L(y2, p) = L(y4, p) = ln(r/xp)
ln(r/yp) + O(p), so that y2,4−r+O(p2)

rp =

∓
√

ln(r/xp)
ln(r/yp) +O(p); and L(y3, p) = 0+O(p), so that y3−r+O(p2)

rp = O(p). Now let y1 = yp +δ,

then L(y1, p) ∼ 1
δ1

and R(y1, p) ∼ 1
p2 . Hence δ1 = O(p2) and finally

y1 = yp + O(p2),

y2 = r

(
1− p

√
ln(r/xp)
ln(r/yp)

)
+ O(p2),

y3 = r + O(p2),

y4 = r

(
1 + p

√
ln(r/xp)
ln(r/yp)

)
+ O(p2).

The easiest way to find the corresponding x’s is to realize that I could start from the

beginning by expressing y as a function of x, so that

L(x, xp, yp) =
ln[y(x)/yp](1− x)x

ln(x/xp)[1− y(x)]y(x)
,

R(x) =
[x− r cos(p)]2

r2 sin2(p)
,

y(x) = r
x cos(p)− r

x− r cos(p)
;
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and, therefore,

x1 = r + O(p2),

x2 = r

(
1 + p

√
ln(r/yp)
ln(r/xp)

)
+ O(p2),

x3 = xp + O(p2),

x4 = r

(
1− p

√
ln(r/yp)
ln(r/xp)

)
+ O(p2).

The symmetry arguments at xp = yp assure the proper matching.

Case 2.2 (g1 = −g2 = ±1)

In this case

L(y, xp, yp) =
ln[x(y)/xp](1− y)y

ln(y/yp)[1− x(y)]x(y)
,

R(y) =
r2 cos(p)2 − y2

r2 sin2(p)± 2ry cos(p)
,

x(y) = r
y cos(p)± r

r cos(p)∓ y
.

These equations have the same topological structure in (xp, yp)-parameter space as the

equations in the previous case, only now Y1 = r cos(p)−r
1+r cos(p) < r 1−r

1+r and Y3 = r
xp cos(p)−r
xp+r cos(p) . So

that, there is no solution unless Gp
1 or Gp

2 is bigger than ln 1+r
r−r2 (which is 2.015 for r = 0.2).

Case 2.3 (g1 = g2 = −1)

In this case x(y) = −r y cos(p)+r
r cos(p)+y < 0 for any positive cos(p), so that we find no solutions

at all.

This completes consideration of all possible solutions in both cases, cos(ψ̃) = 0 and

cos(ψ̃) 6= 0, for the case of identical modes (β1 = β2).
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A.2 Linear stability of the solutions

I start the stability analysis with the case: cos(ψ̃) 6= 0, when Eqs.(109-114) can be written

as

ψ(t + T ) = arctan
(
[cos2(p)− sin2(p)] tan[ψ(t)]

+

[√
y(t)ε1(t)√
x(t)ε2(t)

−
√

x(t)ε2(t)√
y(t)ε1(t)

]
sin(p) cos(p)

cos[ψ(t)]

)
, (130)

ε1(t + T ) =
rε1(t)
x(t)

(
cos2(p) +

x(t)ε2
2(t)

y(t)ε2
1(t)

sin2(p)

− 2

√
x(t)ε2(t)√
y(t)ε1(t)

sin(p) cos(p) sin[ψ(t)]

)1/2

, (131)

ε2(t + T ) =
rε2(t)
y(t)

(
cos2(p) +

y(t)ε2
1(t)

x(t)ε2
2(t)

sin2(p)

+ 2

√
y(t)ε1(t)√
x(t)ε2(t)

sin(p) cos(p) sin[ψ(t)]

)1/2

, (132)

x(t + T ) = x(t)
(

x(t)
xp

)−ε

e2ε[1−x(t)]ε2
1(t), (133)

y(t + T ) = y(t)
(

y(t)
yp

)−ε

e2ε[1−y(t)]ε2
2(t). (134)

The corresponding fixed point solution was found in the previous section:

ε̃1 = ε̃2 = ε̃ =
[
ln(r/√xpyp)

2(1− r)

]1/2

+ O(p2),

x̃ = r(1− p sin(ψ̃)) + O(p2),

ỹ = r(1 + p sin(ψ̃)) + O(p2),

sin(ψ̃) =
ln(yp/xp)

p (1 + 2rε̃)
(1 + O(p2)).

The Jacobi matrix at this point is

J =




1 2p
ε̃ cos(ψ̃) −2p

ε̃ cos(ψ̃) −p
r cos(ψ̃) p

r cos(ψ̃)

−pε̃ cos(ψ̃) 1 + p sin(ψ̃) −p sin(ψ̃) − ε̃
r [1 + 3p

2 sin(ψ̃)] pε̃
2r sin(ψ̃)

pε̃ cos(ψ̃) p sin(ψ̃) 1− p sin(ψ̃) −pε̃
2r sin(ψ̃) − ε̃

r [1− 3p
2 sin(ψ̃)]

0 4εε̃r(1− r) 0 1− ε(1 + 2rε̃2) 0

0 0 4εε̃r(1− r) 0 1− ε(1 + 2rε̃2)




,

where I have omitted all terms of the order εp, p2, and higher. In order to make a quan-

titative estimate I keep only the leading terms of the equation det(J − λE) = 0, so that
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λ1 = λ2 = λ3 = 1 and

λ4,5 = 1− ε(1 + 2rε̃2)± i

√
8εε̃2(1− r) + 4p2 cos2(ψ̃).

Hence the fixed point solution is stable as long as

p | cos(ψ̃)| <
√

ε

2

(
1− ε̃2

ε2
m

)
,

where εm = 1/
√

4− 6r, and which is consistent with direct numerical calculations.

The next step is to consider the case cos(ψ̃) = 0. Let me for a moment assume that

ψ(t) = ±π
2 + δψ(t), where δψ(t) is a small perturbation, then from Eq.(109) I find

δψ(t + T ) =
r2

x̃ỹ
δψ(t),

so that one of the eigenvalues is

λ1 =





r
yp

for solution (x1, y1),

1− p
[√

ln(r/yp)
ln(r/xp) −

√
ln(r/xp)
ln(r/yp)

]
for solution (x2, y2),

r
xp

for solution (x3, y3),

1− p
[√

ln(r/xp)
ln(r/yp) −

√
ln(r/yp)
ln(r/xp)

]
for solution (x4, y4).

The other eigenvalues are determined by the Jacobi matrix of Eqs.(131-134), which is




1∓ pε̃2

ε̃1
±p − ε̃1

r ± 3pε̃2

2r ∓pε̃2

2r

∓p 1± pε̃1

ε̃2
±pε̃1

2r − ε̃2
r ∓ 3pε̃1

2r

4εε̃1r(1− r) 0 1− ε(1 + 2rε̃1
2) 0

0 4εε̃2r(1− r) 0 1− ε(1 + 2rε̃2
2)




for the solutions (x2, y2) and (x4, y4), where

ε̃1 =

√
ln(r/xp)
2(1− r)

+ O(p2), ε̃2 =

√
ln(r/yp)
2(1− r)

+ O(p2).

The solution (x1, y1) corresponds to the fixed point

ε̃1 =

√
ln(r/xp)
2(1− r)

+ O(p2), ε̃2 =
p ε̃1

√
ryp

yp − r
+ O(p2),

x̃ = r + O(p2), ỹ = yp + O(p2), sin(ψ̃) = 1,
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so that the Jacobi matrix at this point is



1 −p
√

r√
yp

− ε̃1
r 0

p
√

r√
yp

r
yp

− pε̃1

2
√

ryp
−pε̃1

√
r

2
√

y3
p

yp+r
yp−r

4εε̃1r(1− r) 0 1− ε(1 + 2rε̃1
2) 0

0 0 0 1− ε




Thus, to the first order in p, λ2 = 1− ε, λ3 = r
yp

and |λ4,5|2 = 1− ε
(
1− ε̃1

2

ε2
m

)
, and for small

p the stability region is 



1 > yp > r,

r > xp > rm ≡ e
1−r
3r−2 ,

where xp = rm when ε̃1 = εm. (For r = 0.2, rm ≈ 0.113.)

I get similar results for the solution (x3, y3):

ε̃1 =
p ε̃2

√
rxp

xp − r
+ O(p2) ε̃2 =

√
ln(r/yp)
2(1− r)

+ O(p2),

x̃ = xp + O(p2), ỹ = r + O(p2), sin(ψ̃) = −1.

λ2 = 1− ε, λ3 = r
xp

, |λ4,5|2 = 1− ε
(
1− ε̃1

2

ε2
m

)
, and the stability region is:





1 > xp > r,

r > yp > rm.

A.3 Non-identical modes

In this section I will consider the situation when the modes have a slightly different propa-

gation constants, β1 6= β1, so that q is small but finite. Since I have analytical expressions

for the fixed point solutions only to first order in p, it makes sense to ignore the terms of

the order qp2 and higher in Eqs.(105-108). Then the modified equations for a fixed point
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are

cos(ψ)
(xy

r2
− 1

)
= 2q sin(p) cos(p) sin(ψ), (135)

sin(ψ)
(xy

r2
− 1 + 2 sin2(p)

)
−

(
ε1
√

y

ε2
√

x
− ε2

√
x

ε1
√

y

)
sin(p) cos(p)

= −2q sin(p) cos(p) cos(ψ), (136)

x2

r2
= cos2(p) +

ε2
2x

ε2
1y

sin2(p)− 2
ε2
√

x

ε1
√

y
sin(p) cos(p) sin(ψ), (137)

y2

r2
= cos2(p) +

ε2
1y

ε2
2x

sin2(p) + 2
ε1
√

y

ε2
√

x
sin(p) cos(p) sin(ψ), (138)

ε2
1

ε2
2

=
ln(x/xp)
ln(y/yp)

(1− y)
(1− x)

. (139)

I can find new fixed point solutions as corrections to the ones found:

ψ = ψ̃ + αψq,

x = x̃(1 + αxq),

y = ỹ(1 + αyq),

ε1
ε2

=
ε̃1

ε̃2
(1 + αεq).

As usual I start with the case cos(ψ̃) 6= 0, when ε̃1 = ε̃2, x̃ỹ = r2 and Eqs.(135-138) become

(αx + αy) cos(ψ̃) = 2 sin(p) cos(p) sin(ψ̃), (140)

(αx + αy) sin(ψ̃) + 2αψ cos(ψ̃) sin2(p)

= (2αε − αx + αy)
x̃ + ỹ

2r
sin(p) cos(p)− 2 sin(p) cos(p) cos(ψ̃), (141)

αx =
(

αε − αx − αy

2

) [√
ỹ√
x̃

sin(p) cos(p) sin(ψ̃)− sin2(p)
]

−αψ

√
ỹ√
x̃

sin(p) cos(p) cos(ψ̃), (142)

αy =
(

αε − αx − αy

2

)[√
x̃√
ỹ

sin(p) cos(p) sin(ψ̃) + sin2(p)

]

+αψ

√
x̃√
ỹ

sin(p) cos(p) cos(ψ̃). (143)

It is convenient to introduce the following notation:
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α+ = αx + αy,

α− = αx − αy.

Using this notation Eqs.(140-143) are

α+ = 2 sin(p) cos(p)
sin(ψ̃)
cos(ψ̃)

, (144)

α+ sin(ψ̃) + 2αψ cos(ψ̃) sin2(p)− (2αε − α−)
x̃ + ỹ

2r
sin(p) cos(p)

= −2 sin(p) cos(p) cos(ψ̃), (145)

α+ = (αε − α−/2)
[
x̃ + ỹ

r
sin(p) cos(p) sin(ψ̃)

]

−αψ
ỹ − x̃

r
sin(p) cos(p) cos(ψ̃), (146)

α− = (αε − α−/2)
[
ỹ − x̃

r
sin(p) cos(p) sin(ψ̃)− 2 sin2(p)

]

−αψ
x̃ + ỹ

r
sin(p) cos(p) cos(ψ̃). (147)

Substituting α+ from Eq.(144) into Eqs.(145-146) I find

sin(p)
[
2 cos(p)
cos(ψ̃)

+ 2αψ sin(p) cos(ψ̃)− (2αε − α−)
x̃ + ỹ

2r
cos(p)

]
= 0,

where I have used the fact that (ỹ− x̃) = rp sin(ψ̃) + O(p2). Hence, to the first order in p I

have
2

cos(ψ̃)
+ 2αψp cos(ψ̃) = 2αε − α−. (148)

Eq.(147) to first order in p gives

α− = −2αψp cos(ψ̃). (149)

Hence, from Eqs.(148) and (149) I obtain

αε =
1

cos(ψ̃)
, (150)
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and from Eqs.(144) and (149) I find

αx = p
sin(ψ̃)
cos(ψ̃)

− αψp cos(ψ̃), (151)

αy = p
sin(ψ̃)
cos(ψ̃)

+ αψp cos(ψ̃). (152)

The last step is to use Eq.(139), which gives

2αε =
αx

ln(x̃/xp)
− αy

ln(ỹ/yp)
+

x̃αx

1− x̃
− ỹαy

1− ỹ

= p
sin(ψ̃)
cos(ψ̃)

[
1

ln(r/xp)
− 1

ln(r/yp)
+ O(p)

]

− αψp cos(ψ̃)
[

1
ln(r/xp)

+
1

ln(r/yp)
+

2r

1− r
+ O(p)

]
,

where I have also used Eqs.(151,152).

Taking into account the fact that [ln(r/xp)−ln(r/√xpyp)] ∼ ρ and [ln(r/yp)−ln(r/√xpyp)] ∼
−ρ, we find that

αψ =
−1

p cos2(ψ̃)

ln(r/√xpyp)
1 + 2rε̃2

, (153)

and finally

sin(ψ) =
ln(√yp/

√
xp)

p(1 + 2rε̃2)
− q ln(r/√xpyp)

p cos(ψ̃)(1 + 2rε̃2)
.

Since | sin(ψ)| ≤ 1, fixed point solutions exist only if

| ln(yp/xp)− q
ln(r2/xpyp)

cos(ψ̃)
| ≤ 2p(1 + 2rε̃2).

Let Gp
1 = Gp + ∆Gp and Gp

1 = Gp + ∆Gp, then I obtain the following condition

q
Gp + ln(r)

cos(ψ̃)
− p(1 + 2rε̃2) ≤ ∆Gp ≤ q

Gp + ln(r)
cos(ψ̃)

+ p(1 + 2rε̃2). (154)

Although the derivation in this section implies that αψq is small, which leads to the

requirement q ¿ p, a direct numerical solution of Eqs.(105-108,113,114) shows that the

stable fixed point solution exists if ∆Gp is close enough to q Gp+ln(r)

cos(ψ̃)
, in conformity with

condition (154), even when q À p. This result suggests that unavoidable discrepancies in

mode propagation constants can be “compensated” in principle by a proper tuning of the
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pumping parameters, Gp
1 and Gp

2. In contrast, the weak-link synchronization described in

Chapter 3 allows one to avoid fine tuning and still have q À p.

Now let cos(ψ̃) = 0, then

sin(ψ) = ±1 + O(q2),

cos(ψ) = ∓αψq + O(q2).

Therefore, in this case Eqs(136-139) have no terms of the order less then q2, which actually

means that to first order q

αx = αy = αε = 0.

The last unknown, αψ, can be found immediately from Eq.(135):

αψ = −2r2 sin(p) cos(p)
x̃ỹ − r2

. (155)

Thus,

αψ =





− 2rp
yp−r for solution (x1, y1),

2
√

ln(r/xp) ln(r/yp)

ln(yp/xp) for solution (x2, y2),

− 2rp
xp−r for solution (x3, y3),

2
√

ln(r/xp) ln(r/yp)

ln(xp/yp) for solution (x4, y4).
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