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3.1 Maltohexaose-conjugated cyanine dye and hydrocyanine. (A) Maltohexaose-
conjugated IR786 (MH-IR786). (B) Reversible reduction reaction. The
fluorescent cyanine dye, IR786, is reduced to the non-fluorescent hydro-
cyanine (hIR786) by sodium borohydride. The fluorescence is recovered
when the hIR786 is oxidized back to IR786 with ROS. . . . . . . . . . . . 61

3.2 In vitro fluorescence recovery. MH-hIR786 was added to DMSO for flu-
orescence baseline detection (black line). Fluorescence recovery was mon-
itored immediately (red line) and after an hour (blue line) after the addition
of Fenton reagent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Fluorescence recovery with or without iron chelator. Flow cytomet-
ric data of lab-strain E. coli incubated without antibiotic, no dye (black);
without antibiotic, with dye (grey, underneath the blue curve); without an-
tibiotic, with dye, with dipyridyl (blue); with ampicillin with dye, with
dipyridyl (green); with ampicillin, with dye (red). . . . . . . . . . . . . . . 65

3.4 Antibiotic-induced ROS detection. Flow cytometric data for (A) peni-
cillin G, (B) ampicillin, (C) cefotaxime, (D) kanamycin, (E) norfloxacin,
(F) ciprofloxacin, and (G) tetracycline. (H) PB-sQF 1D test results, which
coincide with the recovery of the fluorescence intensity from MH-IR786.
All the antibiotics were incubated for 1hr with MH-hIR786 except that
kanamycin was incubated for 2hr. Similar to the observation by Kohan-
ski et al.,[157] bactericidal antibiotic-induced intracellular ROS generation.
Among bactericidal antibiotics, Ciprofloxacin, which is a quinolone simi-
lar to norfloxacin, did not induce measurable ROS generation inside E. coli.
The MIC can be found in Appendix Table B.1 . . . . . . . . . . . . . . . . 67

3.5 ROS-induced fluorescence recovery in resistant clinical isolate. Black
curve: no PenG/no MH-hIR786. Grey curve: no PenG/MH-hIR786. Green
curve: 1/4x MIC/MH-hIR786. Red curve: 1x MIC/MH-hIR786. The MIC,
32 µg/mL, was the concentration of the lab strain (ATCC) and was used
for both strains. (A) Fluorescence recovered as expected in the lab strain
(sensitive strain). (B) The fluorescence shows no significant recovery in the
resistant strain at the sensitive strain’s MIC. (C) PB-sQF quantification of
data in A and B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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3.6 Antibiotic-induced signal changes. All data were collected in the pres-
ence of MH-IR786. (A to C) Scatter signal changes for different antibi-
otics. The pseudocolor plots are the no-antibiotic data. The overlay contour
plots were data of the 1x MIC treatment. (A) Penicillin G (B) Tetracycline
(C) Kanamycin. (D to F) Fluorescence signal changes from 1/16x MIC
to 1x MIC and the no-antibiotic control. Grey curve: no antibiotic. Blue
curve: 1/16x MIC. Green curve: 1/4x MIC. Red curve: 1x MIC. (D) Peni-
cillin G (E) Tetracycline (F) Kanamycin. (G) The PB-sQF results of the
3D data. Black line: 99% confidence level from the test statistics between
no-antibiotic control and 1/16x MIC data. All the data were normalized by
the confidence level. Blue bar: 1/16x MIC. Green bar: 1/4x MIC. Red bar:
1x MIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Morphology changes of bacteria treated with 1x MIC of different an-
tibiotics. (A) non-antibiotic control. (B) Kanamycin. (C) Erythromycin.
(D) Tetracycline. (E) Azithromycin. (F) Penicillin G. (G) Ciprofloxacin
(H) Norfloxacin. In general, antibiotic-induced filamentation was observed
compared to the non-antibiotic control. . . . . . . . . . . . . . . . . . . . . 72

3.8 Signal changes induced by antibiotic treatments in E. coli with differ-
ent susceptibility. All data were collected in the presence of MH-IR786.
(A to F) Scatter signal changes. The pseudocolor plots are the no-antibiotic
paired control, for each strain. The overlaid contour plots are the 1x MIC
antibiotic concentration scatter data. (A to C) The lab strain E. coli (ATCC
33456). (D to F) The multi-drug clinical strain E. coli (Mu14S). (G to I)
PB-sQF 3D test results. the first column (A, D and G) Penicillin G; Second
Column (B, E and H) Tetracycline; Third column (C, F and I) Gentamicin.
Penicillin G, and tetracycline was examined at the 1x, 1/4x and 1/16x of
MIC of ATCC, (32 and 1 µg/mL, respectively). Gentamicin was applied at
the MIC of Mu14S (4 µg/mL). FSC: forward scatter. SSC: side scatter. . . . 74

3.9 PB-sQF registered antibiotic-induced signal changes in P. aeruginosa.
For each 2D scatter plot, pseudocolor plot is the no antibiotic control. The
contour plots lay above is the 1x MIC scatter data. (A) Ampicilin (B) Nor-
floxacin (C) Kanamycin (D) Tetracycline. (E) The 3D PB-sQF test results
for (A) to (D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10 Penicillin G susceptibility for MRSA and MSSA strains Flow cytometric
data of (A) ATCC 25923 (B) ATCC 29213 and (C) ATCC 43300 (MRSA).
For 2D scatter histogram, the pseudocolor plots are the pair control, the no-
antibiotic data, for each strain. The contour plots lay above are the highest
antibiotic concentration scatter data. The fluorescence histograms share the
same label as in (C). (D) 3D PB-sQF results for (A) to (C). The highest
penicillin g concentration is 1/16 µg/mL, the MIC for strain ATCC 25923. . 76
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3.11 PB-sQF and select MRSA strain from MSSA strains. Flow cytometric
data of (A) ATCC 29213 (B) ATCC 43300 (MRSA). For the 2D scatter his-
togram, the pseudocolor plots are the paired control, and the no-antibiotic
data for each strain. The overlaid contour plots are the highest antibiotic
concentration scatter data. (C) 3D PB-sQF results for (A) and (B). The
highest oxacillin concentration is 1/2 µg/mL, the MIC for strain ATCC 29213. 77

3.12 Antibiotic-induced scatter changes for K. pneumoniae ATCC 700603.
(A to G) Scatter signal changes for different antibiotics. SSC: side scatter.
FSC: forward scatter. The pseudocolor plots are the no-antibiotic data. The
overlay contour plots were data of the 1x MIC treatment. (A) Azithromycin
(B) Erythromycin (C) Tetracycline (D) Ciprofloxacin (E) Gentamicin (F)
Cefotaxime (G) Ampicillin. (H) The PB-sQF results of the 2D data. Black
line: 99% confidence level from the test statistics between no-antibiotic
control and 1/16x MIC data. All the data were normalized by the confi-
dence level. Blue bar: 1/16x MIC. Green bar: 1/4x MIC. Red bar: 1x MIC.
The MIC of each concentration can be found in Appendix Table B.3. For
ampicillin, 1x MIC was set at 80 µg/mL since the MIC is greater than 1024
µg/mL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.13 Cytometric data and PB-sQF results for A. nosocomialis strain M2 and
M2-4B (A) Tetracycline (B) Kanamycin (C) Norfloxacin (D) Ciprofloxacin
(E) Cefotaxime (F) Ampicillin. Each sub-figure contains 2D-scatter cy-
tometric plots and the corresponding PB-sQF results. For the cytometric
data, SSC: side scatter. FSC: forward scatter. The pseudocolor plots are
the no-antibiotic data. The overlay contour plots were data of the 1x MIC
treatment. For the PB-sQF results, Black line: 99% confidence level from
the test statistics between no-antibiotic control and 1/16x MIC data. All
the data were normalized by the confidence level. Blue bar: 1/16x MIC.
Green bar: 1/4x MIC. Red bar: 1x MIC. The MIC of each concentration
can be found in Appendix Table B.3. For ampicillin, 1x MIC was set at 160
µg/mL since the MIC is greater than 1024 µg/mL. . . . . . . . . . . . . . . 81

4.1 Detection limit for the flow cytometer. Flow cytometry data of (A) No
E. coli control with 3 hours incubation. (B) 103 CFU/mL of E. coli spiked
sample with 1 hour incubation. (C) 103 CFU/mL of E. coli spiked sample
with 3 hours incubation. The black contours are the penicillin g- treated
data with the penicillin g concentration labled on each figure. The psuedo-
color plots are the no antibiotic controls. 1x MIC of penicillin g for E. coli
strain ATCC 33456 is 32 µg/mL. FSC: forward scatter. SSC: side scatter. . . 88
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4.2 Failed attempts of E. coli separation using SST. (A) Blood only data.
The black contour is the SST processed human blood after 4.5 hours of
incubation. The pseudo-colo plot is the unprocessed human blood. For (B)
to (C) The black contours are Flow cytometry data of (B) 106 CFU/mL of E.
coli spiked human blood (C) 107 CFU/mL of E. coli spiked human blood.
The psuedo-color plots are 10% human blood only. FSC: forward scatter.
SSC: side scatter. (D) Cytometric data for IR786 fluorescence channel. . . 90

4.3 Saponin-treated human blood and E. coli. Flow cytometry data for (A)
10% human blood. (B) E. coli. For both (A) and (B) the black contours
were the 1% Saponin treated data while the psuedo-color plots were without
saponin treatment. (C) MH-IR786 fluorescence signal in E. coli and blood.
HB: human blood. BL: blank (no dye). . . . . . . . . . . . . . . . . . . . . 92

4.4 Pre-blood culture AST with sheep blood. Flow cytometry data for (A)
100% sheep blood only. (B) 1000 CFU/mL E. coli spiked blood sample.
The black contours are the penicillin g-treated data with the penicillin g
concentration labeled on each figure. The psuedo-color plots are the no
antibiotic controls. 1x MIC of penicillin g is 32 µg/mL for E. coli strain
ATCC 33456. FSC: forward scatter. SSC: side scatter. (C) PB-sQF results
for (A), (B) and 105 CFU/mL spiked blood sample. . . . . . . . . . . . . . 93

4.5 Human blood cells kill E. coli. (A) Lab strain ATCC 33456. (B) Clinical-
isolate E. coli strain Mu14S. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Antibiotic susceptibility test (AST) timelines. (Top, blue arrows) The
standard clinical microbiology workflow requires >60 hours from initial
blood draw. (Green arrows) Time line for the post-blood culture cytomet-
ric AST using PB-sQF distances.[48] (Red arrows) Time line from initial
blood draw for Fast AST (i.e. FAST). FSC: forward scatter. SSC: side scatter. 95

4.7 Antibiotic-treated 10% human blood only results. Cytometric data with
(A) Ampicillin (B) Tetracycline (C) Gentamicin. The pseudo-color plots
are the no-antibiotic controls and the black contour plots are the antibiotic-
treated data with the antibiotic concentration indicated at each plot. (D)
PB-sQF results for (A), (B), and (C). The resistant breakpoint of Enter-
obacteriaceae are 16 µg/mL for tetracycline and gentamicin. 32 µg/mL for
ampicillin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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4.8 FAST antibiotic-induced scatter signals for E. coli strains Mu890 and
Mu14S. (A) Mu890 antibiotic induced scatter histograms (black contours)
overlaid on paired no-antibiotic control (color dots, red indicating high-
est occurrence) and PB-sQF results. (B) Mu14S antibiotic induced scatter
histograms and PB-sQF results. For the PB-sQF results bar chart, the thick
black lines correspond to each bacteria-antibiotic 99% confidence limit dis-
tance, and error bars represent one standard deviation above and below the
mean from triplicate trials. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 FAST antibiotic-induced scatter signal changes for Mu55 and Mu670
reveal different susceptibilities. (A) Mu55 antibiotic-induced scatter his-
tograms (black contours) overlaid on paired no-antibiotic control (color
dots, red indicating highest occurrence) and PB-sQF results. (B) Mu670
antibiotic-induced scatter histograms and PB-sQF results. For the PB-sQF
results bar chart, the thick black lines correspond to each bacteria-antibiotic
99% confidence limit distance, and error bars represent one standard devi-
ation above and below the mean from triplicate trials. . . . . . . . . . . . . 101

4.10 FAST antibiotic-induced scatter signal changes for A. nosocomialis strain
M2. Flow cytometry data of antibiotic induced scatter histograms (black
contours) overlaid on paired no-antibiotic control (color dots, red indicat-
ing highest occurrence) and PB-sQF results. (A) Tetracycline (B) Gentam-
icin (C) Ampicillin. For the PB-sQF results bar chart, the thick black lines
correspond to each bacteria-antibiotic 99% confidence limit distance, and
error bars represent one standard deviation above and below the mean from
triplicate trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.11 FAST antibiotic-induced scatter signal changes for S. aureus strain
NRS382. Flow cytometry data of antibiotic induced scatter histograms
(black contours) overlaid on paired no-antibiotic control (color dots, red
indicating highest occurrence) and PB-sQF results. (A) Vancomycin (B)
Oxacillin (C) Gentamicin. For the PB-sQF results bar chart, the thick black
lines correspond to each bacteria-antibiotic 99% confidence limit distance,
and error bars represent 1 standard deviation above and below the mean
from triplicate trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.12 Growth curve for S. aureus strain 95938 and strain NRS382. . . . . . . 106

4.13 Overnight plate counts for 10% human blood incubated S. aureus strain
95938 and strain NRS382. (A) Strain 95938 and strain NRS382 with 10%
human blood and saponin. (B) Strain 95938 with blood only (left), saponin
only (middle), and both blood and saponin (right). . . . . . . . . . . . . . 107
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4.14 FAST antibiotic-induced scatter signal changes for S. aureus strain
NRS382 14-hr culture. Flow cytometry data of antibiotic induced scat-
ter histograms (black contours) overlaid on paired no-antibiotic control
(color dots, red indicating highest occurrence) and PB-sQF results. (A)
Vancomycin (B) Gentamicin. For the PB-sQF results bar chart, the thick
black lines correspond to each bacteria-antibiotic 99% confidence limit dis-
tance, and error bars represent one standard deviation above and below the
mean from triplicate trials. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.15 Antibiotic-treated 10% human blood from United States Biological.
For all data, pseudocolor plot: no-antibiotic, paired control. Black contour:
antibiotic-treated data. (A) Tetracycline at 1 µg/mL (MIC for Mu14S). (B)
Gentamicin at 8 µg/mL (MIC for Mu14S). (C) Penicillin G at 32 µg/mL,
the resistant breakpoint for penicillin group for E. coli. For the PB-sQF
results, none of the antibiotics induce significant scatter signals shift for
blood only data. All data were done in triplicate. . . . . . . . . . . . . . . . 109

4.16 Bactericidal Antibiotic-induced scatter changes for E. coli strain Mu14S
in USBiological Blood. For all data, pseudocolor plot: no-antibiotic, paired
control. Black contour: antibiotic-treated data. (A) Tetracycline at 1 µg/mL.
(B) Gentamicin at 8 µg/mL, the MIC for Mu14S. (C) Penicillin G at 32
µg/mL, the resistant breakpoint for penicillin group for E. coli. The starting
E. coli concentration was around 100, 30 and 40 CFU/mL for tetracycline,
gentamicin, and ampicillin treated data respectively. All data were done in
triplicate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.17 Flow cytometry data under different setting with 10% blood only or E.
coli strain Mu890 in 10% human blood. (A) Ampicillin treated 10% hu-
man blood only sample at the Acinetobacter resistant breakpoint. (B)Tetracycline-
treated data. 1x MIC is 2 µg/mL. (C) Gentamicin-treated data. 1xMIC is 8
µg/mL. All data were done in triplicate. . . . . . . . . . . . . . . . . . . . 111

5.1 Test Statistics of selected bacteria lined up against Anaeromyxobacter
dehalogenans. Top Row: Binary analysis of (A) 3-mers, (B) 6-mers, and
(C) 9-mers. Only 9-mers showed distinguishability for binary analysis as
shorter k-mers exhibit saturation. With 3-mers, no distance among library
strains is observed, so bacteria are ordered alphabetically as in the library.
Bottom Row: Full data of (D) 3-mers, (E) 6-mers, and (F) 9-mers. In-
dependent of k-mer length, full data analysis yields nearly identical results
with Mycobacterium being the closest to the control strain and mycoplasma
being the most different strain. . . . . . . . . . . . . . . . . . . . . . . . . 116
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5.2 Hierarchical clustering results. The Jaccard index for different cutoff
thresholds using (A) 3-mers, (B) 6-mers and (C) 9-mers. Independent of
k-mer length, better clustering performance is achieved when more bins are
used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Bacterial phylogenetic Tree. Pairwise test statistics from 3-mer, 64 bins
were used to build this phylogenetic tree. The red branch is the Francisella
branch. The blue branch is one of the Rhizobiales order branch. And the
green branch is the Enterobacteriaceae family branch. The taxomony was
from the NCBI database. The tree was built in MATLAB and plotted in
iTOL (http://itol.embl.de/). . . . . . . . . . . . . . . . . . . . . 120

5.4 Assembled sequence typing. Percent correct assignments for 162 un-
knowns that have a corresponding library species. Percent correct of (A)
genus assignments and (B) species assignments. . . . . . . . . . . . . . . . 122

5.5 Assembled sequence typing with threshold. (A) Sorted test statistics (3-
mer, 64 bins) from assembled bacterial sequences. The x-axis is the index
of the sorted test statistics. The orange curve is the false assignments, and
the blue curve is the correct assignments. The black line is the threshold
determined from the 95% test statistics of the correct assignments. Percent
correct assignments of those meeting the confidence level in genus identi-
fication (i.e. after applying empirical threshold) of (B) genus assignments
and (C) species assignments, (D) Percent of unknowns that had test statis-
tics exceeding the empirical threshold. . . . . . . . . . . . . . . . . . . . . 123

5.6 Assembled sequence typing All 197 strains. Percent correct assign-
ments for 197 unknowns. Percent correct of (A) genus assignments and (B)
species assignments. Percent correct after applied empirical threshold of
(D) genus assignments and (E) species assignments, (F) Percent unknowns
that had test statistics exceeding the empirical threshold, and are therefore
classified as being “unassigned”. (C) Averaged calculation time for binning
and PB-sQF analysis for each unknown. . . . . . . . . . . . . . . . . . . . 124

5.7 Pooled Sequence Typing for Illumina, LS454 and Ion Torrent (raw
reads data files without threshold). Percent correct genus assignments
of (A) 3-mers, (B) 6-mers, and (C) 9-mers. PB-sQF analyses of raw reads
files compared to reconstructed whole genome libraries. Percent correct
species assignments using (D) 3-mers, (E) 6-mers, and (F) 9-mers. The
lower the error rate of a sequencer, the higher the typing accuracy. The
legend in (E) is the same as in the other panels. . . . . . . . . . . . . . . . 125
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5.8 Pooled Sequence Typing for Illumina, LS454 and Ion Torrent data
(threshold applied). Percent correct genus assignments of (A) 3-mer, (B)
6-mer, and (C) 9-mer full data analyses. PB-sQF analyses of raw reads files
compared to reconstructed whole genome libraries. Percent correct species
assignments using (D) 3-mers, (E) 6-mers, and (F) 9-mers. The lower the
error rate of a sequencer, the higher the typing accuracy. Percent of datasets
that had test statistics exceeding the threshold for (G) 3-mer, (H) 6-mer, and
(I) 9-mer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.9 Phylogenetic tree of MRSA ST2371 outbreak. P1 to P26 represents the
1st to 26th patients with MRSA ST2371 (the outbreak strain) infection. Dif-
ferent colors represent different MRSA strains determined by MLST. All
the data except the green dots, which are MRSA colonies (ST2371) col-
lected from a hospital health care personnel, were sequenced from infected
patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.10 Pooled sequence typing for Illumina, LS454 and Ion Torrent (raw reads
data files without threshold) with different digitized schemes. Percent
correct genus assignments of 3-mers using (A) A-scheme, (B) G-scheme,
(C) C-scheme, and (D) T-scheme. Percent correct species assignments of
3-mer using (E) A-scheme, (F) G-scheme (G) C-scheme and (H) T-scheme. 131

5.11 Pooled sequence typing for raw reads data files without threshold with
early dimension expansion. (A) Percent correct genus assignments of 3-
mers. (B) Percent correct species assignments of 3-mer. . . . . . . . . . . . 133

5.12 Demonstration of cycle-dimension PB-sQF Flow cytometry data binned
with (A) largest variance dimension method or (B) cycle-dimension method.
the dimension divided was cycled between the FSC and SSC domains. Per-
cent correct of 3-mers pooled-short reads data of (C) genus assignments
and (D) species assignments. . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1 Read-by-read typing results with different number of reads. Percent
reads mapped to each library when (A) 100, (B) 50, or (C) 25 reads were
mapped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Reads-by-reads typing results for S. aureus strain MRSA252. Due to
genome sequence similarity, several reads were mapped to different S. au-
reus strains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xxix



6.3 Mapping accuracy for short reads with assigned errors. Top Row: Bi-
nary analysis of 200-mer reads with (A) 1 SNP, (B) 2 SNPs, (C) 1 SNP
with 1 insertion, and (D) 1 SNP and 2 deletions. Bottom Row: Full data of
(E) 1 SNP, (F) 2 SNPs, (G) 1 SNP with 1 insertion, and (H) 1 SNP and 2
deletions. Since the read is 200-mer long, 1, 2, 4, 8, and 20 library frames
represent 200-, 100-, 50-, 25-, and 10-mer frame shift of the reads library. . 142

6.4 Mapping probability and mapping accuracy. The blue curve is the prob-
ability that the unknown reads originate from the assigned region and the
axis is on the left: probability in the region. The green stem plot, using
the axis at the right, indicates the assignments for the unknown reads are
correct (0) or wrong (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 Metagenomic short reads mapping Mapping results of (A) reads without
error, (B) reads with a 2% uniform error, a 0.09% SNP rate, and a 0.01%
indel rate. The blue curve is the probability that the query read originated
from the assigned region and the axis is on the left. The green stem plot,
using the axis at the right, indicates the assignments for the particular query
read is correct (0) or wrong (1). . . . . . . . . . . . . . . . . . . . . . . . 147

6.6 Reads errors and reads-mapping accuracies. (A) No error applied. (B)
1% uniform error rate and 2% indel rate. The indel length was determined
by the geometric distribution with probability set as 0.3. (C) Similar as
(B), but the indel length was fixed at 16 bps long. (D) Similar as (B), but
the uniform error rate was set as 13%. Bowtie analysis was performed
with Bowtie2. LV: standard PB-sQF divided each dimension at the Largest
Variance. CD: modified PB-sQF where the divided dimension was deter-
mined by Cycle Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1 Mappability and read depth. In this example, the query sequence resem-
bles the reference sequence except for small variation in gene A and A’.
As a result, no CNV exists in this example. Reads-2, 3, 7, and 8 can be
mapped to multiple locations. If the multiple mapped reads are discarded,
false deletions are detected (top right). If these reads are randomly mapped
to one location, one of the possible scenarios is that false duplication(s) and
deletion(s) might be detected (middle right). When assigning these reads
to all possible mapping locations, the copy numbers in the query sequence
are obtained (bottom right). But without knowing the copy number of the
reference sequence, gene A and A’ might not be true CNVs. . . . . . . . . . 153
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7.2 Example of Smith-Waterman alignment. (A) Initialization (B) Step-
by-step score calculations. The red arrows calculate the match/mismatch
scores, and the blue and green arrows calculate the gap penalties in the
sequenceleft and sequencetop, respectively The black arrows are the sources
of maximum scores. (C) Final score matrix. (D) Backtrack best alignment.
(E) Alignment result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 Hash table-based short reads mapping. In this illustration, the reference
sequence is hashed into 3-mers (seeds). The locations of each seed in the
reference are recorded in the hash table. For each query read, the first 3-
mer is searched through the table. Here, the query read, GATGGTT, can
be mapped to position 4, 7, 42, ..., and more. Taking position 4 and 7 as
an example, once the query read is anchored to the possible position, the
mapping is completed by extensions. The blue “|” represents the mapped
seed. The dotted straight lines are matches via extension. The “-” indicates
mismatches. Since position 7 has fewer mismatches compared to position
4, the query read is mapped to position 7. . . . . . . . . . . . . . . . . . . 158

7.4 Spaced seeds and pigeon hole principle. (A) Spaced seeds indexing and
mapping. The mutations nucleotide in the query read is labeled in red. (B)
Pigeon hole principle. Using black lines to define three holes (seeds) and
balls to represent pigeons (mismatches), all the possible arrangements of
pigeons (mismatches) in holes (seeds) are listed. This shows that k + 1
seeds can identify sequence with k mismatches. . . . . . . . . . . . . . . . 159

7.5 BWT indexing and mapping. (A) Building BWM and the LF mapping.
The string T is the reference sequence, $ is the string terminator, and the
color denotes the rank of each alphabet (B) Backward search. To map the
query reads to the string, the LF mapping is used recursively to narrow
down the search range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.6 Mapping Linearity with different aligners and read length. Mapping
linearity results from (A) NN, (B) mrFast, (C) BWA-MEM, and (D) Bowtie2.
For NN, the average numbers of locations are not the same as the numbers
of repetitions in the reference sequence. This is because in NN, the neigh-
boring library reads of the exact match are also counted as valid reads.
Since the copy number is the read depth normalized by the average read
depth, this higher baseline will not influence the subsequent copy numbers
determination. Results with other read lengths are shown in Appendix Fig.
E.1, E.2, E.3, E.4, and E.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 165
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7.7 Mapping accuracies with different aligners and read lengths. Mapping
results of (A) NN, (B) Bowtie2, (C) BWA-MEM, and (D) mrFAST. First
column: mapping accuracies of all reads. Second column: mapping ac-
curacies for all valid reads. The mapping accuracies are calculated as the
percentage of assignments that are within 10-, 20-, 30-, 40- and 50-bp from
the correct origins (for 36-bp reads, it is 6-, 12-, 18-, 24-, and 30-bp) since
NN maps the short reads back to the library reads generated with 10-bp (6-
bp for 36-bp reads) frame shift. As a result, the reads alignments resolution
for NN is 10-bp. Third column: valid reads percentage. nt: nucleotide. . . 168

7.8 Mapping accuracies with different aligners and uniform error rates.
Mapping results of (A) NN, (B) Bowtie2, (C) BWA-MEM, and (D) mr-
FAST. For (A) and (C), the legend is the same as (B) and (D). First column:
mapping accuracies of all reads. Second column: mapping accuracies for
all valid reads. The mapping accuracies are calculated as the percentage of
assignments that are within 10-, 20-, 30-, 40- and 50-bp from the correct
origins (for 36-bp reads, it is 6-, 12-, 18-, 24-, and 30-bp) since NN maps
the short reads back to the library reads generated with 10-bp (6-bp for 36-
bp reads) frame shift. As a result, the reads alignments resolution for NN
is 10-bp. Third column: valid reads percentage. . . . . . . . . . . . . . . . 170

7.9 Mapping accuracies with different aligners and indel rates. Mapping
results of (A) NN, (B) Bowtie2, (C) BWA-MEM, and (D) mrFAST. For
(A) and (C), the legend is the same as (B) and (D). First column: mapping
accuracies of all reads. Second column: mapping accuracies for all valid
reads. The mapping accuracies are calculated as the percentage of assign-
ments that are within 10-, 20-, 30-, 40- and 50-bp from the correct origins
(for 36-bp reads, it is 6-, 12-, 18-, 24-, and 30-bp) since NN maps the short
reads back to the library reads generated with 10-bp (6-bp for 36-bp reads)
frame shift. As a result, the reads alignments resolution for NN is 10-bp.
Third column: valid reads percentage. . . . . . . . . . . . . . . . . . . . . 172

7.10 Mapping accuracies with different aligners and indel length. Mapping
results of (A) NN, (B) Bowtie2, (C) BWA-MEM, and (D) mrFAST. First
column: mapping accuracies of all reads. Second column: mapping ac-
curacies for all valid reads. The mapping accuracies are calculated as the
percentage of assignments that are within 10-, 20-, 30-, 40- and 50-bp from
the correct origins (for 36-bp reads, it is 6-, 12-, 18-, 24-, and 30-bp) since
NN maps the short reads back to the library reads generated with 10-bp (6-
bp for 36-bp reads) frame shift. As a result, the reads alignments resolution
for NN is 10-bp. Third column: valid reads percentage. nt: nucleotide. . . . 174
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7.11 Mapping trajectories for 100-bp reads mapped seven repeated regions
with different similarities. (A) and (D) Average number of assignments
trajectory. (B) and (E) Binary trajectory. (C) and (F) Test statistics trajec-
tory. (A) to (C) are the whole trajectories while (D) to (F) are the trajec-
tories zoom in to (1543000, 1558000). The blue lines are the read depth
obtained directly from the mapping results. The orange lines are read depth
extracted by CNV-MM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.12 Mapping trajectories for 200-bp reads mapped to Seq-2. (A) Average
number of assignments trajectory. (B) Binary trajectory. (C) Test statistics
trajectory. The blue lines are the read depth obtained directly from the
mapping results. The orange lines are read depth extracted by CNV-MM. . . 181

7.13 Mapping trajectories for 200-bp reads mapped to the original sequence.
(A) Average number of assignments trajectory. (B) Binary trajectory. (C)
Test statistics trajectory. The blue lines are the read depth obtained directly
from the mapping results. The orange lines are read depth extracted by
CNV-MM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.14 Mapping trajectories for 36-bp reads. For (A) to (C), the reference se-
quence is the original sequence, and the reads donor sequence is the re-
peated sequence (Seq-2). (A) Average number of assignments trajectory.
(B) Binary trajectory. (C) Test statistics trajectory. For (D) to (E), the ref-
erence sequence is the repeated sequence, and the reads donor sequence is
the original sequence. (D) Average number of assignments trajectory. (E)
Binary trajectory. (F) Test statistics trajectory. The blue lines are the read
depth obtained directly from the mapping results. The orange lines are read
depth extracted by CNV-MM. . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.15 TS trajectories for Sequence-1 mapped to Sequence-1. The blue lines
are the read depth obtained directly from the mapping results. The orange
lines are read depth extracted by CNV-MM. Black arrows indicate false
discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.16 Mapping trajectories for Sequence-1 mapped to Sequence-1. (A) to
(C) Average number of assignments trajectory. (D) to (E) Binary trajec-
tory before boundary shift. (A) and (B) are the whole trajectories. Before
boundary shift applied, the estimated copy numbers (orange curves) are in-
consistent to the real copy numbers (blue curves). (C) and (E) zoom in to
500000-503000 for gene-1022. (D) and (F) zoom in to 1265000-1280000
for gene-8177. (G) Average trajectory after boundary shift. (H) Binary tra-
jectory after boundary shift. After boundary shift, the orange curves better
overlap with the blue curves. The blue lines are the read depth obtained di-
rectly from the mapping results. The orange lines are read depth extracted
by CNV-MM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
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7.17 Mapping trajectories for CNV-MM and CNVnator. (A) to (D) the whole
trajectories while (E) to (G) are trajectories zoomed into 1541000-1548000.
(A) to (C) and (E) to (G) are CNV-MM results. (A) and (E) are average
number of assignments trajectories. (B) and (F) are test statistics trajecto-
ries. (C) and (G) are binary trajectories. The blue lines are the read depth
obtained directly from the mapping results. The orange lines are read depth
extracted by CNV-MM. (D) and (H) are trajectories reconstructed by the
results of CNVnator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.18 Mapping trajectories for SRR2558867 mapped to A. baumannii strain
ATCC 17978. (A) to (C) the whole trajectories. (D) to (F) zoom in to
798000 - 815000. (A) and (D) Are average number of assignments trajec-
tories. (B) and (E) are binary trajectories. (C) and (F) are test statistics
trajectories. The blue lines are the read depth obtained directly from the
mapping results. The orange lines are read depth extracted by CNV-MM. . . 200

7.19 Mapping trajectories for SRR2558867 mapped to A. baumannii strain
MRD-Zj06. (A) to (C) the whole trajectories. (D) to (F) zoom in to
2051000 - 2061000. (A) and (D) are average number of assignments tra-
jectories. (B) and (E) are binary trajectories. (C) and (F) are test statistics
trajectories. The blue lines are the read depth obtained directly from the
mapping results. The orange lines are read depth extracted by CNV-MM. . . 202

A.1 Read depth with different test statistics weights. (A) the
√
2 − TS

weights (left) and inverse test statistics weights (right). (B) Read depth of
mapping result-1 with weights calculated as

√
2 − TS. (C) Read depth of

mapping result-2 with weights were calculated as the inverse of test statis-
tics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B.1 Antibiotic-induced flow cytometry signal changes at different antibi-
otic concentrations for E. coli (ATCC 33456). The contours are the
antibiotic-treated data from 1/16x MIC, 1/4x MIC, to 1x MIC as indicated
at the top of each column. From the top to the bottom rows are data of
penicillin g, ciprofloxacin, norfloxacin, and kanamycin. The right column
contains the corresponding fluorescence data. Scattered light histograms
correspond to the concentrations labeling the blue, green, and red curves in
the fluorescence histograms. . . . . . . . . . . . . . . . . . . . . . . . . . 214

B.2 Flow cytometry data for bacteriostatic antibiotics. Analogous to data in
Appendix Figure B.1, from the top to the bottom rows are data of E. coli
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SUMMARY

From flow cytometry to next-generation sequencing (NGS), data analysis is the key

to obtaining useful information from the massive, and complicated data. Traditional sta-

tistical methods might not be suitable for analyzing the new data due to the size and/or

dimensionality. Moreover, novel analysis methods are needed to analyze these data with

unprecedented data structure and its unique problems. This work focuses on developing

new statistical methods to analyzing multidimensional and big data.

Probability binning - signature quadratic form (PB-sQF) is developed to analyze cy-

tometric data. These type of data can have one million of data points spanned up to 30

dimensions. PB-sQF first compresses the data by calculating the signatures of the origi-

nal data. Then, the differences between data can be obtained by calculating the distances

between these signatures. Using PB-sQF, the test statistics (distances) between cytometric

data of antibiotic-treated bacteria and the no-antibiotic control were calculated. Since only

effective treatments induced cytometric signal changes, these distances can be used to se-

lect the correct treatment for multidrug-resistant bacteria. Because PB-sQF can objectively

detect the minor changes in the cytometric signal, only one hour (instead of overnight)

incubation is needed for the post-blood culture antibiotic susceptibility test (AST). With

pre-blood culture, we have developed an experimental procedure to remove the high back-

ground from the blood cells and reduce the incubation time from 66 hours to 8 hours. Our

method greatly reduces the test-to-result time can thus lower the mortality rate of patients

and the mutation rates for bacteria.

PB-sQF can also be used to compare genome sequences similarities. By breaking the

string sequence into pieces, the genome sequence can be viewed as a histogram data with

repeated words/data points. PB-sQF can thus calculate the distances between genome se-

quences. These distances are then used to type unknown bacterial sequences, build phylo-

genetic trees, and perform outbreak analysis. Since NGS generates millions of short reads
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instead of a complete sequence, this work also builds the short reads mapping (aligns the

short reads to a reference sequence) scheme for distance-based reads mappers like PB-sQF

and nearest-neighbor (NN). Like PB-sQF, NN computes the distances between histogram

data. While most short reads aligners are built for short read length and exact unique maps,

NN can perform error-tolerant, long read, multiple mapping locations alignments.

Copy number variation (CNV) is the differences in the number of a gene in different

genome sequences. It is of great interests because of its associations with various diseases.

While numbers of CNV detectors have been developed, references sequences with repeated

regions are still a problem for current CNV detectors. Using the NN mapping results, we

develop a new CNV detecting algorithm, copy number variation detections for mappings

multiplicity (CNV-MM), specialized in estimating the copy numbers in both the unknown

and reference sequences even when the reference sequences are highly repetitive. We show

that using NN and CNV-MM, different sizes of CNV can be detected with various read

length. We also show that the estimated copy numbers are accurate for both duplications

and deletions from one copy to twenty copies. Eventually, we perform our method on

real short reads data from multidrug-resistant Acinetobacter baumannii clinical isolates

and show that copies of resistant-associated genes indeed increase relative to the sensitive

strain.

xli



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation

With the advance in modern technology, scientists have to process ever-lengthening data

with higher dimensions and greater variability. Often obscured within these data is in-

formation that has the potential to improve human health.[1–3] Due to data complexity,

however, existing analyses are not suitable to extract underlying information.[3] For ex-

ample, flow cytometry collects hundreds of thousands of data points in just a few minutes

while simultaneously monitoring 17 fluorescence channels plus 2 scatter signals.[4, 5] With

30-parameter flow cytometry being available and 50-parameter on the way, new computa-

tional methods are required to scaled well with high-dimensionality.[6] On the other hand,

a human genome which consists of 3 billion base pairs can now be sequenced within days

with next-generation sequencing (NGS) by generating hundreds of millions of reads in a

single run. With the size of the genome and/or the huge number of short reads, computa-

tionally efficient methods are needed to extract the relevant information from the sequences

accurately.

Flow cytometry holds promise to accelerate antibiotic susceptibility determinations by

rapidly measuring multichannel fluorescence and scatter from each cell within a large popu-

lation. The accelerating emergence of multidrug-resistant bacteria and difficulty in quickly

identifying appropriate treatment options are major threats to global public health.[7–10]

The ability of bacteria to rapidly counter newly available antibiotics within only a few years

of clinical introduction, has also produced super-bug infections that are essentially untreat-

able. Such rapid acquisition of resistance has also decreased both incentives and options

for new antibiotic development, with only two new antibiotics having been approved since
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2008.[9, 11] With 30% of hospital deaths attributable to sepsis, bacterial infections of the

blood have become the 10th leading cause of hospital deaths in the US.[12, 13] Although

rapidly tailored treatment to each individual patient can have a major impact on positive

outcome,[14] currently, nearly 30% of patients receive inappropriate antimicrobial ther-

apy. Such non-ideal treatment leads to 2-fold higher mortality rates than when correctly

treated,[15] and also contributes to the increase in multidrug-resistance resulting from sub-

lethal antibiotic exposure.[16, 17] While rapid initiation of appropriate treatment is crucial

to positive patient outcome, only combined knowledge of the pathogen identity and its

antibiotic sensitivity profile comprise actionable treatment information. Because bacterial

load in sepsis patients is so low, ∼24-hr blood culture-based amplification is crucial to di-

agnosis treatment. Recent advances that employ mass spectrometry and genetic tests[18–

22] enable identification of infectious agent within a few hours after positive blood culture.

However, conventional antibiotic sensitivity tests (ASTs) typically require overnight sub-

culturing, followed by an 18 to 24 hr AST, resulting in a 42∼48 hr post blood culture delay

in susceptibility data. Thus, improving AST time-to-result would have positive patient and

public health outcomes.

NGS and genome sequence analysis have greatly improved our understanding in many

different fields.[23, 24] Sequence analysis methods that compare sequences similarity of

pathogens can track down the disease transmission and thus contribute to detection and con-

trol of outbreaks.[25, 26] Methods that perform sequence matching analysis can be applied

to species typing or antibiotic resistant identification in clinical microbiology.[23, 27] Short

reads mappers can detect variations between genome sequences through aligning the short

reads to the reference sequence.[24, 28, 29] Different sequence analyses algorithms have

been proposed for constructing phylogenetic trees,[30–33] typing unknown species,[34–

36], mapping short reads, [28, 29, 37–40] and detecting sequence variations.[41–46] How-

ever, to our knowledge, there is no single method that can tackle all these different tasks.

Also, although various short reads mappers have been proposed,[28, 29, 37–40] these meth-
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ods still have difficulty in short reads mapping multiplicity,[28, 47] which is assigning

reads to multiple possible mapping positions on repeated sequences. These problems ob-

scure downstream copy number variations (CNVs) analysis relative to a reference genome,

which is crucial to diagnosing many important medical conditions.[42, 43] Thus, the per-

formance of CNVs analysis would be improved by properly detecting the repeated regions

in genome sequences.

This work develops a new multidimensional statistics test, Probability Binning signa-

ture Quadratic Form (PB-sQF).[48] PB-sQF characterizes the multidimensional differences

between data sets into a one-dimensional linear distance while accounting for the noise of

the data. Since PB-sQF compresses the multidimensional data into a set of data signatures,

it can efficiently compare the similarity between 2 multidimensional data sets to quantify

the differences between flow cytometry data. With modifications, PB-sQF is applied in

genome sequence analysis in building a phylogenetic tree, typing unknown species, and

mapping short reads. Ultimately, PB-sQF can reveal new insights in different fields by

quantifying biological relevant (dis)similarity between data sets.

1.2 Flow Cytometry

High-throughput flow cytometry has been an important technology for biological studies

since it was created in 1965 by Mack Fulwyler.[49] Different from traditional lab tech-

niques that record the bulk signals or average responses of the sample; flow cytometry

obtains single cell information of hundreds to millions of individual cells while monitoring

up to 30 parameters with the advance of fluorescence labeling.[4, 6, 50] Moreover, the data

collection process is non-invasive and the cells sorted by the cytometry can be used for fur-

ther analysis.[51, 52] Flow cytometry is thus widely used in immunology,[4, 6] cell-cycle

analysis,[53–55] and cancer diagnosis.[56–58] With the ability to detect cell particles down

to 0.2 µm, flow cytometry is also used in bacteria detection.[59, 60]
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Figure 1.1: The schematic diagram of flow cytometry.

1.2.1 Flow Cytometry Principles

Using hydrodynamics focusing,[61] cells in the sample are carried by a sheath fluid and

intercepted by the laser beam one cell at a time. The interaction between cells and incident

laser light generate scattered light and fluorescence signals (if the cells are labeled with

fluorescence probes). Photomultiplier tubes (PMTs) are used to record the signals. Scat-

tered light propagates in all directions when the laser light hits a cell. Commercial flow

cytometry collects the scattered light in both the forward and 90-degree angle (side scatter)

directions. Forward scatter signal is proportional to the size of a cell while side scatter

signal indicates the complexity or granularity of a cell. Fluorescence signals, depend on

the labeling scheme, is relative to membrane permeability, protein abundance, and cellu-

lar identity. The multidimensional data is most often presented in histograms, scatter or

pseudocolor plots. The schematic diagram of flow cytometry[62] is shown in Figure 1.1.
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1.2.2 Flow Cytometry Bacterial Viability Test

The conventional antibiotic sensitivity tests (ASTs), which relies on monitoring bacte-

rial growth, typically requires overnight subculturing resulting in a 48 to 72 hour de-

lay in determining effective antibiotic treatment. Yet, antibiotic-induced bacterial mor-

phology and physiology changes can be monitored by flow cytometry long before the

detection of growth inhibition.[63] Previously described cytometry-based ASTs mostly

rely on interpreting qualitative differences in live and dead cell populations using high-

background fluorescent membrane integrity/potential sensors.[59, 64–73] For example, the

LIVE/DEAD BacLight Bacterial Viability Kit from ThermoFisher contains 2 DNA chelat-

ing dyes: SYTO 9 and propidium iodide (PI). Fluorescence from both dyes is significantly

enhanced upon binding to DNA. SYTO 9 is permeable to the cell membrane and thus stains

both live and dead cells. On the other hand, PI only gains access to the cells when the mem-

brane is permeabilized, an indicator of cell death. As a result, when running the sample

through flow cytometry, the live cells are bright green (STYO 9 signal) while the dead cells

are much dimmer in the SYTO 9 channel but exhibit bright red (PI signal). [59] Other

than membrane integrity, membrane potential is also commonly used to assess cell viabil-

ity. DiOC2(3) (3,3-diethyloxacarbocyanine iodide) is a membrane potential dye. It appears

green in all cells. However, in healthy cells that maintain the membrane potential, self-

association occurs due to high concentration of DiOC2(3). The fluorescence turns to red.

By monitoring the red/green fluorescence ratios, one can assess cell viability. [74, 75] Such

cytometric ASTs, however, suffer from high background, very large statistical variability,

and insufficient changes from controls that have rendered comparisons unquantifiable. [68,

70, 76] Thus, even with a large number of observations probing antibiotic-induced changes

within a given cell population, flow cytometric ASTs fail from the lack of accurate sta-

tistical metrics to quantify multidimensional changes relative to controls. This prompts

the development of computational flow cytometry to compare the (dis)similarity between

cytometric data.
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1.2.3 Computational Flow Cytometry

Ideally, the dissimilarity between 2 distributions (sample vs. control) is quantified by var-

ious test statistics, yielding distances between measured distributions. One-dimensional

test statistics are either too sensitive to provide meaningful analysis [77, 78] or require

large numbers of events [78] and are usually not rigorously extensible to multidimensional

data. Adaptive binning overcomes the dataset size and multidimensional extensibility is-

sues to focus analysis on the most informative regions of the data; [79, 80] however, sample

comparison is control-specific in probability binned chi-square (PB-χ2) tests, making the

test result unsuitable as a true (linear) metric for directly comparing multiple samples. As

a consequence, it is difficult to adjust statistical tests for biological variability. Various

multidimensional distance metrics are known, but necessary computational resources tend

to scale with the number of bins raised to some large power. Scaling quadratically with

number of bins, quadratic form (QF) distance statistics directly addresses the metric is-

sue, providing a linear distance between any two multidimensional data sets, [81] but its

reliance on fixed bin sizes can limit its extension to multidimensional cytometry datasets.

Instead of comparing occurrences in fixed bins, “signature” QF (sQF) has been developed

for image analysis to directly compare signatures, or the most important features, within

images.[82, 83] By combining the adaptive probability binning with the signature QF dis-

tances, we have developed PB-sQF that can calculate linear distances between adaptively

binned, multidimensional data sets.[48]

1.3 Next-Generation Sequencing (NGS)

Since it was published in 1977, Sanger sequencing[84] had been the standard DNA se-

quencing technique for nearly 40 years. Its reign has ended due to NGS in the mid-2000s.

NGS has revolutionized a wide range of fields by greatly lowering the cost, reducing the

sequencing time, and generating enormous data sets. Different from the Sanger sequenc-
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ing which performs nucleotide addition, fluorescence signal detection, and reagent removal

processes separately, NGS carries out all processes in repeated cycles which greatly reduces

the sequencing time.

Although different sequencers applied different strategies for NGS, the general proce-

dures are similar. The target sequence is first broken into small fragments, amplified by

PCR into clusters, and then sequenced through cycling processes.[85, 86] In this massive

parallel sequencing scheme, millions to billions of reactions on clusters/beads are running

at the same time. Thereby enabling high-throughput sequencing.[85, 87, 88] Although

the read length (the length of the output DNA fragments) is in general shorter and the error

rates are higher than Sanger sequencing, NGS overcomes these limitations with high cover-

age and advanced computational algorithms and has become very useful in many different

applications.

1.3.1 Sequence Similarity and Typing

Generating large volumes of data in short amounts of time at low cost has rendered NGS

very useful in genomic research. Through whole-genome sequencing (WGS), scientists

get nearly complete information on each genome and can compare one genome versus an-

other. In clinical microbiology, WGS can contribute in pathogen species typing, resistance

and virulence detection, and epidemiological analysis.[23, 24] For bacterial species typing,

multi-locus sequence typing (MLST) is commonly used in genome sequence typing.[89]

By comparing a set of housekeeping genes in the genome sequence to the MLST library,

sequence type is assigned to the query sequence. With WGS available, instead of relying on

data from PCR, one can map the individual reads back to the reference genes and perform

MLST.[35, 36, 90] However, using assembled genomes requires de novo assembly to first

be performed on the acquired short reads, limiting its application. Additionally, the diver-

sity of bacterial genomes often makes it difficult to build a universal set of housekeeping

genes to distinguish among strains, and there is often insufficient resolution among closely
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related bacteria for gene-by-gene approaches.[91, 92] Further, with low sequencing depth,

it is possible that one or more of the loci are missed, leading to false assignment.

Instead of relying on identical matches to a set of marker genes, the occurrence of

short k-mers, nucleotides with length k within the reads, has proven to be very success-

ful in short reads assembly[93–95] and mutation identification.[96] For genome sequence

typing, KmerFinder compares the existence of unique k-mers within the unknown and li-

brary sequences without reliance on k-mer location.[97, 98] The unknown is assigned to

the same species of the library sequence with which it shares the most k-mers. However,

for unique assignments relying on matching binary (present or not) k-mer existence, much

longer k-mers (k>16) must be used to avoid k-mer saturation in species with even moder-

ate genome sizes. Utilizing the counts/frequency of each k-mer, the Ribosomal Database

Project classifier utilizes Bayesian inference to predict the probability of an unknown se-

quence belonging to a certain genus by estimating the probabilities of k-mer existence in

both the training and query sequences.[27, 99, 100] Concerns with Bayes-based approaches

include its assumption of k-mer independence and the need for a training data set to build

the prior probabilities. Instead of applying Bayesian inference, the nearest-neighbor ap-

proach (NN) treats each sequence as a k-dimensional data point with the k-mer occurrence

frequency (i.e. counts) as the coordinate. Calculating Euclidean distances among all query

and library k-mer abundances enables the query to be assigned to the genus of the library

exhibiting the smallest paired distance and thus typing can be done without a training data

set.[101] Unfortunately, the computational burden of these multidimensional distance ap-

proaches scales exponentially with k-mer length, as the number of dimensions increases

with 4k. Thus, using NN is computationally prohibitive with the long k-mers necessary to

compare large genomes. This burden can be relieved by mapping the k-dimensional space

on to a lower dimensional space by recognizing that most k-mers are either absent or cor-

related with each other, but a training data set is again required to calculate the correlation

among k-mers.[102]
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Taking a different approach, the extremely high information content encoded in even

modestly sized genomes suggests that k-merized genetic information can be considered as

probability distributions to be analyzed with multidimensional statistical metrics. PB-sQF

treats the k-mer occurrences of entire k-merized genomes as 4k-dimensional histograms.

This approach enables direct genome sequence analysis and comparison by reducing high

dimensionality data to a single linear statistical distance. By calculating inter-genome dis-

tances, PB-sQF enables rapidly typing bacteria to the species level from the completed

sequence or even from raw, unedited short reads data files.

1.3.2 Short Reads Mapping

After NGS generates millions to billions of reads from a target sequence, instead of piec-

ing all the reads together through de novo assembly, one can align the reads to a reference

sequence. This process is called short reads mapping or reads alignment and can lead to

the discovery of differences between the target sequence and reference sequence. One of

the very common mutations, single-nucleotide polymorphisms (SNPs), accumulates in the

genome sequence and is used in outbreak analysis. Harris et al. analyzed the SNPs pro-

files between isolates and were able to track down the intercontinental spread and hospital

transmissions of methicillin-resistant Staphylococcus aureus (MRSA) ST239.[25] Again,

by comparing the SNP profiles, scientists can determine the transmission of all waves in the

seventh cholera outbreaks since 1961, including the recent outbreak in Haiti in 2011.[103]

Using MinION from the Oxford Nanopore, a real-time genomic surveillance was con-

ducted during the Ebola outbreak in 2015.[26]

Numerous different short reads mapping methods have already proven quite successful.

Based on indexing techniques, current alignment algorithms can be divided into two cate-

gories: hash table-based and BWT-based.[104, 105] For algorithms based on hash tables,

including PatternHunter,[106] MAQ,[29] ZOOM,[107], mrFAST,[28] and MOSAIK,[37]

the seed-and-extend scheme derived from BLAST was applied.[38] This type of algorithm
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cuts the reads (or the genome) with k-mer subsequences, finds the exact matches on the

genome (or the reads) as seeds and extends the seeds with dynamic programming algo-

rithm by Smith and Waterman.[108] Bowtie,[39, 109] BWA,[40, 110, 111] SOAP2,[112]

and BWT-SW[113] are methods based on BWT. In this category, the genome sequence is

indexed by BWT to efficiently store the index. Backward search is then applied to find

the exact matches as seeds. These seeds are extended again with dynamic programming.

BWT-based methods are efficient because of the tries data structure, which concatenates

exact repeats on the same path.

By calculating the distances between short reads and library reads, which are construct-

ing by cutting the reference sequence into contigs with sizes equal to the short reads length,

both PB-sQF and NN can map the short reads back to the reference sequence. Different

from base-to-base comparisons which are very sensitive to any mismatch in a read, which

can arise from sequencer errors and/or mutations/variations between genome sequences, k-

mer based read-to-read comparisons are more relaxed in mismatches and thus have better

error tolerance. Also, since pair-wise distances are calculated instead of reporting match or

mismatch as in both hash table or BWT based methods, distance-based methods can easily

report mapping multiplicity, which is crucial for CNVs detection as explained later.[28, 43,

47, 114]

1.3.3 Copy Number Variation Detection (CNV)

One of the major applications for short read mapping is CNVs detection. CNVs, which are

the variations of the number of copies of specific genes from one individual to another, con-

tribute to genome heterozygosity and have been found to be common in human genomes.

[115, 116] CNVs have been linked to different diseases such as AIDS,[117] obesity,[118]

cancer,[119] autism,[120] and Parkinson’s disease.[121] CNVs have also been observed

in bacteria where these variations are used to gain fitness for environmental adaption.[122]

Greenblum et al. show that the intra-species CNVs have environment-related functions and
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are associated with diseases.[123] Bacterial gene amplifications have also been found to be

associated with the increasing antibiotic resistance.[124]

There are four strategies for detecting CNVs using NGS data. These include (i) Read-

depth, (ii) paired-end mapping, (iii) split read, and (iv) de novo assembly.[41, 43, 125]

Although these approaches have different strengths and limitations, read-depth based meth-

ods have become more and more popular because of increasing availability of high cover-

age data.[41] In read-depth based analysis, short reads are mapped to a reference genome

and the number of reads per windows (read depths) are calculated. Assuming reads are

randomly sampled from a target sequence, the read depth of each window would be con-

stant throughout the sequence if the copy number of the target sequence is the same as

in the reference genome. Any increase or decrease in read depth indicates duplications

or deletions of the regions. Methods based on read-depth analysis can be further catego-

rized into 3 groups depending on how many samples were used. Using only the sequenced

target sample, CNVnator[42] applies the mean-shift approach[126] to find the CNV re-

gions and calculates the absolute copy number by normalizing it with the average read

depth. Methods using only a single sample to estimate the copy number suffer when there

are repeated regions in the reference genome. In this case, most of the short reads algo-

rithms perform poorly with mapping as they can’t properly reconstruct the true read depth.

ReadDepth[127], which also only analyzes the target sample, uses statistics to correct the

read depth of regions with multiple alignments. For methods like CNV-seq,[128] RDX-

plorer,[129] and SegSeq,[45] which normalizes the read depth of the targeted genome with

the read depth of the control/paired genome, canaccount for the repetitions in reference

sequence. However, a second sequenced genome is required. Also, only the ratio of copy

numbers between the target sequence and the reference sequence can be obtained. Methods

analyzing multiple sequenced genome have also been proposed to better estimate the break-

points (CNV boundaries) and true copy numbers.[130, 131] To cope with the repetitions

in a reference sequence during the short reads mapping process, mrFAST was developed
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to report multiple mapping locations.[28] However, mrFAST is tailored to perform short

reads alignment with high accuracy (Illumina), short read length (36-mer) data and thus

performs poorly on longer reads with higher error rates.[132, 133]

To apply the NGS data in CNV analysis, both the number of copies and the breakpoints

of the variable region need to be accurately estimated. However, one of the disadvantages

of read-depth based CNV detection methods is that they are relatively poor at the precisely

determining the location of a CNV. This is because, to overcome the fluctuations in read

depth (especially with low coverage data), most methods binned the read depth trajectory

before analysis. In Alkan et al.[28], and RDXplorer[129], fixed/arbitrary window sizes

are used. While in SegSeq,[45] CNVnator,[42] CNV-seq,[128] and ReadDepth,[127] the

bin sizes are optimized by the statistical models to ensure the best resolution at a certain

false discovery rate. No matter how the bin size is chosen, the resolution of breakpoints is

determined by the bin size.

It has been shown that repetitions are very common in different genomes across all three

domains in life.[134–138] As a result, it is crucial to develop a new method that is robust

in mapping and detecting highly repeated regions. Using PB-sQF or NN, the short reads

originating from one of the repetitive regions in the reference sequence would have short

distances with the library reads from the repetitive regions. To fully exploit the mapping

multiplicity, a CNV detection algorithm, copy number variation detection for mapping mul-

tiplicity (CNV-MM), is developed to calculate the absolute copy number and the breakpoint

of repetitive regions. Since it is guarantee to find all the repetitive regions with distance-

based short reads mapper, the number of repetitions of a region in the reference genome

is obtained at the same time during the mapping process. As a result, although only the

targeted sequence was sequenced and the absolute copy number is obtained, the ratio of the

copy numbers between the targeted and reference sequences can also be calculated. Thus,

the changes of copy number in the target genome can also be reported. The breakpoints

can also be refined with the information from the reference sequence.
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1.4 Organization of Thesis

Data analysis often boils down to the important question: How similar/different are any

two data sets? Precisely for comparison of large, noisy datasets, this work developed a

new multidimensional statistical test, PB-sQF. This work analyzes the flow cytometric data

of antibiotic-induced changes in bacterial cells with PB-sQF and rapidly determines the

effective treatment for multi-drug resistant pathogens. In genome sequence analysis, PB-

sQF and a similar distance-based method NN were used to calculate distances between

sequences. Using PB-sQF, the unknown bacterial species were typed from either the com-

pleted genome sequences or raw short reads data. A phylogenetic tree can be built from

the pairwise PB-sQF distances for tracking outbreak infections. NN, on the other hand, can

perform error-tolerant short reads mapping. Combining with CNV-MM, a CNV detection

scheme that is robust with repeating regions in the reference sequence can be built.

The rest of this dissertation is organized as follows:

Chapter 2 develops the multidimensional statistical test, PB-sQF. This chapter explains

how PB-sQF transforms original data into a set of signatures and how PB-sQF calculates a

one-dimensional distance between multidimensional data sets. This chapter also explains

the bootstrap method for confidence level construction, error propagation, and geometric

quantiles calculation through quasi-newton minimization for characterizing flow cytometry

data. Specific for genome sequence analysis, this chapter describes how to adapt PB-sQF

for string comparison and how to construct the library reads for short reads mapping. This

chapter also introduces NN and the how the CNV information was extracted from the read

depth trajectory.

Chapter 3 proposes a new post-blood culture AST through characterizing the different

between antibiotic-treated and no-antibiotic cytometric data by PB-sQF. This chapter ex-

amines a wide range of antibiotic-bacteria combinations and monitors antibiotic-induced

changes with flow cytometry. First, the antibiotic-induced ROS was characterized with
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ROS sensing dye. Then antibiotic-induced scatter patterns changes were monitored. PB-

sQF was applied on the cytometric data to determine the effectiveness of an antibiotic

toward the bacteria which reduce the time-to-results from 72 to 28 hrs.

Chapter 4 demonstrates a pre-blood culture AST (FAST) can be built with only 5-hour

bacterial incubation time. This chapter searches for conditions to separate the bacteria cells

from blood cells that generate high background signal in cytometric data. This chapter

develops the work flow for pre-blood culture AST test which reduces the time-to-result

from 72 to 8 hours.

Chapter 5 investigates the ability for PB-sQF to perform genome sequence analysis.

This chapter demonstrates that PB-sQF can type bacteria at the species level using complete

genome sequences. With pooled raw short reads raw data, PB-sQF can determine the genus

of short reads data. With the distances between each sequence being calculated, PB-sQF

can construct a phylogenetic tree to study the evolutionary relationships of known bacteria

strains or perform outbreak analysis.

Chapter 6 studies short reads mapping with PB-sQF and NN. This chapter investigates

the reliability of Euclidean distance-based mapping of the short reads back to a refer-

ence genome with different conditions being verified: read lengths, system errors, single-

nucleotide polymorphism, insertions, and deletions. Both PB-sQF and NN have high error

tolerance compared to Bowtie2,[109] SOAP2[139] and mrFAST.[28] This chapter shows

that “unknown” sequences can be typed from the bacterial sequence library by mapping

only a few as 10 short reads.

Chapter 7 applies NN on short reads mapping to address the challenge of mapping mul-

tiplicity. The alignment results were used in CNV detections. A CNV detection algorithm

specialized in handling repeating regions in the reference sequence, CNV-MM, was devel-

oped. Using NN, read depth trajectory can still be recovered even with reads having higher

error rate. CNV-MM then analyzed the alignment results with all valid mapping locations

by comparing the read depth trajectories between the sequenced target genome and rebuilt
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reference sequence (non-sequenced). With NN and CNV-MM, repeated regions in the ref-

erence sequence can be linked and one can distinguish the true CNVs from the repetitions

in reference sequence.
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CHAPTER 2

EXPERIMENTAL AND COMPUTATIONAL SECTION

2.1 Cytometric-based AST

This section describes the procedure of dyes preparation, bacteria culture, antibiotics incu-

bation, and cytometric data acquisition

2.1.1 MH-IR786 and MH-hIR786 preparation

MH-IR786 was provided by Dr. N. Murthy in University of California, Berkeley and was

used in the post-blood culture AST. The reduced form, MH-hIR786, was used in ROS

detection.

MH-IR786 was prepared at a concentration of 1 mg/100 µL deionized water. The

absorption of the MH-IR785 solution was then measured and the true MH-IR786 concen-

tration was determined by the Beer’s law with the extinction coefficient equals to 287,767

M−1cm−1 as reported by Nakayama et al.[140]

To prepare MH-hIR786, MH-IR786 solution was reduced. Sodium borohydride (Sigma)

was dissolved in methanol (VWR, Batavia, IL) at 1 mg/mL and subsequently added, 10 µL

at a time, until the MH-IR786 changed from dark green to yellow. The MH-hIR786 so-

lution was then vacuum dried and resuspended in pH 6.0 acetate buffer (Fisher Scientific)

at a final concentration of 1 mM. To ensure that the MH-hIR786 fluorescence can indeed

be recovered by reacting with ROS, in vitro fluorescence recovery was tested by oxidizing

hIR786 to IR786 with ROS generated from Fenton’s reagent.[141, 142] First, the fluores-

cence baseline of 20 µL of MH-hIR786 in 2 mL of dimethyl sulfoxide (DMSO) (Fisher

Scientific) was measured with a fluorimeter (QuataMaster, Photon Technology Interna-

tional). Then, Fenton’s reaction was initiated by adding 60 µL of FeSO4 (Mallinckrodt, St.
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Louis, MO) at 3.5 mg/mL and 300 µL of H2O2 (VWR, Batavia, IL) at 200 nM to the MH-

hIR786/DMSO solution. The fluorescence signal was measured immediately and 1-hour

after the reaction.

2.1.2 AST by ROS detection

To show that antibiotic-induced ROS generation is correlated with cell death, bacteria

were cultured overnight in an incubator shaker (MaxQ 4000, Thermal Fisher Scientific,

Waltham, MA) in Luria-Bertani (LB) medium (Sigma-Aldrich, St. Louis, MO) at 37 °C

and 225 rpm. Bacteria were then re-inoculated in 12 mL fresh LB medium in 50-mL tubes

and incubated from ∼0.05 optical density (OD) to the mid-log phase. Bacteria in 1 mL of

growth media were collected by centrifugation (Centrifuge 5417R, Eppendorf) at 13,400

rpm for 3 min and transferred into 12-well plates (Costar, New York, NY). Antibiotics and

20 µL of MH-hIR786 (provided by Dr. N. Murthy’s lab) to achieve a final concentration

900 nM were added simultaneously. The MICs of different antibiotics were determined

by standard microbroth dilution assays in advance. The 12-well plates were incubated at

37 °C for 1 hour (Isotemp standard incubator, Fisher Scientific, Waltham, MA). Bacteria

were again collected by centrifugation and washed 3 times with phosphate-buffered saline

(PBS) (Life Technologies, Carlsbad, CA) and resuspended in 1 mL PBS. The bacteria sam-

ples were maintained on ice until flow cytometry was performed. Bacteria samples were

analyzed by a BD LSR II flow cytometer (Becton Dickinson, Franklin Lake, NY) equipped

with a 14 mW, 488 nm solid-state coherent sapphire laser for the scatter signal, and a HeNe

Laser (18 mW @ 633 nm) for IR786 fluorescence detection. Samples were gated by for-

ward and side scatter, while a 750-810 nm bandpass filter was used to collect the IR786

fluorescence. Data were collected with FACSDiVa provided by BD. Further data analysis

and display were carried out with Matlab 2013b (Math Works). For each data set, 100,000

bacterial detection events were collected.
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2.1.3 Post-Blood Culture AST Procedure

For post-blood culture AST test, a similar sample preparation procedure was used as in

the ROS sensing test. LB broth was used for incubating E. coli while cation-adjusted

Mueller-Hinton Broth (CAMHB) was used for all other types of bacteria. For each well

of the 12-well plate, 1 mL of fresh culture (OD ∼0.5) were spin down and resuspend to

480 µL or 500 µL of broth for samples incubating with or without 20 µL, 900nM of MH-

IR786. For each well, antibiotic was prepared at in 500 µL, 2x higher of the designated

concentration. The samples were incubated with antibiotics at their respective 1x, 1/4x and

1/16x MIC that was first determined by standard microbroth dilution assays. After 1-hr

incubation, bacteria were pelleted, washed 3 times and resuspended in PBS for cytometric

analyses. Fluorescence and scatter signals upon antibiotic challenge were monitored by

flow cytometry. IR786 fluorescence, forward-scattered and side-scattered light were all

collected for each of 100,000 measured bacterial cells per run, yielding 3-D histograms for

each antibiotic concentration.

2.1.4 Pre-Blood Culture AST Procedure

To simulate blood from a patient with bacteremia, the clinical isolates were grown, diluted

to the appropriate CFU/mL and added to the blood/saponin mixture to achieve the final

diluted sample. Initial cultures for bacteria-laden blood samples were prepared using LB

broth for incubating E. coli. For other bacteria, CAMHB was used. Bacteria were cultured

overnight in an incubator shaker at 37°C and 225 rpm. The fresh bacterial culture was

started from ∼0.05 OD by inoculating a 6 mL fresh growth medium with overnight cul-

ture. After the fresh culture reached mid-log phase, bacteria were diluted into∼10 CFU/mL

through a series of 10-fold dilutions and the concentration was confirmed by overnight plat-

ing from loading 100 µL of 1000 CFU/mL sample. The last 10-fold dilution was done by

adding the 500 µL of 100 CFU/mL into 4500 µL of 10% human blood (ZenBio, Research

Triangle Park, NC) in medium solution.
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2.5% (w/v) of saponin (Sigma-Aldrich, St. Louis, MO) was prepared, sonicated (Bran-

son 2510, Emerson, St. Louis, MO) for 20 minutes and spun down with a clinical centrifuge

(Centrific Model 228, Fisher Scientific, Waltham, MA) for 4 minutes. The supernatant was

collected to isolate the undissolved pellet. 500 µL of 2.5% saponin was then added to the 5

mL of 510 CFU/mL, 10% human blood sample and incubated in an incubator shaker for

15 minutes at 37°CṪo ensure that the blood cells lysed completely, the sample was laid on

the incubator floor, confined by the large flask clamps, and agitated at 300 rpm. The sample

was flipped by hand every 5 minutes. After the saponin treatment, the bacteria were again

pelleted and washed with 2 mL of PBS using a clinical centrifuge for 2 minutes. 2.5 mL of

growth medium was then added to the tube without breaking the pellet and incubated for 2

hours in an incubator shaker at 37°C and 225 rpm.

After the 2-hour incubation, the pellet was removed by pipetting. The sample was

mixed well and 500 µL of the sample was added to each well of one row of the 12-well

plate (4 samples per row) that was loaded with 500 µL of growth medium with or without

antibiotic at 2-fold of the specified concentrations. The plate was then incubated at 37°C

for 3 hours. Bacteria were again collected by centrifugation and resuspended in 200 µL

of PBS for flow cytometry detection. To ensure each clinically isolated strain was tested

at its MIC, pure culture starting with 1000 CFU/mL was also tested for each experiment,

confirming that the antibiotic concentrations we used indeed inhibited bacterial growth.

Bacterial growth inhibition was monitored by flow cytometry. Forward scatter and side

scatter signals were recorded.

2.2 Probability Binning - signature Quadratic Form (PB-sQF) Overview

To create a linear statistical metric that readily scales to multiple dimensions, we have

combined the adaptive probability binning with the signature QF distances. As described

in Chapter 1, probability binning from PB-χ2 allows one to represent the original data

with many fewer signatures, while sQF calculates the linear distance between the signa-
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tures.[79–83] Combining the best attributes of PB-χ2 and sQF 2D image analysis, PB-sQF

focuses binning on the high-density regions of the data, better facilitating similarity com-

parisons among multidimensional datasets while calculating the true distance between data

sets.

PB-sQF is a multi-dimensional distance statistic that quantifies the (dis)similarity of

any two distributions.[48] Probability binning codes were written to be equivalent to those

described in published studies.[79, 80] Schematized in Figure 2.1 A, probability binning

bins the data into approximately equal counts/bin by varying bin width. Because the data

are adaptively binned, this procedure concentrates bins where the data are concentrated.[48]

Thus, as shown in Figure 2.1 B and 2.1 C, the data are effectively represented by the set

of centroids, or signatures,[82] which are the median data point (cytometric data) or the

mean of the data (genome sequence) within each bin. Both the control and sample were

binned in the same manner, and the centroids and weights of each bin were calculated.

The PB-sQF matrix multiplication approach then yields calculated test statistics that reveal

the overall Euclidean distance between the two sets of centroids through quadratic form

calculation.[82, 83] The smaller the test statistic, the more similar the two distributions are.

2.3 Binning Procedure and Test Statistics Calculation

Binning is performed recursively by calculating the variance in each dimension, identifying

the highest variance dimension and dividing data at the median (cytometric data) or mean

(genome sequence) into two new bins along the high variance dimension (2.1 A). Data on

the bin boundary line are randomly split between the two daughter bins. Each daughter

bin is similarly split until the desired number of bins is obtained. This process enabled all

the bins to have similar counts. The centroids, which are the signatures of the data, and

weights of each bin are calculated for both the control and sample data. The test statistics

are then calculated as described in sQF applications using these described centroids and

weights[82, 83] The weight vector, which represents the probability of data points falling
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Figure 2.1: PB-sQF procedure. (A) Probability Binning. The mother bin is divided at
the median of the of the highest variance dimension to reduce the within-bin variance. The
raw data is taken as bin-0, labeled by the red number. After the first cut, it generates 2 bins:
bin-1 and bin-2. The same procedure is applied on bin-1 to generate bin-3 and bin-4 (total
3 bins); on bin-2 to generate bin-5 and bin-6 (total 4 bins). The plots here are pseudocolor
cytometric data with red indicating higher data counts. FSC: forward scatter. SSC: side
scatter. (B) After binning, the median data point in each bin is taken as the centroid (black
diamond). (C) The signatures of the data can be captured by the centroids, or the black
dots. All inter-centroid distances are calculated through matrix multiplication, yielding
dissimilarities that grow with increased difference between datasets.

into each bin, is defined as the number of counts per bin normalized by the total number

of counts. The weight vector includes weights from the control and the sample as shown

below:

Weight = (w1
c , w

2
c , ..., w

N
c ,−w1

s ,−w2
s , ...,−wNs ) (2.1)

The subscripts indicate whether the weights were taken from the control (C) or the sample

(S), and the superscripts indicate the bin for which the weights are calculated. The total

number of bins is denoted by N. The negative sign in front of the sample weights is used

to make sure that subtraction is carried out between the control and sample data in the later

steps to measure the differences between the two.
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The centroid vector was calculated from the geometric median (or Geometric quantile,

see below) to represent multidimensional median:

Cent = (C1
c , C

2
c , ..., C

N
c , C

1
s , C

2
s , ..., C

N
s ) (2.2)

The subscripts and superscripts were the same as in the weight vector. The centroids were

then used to calculate the similarity matrix. We defined the matrix elements at ith row and

jth column, Aij , in the similarity matrix, A, as:

Aij = 1ij −
L[Cent(i), Cent(j)]

Lmax
(2.3)

in which the first term is the ijth element in a 2Nx2N matrix of 1s. The second term

is the dissimilarity matrix with the numerator denoting the Euclidean distance between

centroids of bins i and j. The denominator is the normalized factor withLmax indicating the

multidimensional maximum distance. For flow cytometry data, the size of each dimension,

l, is the same. As a result, the maximum distance Lmax of n dimensions is set as
√
n ·

l. Even when the dynamic range of each dimension of the cytometry data is different,

the maximum distance can be calculated accordingly. For genome sequence analysis, the

maximum distance between centroids is
√
2 · kmerlength. A detailed explanation is given

in Section 2.4.1.

When the two centroids are exactly the same, the numerator is 0, meaning no dissimi-

larity exists. On the other hand, due to the normalization, when the distance between two

centroids equals the dynamic range (the largest possible distance between two centroids),

the dissimilarity is 1, representing a full dissimilarity. The similarity matrix, which is the

logical opposite of the dissimilarity matrix, is 1 minus the dissimilarity as shown above.

The diagonal elements of the similarity matrix are always 1, indicating that each centroid
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is most similar to itself. The test statistics were calculated using the QF matrix operation:

D =
√
Weight · A ·WeightT (2.4)

WeightT is the transpose of the Weight vector. Theoretically, D2 can range from zero to

two. The minimum occurs when the two distributions are exactly the same. The maximum

two happens when all the centroids in each sample are the same while the centroids dis-

tances between two samples is Lmax. The test statistics of antibiotic-treated data were then

normalized by the 99% confidence level of its paired-control to yield a “fold distance” that

can be compared across samples. In this study, we calculated 3-dimentional test with 128

bins.

2.4 PB-sQF for Cytometric Antibiotic Susceptibility Testing

Due to bio-variability, machine fluctuations, and/or different operating personnel, each flow

cytometry data set is a different subsample from an unknown mother distribution. Thus,

none of the cytometric data is completely identical among replicates even though they were

all sampled from the same mother sample. In order to correlate the changes in PB-sQF test

statistics with biologically relevant changes in antibiotic-induced cell damage, confidence

levels and error bars were constructed. For a right-tailed statistics test, any data with test

statistic that is greater than the confidence level is viewed as confidently different from

the control data. Error bars, on the other hand, assess how confident each test statistics

calculation is. The higher the confidence, the narrower the error bar. In the experiment,

bacteria were treated at 1/16x, 1/4x and 1x of the minimum inhibition concentration (MIC)

of each antibiotic. An effective antibiotic treatment will induce statistically significant

changes in test statistics at 1x MIC (or even at 1/4x MIC) from the control-1/16x confidence

level beyond error bars.

The following subsections describe how to construct the confidence levels and error
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bars.

2.4.1 Confidence Level Estimation

The bootstrap method was used to determine the 99% confidence level. The post-blood

culture flow data of the no-antibiotic control and the 1/16x data were treated as two mother

distributions, and 70 daughter distributions with the corresponding sample size, ranging

in bacterial counts from 4*(number of bins) to (8000 + minimum sample size) with step

size 400, were sub-sampled from each mother distribution. For pre-blood culture cytomet-

ric data, since the collected bacterial counts varied and most of the time much fewer than

100,000 counts, the sample size ranges from 4*(number of bins) to (1/10 of sample size)

with 20 steps instead. These distributions were then binned, and the PB-sQF protocol was

followed to calculate the test statistics. For each sample size, test statistics were calcu-

lated between all 70 of the no-antibiotic control sub-distributions and all 70 of the 1/16x

data sub-distributions. The distance measurements between all pairs of control-1/16x MIC

daughter distributions yield a distribution of test statistics values, resulting from random

sub-sampling from the mother distributions (biological variability). The 99% confidence

level of all the test statistics at each sample size can be determined. The 99% confidence

distances, which 99% of values are belows represents the confidence limit for a given sam-

ple size, decrease as the sub-sample size increases and can be fit by an equation similar

to the standard error of the sample mean: Conf(n) = a0 + a1√
n

, where Conf is the 99%

confidence level value, n is sample size, and a0 and a1 are fitting parameters. Here, a0 is the

unknown confidence level of the population. According to central limit theorem, the test

statistics distribution of the sub-distributions should approximate a Gaussian distribution

at large sample size. Thus, the uncertainty (standard error) in estimating the population’s

confidence level should follow a1√
n

. The observed confidence level then decreases with the

inverse square root of the number of data points/bin. As sub-sample size increases, the de-

viation becomes smaller and the estimation converges to the population confidence level.
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From the fitting, we can then estimate the 99% confidence level of the mother distribution

with a sample size, n = 100,000 (for post-blood culture test).

2.4.2 Error Bar Determination

The error bars in the test statistics bar chart combine two different uncertainties. One

results from biological variability while the other arises from the dispersion of data points

in each bin (i.e. binning error). Biological variability is estimated by the standard deviation

of the normalized test statistics of the triplicate data. Errors from the binning account for

the uncertainty in accurately determining the centroid position within each bin. Median

absolute deviation (MAD) is used to measure the dispersion of each bin since it is more

robust toward outliers compared to standard deviation. The MAD is calculated as follows:

MAD = median[abs[Xi − centroid]] (2.5)

That is, it is the median of the absolute distance between each data point, Xi, and the

centroid, which is the multidimensional median of each bin.[143, 144] The MAD can then

be used to estimate the standard deviation by:

σMAD
perbin =

MAD

φ−1(3
4
)

(2.6)

where φ−1 is the inverse of the cumulative distribution function or the quantile func-

tion.[144] As a result, the standard deviation estimated from MAD is the MAD divided by

the 75% quantile, which was determined by geometric quantile (which is a multidimen-

sional quantile, see below). The uncertainty from each bin, σMAD
perbin, was then propagated to

yield the final binning uncertainty for replica i, σbinningi .

The binning uncertainty from each replica was then pooled together to estimate the

variance of the unknown population, where all triplicate data were presumably sampling
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from this same unknown population,

σ2
binning =

∑k
i=1(ni − 1)(σbinningi )2∑k

i=1(ni − 1)
(2.7)

in which k = 3, since we have triplicate data. ni is the sample size of each replica,

which will be close to 100,000 data points (ni will be exactly 100,000 if no gate is applied

before analysis). The errors from triplicate data and from the binning process were then

propagated together to yield the final uncertainty.

σ2 = σ2
Tri + σ2

binning (2.8)

The error bars in the bar charts are one standard deviation above and below the test

statistic value.

2.4.3 Geometric Quantiles

Geometric quantiles are applied first in determining the centroid of each bin and second

in estimating the error from binning. The whole process uses the quasi-Newton method to

solve an unconstrained minimization problem. The target function that we minimize here,

as described by Chaudhuri[145] is:

f( ~Q(m)) =
n∑
i=1

[| ~Xi − ~Q(m)|+ ~u · ( ~Xi − ~Q(m))] (2.9)

in which n is the number of data points in each bin; ~Xi is the data point; and ~Q(m) is

the quantile of the mth iteration; u = 2α − 1, where α is fractional quantile. For example,

α = 0.5 if we are calculating median (50% quantile). The target function then reduces to

f( ~Q(m)) =
∑n

i=1 | ~Xi − ~Q(m)|. The median is the Q that minimizes the sum of distances

between each data point to the median. When u is non-zero, the second term in the target

function takes the deviation from the median into account. Our initial guess, ~Q(0), is the
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1-D quantile in each dimension. ~Q(1) is estimated using the following equations:

~Q(m+1) = ~Q(m) + ~s(m) (2.10)

~s(m) = − ∇f(
~Q(m))

∇2f( ~Q(m))
(2.11)

in which ~s(m) is the increment determined by the first- and second-order derivative of

the target function at the current iteration. For each step, we need to examine whether

f( ~Q(m+1)) < f( ~Q(m)). If not, we need to choose a better ~Q(m+1).[146]

The iteration stops when either (1) the iteration has been carried out 50 times or (2) the

relative gradient in Q is smaller than the stopping criteria we set. The relative gradient is:

relgrad(Q) =

f( ~Q(m)+δ)−f( ~Q(m))

f( ~Q(m))

δ
~Q(m)

(2.12)

In this work, the iteration was stopped when relgrad(Q) is smaller than 10−4.

2.4.4 Convergence and Linearity

The quantitative PB-χ2 methods[79, 80] from which we have adapted our binning methods

have been a significant advance in analysis. Inter-sample differences, however, do not

yield linear distances from calculated PB-χ2 test statistics, suggesting that PB-χ2 is not

a statistical metric, and preventing all samples from being directly compared on the same

distance axis. This was confirmed as the differences between the data and sample increased,

a linear increase was not obtained in the test statistics value (Figure 2.2 A). Thus, test

results between sub-distributions could not be directly aligned on the same scale, clouding

direct comparisons to paired controls. Importantly, data with larger PB-χ2 test statistics vs.

the same control with the same binning pattern, greater test statistic differences indicate

smaller similarity with the control. As the response curve for any given data set is unknown,

this nonlinearity precludes knowing how different the two data sets actually are. Further,
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Figure 2.2: Linearity and convergence of PB-sQF and PB-χ2. (A) The linearity of PB-
sQF and PB-χ2. PB-sQF showed a linear relation between the test results and the percent
positive while PB-χ2, although linearly increased, the linear relation could not be found.
(B and C) The 99% confidence level of (B) PB-χ2 and (C) PB-sQF. The confidence level
of PB-χ2 grew with bacteria counts while it reaches a limited value in PB-sQF and could
be fitted with an equation derived from the standard deviation of the mean.

since all the data must be binned according to the control binning pattern, the response

curves might possess different curvatures when different controls are used. Confounding

comparisons among data from different days or machines, this control-dependent property

might also contribute to error in test statistics when triplicate (or more) data with their own

paired-controls are considered. Nonetheless, the bootstrap method can also be applied to

PB-χ2 and a 99% confidence level can be determined from fitting (Figure 2.2 B). This 99%

confidence level can be used as a threshold and a similar bar chart regarding antibiotic

susceptibility can be created. Although the fold distance is less meaningful here, a similar

AST can still be built. PB-sQF directly circumvents these problems by combining the

linear aspect of QF statistics with probability binning to better interpret the flow cytometry

data, each with its own optimal binning.

For both the test of convergence and test of linearity, the azithromycin-treated E. coli

data and the paired, no antibiotic control were used to perform the tests. The test of conver-

gence was exactly the same as the determination of confidence level as described earlier.

seventy sub-distributions of the no-antibiotic control and of the 1/16x MIC each ranging

from 500 counts to 8500 counts were randomly generated from each mother distribution.

3-dimensional and 125 bins of PB-χ2 and PB-sQF were then applied respectively to cal-
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culate the test statistics between these sub-distributions. For the linearity test, the 1x MIC

data were treated as 100% positive data while the no-antibiotic control data were viewed

as 0%. Data points from the 100% positive data and the 0% positive data were then ran-

domly selected and mixed into a spectrum of new fictional data set with sample size of

100000, ranging from 2.5% positive to 97.5% positive with 2.5% as the step increment.

Test statistics were then calculated between the fictional data and the control data by either

PB-χ2 or PB-sQF. The test statistics from both PB-sQF and PB-χ2 were normalized by

their own largest distances (the test result between the 100% positive data and the control)

for comparison purpose (Figure 2.2 A).

2.5 PB-sQF for Genome Sequence Analysis

Although PB-sQF was developed to calculate the distance between flow cytometry data,

it can be used to analyze any type of multidimensional histogram data. To calculate the

similarity between genome sequences, the sequence, which is a string data, is first con-

verted into a numerical histogram. I also tailored PB-sQF to better quantify the differences

between any two genome sequences. The pairwise PB-sQF distances are then used to type

bacterial species and can be used to build a phylogenetic tree.

As in all other short reads mapping methods, the reference index must be constructed

before reads alignments. To map the short reads to a reference sequence with PB-sQF, a

library reads set must be built. The distances between short reads and library reads were

then calculated to find the shortest distance. To reduce the library reads searching time,

each test statistics calculation is used to update (narrow down) the new library reads search

space. This is possible because of the linear distances between sequences when calculated

with PB-sQF. The mapping results can then be imported to CNV-MM for CNVs analysis.

This section describes how to transform the genome sequence into a numerical his-

togram, what modifications were done to PB-sQF, how to construct the library reads for

short reads mapping, how to reduce the library size for each run, and how to call CNVs
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using the mapping results.

2.5.1 Adapting PB-sQF for Sequence Analysis

The genome sequences (both the assembled genome and short reads) were first k-merized

using KAnalyze.[147] The k-mer set was then digitized as:

A −→ 1 (2.13)

C −→ 2 (2.14)

G −→ 3 (2.15)

T −→ 4 (2.16)

The occurrence distribution of letter sequences of all k-mers is then transformed into

a k-dimensional histogram containing each unique k-mer and its corresponding k-mer

counts. The unique k-mer letter sequences were then transformed into k-dimensional co-

ordinates (Fig. 2.3) and can then be binned by probability binning as described in Section

2.2.

To obtain the centroid (“signature”) of each bin after binning, the k-dimensional k-

mer sequences within each bin were expanded into 4*k dimensional binary data points to

avoid bias in distance calculation in the next step. With p representing the position of the

nucleobase in the k-mer coordinate, the position in this new 4*k dimensional space where

a particular nucleotide exists, p′, is calculated as follows:

p′ = (p− 1) ∗ 4 +X (2.17)

in which the X is the digitized nucleobase. For example, a guanine (X = 3) in the 3rd

position of the original dimension (p = 3) will become an one at the 11th position (p’ =

11). So that X = 1, 2, 3 or 4 from the original dimension becomes (1, 0, 0, 0), (0, 1, 0, 0),
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Figure 2.3: Modified PB-sQF procedure for genome sequence analysis. Converting raw
sequence to centroid signatures. The letter sequence was divided into k-mers by KAnalyze
and imported into MATLAB. k-mer sequences were digitized as points in k-dimensional
space and binned by probability binning. Within each bin, the data was averaged to generate
the centroids.

(0, 0, 1, 0), or (0, 0, 0, 1) in the new dimension as shown in the dimension expansion step

in Figure 2.3. The average along each dimension of all the data points in each bin is then

taken as the centroid of a bin (as schematized in Fig. 2.3). As a result, centroids are a

measurement of how frequently a certain nucleotide appears in each of the k-dimensions,

that represents how significant this nucleotide in each bin is. Different from the cytometric

data where data points in each bin could form a broad distribution due to the wide dynamic

31



Figure 2.4: Illustration of short reads library construction. The complete library se-
quence is cut into to pieces at the reads length. A frame shift, x, is applied to generated
more library reads. The test statistics are then calculated between the unknown reads and
the library reads.

range, genome sequence only have 4 possible values (1, 2, 3, or 4). As a result, when

calculating centroids, mean is calculated for genome sequence analysis while median is

used to avoid outliers in the cytometric data.

After obtaining the centroids, the similarity matrix, A, can be calculated as Equation

2.3. The maximum distance, Lmax, is
√
2 · kmerlength. Since the largest distance between

two centroids happens when they have totally different nucleotides and the Euclidean dis-

tance is the square root of the summation of difference squares over each dimension. As a

result, for each k-dimension, the maximum distance is 12+12 = 2 before taking the square

root, and the maximum distance for k-mer data is 2*k-size before square root. The test

statistics were then calculated using Equation 2.4.

2.5.2 Short Reads Library Construction

Bacterial library sequences were obtained from NCBI (ftp://ftp.ncbi.nlm.nih.

gov/genomes/archive/old_refseq/Bacteria/). To map the short reads onto

the library strain, the library strain was chopped into similar length reads with varied frame

shifts to ensure a complete reads library. Using 200-mer reads as an example, the first
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library was the first 200-mer of the sequence. Shifting this 200-mer window every 200-mer

would give the simplest and smallest library of a sequence. To get a larger library, the

window could be shifted by 50, 20 or 10 bases instead as shown in Figure 2.4. The smaller

the shift, the more library members one gets. 10-mer shifts were used for reads lengths

equal to or larger than 50-mers. For 36-mers reads, 6-mer shifts were used. These reads

were then k-merized, binned and saved as the reads library for each strain. To map the short

reads to the library sequence, test statistics between the unknown reads and library reads.

The unknown read is mapped to the library read with the smallest test statistic.

2.5.3 Simulated Reads Generation

Simulated short reads were generated from one of the library sequences and “unknown”

reads were randomly generated from throughout the library sequence. To mimic real-

world conditions, three different error sources were considered: uniform error, SNPs and

insertion/deletion (indel). Both uniform errors and SNPs are single nucleotide mismatches

where uniform errors are introduced by the sequencer while SNPs are from point mutations.

The indel, on the other hand, can span several nucleotides. In the simulation, the indel rate

is normally set at 2% unless indicated otherwise. The indel rate governs the possibility of

the onset of a indel at each nucleotide. Once a indel starts, it’s 50% chance to be either an

insertion or a deletion. The length of a indel is set to either follow a geometric distribution

or at a constant length. A geometric distribution was chosen since once an indel occurs,

there are only 2 possible outcomes: stay in the indel or quit the indel. For each base, the

probability to successfully quit the indel is set as p. The geometric distribution describes

the number of failing attempts it takes before it successfully quit the indel. The number

of failing attempts is the indel length. In the simulation, the probability for each base to

successfully escape from the indel was set at 0.3.

Different from the single-end sequencing where each DNA fragment is only sequenced

from one end, paired-end sequencing generates paired-reads that are sequenced from both
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ends. Since the length of DNA fragments is determined by the experimental procedure,

the distances between the two ends, i.e. the insert size, are known to be within a certain

range. Reads that can be mapped to multiple locations due to the repeated regions can

thus be mapped to the correct origins if their paired-reads are mapped concordantly. If the

repeated region is too long, however, unique mapping locations might not be obtained for

both reads.

Due to a new DNA strand is synthesized from the 5’ to 3’ end direction, paired-reads

have opposite direction. In our simulation, the direction (forward or reverse) of read 1 in

a read pair was chosen randomly and the read 2 was the opposite direction of read 1. The

insert size followed a Gaussian distribution with mean equals 380 bps and the standard

deviation is 50 bps.

2.5.4 Reduce Short Reads Search Space

Different from the whole sequence typing in which one strain is one library, in short reads

mapping, there are more than “GenomeSize
ReadSize

” reads library per strain (more because frame

shift applied). The number of library reads greatly increases the calculation time. Since

the test statistic calculated from PB-sQF is a true linear metric, the test statistics can be

compared directly through a common control. The calculation time can thus be reduced by

updating the search space with every test statistic that has been calculated.

To reduce calculation time, 50 control library reads were selected. The first control

read was the first ReadLength-mer of the library sequence and the test statistics between

the first control read and the rest of the library reads were calculated. To better represent

the full dynamic range of library sequence, the test statistics results were sorted and the

library read with the largest test statistics was chosen as the 50th control read. The other 48

control reads were evenly distributed from the 1st to 50th control reads according to their

test statistics results. This ensured that the 50 control reads were good representations of

the complete library reads and can better help narrow down the search space in the next
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Figure 2.5: Reducing search space by linear metric distance. Numbered balls represent
the control reads. The X marked ball is the unknown read. The yellow balls are the library
reads which are not selected as control reads. The non-labeled light blue ball is the library
read that serves as the mother read for unknown X. First, The test statistics between control
read 1 and the unknown is calculated (TS1X). An acceptable test statistics range is con-
structed as TS1X ± TSpreset as shown in the red ring. Any library read and control read
that doesn’t lie within this range is excluded from further analysis since the probability for
the unknown to map to that read is low. The same process is carried out again with control
read 2.

step. After the control reads were selected, the test statistics between these 50 control reads

and all the library reads were calculated. The library test statistics results were saved in

a 50× “Total number of reads” matrix, MTS , with the rows representing different control

library reads and columns being all the library reads. The control library reads selection

and test statistics calculation can be done in advance and only needs to be done it once

for each reference sequence for a given read length. This process stops when either all 50

control reads are used or the updated library size is smaller than the number of remaining

control reads.

When searching for the best-matched reads library, test statistics were calculated be-

tween the unknown read and control read 1. The test statistics result was then compared

to the saved test statistics library (first row of MTS). Since PB-sQF is a (linear) metric,

the distances between the library reads and the unknown read can be inferred from the

distances between the library reads and the control reads. Any library read that has a pre-
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calculated test statistics much larger or smaller than the calculated value, the chance that

the unknown originated from this library read was low and was thus excluded from further

analysis. An example is given in Figure 2.5. Here, the unknown read X originates from

the light blue ball (mother read) with some sequencing errors and/or mutations. The test

statistics, TS1X , between the unknown X and control read 1 is calculated. Since the un-

known is derived from the mother read which is one of the library reads, the test statistics

between the mother read (light blue ball) and control read 1 must be very similar to TS1X .

By setting a pre-defined test statistics range (TSpreset), any library reads that are within

TS1X ± TSpreset (the red ring in Fig. 2.5) are kept. Library reads that have test statistics

with the control read 1 that are very different from TS1X (library reads outside the red ring

in Fig. 2.5) can thus be safely excluded without calculating the test statistics between those

reads and the unknown therefore reduce the calculation time.

2.6 Nearest Neighbor (NN) Distances

NN, which is also a Euclidean distance-based sequence similarity method, has been applied

in 16S genome sequence typing.[27, 101] However, probably due to high dimensionality

at large k-mer size, NN has not been applied to whole genome sequence typing or short

reads mapping. Nevertheless, when analyzing the k-mer frequency data, I discovered that

NN can achieve high performance by analyzing 3-mer data with full frequency counts,

treating as a probability distribution, and therefore circumvents the high dimensionality

problem. In NN, each unique k-mer is treated as one dimension so each genome sequence

is represented in a 4k dimensional space with the coordinate being the k-mer counts (Fig.

2.6). The test statistics is the 4k-d Euclidean distance between the coordinates. Since both

PB-sQF and NN calculate the metric distance between 2 histograms, NN can be applied in

a similar way as PB-sQF. The short reads library can be constructed by chopping the library

sequence and the search space reduction method can also be applied. For short reads with

36, 50, 76, 100, 150, 200, 250 and 300-mer, the pre-defined test statistics range in search
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Figure 2.6: Nearest neighbor method A 2-mer example. Each unique 2-mer serves as
an independent dimension. For each sequence, Sn, n = 1 ∼ N , the k-mer counts and the
sum of counts are obtained. The 4k coordinate of each sequence is the k-mer frequency. To
find the mother sequence of an unknown sequence, a, the sequence is k-merized and the 4k

coordinate is acquired for comparison. The Euclidean distances between the unknown and
every library strain are calculated and the unknown is typed to the library strain with the
smallest test statistic.

sapce reduction are set as 0.07, 0.06, 0.05, 0.045, 0.04, 0.035, 0.03 and 0.03.

2.6.1 Valid Short Reads Assignments

NN calculates test statistics between the query reads from the donor/target sequence and

the library reads even when the library reads are not the correct mapping locations. As a

result, when using NN to report multiple possible mapping locations, a threshold was set

up to exclude the library reads that have low probability to be the correct mapping result.

To set up the threshold, the genome sequence of Syntrophomonas wolfei subsp wolfei str

Goettingen (Accession: NC-008346.1) was selected as the model sequence. For each read

length, 106 library reads were randomly selected. Query reads were generated for each

library read with frame shift and errors (1% of uniform error and 2% of indel rate with the

indel length following the geometric distribution with a probability equal to 0.3). The frame

shifts ranged from FrameShift
2

to 9×FrameShift+FrameShift
2

with 1×FrameShift as the

increment to either direction (Fig. 2.7 A). Reads originates beyond 9 × FrameShift are

not discussed here since the chance they are mistakenly mapped to the investigated library

read should be low. Since NN performs read-to-read alignment and the library reads were
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constructed with various frame shift, reads that were generated within ±FrameShift
2

from a

library read, ideally would be mapped back to the correct library read (Fig. 2.7 A, purple

region). The test statistics calculated between the library reads and the corresponding query

reads at each condition, due to errors and frame shifts, form a distribution (Fig. 2.7 B,

purple). Test statistics between the library read and query reads that were from more than

FrameShift
2

away and ideally were supposed to map to the neighbor library read were also

calculated (Fig. 2.7 B). Left-tailed confidence levels were calculated since one wants to

know the probability that a target read indeed originates from the library read. The default

threshold is set at 95% confidence that a target read is mapped within 2 (for read length

< 100-mer) or 4 (for read length > 100-mer) frame shift away from the true origin. Any

library reads that have test statistics larger than this threshold were discarded.

For short reads mapping with multiple locations, the threshold for screening valid as-

signments can not be too strict in order to map all the reads to different copies of genes

with some variations. At the same time, the threshold has to be narrow enough to reject all

the incorrect mapping. The threshold, is thus set empirically for each read length.

2.6.2 SAM Format and MAPQ Score

The standardized short reads mapping results output, the Sequence Alignment/Map (SAM)

format, has 11 mandatory fields including reads information such as the query names, query

sequences and mapping positions.[148] NN can generate output following the SAM for-

mat, however, the CIGAR (Concise Idiosyncratic Gapped Alignment Report) field, which

reports the match/mismatch and indel for each base, is unavailable (*) since as a read-to-

read aligner, NN doesn’t carry CIGAR information. The MAPQ (MAPping Quality) field

records the mapping quality score, Q, for each mapped short read. The score Q quantifies

the probability that a read alignment is wrong, Pwrong, and is defined as follows.[29]

Q = −10log10Pwrong (2.18)
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Figure 2.7: Confidence levels and incorrectly assigned probability. (A) Relation be-
tween simulated query reads and library read. The left-most index of the investigated
library read is indicated by the arrow. This position is defined as 0x frame shift. The
left-most index of neighbor library reads is shown as how many frame shifts away from
this library read (x-axis). The shaded areas are where the query reads were generated at
each condition. Query reads from the purple area, which is ±FrameShift

2
away from the

library read, were reads that ideally should map to the library read. Reads from the blue
region were reads that ideally should map to library read at 1x or -1x frame shift. (B) Test
statistics distributions between library reads and query reads from 0x, 4x, and 9x away from
the correspond library reads as described in (A). (C) For a read with a certain test statistic
value, the percentage of it originated from 0x, 1x, to 5x frame shift away from this library
read.

Although all the short reads aligners use the above equation to calculate the mapping

quality score, every aligner estimates Pwrong differently. Since neither the hash table-based

aligners nor the BWT-based aligners actually calculate the distance between the query read

and the reference sequence, none of these estimated Pwrong are statistically defined. Using

our NN approach, however, Pwrong can be easily calculated using the test statistics distribu-

tion as described in subsection 2.6.1. Test statistics distributions were calculated between

106 pairs of library reads and the corresponding query reads that were generated 0x, 1x,...,

5x frame shifts away from the library reads. The test statistics from the 0x frame shift query

reads were binned into 32 bins. The histogram counts for all six test statistics distributions

in each bin were calculated. As shown in Figure 2.7 C, the probability that a read indeed
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originated from the 0x frame shift decreases as the test statistic increases. The percent

correct at each bin is thus H0x∑5x
i=0xHi

, with H being the histogram counts and the subscript

indicates the test statistics distribution. The percent wrong, Pwrong, can, therefore, be cal-

culated from 1−Pcorrect and by equation 2.18, the MAPQ score for each alignment can be

obtained.

2.7 Copy Number Variance (CNV) Detection

Since most of the major short reads aligners were developed for unique mapping for each

read,[29, 40, 109, 112] most CNV detectors were built to analyze the read depth constructed

only from the best mapping result causing them to have difficulty dealing with any repeated

regions in the reference sequence.[41, 43, 125] Because current CNV detectors, consider

only unique mappings and discard the multiply mapped reads, they will identify many

false deletions due to the reads being removed.[42] When considering all mapping loca-

tions, without properly adjusting for the repeats in the reference sequence, a CNV detector

can mistakenly assign the multiple copies that also exist in reference sequence as “true”

CNV regions. Thereby resulting in incorrectly identify excess duplications.[28] Both sce-

narios produce high false positive rates. As a result, a new CNV detection algorithm, copy

number variation detection for mapping multiplicity (CNV-MM), was developed to take

advantage of and utilize the probability-based multiple location mapping data from NN.

The procedure of CNV-MM will be explained in three parts: reconstructing read depths,

segmentation, and copy number determination.

2.7.1 Building the Read Depth Trajectories

As shown in Figure 2.8, each donor read is first mapped onto the reference sequence. In this

example, the donor read is similar to parts of gene A and gene A’ with test statistics 0.1 and

0.2 respectively. After applying the threshold for valid assignments, only two assignments

remain. To identify the CNV regions after rejecting invalid assignments, three different
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Figure 2.8: Model system with two copies of gene A. The test statistics are calculated
between the query read and all the library reads (without frame shift). After threshold
applied, only the valid alignments are kept. This model system is used for the rest of this
section.

trajectories are constructed. For all three trajectories, read depth was assigned across the

span of the read instead of only assigning at the left-most index and read depth contributed

from each read was added together to form the final read depth trajectory. Even though

the read depth was added across the whole read, the resolution is still determined by the

mapping resolution, which is the frame shift of the reads library and the read length of the

unknown reads.

Binary Trajectory

The first trajectory is the read depth generated using the binary approach. To build the

binary trajectory, the query reads are either mapped (1) or not mapped (0) to a reference

location.

The binary read depth at a given reference genome location, x, is the sum of all the read

depths contributed from all the reads that are mapped to the given location.

ReadDepthBi(x) =

NReadsMapped(x)∑
i=1

RDBi
i (x) = NReadsMapped(x) (2.19)
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Binary Trajectory
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Figure 2.9: Building the binary trajectory. For each valid assignment of any given read,
one (existence) is assigned to the mapped location on the reference genome. The binary
trajectory is built by summing over all mapping results. The model system is the same as
in Figure 2.8.

in which RDBi
i the binary read depth contributed from readi, and it is one for all valid

mapping locations of readi. As a result,
∑NReadsMapped(x)

i=1 RDBi
i (x) equals to the total num-

ber of reads mapped to the given reference index, NReadsMapped(x).

As shown in Figure 2.9, the query read-1 maps to A and A’. Thus the binary assignments

are one for both locations. For query read-2, it also maps to both A and A’ so the read depths

increase to two. The binary read depths keep increasing when more query reads are mapped

to A and A’. The binary trajectory is obtained by summing over all valid mapping results

from all query reads to each reference location, which is equivalent to the number of query

reads mapped to a given genome position.

Since the multiple copies in the reference sequence only determine to where the query

reads are mapped but not the read depth at each genome location, the binary read depth

trajectory is only affected by the number of copies in the read donor (the query) sequence.
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Average Trajectory

The second trajectory is the average number of assignments, ReadDepthAvg, and is calcu-

lated at a given genome position, x, as follows:

ReadDepthAvg(x) =

∑NReadsMapped(x)
i TVi(x)

NReadsMapped(x)
(2.20)

in which TV is the total number of valid assignments for each read,i, is that mapped to

the given genome index. The numerator,
∑NReadsMapped(x)

i TVi(x), is the total number of

reference locations to which all donor reads mapped to the given genome index can be

mapped. The denominator, NReadsMapped(x), is the number of valid query reads mapped to

a given genome location. When examined from the first nucleotide (x = 1) to the last (x =

SequenceSize), NReadsMapped(x) is equivalent to the binary trajectory. By normalizing the

contributions from reads donor multiplicity, ReadDepthAvg represents the multiplicity of

locations to which the reads mapped to this location are also mapped (i.e. the average total

number of locations to which each read is mapped). The number of assignments reflects

the copy number within the reference sequence and is not affected by the copy number of

the reads donor (the query sequence). To avoid dividing by zero, the ReadDepthAvg(x) is

set to zero when no read is aligned to the given reference index, x.

As illustrated in Figure 2.10, query read-1 can be mapped to two different locations,

A and A’. Therefore, TV1 = 2 for both A and A’ regions. Query 2, which can also be

mapped to both A and A’, also have TV2 = 2. Thus, at both A and A’, the numerator,∑ReadsMapped
i TVi, is 2 + 2 = 4 while the denominator is two (total two reads mapped at

either A or A’). Therefore, the average number of assignments at A and A’ is two. The read

depth two indicates that there are two locations in the reference genome that share similar

sequence (two copies of gene A). As a result, when a third read is also mapped to A and

A’, the average number of assignments does not change.
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Average Trajectory
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Figure 2.10: Building the average trajectory. At each reference genome location, the
summation of the number of valid assignments for each query read mapped to the location
is taken. This summation is then divided by the total number of reads mapped to the loca-
tion, which is equal to the binary trajectory, to obtain the average number of assignments.
The model system is the same as in Figure 2.8.

Test Statistics Trajectory

The third trajectory is the read depth recovered from the calculated test statistics (TS).

Different from the binary and average trajectories, TS trajectory is the only trajectory that

uses the test statistics information. In this trajectory, the sum of read depth of a query read

is always one. When a read is mapped to multiple locations, the read depth is divided into

all valid mapping locations with weights depending on the test statistics between the query

read and library reads.

The TS read depth at a given reference genome location, x, is the sum of all the read

depths contributed from all the reads that are mapped to the given location.

ReadDepthTS(x) =

NReadsMapped(x)∑
i=1

RDTS
i (x) (2.21)

in which RDTS
i (x) the TS read depth contributed at x from readi, and it is determined

by the test statistics values of all valid mapping of readi.
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The read depth of the ith assignment among total N i
assignments valid assignments of

readi is calculated as follows:

RDTS
i (x) =

Weighti∑N i
assignments

j=1 Weightj

(2.22)

There are different ways to determine the weights which is discussed in Appendix A

and Appendix Figure A.1. Here, the weights are the inverse of test statistics as shown in

Figure 2.11. As a result, the smaller the test statistic is, the larger the weight. For any

assignments with TS = 0, 10−4 is used instead to avoid division by zero.The read depth

at each location is the weight normalized by the sum of weights to which a query read

can be confidently mapped. By summing over the contributions from all query reads, i,

the final TS trajectory is obtained (Equation 2.21). Since the read depth is distributed to

all valid assignments, which is proportional to the number of copies in the reference, and

then summed over all mapped query reads, this trajectory is inversely proportional to the

number of copies in the reference sequence while being directly proportional to the number

of copies in the donor sequence

Since the weights are determined by the test statistics results, the TS trajectory can

provide more information about the CNV regions then just the copy number. As shown in

Figure 2.11, after the query read-1 is mapped, two cases are provided. The query read-2

in case 1 has the reversed weights than query read-1. Thus, the summation of read depths

equals one for both assignments (gene A and A’). In case 2, the query read-2 has exactly

the same weights as query read-1 which leans toward gene A. As a result, the final read

depth also emphasizes on gene A. This shows that in case 2, although the query reads share

similarity to gene A’, they most likely originate from gene A. If the final analysis suggests

a deletion in the reads donor sequence, there is a higher chance that gene A’ was deleted.

If the final analysis indicates a duplication in the reads donor, the duplication gene is most

likely gene A. In the binary and average trajectories, no difference will be found between
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Test Statistics Trajectory
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Figure 2.11: Building the test statistics trajectory. The read depth from each query read
is divided into multiple mapping locations weighing by the test statistics. The final read
depth is the sum of all divided read depth from each query read. Since the read depths
depend on the test results, different distributions of test statistics will give different TS
trajectory. The model system is the same as in Figure 2.8.

the two cases.

Evenly Distributed Trajectory

Although the test statistics trajectory provides more information about the multiple as-

signments, none of the short reads aligner that we know of calculates the test statistics

information. In order to apply CNV-MM to any aligner of choice, the evenly distributed

trajectory is used (Fig. 2.12). The read depth of the evenly distributed trajectory at a given

reference genome index x is defined similar as in the binary and TS trajectories: the sum

of the evenly distributed read depth at x contributed from each read, i.

ReadDepthEven(x) =

NReadsMapped(x)∑
i=1

RDEven
i (x) (2.23)
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Even Trajectory
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Figure 2.12: Building the test statistics trajectory. The read depth for a given query read
is divided evenly to all the valid assignments. The final read depth is the summation of
contributions from all query reads. The model system is the same as in Figure 2.8.

Instead of distributing the read depth to all valid assignments by their weights, the read

depth, RDEven
i (x), is distributed evenly to all valid assignments:

RDEven
i (x) =

1

N i
assignments

(2.24)

in which N i
assignments is the total number of valid assignments for query read i.

Although using the evenly distributed trajectory instead of the test statistics trajectory

enables CNV-MM to be compatible with other short reads aligners, for CNV-MM to per-

form at its full capacity, the reads aligner needs to be able to handle the mapping multiplic-

ity properly (discussed in Chapter 7).

Since the read depth of a given query read is evenly divided into all valid assignments

and the final read depth is the summation of all query reads, the read depth of the evenly

distributed trajectory is determined by the ratio of the read depths between the reads donor

and the reference sequences. The relationship between the binary, average and evenly

distributed trajectory is discussed next.
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Figure 2.13: Read depth trajectories with different copy number in reads donor. The
reference sequence is fixed to have one copy of gene A. The reads donor sequences, have
(A) one copy of gene A, (B) two copies of gene A (and A’), and (C) three copies of gene A
(A’ and A”).

2.7.2 Analyzing the Trajectories

To use these three trajectories (average, binary and the even trajectories) to identify CNVs,

the behavior of all three trajectories were investigated with different scenarios of reads

donors and reference sequences combinations. From the studies, the relationships between

all three methods are deduced.

Relation between the Trajectories

First, the effects of different copy numbers of genes in the reads donor sequences are tested.

As shown in Figure 2.13, the average number of assignments remains the same regardless

of the copy number of gene A. This is because no matter how many short reads that are

similar to those in gene A are generated from the target sequence, all the short reads had

only one mapping location. As a result, the trajectory remains unchanged. The read depths

for even and binary trajectories increase from 1x to 3x higher compared to the baseline. In

both cases, since there is only one copy in the reference, all the extra short reads generated

from gene A’ and A” are all mapped to gene A on the reference genome.

To test the effects of multiple copies in the reference sequence, the number of copies of
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Figure 2.14: Read depth trajectories with different copy number in reference se-
quences. The reads donor sequence is fixed to have one copy of gene A. The reference
sequences, have (A) one copy of gene A, (B) two copies of gene A (A and A’), and (C)
three copies of gene A (A, A’ and A”).

gene A is fixed in the reads donor sequence and the copy number in the reference sequences

varied. The average number of assignments increases linearly with the number of copies in

the reference (Fig. 2.14). The evenly distributed read depth, on the other hand, decreases

from 1x, 1/2x to 1/3x when the copy number of gene A in the reference increases from 1x,

2x to 3x. This is because as the copy number of the reference increases, the short reads

generated from gene A in the reads donor sequence can be mapped to multiple locations.

Since the sum of read depth contributed from one read in the evenly distributed trajectory is

one and there is only one copy in the reads donor, the read depth is diluted 1
NumberCopyinRef

at each gene A location. As for the binary read depth trajectory, the short reads from gene

A are mapped to multiple locations on the reference genome as in the evenly distributed

probability, however, since the binary approach assigns one to all mapping locations, the

read depth is not diluted and remains as one.

As the average number of assignments is determined by the copy number in the ref-

erence sequence, the binary read depth trajectory is governed by the copy number in the

donor sequence, and the evenly distributed read depth trajectory is affected by the ratio of
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copy numbers in both sequences, these three trajectories follow this relation:

TrajectoryEven =
TrajectoryBinary

TrajectoryAvg
(2.25)

The TS trajectory, although theoretically can not replace the evenly distributed trajec-

tory in equation 2.25 since while the RDTS
i (x) is proportional to the number of copies in

the read donor sequence and inversely proportional to the number of copies in the reference

sequence, it is also determined by the weights of all valid assignments. The TS trajectory,

however, resembles the evenly distributed trajectory in all the data we have tested so far.

This is probably because, for most multiple copy regions, they share high similarity, so

the test values are close. Thus, the weights at each assignment are close to evenly dis-

tributed. The equation 2.25, as a result, still holds for when replacing TrajectoryEven with

TrajectoryTS

Although the binary read depth trajectory alone can define the gene regions and estimate

the number of copies of the donor sequence, it can not identify the true CNV regions since

multiple copies can exist in both the donor and reference sequences. The average trajectory,

on the other hand, provides the information of the copy number in the reference sequence.

The evenly distributed read depth trajectory directly identifies the true CNV regions since

the read depth only deviates from the baseline when there is a copy number difference

between the reference and donor sequences. However, the deviations can be small. For

example, if the reference sequence has ten copies while the donor sequence only has one,

the ratio is 1
10

of the baseline in the evenly distributed trajectory. This small deviation

is very difficult to distinguish from the reads mapping Poison noise. However, the 10-fold

higher number of assignments is very easy to identify in the average number of assignments

trajectory. As a result, all three trajectories are used to help identify the true CNV regions.
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Non-ideal conditions

It is clear that when the test values of all valid assignments are not similar, the equal-

ity of equation 2.25 might not stand when replacing TrajectoryEven with TrajectoryTS .

However, even when using TrajectoryEven, it sometimes does not equal the ratio between

TrajectoryBinary and TrajectoryAvg.

When repeated regions on the reference sequence share lower similarity, some of the

query reads might only be mapped to a subset of CNV regions. This is because threshold is

set to reject low-confidence mapping. While the threshold has to be relaxed to recognized

repeated regions with small variations, it also has to be strict enough to remove the incorrect

mapping. If repeated regions only partially resemble each other, then some of the query

reads might not mapped to all the repeated regions at the same time.

As shown in Figure 2.15, this inconsistent query reads mapping makes the read depths

at gene A as follows: TrajectoryEven = 3
2
, TrajectoryBinary = 2, and TrajectoryAvg =

3
2
. These read depths mean that there are 3

2
of gene A in the reference sequence (from the

TrajectoryAvg), two copes of gene A in the read donor sequence (from the TrajectoryBinary),

and this is a true CNV region with the reads donor sequence have 1.5 times higher number

of copy than the reference sequence (from the TrajectoryEven). However, these are not

true.

Since related repeated regions can be grouped together using CNV-MM (See Section

2.6.4), instead of examining the read depth at each repeated region, the average read depth

among related regions can be calculated. In the average trajectory, the group average of

average number of assignments of gene A and A’ is 7
4
. The average read depth for binary

trajectory is 3
2

and for the even trajectory (or the TS trajectory) is one. Since the read

depth for each query read is always one, the average of even or TS read depth among valid

assignments will always reflect the true ratio of copy numbers between the reference and

read donor sequence. As a result, the group average TS read depth is the key to distinguish

the true CNV regions from multiple mapping regions.
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Average Trajectory
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Figure 2.15: Inconsistent query reads mapped. When repeated regions on the reference
sequence share lower similarity, query reads might be mapped to the reference sequence
inconsistently. This invalidates equation 2.25
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Figure 2.16: Wavelet Denoising of a TS trajectory. The blue lines and orange lines are
the TS read depth trajectories before and after wavelet denoising respectively.

2.7.3 Segmentation: Finding the Copy Number Alternation Regions

After the binary and average number of assignments trajectories are constructed, possible

CNV regions, which are regions with read depths deviate from the baseline (both duplica-

tions and deletions), are selected by segmenting the trajectories.

To detect the copy number varying regions, the trajectories are first denoised by wavelet

transformation. Wavelet transforms have been used in signal denoising, edge detection,[149–

152] and have been shown to be useful in copy number detection.[46, 153] In CNV-MM,

the first and last ReadLength-bp of the trajectories are set to the mean read depth to prevent

the edge effect from the mapping process. Then, discrete stationary wavelet transforms

of the trajectories are performed with Haar wavelets. Haar wavelet is chosen since it is

a step function which resembles the copy number transition. The level of decomposition

is set as log2(SequenceSize). Each wavelet component was denoised by thresholded at

three times of the mean read depth of each trajectory. The denoised read depth trajectory is

reconstructed with the denoised wavelets. The denoised TS read depth trajectory is cleary

smoother compared to the original trajectory (Fig. 2.16).

The mean (AvgRD) and standard deviation (StdRD) of the wavelet denoise trajecto-

ries are calculated. To find the positive peaks (peaks with read depth larger than the average

read depth), simplified trajectories are constructed as follows:
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Threshold = 2× AvgRD − StdRD (2.26)

Tjsimplified =


Tjoriginal, if Tjoriginal = Threshold

0, otherwise
(2.27)

in which Tj is short for trajectory. The simplified trajectories are the trajectory with

read depth equals to the original trajectories if the read depths are expected to be two times

or higher than the mean read depth. To find all the peaks, the derivative of the simplified

trajectories are taken to find the transition points. To reduce the false positive rate, only

the transitions points that are larger than than the transition threshold are kept. Since this

threshold is supposed to keep all transitions (peaks) with read depths equals or larger than

2×AvgRD, but the AvgRD changes from trajectories to trajectories, a dynamic threshold

is needed.

To calculated the dynamic transition threshold, a 2nd simplified trajectory is calculated.

In this trajectory, all the peaks with read depths = 2×AvgRD+StdRD are set toAvgRD

and new set of transition points is calculated. Since any large peaks has been smoothed out,

this new set of transition points only included peaks with 2 × AvgRD and noises. As a

result, when performing k-mean clustering with two clusters on the new set of transition

points, cluster-1 will have transition points with the cluster mean∼ 2×AvgRD and cluster-

2 contains the transition points of noises. The transition threshold is then set and applied on

the original set of transition points that were calculated from the 1st simplified trajectory.

Thresholdtransitions =Meancluster2 + 0.7× (Meancluster1 −Meancluster2) (2.28)

LeftIndex = TransitionPoints > Thresholdtransitions (2.29)

RightIndex = TransitionPoints < −Thresholdtransitions (2.30)
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The neighboring transitions that have opposite signs (LeftIndex andRightIndex) are

paired as the copy number alternation boundaries or potential gene breakpoints. The same

process is applied to all three trajectories and the results are merged as the final potential

CNV regions with positive peaks.

For the negative peaks (dips with read depth smaller than the average read depth), the

simplified trajectories are constructed as follows:

Threshold = AvgRD − StdRD (2.31)

Tjsimplified =


Tjoriginal, if Tjoriginal < Threshold

AvgRD, otherwise
(2.32)

The derivative of the simplified trajectories are again taken as the transitions points.

The transition thresholds are set as the mean of the transition points. Only this time the

LeftIndex and RightIndex are defined as follows:

LeftIndex = TransitionPoints < −Thresholdtransitions (2.33)

RightIndex = TransitionPoints > Thresholdtransitions (2.34)

As in the positive peaks, the same process is applied to all three trajectories and the

estimated breakpoints of potential CNVs are merged as the final deletion candidates.

2.7.4 Grouping and Breakpoint Refinement

Since NN performs read-to-read alignments and the assignment threshold was set at five

frame shifts (for = 100-bp reads), the valid assignments of each query read contain both

library reads from repeated regions and the neighboring reads of each repeated region. The
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Figure 2.17: Breakpoint refinement. The estimated CNV boundary can be refined by
only accepting library reads that have corresponding library reads in the repeated regions.
Gene A and A’ are two repeated regions in the library sequence. Green and red sequences
are unique and different. Since some of the valid assignments from the estimated CNV
boundary are not repeated in Gene A, they are excluded.

CNV detecting performance can thus be improved by incorporating the valid assignments

information.

First, the valid assignments can be used to group related regions. Since all the repeated

regions are presented at the same time as valid mapping results of a query read, these re-

peated regions are clearly related and the regions can be grouped together. Once the related

regions are grouped, one can determined which region(s) within the group are deleted or

duplicated in the reads donor sequence from the binary copy numbers.

Second, the breakpoints of the potential CNV regions can be refined using the informa-

tion from the valid assignments. The estimated breakpoints of each gene come from the
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segmentation process, which might not perfectly reflect the true gene boundary because

of the noises in the read depth trajectory. The valid assignments contains reads from the

repeated regions and their neighboring regions. Although the reads from the repeated re-

gion have corresponding reads in another region, the neighboring reads are unique to each

region. Thus, by finding the corresponding reads in other regions for each valid assignment

of a given region, one can re-define the breakpoints.

As shown in Figure 2.17, assuming gene A and gene A’ are duplicated regions in the

reference sequence and the sequence flanking gene A and A’ at the 3’ end are different

(green and red sequences), The 3’ portions are not part of the repeated regions. First, all

valid assignments of the query reads that are assigned to this CNV regions are extracted.

Since gene A and A’ are similar repeated regions, even though the CNV boundary is for

gene A, the corresponding library in gene A’ are included. The library reads from the green

sequence, however, only show up once since there is no similar sequence around gene A’.

These inconsistent library reads are then excluded from valid assignments. The refined

CNV boundary is then defined by the remaining, consistent valid assignments (Fig. 2.17.

Thus, by identifying the repeated patterns of the library reads around the CNV regions,

more precise boundaries can be drawn.

2.7.5 Copy Number Estimation and True CNVs Selection

After the groups and boundaries of the potential CNV regions are defined, the copy number

of all three trajectories (average, binary and TS or even trajectory) for each candidate region

is calculated by dividing the average read depth in the regions by AvgRD, the average read

depth along the sequence. The average read depth is calculated by iterations from the

original read depth trajectories, not the denoised trajectories. In each iteration, the average

and standard deviation of the trajectory are obtained. A new average and standard deviation

are then calculated by excluding all the data points that are 2×StdRD deviated (both larger

or smaller) from the average. The iteration stops when the average is converged.
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To determine the true CNV regions, the group average copy numbers are calculated.

For duplication regions, any groups that satisfy |CopyNumberAvg − CopyNumberAvg ×

CopyNumberTS| >= 0.9 (which means that the expecting copies in the read donor se-

quence is different from the copies is the reference sequence) with CopyNumberTS de-

viated from one are (which means that the difference is real) considered to be true CNV

regions. For deletions, the same criteria is applied on regions have multiple copies. For

regions that have only one copy in the reference sequence, all the deletions are kept. Dif-

ferent from the other CNV detectors that do not work with mapping multiplicity or can not

distinguish true CNV regions versus multiple copies in the reference sequence, CNV-MM

greatly reduces the false positive rate.

In summary, CNV-MM uses both average and binary trajectories to identify the poten-

tial CNV regions. These regions are grouped and refined during breakpoint analysis. The

copy numbers of all trajectories of these regions are calculated by dividing the read depth

with the average read depth of each trajectory. The true CNV regions are gene regions that

have an integer increment in the copy number of the reads donor sequence and the TS or

evenly distributed trajectory has to deviate from one.

2.7.6 GC Content Correction for Real Reads

It has been shown that, instead of random sampling across the target sequence, reads are

generated with GC-content bias in Illumina data due to the PCR process.[154–156] How-

ever, read depth based CNV detection is built on the assumption that reads are sampled

evenly from the sequence. To remedy this, RDXplorer[129] and CNVnator[42] correct

the GC-bias by normalizing the read depth with the deviation of the read depth at a given

GC-content as follows.

RDi
corrected = RDi

raw ×
RDoverall

RDGC

(2.35)

in which RDi
corrected is the corrected read depth of bin i, RDi

raw is the original read
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depth of bin i, RDoverall is the average/median read depth of the sequence, RDGC is the

average/median read depth of all bin with the same level of GC content as bin i.

Since GC content correction relies on calculating the GC content in each bin, the bin-

ning process will reduce the breakpoint resolution. To avoid the breakpoint resolution de-

crease, the GC-correction is performed after the segmentation. The trajectories are binned

with the bin size equals the read length. The regions with estimated CNV segments are

excluded to prevent read depth bias. The read depths and the GC contents of each bin are

recorded. The median read depth of a given GC content is calculated as RDGC . Since bins

with GC content <20% and >70% is rare, we set the first GC-level as 0 to 20% of GC

content and the last GC-level as 70% to 100% GC content. The rest of the bins are GC

content ranges from 20% to 70% over increments of 2% GC content. The RDoverall is the

average read depth of all bins.

The average read depth for each estimated potential CNV region is calculated (RDi
raw)

and the corrected read depth (RDi
corrected) is calculated following equation 2.35.

2.8 Availability of the Data

628 bacterial library sequences and 197 assembled bacterial genome sequences were ob-

tained from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_

refseq/Bacteria/). The accession numbers of the library sequences and the 197

bacterial sequences can be found in Table D.1 and Table D.2 respectively. The short

reads files were downloaded from the sequence read archive (http://www.ncbi.nlm.

nih.gov/sra). A full list of short reads files used in bacterial species typing is in Table

Table D.3 The taxonomy used to assess the phylogenic tree was from the NCBI taxonomy

database (http://www.ncbi.nlm.nih.gov/taxonomy).
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CHAPTER 3

POST-BLOOD CULTURE ANTIBIOTIC SUSCEPTIBILITY TEST

3.1 Introduction

One of the bottlenecks in clinical microbiology is to determine effective antimicrobial treat-

ments. For a patient suspected to have a bacterial infection, a blood sample is collected and

incubates for ∼24 hours in blood culture. Once bacterial presence is confirmed, series of

plates are streaked to isolate the infectious bacteria, taking to another 24 hours. Finally,

microdilution or disk diffusion antibiotic susceptibility testing (AST) is performed, taking

another 18 to 24 hours.

Flow cytometry can monitor the antibiotic-induced damages in bacterial cells much

earlier than can growth-inhibition based methods. However, cytometric responses are ham-

pered by biovariability and machine fluctuations. To compare cytometric data, appropriate

multidimensional statistic tests are required. Existing statistical test either are not scalable

to = one dimension, rely on data conforming to a specific underlying distribution, or scale

disadvantageously with the number of bins needed. To address this need, I developed a new

and rapid AST was developed by analyzing the cytometric data of the antibiotic-treated bac-

teria with PB-sQF. This chapter studies the bactericidal antibiotic-induced reactive oxygen

species (ROS) and/or the scatter signals changes in both lab strain and multidrug resistant

clinical isolates. A wide range of antibiotics was tested with lab strain Escherichia coli

(E. coli). Other major pathogens were investigated including Pseudomonas aeruginosa

(P. aeruginosa), Acinetobacter nosocomialis (A. nosocomialis), Klebseilla pneumoniae (K.

pneumoniae) and Staphylococcus aureus (S. aureus). Multidrug-resistant clinical isolates

were acquired from Emory University, and effective treatment can be selected by calculat-

ing the changes in the cytometric responses with PB-sQF.
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Figure 3.1: Maltohexaose-conjugated cyanine dye and hydrocyanine. (A)
Maltohexaose-conjugated IR786 (MH-IR786). (B) Reversible reduction reaction. The flu-
orescent cyanine dye, IR786, is reduced to the non-fluorescent hydrocyanine (hIR786) by
sodium borohydride. The fluorescence is recovered when the hIR786 is oxidized back to
IR786 with ROS.

3.2 Sensing the Bactericidal Antibiotic-Induced ROS Generation

Recent studies reported that intracellular ROS generation is correlated with bactericidal an-

tibiotics exposure.[17, 157, 158] Although it was later shown that ROS generation might

not be crucial in cell death,[159–161] ROS production may still be a general mechanism

by which antibiotic sensitivities can be more rapidly determined. Many ROS sensing dyes

have been developed such as hydroxyphenyl fluorescein[162] and dihydroethidium[163].

However, they have been shown to suffer from autoxidation that produces non-zero back-

ground signal.
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To specifically detect ROS generated inside the bacteria, maltohexaose-conjugated ROS

sensing dye, provided by Dr. Murthy from UC Berkeley, was used. Maltohexaose (MH)

belongs to the maltodextrin family and is a common source of glucose for bacteria. Uti-

lizing the fact that bacterial uptake systems have broad substrate specificities, Ning, et

al.[164] reported that bacteria can be selectively targeted through the maltodextrin uptake

pathway. In contrast to other technologies, fluorescently labeled maltohexaose is selec-

tively taken up by bacteria to reach mM intracellular concentrations, without detectable

mammalian cell uptake, both in vitro and in vivo.[164] Such selective labeling offers a

way to potentially identify bacterial populations prior to time-consuming subculturing and

growth. Maltohexaose-conjugated dyes have been shown to stain bacteria exclusively since

the maltodextrin metabolism pathway does not exist in mammalian cells.[164, 165] In this

thesis work, Maltohexaose-conjugated IR786 (MH-IR786) was used (Figure 3.1 A).

To detect the antibiotic-induced ROS generation, MH-IR786 was first converted to

Maltohexaose-conjugated hydro-IR786 (MH-hIR786) through a one-step reversible reduc-

tion reaction developed by Kundu et al.[166]. The reduction disrupts the conjugated system

of the cyanine dye, making it nonfluorescent. The fluorescence is recovered upon reaction

with ROS, which oxidizes the nonfluorescent dye to recover the original cyanine (Figure

3.1 B). Since maltohexaose dyes are actively brought into the bacterial cells, the combined

changes in metabolic activity and ROS production may be indicative of near MIC antibiotic

stress. Coupled with accurate statistical measures, general responses can be determined and

behaviors quantified, possibly yielding a general mechanism by which antibiotic sensitivi-

ties can be rapidly determined.

3.2.1 MH-hIR786 Preparation and in vitro Fluorescence Recovery

MH-IR786 was prepared at a concentration of 1 mg/100 µL deionized water. Sodium

borohydride (Sigma) was dissolved in methanol (VWR, Batavia, IL) at 1 mg/mL and sub-

sequently added, 10 µL at a time, until the MH-IR786 changed from dark green to yellow.
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Figure 3.2: In vitro fluorescence recovery. MH-hIR786 was added to DMSO for fluores-
cence baseline detection (black line). Fluorescence recovery was monitored immediately
(red line) and after an hour (blue line) after the addition of Fenton reagent.

The MH-hIR786 solution was then vacuum dried and resuspended in pH 6.0 acetate buffer

(Fisher Scientific) at a final concentration of 1 mM. To ensure that the MH-hIR786 fluo-

rescence can indeed be recovered by reacting with ROS, in vitro fluorescence recovery was

tested by oxidizing hIR786 to IR786 with ROS generated from Fenton’s reagent.[141, 142]

First, the fluorescence baseline of 20 µL of MH-hIR786 in 2 mL of dimethyl sulfoxide

(DMSO) (Fisher Scientific) was measured with a fluorimeter (QuataMaster, Photon Tech-

nology International). Then, Fenton’s reaction was initiated by adding 60 µL of FeSO4

(Mallinckrodt, St. Louis, MO) at 3.5 mg/mL and 300 µL of H2O2 (VWR, Batavia, IL)

at 200 nM to the MH-hIR786/DMSO solution. The fluorescence signal was measured

immediately and 1-hour after the reaction (Figure 3.2). Compared to the baseline, the flu-

orescence was clearly recovered upon ROS generation, and the fluorescence intensity was

higher after 1-hour of reaction time.

3.2.2 Correlated ROS Production and Cell Death

To show that antibiotic-induced ROS generation is correlated with cell death, bacteria

were cultured overnight in an incubator shaker (MaxQ 4000, Thermal Fisher Scientific,

Waltham, MA) in Luria-Bertani (LB) medium (Sigma-Aldrich, St. Louis, MO) at 37 °C
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and 225 rpm. Bacteria were then re-inoculated in 12 mL fresh LB medium in 50-mL tubes

and incubated from∼0.05 optical density to the mid-log phase. Bacteria in 1 mL of growth

media were collected by centrifugation (Centrifuge 5417R, Eppendorf) at 13,400 rpm for

3 min and transferred into 12-well plates (Costar, New York, NY). Antibiotics and 20 µL

of MH-hIR786 (provided by Dr. N. Murthy’s lab) to achieve a final concentration 900 nM

were added simultaneously. The MICs of different antibiotics were determined by standard

microbroth dilution assays in advance. The 12-well plates were incubated at 37 °C for 1

hour (Isotemp standard incubator, Fisher Scientific, Waltham, MA). Bacteria were again

collected by centrifugation and washed 3 times with phosphate-buffered saline (PBS) (Life

Technologies, Carlsbad, CA) and resuspended in 1 mL PBS. The bacteria samples were

maintained on ice until flow cytometry was performed. Bacteria samples were analyzed

by a BD LSR II flow cytometer (Becton Dickinson, Franklin Lake, NY) equipped with

a 14 mW, 488 nm solid-state coherent sapphire laser for the scatter signal, and a HeNe

Laser (18 mW @ 633 nm) for IR786 fluorescence detection. Samples were gated by for-

ward and side scatter, while a 750-810 nm bandpass filter was used to collect the IR786

fluorescence. Data were collected with FACSDiVa provided by BD. Further data analysis

and display were carried out with Matlab 2013b (Math Works). For each data set, 100,000

bacterial detection events were collected.

When incubating lab strain E. coli strain ATCC33456 with 2x MIC (1x MIC is 100

µg/mL) of ampicillin, which is a bactericidal antibiotic, for an hour, the fluorescence signal

recorded by flow cytometry was significantly higher (Figure 3.3, red curve) compared to the

no-antibiotic control (Figure 3.3, grey curve). This shows that fluorescence signal indeed

recovers upon ampicillin treatment. Since Fenton’s reaction, which iron(II) reacts with

hydrogen peroxide and superoxide, is responsible for the generation of ROS in the biolog-

ical system,[167, 168] the addition of iron chelator, 2, 2′-dipyridyl, should reduce the ROS

generation as shown in the studies by Kohanski et al.[17, 157] Indeed, the fluorescence

signal significantly decreased when the lab-strain E. coli was incubated with ampicillin,

64



Figure 3.3: Fluorescence recovery with or without iron chelator. Flow cytometric data
of lab-strain E. coli incubated without antibiotic, no dye (black); without antibiotic, with
dye (grey, underneath the blue curve); without antibiotic, with dye, with dipyridyl (blue);
with ampicillin with dye, with dipyridyl (green); with ampicillin, with dye (red).

MH-hIR786 and 500 µM of 2, 2′-dipyridyl (Figure 3.3, green curve) compared to the no

chelating agent condition (Figure 3.3, red curve). On the other hand, the fluorescence sig-

nal remained very similar between the with and without 2, 2′-dipyridyl conditions when

no antibiotic was added (Figure 3.3 blue curve and gray curve). This demonstrates that the

fluorescence recovery of MH-hIR786 is indeed related to the antibiotic-induced ROS gener-

ation. Both the no-antibiotic, with MH-hIR786 conditions (with or without 2, 2′-dipyridyl,

blue and grey curves in Fig. 3.3) have higher fluorescence signal than the no-antibiotic,

no-dye control (Figure 3.3, black curve). This no-antibiotic ROS background is most likely

because ROS are constantly generated from the aerobic respiration cycle.[157]

To confirm antibiotic-induced ROS production in different antibiotics, representatives

of three major bactericidal antibiotics classes were tested: β-lactams (penicillin G, ampi-

cillin, and cefotaxime), quinolones (ciprofloxacin and norfloxacin), aminoglycoside (kanamycin)

and one bacteriostatic antibiotic (tetracycline). Intracellular ROS production upon 1-hour

incubation with E.coli and each antibiotic around its MIC (Appendix Table B.1) were

indicated by IR786 fluorescence recovered from ROS-reoxidized MH-hIR786, as moni-

tored by flow cytometry (Figure 3.4 A to G). As expected, increased ROS production was
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largely seen as MIC exposure is approached for bactericidal antibiotics, and no increase was

perceptible for the bacteriostatic tetracycline. Similar to published data,[157] kanamycin

only generated perceptible increases in ROS-induced fluorescence upon 2-hour incubation,

but each antibiotic showed widely varying levels of antibiotic-induced ROS production,

emphasizing the need for paired controls. Importantly, while the quinolone norfloxacin

showed increased ROS production near its MIC, the more commonly used quinolone,

ciprofloxacin exhibited no ROS-induced fluorescence increase. This observation may help

reconcile observed ROS production with recent publications[159, 160] which showed that

antibiotics retained their bactericidal ability under anaerobic conditions by interacting with

their primary targets and that ROS generation was not necessary for antibiotic-induced cell

death.

All experiments were performed in triplicate and compared to appropriate paired no-

antibiotic controls. Test results were calculated between each antibiotic dataset and its

paired-control, the antibiotic-free, MH-hIR786-labeled bacterial data. A 99% confidence

level was determined by bootstrapping and was unique for each no-antibiotic control. Test

results for each bacterium/antibiotic combination were normalized to its own 99% confi-

dence distance, directly reporting on differences between antibiotic-treated samples vs. no-

antibiotic paired controls. These individually normalized test results, or “fold distances”

from each paired control, are then directly compared among all antibiotic exposure data,

as described in Chapter 2. Fold distances from paired controls are plotted as averages of

triplicate experiments with standard deviations representing biological variability and intra-

bin data dispersion (Figure 3.4 H). Test results are considered statistically distinguishable

beyond error bars, allowing identification of antibiotic-induced effects. Normalizing test

results by the 99% confidence level of each paired-control, removes machine-to-machine

and day-to-day variations, facilitating direct comparisons. The test results show that the

flow cytometric data with 1x MIC of β-lactam antibiotics, kanamycin, and norfloxacin are

statistically significantly different from their no-antibiotic paired controls (Figure 3.4 H).
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Figure 3.4: Antibiotic-induced ROS detection. Flow cytometric data for (A) penicillin
G, (B) ampicillin, (C) cefotaxime, (D) kanamycin, (E) norfloxacin, (F) ciprofloxacin, and
(G) tetracycline. (H) PB-sQF 1D test results, which coincide with the recovery of the
fluorescence intensity from MH-IR786. All the antibiotics were incubated for 1hr with
MH-hIR786 except that kanamycin was incubated for 2hr. Similar to the observation by
Kohanski et al.,[157] bactericidal antibiotic-induced intracellular ROS generation. Among
bactericidal antibiotics, Ciprofloxacin, which is a quinolone similar to norfloxacin, did not
induce measurable ROS generation inside E. coli. The MIC can be found in Appendix
Table B.1

3.2.3 Fluorescence Recovery by Antibiotic-Induced ROS Generation in Multidrug-Resistant

E. coli clinical isolates

Although antibiotic-induced ROS-sensing may not generally work for all antibiotics, ROS

generation appears correlated with the presence of lethal concentrations of some antibi-

otics, enabling sensitivity determinations for the subset of ROS-inducing antibiotics. As β-

lactams stimulate the largest ROS response, ROS generation in the PenG-sensitive E. coli

lab strain (ATCC 33456) and that in a highly multidrug resistant clinical isolate (Mu14S)

were compared. ROS-induced fluorescence recovery was only observed in the PenG-
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Figure 3.5: ROS-induced fluorescence recovery in resistant clinical isolate. Black
curve: no PenG/no MH-hIR786. Grey curve: no PenG/MH-hIR786. Green curve: 1/4x
MIC/MH-hIR786. Red curve: 1x MIC/MH-hIR786. The MIC, 32 µg/mL, was the concen-
tration of the lab strain (ATCC) and was used for both strains. (A) Fluorescence recovered
as expected in the lab strain (sensitive strain). (B) The fluorescence shows no significant
recovery in the resistant strain at the sensitive strain’s MIC. (C) PB-sQF quantification of
data in A and B.

sensitive strain, indicating the ability to distinguish sensitive vs. resistant bacteria.

Antibiotic-induced ROS generation can be monitored by the fluorescence recovery from

MH-hIR786, and appears to be a common, but not general response to even bactericidal

stress. Even when present, the level of ROS generation varies widely with antibiotics, but

even small changes from paired controls are quantifiable, showing distinct changes at or

near the MIC. Unfortunately, while the norfloxacin MIC was obtainable with ROS sens-

ing, the related bactericidal ciprofloxacin produced no discernable ROS generation. This

shows that instead of ROS-mediated cell death, the traditional antibiotic targets, membrane

synthesis, DNA replication and protein production, are the main cause of cell death.[159,

160]

In contrast to fluorescence viability and ROS-generation, label-free antibiotic-induced

scatter signal changes appear to be universal throughout the antibiotics and bacteria we

tested. Antibiotic-induced filamentation has been observed to from exposure to β-lactam,[66,

169] quinoline,[66, 170] and bacteriostatic[171] antibiotics. As a result, to build a general

AST with flow cytometry, scatter changes were monitored instead.

68



3.3 Rapid AST Based on Cytometric 3D tests

Although fluorescence recovery from ROS re-oxidation of MH-hIR786 was a reliable

guideline for AST with β-lactams, it is difficult to obtain full reduction of the MH-IR786

dyes to create MH-hIR86. Moreover, it did not work for bacteriostatic antibiotics and

ciprofloxacin. On the other hand, the scatter signal changed significantly when E. coli

were treated with either bactericidal or bacteriostatic antibiotics. Since forward scatter

(FSC) reflects the size and morphology of cells and side scatter (SSC) represents the inter-

nal structure and granularity of cells,[172] it was expected that antibiotics-induced scatter

changes were related to the morphology changes. MH-IR786 (instead of MH-hIR786) was

added to label bacteria and gave an extra dimension to distinguish the resistant strain from

the susceptible strains.

Antibiotic-induced scatter changes have been reported in different studies,[63–66] but

like viability studies, remained difficult to quantify in complex flow cytometric datasets,

clouding interpretations. By calculating the distance of the scatter patterns between the

antibiotic-treated data and the no-antibiotic control, PB-sQF can reliably select the effective

antibiotic treatment for the multi-drug resistant, clinical isolates within 4 hours post-blood

culture.

3.3.1 Antibiotic-induced changes in susceptible E. coli

To assay dye uptake as a function of antibiotic exposure, a similar sample preparation

procedure was used as in the ROS sensing test, except that instead of incubating with MH-

hIR786, 900 nM of MH-IR786 was added. The samples were incubated with antibiotics

at their respective 1x, 1/4x and 1/16x MIC that was first determined by standard micro-

broth dilution assays. After 1-hr incubation, bacteria were pelleted, washed 3 times and

resuspended in PBS for cytometric analyses. Three major bactericidal antibiotics classes,

β-lactams (penicillin G and ampicillin), quinolones (ciprofloxacin and norfloxacin) and
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aminoglycosides (kanamycin and gentamicin) as well as bacteriostatic antibiotics (tetracy-

cline, erythromycin, and azithromycin) that target various biological processes were exam-

ined. Fluorescence and scatter signals upon antibiotic challenge were monitored by flow

cytometry. IR786 fluorescence, forward-scattered and side-scattered light were all col-

lected for each of 100,000 measured bacterial cells per run, yielding 3-D histograms for

each antibiotic concentration.

Data of E. coli (ATCC 33456) treated for 1-hr with penicillin G, tetracycline, and

kanamycin are shown in Figure 3.6 (Complete flow cytometry histograms with additional

antibiotics can be found in Appendix Figs. B.1 and B.2). Log-scale units are chosen to

represent the data. This is because dynamic range of the scatter signals ranges from 10 to

1000 and in the fluorescence channel ranges from 0 to 105. Linear scale simply can not

properly display the data. The subsequent PB-sQF analyses, are also done in the log units

since distances calculated in the linear scale will be dominated by the large data points.

These large data points are orders of magnitude larger than the small data points thus any

signal changes within data points with small value will become insignificant.

Upon penicillin G treatments at near MIC concentrations, both scatter and fluorescence

signals significantly shift (Figs. 3.6 A and 3.6 D). Tetracycline, a bacteriostatic antibiotic

targeting the 30S subunit of the bacterial ribosome, however, primarily altered only scatter

signals relative to the no-antibiotic control (Fig. 3.6 B vs. 3.6 E). Conversely, kanamycin,

another drug targeting the 30S ribosome, only induced very minor scatter changes, con-

sistent with prior reports with aminoglycoside antibiotics,[63] but the fluorescence signal

from MH-IR786 clearly increases upon 1x MIC exposure (Figs. 3.6 C and 3.6 F). Thus,

multidimensional statistical metrics that combine both scatter and fluorescence are needed

for generalizable, quantitative differentiation of population changes relative to paired con-

trols.

Incorporating uncertainties arising from both biological variability and intrabin data

dispersion into PB-sQF, all test results (Fig. 3.6 G) demonstrate statistically significant dis-

70



Figure 3.6: Antibiotic-induced signal changes. All data were collected in the presence of
MH-IR786. (A to C) Scatter signal changes for different antibiotics. The pseudocolor plots
are the no-antibiotic data. The overlay contour plots were data of the 1x MIC treatment. (A)
Penicillin G (B) Tetracycline (C) Kanamycin. (D to F) Fluorescence signal changes from
1/16x MIC to 1x MIC and the no-antibiotic control. Grey curve: no antibiotic. Blue curve:
1/16x MIC. Green curve: 1/4x MIC. Red curve: 1x MIC. (D) Penicillin G (E) Tetracycline
(F) Kanamycin. (G) The PB-sQF results of the 3D data. Black line: 99% confidence level
from the test statistics between no-antibiotic control and 1/16x MIC data. All the data were
normalized by the confidence level. Blue bar: 1/16x MIC. Green bar: 1/4x MIC. Red bar:
1x MIC.

tances of the 1x MIC data from that of the 1/16x MIC data, that is, beyond the 99% confi-

dence level. Clear trends and transitions occur for all antibiotic/bacteria combinations with

increasing antibiotic concentrations. The tested antibiotics target a wide range of processes

(DNA replication, protein synthesis or cell wall synthesis), yet, when using our multidi-

mensional statistical metric that reduces all differences to a single linear distance from its
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Figure 3.7: Morphology changes of bacteria treated with 1x MIC of different antibi-
otics. (A) non-antibiotic control. (B) Kanamycin. (C) Erythromycin. (D) Tetracycline. (E)
Azithromycin. (F) Penicillin G. (G) Ciprofloxacin (H) Norfloxacin. In general, antibiotic-
induced filamentation was observed compared to the non-antibiotic control.

paired control, all classes of antibiotics showed discernable, statistically significant changes

in flow cytometry signals. Note that the 99% confidence level, which was determined by

the bootstrap method of calculating the test statistics between the sub-sampling daughter

distributions of the no-antibiotic control and the 1/16x MIC data at small sample size, ac-

curately estimates the 99% confidence level distance between the two mother distributions.

Thus, distances among all individually binned multidimensional histograms are reduced to

single linear distances relative to paired controls using our PB-sQF distance metrics, en-

abling antibiotic sensitivities to be determined after only 1-hr exposures in comparison to

overnight incubation in standard ASTs.

As maltohexaose conjugates are believed to be incorporated into bacteria via active up-
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take processes,[164, 165] shifts in MH-targeted fluorescence signals likely indicate changes

in bacterial physiological status. Forward and side scatter, however, provide label-free mea-

surements that largely reflect cell size/morphology and internal cellular structure/granularity,

respectively.[172] Indeed, images of bacteria at near-MIC antibiotic levels are often elon-

gated relative to those without antibiotic present (Figure 3.7). Also, antibiotic-induced fil-

amentation has been observed to result from exposure to β-lactam,[66, 169] quinoline,[66,

170] and bacteriostatic[171] antibiotics. Although it is not clear how these antibiotics, with

different primary targets, uniformly induce changes in morphology and/or physiology, their

changes in flow data from no-antibiotic controls appear to be generally correlated with an-

tibiotic sensitivity levels

3.3.2 Cytometric susceptibility analysis of a resistant E. coli clinical isolate

To evaluate the antibiotic-induced changes in resistant strains, we examined a multi-drug

resistant, clinically isolated E. coli, Mu14S. Mu14S was susceptible to gentamicin but was

highly resistant to all other tested antibiotics. We examined both the laboratory strain

(ATCC 33456) and Mu14S with penicillin G, tetracycline, and gentamicin in parallel. Con-

sistent with the data shown in Figure 3.6, incubation with penicillin G at 1x MIC of ATCC

33456 strain clearly shifts its scatter distributions (Fig.3.8 A and Appendix Fig. B.3) while

not affecting those of the resistant clinical strain Mu14S (Fig. 3.8 D and Appendix Fig.

B.3). The 3D data (forward scatter, side scatter, and fluorescence) from both strains were

quantified with PB-sQF (Fig. 3.8 G). The analysis confirmed that penicillin G was effective

toward ATCC with both 1/4x and 1x MIC extending above the 1/16x no-antibiotic, 99%

confidence level while all Mu14S results were below the 99% confidence level, indicating

that PB-sQF registers no significant changes at these concentrations. On the other hand,

while tetracycline-induced scatter changes in ATCC 33456 (Fig. 3.8 B), the scatter showed

no shifts upon tetracycline exposure in Mu14S strain (Fig. 3.8 E and Appendix Fig. B.3).

The PB-sQF results confirmed the ATCC 33456 sensitivity and Mu14S resistance toward
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Figure 3.8: Signal changes induced by antibiotic treatments in E. coli with different
susceptibility. All data were collected in the presence of MH-IR786. (A to F) Scatter signal
changes. The pseudocolor plots are the no-antibiotic paired control, for each strain. The
overlaid contour plots are the 1x MIC antibiotic concentration scatter data. (A to C) The lab
strain E. coli (ATCC 33456). (D to F) The multi-drug clinical strain E. coli (Mu14S). (G to
I) PB-sQF 3D test results. the first column (A, D and G) Penicillin G; Second Column (B, E
and H) Tetracycline; Third column (C, F and I) Gentamicin. Penicillin G, and tetracycline
was examined at the 1x, 1/4x and 1/16x of MIC of ATCC, (32 and 1 µg/mL, respectively).
Gentamicin was applied at the MIC of Mu14S (4 µg/mL). FSC: forward scatter. SSC: side
scatter.

tetracycline (Fig. 3.8 H).

The MICs for ATCC 33456 and Mu14S of gentamicin are 2 µg/mL and 4 µg/mL, re-

spectively. Both strains were incubated with gentamicin at the MIC of Mu14S. Gentamicin-

induced very little scatter shifts in either strain (Fig 3.8 C, F and Appendix Fig. B.3).

However, our improved statistical metrics enable accurate quantification of these small

differences (Fig. 3.8 I). Even with triplicate and centroid uncertainties, the test results reg-

istered significant changes from 1/4 µg/mL to 4 µg/mL for both strains, confirming the
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Figure 3.9: PB-sQF registered antibiotic-induced signal changes in P. aeruginosa. For
each 2D scatter plot, pseudocolor plot is the no antibiotic control. The contour plots lay
above is the 1x MIC scatter data. (A) Ampicilin (B) Norfloxacin (C) Kanamycin (D) Tetra-
cycline. (E) The 3D PB-sQF test results for (A) to (D).

microbiological report, but with only 1-hr exposure.

3.3.3 Antibiotic-induced changes in susceptible P. aeruginosa

Previous studies have shown that P. aeruginosa strains are particularly difficult test cases

with most antibiotics in which flow cytometry-based bacterial viability tests routinely fail.[70]

For P. aeruginosa, this was explained by its outer membrane interaction with the dye pro-

pidium iodide (PI), yielding too high a background. Here, the same 3D PB-sQF was applied

to P. aeruginosa treated with four different antibiotics. Using PB-sQF, P. aeruginosa ex-

hibits readily distinguished sample-control distances analogous to those in E. coli, upon

near MIC exposure to the same antibiotics (Fig. 3.9 and Appendix Fig. B.4). In the flu-

orescence data, it is clear that a single threshold is difficult to establish without any false

positive or false negative counts since the control curve significantly overlaps the antibiotic-
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Figure 3.10: Penicillin G susceptibility for MRSA and MSSA strains Flow cytometric
data of (A) ATCC 25923 (B) ATCC 29213 and (C) ATCC 43300 (MRSA). For 2D scatter
histogram, the pseudocolor plots are the pair control, the no-antibiotic data, for each strain.
The contour plots lay above are the highest antibiotic concentration scatter data. The fluo-
rescence histograms share the same label as in (C). (D) 3D PB-sQF results for (A) to (C).
The highest penicillin g concentration is 1/16 µg/mL, the MIC for strain ATCC 25923.

treated distributions. By directly comparing the whole data set, PB-sQF removes the need

for artificial thresholds, enabling quantitative comparisons.

3.3.4 Cytometric susceptibility analysis of MRSA and MSSA

Methicillin-resistant Staphylococcus aureus (MRSA), which resists most clinically avail-

able β-lactam antibiotics, is a worldwide problem.[173] In 1992, MRSA comprised 35.9%

of the total Staphylococcus aureus infections, but had increased to 64.4% by 2003,[174]

with more recent reports suggesting that the rate has decreased and stabilized.[8, 175] To

distinguish MRSA versus Methicillin-susceptible Staphylococcus aureus (MSSA), PB-sQF

was applied to the cytometric data of one MRSA strain (ATCC 43300) and two MSSA

strains (ATCC 25923 or ATCC 29213). For S. aureus, the bacteria were incubated in

cation-adjusted Mueller-Hinton broth (CAMHB) with MH-IR786 and antibiotic (MIC at

Table B.2) for 1 hr at 37 °C.

All three strains were incubated with penicillin g at 0.0625 µg/mL, the MIC of the
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Figure 3.11: PB-sQF and select MRSA strain from MSSA strains. Flow cytometric
data of (A) ATCC 29213 (B) ATCC 43300 (MRSA). For the 2D scatter histogram, the
pseudocolor plots are the paired control, and the no-antibiotic data for each strain. The
overlaid contour plots are the highest antibiotic concentration scatter data. (C) 3D PB-sQF
results for (A) and (B). The highest oxacillin concentration is 1/2 µg/mL, the MIC for strain
ATCC 29213.

penicillin-sensitive control strain ATCC 25923, for an hour (Figure 3.10). The ATCC

25923 exhibits clear scattered-light and fluorescence shifts (Figure 3.10 A) and thus shows

statistically significant shifts at its own MIC (Figure 3.10 D). The cytometric signals of

the MRSA strain (ATCC 43300) did not change significantly at this level of penicillin g

since the MIC of ATCC 43300 is 16 µg/mL (Figure 3.10 C and D). The weak β-lactamase

producing control strain ATCC 29213, however, shows significant signals shift at 0.0625

µg/mL while the MIC is 2 µg/mL (Figure 3.10 B and D). This is most likely because al-

though penicillin g at 0.0625 µg/mL will not completely inhibit the growth, it already has

a significant effect on the bacteria.

To gauge oxacillin resistance, ATCC strains 29213 and 43300 were treated with oxacillin

at 0.5 µg/mL, the MIC of strain ATCC 29213. As expected, cytometric signals of ATCC

29213 change significantly at 1x MIC (Figure 3.11 A and C). On the other hand, oxacillin

at 0.5 µg/mL does not significantly affect the flow data of the MRSA strain (43300), which

has a MIC of 32 µg/mL (Figure 3.11 B). Correspondingly, no statistical distance was reg-

istered between the 1/16x MIC data and either the 1/4x or 1x MIC data (Figure 3.11 C),
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thereby enabling discrimination of MSSA and MRSA within 2-hr processing times. Inter-

estingly, label-free scattered light shifts relative to control are sufficient for distinguishing

MRSA vs. MSSA, as oxacillin produced no consistent fluorescence shifts in either the

weak β-lactamase producing control (29213) or MRSA. Thus, even subtle changes in the

flow data are readily differentiated from paired controls after only 1-hr incubation time

using our PB-sQF statistical distances, drastically reducing the required time for an AST-

based MSSA/MRSA discrimination. The complete flow cytometric data can be found in

Appendix Figure B.5.

3.4 Rapid AST Based on Cytometric Scatter Signals Changes

Although PB-sQF 3D test can select the effective treatments for E. coli, P. aeruginosa,

and S. aureus, a label-free AST is more general and economical because a label-free ap-

proach does not need to consider the interactions between dyes and bacteria. Taking the

maltohexaose-conjugated dye for example, although the maltohexaose transporter has been

identified in a wide range of bacteria, not all bacteria produce it.[176] Also, the repro-

ducibility of fluorescent signals is an issue. As shown in Appendix Figure B.6, the samples

were prepared at the same time and the data were taken on the same machine, the fluores-

cent signal at 1/4x MIC, however, fluctuated.

As a result, here, PB-sQF was applied on the 2D scatter cytometric data of K. pneu-

moniae and A. nosocomialis. The PB-sQF 2D test results were related to the antibiotic

concentrations and the MIC of each bacteria-antibiotic combination.

3.4.1 Cytometric susceptibility analysis of lab-strain Klebsiella pneumoniae

The same procedure was applied to K. pneumoniae strain ATCC 700603 with different an-

tibiotics including bacteriostatic (azithromycin, erythromycin, and tetracycline) and bacte-

ricidal antibiotics: quinolone (ciprofloxacin), aminoglycoside (gentamicin) and β-lactams

(ampicillin and cefotaxime) at each pre-determined MIC shown in Table B.3. Antibiotic-
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Figure 3.12: Antibiotic-induced scatter changes for K. pneumoniae ATCC 700603. (A
to G) Scatter signal changes for different antibiotics. SSC: side scatter. FSC: forward
scatter. The pseudocolor plots are the no-antibiotic data. The overlay contour plots were
data of the 1x MIC treatment. (A) Azithromycin (B) Erythromycin (C) Tetracycline (D)
Ciprofloxacin (E) Gentamicin (F) Cefotaxime (G) Ampicillin. (H) The PB-sQF results of
the 2D data. Black line: 99% confidence level from the test statistics between no-antibiotic
control and 1/16x MIC data. All the data were normalized by the confidence level. Blue
bar: 1/16x MIC. Green bar: 1/4x MIC. Red bar: 1x MIC. The MIC of each concentration
can be found in Appendix Table B.3. For ampicillin, 1x MIC was set at 80 µg/mL since
the MIC is greater than 1024 µg/mL.

induced scatter shifts can be observed when K. pneumoniae were treated with effective

antibiotic at 1x MIC (Figure 3.12). K. pneumoniae strain ATCC 700603 is highly resistant

to ampicillin with the MIC larger than 1024 µg/mL. As a result, instead of incubating K.

pneumoniae at its MIC, we treated the bacteria at 80 µg/mL of ampicillin, which is 10x of

the sensitive breakpoint (8 µg/mL) determined by the Clinical & Laboratory Standards In-
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stitute (CLSI).[177] As shown in Figure 3.12, the scatter patterns appear very similar with

or without ampicillin treatment even at 80 µg/mL, which is a concentration beyond the re-

sistant breakpoint (32 µg/mL). This demonstrated that K. pneumoniae is indeed resistant to

ampicillin. The complete cytometric data can be found in Appendix Figure B.7 and Figure

B.8.

PB-sQF was applied on all the triplicate, 2D scatter histogram to calculate the distance

between the paired, no-antibiotic control and the antibiotic-treated data. All test results for

tested antibiotics at 1x MIC show significant differences from the 99% confidence level

other than ampicillin. Since ATCC 700603 is resistant to ampicillin, no scatter shift was

observed in the cytometric data, and thus no statistically significant change was observed

in fold distance. This shows that with PB-sQF, antibiotic resistance can be identified with

only 1-hour incubation time.

3.4.2 A. nosocomialis Clinical Isolates Post-Blood culture AST

A. nosocomialis strain M2 was isolated in 1996 from Ohio[178] and the mutant strain M2-

4B[179] has higher resistances to several different antibiotics (Gift from Dr. Philip Rather,

Emory University). Both strains were incubated at their own MIC (Table B.3) determined

from microdilution AST for each antibiotic for an hour, and then data were acquired with

flow cytometry. The 2D scatter cytometric data, and PB-sQF results of strain M2 and

M2-4B are shown in Figure 3.13 and Appendix Figure B.9 and B.10. For tetracycline

and cefotaxime, the MICs are both 1 µg/mL for M2 and M2-4B. As a result, the scatter

responses were very similar between the two strains with 1x MIC corresponding to ∼2-

fold distance changes (Figure 3.13 A). For norfloxacin and ciprofloxacin, the MICs for

M2-4B are 8-fold higher than are those of M2 with M2-4B being considered resistant to

norfloxacin, while showing intermediate resistance to ciprofloxacin (according to the 2014

CLSI handbook).[177] The higher MIC (and thus resistant to antibiotics) for M2-4B is not

only reflected in higher antibiotic concentrations being required to induced scatter signals

80



Figure 3.13: Cytometric data and PB-sQF results for A. nosocomialis strain M2 and
M2-4B (A) Tetracycline (B) Kanamycin (C) Norfloxacin (D) Ciprofloxacin (E) Cefotaxime
(F) Ampicillin. Each sub-figure contains 2D-scatter cytometric plots and the corresponding
PB-sQF results. For the cytometric data, SSC: side scatter. FSC: forward scatter. The
pseudocolor plots are the no-antibiotic data. The overlay contour plots were data of the 1x
MIC treatment. For the PB-sQF results, Black line: 99% confidence level from the test
statistics between no-antibiotic control and 1/16x MIC data. All the data were normalized
by the confidence level. Blue bar: 1/16x MIC. Green bar: 1/4x MIC. Red bar: 1x MIC.
The MIC of each concentration can be found in Appendix Table B.3. For ampicillin, 1x
MIC was set at 160 µg/mL since the MIC is greater than 1024 µg/mL.

changes, but also smaller signal changes being observed in the M2-4B (∼3 fold) compared

to the M2 strain (>6 fold, Fig. 3.13 C and D). This shows that PB-sQF fold distance indeed

correlates with the resistance profile of a bacteria strain.

Both M2 and M2-4B are highly resistant to ampicillin with MICs greater than 1024

µg/mL. However, when treated with 160 µg/mL, ten times higher than the sensitive break-

point (16 µg/mL) according to the CLSI, both strains show ampicillin-induced scatter shifts
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(Figure 3.13 F). This shows that although the MICs are higher than 1024 µg/mL for both

M2 and M2-4B and thus both strains can survive and grow, ampicillin at 160 µg/mL still

damages the bacteria cells. Nevertheless, M2-4B is still considered resistant to ampicillin

since the antibiotic-induced scatter shifts was only observed at 160 µg/mL but not at 40

µg/mL. This means that the MIC of M2-4B is ∼160 µg/mL and is beyond the resistant

breakpoint, 128 µg/mL, set by CLSI. On the other hand, with the just above threshold scat-

ter shifts at 40 µg/mL, M2 is considered intermediate resistant to ampicillin since the MIC

is larger than 16 µg/mL but lower than 128 µg/mL.

3.5 Conclusions

PB-sQF compresses the data by identifying the data signatures through adaptive binning.

The adaptive binning provides advantages in calculating distance from multidimension of

datasets, as calculations scale with the (#ofbins)2. PB-sQF then compares these signa-

tures by reducing multidimensional differences to a linear distance between datasets. With

rigorous uncertainties incorporated, subtle, but biologically relevant, antibiotic-induced

changes become directly quantifiable, even as these antibiotics target widely varying bio-

logical pathways including DNA replication, protein synthesis, or cell wall synthesis.[169]

Thus, scattered light and bacteria-targeted fluorescence, coupled with new statistical met-

rics appear to more generally enable rapid flow cytometry signal changes to gauge antibi-

otic resistance over a wide range of bacteria/antibiotic combinations. Even very difficult to

discern combinations that fail with viability tests are readily distinguished with our statis-

tical measures that are scalable to multiparameter measurements.

In the post-blood culture AST, since the bacterial inoculation concentration was high

(Optical Density 0.5 ∼ 2× 108 CFU/mL), the antibiotic susceptibility was assessed by the

changes in morphology or physiological state of bacteria when exposed to antibiotics rather

than monitoring bacterial growth as in the traditional AST. Thus, although for E. coli, P.

aeruginosa and K. pneumoniae we can successfully determine ampicillin as an inappro-
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priate treatment with no changes in the scatter signals, the weak β-lactamase producing

control S. aureus strain ATCC 29213 shows a shift at a penicillin concentration below its

MIC. Also, both A. nosocomialis strain M2 and M2-4B show statistically significant shifts

at high ampicillin concentration (160 µg/mL) while the MICs for both strains are greater

than 1024 µg/mL. For strain M2-4B, our approach still categorized it as a resistant strain

since ampicillin-induced shifts happened only at a concentration beyond resistant break-

point for penicillin-type antibiotics, 128 µg/mL. Strain M2, on the other hand, was a minor

error as it was categorized as having intermediate resistance.

Our results indicate that antibiotic-induced damages occur before total growth inhibi-

tion thus scattered-light shifts are observed even at a antibiotic concentration lower than

the MIC. The future direction for post-blood culture cytometric-based AST should focus

on developing growth inhibition-based cytometry tests with low initial bacteria concentra-

tion. Since the starting bacteria concentration is low, the cytometric data for bacteria that

are incubated with effective treatment at 1x MIC would be very closed to the background

signals. The cytometric data for actively growing bacteria, on the other hand, will be dom-

inated by bacterial signals. The sharp signal change (from zero to one) will help to resolve

the problematic data.

Instead of growth-inhibition, another possible future direction is taking the PB-sQF

fold distance into account. As shown in Figure 3.13, when the MIC for the M2-4B strain

of a given antibiotic is more than 2-fold higher than the MIC for the M2 strain, the fold

distance is smaller for M2-4B compared to M2. The same conditions might be applied to an

ampicillin-susceptible strain versus the M2 strain: the fold distance might be much larger

than ∼4 (the fold distance of M2 treated with 10x sensitive breakpoint) for a susceptible

strain. Indeed, as a β-lactam antibiotic at a concentration as high as 160 µg/mL, the scatter

patterns changes were not as significant as observed in the previous study.[48] The sizes of

different bacteria, however, might complicate the analysis since the scattered-light signals

are related to the size and granularity of a cell. Different size and species of quality control
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strains might be requried to be done along with the tested strains.

With the potential to improve patient outcomes through shortening the window during

which empiric antibiotic treatment is the only resource, flow-based antibiotic sensitivity

determination suggests a >10-fold reduction in post blood culture time to result (∼42 hrs

to ∼4 hrs). As antibiotic susceptibilities and resistance proliferation are of great concern,

these results suggest a path toward more effective and timely treatment. Since the time

to treatment is a major determinant of positive patient outcome, the strong correlation of

sample-control distance in combined scatter and fluorescence shifts with antibiotic sensi-

tivity strongly suggests that general criteria can be established for developing robust flow

cytometric based, rapid ASTs.
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CHAPTER 4

PRE-BLOOD CULTURE AST

4.1 Introduction

Sepsis, a life-threatening immune response to blood infections (bacteremia), is the 10th

leading cause of hospital deaths in the US with a ∼30% mortality rate.[13, 180] Appro-

priate antibiotic treatment for bacteremia patients not only shortens hospitalizations and

reduces antibiotic resistance proliferation, but it also lowers the incidence of septic shock

and halves the fatality rate.[15, 17, 181–183] As sepsis can be caused by any of a num-

ber of bacteria, effective treatment relies on the combination of bacterial identification and

sensitivity profile determinations. Unfortunately, adult sepsis patients often present 5100

bacterial cells (colony forming units, CFU) per mL blood, and pediatric patients exhibit

∼1000 CFU/mL.[184, 185] Because blood consists of > 109 cells/mL, bacteria popu-

lations must be amplified through ∼24-hr blood cultures to generate sufficient bacterial

CFUs for diagnosis and further analyses. While pathogen identification has been hastened

to just a few hours post positive blood culture,[21, 22, 186–188] antibiotic sensitivity tests

(ASTs) still require an additional ∼36-44 hrs, after positive blood culture. In Chapter 3, a

rapid flow cytometry-based AST was developed by calculating rigorous multidimensional

statistical metrics[48] that matches the timescale of emerging post blood culture identifi-

cation (∼4hrs).[21, 22, 186–188] Unlike other rapid post-blood culture ASTs,[63–65, 67,

68, 71, 189] our phenotypic approach can drastically accelerate ASTs for sepsis-causing

pathogens by removing the need for long blood culture-based amplification. Effective an-

tibiotic treatments for all blood-stable pathogens investigated (multidrug-resistant E. coli,

K. pneumoniae, and A. nosocomialis clinical isolates) were readily determined within what

would correspond to 8 hours from initial blood draw. Results suggest that only 0.5mL of
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adult blood or 0.05mL of pediatric blood is necessary per antibiotic. These methods should

be readily adaptable to drastically improve patient outcomes by significantly reducing time

to generate actionable treatment information the combination of pathogen identification

and susceptibility profile.

In order to hasten treatment decisions that further improve patient outcomes and lower

the incidence of antibiotic resistance, researchers have tried developing ASTs directly from

raw blood to circumvent the initial ∼24 hr blood culture delay. Even though the ∼ 109

mammalian blood cells/mL overwhelm any low-level bacteria signals, bacterial presence

determinations within blood samples have been reported by flow cytometry,[190] microflu-

idics,[191–194] and PCR.[195, 196] While most of these detection schemes used genetic

information from dead bacteria to detect presence, Hou et al. detected messenger RNA

levels after pathogens were separated from blood in a microfluidic device.[194] Like other

molecular diagnosis approaches, however, they can only target known RNA signatures for

each strain and genetic indications of antibiotic resistance for each bacterium-antibiotic

pair. A phenotype-detecting flow cytometry-based AST specific for Y. pestis was proposed

that relies on post-growth recovery of bacteria from a gel matrix and viability dye detec-

tion.[197] Generalization, however, is problematic as careful bacterial recovery, significant

post collection growth to reach ∼ 106 CFU/mL, and user-dependent data gating are all

needed to overcome the high scatter and fluorescence background. Additionally, viability

dyes are known to produce false signals with various important bacteria/antibiotic pairs,[68,

70, 76] and gating is highly subject to variations in day-to-day instrument fluctuations,

alignment, and parameters, limiting application of this approach.

Without blood culture-based growth, the highly disadvantageous bacteria:mammalian

cell ratio, even in patients with bacteremia, demands that nearly all mammalian cell back-

ground be removed, without destroying the bacteria. Additionally, sufficient bacterial

CFUs must be recovered to allow incubation with multiple antibiotics at various concen-

trations, suggesting that at least some amplification, or a higher volume of blood (at 100
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CFU/mL), is needed. Because time is critical in ensuring appropriate treatment for pa-

tient survival[14] and reducing antibiotic resistance proliferation,[198] we avoid the need

for lengthy blood culture by utilizing saponin to complex with cholesterols and induce

hemolysis,[199, 200] without affecting bacterial growth or morphology.[201] This selec-

tive blood cell lysis enables even very small numbers of bacteria to be directly collected

from the blood and enriched in blood-free growth medium for cytometric detection. Our

robust statistics then enable quantification of very few bacterial counts, such that much

shorter growth and antibiotic sensitivity times can be achieved.

4.2 Pre-Blood Culture AST Condition Search

To find the experimental conditions to remove blood cells, the detection limit of the flow

cytometer was tested. Then, various conditions to separate the bacteria from blood samples,

including serum separator tubes (SST) and saponin, were examined.

4.2.1 Varied Incubation Time with E. coli Only Samples

When taking flow cytometry data, background signals that come either from electronic

noises or small particles in the solution always compete with signals of interest. Back-

ground noise obscures the events of interest when the signal is weak, as in the case of

patients with sepsis. Since blood cells add more noise to the system, it is important to un-

derstand the detection limit of flow cytometric bacteria signals even before blood cells are

added.

Samples with or without E. coli strain ATCC 33456 were incubated with different con-

centrations of penicillin g for either 1 hour or 3 hours. The flow cytometer recorded the

noise signals even when there was no E. coli added. These background signals remained

unchanged from 1/16x MIC to 1x MIC after 3 hours of incubation (Fig. 4.1 A). When

the sample was spiked with 103 CFU/mL of E. coli and incubated for an hour with peni-

cillin g, no discernible signal was observed in the no-antibiotic control and thus no scatter
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Figure 4.1: Detection limit for the flow cytometer. Flow cytometry data of (A) No E.
coli control with 3 hours incubation. (B) 103 CFU/mL of E. coli spiked sample with 1 hour
incubation. (C) 103 CFU/mL of E. coli spiked sample with 3 hours incubation. The black
contours are the penicillin g- treated data with the penicillin g concentration labled on each
figure. The psuedo-color plots are the no antibiotic controls. 1x MIC of penicillin g for E.
coli strain ATCC 33456 is 32 µg/mL. FSC: forward scatter. SSC: side scatter.

signals change throughout the different concentration of penicillin g (Fig. 4.1 B). This is

most likely because the bacteria concentration was too low to be observed with the flow

cytometer. Since the doubling time of E. coli is about 20∼30 minutes, the estimated E. coli

concentration in the no-antibiotic treated sample should be around 4000 CFU/mL. On the

other hand, when incubated for three hours, the final E. coli concentration should be around

6.4 × 104 CFU/mL. E. coli signals can be seen in the no-antibiotic control, and the 1/16x

data. At 1/4x MIC, scattered-light signals start to shift while at 1x MIC, bacterial growth

was inhibited. As a result, the 1x MIC data appears to be very similar to the no E. coli data
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(Fig. 4.1 C). This shows that even when no blood cells exist, bacterial concentration am-

plification is necessary for the flow cytometer to detect sample with 51000 of the bacterial

counts.

4.2.2 Blood Cells Removal with Serum Separation Tube

Serum separator tubes (SST) are routinely used in the clinical lab to separate blood cells

from serum for medical tests. When spinning down the blood sample in the SST, the blood

cells penetrate into the gel layer at the bottom of the tube while the serum stays at the top.

When the blood sample contains bacteria, it has been reported that the bacteria cells would

be spun down on top of the gel layer thus separating from the blood cells.[197]

To examine whether SST can successfully separate bacteria from blood cells, three

samples were tested including: (1) 10% human blood only, no E. coli control, (2) 10%

blood spiked with 106 CFU/mL of E. coli (ATCC 33456) and (3) 10% blood sample spiked

with 107 CFU/mL of E. coli. All three samples were loaded to the SSTs, inverted five

times, waited for 30 minutes and spun down with a clinical centrifuge for ten minutes as the

manufacturer (Becton Dickinson, Franklin Lake, NY) suggested. The supernatant (serum)

was discarded, and 980 µL of LB broth was added to resuspend the bacteria. The solution

was transferred to a 12-well plate that was loaded with 20 µL of MH-IR786 (final MH-

IR786 concentration 900 nM) and incubated for 4.5 hours. Even though we have shown

in Appendix Figure B.6 that the fluorescent signals from MH-IR786 fluctuated from data

to data, MH-IR786 was used here since it has been shown that it can only be taken up by

bacteria cells.[164] As a result, MH-IR786 should help distinguish the bacteria cells from

blood cells. After the incubation, samples were collected and analyzed by flow cytometry.

As shown in Figure 4.2 A, the gel layer from the SST generated high cytometric back-

ground. As a result, even the blood only data is dominated by the signal from the SST

generated background. This high noise also obscured the bacteria signals. The 10% blood

only scatter data looks very similar to the E. coli spiked, 10% human blood data even when
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Figure 4.2: Failed attempts of E. coli separation using SST. (A) Blood only data. The
black contour is the SST processed human blood after 4.5 hours of incubation. The pseudo-
colo plot is the unprocessed human blood. For (B) to (C) The black contours are Flow
cytometry data of (B) 106 CFU/mL of E. coli spiked human blood (C) 107 CFU/mL of E.
coli spiked human blood. The psuedo-color plots are 10% human blood only. FSC: forward
scatter. SSC: side scatter. (D) Cytometric data for IR786 fluorescence channel.

the inoculation concentration was as high as 106 CFU/mL and had been incubated for 4.5

hours (Fig. 4.2 B). A discernible scatter difference only appeared when the initial inocu-

lated concentration was 107 CFU/mL (Fig. 4.2 C). The 1D fluorescence signal also only

shows differences with the 107 CFU/mL spiked blood sample. The fluorescence signals

of the 107 CFU/mL sample, however, was lower than the blood only sample (Fig. 4.2

D), which contradicts with the previous observation that mammalian cells do not uptake

MH-IR786.[164] Or MH-IR786 is retained by the gel layer from the SST. With the high

scatter backgrounds introduced by the gel layer of a SST, it would be difficult to detect any

bacterial signal even after amplification. As a result, SST was excluded from further study.
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4.2.3 Blood Cells Removal with Saponin

Although the blood cells were successfully removed by SST, the high background from the

gel layers make it difficult to detect bacterial signal. Saponin, on the other hand, does not

generate much background signal itself. Instead of removing the blood cells, it lyses them

without affecting bacterial growth.[199–201] In this subsection, the hemolysis effect of

saponin was characterized, the MH-IR786’s ability to distinguish blood cells from bacteria

was investigated and a pre-blood culture AST with sheep blood was demonstrated.

Effect of Saponin and MH-IR786 staining

To test saponin’s lysis ability, 100 µL of 1% saponin was added to 100 µL of human

blood with 800 µL of LB and incubated at 37 °C for 10 minutes. The lysed 10% blood

solution was then spun down, and washed with PBS. The pellet was then resuspended in

980 µL of LB, loaded to a 12-well plate with 20 µL of 45 µL of MH-IR786 and incubated

for an hour. With the saponin treatment, the scattered-light signal clearly shifted to the

lower left corner with smaller side and forward scatter signal (Fig. 4.3 A). Since saponin

lyses the blood cells, the smaller scattered-light signals show that the cells were indeed

damaged and broken into debris. The fluorescence signal, probably because of increased

accessibility of MH-IR786 into damaged cells, was higher when the blood cells were lysed

(Fig. 4.3 A). As for E. coli, neither the scatter data nor the fluorescence signal changed

with or without saponin treatment (Fig. 4.3 B) which is in consistent with the previous

studies[199–201] showing that E. coli is not effected by saponin. When comparing the

fluorescence intensities between MH-IR786 stained human blood cells and E. coli, the

fluorescence intensity was not higher in the E. coli only data. Combining with the fact

that the blood cells debris generated higher fluorescence intensity than did the no saponin

sample, MH-IR786 is most likely not actively taken up by the healthy bacteria.
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Figure 4.3: Saponin-treated human blood and E. coli. Flow cytometry data for (A) 10%
human blood. (B) E. coli. For both (A) and (B) the black contours were the 1% Saponin
treated data while the psuedo-color plots were without saponin treatment. (C) MH-IR786
fluorescence signal in E. coli and blood. HB: human blood. BL: blank (no dye).

Pre-Blood Culture AST with Sheep Blood

To search for the condition to separate bacteria from the blood cells, sheep blood was used

as a substitute for human blood. In order to remove the blood cells that have a concentration

that is 106 to 107 times higher than the bacteria, 100 µL of 10% (w/v) saponin was added

to 1 mL of sheep blood that was spiked with either 100 µL of LB or 104 CFU/mL E. coli

strain ATCC 33456 (final concentration ∼ 103 CFU/mL) and incubated for 15 minutes at

room temperature to lyse the blood cells. The same procedure was applied to 12 samples

loaded in eppendorf tubes. These samples were then washed with PBS and resuspend in

500 µL LB broth. All 12 samples were added to the 12-well plate loaded with 480 µL

of LB broth and/or penicillin g with 2x higher desired concentrations and 20 µL, 45 µM

of MH-IR786. The plate was incubated for 5 hours. Each sample was then collected and

analyzed by flow cytometry.

The cytometric data for blood only samples (100% blood) remained very similar to

each other from no-antibiotic to 1x MIC of penicillin g (Figure 4.4 A) while clear growth
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Figure 4.4: Pre-blood culture AST with sheep blood. Flow cytometry data for (A) 100%
sheep blood only. (B) 1000 CFU/mL E. coli spiked blood sample. The black contours are
the penicillin g-treated data with the penicillin g concentration labeled on each figure. The
psuedo-color plots are the no antibiotic controls. 1x MIC of penicillin g is 32 µg/mL for E.
coli strain ATCC 33456. FSC: forward scatter. SSC: side scatter. (C) PB-sQF results for
(A), (B) and 105 CFU/mL spiked blood sample.

inhibition can be observed at 1x MIC in the 1000 CFU/mL of E. coli spiked sample (Figure

4.4 B). The differences in the 3D cytometric data are seen in PB-sQF results with the blood

only data showing no statistically significant difference between each other while both 1000

CFU/mL and 105 CFU/mL show clear increment of distance increases from 1/16x MIC to

1x MIC (Figure 4.4 C).

4.2.4 Characterize the Killing Efficiency of Blood Cells over Bacteria

The same blood cell lysis condition that was found for the sheep blood was applied to the

human blood sample. The lab-strain E. coli, however, were not recovered from the blood

sample as they were in the sheep blood, but were killed by the human blood cells instead.
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Figure 4.5: Human blood cells kill E. coli. (A) Lab strain ATCC 33456. (B) Clinical-
isolate E. coli strain Mu14S.

To demonstrate this, 800 µL of 105 CFU/mL lab strain E. coli were incubated with 7200

µL of 10% human blood, and 800 µL of 1% saponin for 15 minutes. 1 mL of sample was

taken out for overnight plating at 0, 1, 4, 7, 11 and 15 minutes of the incubation time. These

1 mL samples were diluted and plated overnight for colony counting. As shown in Figure

4.5 A, the colony counts kept decreasing from 1 minute of incubation time to 11 minutes

when all of the E. coli were killed (no colonies detected). This shows that even with the

present of saponin, 104 CFU/mL of the lab strain E. coli was readily killed by 10% human

blood in 11 minutes. As a result, the same procedure, recovering 1000 CFU/mL of the lab

strain E. coli from 100% of sheep blood, did not work in human blood.

Since bacteria isolated from blood should have a higher resistance to blood cells, the

multidrug-resistant E. coli clinical isolate Mu14S was tested. Different from the lab strain

E. coli, 105 CFU/mL of Mu14S were incubated with 10% human blood without saponin

for 30 minutes. 1 mL of sample was taken out for over night plating at 0, 1, 4, 10, 17,

and 30 minutes. The colony counts dropped for the first 10 minutes but remained stable

and probably actively growing from 10 to 30 minutes. This shows that the clinical isolates

indeed survives in human blood as the case in sepsis patients.
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Figure 4.6: Antibiotic susceptibility test (AST) timelines. (Top, blue arrows) The stan-
dard clinical microbiology workflow requires >60 hours from initial blood draw. (Green
arrows) Time line for the post-blood culture cytometric AST using PB-sQF distances.[48]
(Red arrows) Time line from initial blood draw for Fast AST (i.e. FAST). FSC: forward
scatter. SSC: side scatter.

4.3 FAST with Bacteria-Spiked Human Blood

Using the clinically isolated E. coli strain Mu14S, a pre-blood culture Fast AST(i.e. FAST,

Fig. 4.6) was developed. To simulate blood from a patient with bacteremia, the clinical

isolates were grown, diluted to the appropriate CFU/mL and added to the blood/saponin

mixture to achieve the final diluted sample. Initial cultures for bacteria-laden blood samples

were prepared using LB broth for incubating E. coli. For other bacteria, CAMHB was

used. Bacteria were cultured overnight in an incubator shaker at 37°C and 225 rpm. The

fresh bacterial culture was started from ∼0.05 OD by inoculating a 6 mL fresh growth

medium with overnight culture. After the fresh culture reached mid-log phase, bacteria

were diluted into ∼10 CFU/mL through a series of 10-fold dilutions and the concentration

was confirmed by overnight plating from loading 100 µL of 1000 CFU/mL sample. The

last 10-fold dilution was done by adding the 500 µL of 100 CFU/mL into 4500 µL of 10%
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human blood (ZenBio, Research Triangle Park, NC) in medium solution.

2.5% (w/v) of saponin (Sigma-Aldrich, St. Louis, MO) was prepared, sonicated (Bran-

son 2510, Emerson, St. Louis, MO) for 20 minutes and spun down with a clinical centrifuge

(Centrific Model 228, Fisher Scientific, Waltham, MA) for 4 minutes. The supernatant was

collected to isolate the undissolved pellet. 500 µL of 2.5% saponin was then added to the 5

mL of 510 CFU/mL, 10% human blood sample and incubated in an incubator shaker for

15 minutes at 37°CṪo ensure that the blood cells lysed completely, the sample was laid on

the incubator floor, confined by the large flask clamps, and agitated at 300 rpm. The sample

was flipped by hand every 5 minutes. After the saponin treatment, the bacteria were again

pelleted and washed with 2 mL of PBS using a clinical centrifuge for 2 minutes. 2.5 mL of

growth medium was then added to the tube without breaking the pellet and incubated for 2

hours in an incubator shaker at 37°C and 225 rpm.

After the 2-hour incubation, the pellet was removed by pipetting. The sample was

mixed well and 500 µL of the sample was added to each well of one row of the 12-well

plate (4 samples per row) that was loaded with 500 µL of growth medium with or without

antibiotic at 2-fold of the specified concentrations. The plate was then incubated at 37°C

for 3 hours. Bacteria were again collected by centrifugation and resuspended in 200 µL

of PBS for flow cytometry detection. To ensure each clinically isolated strain was tested

at its MIC, pure culture starting with 1000 CFU/mL was also tested for each experiment,

confirming that the antibiotic concentrations we used indeed inhibited bacterial growth.

Bacterial growth inhibition was monitored by flow cytometry, and the differences in the

2-D scatter histograms with and without antibiotic treatment was characterized with PB-

sQF statistics.[48] Since the FAST procedure lysed the blood cells and incubated the sam-

ple in growth medium, it greatly reduces the time-to-result compared to the standard AST

(Fig. 4.6). Here, multidrug resistant, blood stable clinical isolates of common bacteremia-

causing pathogens (E. coli, K. pneumoniae, A. nosocomialis), and S. aureus were obtained

(Gift from Dr. Phillip Rather, Emory University), and FAST was applied to identify the
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Figure 4.7: Antibiotic-treated 10% human blood only results. Cytometric data with (A)
Ampicillin (B) Tetracycline (C) Gentamicin. The pseudo-color plots are the no-antibiotic
controls and the black contour plots are the antibiotic-treated data with the antibiotic con-
centration indicated at each plot. (D) PB-sQF results for (A), (B), and (C). The resistant
breakpoint of Enterobacteriaceae are 16 µg/mL for tetracycline and gentamicin. 32 µg/mL
for ampicillin.

effective treatment.

4.3.1 FAST with Blood Only Sample

To show that the saponin procedure and the antibiotic treatments at the tested concentration

do not significantly changes the scattered light histograms, controls of identical treatments
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of 10% human blood samples without bacteria inoculation were tested (Fig. 4.7). When

treated at the resistant breakpoint of tetracycline, gentamicin, and ampicillin of Enterobac-

teriaceae, the scatter signal remained unchanged from 1/16x, 1/4x to the 1x resistant break-

point. Thus, diluting blood-stable bacteria-containing blood samples 1:9 (v:v) directly into

saponin-containing growth medium provides a path to ASTs within 8 hours from initial

blood draw, with excellent results matching independent (36-44 hr) MIC determinations

from pure, overnight cultures (∼ 108 CFU/mL) that could only be initiated after (∼24hr)

positive blood culture.

4.3.2 FAST with Gram-Negative Bacteria

For gram-negative bacteria, tetracycline, gentamicin, and ampicillin were tested. The MICs

of each clinical isolates were determined by microdilution first and are listed in Table 4.1.

For antibiotics to which the clinical isolates were sensitive, the MIC was used to test the

growth inhibition. For antibiotic to which the clinical isolates were resistant, the resistance

breakpoints determined by the CLSI were used.

Table 4.1: MIC (µg/mL) for each antibiotic/bacteria combination. The MICs were de-
termined from microdilution AST. S, I and R represents sensitive, intermediate and resistant
according to the 2014 Clinical & Laboratory Standards Institute (CLSI) handbook.[177]

MIC (S/I/R) Tetracycline Gentamicin Ampicillin
E. coli Mu890 1 (S) 8 (I) > 1024 (R)
E. coli Mu14S > 64 (R) 8 (I) > 1024 (R)

K. pneumoniae Mu670 2 (S) 4 (S) > 1024 (R)
K. pneumoniae Mu55 > 64 (R) 1 (S) > 1024 (R)
A. nosocomialis M2 1 (S) 2 (S) > 1024 (R)

Multidrug-resistant E. coli isolates

Two clinically isolated, multi-drug resistant E. coli strains were tested, Mu890 and Mu14S.

Following the hemolysis and growth procedure outlined above, flow cytometry was used
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Figure 4.8: FAST antibiotic-induced scatter signals for E. coli strains Mu890 and
Mu14S. (A) Mu890 antibiotic induced scatter histograms (black contours) overlaid on
paired no-antibiotic control (color dots, red indicating highest occurrence) and PB-sQF
results. (B) Mu14S antibiotic induced scatter histograms and PB-sQF results. For the
PB-sQF results bar chart, the thick black lines correspond to each bacteria-antibiotic 99%
confidence limit distance, and error bars represent one standard deviation above and below
the mean from triplicate trials.
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to collect forward and side scattered light signals. Statistical comparison of these his-

tograms (Fig. 4.8) demonstrates that susceptibility testing is readily performed by immedi-

ate hemolysis of 0.5 mL blood/antibiotic, followed by 2-hrs preincubation and 3-hr AST.

When treated with concentrations of either tetracycline or gentamicin below the sensitive

(4 µg/mL for tetracycline) and intermediate resistance (8 µg/mL for gentamicin) break-

points, the Mu890 signals disappeared, indicating effective growth inhibition (Fig. 4.8 A).

When treated with 32 µg/mL ampicillin (the Enterobacteriaceae resistance breakpoint), the

scatter signals became indistinguishable from those of the no-antibiotic control (Fig. 4.8

A). PB-sQF fold distance-based FAST beyond the 99% confidence levels match the much

slower microscan AST data, demonstrating that tetracycline and gentamicin are indeed ef-

fective treatments for Mu890 (Fig. 4.8 A). The actual starting concentrations of Mu890

were confirmed with overnight plating to be 3, 3, and 5 CFU/mL for tetracycline, gentam-

icin, and ampicillin experiments, respectively. Since the E. coli/human blood was diluted

10-fold, the real concentrations before dilution corresponded to ∼30, 30 and 50 CFU/mL

of whole blood.

Also matching its standard AST data, FAST shows that Mu14S is intermediate (1x

MIC = 8 µg/mL) to gentamicin and when treated at the MIC, exhibits growth inhibition

(Fig 4.8 B). When treated with tetracycline or ampicillin at each resistant breakpoint (16

µg/mL and 32 µg/mL), however, Mu14S signals remained statistically unchanged (Fig. 4.8

B). The PB-sQF fold distance average from triplicate data shows clear differences between

the 1x MIC gentamicin data versus the paired-control (Fig. 4.8 B). This confirms that the

gentamicin sensitivity of Mu14S observed after blood culture[48] can also be observed

with FAST. Overnight plating confirms that initial Mu14S counts were 3, 2, 5 and CFU/mL

for tetracycline, gentamicin and ampicillin data after 10-fold dilution of the blood/bacteria

mixture, corresponding to FAST being performed on whole blood samples containing∼30,

∼20 and ∼50 CFU/mL. Control experiments starting with 1000 CFU/mL of both Mu890

and Mu14S without human blood were incubated with antibiotics for 5 hours. The results
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Figure 4.9: FAST antibiotic-induced scatter signal changes for Mu55 and Mu670
reveal different susceptibilities. (A) Mu55 antibiotic-induced scatter histograms (black
contours) overlaid on paired no-antibiotic control (color dots, red indicating highest occur-
rence) and PB-sQF results. (B) Mu670 antibiotic-induced scatter histograms and PB-sQF
results. For the PB-sQF results bar chart, the thick black lines correspond to each bacteria-
antibiotic 99% confidence limit distance, and error bars represent one standard deviation
above and below the mean from triplicate trials.

101



are consistent with the FAST results (Appendix Fig. C.1 and Fig. C.2).

Multidrug-resistant K. pneumoniae isolates

The same FAST procedure was applied to two clinically isolated, multidrug resistant K.

pneumoniae strains, Mu55 and Mu670. Analogous to the E. coli data, K. pneumoniae

growth inhibition is directly quantified with PB-sQF upon effective antibiotic treatment,

and sensitivities are accurately determined. Importantly, when treated with antibiotics to

which Mu55 or Mu679 were resistant, the scatter data (black contours) were not statistically

different from each experiment’s paired control (pseudo-color plots, Figure 4.9). PB-sQF

confirms that tetracycline is effective toward Mu670 and gentamicin is an appropriate treat-

ment for both Mu55 and Mu670. Post-dilution bacterial concentrations were confirmed by

overnight plating to be∼8 CFU/mL for Mu55 and∼9 CFU/mL for Mu670, demonstrating

that FAST can be readily completed within 8 hours of initial blood draw on blood samples

exhibiting ∼100 CFU/mL. Again, control experiment starting with 1000 CFU/mL of both

strains without human blood were incubated with antibiotics for 5 hours. This ensures that

the antibiotics were indeed at the MIC (Appendix Fig. C.3 and Fig. C.4).

Multidrug resistant A. nosocomialis isolates

Also matching its standard AST data, FAST on clinically isolated A. nosocomialis strain

M2 spiked in 10% human blood (Fig. 4.10) enabled its susceptibility profile to be quickly

determined. As with other species, PB-sQF reveals that M2 is resistant to ampicillin but

susceptible to both tetracycline and gentamicin when assayed within 8 hrs of initial sim-

ulated blood draw (Figure 4.10). Different from the ∼ 105 CFU/mL E. coli and K. pneu-

moniae strains resulting from 2-hr pre-incubation plus 3-hr AST, the final A. nosocomialis

concentrations were ∼ 104 CFU/mL, as confirmed by plating. Even with an order of mag-

nitude fewer bacterial counts, the clear growth inhibition was readily quantified with the

same procedure. As initial ∼10 CFU/mL samples incubated for 5 hours are sufficient for
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Figure 4.10: FAST antibiotic-induced scatter signal changes for A. nosocomialis strain
M2. Flow cytometry data of antibiotic induced scatter histograms (black contours) overlaid
on paired no-antibiotic control (color dots, red indicating highest occurrence) and PB-sQF
results. (A) Tetracycline (B) Gentamicin (C) Ampicillin. For the PB-sQF results bar chart,
the thick black lines correspond to each bacteria-antibiotic 99% confidence limit distance,
and error bars represent one standard deviation above and below the mean from triplicate
trials.

analysis, ∼10 doubling events are ideal to generate sufficient sample for FAST antibiotic

panels to be performed on any bacteria. Pure culture starting from 1000 CFU/mL were

incubated for 5 hours with antibiotics. The results, as shown in Appendix Figure C.5, show

that the antibiotics were indeed treated at the MIC/breakpoint of M2.

4.3.3 FAST with Gram-Positive Bacteria

S. aureus clinical isolates, strain 95938 and strain NRS382, were obtained from Dr. Sarah

Satola at the Georgia Emergin Infection Program of Emory University, to test the FAST

procedure. Based on the clinical microbiology reports, both stains are hemolytic. The

MICs were first determined by microdilution and are listed in Table 4.2.
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Table 4.2: MIC (µg/mL) for each antibiotic/bacteria combination. The MICs were de-
termined from microdilution AST. S, I and R represents sensitive, intermediate and resistant
according to the 2014 Clinical & Laboratory Standards Institute (CLSI) handbook.[177]

MIC (S/I/R) Vancomycin Oxacillin Gentamicin
S. aureus strain 95938 1 (S) 64 (R) 128 (R)

S. aureus strain NRS382 2 (S) 256 (R) 1
4

(S)

FAST with 5-hr Incubation

FAST was applied on S. aureus strain NRS382 with vancomycin, oxacillin, and gentamicin.

NRS382 was treated at its MICs with vancomycin (2 µg/mL) and gentamicin 1
4
µg/mL).

Since NR382 is resistant to oxacillin (MIC = 256 µg/mL), the resistant breakpoint, 4 µg/mL

was used instead. As shown in Figure 4.11, when started at∼20 CFU/mL with 10% human

blood, no scattered-light signal change was observed and no colonies were recovered (with

1/10x dilution) after overnight plating of the samples. The pure culture control (Appendix

Figure C.6), however, shows that the antibiotics were at the correct concentrations. These

data indicates that with 5 hours incubation, S. aureus strain NRS382 was not recovered

from the blood culture.

Growth Curve and Blood Stability

Since the FAST procedure with total of a 5 hours of incubation did not recover S. aureus

strain NRS382, the growth curves were measured. Bacteria (both S. aureus strain NRS382

and strain 95938) were cultured overnight as described previously. The fresh bacterial cul-

ture was started from ∼0.05 OD by inoculating a 10 mL fresh growth medium (CAMHB)

with overnight culture. The OD of both strains increased steadily over time (Figure 4.12).

The doubling time, however, was around 80 minutes, much longer compared to ∼20-30

minutes for E. coli, K. pneumoniae, and A. nosocomialis. As a result, instead of ten or

more doubling events, S. aureus strain NRS382 only went through less than four doubling
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Figure 4.11: FAST antibiotic-induced scatter signal changes for S. aureus strain
NRS382. Flow cytometry data of antibiotic induced scatter histograms (black contours)
overlaid on paired no-antibiotic control (color dots, red indicating highest occurrence) and
PB-sQF results. (A) Vancomycin (B) Oxacillin (C) Gentamicin. For the PB-sQF results
bar chart, the thick black lines correspond to each bacteria-antibiotic 99% confidence limit
distance, and error bars represent 1 standard deviation above and below the mean from
triplicate trials.

events with 5 hours of incubation. With the starting bacterial concentration ∼ 20 CFU/mL,

the end point concentration after incubation was < 640 CFU/mL assuming no lose of bac-

teria during the washing step. Thus, no scattered-light shift was observed and no colony

recovered (Fig. 4.11).

To ensure the blood culture did not kill S. aureus strain NRS382, the stability of bacteria

in blood was tested. Mid-log phase fresh bacterial culture (∼ 108 CFU/mL) underwent 10-

fold dilutions to 104 CFU/mL. The final solution was 9 mL of 104 CFU/mL of bacteria

with 10% of human blood in CAMHB. 700 µL of 2.5% of saponin was then added and 1

mL sample was taken out and diluted 10-fold for plating (t = 0 data point) immediately.

The bacteria counts were confirmed by plating at different incubation durations. At each
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Figure 4.12: Growth curve for S. aureus strain 95938 and strain NRS382.

time point, the quantity of sample taken out and the amount of dilution vary depend on

the expected growth/loss of the bacteria. As shown in Figure 4.13 A, both strains survived

when incubated with 10% human blood and saponin in broth. The plate counts after 30

minutes of incubation were higher than the initial plate counts, suggesting a steady bacterial

growth in the blood sample. The same process was repeated with S. aureus strain 95938

along with two more conditions: saponin only and blood only. The plate counts results

show that even when the blood cells were not lysed by saponin, S. aureus strain 95938,

which is a bloodstream isolate, still survived after incubated 30 minutes with 10% of blood.

Also, when incubating strain 95938 with saponin without blood, no significant decrease in

plate counts was observed. These data show that the S. aureus isolates are stable in blood

and the saponin only lyses the blood cells.

Overnight Incubation

Since the doubling time for the clinically-isolated S. aureus strain 95938 are∼ 80 minutes,

a longer incubation time is necessary to reach the needed ∼ 104 CFU/mL final bacterial

concentration. 14 hours of total incubation time (3 hours of pre-incubation and 11 hours of

AST) were tested. As shown in Figure 4.14, the cytometric data are dominated by the blood

debris. Among the six no-antibiotic controls (triplicate data for each of two antibiotics),

only two of them successfully recovered bacteria with plate counts around 2 × 106 and
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Figure 4.13: Overnight plate counts for 10% human blood incubated S. aureus strain
95938 and strain NRS382. (A) Strain 95938 and strain NRS382 with 10% human blood
and saponin. (B) Strain 95938 with blood only (left), saponin only (middle), and both blood
and saponin (right).

8 × 105 CFU/mL respectively. The rest had no colonies observed. This result contradicts

the data shown in Figure 4.13, which indicates that the plate counts of S. aureus clinical

isolates did not drop significantly after 30 minutes of incubation with blood. One possible

explanation is that when the bacteria contact the blood sample, the competition between

the killing time and doubling time begin. When measuring blood stability, since there were

104 CFU/mL of bacteria, part of the S. aureus have the chance reproduce before it was

killed by the blood cells. In the pre-blood culture experiment, the bacteria count is as low

as 10 CFU/mL. Unlike E. coli, K. pneumoniae, and A. nosocomialis clinical isolates which

double every ∼ 20 − 30 minutes, the doubling time of S. aureus strain 95938 is ∼ 80

minutes. The probability that all ten CFU/mL of S. aureus survive before doubling is low.

To speed up the doubling time, different broth other than CAMHB can be considered.

It is know that blood agar is useful to cultivate fastidious organisms such as Streptococcus

spp.. S. aureus strain 95938 and NRS382 indeed grow faster on blood agar plates than LB

agar plates. Also, the standard AST broth for S. aureus and Streptococcus spp. is CAMHB

with 2∼5% of lysed horse blood. As a result, with suitable culture medium, the doubling

107



Figure 4.14: FAST antibiotic-induced scatter signal changes for S. aureus strain
NRS382 14-hr culture. Flow cytometry data of antibiotic induced scatter histograms
(black contours) overlaid on paired no-antibiotic control (color dots, red indicating highest
occurrence) and PB-sQF results. (A) Vancomycin (B) Gentamicin. For the PB-sQF results
bar chart, the thick black lines correspond to each bacteria-antibiotic 99% confidence limit
distance, and error bars represent one standard deviation above and below the mean from
triplicate trials.

time of S. aureus strain 95938 and NRS382 may decrease and the FAST procedure might

be applied.

4.4 FAST with Different Conditions

Since PB-sQF utilizes the completed information of the cytometric data without gating,

FAST is robust for different experimental conditions that affect the scatter patterns, such

as biovariability between patients, different machines and/or cytometer parameters. In this

section, E. coli strain Mu14S was spiked into the blood from another vendor and cytometric

data of E. coli strain Mu890 were taken with different cytometer alignments. Nevertheless,

without any modification in PB-sQF, FAST reveals the same susceptibility profiles as be-

fore (Fig. 4.8 and Fig. 4.9) for both strains regardless of the changes in scatter patterns.
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Figure 4.15: Antibiotic-treated 10% human blood from United States Biological. For
all data, pseudocolor plot: no-antibiotic, paired control. Black contour: antibiotic-treated
data. (A) Tetracycline at 1 µg/mL (MIC for Mu14S). (B) Gentamicin at 8 µg/mL (MIC for
Mu14S). (C) Penicillin G at 32 µg/mL, the resistant breakpoint for penicillin group for E.
coli. For the PB-sQF results, none of the antibiotics induce significant scatter signals shift
for blood only data. All data were done in triplicate.

4.4.1 Blood Sample from Different Vendor

The blood samples used in this subsection were purchased from USBiology, Salem, MA.

The same experimental procedure was applied to the the no-bacteria control or the E. coli

spiked blood sample and the results are shown in Figure 4.15 and Figure 4.16.

FAST with Blood Cells Only

The scatter pattern (Fig. 4.15) of the USBiological blood sample taken by another ma-

chine, was distinctly different from the ZenBio blood sample (Fig. 4.7). But as in Figure

4.7, the scatter pattern stays unchanged throughout the 16-fold increment of antibiotic con-

centrations and the PB-sQF test results show no statistically significant change from the

99% confidence level. This shows that since the entire cytometric data was used in the PB-
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Figure 4.16: Bactericidal Antibiotic-induced scatter changes for E. coli strain Mu14S
in USBiological Blood. For all data, pseudocolor plot: no-antibiotic, paired control. Black
contour: antibiotic-treated data. (A) Tetracycline at 1 µg/mL. (B) Gentamicin at 8 µg/mL,
the MIC for Mu14S. (C) Penicillin G at 32 µg/mL, the resistant breakpoint for penicillin
group for E. coli. The starting E. coli concentration was around 100, 30 and 40 CFU/mL
for tetracycline, gentamicin, and ampicillin treated data respectively. All data were done in
triplicate.

sQF calculation and distances are referenced to paired controls, there is no need to adjust

threshold and/or gate when the scatter patterns change from run to run.

FAST with Clinical Isolate E. coli strain Mu14S

Around 10 CFU/mL of E. coli Mu14S was spiked into 10% human blood purchased from

USBiological, and FAST was applied on the sample. As in Fig. 4.8, the test results show

that the Mu14S is resistant to tetracycline and penicillin g (an antibiotic belonging to the

same group as ampicillin. When treated with 8 µg/mL of gentamicin, however, growth

inhibition showed as the cytometric scatter signal resemble the blood only data (Fig. 4.16

B). The PB-sQF results also indicated that gentamicin is the effective treatment.
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Figure 4.17: Flow cytometry data under different setting with 10% blood only or E.
coli strain Mu890 in 10% human blood. (A) Ampicillin treated 10% human blood only
sample at the Acinetobacter resistant breakpoint. (B)Tetracycline-treated data. 1x MIC is
2 µg/mL. (C) Gentamicin-treated data. 1xMIC is 8 µg/mL. All data were done in triplicate.

4.4.2 Different Flow Cytometric Settings

The scattered-light pattern is also influenced by the cytometer setting. Although the blood

was purchased from the same vendor (ZenBio) and the data were taken by the same flow

cytometer, the machine was often realigned under maintenance, causing the scatter pattern

changes. The scatter signals of the blood-only sample treated with ampicillin from 1/16x

to 1x of the resistance breakpoint of Acinetobacter (128 µg/mL) remained unchanged (Fig.

4.17 A), and so do the PB-sQF results. This demonstrated ampicillin at (128 µg/mL) still

would not effect the scatter signals just as we have shown in Figure 4.7 A with the ampi-

cillin at Enterobacteriaceae breakpoint (32 µg/mL) would not effect 10% human blood.

This data suggests that the scattered-light pattern changes in Figure 4.10 is indeed the re-

sponse from Acinetobacter.
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As the scatter pattern of the blood debris was determined in Figure 4.17 A, the E.coli

Mu890 scatter signal can be clearly identified in Figure 4.17 B and C. The relative position

and shape of the blood debris and Mu890 signals were very different from Figure 4.8 A.

The data nevertheless are consistent with each other. The growth inhibition from both

tetracycline and gentamicin are clearly shown in Figure 4.17 B and C and PB-sQF data

including triplicate errors indicated that both antibiotics are effective treatments. This data

shows the advantage of PB-sQF over gate-based[202] or mean-based statistics[65, 66, 203].

By calculating distances of the whole data between control and antibiotic-treated samples,

no adjustment is needed from one data set to another.

4.5 Conclusions

To rapidly determine appropriate treatments for gram-negative bacteria, we developed FAST

to minimize time-to-result from initial blood draw. By selectively removing blood cells,

FAST requires only a total of 8 hours to complete susceptibility testing. Using flow cy-

tometry to acquire the entire distribution of bacterial responses to antibiotic exposure, PB-

sQF statistical metrics directly quantify the differences between antibiotic-treated data and

no-antibiotic paired controls. Consistent results are obtained even when data vary among

different replicates, or if performed on different instruments. This procedure, without time-

consuming overnight incubation and serial plating, reduces the time-to-result from >60

hours to <8 hours total time from initial blood draw, with identical susceptibility determi-

nations. Since rapid identification of the correct antibiotic treatment is crucial in treating

bacterial infections, FAST has the potential to greatly improve patient outcomes, while

minimizing antibiotic resistance proliferation. Since CLSI breakpoints for the most com-

mon bacteremia-causing bacteria differ by<4-fold, adding an additional antibiotic concen-

tration could rapidly provide susceptibility information without waiting for much slower,

post blood culture bacterial identity determinations. As the majority of blood stream in-

fections are caused by gram negative bacteria,[204–206] this approach offers a path to

112



drastically improved patient outcomes, while also allowing for subsequent confirmation

from much slower post blood culture ASTs and identifications of both gram-positive and

gram-negative pathogens.

To adapt the FAST procedure for gram-positive bacteria, it is important to decrease

the doubling time of S. aureus. The doubling time might be able to reduced when the

specific nutritious requirements for S. aureus and Streptococcus are met. Possible medium

including the lysed blood supplement CAMHB and the Tryptic Soy broth.
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CHAPTER 5

BACTERIAL GENOME SEQUENCE TYPING

5.1 Introduction

The previous chapters developed and applied PB-sQF on analyzing multidimensional flow

cytometry data. Without making any assumption about the distributions of data sets, the

general procedure of PB-sQF can be used to analyze different histogram-type data. Ge-

nomic information, which is a string data constitute of A, C, G, or T, can be viewed as a

long string composed of recurring subsequences. These recurring substrings form a his-

togram, and PB-sQF can then be used to calculate the distance between sequences, thereby

characterizing the genome similarity from one species to another.

In this chapter, a bacterial sequence library, including 628 genomes, was constructed.

The library strains were then clustered based on genome similarity, and a phylogenetic tree

was built. As a clear relation was observed between the genome similarity, and the strains

or genuses of the bacteria, PB-sQF was applied to typed “unknown” bacterial species by

calculating the distance between the “unknown” bacteria and the library strains. The bac-

terial typing can be done with both the assembled genome sequences and the pooled raw

short reads data from the sequencer. Different PB-sQF schemes were investigated with the

pooled short reads data. Ultimately, PB-sQF was applied to outbreak analysis to identify

the outbreak strain.

5.2 PB-sQF in Analyzing K-mer Frequency

PB-sQF is a multi-dimensional statistic that quantifies the (dis)similarity of any two distri-

butions.[48] To turn genome sequences into probability distributions, short sequence reads

or, if available, the complete bacterial sequences were first k-merized by KAnalyze.[147]
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The unique k-mer letter sequences were then digitized and transformed into k-dimensional

coordinates. The k-dimensional data points, including the coordinates and k-mer counts,

were treated as k-dimensional probability distributions and binned adaptively to the pre-

designated number of bins as in the flow cytometric data. Different binning schemes are

investigated in Section 5.8. Since all binning schemes give identical results at saturated

conditions (5.10 and 5.11), the digitized scheme described in Chapter 2 was chosen to an-

alyze the data, as its fewer binning dimensions greatly reduces computational load. After

binning, the data points in each bin were expanded into 4k-dimensional data points (four

possible bases at each position), and the centroids are the average of the data points within

each bin. The PB-sQF test statistics are calculated by matrix multiplication of the similarity

matrix, made of the Euclidean distances between centroids and the weights. Details about

PB-sQF for sequence analysis can be found in Chapter 2.

5.3 Bacterial Genus Grouping: Binary vs. Full Data

628 complete genomes of 578 bacteria from 216 different genuses (Appendix Table D.1)

were k-merized into 3-mer, 6-mer, or 9-mer libraries. Occurrences, either as binary pres-

ence (binary data) or the actual normalized k-mer occurrence probabilities (full data) of

each unique k-mer within each data set were further adaptively binned in k-dimensions.

Pairwise PB-sQF distances were calculated between all possible k-mer bacterial genome

probability distributions. The calculated test statistics generated a symmetric 628x628 ma-

trix in which each element corresponds to the statistical linear distance between the row

and column bacterial genomes. Bacterial genuses that were present =10 times in the li-

brary were aligned relative to a control strain. As distance is always positive, the strain

exhibiting the largest dynamic range (Anaeromyxobacter dehalogenans strain 2CP-C) was

chosen as the control strain. When aligning all bacteria relative to the largest dynamic

range strain, the control strain and the most different strain had the same distance from the

middle strain (same distance, different directions). Since the distance is always positive
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Figure 5.1: Test Statistics of selected bacteria lined up against Anaeromyxobacter de-
halogenans. Top Row: Binary analysis of (A) 3-mers, (B) 6-mers, and (C) 9-mers. Only
9-mers showed distinguishability for binary analysis as shorter k-mers exhibit saturation.
With 3-mers, no distance among library strains is observed, so bacteria are ordered al-
phabetically as in the library. Bottom Row: Full data of (D) 3-mers, (E) 6-mers, and (F)
9-mers. Independent of k-mer length, full data analysis yields nearly identical results with
Mycobacterium being the closest to the control strain and mycoplasma being the most dif-
ferent strain.

and symmetric, aligning statistical distances from any other strain would lead to artificial

overlapping distances of otherwise very different bacterial genomes (same distance, but

different direction only distinguishable when properly aligned).

Aligning distances of all k-merized bacterial genomes (of a given k-mer length) rela-

tive to that from the control strain using binary k-mer presence alone, 3-mer and 6-mer test

statistics show no or very little grouping ability (Fig. 5.1 A and B). This is because, with the

size of bacteria genome ranging from 100 kbp to 10 Mbp, all the 3-mer (43 = 64 possible

words) and most of the 6-mer (46 = 4096 possible words) were occupied among all of the

bacteria in the library. Thus, there is no significant difference between the (saturated) prob-

ability distributions. One needs much higher dimensionality to separate genomes based

on binary analysis of k-mer occurrences.[27] As a result, only 9-mer binary analysis (49
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= 262,144 possible words) (Fig. 5.1 C) started to show a similar trend as in the full data

(Fig. 5.1 F). Saturation issues become much more serious when comparing the longer

genomes of more complex organisms, demanding that binary analyses utilize much higher

dimensionalities.[207] Full data analysis, which considers the k-mer libraries as probabil-

ity distributions with occurrences of each k-mer normalized to the total number of k-mer

counts (thereby normalizing by genome size), enables much shorter k-mers to be used than

that necessary with binary analysis. From 3-mer to 9-mer (Fig. 5.1, bottom row), bacte-

ria from the same genus appear well-grouped, exhibiting similar dissimilarities from the

control strain. The lower dimensionality afforded using shorter k-mer libraries, coupled

with the excellent discrimination by treating genomes as probability distributions enables

much faster and more direct comparisons with reduced computational demand. This be-

comes increasingly important as massive amounts of genomic data are rapidly generated

and compared.

5.4 Bacterial Phylogenetic Tree

Since bacteria with common evolutionary histories are expected to have higher genome

sequence similarity, the pairwise test statistics from PB-sQF can be used to build a phylo-

genetic tree.

5.4.1 Jaccard Index

To ensure the phylogenetic tree is built under the best PB-sQF performance, the clustering

abilities of different test conditions were evaluated by Jaccard Index.[208] First, a hierarchi-

cal clustering algorithm was applied based on PB-sQF test distances using 3-mers, 6-mers,

and 9-mers from 16 bins to 256 bins. Strains with paired-distances smaller than the thresh-

old were clustered. The union of the strains satisfying the distance cutoff was taken. Thus,

for a particular strain, the distances between this strain and all the other strains within the

cluster might not all be smaller than the threshold. To group this strain to a particular clus-
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ter, only one paired distance between this strain and a strain in the cluster had to be smaller

than the threshold. To evaluate the clustering performance, a Jaccard index was calculated

at different threshold values (Fig. 5.2).

As an external evaluation, the Jaccard index calculates the similarity between the hi-

erarchical clustering and the (external) standard clustering, the latter of which was taken

as bacteria clustered by their genus, as bacteria within the same genus are likely to share

genomic similarity. True positives (TP) are when both the standard and PB-sQF-based

clustering assign the two strains in the same cluster. False positives (FP) occur when the

standard assigns the two strains to different clusters but our clustering method assigns them

to the same cluster. False negatives (FN) occur when the standard assigns the two strains

at the same cluster but PB-sQF clustering assigns them to different clusters. The Jaccard

index utilizes the number of TP, FP, and FN occurrences and is defined as:

JaccardIndex =
TP

TP + FP + FN
(5.1)

Independent of k-mer length, better clustering performance is achieved when more bins

are used for both binary and full data (Fig. 5.2). Although k-mers longer than 9 bases are

needed for discrimination in binary data, binary performance was not as good as the 3-mer

and 6-mer analyses when full k-mer occurrence is used (Fig. 5.2 C, D and E). This results

from the possible unique k-mers growing as 4k, making 256 bins insufficient to capture

the signatures of the 9-mer data. Indeed, for both 3-mer and 6-mer full data analyses, the

performance did not significantly improve beyond 64 bins. A steadily improving Jaccard

index is, however, observed in 9-mer analyses with more bins applied. For 3-mer libraries,

the test performance becomes saturated at 64 bins, yielding identical results for 64, 128,

and 256 bins (not shown), as only 43 = 64 possible 3-mer sequences exist. Binary data

using 3-mers (Fig. 5.2 A to C) showed no clustering and a Jaccard index equal to zero,

while 9-mer binary analysis exhibited only limited grouping ability compared to the full
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Figure 5.2: Hierarchical clustering results. The Jaccard index for different cutoff thresh-
olds using (A) 3-mers, (B) 6-mers and (C) 9-mers. Independent of k-mer length, better
clustering performance is achieved when more bins are used.

data results

A higher Jaccard index indicates greater similarity of the two clustering methods, mean-

ing that it should be maximized at the best clustering conditions. The Jaccard Indices for

different k-mers and bins are shown in Figure 5.2. Among the tested conditions, 3-mer,

64 bins with a test statistics cutoff threshold 0.0071 gave the highest Jaccard index and,

therefore, the best clustering performance.

5.4.2 Phylogenic Tree

The pre-calculated 628x628 test statistics matrix of 3-mer 64 bins was loaded. To focus

on the genome sequence similarity between strains, only the 1st chromosome was included

for bacteria that have multiple chromosomes. The test statistics threshold was set at 0.0071

as it gives the best clustering result as shown in Subsection 5.4.1 and applied to include

only the strains that have pairwise distances smaller or equal to the threshold to ensure

good clustering performance. A total of 330 of strains were included, and the phylogenetic

tree was generated by the in-built MATLAB function seqlinkage using the average distance

method. The output was written into Newick format and loaded to iTOL (http://itol.

embl.de/) to generate the figures.
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Figure 5.3: Bacterial phylogenetic Tree. Pairwise test statistics from 3-mer, 64 bins were
used to build this phylogenetic tree. The red branch is the Francisella branch. The blue
branch is one of the Rhizobiales order branch. And the green branch is the Enterobacte-
riaceae family branch. The taxomony was from the NCBI database. The tree was built in
MATLAB and plotted in iTOL (http://itol.embl.de/).

Starting from the leaf nodes, bacteria from the same subspecies or strains, sharing

higher genome similarity, tend to join together to form a node before further joining with

bacteria from the same species (but different subspecies or strains). For example, Fran-

cisella tularensis has 2 subspecies: tularensis and holarctica. The 3 holarctica strains join

together before forming a new node with the tularensis strains. The Francisella tularensis
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branch is seen to connect with Francisella novicida U112 and form the Francisella-genus

branch (Fig. 5.3, red). This shows that PB-sQF not only groups bacteria by genus (Fig.

5.1) but also identifies bacteria at the species and subspecies level. Further toward the root,

bacteria sharing common higher taxonomic rank join together in a new node. For example,

(Fig. 5.3, blue) Rhizobium etli CFN 42 and Rhizobium leguminosarum bv. viciae 3841 first

merge into a genus-level node. Then, at larger distances, combine with Sinorhizobium med-

icae WSM419 to form the Rhizobiaceae family branch. This Rhizobiaceae family branch

further merges with the Nitrobacter-branch since they are both belong to the Rhizobiales

order. The same process can be observed for Salmonella, Escherichia, and Shiegella (Fig.

5.3, green). With bacteria first grouped together within their own strain/subspecies, species,

and genus, the 3 branches eventually merge since they are all from the Enterobacteriaceae

family. This shows that the different levels in the PB-sQF distance-based phylogenetic

tree reflect the taxonomic rank of the bacteria, and the evolutionary history can be directly

evaluated by whole genome PB-sQF

5.5 Bacterial Assembled Sequence Typing

The ability of PB-sQF to type unknown sequences to the correct library strains was evalu-

ated for a total of 197 assembled genome sequences downloaded from the National Center

for Biotechnology Information (NCBI) ftp site (ftp://ftp.ncbi.nlm.nih.gov/

genomes/archive/old_refseq/Bacteria/), covering 42 different genuses. While

none of the “unknown” sequences was an identical match to those in our library (no re-

peated accession numbers), each of the unknown sequences belongs to one of the 216 dif-

ferent genuses in the 628 library strains. Of the 197 unknown sequences (Appendix Table

D.2), 162 were of the same species (but different subspecies) as a genome in the library.

Using KAnalyze and PB-sQF, pairwise test statistics were calculated between each of

the k-merized 162 unknowns that have corresponding library species and all of the library

genomes. Unknowns were typed as being the same as the library species that yielded the
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Figure 5.4: Assembled sequence typing. Percent correct assignments for 162 unknowns
that have a corresponding library species. Percent correct of (A) genus assignments and
(B) species assignments.

smallest test statistics value. As with clustering, 3-mers gave the best typing performance

using the fewest bins, while both 6-mer and 9-mer analyses only improved at high bin

numbers (Fig. 5.4 A and B). The species-typing accuracy was ∼85% and the genus-typing

accuracy reached 97% under the conditions tested.

Since the test statistic calculated from PB-sQF is a statistical metric, the test value can

be directly compared regardless of which library strains were used. As a result, PB-sQF can

minimize false positive assignments by determining the confidence of typing and rejecting

low confidence assignments. The test statistics from correct and incorrect assignments were

sorted and, as shown in Figure 5.5 A and Appendix Figure D.1, the incorrect assignments

tended to have larger test statistics (more dissimilar) compared to the correct assignments.

To include most of the correct assignments while rejecting a reasonable fraction of in-

correct assignments, a test statistics threshold was set to include 95% of the correct assign-

ments. By only accepting assignments with test statistics lower than this 95% threshold,

the typing accuracy among the valid assignments increased from 85% to 92% for species-

typing (Fig. 5.5 C) and from 97% to nearly 100% for the genus-typing (Fig. 5.5 B). The

unassigned rates (percentage of strains having a test statistic exceeding the 95% threshold)

are shown in Figure 5.5 D.

Test statistics between the library and all 197 unknowns, including the 35 strains that do
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Figure 5.5: Assembled sequence typing with threshold. (A) Sorted test statistics (3-
mer, 64 bins) from assembled bacterial sequences. The x-axis is the index of the sorted
test statistics. The orange curve is the false assignments, and the blue curve is the correct
assignments. The black line is the threshold determined from the 95% test statistics of
the correct assignments. Percent correct assignments of those meeting the confidence level
in genus identification (i.e. after applying empirical threshold) of (B) genus assignments
and (C) species assignments, (D) Percent of unknowns that had test statistics exceeding the
empirical threshold.

not have a matching species in the library were also calculated (Fig. 5.6). As expected, the

species-typing accuracy was lower since there was no library species to which it could be

typed. The genus-typing accuracy, on the other hand, was still as high as 92% and increased

to nearly 100% after the test statistics threshold was applied. Note that the performance of

the 3-mer analysis saturates at 64 bins, enabling much faster calculations due to reduced

dimensionality (Fig. 5.6 C). Our results show that PB-sQF successfully screens out the low

confidence assignments and increases the typing accuracy.
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Figure 5.6: Assembled sequence typing All 197 strains. Percent correct assignments
for 197 unknowns. Percent correct of (A) genus assignments and (B) species assignments.
Percent correct after applied empirical threshold of (D) genus assignments and (E) species
assignments, (F) Percent unknowns that had test statistics exceeding the empirical thresh-
old, and are therefore classified as being “unassigned”. (C) Averaged calculation time for
binning and PB-sQF analysis for each unknown.

5.6 Bacterial Typing with Pooled Short Reads Data

Instead of completed sequences, the raw NGS data contains million of short reads that con-

tain part of the genetic information. To apply PB-sQF on NGS output, raw sequencing data

files were directly analyzed. 376 short reads accessions, covering 135 strains and 6 different

sequencing platforms with both paired-end and single-end reads, were downloaded from

the sequence read archive (http://www.ncbi.nlm.nih.gov/sra). The full list is

in Appendix Table D.3. The raw short reads data from each accession were k-merized,

and the k-mers from all reads were pooled together, regardless of the read direction. No

corrections to or de novo sequencing of the raw data files was performed. PB-sQF was

then applied, and the unknown short reads files were typed to the k-merized whole genome

species as the library member that gave the smallest test statistic (distance).

The typing accuracy appears to depend on instrument error rate. Illumina sequencers

have the smallest error rate (∼0.1%), making both the genus and species typing accuracy
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Figure 5.7: Pooled Sequence Typing for Illumina, LS454 and Ion Torrent (raw reads
data files without threshold). Percent correct genus assignments of (A) 3-mers, (B) 6-
mers, and (C) 9-mers. PB-sQF analyses of raw reads files compared to reconstructed whole
genome libraries. Percent correct species assignments using (D) 3-mers, (E) 6-mers, and
(F) 9-mers. The lower the error rate of a sequencer, the higher the typing accuracy. The
legend in (E) is the same as in the other panels.

better than either LS454 or Ion Torrent (error rates ∼1%) data. With 6-mers and 256

bins, the genus typing accuracy reached 81%, and species typing accuracy was 55% with

Illumina. Again, better accuracy was achieved with higher number of bins for both 6-mer

and 9-mer (Fig. 5.7 B and C) analyses. Note that for 3-mer analyses, the test performance

becomes saturated at 64 bins, yielding identical results for 64, 128, and 256 bins (not

shown), as only 43 = 64 possible 3-mer sequences exist.

As in the assembled sequence typing, an empirical threshold could be established by

comparing the test statistics between the incorrect and correct assignments. Since the num-

ber of data from the 6 sequencing platforms was unevenly distributed with 246 datasets

from Illumina, 84 from Roche LS454, 13 from Ion Torrent, 29 from PacBio, 3 from AB

Solid and 1 from Oxford Nanopore, only the thresholds of Illumina and Roche LS454 were

custom-determined with 95% and 90% thresholds respectively. An overall 95% threshold
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determined from all 376 datasets was applied to the rest of the sequencers (Appendix Fig

D.2 to D.4). By rejecting assignments with low confidence levels, typing accuracy consis-

tently increased across different sequencers (Fig. 5.8) compared to without thresholding

(Fig. 5.7). For example, with 6-mer, 256 bins, the genus-typing accuracy for Illumina

increased from 81% to 88% and the species typing accuracy increased from 55% to 61%

among the valid assignments (Fig. 5.7 and 5.8). Raw reads files from machines with higher

error rates were less confidently typed, resulting in higher unassigned rates and a greater

accuracy improvement when thresholds were applied. Indeed, compared to the data col-

lected from Illumina, which has a reported error rate of 0.1%, the genus-typing accuracy

increased upon thresholding from 64% to 84% and 54% to 75% for data collected from

LS454 and Ion Torrent, instruments with modest ( 1%) error rates, respectively (6-mer, 256

bins in Fig. 5.7 and 5.8).[209, 210] The typing accuracy for data collected by PacBio, AB

Solid and Oxford Nanopore, with the reported error rates are 16% (single pass), 0.06%

(double- or triple-encoding) and 38.2% respectively,[209–211] can be found in Appendix

Figure D.5. To address the accuracy properly, more short reads file from these 3 sequencers

were downloaded, and the full list can be found in Appendix Table D.4.

Since PB-sQF calculates the dissimilarity between every library member and each un-

known strain, instead of answering whether the unknown belongs to a certain strain, use-

ful information can be drawn from the “incorrect” assignments. Indeed, all eight of the

Shigella strains from the Illumina-generated data were typed as Escherichia. These as-

signments were classified as incorrect typing but Shigella species are sublineages of Es-

cherichia so they are indeed closely related to each other.[212] Also, three out of four Cit-

robacter were typed as Salmonella - two species that have been shown to share high genetic

similarity.[213] This demonstrates that PB-sQF can type the unknown to its most similar

strain even if the unknown has never been discovered before. The accuracy of PB-sQF can

potentially be improved by taking the 2nd and/or 3rd most similar library strains (or even

all the test results) into account. An unknown is more likely to belong to a certain genus if
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Figure 5.8: Pooled Sequence Typing for Illumina, LS454 and Ion Torrent data (thresh-
old applied). Percent correct genus assignments of (A) 3-mer, (B) 6-mer, and (C) 9-mer
full data analyses. PB-sQF analyses of raw reads files compared to reconstructed whole
genome libraries. Percent correct species assignments using (D) 3-mers, (E) 6-mers, and
(F) 9-mers. The lower the error rate of a sequencer, the higher the typing accuracy. Percent
of datasets that had test statistics exceeding the threshold for (G) 3-mer, (H) 6-mer, and (I)
9-mer.

the top five matches all point to the same genus than if only the closest match assigns it to

the genus. Also, the larger the difference between the test statistics of the 1st and 2nd most

similar strain, the higher the possibility that the 1st strain is the correct assignment. These

issues will guide library construction and further understanding of the relation between the

correct assignments and the test statistics values.
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5.7 MRSA outbreak analysis with PB-sQF

In outbreak analysis, it is crucial to distinguish similarities and relationships among pathogens

causing infections. As demonstrated by recent studies,[26, 214, 215] phylogenetic relation-

ships among outbreak and non-outbreak strains can be deduced by base-to-base compar-

isons of assembled genomes, but require several steps of data preconditioning and sub-

sequent analysis. In these studies, short reads were first mapped onto a reference strain

and then variants, particularly single nucleotide polymorphism (SNP), were called. For

both steps, filtering processes are needed to exclude the low score alignments and/or SNP

detections. MLST studies were used to help identify strains based on similarity to seven

housekeeping genes, but similarities in the rest of the genome may contain important infor-

mation as new virulent strains emerge.

To avoid any possible biases from multiple data filtering, genome reconstruction, SNP

detection, and MLST typing, PB-sQF kmer distance was used to analyze the published

outbreak data. Fifty-seven methicillin-resistant Staphylococcus aureus (MRSA) raw short

reads files that were processed and analyzed by Harris et al.[214] in a hospital-acquired

outbreak were downloaded from the sequence reads archive (Appendix Table D.5 Table).

Without any pre-processing, statistical distances were calculated between all k-merized

raw, pooled short reads data files and a phylogenetic tree was built directly from the pair-

wise distances between all MRSA strains (Fig. 5.9). Using the k-merized information from

the entire genomes, intergenome distances using k-merized raw reads files reveal no clear

inter-patient relation as reported by Harris et al. Instead of transmitting from one patient to

another, it was suspected that multiple infections resulted from an external source (the hos-

pital).[214] As shown in Figure 5.9, most MRSA isolates from patients (P1 to P26) group

separately from the isolates traced to the hospital personnel (green dots), and that the patient

MRSA sequences do tend to group together. In contrast to the published findings, using

the raw reads files suggests that P26, P19 and P21 may be linked to the hospital worker.
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Figure 5.9: Phylogenetic tree of MRSA ST2371 outbreak. P1 to P26 represents the
1st to 26th patients with MRSA ST2371 (the outbreak strain) infection. Different colors
represent different MRSA strains determined by MLST. All the data except the green dots,
which are MRSA colonies (ST2371) collected from a hospital health care personnel, were
sequenced from infected patients.
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Although the groupings differ somewhat from those identified by Harris, et al., our PB-sQF

approach with raw reads files enables fast screening by calculating the distances between

pooled short reads data without individual read mapping, assembling, or SNPs calling, As

with our bacterial genome clustering above, this interpretation would become even clearer

as the entire assembled bacterial genomes became available for distance analysis.

For the non-outbreak strains determined by MLST by Harris et al.,[214] a distinct

branch containing five ST22 and two ST772 did not appear to be related to the rest of

the strains, other than to the root. By constructing pair-distance-based phylogenetic trees,

PB-sQF can successfully exclude these seven isolates from the outbreak. By using the

entire genome information instead of seven MLST housekeeping genes, however, five out

of twelve “non-outbreak” isolate, have a closer relation with the outbreak strain. Because

PB-sQF whole genome analyses examine regions both within and outside those in MLST

analysis in an unbiased fashion, additional mutations and similarities giving rise to infec-

tivity may be identified as being crucial to understanding the outbreak transmission path

and guide effective treatment. This blind approach may have advantages if regions outside

the pre-identified sequence areas are important in determining phenotype.

5.8 Alternative PB-sQF Modifications for Genome Sequence Analysis

In the first step of genome sequence analysis, the k-merized string data made from A, C,

G, and T were first represented by integer values 1, 2, 3, and 4, respectively. These k-

dimensional coordinates were then adaptively binned, dimensions expanded, and centroids

and weights were calculated from the binning patterns. Since the binning procedure is

performed prior to dimension expansion, A-T (1-4) rich dimensions, however, are prone to

be divided first (larger variance). To investigate whether this significantly changes PB-sQF

test results, the pooled short reads data were typed using multiple different permutations

of the integer values assigned to A, C, G, and T, and with dimension expansion prior to

binning.
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Figure 5.10: Pooled sequence typing for Illumina, LS454 and Ion Torrent (raw reads
data files without threshold) with different digitized schemes. Percent correct genus
assignments of 3-mers using (A) A-scheme, (B) G-scheme, (C) C-scheme, and (D) T-
scheme. Percent correct species assignments of 3-mer using (E) A-scheme, (F) G-scheme
(G) C-scheme and (H) T-scheme.

5.8.1 Different Digitization Schemes

To further gauge whether the k-dimensional binning process was influenced by the integer

values assigned to A, C, G, and T, different numbers than used in the original scheme:

1, 2, 3, and 4 were investigated. The first is the A-scheme, which is the reverse order of

the original scheme: A→ 4, C→ 3, G→ 2, and T→ 1, with A being the highest number.

Reordering changes the absolute number of each nucleotide but the distance between each

nucleotide remains the same. With this reverse order, all other permutations were tested.

This includes the G-scheme, A→ 2, C→ 1, G→ 4, and T→ 3, the C-scheme: A→ 1,

C→ 4, G→ 3, and T→ 2; and the T-scheme: A→ 3, C→ 2, G→ 1, and T→ 4.

When performing PB-sQF on the pooled short reads data with A-scheme using 3-mer,

the test results (Fig. 5.10 A and E) remain the same as the results calculated from the

original-scheme (Fig. 5.7 A and D). This is as expected since in this scheme, the relative

distance between each nucleotide stays the same. Also, as observed in original-scheme, the

test results saturated at 64 bins with 128 and 256 bins having the same results as 64 bins.
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When using the G-scheme, the relative distance between C and G becomes 3 instead of 1.

As a result, any G-C rich dimension would be divided first. However, as shown in Figure

5.10 B and F, the test results were exactly the same as the A-scheme or the original-scheme.

When using the C-scheme and T-scheme, the test results were slightly different from the

other schemes for 16 and 32 bins. This is probably because in these 2 schemes, the largest

variance occurs with A-C or G-T rich dimension instead of A-T or C-G as before. The sat-

urated accuracies (from 64 to 256 bins), however, were identical, regardless of digitization

scheme used. This demonstrates that by always diving the dimension with largest variance,

PB-sQF adjusts for the bias in numbering the nucleotides and evenly divides the data into

bins.

5.8.2 Early Dimension Expansion

To remove any bias in the digitization process, the same dimension expansion was per-

formed as described in Chapter 2.4.1 but before the binning process. As a result, each

nucleotide at each new position is represented by a vector of length 1 in each of the 4k

independent (expanded) dimensions, instead of having the value of 1-4 in the original k

dimensions. More bins are needed to analyze the higher dimension binning data. Different

from Figures 5.7 A and D, the pre-bin dimension expanded correct typing percentages were

much lower when fewer bins were used (Fig. 5.11). The accuracy steadily improved as the

number of bins increased. The typing accuracy, instead of saturating at 64 bins, maxed

out at 512 bins. This maximum accuracy is the same as the saturation accuracies for the

original-scheme data (Figs 5.7 A and D). This shows that, although expanding the dimen-

sion can correctly account for the independent occurrence of and distance corresponding to

each nucleotide, this approach is much less efficient as much more extensive calculations

are needed due to the much larger number of bins. Upon sufficiently high number of bins,

the 4k-dimensional binning and distance accuracy limit is the same as the much lower k-

dimensional nucleotide binning methods. As a result, the k-dimensional nucleotide binning
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Figure 5.11: Pooled sequence typing for raw reads data files without threshold with
early dimension expansion. (A) Percent correct genus assignments of 3-mers. (B) Percent
correct species assignments of 3-mer.

is preferred.

Pre-binning dimension expansion for 3-mer data resulted in saturation requiring 512

bins, instead of 64 bins when dimension expansion was performed after binning. When

performing dimension expansion after binning (i.e. A-T given integer values 1-4), 43 =

(22)3 = 64 bins are required to account for all possible unique k-mers. In pre-binning

dimension expansion, each mer in the original dimension is expanded into four possible

positions. For each position, there are two possible outcomes, 0 or 1. However, since it

is either A=(1,0,0,0), C=(0,1,0,0), G=(0,0,1,0) or T=(0,0,0,1), these four expanded posi-

tions are not independent but must consist of three 0 and one 1. As a result, knowing the

outcomes of any of the 3 expanded positions guarantees to deduce the 4th. The total num-

ber of possible outcomes is thus 23 for each mer. Therefore, even though only four actual

possibilities exist at each position, the dimension expansion prior to binning, increases the

total number of bins needed. For 3-mer data, this results in (23)3 = 512 total possibilities,

thereby requiring 512 bins. While the saturated accuracies remain unchanged, many more

bins are required ((23)3 = 512 bins vs. 43 = (22)3 = 64 bins), resulting in longer calcu-

lation time. Moreover, when using higher k-mer, 9-mer for example, the number of bins

will become unmanageable ((23)9 = 227 bins vs. (22)9 = 218 bins). Because the outcomes

are indistinguishable, we analyze the data by assigning an integer value to each nucleotide
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Figure 5.12: Demonstration of cycle-dimension PB-sQF Flow cytometry data binned
with (A) largest variance dimension method or (B) cycle-dimension method. the dimension
divided was cycled between the FSC and SSC domains. Percent correct of 3-mers pooled-
short reads data of (C) genus assignments and (D) species assignments.

followed by dimension expansion for distance calculations.

5.8.3 Cycle-Dimension PB-sQF

Instead of dividing the data set at the largest variance dimension, one can partition the data

set into each dimension by cycling through all the dimensions recursively.[216] That is:

1st → 2nd → 3rd → ... → 1st → ..., until the assigned number of bins is reached.

All dimensions are thus equally divided. The binnning patterns of the largest variance di-

mension method and the cycle-dimension method were compared using the flow cytometry

data (Fig. 5.12 A and B). It is s clear to see that the binning patterns resemble each other

with the centroids located at the data area.

The cycle-dimension PB-sQF was applied to the pooled-short reads data from Illumina,

LS454 and Ion Torrent. All the assignments between the two binning methods, except the
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incorrect → correct assignments, stay the same as correct or incorrect assignments. This

shows that only a small portion of data were behaved differently under the two binning

methods. The accuracies, when a fewer number of bins were used, are in general higher

than the original-binning-method (Fig. 5.12 C and D). This is most likely because, with

a fewer number of bins, the original-binning-method indeed bias the 1-4 difference than

others. As a result, without enough of bins, the centroids are not a good representative of

the original data and thus poorer test performance. With cycle-dimension, since it evenly

rotates through all the dimensions regardless of the variance, it better represents the data set

with fewer bins. The test results, however, also saturated at 64 bins and above with 3-mer

data and the saturation accuracies are the same as the original binning-method (Fig. 5.7 A

and D).

The higher accuracies that we have observed at fewer number of bins with cycle-

dimension are not expected to be seen in the flow cytometry data. This is because the

assignments that are incorrect in the original-binning-method but correct in the cycle-

dimension PB-sQF are having a different first division dimension. The first division in

the original-binning-method deviated from the library strain because of the errors in the

reads influence the variance in each dimension. Since there are only four possible values in

each dimension, the variance of each dimension is very similar to each other. Even a single

data point changes (ex. from (1,3,3) to (3,3,1)) can change the largest variance dimension

and thus change the binning pattern. The cytometry data, however, have much more value

available, the highest variance dimension is less effected by single data point changes.

5.9 Conclusions

With the potential to apply to different genome analysis problems through its generality,

PB-sQF readily enables direct comparisons among whole genomes to build true linear

statistical distances separating them, without having to rely on comparing much shorter,

limited information ribosomal sequences. This chapter has shown the potential of PB-sQF
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for typing unknown sequences, and it may find application in outbreak analysis,[23, 25,

217] for example, by tracing pathogen origin and evolution. The independence of genome

size, the high correlation between test statistics and correct assignments, the general ap-

proach toward different strains, the ease to expand libraries, the full use of whole-genomic

information, and the construction of intrinsic confidence levels suggests that PB-sQF can

be used to tackle a wide array of genome analysis challenges.
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CHAPTER 6

ERROR TOLERANT SHORT READS MAPPING

6.1 Introduction

In Chapter 5, PB-sQF has been applied to bacterial genome sequence typing with both as-

sembled sequences and pooled raw short reads data. Instead of analyzing whole genome

sequences, short reads mapping, which assigns each read to a reference genome, has many

important applications in the field of genomic from typing the unknown reads data to in-

vestigating expression levels. [35, 218]

In this Chapter, read-by-read typing was demonstrated with or without read errors.

Then, the mapping accuracy was investigated. A 3-species mixed genome reads data was

studied as a mini-metagenomic system. In the end, error-tolerant PB-sQF short reads map-

ping was compared with other methods.

6.2 Short Reads Mapping Overview

Short reads mapping was performed as described in Chapter 2.4. In brief, a read library is

built by chopping the randomly selected library sequence into ReadLength-bp pieces. To

increase the number of reads in the library and ensure a complete library, frame shifts, with

a length depending on the given read length, are applied. Simulated reads were generated

from the selected library sequence, which is called the “mother sequence”. To perform

search space reduction, the test statistics between the selected 50 control sequences and

all other library reads are pre-calculated and saved. The pre-defined test statistics range,

which is the TSpreset described in Chapter 2 to reduce the search space, was set at 0.05. As a

result, for each test statistics calculation between the unknown reads and the control reads,

only the library reads that have library-control distances within 0.05 from the unknown-
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Figure 6.1: Read-by-read typing results with different number of reads. Percent reads
mapped to each library when (A) 100, (B) 50, or (C) 25 reads were mapped.

control distance were kept. With 200-bp reads mapped to a bacterial genome which has

∼ 2Mbps, the library reads size was reduced from ∼ 2× 105 (104 per frame with 20 frame

shift) to ∼ 103 of library reads after 50 control iterations. The test statistics between the

unknown reads and the 103 library reads were then calculated. The simulated reads are

each mapped to the library read that gives the smallest test statistic value. Details of reads

library construction, search space reduction, and simulated reads generation can be found

in Chapter 2.4.

6.3 Read-by-Read typing

Instead of k-merizing and pre-binning the whole complete library sequence as in bacteria

typing described in Chapter 5, bacterial genome typing can be done with read-by-read

mapping. To demonstrate short reads typing, test statistics were calculated between all

the randomly generated reads from the unknown bacterium and the 628 pre-binned library

strains with no frame shift. Since the goal is to type the bacteria instead of correctly aligning

all the short reads, the basic reads library without frame shift is applied to reduce calculation

time. For each read, the library read that gave the smallest test statistics result was assigned

as the mother sequence, that is the library sequence from which the simulated reads were

generated from. Due to short reads sequence similarity and lack of frame shift, not every

individual read could be assigned back to the correct mother sequence, even when the
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Figure 6.2: Reads-by-reads typing results for S. aureus strain MRSA252. Due to
genome sequence similarity, several reads were mapped to different S. aureus strains.

simulated reads were generated without error. However, noise (incorrect assignments) was

“randomly” distributed across all the 627 incorrect library strains. As a result, within each

unknown, the most common mother strain assignment was then taken as the most likely true

mother strain. For example, Gramella forsetii was randomly chosen as the mother strain

and 100, 50, and 25 single-end reads of 200-bp long were randomly generated, respectively,

from the complete sequence. Independent of the number of reads generated, ∼18% of the

reads were correctly assigned as Gramella forsetti. Because mis-assignments were spread

over much of the remaining library members (Figure 6.1 A to C), 25 short reads were more

than sufficient to identify the correct mother strain out of all 628 possible candidates. Since

the calculation time is linearly proportional to the number of reads, typing the unknown

strain with only 25 reads instead of 100 reads reduces calculation time four fold. Real short

reads data could have more than a million reads in a single run. Being able to identify the

unknown strain with only 25 reads will greatly reduce the calculation time.

Because species within the 628 strains share genetic similarity, incorrect library assign-

ments were not actually randomly distributed but were concentrated on species of the same

genus. When using only ten reads, for example, this genetic similarity occasionally caused

difficulty in species identification (Fig. 6.2). For example, when the randomly chosen “un-

known” bacterium was the strain 512, Staphylococcus aureus subsp. aureus MRSA252,

each of three different Staphylococcus aureus genomes were all assigned as the correct

sequence for two out of the ten reads. To secure the correct library identification, a larger
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Table 6.1: Read-by-read typing with different mother sequences Number of candidates

Mother Strain # of Candidates Incorrect Assignment
Staphylococcus aureus 3 —

Xanthomonas axonopodis 1 —
Streptococcus pyogenes 9 —

AYWB phytoplasma 1 —
Burkholderia sp. 2 —

Salinispora tropica 9 —
Chlamydophila pneumonia JI138 1 C. pneumonia TW183

library with finer frame shifts could be used, or more unknown reads should be processed

so that the consensus library assignment would better stand out from the noise. Either op-

tion, however, would significantly increase calculation time. To solve this problem, finer

frame shifts were used but only on the strains that were identified most often within Pois-

son counting noise. In this particular case, finer frame shifts were used just with the three

different Straphylococcus aureus strains. The “true” library sequence was determined to be

the genome with the most assignments among the selected candidate genomes. As shown

in Table 6.1, out of seven runs, four randomly selected “unknown” strains also required

this secondary selection to be applied. The only mis-assigned run: the reads generated

from Chlamydophila pneumoniae strain J138 was assigned to C. pneumonia strain TW183,

which belongs to the same species.

6.4 Short Reads Mapping with Read Errors

Single nucleotide polymorphisms (SNP) and insertions/deletions (indels) are common through-

out bacterial genomes. Whether from genetic variations or instrumental errors, it is highly

possible that the unknown reads would contain one or more SNPs and/or indels. Cur-

rent short reads mappers, however, are built on algorithms for exact matches. To account

for sequence mismatches, modifications are applied. For early hash table-based methods,

like MAQ[29] and ZOOM[107], specially designed seed templates were used to ensure

140



that the mapping locations with limiting numbers of mismatches are found. For early

BWT-based methods like Bowtie[39, 109] and BWA[40], different mismatch scenarios of

a read were examined to find the mapping location(s) on the reference sequence. To map

longer reads with more mismatches, most recent reads mappers, including Bowtie2,[109]

BWA-MEM,[111] MOSAIK,[37] CUSHAW3,[219] GASSST,[220] and GEM,[221] take

on the seed-and-extension approach regardless of their exact matching method (hash table

or BWT). With the seed-and-extension approach, it is assumed that for most reads, short

exact matches (seeds) can be found in the reference sequence. From these anchored seeds,

dynamic programming such as the Smith-Waterman algorithm[108] is then used to extend

the seeds with different constraints and filtering to prune the search space.

Instead of mapping the short read base-by-base, PB-sQF transforms the sequence in-

formation into signatures, allowing comparisons of statistical distances between probability

distributions. Using the 200-bp reads as an example, since there are (200 - k + 1) k-mer

counts out of a 200-bp read, for one SNP or one indel, it only alters k of the (200 k +

1) counts. As a result, PB-sQF is an innately mismatch (error) tolerant method, as only

a very small percentage of k-mers are affected, leading to only minor variances in to the

signature-based, adaptively binned library.

6.4.1 PB-sQF Mapping Accuracy with SNPs and Indels

To test the reliability of PB-sQF mapping in the presence of read errors, short reads with

two SNPs or with both SNPs and indels were generated. The separation between any

two SNPs or between one SNP and one indel was constrained to be fewer than 21 bases.

This constraint of having two errors within 21 bases was chosen to mimic methods like

MAQ[29] and Bowtie[39, 109], which only perform short reads mapping at the high-quality

end of a read (28-mer). All 50 simulated short reads were taken from one of the Streptococ-

cus pneumoniae strain. As expected, the performance was poor for 3-mer with binary data.

However, with full counts data and PB-sQF distances, up to 98% mapping accuracy for one
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Figure 6.3: Mapping accuracy for short reads with assigned errors. Top Row: Binary
analysis of 200-mer reads with (A) 1 SNP, (B) 2 SNPs, (C) 1 SNP with 1 insertion, and (D)
1 SNP and 2 deletions. Bottom Row: Full data of (E) 1 SNP, (F) 2 SNPs, (G) 1 SNP with 1
insertion, and (H) 1 SNP and 2 deletions. Since the read is 200-mer long, 1, 2, 4, 8, and 20
library frames represent 200-, 100-, 50-, 25-, and 10-mer frame shift of the reads library.

SNP and almost 90% accuracy is achieved for two SNPs or indels. Also, as indicated by

the Jaccard analysis in Figure 5.2, 9-mer analysis yields poorer performance than do 3-mer

and 6-mer libraries for analyzing the full data. For most cases, the smaller the frame shift

(the larger the library), the better the mapping accuracy. Overall, with full data, mapping

accuracy can reach 90% when enough library frames are used (Fig. 6.3). This shows that

PB-sQF is indeed robust with short reads mapping with closely placed errors.

6.4.2 Read-by-Read Typing with Read Errors

To assess bacterial typing robustness in the presence of SNPs and indels, seven strains were

randomly selected as mother sequences. Ten 200-bp reads, each incorporating a single

randomly placed SNP were generated for each selected strain. Library candidates were

searched without frame shift. After the library candidates had narrowed down from 628

total strains, frame shifts of 10 (20 times as many libraries, each consisting of 200-mer

reads, with starting points shifted by ten bases) were used to select the mother strain out

of the library candidates and to map the reads to the mother strains. As shown in Table
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Table 6.2: PB-sQF typing with read errors

Library Strain # of Candidates % Mapping Accuracy
Staphylococcus aureus 9 100

Shigella flexneri 2 100
Treponema denticola 1 90

Paracoccus denitrificans 9 90
Streptococcus sanguinis 1 100

Vibrio vulnificus 9 100
Staphylococcus aureus 9 90

6.2, all the mother strains were accurately assigned with a 90 to 100% accuracy in reads

mapping. This shows that PB-sQF can perform read-by-read typing even when reads have

mismatch(es) from the library strain.

6.5 Valid assignments and Metagenomic Application

To improve the mapping accuracy, confidence levels can be established to reject the un-

certain assignments as in the bacterial typing in Chapter 5. The mapping accuracy among

the valid assignments can thereby increase. The 0% to 99% confidence levels are the left-

tailed test of the test statistics distributions between the library reads and the neighboring

reads within 30-mer frame shifts as described in Chapter 2. For each mapped query read, a

confidence level can be assigned by comparing the test statistics between query reads and

assigned library reads to the pre-calculated test statistic at each confidence level.

When building the confidence levels and generating simulated query reads, read errors

were incorporated. Instead of fixing the number and types of errors as in Section 6.2, a

more realistic way to introduce errors in reads is by setting an error rate for each mer. In

this section, errors, including a 2% uniform error rate, a 0.09% SNP rate, and a 0.01% indel

rate for each mer as implemented in [40], was introduced to the simulated reads. The indel

length was determined by the Poisson distribution with lambda equals 5.
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Figure 6.4: Mapping probability and mapping accuracy. The blue curve is the prob-
ability that the unknown reads originate from the assigned region and the axis is on the
left: probability in the region. The green stem plot, using the axis at the right, indicates the
assignments for the unknown reads are correct (0) or wrong (1).

6.5.1 Mapping Performance with Simulated Reads Errors

Fifty single-end, 200-mer long, simulated short reads with errors from 10 different bacteria

randomly selected from the 628 library strains were generated and mapped to the library

genomes. For each read, the top ten best-matched library reads were kept and the left-

tailed probabilities (1 - confidence level), P left, were calculated. In these ten best-matched

library reads, regions were constructed with library reads that were separated by fewer than

100 bases. The probability that an unknown read originates from a region is calculated as

one minus the product of the left-tailed probabilities for all the library reads in the region,

1 −
∏n

i=1 P
left
i , where n is the number of library reads in a region. As a result, the more

library reads that belong to the same region and the smaller the left-tailed percentage, the

higher the probability that the unknown read was from the region. For reads that have

multiple possible mapping regions, only the largest mapping probability region was con-

sidered. As shown in Figure 6.4, the accuracies of short reads assignments are related to the

calculated probability with the wrong assignments mainly occurring with low-confidence

assignments.

The mapping accuracies of these ten simulations are shown in Table 6.3. The correct
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Table 6.3: Mapping Performance

Library Strain % Correct % Assigned % Valid Correct
Mycoplasma genitalium strain G37 94 88 97.8

Pectobacterium atrosepticum strain SCRI1043 78 70 100
Bartonella henselae strain Houston-1 94 88 97.7

Pelobacter propionicus strain DSM 2379 86 78 100
Helicobacter pylori strain J99 92 82 100

Bacillus licheniformis strain ATCC 14580 90 78 100
Burkholderia sp. strain 383 chromosome 2 72 80 85
Flavobacterium johnsoniae strain UW101 90 88 100
Prochlorococcus marinus strain NATL2A 96 90 100

Propionibacterium acnes strain KPA171202 88 80 100

mapping percentages ranged from 72% to 96%. To improve the mapping accuracy, a prob-

ability threshold was set at 70%. By only accepting assignments with a probability larger

than 70%, the mapping accuracies among mapped reads, which were around 80% of the

total reads, are close to 100% for most strains. This shows that the low probability assign-

ments are indeed correlated with the wrong assignments and can be excluded efficiently

with the probability threshold.

6.5.2 Metagenomic Read-by-Read Mapping

The PB-sQF short reads mapping scheme was modified to perform metagenomic short

reads mapping. In the metagenomic reads file, each read could come from different species.

To correctly map each read, one has to identify the species for each read first. To test the

ability of PB-sQF to process metagenomic data, a mini metagenomic data were simulated.

Total of one hundred 200-bp long short reads were generated from the assembled genomes

of Acaryochloris marina strain MBIC11017, Acholeplasma laidlawii strain PG-8A, and

Acidiphilium cellulolyticus strain 11B.

To apply the search space reduction, the test statistics between the control library reads

and all the library reads from all three strains were calculated and saved in advance. The

145



test statistics between query reads and control library reads were calculated. For each

query read, the number of library reads candidates was reduced as every test statistic was

calculated. The final library reads candidates, comprised of reads from all three library

strains. Each query read was then assigned to the library strain with the highest assignment

percentage, which is the number of candidates from the specific strain for each query read

divided by the total number of library reads for that library strain. Once the library strain

was decided for each read, the library reads candidates that were from other library strains

were discarded. The rest of the procedure is the same as previously described. The test

statistics between the query read and all of the library reads candidates were calculated.

The top ten best-matched library reads were kept and grouped into regions. The left-tailed

probability of query reads originating from each region was calculated, and the query read

was assigned to the region with the largest probability.

Out of the 100 error-free short reads, PB-sQF correctly typed 94 of them back to the

correct library strain, and 91 out of 100 reads were mapped to the correct library reads.

Since it was impossible for the six wrongly typed reads to be mapped correctly, more ac-

curately, only 3 out of the 94 correctly typed reads were mapped incorrectly. The mapping

accuracy and probability are shown in Figure 6.5 A. There was a clear correlation between

the left-tailed probability and mapping accuracy. Once again, by only accepting mapping

with the probability larger than 70%, the mapping accuracy was increased to 96% among

the valid reads mapping.

When errors were applied, the typing accuracy remained similar with 97 out of 100

being typed to the correct strains. Short reads mapping, on the other hand, was much more

uncertain as shown in Figure 6.5 B. With errors, the mapping accuracy is 83% and increases

to 87% when the low confidence assignments are rejected. These results demonstrate the

potential of PB-sQF on short reads mapping in metagenomic data. To map the real meta-

genmoic data, however, the pre-calculated test statistics between the control reads and all

library reads will need to be stored separately or a more efficient memory management will

146



Figure 6.5: Metagenomic short reads mapping Mapping results of (A) reads without
error, (B) reads with a 2% uniform error, a 0.09% SNP rate, and a 0.01% indel rate. The
blue curve is the probability that the query read originated from the assigned region and the
axis is on the left. The green stem plot, using the axis at the right, indicates the assignments
for the particular query read is correct (0) or wrong (1).

need to be applied.

6.6 Error-tolerant Mapping and Existing Methods

Since nearest neighbor (NN) is also an Euclidean distance based similarity test, the short

reads mapping procedure developed for PB-sQF can also be applied with NN. Although NN

distance has been used in comparing 16S RNA sequences,[27, 101] NN has not yet been

used on short reads mapping. In this section, simulated reads with different error rates were

generated, and short reads mapping accuracies were compared. Different reads-mapping

methods including BWA[40, 110], Bowtie2[39, 109] and SOAP2[112] were tested along

with PB-sQF and Nearest Neighbor (NN).

Different from mer-based mapping, PB-sQF and NN are read-based mapping. As a
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Figure 6.6: Reads errors and reads-mapping accuracies. (A) No error applied. (B) 1%
uniform error rate and 2% indel rate. The indel length was determined by the geometric
distribution with probability set as 0.3. (C) Similar as (B), but the indel length was fixed at
16 bps long. (D) Similar as (B), but the uniform error rate was set as 13%. Bowtie analysis
was performed with Bowtie2. LV: standard PB-sQF divided each dimension at the Largest
Variance. CD: modified PB-sQF where the divided dimension was determined by Cycle
Dimension.

result, the mapping resolution is determined by the frame shift applied in the reads library.

When the library reads were constructed with 10-mer frame shifts, the mapping results only

possess number follows “10*n frame shift”, where n is a integer number. Also, since both

PB-sQF and NN are distance-based, all the neighbor library reads, which are similar to the

correct match, will also have low (dissimilarity-based) test statistics. To fairly compare the

mapping performance, instead of only considering the exact match of the assigned index

and the leftmost index of the query reads, the accuracies were calculated based on frame

shift. As a result, the mapping accuracy is determined as the percentage of reads that are

assigned within 10, 20, 30 40 and 50-bases from the reads origins.

When no error was applied on the 104 paired-end, 200-bp long simulated reads gen-
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erated from Syntrophomonas wolfei subsp. wolfei str. Goettingen, all methods show very

good reads-mapping accuracies (Fig. 6.6 A). For PB-sQF and NN, the paired short reads

were chopped into 3-mers, and in PB-sQF, 16 bins were used. To improve the mapping

accuracy, a modification had been made on PB-sQF. Up until now, when dividing data into

bins, “N” data points that lay on the mean (the dividing line) were randomly assigned to

each bin to achieve an approximately equal number of data points per bin. Here, to reduce

the variation originating from the random process and increase the mapping accuracy, the

first “N” data points were assigned to one bin and the rest to another. Although the ac-

curacy has improved, PB-sQF using the largest-variance (LV) approach (dividing each bin

at the largest variance dimension) was lower especially when “within 10-bases (or frame

shift)” mapping accuracy. The mapping accuracy was eventually more than 98% when the

within 50-mer apart assignments were considered. The cycle-dimension version of PB-

sQF, which divides the bin by cycling through all the dimensions as described in Chapter

5, increased the accuracy from 94.3% to 98.1% for the 10-mer-apart assignments. The

accuracy improvement has also been observed in the pooled short reads data typing where

the cycle-dimension PB-sQF had better accuracy when using 3-mer and 16 bins. The im-

provement most likely comes from the less biased binning process.

With 1% of uniform error and 2% indel rates and the geometric probability set at 0.3,

the mapping accuracy of SOAP2[112] (with the default setting) quickly dropped to ∼1.2%

(Fig. 6.6 B). Since the 0.3 geometric probability gives an average of 3-mer long indels, the

SOAP2 typing accuracy was tested by relaxing the mapping criteria to accept 20-mer long

gap and 50 mismatches; however, the mapping accuracy was similar (1.4%) to the default

setting (data not shown). To test the performance of each method with longer indel gaps,

the reads error rates were set the same but the indel length was fixed at 16-bp long, and the

results are in Figure 6.6 C. BWA-MEM[111] and NN both had the best mapping accuracies

followed by cycle-dimension PB-sQF. Again, SOAP2[112] had poor performance. Along

with BWA-MEM[111], different versions of BWA including BWA[40] and BWA-ST[110]

149



were also tested, but both results were far from ideal. With these errors, the mapping

accuracy for Bowtie2 also dropped below 30%. Lastly, the mapping performance of BWA-

MEM, NN, and cycle-dimension PB-sQF at higher uniform error rate (13%) was tested

with the indel rate stayed at 2% and 0.3 of geometric probability. The accuracies of all

three methods dropped significantly, but the trend stayed the same: BWA-MEM had the

best performance with NN slightly behind, and cycle-dimension PB-sQF followed.

6.7 Conclusions

Different from the assembled genome or pooled short read typing, PB-sQF can perform

read-by-read typing through short reads mapping. The mapping accuracy can be improved

by only accepting the valid assignments which have test statistics values lower than the

threshold. Although the read-by-read calculation time increases linearly with the number

of iterations, it can be significantly improved with pre-calculated control reads and thus

opens the door for using PB-sQF in metagenomic short reads mapping.

To type the unknowns in a real metagenomic data, however, a better memory manage-

ment is needed. This is because the size of the matrix of the pre-calculated test statistics

increases when the number of library sequence increases. One possible solution is per-

forming several levels of library candidates search where the densities of library reads are

different at each level. The first level search is the crude search with the lowest density

of library reads. With the crude search, not all the library reads need to be called at once.

The library reads can be narrowed down as in the regular search space reduction. After the

search space is reduced from the results of the first level search, only a subset of the second

level library reads that are close to the selected first level library reads are called. With

levels library reads search, some library reads will never have to be called. This greatly

reduces the memory requirement. The accuracy, however, will decrease due to the missing

library reads in low library reads density levels.

Although PB-sQF is great for handling complex and high dimensionality data, when
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analyzing the genome sequence similarity, the similar method, NN, has a better mapping

accuracy. It is because when analyzing the k-mer counts frequency, 3-mer and 6-mer are

sufficient to distinguish one sequence from another. With only 64 or 4096 unique k-mers,

there is no need for data compression while the optimized accuracy is reached when all

k-mer are used, as in the NN case. With high error tolerance and assigning true distance

between query and reference sequence, NN is a good candidate for copy number variations

detection where an error-tolerant, multiple-mapping short reads mapping method is needed.

I will discuss more about NN and copy number variation in the next chapter.
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CHAPTER 7

COPY NUMBER VARIATIONS DETECTION

It has been shown in Chapter 6 that NN can perform error tolerant short reads mapping.

Different analyses can be built on this short reads mapping such as genomic structural vari-

ation, which is the differences between individuals’ chromosomes. One important struc-

tural variance is copy number variations (CNVs), which are related to different diseases

such as HIV,[117] obesity,[118] cancer,[119] autism,[120] and Parkinson’s disease.[121]

It has also been reported that the copy numbers of resistant-related genes have increased

in multidrug-resistant bacteria.[124] In these studies, a reference genome of the unknown

sequence (the reads donor, or the query sequence) are usually known, but one is interested

in differences in the sequenced genome from the reference genome. To study CNVs, all

the short reads are first mapped to the reference genome and the differences between the

reads and reference can then be studied. Short reads mapping is thus an important first step

in studying genome sequence variations.

One of the major approaches in detecting CNVs is through read depth analysis.[41,

43, 222] Read depth is the average number of times that a given nucleotide is sampled in

the raw short reads sequences. Assuming reads were generated evenly across the query

genome, the read depth would be constant throughout the whole sequence. However, if a

particular gene has multiple copies in the query genome and only one copy in the reference,

the reads would appear to have a higher read depth when mapped back to the reference

genome. To build the correct read depth trajectory, it is important that the short reads

mapping algorithm can account for multi-reads, which are reads that can be mapped to

multiple reference locations.[43, 47, 223–225]

Since most of the short reads aligners were not developed for mapping multiplicity, the

subsequent CNV detectors are built to analyze read depth from uniquely mapped reads.
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Figure 7.1: Mappability and read depth. In this example, the query sequence resembles
the reference sequence except for small variation in gene A and A’. As a result, no CNV
exists in this example. Reads-2, 3, 7, and 8 can be mapped to multiple locations. If the
multiple mapped reads are discarded, false deletions are detected (top right). If these reads
are randomly mapped to one location, one of the possible scenarios is that false duplica-
tion(s) and deletion(s) might be detected (middle right). When assigning these reads to all
possible mapping locations, the copy numbers in the query sequence are obtained (bottom
right). But without knowing the copy number of the reference sequence, gene A and A’
might not be true CNVs.

Repetitive DNA, however, is common across all three kingdoms of life. Repeated regions

comprised ∼50% of human genomes[226] and it has been found that in bacteria Orientia

tsutsugamushi ∼40% of the genome are repeated regions.[227] When programs encounter

multiple possible locations, reads aligners may (1) discard those reads or (2) randomly map

them to one of the locations. For methods that discard all multi-reads, information about

those repeated regions are lost (Fig. 7.1, upper right). False deletions might be detected
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or important biological variants might be missed.[47, 228] Randomly choosing a mapping

location, although have a better chance to recover the true read depth, might give false

duplication or deletions (Fig. 7.1, middle right). As a result, methods like this tend to have

a higher false CNV discovery rate.[42]

mrFast, on the other hand, was developed to map short reads to multiple positions.[28]

By assigning read depth of one to all the mapping positions, the absolute copy numbers

in the query sequence can be obtained (Fig. 7.1, bottom right). However, lacking the

knowledge of the copy numbers in the reference sequence, true CNV regions can not be

defined.

The advantage of distance-based genome sequence analysis is that mapping multiplicity

can be easily handled. Instead of reporting the number of mismatches or gaps, NN reports

the distances between the query read and library reads. As a result, multiple mapping lo-

cations of each query read would be those library reads that give confident test statistics.

In this Chapter, the short reads mapping performance with different reads conditions are

studied for NN and other aligners. A CNV detector that can directly report true CNV re-

gions and specialize in mapping multiplicity, copy number variation detection for mapping

multiplicity (CNV-MM), is developed and tested with both simulated data and real short

reads data.

7.1 Reviews of Short Reads Aligners

There are several different short reads aligners. Current reads aligners can be divided into

two categories based on the indexing method: hash table-based and BWT based.[104, 105]

Both algorithms find the exact matches on the genome as seeds and extend the seeds with

dynamic programming such as the Smith-Waterman algorithm.[108].
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7.1.1 Dynamic Programming

Dynamic programming matches two strings one character at a time with a pre-assigned

score for matches, mismatches, and gaps. The Smith-Waterman algorithm[108] is one of

the most widely used methods to find local alignment between two sequences. An example

is given in Figure 7.2, where string TACGTAT is aligned to string AACGATGA.

To find the best alignment, the scoring system is first determined. In this example,

it gives +3 for a match, −3 for a mismatch, and −2 for a gap, which is a result due to

either deletions or insertions. Then the scoring matrix is built and and initialized by setting

the first row and column as zero (Fig. 7.2 A. Different initialization will be discussed

later). Then the alignment scores are calculated for each element starting from (1st row, 1st

column), where the row and column numbers start from zero. The alignment score for each

element at row i and column j, M(i, j), is calculated as follows:

M(i, j) = max



M(i− 1, j − 1) + 3, match

M(i− 1, j − 1)− 3, mismatch

M(i− 1, j)− 2, gap in sequenceleft

M(i, j − 1)− 2, gap in sequencetop

0, avoid negative value

(7.1)

in which sequencetop is the sequence placed on the top of the matrix (TACGTAT )

and sequenceleft is the sequence placed at the left of the matrix (AACGATGA). M(i, j)

is thus the maximum values of all possible scenarios. In Figure 7.2 B, the first alignment,

M(1, 1), has a score 0 since both mismatch or gaps would give negative value and thus the

score is set to 0. For M(1, 2), it is an exact match with A −→ A. As a result, 0 + 3 = 3

gives the highest score. For M(1, 3), the highest score is a gap in the sequencetop thus

M(1, 3) = 3 − 2 = 1. The same rules are applied to all the element calculations and

the direction for which the maximum score was given of each element is calculated and
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Figure 7.2: Example of Smith-Waterman alignment. (A) Initialization (B) Step-by-step
score calculations. The red arrows calculate the match/mismatch scores, and the blue and
green arrows calculate the gap penalties in the sequenceleft and sequencetop, respectively
The black arrows are the sources of maximum scores. (C) Final score matrix. (D) Back-
track best alignment. (E) Alignment result.

recorded (black arrows in Fig. 7.2 C). The final scoring matrix is shown in Figure 7.2 C.

To find the best alignment, the highest score element is selected (13 in Fig. 7.2 D) and the

trace back through the source of the score is constructed (reverse directions of the black

arrows in Fig. 7.2 C). In this example, the query sequence TACGTAT is aligned from the
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2nd character to the end onto the reference sequence with a gap in the query sequence (Fig.

7.2 E).

By initializing the matrix to zero, all the characters in the string are equal, and an

alignment can start at any position in either string. On the other hand, if the initialization

is 0,−1,−2, ...,−9 in the first column, these penalties prevent a new alignment to start in

the middle of the sequenceleft. As a result, by setting the initialization differently, one can

guide the alignment to the desired behavior.

In this example, a constant gap penalty is used for simplicity. Affine gaps, however,

are more frequently used. Affine gap separates the penalties from opening a new gap and

extending an existing gap. It is calculated as follows.

Penaltygap = −(g + k · s) (7.2)

in which g is the gap opening penalty, s is the gap insertion penalty, and k is the length

of the gap. As a result, when using the affine gap to calculate the score matrix for each

element, one needs to consider whether extending the existing gap in the current direction

is more affordable than opening a gap in another direction.

Before the hash table-based methods such as BLAST[38] had been developed, dynamic

programming was used in sequence alignments. When the sequences are long, however,

this process can be slow. Nowadays, reads mapping algorithms find exact matches to an-

chor the query reads to the reference first to narrow down the search space and then extend

the alignments that may contain gaps and mismatches with dynamic programming. As seen

in Figure 7.2 C, there are many alignments between TACGTAT and AACGATGA other

than the best alignment. Most reads mapping algorithms prune the dynamic programming

process to focus the search for finding the best match only to reduce the calculation time.
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A A C G A T G A T G G G T ...

Position 1 2 3 4

AAC ACG CGA GATWord

Reference 

Figure 7.3: Hash table-based short reads mapping. In this illustration, the reference
sequence is hashed into 3-mers (seeds). The locations of each seed in the reference are
recorded in the hash table. For each query read, the first 3-mer is searched through the
table. Here, the query read, GATGGTT, can be mapped to position 4, 7, 42, ..., and more.
Taking position 4 and 7 as an example, once the query read is anchored to the possible
position, the mapping is completed by extensions. The blue “|” represents the mapped
seed. The dotted straight lines are matches via extension. The “-” indicates mismatches.
Since position 7 has fewer mismatches compared to position 4, the query read is mapped
to position 7.

7.1.2 Hash-based Algorithm

For algorithms based on hash tables, including PatternHunter,[106] MAQ,[29] ZOOM,[107],

mrFAST,[28] and MOSAIK,[37] the words-search scheme derived from BLAST is ap-

plied.[38] This type of algorithm indexes the genome (or the reads) as k-mer subsequences

and stores the information in a hash table (lookup table). When mapping the short reads to

the reference sequence, the reads are also broken into k-mer subsequences for finding exact

matches in the table. The process is shown in Figure 7.3

Two hash-table based reads aligners are compared in this study: MAQ[29] and mr-

FAST[28] since they are widely used in conjunction with CNV detections. Details of these

two methods are discussed.
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Figure 7.4: Spaced seeds and pigeon hole principle. (A) Spaced seeds indexing and
mapping. The mutations nucleotide in the query read is labeled in red. (B) Pigeon hole
principle. Using black lines to define three holes (seeds) and balls to represent pigeons
(mismatches), all the possible arrangements of pigeons (mismatches) in holes (seeds) are
listed. This shows that k + 1 seeds can identify sequence with k mismatches.

MAQ

Instead of indexing the reference sequence, MAQ[29] indexes the reads and maps the ref-

erence sequence to the reads’ hash table. MAQ uses six spaced seeds to index the first

28-bp of reads instead of using the continuous k-mer as shown in Figure 7.3. An example

of spaced seeds with 8-bp reads is, 11110000, 00001111, 00111100, 11000011, 11001100,

and 00110011, where 1 means the nucleotide of a read is indexed and must be an exact

match between reads and the reference sequence while 0 can be either a match or mis-

match. An example of spaced reads indexing is shown in Figure 7.4 A.

The spaced seeds, which uses the pigeon hole principle, guarantee to find mapping with

up to two mismatches. As shown in Figure 7.4 B, k mismatches can not fill up all k + 1

seeds. As a result, by specially designing the spaced seed, MAQ can map reads with two
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mismatches back to the reference sequence (Fig. 7.4 A). In MAQ, reads are only mapped by

the 28-bp spaced seeds. When there are multiple mapping results with the same mapping

quality for a given read, the read is randomly mapped to one of the equivalent locations.

mrFAST

Designed for 36-bp read lengths, mrFAST[28] uses three 12-bp long contiguous seeds to

cover the first, middle, and last part of the reads. After the seeds are mapped, an extension

method similar to the Smith-Waterman algorithm[108] is applied to extend the map. By

mapping a read three times with different seed regions each time, mrFAST records more

mapping locations than other aligners. [28] Since mrFAST uses three seeds for 36-bp read

lengths, reads with two mismatches are guaranteed to be mapped back to the reference

sequence with the pigeon hole principle (Fig. 7.4 B).

When using reads longer than 36-bp, default maximum allowed mismatches are 4%

of the read length and the maximum allowed indels are 4+4 (two indels of length 4-bp).

Any reads that carry more than 4% of mismatches, 3 indels, or longer than 4-bp indel are

not mappable using mrFAST. The size of k-mer seeds also changes when the read length

increases. The default size of a seed is floor( ReadLength
MismatchesMax

). However, the maximum

seed size is set at 14-bp. These settings show that although mrFAST can detect multiple

mapping locations using multiple seeds, it is not robust for longer and error-prone reads.

7.1.3 Burrows-Wheeler Transform

In this category, the genome sequence is indexed by Burrows-Wheeler transform (BWT),

which can be built from suffix array or the Burrows-Wheeler matrix (BWM).[229] As

shown in Figure 7.5 A, string T: acaaca is a reference sequence, and its characters are

colored-coded. The color represents the rank of a letter, which is related to the number

of times a letter show up. In Figure 7.5, the first occurrence of a letter is coded red, the

second is green, the third is blue and the fourth is purple. The $ sign denotes a terminator
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T = a c a a c a $

$ a c a a c a

a $ a c a a c

c a $ a c a a

a c a $ a c a

a a c a $ a c

c a a c a $ a

a c a a c a $

BWM

$ a c a a c a

a $ a c a a c

a a c a $ a c

a c a $ a c a

a c a a c a $
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c a a c a $ a

A

$ a c a a c a

a $ a c a a c

a a c a $ a c

a c a $ a c a

a c a a c a $

c a $ a c a a

c a a c a $ a

  

Figure 7.5: BWT indexing and mapping. (A) Building BWM and the LF mapping. The
string T is the reference sequence, $ is the string terminator, and the color denotes the
rank of each alphabet (B) Backward search. To map the query reads to the string, the LF
mapping is used recursively to narrow down the search range.

of a sequence, and it is lexicographically prior to all characters. To build the BWM, all the

character rotations of T are written down, and each row is ordered lexicographically. The

last column is the BWT of T. The last-first (LF) mapping states that the rank (or the color

here) of the alphabet of the last column to be the same as in the first column. As shown

in Figure 7.5 A, the letter a shows up in green, blue and then red in both the first and last

columns. The same applies to character c.

To find matches between reference sequence and query reads, backward matching is

applied.[39] As shown in Figure 7.5 B, for a query sequence: aca, the search starts from

the last a. The rows that contain a in the first column are selected (row 1 to 4, start with row

0). The next character is c, so the rows narrowing down to row 1 and 2 since they contain c

in the last column. Because the BWM is constructed by permutating string T, first column

a with last column c means that c is followed by a. Now, since the alphabet rank (color) is

the same in the first and last column as governed by LM mapping, these green and red c in
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the last column are the same green and red c in row 5 and 6 of the first column. The same

process is then repeated. Since the next character in the query is a, the rows (within rows 5

and 6) with a in the last column are selected. The rank of a (color of a) in the last column

again guides the search to the rows in the first column that have the same rank.

In this example, when the query is complete, the search ends at row 3 and 4. This

means that the query sequence, aca, occurs in T twice, aca and acaaca. If the range of

row is empty before the query is complete, it means that the query read does not exist in

the string. The BWT is efficient because, for each character it maps, the search space is

reduced. Also, exact repeats are searched at the same time (i.e. aca and acaaca).

Bowtie,[39, 109] and Burrows-Wheeler Aligner (BWA),[40, 110] are both reads align-

ers based on BWT. Details of both methods are discussed next.

Bowtie and Bowtie2

Bowtie[39] uses BWT backward search to find exact matches. For query reads that run

out of rows before the reads are completed during the backward search (which means that

the query reads do not appear in the reference sequence), the algorithm chooses one of the

mapped nucleotides, changes it into a different nucleotide and resumes the exact match

procedure till it finds a match. This scheme, however, is not suitable for longer reads with

more mismatches or gaps in the reads. As a result, in Bowtie2, instead of trying to map the

whole reads with BWT, it uses BWT to map part of the short reads to the genome as seeds

and extends the seed with dynamic programming. The default seeding process accepts zero

mismatch and the seed length is 20-bp. As a result, reads that have error(s) in the 20-bp

seeds will not be mapped in the default setting.

In addition to the reads that are dropped during the seeding process, Bowtie2[109] also

rejects invalid reads, reads with bad mapping scores. The mapping score is based on the

base quality that is provided by the sequencer. When a mismatch occurs at a base that has

low quality, the mismatch is most likely due to sequencer error and thus is given smaller
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mismatch penalty compared to a mismatch that occurs at a high-quality base. The mapping

score for each alignment is the summation of all mismatch penalties in a read. The quality

threshold is determined by the read length, the longer the reads, the more mismatches are

expected so the lower (more negative) the threshold. If reads mapping scores are lower

than the threshold, these reads are categorized as invalid.

BWA, BWA-SW, and BWA-MEM

BWA[40] also uses BWT[229] to find exact matches. To find the inexact match, a maxi-

mum edited distance (Number of actions one needs to edit the query read into the reference

sequence) is set. The reads can be mapped to positions on the reference with the allowed

maximum differences, which is set as 4% of the read length (default). This method, how-

ever, does not perform well with longer read lengths. As a result, BWA-SW[110] was

proposed. As with other aligners, BWA-SW uses BWT to find seeds and uses the Smith-

Waterman algorithm[108] to extend the seeds. To speed up the process, the seeds are

filtered and merged before the extension to narrow down the number of searches. To fur-

ther reduce the calculation time, the dynamic programing process is pruned so the search

focuses on the top z-best nodes.

Heng[111] further tuned the algorithm toward longer reads and higher error rates. The

result, BWA-MEM[111], can map reads as long as ∼10 Mbp. In BWA-MEM, a bidi-

rectional BWT is performed and maximal exact matches (MEM) are found and served as

seeds. Since the true alignments might contain mismatches, when the MEM is longer than

28-bp, the seeds are re-seeded by the middle part of the original seeds. These seeds are

again filtered and merged as in BWA-SW[110] before they are extended by dynamic pro-

graming. A more relaxed scoring system is used (smaller mismatch and gap penalties) to

ensure that reads with errors can be mapped.
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7.2 Mapping Robustness and Mapping Multiplicity

In this section, the mapping performance of NN is compared with Bowtie2,[109] BWA-

MEM,[111] MAQ[29] and mrFAST[28] at different error rates, read length, the linearity of

mapping locations and number of copies in the reference sequence. A short reads aligner

that is suitable for the subsequent CNV detections should be robust against read errors

while identifying all repeated regions in a reference sequence.

7.2.1 Mapping with Repeated Regions in the Reference Sequence

The bacterial strain Syntrophomonas wolfei subsp. wolfei str. Goettingen (NC007759.1),

which is 2937839 bps long, was randomly selected as the model system. A randomly

selected 812 bp-long region of genome index from 1542312 to 1543124, gene A, of the

original sequence was repeated 2, 4, 6, 10, 15, 20, 25, 30, and 40 times and inserted back

to the original sequence to generate nine pseudo-sequences. Error-free, paired-end short

reads were generated with 5x coverage, which is defined as Nreads×ReadLength
SequenceLength

, in which

Nreads is the number of reads. Read lengths of 36-, 50-, 76-, 100-, 150-, 200-, 250-, and

300-bp were tested. The simulated reads were mapped to the nine pseudo-sequences by

NN, Bowtie2, BWA-MEM, MAQ, and mrFAST. The numbers of valid assignments for

reads that were mapped to gene A (1542312 to 1543124) were counted. An ideal short

reads mapper should align the reads to all repeated regions. Thus, the number of valid

assignments should increase linearly with the number of repeats increases in the reference

sequence.

BWA-MEM by default can produce multiple alignments for a query sequence. Since

the repeated regions have different flanked sequence, the −a option is used. The −a (all)

option in BWA-MEM map all unpaired paired-end reads. The mapping results for BWA-

MEM, however, is far from linear (Fig. 7.6 C and Appendix Fig. E.3). The linearity is

better when mrFAST (default setting) is used, which was built for mapping multiplicity
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Figure 7.6: Mapping Linearity with different aligners and read length. Mapping lin-
earity results from (A) NN, (B) mrFast, (C) BWA-MEM, and (D) Bowtie2. For NN, the
average numbers of locations are not the same as the numbers of repetitions in the refer-
ence sequence. This is because in NN, the neighboring library reads of the exact match are
also counted as valid reads. Since the copy number is the read depth normalized by the
average read depth, this higher baseline will not influence the subsequent copy numbers
determination. Results with other read lengths are shown in Appendix Fig. E.1, E.2, E.3,
E.4, and E.5.

165



(Fig. 7.6 B and Appendix Fig. E.1). In Bowtie2, the −a option is also used. But the −a

(all) option in Bowtie2 directs Bowtie2 to find all mapping hits instead of the default which

stops when any one of the hits is found. As a result, Bowtie2 can really map multi-reads.

Bowtie2 (−a) has good linearity with the total number of alignments increasing linearly

with the number of repetitions in the reference sequence (Fig. 7.6 D and Appendix Fig.

E.5). NN has the best linearity across different read length (Fig. 7.6 A and Appendix Fig.

E.4). This result shows that both NN and Bowtie2 can be used in mapping reads to the

highly repeated regions withing the reference sequence. MAQ, which randomly selects

one mapping result can not report all the possible mapping locations. Moreover, it can not

map short reads longer than 100-bp. Thus, MAQ is not suitable for mapping multiplicity

(Appendix Fig. E.2).

Although BWA-MEM and Bowtie2 are both BWT-based methods, the linearities are

very different. This might be explained by the differences in implementing the dynamic

programming process. In Bowtie2, the extension process searches all the possible mapping

results without pruning.[109] In BWA-MEM, however, dynamic programming is restricted

to the top ten best nodes to reduce the calculation time.[111] As a result, valid read assign-

ments might be lost during the pruning process.

Although the numbers of valid assignments from NN are linear with the numbers of

repeats in the reference sequence, they are not the same as the number of repeats. As

shown in Figure 7.6 A, the numbers of valid assignments (NN) are 4, 8, 12, for 2-, 4- and

6- times repeated reference (50-bp). This is because NN performs read-to-read mapping

with thresholds. Therefore, it also picks up neighboring reads other than the exact match.

Because the copy numbers are calculated by normalized the read depth with average read

depth, this behavior will not influence the copy number estimation.
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7.2.2 Mapping with Different Read Lengths

In the previous subsection, the aligners ability to find all mapping locations was tested.

Here, the mapping accuracies for different read lengths are calculated. 104 of paired-end

short reads with 1% uniform error, and a 2% indel rate with indel length determined by

a geometric distribution of escape probability equals 0.3 were generated from the entire

Syntrophomonas wolfei subsp. wolfei str. Goettingen genome and mapped back to itself.

As in Chapter 6, the read mapping accuracies are calculated at each frame shift, since NN

maps short reads back to library reads with frame shifts. For the details of uniform errors,

indels, and geometric distribution-based indel length, please see Subsection 2.5.3.

The mapping accuracies of all the simulated reads with errors are relatively low for mr-

FAST (Fig. 7.7 D, 1st column), especially when the reads are long. This is expected since

when the reads get longer, the number of mismatches and indels accumulated. Since the

probability for each base to mutate or start a indel is fixed, the longer the reads, the higher

the expectation value for the number of errors. mrFAST, however, was developed for 36-

mer Illumina short reads which have relatively low error rates. Even though the maximum

number of mismatches are 4% of the read lengths, the maximum allowed indels are fixed

to two 4-bp indels. NN, Bowtie2, and BWA-MEM all have better mapping accuracy with

longer reads, with BWA-MEM having the best accuracy, NN next, and Bowtie2 last (Fig.

7.7 A to C, 1st column).

As described in Chapter 6, reads mapping thresholds can be applied to NN to exclude

the low confident assignments. This greatly increases the mapping accuracy among the

valid assignments (assignments that pass the thresholds). For other methods, thresholds or

seedings are applied by default, and more reads are unmapped when the errors are higher.

As a result, the mapping accuracies among the valid assignments can also be calculated

with BWA-MEM, Bowtie2, and mrFAST. The accuracies greatly improve for mrFAST

(Fig. 7.7 D, 2nd column) since mrFAST strictly map reads with lower than 4%-read-length

mismatches and two 4-bp indels (default). As a result, most reads, especially the longer
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Figure 7.7: Mapping accuracies with different aligners and read lengths. Mapping
results of (A) NN, (B) Bowtie2, (C) BWA-MEM, and (D) mrFAST. First column: mapping
accuracies of all reads. Second column: mapping accuracies for all valid reads. The map-
ping accuracies are calculated as the percentage of assignments that are within 10-, 20-,
30-, 40- and 50-bp from the correct origins (for 36-bp reads, it is 6-, 12-, 18-, 24-, and
30-bp) since NN maps the short reads back to the library reads generated with 10-bp (6-bp
for 36-bp reads) frame shift. As a result, the reads alignments resolution for NN is 10-bp.
Third column: valid reads percentage. nt: nucleotide.
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reads, easily exceed that threshold. The percent assigned is thus low for mrFAST (Fig.

7.7 D, 3rd column). In BWA-MEM, the differences between the accuracies with all assign-

ments or among the valid assignments are less significant (Fig. 7.7 C, 1st and 2nd columns).

The percentages of assigned reads increase as the read lengths increase in both BWA-MEM

and Bowtie2.

For NN, however, there is no trend in the percent assigned rate as in other methods

(7.7 A, 3rd column). This is because for other methods, the thresholds are based on num-

ber/score of mismatches (and indels), which is a function of read length. The thresholds

in NN are designed for every read length to achieve at least ∼ 90% accuracy of valid as-

signments for being within a certain frame shift (Fig. 7.7, A, 2nd column). With thresholds

specifically set to each read length, NN can better reject the incorrect assignments and

increase the mapping accuracies while maintaining a decent mapping percentage. Since

these thresholds for each read length balance the accuracies and mappability, they are set

throughout all the analysis in our study.

7.2.3 Mapping with Different Read Errors

To examine the ability for each aligner to map reads with errors, 104 of 300-bp long, paired-

end short reads with different error rates were generated and mapped to Syntrophomonas

wolfei subsp. wolfei str. Goettingen. The types of errors examined here are uniform error,

indel, and indel length.

Uniform Error Rates

Mapping efficiency as a function of uniform error rates was tested for 1%, 3%, 5%, 10%

and 15% uniform error. Along with the changing uniform errors, a constant 2% indel

rate with indel length determined by a geometric distribution was fixed throughout all test

conditions. For mrFAST, since the read length is 300, it has poor mapping accuracy among

all the reads (Fig. 7.8 D, 1st column). The mapping accuracies among mapped reads are
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Figure 7.8: Mapping accuracies with different aligners and uniform error rates. Map-
ping results of (A) NN, (B) Bowtie2, (C) BWA-MEM, and (D) mrFAST. For (A) and (C),
the legend is the same as (B) and (D). First column: mapping accuracies of all reads. Sec-
ond column: mapping accuracies for all valid reads. The mapping accuracies are calculated
as the percentage of assignments that are within 10-, 20-, 30-, 40- and 50-bp from the cor-
rect origins (for 36-bp reads, it is 6-, 12-, 18-, 24-, and 30-bp) since NN maps the short
reads back to the library reads generated with 10-bp (6-bp for 36-bp reads) frame shift.
As a result, the reads alignments resolution for NN is 10-bp. Third column: valid reads
percentage.
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close to 100% with 1% and 3% uniform errors rates (Fig. 7.8 D, 2nd column). However,

no reads were mapped with 5% or higher uniform error rates (Fig. 7.8 D, 3rd column).

Again, BWA-MEM has the highest mapping accuracy with NN also have good mapping

performance and then Bowtie2 (Fig. 7.8 A to C, 1st column). Due to the default threshold

in Bowtie2, reads with uniform errors higher than 10% were mostly not mapped (Fig.7.8

B, 3rd column). This threshold does successfully increase the accuracies from ∼ 0% to ∼

50% for reads with 10% of uniform errors (Fig. 7.8 B, 3rd column). For NN, the mapping

accuracy also drops with 10% of uniform errors (Fig. 7.8 A, 1st column), however, the

accuracy is still∼ 50% with 50-mer shift, and it increases to almost 90% after the threshold

for 300-bp reads was applied (Fig. 7.8 D, 2nd column). This threshold, however, excludes

all the reads with 15% uniform errors (Fig. 7.8 A, 3rd column). For BWA-MEM, the

increasing uniform error rates does not influence the mappability of the simulated reads

(Fig. 7.8 C).

The results show the different strategies that are used by different aligners. For NN

without threshold, it resembles BWA-MEM which maps as many reads as it can to achieve

high error-tolerance and higher accuracy in the expense of precision . For NN with thresh-

old applied, it implements a more cautious mapping scheme that resembles Bowtie2 and

mrFAST. In this type of mapping setting, both the accuracy and precision are high but the

mappability decreases. By switching on or off the threshold in NN, analysis with different

focuses can be performed.

Indel Rates

Various indel rates of 2%, 5%, 10%, 15% and 20% with the indel length determined by

a geometric distribution are tested. Along with the assigned indel rates, a constant 1%

uniform error rate was applied. As shown in Figure 7.9 1st column, indel rates have a larger

impact on the mapping accuracy than do the uniform error rates. The percent accuracies

drop significantly for all methods with high indel rates. mrFAST, again, has low mapping
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Figure 7.9: Mapping accuracies with different aligners and indel rates. Mapping re-
sults of (A) NN, (B) Bowtie2, (C) BWA-MEM, and (D) mrFAST. For (A) and (C), the
legend is the same as (B) and (D). First column: mapping accuracies of all reads. Second
column: mapping accuracies for all valid reads. The mapping accuracies are calculated as
the percentage of assignments that are within 10-, 20-, 30-, 40- and 50-bp from the cor-
rect origins (for 36-bp reads, it is 6-, 12-, 18-, 24-, and 30-bp) since NN maps the short
reads back to the library reads generated with 10-bp (6-bp for 36-bp reads) frame shift.
As a result, the reads alignments resolution for NN is 10-bp. Third column: valid reads
percentage.
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accuracy and very few reads were mapped (Fig. 7.9 D, 1st and 3rd columns). Among all the

reads, Bowtie2 only has good mapping accuracy with 2% of indel rates and the mapping

accuracy drop significantly starting with 5% indel rates (Fig. 7.9 B, 1st column). Both NN

and BWA-MEM have good mapping accuracy with 2% and 5% indel rates (Fig. 7.9 A and

C, 1st column). NN even has a higher mapping accuracy for reads with 10% and 15% of

indel rates (Fig. 7.9 A, 1st column).

After applying the distance threshold, NN mapping accuracies increase from ∼ 50%,

∼ 20%, and∼ 10% to∼ 90% for reads with 10%, 15% and 20% of indel rates (Fig. 7.9 A,

2nd column). BWA-MEM still maps most of the reads except reads with 20% indel rates

and the accuracy among the mapped reads does not increase significantly (Fig. 7.9 B, 2nd

and 3rd columns). For Bowtie2, the thresholds depend on the mismatch penalties, but they

do not efficiently reject the uncorrected mapping results. Although the mapping accuracies

increase, they are still only around 50% for reads with 5% and 10% indel rate (Fig. 7.9, 2nd

column). This result shows that NN is better in handling frequent indels in the reads than

any other aligner. NN also has the benefit that the threshold is determined for each read

length and can successfully exclude the non-confident mapping to increase the mapping

accuracy.

Indel Lengths

Indel lengths were varied from 3, 5, 10, 15, to 20 nucleotides (nts) and mapping accuracy

was tested. Along with the varying indel length, the uniform error rate and indel rates were

set at 1% and 2% , respectively, for all conditions. BWA-MEM, again mapped nearly all

the reads back to the reference sequence, regardless of the confidence of mappings (Fig.

7.10 C, 1st and 2nd columns). The mapping accuracies among valid assignments increases

significantly for both NN and Bowtie2 (Fig. 7.10 A and B, 2nd column), with NN having

better accuracies both with and without threshold (Fig. 7.10 A, 1st and 2nd columns).

mrFAST, again, does not have good performance with longer read length and errors (Fig.
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Figure 7.10: Mapping accuracies with different aligners and indel length. Mapping
results of (A) NN, (B) Bowtie2, (C) BWA-MEM, and (D) mrFAST. First column: mapping
accuracies of all reads. Second column: mapping accuracies for all valid reads. The map-
ping accuracies are calculated as the percentage of assignments that are within 10-, 20-,
30-, 40- and 50-bp from the correct origins (for 36-bp reads, it is 6-, 12-, 18-, 24-, and
30-bp) since NN maps the short reads back to the library reads generated with 10-bp (6-bp
for 36-bp reads) frame shift. As a result, the reads alignments resolution for NN is 10-bp.
Third column: valid reads percentage. nt: nucleotide.
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7.10 D).

From the analysis of mapping linearity (Fig. 7.6) and mapping accuracies under dif-

ferent read lengths (Fig. 7.7) and errors (Fig. 7.8 to Fig. 7.10), NN is the best short

reads aligner that can successfully find all the mapping locations while maintaining high

mapping accuracy. mrFAST, and Bowtie2, although they have a nearly linear relationship

between the number of locations mapped and the number of repeated region in the refer-

ence sequence (Fig. 7.6), do not perform well under reads errors (Fig. 7.8 to Fig. 7.10).

BWA-MEM, on the other hand, has very high mapping accuracy even with high error rates

(Fig. 7.8 to Fig. 7.10) but can not find all mapping locations (Fig. 7.6). As a result, NN is

the most suitable aligner to recover the read depth for the subsequent CNV detection where

mapping multiplicity is important.

7.3 Copy Number Variations Detection – Simulated Reads

CNV-MM takes the reads mapping results from NN and reports the CNVs in the query

sequence. To test the reliability of CNV-MM, simulated reads were generated from Syn-

trophomonas wolfei subsp. wolfei str. Goettingen or pseudo-sequences with different con-

ditions derived from it. These conditions include different similarities of repeated genes,

various read lengths and CNV sizes, and varying the copy numbers in the reference and/or

query sequences.

7.3.1 CNV Detection with Different Region Similarities

In the short reads mapping process, thresholds are set to exclude the low confidence map-

ping results. As a result, reads with less similarity to the library read will not be mapped.

To test the mappability in association with sequence similarity, the genome sequence from

1542312 to 1543124 of Syntrophomonas wolfei subsp. wolfei str. Goettingen was taken as

the mother gene. A pseudo-sequence (Seq-2) was generated by repeating the mother gene

six times and was randomly inserted into the original sequence. Multiple, randomly placed
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Table 7.1: Repeated regions. The repeated regions are listed using the index of the re-
peated genome (Seq-2). There are two 100% similarity regions. Region 4 is the original
region while region 5 is an identical repeat.

Regions 5’-end 3’-end Similarity
1 286300 287112 90%
2 373543 374355 92%
3 819059 819871 94%
4 1544748 1545560 100%
5 1607635 1608447 96%
6 1859340 1860152 98%
7 2684987 2685799 100%

point mutations were introduced to these six repeated genes, so they are 90%, 92%, 94%,

96%, 98% and 100% similar to the mother gene, respectively. paired-end, 100-bp reads

with 50x coverage were generated from Syntrophomonas wolfei subsp. wolfei str. Goettin-

gen without error. These error-free reads allow us to focus the analysis on the mismatches

due to different levels of similarities. The six repeated regions are listed in Table 7.1.

The reconstructed trajectories are shown in Figure 7.11 A to C. Instead of the read

depth, the trajectories have been dividing by their own average read depth. As a result, the

copy number is shown on the y-axis. The blue curves are trajectories built directly from the

mapping results. Wavelet denoising, segmentation, and CNV detection were then applied

on the blue curves via CNV-MM, and the results were used to build the orange curves.

Thus, the highly overlapping results between the blue curves and orange curves indicate

that most of the peaks are recovered in the process. Since the average copy number of

each peak is plotted in the orange curve, the maximum copy numbers appear to be smaller

in the orange curves compared to the blue curves, which is clearly shown is the zoom-in

plots. The mapped trajectories (blue curves) are spiky while the extracted trajectories are

smooth since they are plotted using the average copy number of a region (Fig. 7.11 D to

F). Therefore when zooms out, the copy numbers in the mapped trajectories seem to be

higher than the extracted copy numbers. For details about trajectories building, denoising,
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Figure 7.11: Mapping trajectories for 100-bp reads mapped seven repeated regions
with different similarities. (A) and (D) Average number of assignments trajectory. (B)
and (E) Binary trajectory. (C) and (F) Test statistics trajectory. (A) to (C) are the whole
trajectories while (D) to (F) are the trajectories zoom in to (1543000, 1558000). The blue
lines are the read depth obtained directly from the mapping results. The orange lines are
read depth extracted by CNV-MM.

segmentation, and CNV detections, please see Chapter 2.

The binary and average trajectories reflect the absolute copy numbers in the reads donor

sequence (original sequence) and in the reference sequence (Seq-2), respectively. As a

result, there are many peaks in both trajectories. These peaks, however, are not necessarily

true CNVs since they might have the same copy numbers between the reads donor sequence

and the reference sequence. As shown in Figure 7.11 D to F, the peak at 1554000-1556000

has on average five copies in both the reference and query sequence (Fig. 7.11 D and E).
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Although high copy number, this peak is not a CNV region since the copy numbers are the

same in both trajectories. Also, in the TS trajectory, which measures the ratio of the copy

numbers in the query and reference sequence, clearly shows that the ratio is one (Fig. 7.11

F).

The TS trajectory is shown in Figure 7.11 C and F. As expected, the repeated regions

have lower read depth in the TS trajectory since the reads donor sequence (original se-

quence) only has one copy of the repeated genes which is shown in Figure 7.11 E, the

copy number of the 1544748-1545560 region is one in the binary trajectory. The read

depth from this one copy is thus distributed to all seven repeated regions in the reference

sequence (Seq-2).

Table 7.2: CNVs with different similarity detected by CNV-MM. The CNV regions
are listed using the index of the repeated sequence (Seq-2). “map” represents the indices
determined by CNV-MM and “CN” means “copy number”. The numbers in the parentheses
are the number of bases from the real CNV insertion points (negative: toward 5’-end.)
Complete list is available in Appendix Table E.1.

5’-end (map.) 3’-end (map.) Ref CN Query CN TS CN Size (bp) Similarity
286208 (-92) 287168 (+56) 2.39 0.105 0.0929 960 90%
373440 (-103) 374400 (+45) 2.47 0.202 0.0583 960 92%
818944 (-115) 819968 (+97) 2.98 0.391 0.185 1024 94%
1544704 (-44) 1545536 (-24) 3.45 1.18 0.489 832 100%
1607616 (-19) 1608448 (+1) 3.63 0.576 0.105 832 96%
1859328 (-12) 1860160 (+8) 3.61 0.758 0.167 832 98%
2684928 (-59) 2685952 (+153) 3.17 1 0.4 1024 100%

The estimated breakpoints and copy numbers are listed in Table 7.2 and Appendix

Table E.1. The breakpoints of these seven genes are close to the true gene size (812 bp).

As described in Chapter 2 (Subsection 2.7.4), related regions in a reference sequence can

be grouped together simply by taking a union of all the mapping results of the multi-reads.

Since CNV-MM identifies these seven regions are related, meaningful observations can be

drawn. There are seven regions in the reference are grouped but the estimated copy number
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in the reference sequence is not seven. This is because of these regions are not 100%

similar to each other. As a result, most of the reads can only be mapped to a subset of

all seven regions. The copy numbers in the query sequence (the binary trajectory), on the

other hand, varied depending on the similarities of the regions (Table 7.2, Query CN). For

regions with 100% similarity, the estimated query copy number is around one. This means

that the query sequence has one copy of region 1544704-1545536 and region 2684928-

2685952. Ideally, all seven regions should have a query copy number equal to one, due

to sequence dissimilarity, however, the query copy numbers are around 0.76, 0.58, 0.39,

0.20, and 0.11 for regions with 98%, 96%, 94%, 92% and 90% similarity, respectively.

This means that with the current threshold setting, only ∼76%, 58%, 39%, 20% and 11%

of the total reads are mapped to each region with different similarities. These percentage

can be used to predict which region(s) is deleted in the query sequence. Since the there is

clearly a deletion in the query sequence (although the complicated similarity issue clouded

the information as how many region(s) is deleted), the regions with the smallest query copy

number must have a higher probability to be deleted.

Without the grouping information, these seven regions would be treated as individual

CNV regions and less information can be extracted. Taking the region 286208-287168 for

example, without grouping, one only knows that there are ∼2 copies (2.39) of this region

in the reference while one is the current region but the other is not known. From the query

copy number (0.105) and TS copy number (0.0929), it is known that there is a deletion in

the query sequence, however, one can not tell it is this 286208-287168 is deleted or the

related region that is somewhere in the reference sequence is deleted.

This data helps us understand the non-integer and inconsistent value in copy numbers

of other simulated data or real data. First, when the estimated copy numbers in the ref-

erence sequence are not consistent with the number of regions grouped, it might be due

to the regions, although they share some similarity to be grouped, are different enough,

so the test statistics between these regions and some reads are lower than the thresh-
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Table 7.3: Regions repeated in Seq-2. The repeated regions are listed using the index of
the repeated genome (Seq-2). For each region length, there are two copies: the original
and the duplication. “ori.” represents the original sequence, and “dpc.” represents the
duplicated sequence.

Regions 5’-end (ori.) 3’-end (ori.) 5’-end (dpc.) 3’-end (dpc.) Size
1 3142001 3167001 45711 70711 25 kb
2 952139 1077139 2048741 2173741 125 kb
3 1583501 1833501 2536587 2786587 250 kb
4 859203 861703 3197904 3200404 2.5 kb
5 2935863 2936113 3260410 3260660 250 bp

old. Second, as discussed in Chapter 2, these inconsistent mappings render the equation

CopyNumberTS =
CopyNumberBinary

CopyNumberAvg
invalid. In this situation, the group average TS test

statistics can be used to distinguish the real CNVs from others.

7.3.2 CNV Detection with Different CNV sizes

To test the ability of CNV-MM to detect CNVs of different sizes, five genome regions from

Syntrophomonas wolfei subsp. wolfei str. Goettingen were randomly selected and inserted

back to the original sequence to construct the pseudo-sequence. This pseudo-sequence is

now the new Seq-2. The length of these five regions are 250 bps, 2500 bps, 25 kbps, 125

kbps, and 250 kbps and the positions of the repeated regions are listed in Table 7.3 (in Seq-

2 index) and Table 7.5 (in original sequence index). When taking the original sequence as

the reference sequence, the reads were generated from the pseudo-sequence and mapped to

the reference sequence and vice versa. Reads were generated with 1% uniform error rate,

and 2% indel rate with the indel length follows a geometric distribution.

Deletions - Seq-2 as the Reference

The trajectories reconstructed from 200-bp reads generated from the original sequence with

50x coverage mapped by NN using Seq-2 as the reference sequence are shown in Figure
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Figure 7.12: Mapping trajectories for 200-bp reads mapped to Seq-2. (A) Average
number of assignments trajectory. (B) Binary trajectory. (C) Test statistics trajectory. The
blue lines are the read depth obtained directly from the mapping results. The orange lines
are read depth extracted by CNV-MM.

7.12. The repeated region indices are shown in Table 7.3. Since Seq-2 is the reference

sequence, the average trajectory (Fig. 7.12 A) shows 2x copy numbers for the repeated

regions. In the binary trajectory (Fig. 7.12 B), only one copy is shown in the corresponding

regions. The TS trajectory (Fig. 7.12 C), as a result, show that the copy number ratio is 0.5.

The detailed mapping results are shown in Table 7.4. The analysis was done with the

grouping function of CNV-MM turned on. As a result, regions sharing sequence similar-
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Table 7.4: Deletions detected by CNV-MM The repeated regions are listed using the
index of the repeated genome (Seq-2). “map” represents the indices determined by CNV-
MM and “CN” means “copy number”. For TS copy number, the copy number ratio is
measured instead. The numbers in the parentheses are the number of bases from the real
CNV insertions (negative: toward 5’-end.) “–” means the difference is not applicable since
it is a subset of an existing region.

Group 5’-end (map.) 3’-end (map.) Ref CN Query CN TS CN Size (bp)
1 1583616 (+115) 1834496 (+995) 2.01 1.03 0.52 250880
1 2535424 (-1163) 2786688 (-101) 2.02 1.03 0.52 251264
2 952320 (+181) 1077248 (+109) 2.01 1.02 0.51 124928
2 2048000 (-741) 2174976 (+1235) 2 1.02 0.51 126976
3 45568 (-143) 70784 (+73) 2 1.03 0.52 25216
3 3143680 (–) 3167232 (+231) 2 1.03 0.52 23552
4 3142144 (+143) 3142656 (–) 1.86 0.93 0.51 512
5 859136 (-67) 861184 (-519) 2.23 1.14 0.51 2048
5 3197824 (-80) 3200512 (+108) 2.13 1.06 0.50 2688
6 3260288 (-122) 3260800 (+140) 1.55 0.20 0.13 512
7 1967616 1969600 3.06 2.25 0.81 1984
7 2320128 2322048 3.06 2.22 0.74 1920
7 3193728 3195712 3.10 2.25 0.74 1984
8 3338240 3338743 0.98 0.49 0.50 503

ity are grouped. Group 1 to Group 6 are repeated sequences from 2500-bp to 250-kb as

designed in Table 7.3. The copy number in the reference sequence calculated from the av-

erage trajectory (Fig. 7.12 A) is two and the copy number in the query calculated from the

binary trajectory (Fig. 7.12 B) is one. The copy number ratio between the two sequences

are calculated from the TS trajectory (Fig. 7.12 C) shows that the original sequence (query

sequence) indeed only has half of the copy numbers present in those regions of the refer-

ence sequences.

The regions in group 3 have been divided into two subregions including group 3 and

group 4. This is because of fluctuations in trajectories in these regions and CNV-MM

identifies them as separate events. Group 6 is the deletion of the 250-bp repeated regions

while CNV-MM does not detect the deletion at the original sequence (2935863-2936113).
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This is because the breakpoint (CNV region boundaries) resolution depends on the read

length since NN performs read-to-read mapping. When using 200-bp reads, the 250-bp

repeated region is right at the detection limit and thus the contrast of read depth at 2935863-

2936113 is reduced. Although group 6 should suffer the same read depth dilution and

therefore renders it harder to detect, the edge effect makes this inserted sequence stand out.

The edge effect happens at all inserted sequence, where the sequences flanking the 5’ and

3’ ends of the inserted sequence are different from those flanking the original sequence.

Therefore, the reads generated from the edges of the original sequence can not be mapped

to the edge of the inserted sequence and it appears as extra deletion for at the edge. This

edge effect is not significant when the region is long. When the region length is 250-bp,

however, it becomes prominent. Groups 7 and 8 are false deletions detected by CNV-MM

due to uneven read depth, which might be a result of uneven reads sampling. The full list

of detected CNV regions is shown in Appendix Table E.13.

Duplications - the Original Sequence as the Reference

We shown that CNV-MM can detect deletions with a wide range of CNV sizes. To examine

whether CNV-MM can detect duplications with different CNV sizes, Seq-2 (the two times

repeated sequence) was used as a reference sequence while the original sequence served

as the read donor sequence instead. Again, the reads are paired-end, 200-bp long and the

coverage is 50x. The regions that were duplicated in the original sequence to create the

Seq-2 are listed in Table 7.5.

All three trajectories are shown in Figure 7.13. Since the reference sequence (original

sequence) now has only one copy while the reads donor (Seq-2) has two, the binary trajec-

tory shows two copies at the “repeated” regions. The TS trajectory also clearly shows that

there are CNV regions with copy numbers two times higher than in the reference sequence.

Again, as discussed previously, the inconsistent heights between the mapped trajectories

(blue curves) and the extracted trajectories (orange curves) are mainly because the average
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Table 7.5: Regions in the original sequence that are repeated in Seq-2. The regions that
served as the mother regions for the repeated regions in Seq-2 are listed using the index of
the original genome.

Regions 5’-end 3’-end Size
1 2742001 2767001 25 kb
2 927139 1052139 125 kb
3 1558501 1808501 250 kb
4 834203 836703 2.5 kb
5 2535863 2536113 250 bp

Table 7.6: Duplications detected by CNV-MM The repeated regions are listed using the
index of the original genome. “map” represents the indices determined by CNV-MM and
“CN” means “copy number”. The numbers in the parentheses are the number of bases from
the real CNV insertions (negative: toward 5’-end.)

Group 5’-end (map.) 3’-end (map.) Ref CN Query CN TS CN Size (bp)
1 834304 (+101) 836608 (-95) 1.06 2.07 2.00 2304
2 927232 (+93) 1052032 (-107) 1.02 2.06 2.03 124800
3 1558528 (+27) 1808384 (-117) 1.01 2.02 1.99 249856
4 2742272 (+271) 2766848 (-153) 1.07 2.02 1.93 24576

copy number of a given peak is plotted in the extracted trajectories. The higher peaks in

the mapped trajectories are due to the fluctuated read depth as shown in Figure 7.11 D to F.

The full list of detected CNV duplication regions is shown in Table 7.6. Again, all

the 2-fold copy numbers are captured except for the 250-bp region as was also true in the

deletion case. The estimated copy numbers in the reference sequence is one and in the

reads donor is two. The copy number ratio, determined by the TS trajectory, indicates that

the copy numbers in these regions indeed increase as suggested by the binary and average

trajectories. The breakpoints (boundaries) of these regions are more accurate compared to

those determined in the deletion case with the estimated breakpoints mostly being within

200-bp away from the true breakpoints. There is no false discovery.

Since the absolute copy numbers are estimated by the binary and average trajectories,
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Figure 7.13: Mapping trajectories for 200-bp reads mapped to the original sequence.
(A) Average number of assignments trajectory. (B) Binary trajectory. (C) Test statistics
trajectory. The blue lines are the read depth obtained directly from the mapping results.
The orange lines are read depth extracted by CNV-MM.

it seems like it is not necessary to calculate the TS trajectory. This is, however, not true.

First, the TS trajectory is used to determine the CNV boundaries. When using binary and

average trajectories alone, CNV regions longer than 2500 bp tend to be break into pieces

due to the fluctuating read depth (trajectories). Because only the true CNV regions are

shown in the TS trajectory, the TS trajectory is relatively clean. As a result, the wavelet

denoised trajectory is also cleaner and has a reduced tendency to break regions apart. This
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Figure 7.14: Mapping trajectories for 36-bp reads. For (A) to (C), the reference se-
quence is the original sequence, and the reads donor sequence is the repeated sequence
(Seq-2). (A) Average number of assignments trajectory. (B) Binary trajectory. (C) Test
statistics trajectory. For (D) to (E), the reference sequence is the repeated sequence, and
the reads donor sequence is the original sequence. (D) Average number of assignments
trajectory. (E) Binary trajectory. (F) Test statistics trajectory. The blue lines are the read
depth obtained directly from the mapping results. The orange lines are read depth extracted
by CNV-MM.

greatly helps to identify long CNV regions. Also, there are 157 duplicated regions and 31

deletion regions detected when all three trajectories are considered. The TS copy number

greatly reduce the false positive rate by excluding regions with a TS copy number within

the Poison noise from the average TS read depth. And when the regions have inconsistent

copy numbers due to the differences in similarities as discussed in Subsection 7.3.1, the

average TS copy number can help exclude the false positive detections.
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7.3.3 CNVs Detection with Various Read Lengths

The same system used in the CNV length study is used to investigate CNV detection with

the NN mapping results from different read lengths. 50x coverage of paired-end reads of

length 36, 50, 76, 100, 150, 200, 250, to 300 bp were generated from both the original

sequence and the repeated sequence (Seq-2). Each sequence takes turns to be the reads

donor or reference sequence to detect various deletions and duplications as in Subsection

7.3.2.

When building the trajectories from 300-bp to 36-bp reads, all three trajectories become

noisier with shorter read length. The trajectories from 36-bp reads are shown in Figure 7.14,

200-bp results are in Figures 7.12 and 7.13, while the trajectories from other read lengths

are shown in Appendix Fig. E.6 to Appendix Fig. E.11. Read depth noise becomes high

when the read length is shorter than 100-bp. Noise is especially high for 36-bp and 50-bp

reads trajectories.

For 36-bp binary and average trajectories, two highly repeated regions appear around

reference genome index 60000 and 2850000. These two peaks do not show up in any

other trajectories with longer read length. This is probably because there are multiple short

repeated units in both regions (these two regions are related). These two high copy number

regions, however, have copy numbers equal to one in the TS trajectory (Fig. 7.14 C and

F.) despite the ratio between the binary and average copy numbers being ∼0.33 for the

2850000 bp region with the copy numbers in the average trajectory being ∼90 and in the

binary trajectory being ∼30 (Fig. 7.14 A, B, D, and E.). Since the TS copy numbers are

inconsistent with the CopyNumberBinary

CopyNumberAvg
ratio, and these highly repeated peaks disappear with

longer read length, it is highly possible that these regions are only partially similar to each

other. As a result, the TS copy number should be used as the guideline to exclude these

regions as being true CNVs.

A partial list of CNV results focused on the inserted regions is shown in Table 7.7 (Full

list in Appendix Table E.2). The 2500 bp to 250 kb duplicated regions are detected without
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Table 7.7: Duplications detected by CNV-MM from 36-bp read depth trajectories.
The repeated regions are listed using the index of the original genome. “map” represents
the indices determined by CNV-MM and “CN” means “copy number”. The numbers in
the parentheses are the number of bases from the real CNV insertions (negative: toward
5’-end.)

Group 5’-end (map.) 3’-end (map.) Ref CN Query CN TS CN Size (bp)
1 1558528 (+27) 1808512 (+11) 1.06 2.04 1.97 249984
2 927104 (-35) 1052160 (+21) 1.08 2.06 1.98 125056
3 2742016 (+15) 2766976 (-25) 1.08 2.04 1.98 24960
4 834048 (-155) 836672 (-31) 1.05 2.01 1.92 2624

grouping and the breakpoints accuracy is even better than the breakpoints extracted from

the 200-bp read depth trajectories (Table 7.6) since the resolution is depending on the read

length and frame shift. There are, however, much more false positive CNV detections (Full

list in Appendix Table E.2). The same trend can be found in the CNV results from 50-bp

to 300-bp. (Appendix Table E.2 to Appendix Table E.17.)

When using the repeated sequence (Seq-2) as the reference sequence, the deleted re-

gions from 2500 bp to 250 kb are detected (Table 7.8). However, two regions are broken

down into pieces. The 1583501-1833501 bp region is divided into two regions, 1583104-

1740288 and 1740321-1833472 while the 3142001-3166976 into 4 regions, which cover

from 3142144 to 3166976 (Fig. 7.14 F).

For CNV detections with read lengths shorter than 100 bp, it is not recommended to turn

on the grouping function. This is because when the read length is short, the probability that

different regions share similar k-mer distribution is high. As a result, the NN test statistics

value is similar. This makes grouping difficult to exclude unrelated regions which obscures

the subsequent analysis when the group average copy numbers are calculated.

7.3.4 CNV Detection with Multiple Copies of Duplications or Deletions

Since NN can identify all the repeated regions in the reference sequence as shown in Sub-

section 7.2.1, it is expected that CNVs from complicated regions (multiple copies in both
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Table 7.8: Deletions detected by CNV-MM from 36-bp read depth trajectories. The
repeated regions are listed using the index of the repeated genome (Seq-2). “map” repre-
sents the indices determined by CNV-MM and “CN” means “copy number”. The numbers
in the parentheses are the number of bases from the real CNV insertions (negative: toward
5’-end.) “–” means the difference is not applicable since it is a subset of an existing region.

Group 5’-end (map.) 3’-end (map.) Ref CN Query CN TS CN Size (bp)
1 1583104 (-397) 1740288 (–) 1.93 1.05 0.55 157184
2 1740321 (–) 1833472 (-29) 1.96 1.06 0.56 93151
3 2536448 (-139) 2786304 (-283) 1.94 1.06 0.56 249856
4 952320 (+181) 1077248 (+109) 2 1.06 0.54 124928
5 2048000 (-741) 2173952 (+211) 1.99 1.06 0.54 125932
6 45696 (-15) 70656 (-55) 1.97 1.06 0.552 24960
7 3142144 (+143) 3142656 (–) 1.97 0.98 0.49 512
8 3142912 (–) 3143072 (–) 2.19 1.11 0.57 160
9 3145728 (–) 3166208 (–) 1.91 1.03 0.55 20480
10 3166720 (–) 3166976 (0) 1.64 0.92 0.56 256
11 860160 (+957) 861698 (-5) 1.98 1.05 0.55 1536
12 3197889 (-15) 3200512 (+108) 1.93 1.06 0.57 2623

the reference and unknown sequences) can be detected and quantified by using NN and

CNV-MM. Five sequences were generated from Syntrophomonas wolfei subsp. wolfei str.

Goettingen with varying copies of two sets of randomly chosen genes (1022 bp and 8177

bp). The 1022 bp gene was extracted from 2538089-2539111, and the 8177 bp gene was

extracted from 835334-843511 of the original sequence. All the copies were randomly in-

serted in the simulated sequences with 100% similarity. The copy numbers are designed

as shown in Table 7.9. Paired-end, 300-bp simulated reads with 1% uniform error rate and

2% indel rate with the indel length determined by the geometric distribution (p = 0.3) were

generated from each sequence with 50x coverage.

Sequence-1 Maps to Sequence-1

We have shown that CNV-MM can estimate the absolute copy numbers for repeats (not

necessary CNVs). We also show that CNV-MM can detect copy number differences from

both deletions and duplications. It is interesting to see when the query sequence is exactly
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Table 7.9: Copy numbers in five simulated sequences. The copy numbers listed in the
table include the original copy. For example, sequence-5 has one copy of gene-1 indicating
that it is the original copy. Gene-1022 represents the 1022-bp-long gene while gene-8177
represents the 8177-bp-long gene.

Sequence Gene-1022 Gene-8177
1 20 2
2 16 4
3 8 6
4 2 10
5 1 12

the same as the reference sequence and carry high copy numbers, whether CNV-MM can

(1) have no false discovery and (2) correctly estimate the copy number in both sequences.
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Figure 7.15: TS trajectories for Sequence-1 mapped to Sequence-1. The blue lines are
the read depth obtained directly from the mapping results. The orange lines are read depth
extracted by CNV-MM. Black arrows indicate false discovery.

Figure 7.15 shows the TS trajectory of sequence-1 maps to sequence-1. As indicated

by the black arrows, there are four false discoveries. Two grouped ∼1000-bp duplications

from 2.23 copies to 3.35 copies, and two unrelated deletions from 0.98 to 0.71 copy and

0.89 to 0.67 copy. None of the detected CNVs are originated from the inserted sequences.

As in previous studies, the false discovery is most likely due to the uneven reads sampling.

When mapping the reads generated from sequence-1 to sequence-1, it is expected that

both the binary and average trajectories show 20 copies of gene-1022 and two copies of
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Figure 7.16: Mapping trajectories for Sequence-1 mapped to Sequence-1. (A) to (C)
Average number of assignments trajectory. (D) to (E) Binary trajectory before boundary
shift. (A) and (B) are the whole trajectories. Before boundary shift applied, the estimated
copy numbers (orange curves) are inconsistent to the real copy numbers (blue curves).
(C) and (E) zoom in to 500000-503000 for gene-1022. (D) and (F) zoom in to 1265000-
1280000 for gene-8177. (G) Average trajectory after boundary shift. (H) Binary trajectory
after boundary shift. After boundary shift, the orange curves better overlap with the blue
curves. The blue lines are the read depth obtained directly from the mapping results. The
orange lines are read depth extracted by CNV-MM.

gene-8711 (Although none of these are identified as CNV regions). The estimated average

copy number is indeed around 20 (Fig. 7.16 A, orange curve). The extracted binary trajec-

tory (Fig. 7.16 D, orange curve), however, does not recover the mapped copy number. This

is because the binary (and TS) trajectories depend on the number of reads mapped to a nu-

cleotide. As a result, instead of following a step function, the read depth for a CNV region

increases gradually at the boundaries (Fig. 7.16 E). The average trajectory, on the other

hand, does not depending onhow many reads are mapped to a given nucleotide. Therefore,

the average number of mapping locations per read is the same. As a result, the trajectory
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is less affected by the number of reads mapped, and the boundaries follow a step function

(Fig. 7.16 B). For gene-8177 regions, the edge effect is not as severe as in gene-1022 re-

gions due to the larger size of the gene (Fig. 7.16 D and F). As a result, the copy numbers

are accurately calculated from average read depth of the regions defined by the estimated

breakpoints.

The gradually increasing read depth in the binary and TS trajectories decrease the av-

erage copy number of a given region, even though the breakpoints determined from CNV-

MM are mostly within 100-bp from the real boundaries (Table 7.10). To adjust for the

edge effect, instead of calculating the read depth for the whole gene region determined by

the estimated breakpoints, the read depth is calculated from Breakpoint5
′
+ReadLength

to Breakpoint3′ − ReadLength. The read depths calculated with a boundary shift better

estimate the real read depth for the gene-1022 regions with the blue and orange peaks more

consistent with each other (Fig. 7.16 G and H). This shows that although any region longer

than the read length can potentially be detected, the true copy number, however, can only

be accurately estimated if the region is longer than at least two times the read length. For

regions that are shorter than two times the read length, there might be a omission.

The copy numbers calculated from trajectories with boundary shift (Fig. 7.16 G and

H), however, are 23.47 for the reference sequence and 22.65 in the reads donor sequence

(which are both sequence-1) (Table 7.12). This implies that there are 22∼24 copies instead

of 20 in sequence-1. Since the analysis is done with grouping turns on, there are indeed

22 regions (not include gene-8177 and its replica) grouped together. These 22 regions

include the 19 inserted sequences, the original sequence, and two unexpected sequences.

After searching through the original sequence, we found that these two unexpected se-

quences are naturally-occured, repeated regions of gene-1022. There is one more sequence

on Syntrophomonas wolfei subsp. wolfei str. Goettingen is partially related to gene-1022,

however, was not picked up in this analysis. Nevertheless, it does seem to contribute to the

estimated copy numbers for both the reference and query sequence. Due to this naturally-
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Table 7.10: Repeated regions in sequence-1 and sequence-1 mapping results. The
regions are presented in the sequence-1 index. The first two columns are the repeated
regions breakpoints. The last two columns are the mapping results from mapping reads
from sequence-1 mapped to sequence-1. These regions are not defined as true CNVs since
they have the TS copy numbers close to one. The numbers in the parenthesis are the
distances from the real breakpoints (negative: toward 5’-end.). CN: copy number. The
last two rows are regions grouped by CNV-MM and are the intrinsic duplications of region
2562619-2563640.

Group 5’-end 3’-end Size 5’-end (map.) 3’-end (map.) TS CN
1 501025 502047 1022 500992 (-33) 502080 (+33) 1.06
1 572651 573672 1022 572608 (-43) 573696 (+24) 0.98
1 611764 612785 1022 611840 (+76) 612832 (+47) 1.02
1 666140 667161 1022 666112 (-28) 667184 (+23) 0.98
1 672278 673309 1022 672248 (-30) 673320 (+11) 1.07
1 681588 682609 1022 681560 (-28) 682656 (+47) 1.08
2b 841467 849644 8177 842752 (+1285)a 849664 (+20) 1.01
1 890283 891304 1022 890368 (+85) 891360 (+56) 1.02
1 920232 921254 1022 920192 (-40) 921280 (+26) 0.98
1 1037552 1038573 1022 1037520 (-32) 1038592 (+19) 0.98
2 1268768 1276945 8177 1268864 (+96) 1276928 (-17) 1.01
1 1296140 1297161 1022 1296120 (-20) 1297216 (+55) 0.96
1 1400546 1401568 1022 1400512 (-34) 1401600 (+32) 1.12
1 1583249 1584270 1022 1583230 (-19) 1584320 (+50) 1.01
1 1635137 1636158 1022 1635200 (+63) 1636170 (+12) 1.10
1 1744425 1745446 1022 1744640 (+215) 1745504 (+58) 1.06
1 1849434 1850455 1022 1849408 (-26) 1850496 (+41) 1.03
1 2501532 2502553 1022 2501632 (+100) 2502592 (+39) 0.97
1b 2562619 2563640 1022 2562560 (-59) 2563648 (+8) 1.00
1 2578005 2579026 1022 2577952 (-53) 2579040 (+14) 1.04
1 2735647 2736668 1022 2735616 (-31) 2736704 (+6) 1.12
1 2782519 2783540 1022 2782464 (-55) 2783584 (+44) 1.01
1c — — — 1507616 1508672 1.05
1c — — — 2595328 2596448 0.96

a: The region was divided into two subregions. The other one is 841728-842240. b. These
are the original genes that exist in Syntrophomonas wolfei subsp. wolfei str. Goettingen,
while the rest are randomly inserted duplications. c:Pre-existing duplications of
gene-1022 (2562619-2563640) in Syntrophomonas wolfei subsp. wolfei str. Goettingen

occurred, repeated regions of gene-1022, the estimated copy numbers increase for all five

simulated sequences.
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All Mapping Results

Table 7.11: Test results for gene-8177 Rows: reference sequences. Columns: reads donor
sequences. CPs: copies. Numbers of copies indicated in the first row and column are the
number of inserted copies.

Ref\Reads Seq-1 2 CPs Seq-2 4 CPs Seq-3 6 CPs Seq-4 10 CPs Seq-5 12 CPs
Seq 1 2.04a 2.04b 2.04 4.02 2.08 6.35 2.07 10.69 2.07 12.58
2 CPs 1.01c 7488d 2.02 8192 3.04 8064 5.24 8064 6.18 8064
Seq 2 4.01 2.05 4.05 4.02 4.16 6.40 4.09 10.66 4.09 12.60
4 CPs 0.53 8192 1.04 8176 1.59 8192 2.69 8208 3.20 8208
Seq 3 6.01 2.01 6.05 3.95 6.22 6.35 6.14 10.62 6.14 12.56
6 CPs 0.35 8576 0.68 8224 1.06 8160 1.80 8240 2.13 8232
Seq 4 10.10 2.03 10.14 4.03 10.42 6.40 10.27 10.69 10.26 12.62

10 CPs 0.21 8525 0.42 8218 0.64 8290 1.08 8163 1.28 8250
Seq 5 12.02 2.03 12.07 4.01 12.26 6.15 12.25 10.56 12.27 12.53

12 CPs 0.18 8037 0.35 8223 0.52 8731 0.90 8365 1.06 8156

a. Estimated average copy number in the reference b. Estimated average copy number in
the reads donor sequence. c. Estimated average copy number ratio. d. Average gene size
(bp). All the numbers in different cells follow the same structure.

The five sequences serve both as the reference and the reads donor sequences. The

results of gene-8177 are shown in Table 7.11. There are 2, 4, 6, 10, and 12 copies of

gene-8177 for sequence 1, 2, 3, 4, and 5. Using CNV-MM and group the related sequence

together, the average estimated copy numbers are calculated. For Table 7.11, the four

numbers in each cell are: the average copy number in the reference sequence (upper left),

the average copy number in the reads donor sequence (upper right), the copy number ratio

(lower left) and the average region length (lower right). As shown in the table, the estimated

copy numbers indeed reflect the real copy number in each sequence. Both duplications and

deletions can be detected. The estimated regions sizes are close to the true region size:

8177 bp.

As mentioned in the previous subsection, the real copy numbers in all five pseudo-

sequences become complicated since the original sequence of the selected gene-1022 in-

trinsically has three extra repeats with different similarities. The CNV-MM results are listed
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Table 7.12: Test results for gene-1022 Rows: reference sequences. Columns: reads donor
sequences. For each reference sequence, two sets of conditions are presented and separated
by dashed line. The first two rows in each reference sequence are the average results of all
regions in a group. The last two rows in each reference sequence are the average results
of only the inserted regions are included. “—” represents the results are not significantly
different from the first condition. Numbers of copies indicated in the first row and column
are the number of inserted copies.

Ref\Reads Seq-1 20 CPs Seq-2 16 CPs Seq-3 8 CPs Seq-4 2 CPs Seq-5 1 CP
23.57a 22.65b 22.07 16.04 22.50 8.36 21.2 3.60 21.3 2.79

Seq 1 1.03c 1041d 0.78 1389 0.40 1311 0.17 1484 0.14 1341
20 CPs — — — — — — — — — —

— — — — — — — — — —
19.24 20.41 19.25 19.27 16.24 7.15 18.16 3.67 18.04 2.82

Seq 2 1.13 1052 1.06 1028 0.51 1573 0.21 1384 0.16 1267
16 CPs — — — — 19.54 9.56 — — — —

— — — — 0.52 1076 — — — —
9.30 14.69 10.65 17.55 9.34 8.21 8.90 5.39 8.65 4.47

Seq 3 1.62 1259 1.76 1063 0.90 1250 0.72 1310 0.63 1283
8 CPs 10.67 20.82 — — 10.90 9.76 10.57 4.13 10.10 3.04

2.02 1040 — — 0.93 982 0.40 1079 0.32 1063
3.62 9.8 3.36 8.59 3.66 6.22 4.28 4.96 4.07 3.48

Seq 4 2.64 1524 2.40 1851 1.73 1414 1.14 992 0.89 1040
2 CPs 4.22 19.4 4.12 16.81 4.19 8.74 — — — —

4.94 1046 4.36 1024 2.19 1040 — — — —
3.20 7.06 2.92 6.08 3.24 4.93 3.25 3.48 3.11 2.76

Seq 5 2.33 1613 2.06 2099 1.56 1664 1.11 1024 0.89 1024
1 CP 3.27 15.47 3.22 13.65 3.40 7.72 — — — —

5.11 1024 4.48 1024 2.37 1024 — — — —

a. Estimated average copy number in the reference b. Estimated average copy number in
the reads donor sequence. c. Estimated average copy number ratio. d. Average gene size.

in Table 7.12. Two sets of results are presented for each reference sequence. The first one

is the average results for all grouped regions, including the intrinsic repeated regions. The

second is the average results for only the inserted repeats. Because the intrinsic repeated

regions only partially resemble the inserted sequence, the average estimated copy numbers

are generally smaller than inserted-sequence-only copy numbers. Although it is possible

to separate the mapping regions of the intrinsic repeated regions from the inserted repeats,

the reads generated from the intrinsic repeats are still included. As a result, the estimated
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copies, 21 23, 16-19, 8 10, 4 5, and 2 3 for sequence 1 to 5, tend to be higher than the

expected values (the diagonal cells in Table 7.12). Despite the extra copies provided by the

intrinsic repeats, the estimated copy numbers maintain internal consistencies over different

reference-query sequences pairs except when using sequence-5 as the reference sequence,

where the number of copies in the query sequences tend to be underestimated. Full list of

detected CNVs are listed in Appendix Tables E.18 to E.42.

7.4 Comparing CNV-MM with CNVnator

One of the most widely use CNVs detectors is CNVnator.[42, 116, 230] CNVnator takes

the MAQ mapping results, which randomly chooses a mapping location for a multi-read

(read has multiple mapping locations). As explained in Figure 7.1, although the correct

read depth might be reconstructed when map multi-reads to random positions, false dupli-

cations, and deletions can occur. To compare the performance of CNV-MM and CNVnator,

the mapping results from NN (in SAM format, see Chapter 2) are analyzed by both meth-

ods. To mimic the MAQ output, all the multi-reads are given zero quality scores (please see

Chapter 2 for details about quality scores) for CNVnator to recognize the multiple aligned

reads. Instead of mapping reads to all possible locations as mrFAST and extract the abso-

lute copy numbers of the query sequence (while the output entries might not be real CNV

regions), the output of CNVnator is expected to be the copy number of “real” CNV regions.

As in the similarity test in Section 7.3.1, the genome sequence from 1542312 to 1543124

of Syntrophomonas wolfei subsp. wolfei str. Goettingen was taken as the mother gene

(gene-A, 812bp) and inserted at 1543144 (to 1543956) to generate pseudo-sequence-2 with

100% similarity. To generate pseudo-sequence-3, an extra piece of the gene-A is inserted at

1545653 (to 1546465, also 100% similarity). Simulated reads with 1% uniform error rate,

and 2% indel rate with the indel length follows a geometric distribution were generated

from Seq-2 (two copies of gene-A) and were mapped to Seq-3 (three copies of gene-A).

The reconstructed trajectories are shown in Figure 7.17. When using CNV-MM, not
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Figure 7.17: Mapping trajectories for CNV-MM and CNVnator. (A) to (D) the whole
trajectories while (E) to (G) are trajectories zoomed into 1541000-1548000. (A) to (C)
and (E) to (G) are CNV-MM results. (A) and (E) are average number of assignments
trajectories. (B) and (F) are test statistics trajectories. (C) and (G) are binary trajectories.
The blue lines are the read depth obtained directly from the mapping results. The orange
lines are read depth extracted by CNV-MM. (D) and (H) are trajectories reconstructed by
the results of CNVnator.

only the absolute copy numbers of the reference (Fig. 7.17A) and query sequence (Fig. 7.17

C) are obtained, but also the identification of true CNV regions with the TS trajectory (Fig.

7.17 B). Although “real” CNV regions should be reported with CNVnator, the trajectories
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using the CNVnator output shows that there are many of false discoveries. Trajectories

zoom into 1541000-1548000 are shown in Figure 7.17 E to H. This region is where the

three copies of gene A located in Seq-3 (reference sequence). While CNV-MM successfully

identifies the CNV regions (Fig. 7.17 E to G), CNVnator misses this only true CNV genes

(Fig. 7.17 H).

Although CNV-MM does detect gene-A from 1542312 to 1543124, and from 1543144

to 1543956, these two copies, which are only 20-bp apart, are merged (Fig. 7.17 E to

G). This contributes to a lower estimated query copy number (Table 7.13) for this merged

region. Nevertheless, with the grouping function on, the three gene-A are identified as

related. The group average copy numbers can, therefore, be calculated and are 3.07 for

the reference sequence, 2.01 for the query sequence and 0.66 for the TS ratio. Since the

reference sequence is Seq-3 (three copies), and the query sequence is Seq-2 (two copies),

CNV-MM accurately determines the copy numbers of the CNV region. As for false discov-

ery rates, CNVnator reports 53 false discoveries while there are only 11 false discoveries in

Table 7.13: CNVs report from CNV-MM CNV size is in base pairs (bps). Negative
group numbers indicate deletions. “map” represents the indices determined by CNV-MM
and “CN” means “copy number”. For TS copy number, the copy number ratio is measured
instead.

Group 5’-end (map.) 3’-end (map.) Ref CN Query CN TS CN Size (bp)
1 331712 333568 3.22 4.29 1.37 1856
1 372672 374528 3.22 4.29 1.35 1856
1 1815296 1817088 3.24 4.36 1.37 1792
2 821760 823296 7 7.21 1.1 1536
2 845120 846592 6.97 6.8 1.04 1472
2 1349760 1351328 6.92 7.91 1.2 1568
2 1997952 1999488 6.94 7.86 1.19 1536
2 2143744 2145280 6.92 7.98 1.19 1536
2 2798048 2799488 6.97 8.02 1.21 1440
2 2852128 2853632 6.93 7.83 1.16 1504
-1 1542400 1543936 3.03 1.86 0.603 1536
-1 1545600 1546496 3.11 2.16 0.707 896
-2 1994240 1994496 0.777 0.674 0.832 256
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CNV-MM. Our data shows that by properly accounting for mapping multiplicity and cal-

culating three read depth trajectories, CNV-MM can better detect CNVs than the popular

algorithm CNVnator. A full list of CNV reports of CNVnator can be found in Appendix

Table E.43.

7.5 Copy Number Detection – Real Reads

A. baumannii is one of the major pathogens around the world and has becom resistant to

many different antibiotics.[231, 232] Resistance has been acquired through the incorpora-

tion of mobile genetic elements including insertion sequences (IS), resistance islands, and

plasmids.[233, 234] A. baumannii is naturally resistant to β-lactam antibiotics due to the

intrinsic β-lactamase and OXA-51 carbapenemase (blaOXA−51).[234–236] Several IS, in-

cluding ISAba1, ISAba2, ISAba3, ISAba4, and ISAba10 have been shown to be associated

with the expression of the OXA-51-like enzymes.[234, 235, 237–240] Although β-lactam

sensitive strains, such as A. baumannii strain ATCC 17978, have both the IS and OXA-

51-like enzymes encoded in the chromosome, the expression levels of the OXA-51-like

enzymes are not high enough to provide resistance to carbapenem. The expression levels

of OXA-51-like enzyme is significantly increased when the IS is transposed to be upstream

of blaOXA−51. This upstream IS provides an extra promoter for gene blaOXA−51 and thus

increases the expression level of OXA-51-like enzymes. [234, 235, 238, 240]

To further test CNV-MM, paired-end, 251-bp real short reads data, SRR2558867, from

multidrug-resistant, A. baumannii clinical isolate was downloaded from the sequence reads

archive (http://www.ncbi.nlm.nih.gov/sra). The reads were aligned to two

reference sequences, A. baumannii strain ATCC 17978 (sensitive strain) and A. bauman-

nii strain MDR-ZJ06 (multidrug-resistant strain), downloaded from NCBI (ftp://ftp.

ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/).
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Figure 7.18: Mapping trajectories for SRR2558867 mapped to A. baumannii strain
ATCC 17978. (A) to (C) the whole trajectories. (D) to (F) zoom in to 798000 - 815000. (A)
and (D) Are average number of assignments trajectories. (B) and (E) are binary trajectories.
(C) and (F) are test statistics trajectories. The blue lines are the read depth obtained directly
from the mapping results. The orange lines are read depth extracted by CNV-MM.

7.5.1 A. baumannii strain ATCC 17978 as Reference Sequence

The coverage, calculated from the sequence size of A. baumannii strain ATCC 17978, is

135x. The real coverage, however, is 74x since the test results are too large (less confident)

for some of the reads, either due to sequencing errors or unique sequence from the reads

donor sequence. The reconstructed trajectories corrected for GC-content (details in Chapter

2) are shown in Figure 7.18.

There are two major duplication peaks: 799744-800768 and 3128448-3128704. The

sequences corresponding to these two regions were exported and search with BLAST.[38,

241] The latter is a hypothetical protein with unknown function. The 799744-800768 is the

ISAba1 insertion sequence, including the two putative transposases and OXA-95 (belongs
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to the OXA-51 cluster) promoters (both -35 and -10) derived from ISAba1. In the trajec-

tories, it is estimated to have about 1.27 copy of the ISAba1 in ATCC 17878, ∼14 copies

in the reads donor sequence, and the ratio is about ∼10 times higher in the reads donor

sequence (Fig. 7.18 D to F). The sequence between 800953-812288 encodes the 23S, and

16S ribosomal RNA and both sequences have ∼4 5 copies. Thus, the ratio is one in the TS

trajectory. Full list of deletions and duplications can be found in Appendix Tables E.44 and

E.44.

Although the ISAba1 insertion is ∼10 times higher in the short reads sequence, the

blaOXA−51 gene (c1765468-c1766292), which is more than 950 kb downstream on the

complemented strand for ATCC 17978, does not have a higher number of copies. Both

the reference and the query sequences have one copy of blaOXA−51. Since the read depth-

based method can only detect the copy number differences but not the transposition of

genes, it is unknown that whether the extra ISAba1 copies are indeed inserted upstream of

the blaOXA−51 gene in the reads donor sequence and thus increase the expression levels of

OXA-51-like enzymes. Although the higher copy numbers of ISAba1, ares very encourag-

ing, we still need more analysis such as de novo assembly to verify whether the high copy

numbers of ISAba1 directly contribute to the high antibiotic resistance.

7.5.2 A. baumannii strain MDR-ZJ06 as Reference Sequence

The same short reads file is mapped to another reference sequence, A. baumannii strain

MDR-ZJ06.[242]. Again, some of the reads are not mappable under the current threshold.

As a result, the real coverage is 96x instead of 135x. Compared to A. baumannii strain

ATCC 17978, A. baumannii strain MDR-ZJ06 is a closer strain to the short reads sequence

since the read depth baselines are much smoother with far fewer deletions (Fig. 7.19 A

to C). Although there are several multiple copies regions in both the average and binary

trajectories, most of them share the same copy numbers in both trajectories. The major copy

number differences shown in (Fig. 7.19 C) is peak 3212032 - 3212288, where the reference
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Figure 7.19: Mapping trajectories for SRR2558867 mapped to A. baumannii strain
MRD-Zj06. (A) to (C) the whole trajectories. (D) to (F) zoom in to 2051000 - 2061000.
(A) and (D) are average number of assignments trajectories. (B) and (E) are binary trajec-
tories. (C) and (F) are test statistics trajectories. The blue lines are the read depth obtained
directly from the mapping results. The orange lines are read depth extracted by CNV-MM.

has 1.56 copies and the reads donor sequence has around 9.69 copies. By mapping these

regions with BLAST, this peak corresponds to biofilm-associated protein. The peaks (TS

trajectory) around 1250000 and 2410000 are several hypothetical proteins.

There are several deletions and duplications detected by CNV-MM (Appendix Table

E.47 and E.46). When determining the CNV regions with grouping, two groups of dupli-

cations and one groups of deletions are found. The first duplication group (39424-44800,

218112-223744, and 716544-721920) has ∼3 copies in the reference and ∼4.5 copies in

the reads donor sequence. This group encodes 16S, 23S, 5S, and tRNA. The deletion

group (including regions: 3474944-3480576, 3507328-3512960, and 3974144-3980544)
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has ∼3 copies in the reference and 1∼2 copies in the reads donor. The complemen-

tary strand of those regions also encode rRNA and tRNA. The second duplication group

(94464-95712, 2051712-2052960, 2058975-2060160, and 2363392-2364647) encodes the

IS4 family transposase (ISAba1 is part of the IS4 family) open read frame (ORF) 1 and

2. However, the reference sequence has four copies while the reads donor has 5∼6 copies.

Since duplication group 1 and deletion group 1 encode the same gene but on different DNA

strands and the copy numbers compensate each other, the CNV differences observed here

might be because of the different distribution of the same amount of genes on the comple-

mentary strains.

For duplication group 2, the 2051712-2052960 and 2058975-2060160 regions flank

a deletion region as shown in Figure 7.19 D to F. Since no reads is mapped to the re-

gion, the read depth is zero for all three trajectoreis. This deletion region is the Tn2009

transposon that encodes the DEAD/DEAH box helicase-like protein, ATPase, and the β-

lactamase OXA-23.[242] Since there are at least eight distantly related OXA-type car-

bapenemases,[236, 243] it is possible that OXA-23 (reference OXA type) and OXA-51

(known query sequence OXA type from mapping to ATCC 17978) do not share enough of

sequence similarity to be mapped by NN and thus a deletion is shown.

7.6 Conclusions

As most of the aligners can not properly account for mapping multiplicity without having

to know what sequence to look for, the subsequent CNV detectors are not developed for

handling repeated genes in the reference sequence. In this chapter, it has been shown

that NN can detect all mapping locations while maintaining high mapping accuracies with

different types of reads errors.

To use the mapping results from NN to detect CNVs, CNV-MM is developed. By

calculating the read depth trajectories differently, CNV-MM can estimate the copy num-

bers in the reference and the query sequence from single short reads file. An independent
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copy number ratio can also be calculated to confirm the CNV events. We also demonstrate

that CNV-MM can be applied to different read length from 36-bp to 300-bp, although it

performs better with read longer than 100-bp. It does not have a theoretical upper limit

for the CNV size, and it can detect the CNVs as short as the read length. It is robust

for a wide range of copy number pairs in the reference and query sequence. Although

more simulations have to be done to determine the detection limit for copy number calcu-

lations. The NN-CNV-MM method is also applied to real short reads data, and it shows

that the multidrug-resistant clinical A. baumannii isolates have 9∼10 times higher copy

of carbapenemase-associated insertion sequence (ISAba1). Although more analyses are

needed to confirm the correlation between the high copies of ISAba1 and higher MIC, this

analysis demonstrates one of the possible applications for CNV-MM.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

Data analysis is an integral part of scientific research. From mean and standard deviation

to clustering and correlation, different information can be extracted from a given data set.

With advancing technology, the size and the complexity of data set have grown. To adapt

to the ever-changing data structures, new quantitative methods are needed.

The data acquired from flow cytometry contains hundreds of thousands of data points

with high dimensionality. Although methods have been developed to quantify the differ-

ences among cytometric data, PB-sQF, by calculating the Euclidean distance between the

adaptively binned signatures, is the only one that calculates the linear distance while being

scalable with multi-dimensions. Using PB-sQF to characterize the differences between the

cytometric data of antibiotic-treated bacteria and the control, we have confirmed the rela-

tion between ROS generation and bactericidal antibiotics. A rapid post-blood culture AST

(four hours processing time) has been developed based on the antibiotic-induced scattered

light changes. With only one hour incubation with antibiotics at the MIC, clear cytometric

signal changes are observed for the antibiotic-treated, susceptible bacteria. PB-sQF shows

significant changes in test statistics for susceptible bacteria while the resistant strains have

constant test results. In Chapter 4, a pre-blood culture fast AST, (FAST), has been devel-

oped using saponin to remove the blood cells, which enable bacteria to grow in optimal

conditions thereby reducing the incubation time from more than two overnight cultures

(blood culture and AST) to five hours (including AST). PB-sQF can again select the effec-

tive treatments by analyzing the scattered-light pattern changes for each bacteria-antibiotic

combination.

Although we have shown that rapid ASTs can be built from using PB-sQF to analyze

cytometric data, we have encountered some difficulties with gram-positive bacteria includ-
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ing the weak β-lactamase generating S. aureus in post-blood culture and slow growing S.

aureus and Streptococcus spp. clinical isolates for pre-blood culture. For the post-blood

culture test, the antibiotic-induced scattered-light shift was recorded. The MIC, however,

is defined as the minimum antibiotic concentration that “inhibits bacterial growth”. As a

result, measuring the scattered-light shift is not the same as growth inhibition. As a result,

consistent results should be obtained if growth inhibition is measured instead. For the pre-

blood culture, different broth other than CAMHB should be used. In the CLSI guidelines,

CAMHB with 2∼5% lysed horse blood is the standard AST broth for both S. aureus and

Streptococcus spp.. Since the microdilution AST depends on the turbidity due to bacterial

growth, both bacteria must have decent growth rates with CAMHB with 2∼5% lysed horse

blood. Being able to handle gram-positive bacteria will greatly increase the generality of

our method.

With a few modifications, PB-sQF can also be used in genome sequence analysis. By

converting the character string data into histogram data with coordinates and counts, PB-

sQF can calculate the distance between two genome sequences. This distance allows one

to perform sequence typing, build a phylogenetic tree and track down outbreak strains.

The complete sequence, however, is not always obtainable since the raw data from NGS is

millions of unassembled short reads. These short reads are mapped by short reads aligners.

Current short reads aligners, however, have difficulties mapping long reads with high error

rates, and assigning reads to multiple mapping locations. Since PB-sQF is a distance-based

aligner, long reads, high error rates and mapping multiplicity can easily be solved by setting

a test threshold. Although PB-sQF has better error tolerance than most of the tested short

reads aligner, NN, which is also a Euclidean distance-based statistic, has even better high

error tolerance and is computationally faster. Since NN has only been used in sequence

typing with 16S RNA, we adapted the short reads mapping procedure developed for PB-

sQF to use NN. We have shown that while NN is robust against reads errors, it also finds

all the mapping locations in a reference sequence with repeated genes.

206



Properly accounting for mapping multiplicity is important in finding CNV between

sequences. Current CNV detectors, however, only build the read depth trajectory with

uniquely mapped reads. To fully utilize the NN mapping results, we have developed CNV-

MM to calculate read depth from all valid assignments of all the reads. By calculating the

read depth differently, read depth trajectories proportional to the copy number in the refer-

ence sequence, the copy number of the query sequence, and the copy number ratio can all

be obtained. The NN-CNV-MM methods can analyze data with different read length, CNV

sizes, and copy numbers of genes. By applying NN-CNV-MM on real short reads data from

multidrug-resistant A. baumannii clinical isolates, we found that the insertion sequence,

ISAba1, which is associated with the carbapenem-resistant gene blaOXA by increasing the

expression levels of carbapenemase, increased ∼10 times over that in the sensitive strains.

While we have shown that NN-CNV-MM is great in CNV detections for references with

repeated genes, its performance can be improved. First, CNV-MM should adapt a more

sophisticated segmentation process such as the hidden Markov model, mean-shift algorithm

or shifting level model. The current procedure for segmentation is to determine the copy

number transition points by the derivative of a read depth trajectory. This method, however,

might encounter some problems when the coverage is low even with wavelet denoising. For

bacterial data, the coverage is normally not a problem since the bacterial genome is small.

To adapt our method to human genomes, however, coverage is an important issue. Second,

the NN mapping is time consuming even though we have narrowed down the search space

by pre-calculating the distances between the library reads and control reads. Since this

pruning search space process, which only has 50 test statistics calculations, is slower than

the test statistics calculations between the unknown reads with all the candidate library

reads, which could have 20 times more calculation, a more efficient memory management

can greatly speed up the searching process. Third, both NN and CNV-MM are written in

MATLAB, to make the codes more universal, memory efficient, and faster, the algorithms

should be transferred to open source software like C++.
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Despite there being possible improvements for both the fast AST with PB-sQF and

the CNV detections with NN-CNV-MM, this dissertation has shown the potential of us-

ing Euclidean distance-based statistics to extract useful information from two very distinct

types of data. While the improvements can greatly increase the impact of our methods in

both fields, these distance-based methods can be applied to other types of data and can

potentially be useful in many more fields.
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APPENDIX A

WEIGHTS OF TS TRAJECTORY

In the TS trajectory, a read depth from a single read is divided into several valid alignments

by the weights defined in equation 2.22. The read depth of alignment-1 is Weighti∑Ni
assignments

j=1 Weightj

.

Ideally, a read depth should be distributed as follows. When the test statistic is small, this

alignment has a higher probability to be the major read contributer. Therefore, it should

have a larger share of the read depth. On the other hand, the read depth of an alignment

should be small when another alignment has a small test statistics. Also, a read depth

should be evenly distributed for all alignments when the test statistics are the same.

Instead of the inverse of the test statistics, the weights determined by
√
2−TS was also

considered since the maximum test statistic value is
√
2 as discussed in Section 2.2 (Fig.

A.1 A). To understand the differences between the two weights, two alignments with test

statistics ranging from 0 to 2 were generated. In Figure A.1 B, the weights were calculated

from 2−TS and the read depth for alignment-1 is
√
2−TS1

(
√
2−TS1)+(

√
2−TS2)

. As a result, the read

depths for alignment-1 are zeros when the test statistics of alignment-1 equals to two and

the read depths goes to one when the test statistics of the alignment-2 are two. However, it

does not follow the idea behaviors as mentioned above.

When weights are calculated from the inverse of test statistics, the read depth for

alignment-1 is
1

TS1

( 1
TS1

)+( 1
TS2

)
. Since the test statistics are set as 10−4 when zero occurs to

avoid division by zero, the read depth of alignment-1 is close zero when the test statistics

of alignment-2 is zero and the read depth of alignment-1 is close to one when the test statis-

tics of alignment-1 is zero. The read depth is 1
2

when test statistics of both mapping results

are zero. The read depth follows the ideal behavior when the weights are depended on the

inverse of test statistics and thus was taken in this study (Fig. A.1 C).
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√
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2 − TS. (C) Read depth of mapping result-2 with weights were
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APPENDIX B

SUPPORTING INFORMATION FOR CHAPTER 3

This chapter contains the complete cytometry data for Chapter 3, including data of lab-

strain and E. coli clinical isolate, lab-strain P. aeruginosa, lab-strain K. pneumoniae, A.

nosocomialis clinical isolate and S. aureus (MSSA and MRSA).

All the flow cytometry data presented here were labeled with MH-IR786. For the scat-

ter 2D plots, the pseudocolor plots are the paired-control, the no-antibiotic data, for each

antibiotic-strain. The contours are the antibiotic-treated data with the antibiotic concentra-

tion indicated otherwise.

B.1 MIC Tables

Table B.1: MIC (µg/mL) for E. coli and P. aeruginosa.

MIC Pen G Amp Nor Cip Kan Tet Ery Azi Gen
E. coli ATCC 33456 32 100 0.125 0.016 8 1 150 8 2

E. coli Mu14S > 5000 — — — — > 8 — — 4
P. aeruginosa ATCC 27853 — 512 2 — 1024 16 — — —

Table B.2: S. aureus MIC (µg/mL) for each antibiotic-strain combination.

MIC Pen G Oxa Van Azi
S. aureus ATCC 25923 0.0625 0.25 0.2 0.1
S. aureus ATCC 29213 2-4 0.5 1 1
S. aureus ATCC 43300 8-16 32 2 > 256
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Table B.3: MIC (µg/mL) for textitK. pneumoniae and A. nosocomialis.

MIC Amp Nor Cip Kan Tet Ery Azi Gen Cef
K. pneumoniae ATCC 700603 > 2000 — 0.5 — 16 256 64 8 8

A. nosocomialis strain M2 > 1024 4 1
4
− 1

2
8 1 — 4-8 4 16

A. nosocomialis strain M2-4B > 1024 32 2-4 256 1 — 2 2 32
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B.2 Full Cytometric Data

Figure B.1: Antibiotic-induced flow cytometry signal changes at different antibiotic
concentrations for E. coli (ATCC 33456). The contours are the antibiotic-treated data
from 1/16x MIC, 1/4x MIC, to 1x MIC as indicated at the top of each column. From the
top to the bottom rows are data of penicillin g, ciprofloxacin, norfloxacin, and kanamycin.
The right column contains the corresponding fluorescence data. Scattered light histograms
correspond to the concentrations labeling the blue, green, and red curves in the fluorescence
histograms.
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Figure B.2: Flow cytometry data for bacteriostatic antibiotics. Analogous to data in
Appendix Figure B.1, from the top to the bottom rows are data of E. coli (ATCC 33456)
exposed to tetracycline, erythromycin and azithromycin. Both bactericidal and bacterio-
static antibiotics give gradually increasing scattered light and fluorescence signal shifts
from 1/16x MIC to 1x MIC.
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Figure B.3: Flow cytometry data for lab strain E. coli (ATCC 33456) and clinically
isolated resistant strain E. coli (Mu14S). The contours represent the antibiotic-treated
data and the colored dot plots are the no-antibiotic control data. From left to right, the
antibiotic concentrations correspond to those indicated by the blue, green, and red curves,
respectively in the fluorescence histograms of column 4. For PenG and Tet data, both
strains were treated at the MIC of ATCC. For Gen data, both strains were treated at the
MIC of Mu14S.
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Figure B.4: Antibiotic-induced scatter signal changes in P. aeruginosa. Scatter plots of
P. aeruginosa treated with antibiotic from 1/16x MIC to 1x MIC. Actual antibiotic concen-
trations again correspond to those indicated in the fluorescence histograms for blue, green,
and red curves. Scatter changes were most prominent at 1x MIC. The top to the bottom
rows show data with ampicillin, norfloxacin, kanamycin, and tetracycline.
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Figure B.5: Flow Cytometry data of MRSA and MSSA. Top 3 rows: penicillin g treated
S. aureus strain 25923, strain 29213, and strain 43300 (MRSA). Bottom 2 rows: oxacillin-
treated S. aureus strain 25923, strain 29213, and strain 43300 (MRSA)
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Figure B.6: Triplicates cytometric data for penicillin-treated S. aureus strain ATCC
25923. The data were prepared at the same time and taken on the same machine. The
fluorescence signals, however, fluctuated. 1x MIC is 1/16 µg/mL.

Figure B.7: Bactericidal Antibiotic-induced scatter changes for K. pneumoniae. Scat-
ter plots of K. pneumoniae treated with antibiotic from 1/16x MIC to 1x MIC. The top to
the bottom rows show data with ciprofloxacin, gentamicin, cefotaxime, and ampicillin.
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Figure B.8: Bacteriostatic Antibiotic-induced scatter changes for K. pneumoniae.
Analogous to data in Appendix Figure B.7, from the top to the bottom rows are data
of K. pneumoniae (ATCC 700603) exposed to azithromycin, erythromycin and tetracy-
cline. Both bactericidal and bacteriostatic antibiotics give gradually increasing scattered
light shifts from 1/16x MIC to 1x MIC.
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Figure B.9: Antibiotic-induced scatter changes for A. nosocomialis strain M2. Scatter
plots of A. nosocomialis strain M2 treated with antibiotic from 1/16x MIC to 1x MIC or at
clinical breakpoints. The top to the bottom rows show data with tetracycline, kanamycin,
norfloxacin, ciprofloxacin, cefotaxime and ampicillin. Since M2 is resistant to ampicillin
with MIC greater than 1024 µg/mL, the highest ampicillin concentration was set at 10x of
the sensitive breakpoint, 160 µg/mL.
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Figure B.10: Antibiotic-induced scatter changes for A. nosocomialis strain M2-4B.
Scatter plots of A. nosocomialis strain M2-4B treated with antibiotic from 1/16x MIC to
1x MIC or at clinical breakpoints. The top to the bottom rows show data with tetracycline,
kanamycin, norfloxacin, ciprofloxacin, cefotaxime and ampicillin. Since M2-4B is resistant
to ampicillin with MIC greater than 1024 µg/mL, the highest ampicillin concentration was
set at 10x of the sensitive breakpoint, 160 µg/mL.

222



APPENDIX C

SUPPORTING INFORMATION FOR CHAPTER 4

This chapter contains the pure culture cytometry data for strains tested in Chapter 4, in-

cluding E. coli strain Mu890 and Mu14S, K. pneumoniae strain Mu55 and Mu670, and A.

nosocomialis strain M2.

All the flow cytometry data presented here were label-free. For the scatter 2D plots, the

pseudocolor plots are the paired-control, the no-antibiotic data, for each antibiotic-strain.

The contours are the antibiotic-treated data with the antibiotic concentration indicated oth-

erwise.
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Figure C.1: Bactericidal Antibiotic-induced scatter changes for E. coli strain Mu890.
For all data, pseudocolor plot: no-antibiotic, paired control. Black contour: antibiotic-
treated data. Mu890 pure culture started from around 1000 CFU/mL and incubated for 5
hours, complementary to Figure 4.8 A. (A) Tetracycline (B) Gentamicin (C) Ampicillin.
The 1x MIC for tetracycline is 2 µg/mL and 8 µg/mL for gentamicin. For ampicillin, 1x
MIC was set as 32 µg/mL, the resistant breakpoint for Enterobacteriaceae. (D) PB-sQF 2D
test results. The error bar only include the binning error since data was only done once.
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Figure C.2: Bactericidal Antibiotic-induced scatter changes for E. coli strain Mu14S.
For all data, pseudocolor plot: no-antibiotic, paired control. Black contour: antibiotic-
treated data. Mu14S pure culture started from around 1000 CFU/mL and incubated for 5
hours, complementary to Figure 4.8 B. (A) Tetracycline (B) Gentamicin (C) Ampicillin.
The 1x MIC for gentamicin is 8 µg/mL. For ampicillin, 1x MIC was set as 32 µg/mL;
while for tetracycline, 1x MIC was set as 16 µg/mL. Both are the resistant breakpoint for
Enterobacteriaceae. (D) PB-sQF 2D test results. The error bar only include the binning
error since data was only done once.
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Figure C.3: Bactericidal Antibiotic-induced scatter changes for K. pneumoniae strain
Mu55. For all data, pseudocolor plot: no-antibiotic, paired control. Black contour:
antibiotic-treated data. Mu55 pure culture started from around 1000 CFU/mL and incu-
bated for 5 hours as complementary to Fig. 4.9 A. (A) Tetracycline (B) Gentamicin (C)
Ampicillin. The 1x MIC for gentamicin is 1 µg/mL. For ampicillin, 1x MIC was set as 32
µg/mL; while for tetracycline, 1x MIC was set as 16 µg/mL. Both are the resistant break-
point for Enterobacteriaceae. (D) PB-sQF 2D test results. The error bar only include the
binning error since data was only done once.
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Figure C.4: Bactericidal Antibiotic-induced scatter changes for K. pneumoniae strain
Mu670. For all data, pseudocolor plot: no-antibiotic, paired control. Black contour:
antibiotic-treated data. Mu670 pure culture started from around 1000 CFU/mL and in-
cubated for 5 hours as complementary to Fig. 4.9 B. (A) Tetracycline (B) Gentamicin (C)
Ampicillin. The 1x MIC for tetracycline is 2 µg/mL and for gentamicin is 4 µg/mL. For
ampicillin, 1x MIC was set as 32 µg/mL, the resistant breakpoint for Enterobacteriaceae.
(D) PB-sQF 2D test results. The error bar only include the binning error since data was
only done once.
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Figure C.5: Bactericidal Antibiotic-induced scatter changes for A. nosocomialis strain
M2. For all data, pseudocolor plot: no-antibiotic, paired control. Black contour: antibiotic-
treated data. M2 pure culture started from around 1000 CFU/mL and incubated for 5 hours
as complementary to Fig. 4.10. (A) Tetracycline (B) Gentamicin (C) Ampicillin. The 1x
MIC for tetracycline is 1/4 µg/mL and for gentamicin is 2 µg/mL. For ampicillin, 1x MIC
was set as 128 µg/mL, the resistant breakpoint for Acinetobacter. (D) PB-sQF 2D test
results. The error bar only include the binning error since data was only done once.
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Figure C.6: Bactericidal Antibiotic-induced scatter changes for S. aureus strain
NRS382. For all data, pseudocolor plot: no-antibiotic, paired control. Black contour:
antibiotic-treated data. NRS382 pure culture started from around 1000 CFU/mL and in-
cubated for 5 hours as complementary to Fig. 4.11. (A) Vancomycin (B) Oxacillin (C)
Gentamicin. The 1x MIC for vancomycin is 2 µg/mL and for gentamicin is 1/4 µg/mL. For
oxacillin, it was set as 4 µg/mL, the resistant breakpoint for S. aureus.
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APPENDIX D

SUPPORTING INFORMATION FOR CHAPTER 5

This chapter contains the complete list of the library strains, assembled “unknown” se-

quences, and the raw short reads files. The threshold construction for bacterial typing,

the typing results for all the assembled sequences, and the results for pooled-short reads

typings from different sequencers were also included.

D.1 Downloaded Sequence Lists
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Table D.1: Assembled library sequence from NCBI.

Library List
gi—158333233—ref—NC˙009925.1— Acaryochloris marina MBIC11017 chromosome
gi—162446888—ref—NC˙010163.1— Acholeplasma laidlawii PG-8A chromosome
gi—148259021—ref—NC˙009484.1— Acidiphilium cryptum JF-5 chromosome
gi—117927211—ref—NC˙008578.1— Acidothermus cellulolyticus 11B chromosome
gi—120608714—ref—NC˙008752.1— Acidovorax citrulli AAC00-1 chromosome
gi—121592436—ref—NC˙008782.1— Acidovorax sp. JS42 chromosome
gi—126640115—ref—NC˙009085.1— Acinetobacter baumannii ATCC 17978 chromosome
gi—50083297—ref—NC˙005966.1— Acinetobacter sp. ADP1 chromosome
gi—165975457—ref—NC˙010278.1— Actinobacillus pleuropneumoniae serovar 3 str. JL03 chromosome
gi—126207488—ref—NC˙009053.1— Actinobacillus pleuropneumoniae serovar 5b str. L20 chromosome
gi—152977688—ref—NC˙009655.1— Actinobacillus succinogenes 130Z chromosome
gi—117617447—ref—NC˙008570.1— Aeromonas hydrophila subsp. hydrophila ATCC 7966 chromosome
gi—145297124—ref—NC˙009348.1— Aeromonas salmonicida subsp. salmonicida A449
gi—159185562—ref—NC˙003063.2— Agrobacterium fabrum str. C58 chromosome linear
gi—110832861—ref—NC˙008260.1— Alcanivorax borkumensis SK2 chromosome
gi—114319166—ref—NC˙008340.1— Alkalilimnicola ehrlichii MLHE-1 chromosome
gi—150387853—ref—NC˙009633.1— Alkaliphilus metalliredigens QYMF chromosome
gi—158319059—ref—NC˙009922.1— Alkaliphilus oremlandii OhILAs chromosome
gi—75906225—ref—NC˙007413.1— Anabaena variabilis ATCC 29413 chromosome
gi—86156430—ref—NC˙007760.1— Anaeromyxobacter dehalogenans 2CP-C chromosome
gi—153002879—ref—NC˙009675.1— Anaeromyxobacter sp. Fw109-5 chromosome
gi—56416370—ref—NC˙004842.2— Anaplasma marginale str. St. Maries chromosome
gi—88606690—ref—NC˙007797.1— Anaplasma phagocytophilum HZ
gi—15282445—ref—NC˙000918.1— Aquifex aeolicus VF5
gi—157736271—ref—NC˙009850.1— Arcobacter butzleri RM4018 chromosome
gi—56475432—ref—NC˙006513.1— Aromatoleum aromaticum EbN1 chromosome
gi—119960487—ref—NC˙008711.1— Arthrobacter aurescens TC1
gi—116668568—ref—NC˙008541.1— Arthrobacter sp. FB24
gi—85057280—ref—NC˙007716.1— Aster yellows witches’-broom phytoplasma AYWB
gi—119896292—ref—NC˙008702.1— Azoarcus sp. BH72 chromosome
gi—158421624—ref—NC˙009937.1— Azorhizobium caulinodans ORS 571 chromosome
gi—154684518—ref—NC˙009725.1— Bacillus amyloliquefaciens FZB42
gi—50196905—ref—NC˙007530.2— Bacillus anthracis str. ’Ames Ancestor’ chromosome
gi—30260195—ref—NC˙003997.3— Bacillus anthracis str. Ames chromosome
gi—49183039—ref—NC˙005945.1— Bacillus anthracis str. Sterne chromosome
gi—42779081—ref—NC˙003909.8— Bacillus cereus ATCC 10987
gi—30018278—ref—NC˙004722.1— Bacillus cereus ATCC 14579
gi—52140164—ref—NC˙006274.1— Bacillus cereus E33L chromosome
gi—56961782—ref—NC˙006582.1— Bacillus clausii KSM-K16
gi—152973854—ref—NC˙009674.1— Bacillus cytotoxicus NVH 391-98 chromosome
gi—57596592—ref—NC˙002570.2— Bacillus halodurans C-125 chromosome
gi—163119169—ref—NC˙006270.3— Bacillus licheniformis ATCC 14580 chromosome
gi—157690798—ref—NC˙009848.1— Bacillus pumilus SAFR-032 chromosome
gi—255767013—ref—NC˙000964.3— Bacillus subtilis subsp. subtilis str. 168 chromosome
gi—49476684—ref—NC˙005957.1— Bacillus thuringiensis serovar konkukian str. 97-27 chromosome
gi—118475778—ref—NC˙008600.1— Bacillus thuringiensis str. Al Hakam chromosome
gi—163938013—ref—NC˙010184.1— Bacillus weihenstephanensis KBAB4 chromosome
gi—60679597—ref—NC˙003228.3— Bacteroides fragilis NCTC 9343 chromosome
gi—53711291—ref—NC˙006347.1— Bacteroides fragilis YCH46 chromosome
gi—29345410—ref—NC˙004663.1— Bacteroides thetaiotaomicron VPI-5482 chromosome
gi—150002608—ref—NC˙009614.1— Bacteroides vulgatus ATCC 8482 chromosome
gi—121601635—ref—NC˙008783.1— Bartonella bacilliformis KC583
gi—49474831—ref—NC˙005956.1— Bartonella henselae str. Houston-1 chromosome
gi—49473688—ref—NC˙005955.1— Bartonella quintana str. Toulouse
gi—163867306—ref—NC˙010161.1— Bartonella tribocorum CIP 105476 chromosome
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gi—94676460—ref—NC˙007984.1— Baumannia cicadellinicola str. Hc (Homalodisca coagulata)
gi—42521650—ref—NC˙005363.1— Bdellovibrio bacteriovorus HD100
gi—119025018—ref—NC˙008618.1— Bifidobacterium adolescentis ATCC 15703 chromosome
gi—58036264—ref—NC˙004307.2— Bifidobacterium longum NCC2705 chromosome
gi—33598993—ref—NC˙002927.3— Bordetella bronchiseptica RB50 chromosome
gi—33594723—ref—NC˙002928.3— Bordetella parapertussis 12822 chromosome
gi—33591275—ref—NC˙002929.2— Bordetella pertussis Tohama I chromosome
gi—163854304—ref—NC˙010170.1— Bordetella petrii DSM 12804 chromosome
gi—111114823—ref—NC˙008277.1— Borrelia afzelii PKo
gi—15594346—ref—NC˙001318.1— Borrelia burgdorferi B31 chromosome
gi—51598263—ref—NC˙006156.1— Borrelia garinii PBi chromosome linear
gi—27375111—ref—NC˙004463.1— Bradyrhizobium japonicum USDA 110 chromosome
gi—148251626—ref—NC˙009485.1— Bradyrhizobium sp. BTAi1 chromosome
gi—146337175—ref—NC˙009445.1— Bradyrhizobium sp. ORS 278 chromosome
gi—62288991—ref—NC˙006932.1— Brucella abortus bv. 1 str. 9-941 chromosome I
gi—62316961—ref—NC˙006933.1— Brucella abortus bv. 1 str. 9-941 chromosome II
gi—161617991—ref—NC˙010103.1— Brucella canis ATCC 23365 chromosome I
gi—161620094—ref—NC˙010104.1— Brucella canis ATCC 23365 chromosome II
gi—82698932—ref—NC˙007618.1— Brucella melitensis biovar Abortus 2308 chromosome I
gi—83268957—ref—NC˙007624.1— Brucella melitensis biovar Abortus 2308 chromosome II
gi—17986284—ref—NC˙003317.1— Brucella melitensis bv. 1 str. 16M chromosome I
gi—17988344—ref—NC˙003318.1— Brucella melitensis bv. 1 str. 16M chromosome II
gi—148557829—ref—NC˙009504.1— Brucella ovis ATCC 25840 chromosome II
gi—148558820—ref—NC˙009505.1— Brucella ovis ATCC 25840 chromosome I
gi—56968325—ref—NC˙004310.3— Brucella suis 1330 chromosome I
gi—56968493—ref—NC˙004311.2— Brucella suis 1330 chromosome II
gi—163844199—ref—NC˙010167.1— Brucella suis ATCC 23445 chromosome II
gi—163842277—ref—NC˙010169.1— Brucella suis ATCC 23445 chromosome I
gi—15616630—ref—NC˙002528.1— Buchnera aphidicola str. APS (Acyrthosiphon pisum) chromosome
gi—27904513—ref—NC˙004545.1— Buchnera aphidicola str. Bp (Baizongia pistaciae) chromosome
gi—116514950—ref—NC˙008513.1— Buchnera aphidicola str. Cc (Cinara cedri)
gi—21672294—ref—NC˙004061.1— Buchnera aphidicola str. Sg (Schizaphis graminum) chromosome
gi—115350056—ref—NC˙008390.1— Burkholderia ambifaria AMMD chromosome 1
gi—115357970—ref—NC˙008391.1— Burkholderia ambifaria AMMD chromosome 2
gi—115360317—ref—NC˙008392.1— Burkholderia ambifaria AMMD chromosome 3
gi—107021562—ref—NC˙008060.1— Burkholderia cenocepacia AU 1054 chromosome 1
gi—107025343—ref—NC˙008061.1— Burkholderia cenocepacia AU 1054 chromosome 2
gi—107028231—ref—NC˙008062.1— Burkholderia cenocepacia AU 1054 chromosome 3
gi—116688024—ref—NC˙008542.1— Burkholderia cenocepacia HI2424 chromosome 1
gi—116691273—ref—NC˙008543.1— Burkholderia cenocepacia HI2424 chromosome 2
gi—116686245—ref—NC˙008544.1— Burkholderia cenocepacia HI2424 chromosome 3
gi—53723370—ref—NC˙006348.1— Burkholderia mallei ATCC 23344 chromosome 1
gi—77358719—ref—NC˙006349.2— Burkholderia mallei ATCC 23344 chromosome 2
gi—124381141—ref—NC˙008835.1— Burkholderia mallei NCTC 10229 chromosome II
gi—124383319—ref—NC˙008836.1— Burkholderia mallei NCTC 10229 chromosome I
gi—126445587—ref—NC˙009079.1— Burkholderia mallei NCTC 10247 chromosome II
gi—126447966—ref—NC˙009080.1— Burkholderia mallei NCTC 10247 chromosome I
gi—121596444—ref—NC˙008784.1— Burkholderia mallei SAVP1 chromosome II
gi—121598179—ref—NC˙008785.1— Burkholderia mallei SAVP1 chromosome I
gi—161523180—ref—NC˙010084.1— Burkholderia multivorans ATCC 17616 chromosome 1
gi—161519706—ref—NC˙010086.1— Burkholderia multivorans ATCC 17616 chromosome 2
gi—161522356—ref—NC˙010087.1— Burkholderia multivorans ATCC 17616 chromosome 3
gi—126451443—ref—NC˙009076.1— Burkholderia pseudomallei 1106a chromosome I
gi—126455463—ref—NC˙009078.1— Burkholderia pseudomallei 1106a chromosome II
gi—76808520—ref—NC˙007434.1— Burkholderia pseudomallei 1710b chromosome I
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gi—76817237—ref—NC˙007435.1— Burkholderia pseudomallei 1710b chromosome II
gi—126438353—ref—NC˙009074.1— Burkholderia pseudomallei 668 chromosome I
gi—126442307—ref—NC˙009075.1— Burkholderia pseudomallei 668 chromosome chromosome II
gi—53717639—ref—NC˙006350.1— Burkholderia pseudomallei K96243 chromosome 1
gi—53721039—ref—NC˙006351.1— Burkholderia pseudomallei K96243 chromosome 2
gi—78059643—ref—NC˙007509.1— Burkholderia sp. 383 chromosome 3
gi—78064658—ref—NC˙007510.1— Burkholderia sp. 383 chromosome 1
gi—78060853—ref—NC˙007511.1— Burkholderia sp. 383 chromosome 2
gi—83716035—ref—NC˙007650.1— Burkholderia thailandensis E264 chromosome II
gi—83718394—ref—NC˙007651.1— Burkholderia thailandensis E264 chromosome I
gi—134290884—ref—NC˙009254.1— Burkholderia vietnamiensis G4 chromosome 3
gi—134292031—ref—NC˙009255.1— Burkholderia vietnamiensis G4 chromosome 2
gi—134294128—ref—NC˙009256.1— Burkholderia vietnamiensis G4 chromosome 1
gi—91781384—ref—NC˙007951.1— Burkholderia xenovorans LB400 chromosome 1
gi—91777110—ref—NC˙007952.1— Burkholderia xenovorans LB400 chromosome 2
gi—91780071—ref—NC˙007953.1— Burkholderia xenovorans LB400 chromosome 3
gi—146295085—ref—NC˙009437.1— Caldicellulosiruptor saccharolyticus DSM 8903 chromosome
gi—157163852—ref—NC˙009802.1— Campylobacter concisus 13826
gi—154173617—ref—NC˙009715.1— Campylobacter curvus 525.92 chromosome
gi—118474057—ref—NC˙008599.1— Campylobacter fetus subsp. fetus 82-40 chromosome
gi—154147866—ref—NC˙009714.1— Campylobacter hominis ATCC BAA-381
gi—57236892—ref—NC˙003912.7— Campylobacter jejuni RM1221
gi—153950938—ref—NC˙009707.1— Campylobacter jejuni subsp. doylei 269.97 chromosome
gi—121612099—ref—NC˙008787.1— Campylobacter jejuni subsp. jejuni 81-176 chromosome
gi—157414322—ref—NC˙009839.1— Campylobacter jejuni subsp. jejuni 81116
gi—15791399—ref—NC˙002163.1— Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819 chromosome
gi—33519483—ref—NC˙005061.1— Candidatus Blochmannia floridanus chromosome
gi—71891793—ref—NC˙007292.1— Candidatus Blochmannia pennsylvanicus str. BPEN chromosome
gi—94967031—ref—NC˙008009.1— Candidatus Koribacter versatilis Ellin345 chromosome
gi—71082709—ref—NC˙007205.1— Candidatus Pelagibacter ubique HTCC1062 chromosome
gi—46445634—ref—NC˙005861.1— Candidatus Protochlamydia amoebophila UWE25 chromosome
gi—118602060—ref—NC˙008610.1— Candidatus Ruthia magnifica str. Cm (Calyptogena magnifica)
gi—116619145—ref—NC˙008536.1— Candidatus Solibacter usitatus Ellin6076 chromosome
gi—161833634—ref—NC˙010118.1— Candidatus Sulcia muelleri GWSS
gi—148244169—ref—NC˙009465.1— Candidatus Vesicomyosocius okutanii HA
gi—78042616—ref—NC˙007503.1— Carboxydothermus hydrogenoformans Z-2901 chromosome
gi—16124256—ref—NC˙002696.2— Caulobacter crescentus CB15 chromosome
gi—110632362—ref—NC˙008254.1— Chelativorans sp. BNC1 chromosome
gi—29337300—ref—NC˙002620.2— Chlamydia muridarum Nigg
gi—166153973—ref—NC˙010287.1— Chlamydia trachomatis 434/Bu chromosome
gi—76788711—ref—NC˙007429.1— Chlamydia trachomatis A/HAR-13
gi—15604717—ref—NC˙000117.1— Chlamydia trachomatis D/UW-3/CX
gi—352951305—ref—NC˙010280.2— Chlamydia trachomatis L2b/UCH-1/proctitis chromosome
gi—62184647—ref—NC˙004552.2— Chlamydophila abortus S26/3
gi—29839769—ref—NC˙003361.3— Chlamydophila caviae GPIC chromosome
gi—89897807—ref—NC˙007899.1— Chlamydophila felis Fe/C-56
gi—58021288—ref—NC˙002179.2— Chlamydophila pneumoniae AR39
gi—15617929—ref—NC˙000922.1— Chlamydophila pneumoniae CWL029 chromosome
gi—15835535—ref—NC˙002491.1— Chlamydophila pneumoniae J138 chromosome
gi—33241335—ref—NC˙005043.1— Chlamydophila pneumoniae TW-183
gi—78187984—ref—NC˙007514.1— Chlorobium chlorochromatii CaD3 chromosome
gi—78185892—ref—NC˙007512.1— Chlorobium luteolum DSM 273 chromosome
gi—119355857—ref—NC˙008639.1— Chlorobium phaeobacteroides DSM 266 chromosome
gi—145218822—ref—NC˙009337.1— Chlorobium phaeovibrioides DSM 265 chromosome
gi—21672841—ref—NC˙002932.3— Chlorobium tepidum TLS chromosome
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gi—163845603—ref—NC˙010175.1— Chloroflexus aurantiacus J-10-fl chromosome
gi—34495455—ref—NC˙005085.1— Chromobacterium violaceum ATCC 12472 chromosome
gi—92112136—ref—NC˙007963.1— Chromohalobacter salexigens DSM 3043 chromosome
gi—157144296—ref—NC˙009792.1— Citrobacter koseri ATCC BAA-895 chromosome
gi—148271178—ref—NC˙009480.1— Clavibacter michiganensis subsp. michiganensis NCPPB 382 chromosome
gi—15893298—ref—NC˙003030.1— Clostridium acetobutylicum ATCC 824 chromosome
gi—150014892—ref—NC˙009617.1— Clostridium beijerinckii NCIMB 8052 chromosome
gi—153930785—ref—NC˙009697.1— Clostridium botulinum A str. ATCC 19397 chromosome
gi—148378011—ref—NC˙009495.1— Clostridium botulinum A str. ATCC 3502 chromosome
gi—153934468—ref—NC˙009698.1— Clostridium botulinum A str. Hall chromosome
gi—153937894—ref—NC˙009699.1— Clostridium botulinum F str. Langeland chromosome
gi—126697566—ref—NC˙009089.1— Clostridium difficile 630
gi—153952670—ref—NC˙009706.1— Clostridium kluyveri DSM 555 chromosome
gi—118442852—ref—NC˙008593.1— Clostridium novyi NT chromosome
gi—110798562—ref—NC˙008261.1— Clostridium perfringens ATCC 13124 chromosome
gi—110801439—ref—NC˙008262.1— Clostridium perfringens SM101 chromosome
gi—18308982—ref—NC˙003366.1— Clostridium perfringens str. 13 chromosome
gi—160878162—ref—NC˙010001.1— Clostridium phytofermentans ISDg chromosome
gi—28209834—ref—NC˙004557.1— Clostridium tetani E88 chromosome
gi—125972525—ref—NC˙009012.1— Clostridium thermocellum ATCC 27405 chromosome
gi—71277742—ref—NC˙003910.7— Colwellia psychrerythraea 34H chromosome
gi—38232642—ref—NC˙002935.2— Corynebacterium diphtheriae NCTC 13129 chromosome
gi—25026556—ref—NC˙004369.1— Corynebacterium efficiens YS-314 chromosome
gi—58036263—ref—NC˙003450.3— Corynebacterium glutamicum ATCC 13032
gi—145294042—ref—NC˙009342.1— Corynebacterium glutamicum R chromosome
gi—68535062—ref—NC˙007164.1— Corynebacterium jeikeium K411 chromosome
gi—154705721—ref—NC˙009727.1— Coxiella burnetii Dugway 5J108-111 chromosome
gi—161829703—ref—NC˙010117.1— Coxiella burnetii RSA 331 chromosome
gi—77358712—ref—NC˙002971.3— Coxiella burnetii RSA 493 chromosome
gi—156932229—ref—NC˙009778.1— Cronobacter sakazakii ATCC BAA-894 chromosome
gi—94308945—ref—NC˙007973.1— Cupriavidus metallidurans CH34 chromosome
gi—110636427—ref—NC˙008255.1— Cytophaga hutchinsonii ATCC 33406 chromosome
gi—71905642—ref—NC˙007298.1— Dechloromonas aromatica RCB
gi—57233530—ref—NC˙002936.3— Dehalococcoides ethenogenes 195
gi—147668652—ref—NC˙009455.1— Dehalococcoides sp. BAV1 chromosome
gi—73747956—ref—NC˙007356.1— Dehalococcoides sp. CBDB1 chromosome
gi—94984109—ref—NC˙008025.1— Deinococcus geothermalis DSM 11300
gi—15805042—ref—NC˙001263.1— Deinococcus radiodurans R1 chromosome 1
gi—15807672—ref—NC˙001264.1— Deinococcus radiodurans R1 chromosome 2
gi—160895450—ref—NC˙010002.1— Delftia acidovorans SPH-1 chromosome
gi—89892746—ref—NC˙007907.1— Desulfitobacterium hafniense Y51 chromosome
gi—158520017—ref—NC˙009943.1— Desulfococcus oleovorans Hxd3 chromosome
gi—51243852—ref—NC˙006138.1— Desulfotalea psychrophila LSv54
gi—134297881—ref—NC˙009253.1— Desulfotomaculum reducens MI-1 chromosome
gi—78355047—ref—NC˙007519.1— Desulfovibrio alaskensis G20 chromosome
gi—120601051—ref—NC˙008751.1— Desulfovibrio vulgaris DP4 chromosome
gi—46562128—ref—NC˙002937.3— Desulfovibrio vulgaris str. Hildenborough chromosome
gi—146328629—ref—NC˙009446.1— Dichelobacter nodosus VCS1703A chromosome
gi—159042556—ref—NC˙009952.1— Dinoroseobacter shibae DFL 12 chromosome
gi—73666633—ref—NC˙007354.1— Ehrlichia canis str. Jake chromosome
gi—88657561—ref—NC˙007799.1— Ehrlichia chaffeensis str. Arkansas
gi—58616727—ref—NC˙006831.1— Ehrlichia ruminantium str. Gardel
gi—57238731—ref—NC˙005295.2— Ehrlichia ruminantium str. Welgevonden chromosome
gi—146309667—ref—NC˙009436.1— Enterobacter sp. 638
gi—29374661—ref—NC˙004668.1— Enterococcus faecalis V583 chromosome
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gi—85372828—ref—NC˙007722.1— Erythrobacter litoralis HTCC2594 chromosome
gi—110640213—ref—NC˙008253.1— Escherichia coli 536
gi—117622295—ref—NC˙008563.1— Escherichia coli APEC O1 chromosome
gi—26245917—ref—NC˙004431.1— Escherichia coli CFT073 chromosome
gi—157154711—ref—NC˙009801.1— Escherichia coli E24377A chromosome
gi—157159467—ref—NC˙009800.1— Escherichia coli HS
gi—16445223—ref—NC˙002655.2— Escherichia coli O157:H7 str. EDL933 chromosome
gi—15829254—ref—NC˙002695.1— Escherichia coli O157:H7 str. Sakai chromosome
gi—91209055—ref—NC˙007946.1— Escherichia coli UTI89 chromosome
gi—49175990—ref—NC˙000913.2— Escherichia coli str. K-12 substr. MG1655
gi—154248705—ref—NC˙009718.1— Fervidobacterium nodosum Rt17-B1 chromosome
gi—146297766—ref—NC˙009441.1— Flavobacterium johnsoniae UW101 chromosome
i—511542232—ref—NC˙009613.3— Flavobacterium psychrophilum JIP02/86 complete genome
gi—118496615—ref—NC˙008601.1— Francisella novicida U112 chromosome
gi—156501369—ref—NC˙009749.1— Francisella tularensis subsp. holarctica FTNF002-00 chromosome
gi—89255449—ref—NC˙007880.1— Francisella tularensis subsp. holarctica LVS chromosome
gi—115313981—ref—NC˙008369.1— Francisella tularensis subsp. holarctica OSU18 chromosome
gi—110669657—ref—NC˙008245.1— Francisella tularensis subsp. tularensis FSC198 chromosome
gi—255961454—ref—NC˙006570.2— Francisella tularensis subsp. tularensis SCHU S4 chromosome
gi—134301169—ref—NC˙009257.1— Francisella tularensis subsp. tularensis WY96-3418 chromosome
gi—111219505—ref—NC˙008278.1— Frankia alni ACN14a chromosome
gi—86738724—ref—NC˙007777.1— Frankia sp. CcI3 chromosome
gi—158311867—ref—NC˙009921.1— Frankia sp. EAN1pec chromosome
gi—19703352—ref—NC˙003454.1— Fusobacterium nucleatum subsp. nucleatum ATCC 25586 chromosome
gi—56418535—ref—NC˙006510.1— Geobacillus kaustophilus HTA426 chromosome
gi—138893679—ref—NC˙009328.1— Geobacillus thermodenitrificans NG80-2 chromosome
gi—78221228—ref—NC˙007517.1— Geobacter metallireducens GS-15 chromosome
gi—400756305—ref—NC˙002939.5— Geobacter sulfurreducens PCA chromosome
gi—148262085—ref—NC˙009483.1— Geobacter uraniireducens Rf4 chromosome
gi—37519569—ref—NC˙005125.1— Gloeobacter violaceus PCC 7421 chromosome
gi—162145846—ref—NC˙010125.1— Gluconacetobacter diazotrophicus PAl 5 chromosome
gi—58038491—ref—NC˙006677.1— Gluconobacter oxydans 621H chromosome
gi—120434372—ref—NC˙008571.1— Gramella forsetii KT0803 chromosome
gi—114326664—ref—NC˙008343.1— Granulibacter bethesdensis CGDNIH1 chromosome
gi—33151282—ref—NC˙002940.2— Haemophilus ducreyi 35000HP chromosome
gi—162960935—ref—NC˙007146.2— Haemophilus influenzae 86-028NP chromosome
gi—148825133—ref—NC˙009566.1— Haemophilus influenzae PittEE chromosome
gi—148826757—ref—NC˙009567.1— Haemophilus influenzae PittGG chromosome
gi—16271976—ref—NC˙000907.1— Haemophilus influenzae Rd KW20 chromosome
gi—113460149—ref—NC˙008309.1— Haemophilus somnus 129PT chromosome
gi—83642913—ref—NC˙007645.1— Hahella chejuensis KCTC 2396 chromosome
gi—121996810—ref—NC˙008789.1— Halorhodospira halophila SL1 chromosome
gi—109946640—ref—NC˙008229.1— Helicobacter acinonychis str. Sheeba chromosome
gi—32265499—ref—NC˙004917.1— Helicobacter hepaticus ATCC 51449 chromosome
gi—15644634—ref—NC˙000915.1— Helicobacter pylori 26695 chromosome
gi—108562424—ref—NC˙008086.1— Helicobacter pylori HPAG1 chromosome
gi—15611071—ref—NC˙000921.1— Helicobacter pylori J99 chromosome
gi—134093294—ref—NC˙009138.1— Herminiimonas arsenicoxydans chromosome
gi—159896533—ref—NC˙009972.1— Herpetosiphon aurantiacus DSM 785 chromosome
gi—114797051—ref—NC˙008358.1— Hyphomonas neptunium ATCC 15444 chromosome
gi—56459112—ref—NC˙006512.1— Idiomarina loihiensis L2TR chromosome
gi—89052491—ref—NC˙007802.1— Jannaschia sp. CCS1 chromosome
gi—152979768—ref—NC˙009659.1— Janthinobacterium sp. Marseille chromosome
gi—255961475—ref—NC˙009664.2— Kineococcus radiotolerans SRS30216 chromosome
gi—152968582—ref—NC˙009648.1— Klebsiella pneumoniae subsp. pneumoniae MGH 78578 chromosome
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gi—159162017—ref—NC˙006814.3— Lactobacillus acidophilus NCFM chromosome
gi—116332681—ref—NC˙008497.1— Lactobacillus brevis ATCC 367
gi—116493574—ref—NC˙008526.1— Lactobacillus casei ATCC 334 chromosome
gi—104773257—ref—NC˙008054.1— Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 chromosome
gi—116513228—ref—NC˙008529.1— Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 chromosome
gi—116628683—ref—NC˙008530.1— Lactobacillus gasseri ATCC 33323 chromosome
gi—161506634—ref—NC˙010080.1— Lactobacillus helveticus DPC 4571
gi—42518084—ref—NC˙005362.1— Lactobacillus johnsonii NCC 533
gi—380031102—ref—NC˙004567.2— Lactobacillus plantarum WCFS1
gi—148543243—ref—NC˙009513.1— Lactobacillus reuteri DSM 20016 chromosome
gi—81427616—ref—NC˙007576.1— Lactobacillus sakei subsp. sakei 23K chromosome
gi—90960990—ref—NC˙007929.1— Lactobacillus salivarius UCC118 chromosome
gi—125622882—ref—NC˙009004.1— Lactococcus lactis subsp. cremoris MG1363 chromosome
gi—116510843—ref—NC˙008527.1— Lactococcus lactis subsp. cremoris SK11
gi—15671982—ref—NC˙002662.1— Lactococcus lactis subsp. lactis Il1403 chromosome
gi—94986445—ref—NC˙008011.1— Lawsonia intracellularis PHE/MN1-00 chromosome
gi—295815281—ref—NC˙009494.2— Legionella pneumophila str. Corby chromosome
gi—54292964—ref—NC˙006369.1— Legionella pneumophila str. Lens
gi—54295983—ref—NC˙006368.1— Legionella pneumophila str. Paris
gi—52840256—ref—NC˙002942.5— Legionella pneumophila subsp. pneumophila str. Philadelphia 1 chromosome
gi—50953925—ref—NC˙006087.1— Leifsonia xyli subsp. xyli str. CTCB07 chromosome
gi—116329799—ref—NC˙008510.1— Leptospira borgpetersenii serovar Hardjo-bovis str. JB197 chromosome 1
gi—116332445—ref—NC˙008511.1— Leptospira borgpetersenii serovar Hardjo-bovis JB197 chromosome chromosome 2
gi—116326852—ref—NC˙008508.1— Leptospira borgpetersenii serovar Hardjo-bovis str. L550 chromosome 1
gi—116329556—ref—NC˙008509.1— Leptospira borgpetersenii serovar Hardjo-bovis L550 chromosome chromosome 2
gi—45655914—ref—NC˙005823.1— Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 chromosome I
gi—45655585—ref—NC˙005824.1— Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 chromosome II
gi—294827553—ref—NC˙004342.2— Leptospira interrogans serovar Lai str. 56601 chromosome I
gi—294653513—ref—NC˙004343.2— Leptospira interrogans serovar Lai str. 56601 chromosome II
gi—116617174—ref—NC˙008531.1— Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 chromosome
gi—16799079—ref—NC˙003212.1— Listeria innocua Clip11262
gi—16802048—ref—NC˙003210.1— Listeria monocytogenes EGD-e
gi—85700163—ref—NC˙002973.6— Listeria monocytogenes serotype 4b str. F2365 chromosome
gi—116871422—ref—NC˙008555.1— Listeria welshimeri serovar 6b str. SLCC5334 chromosome
gi—117923318—ref—NC˙008576.1— Magnetococcus marinus MC-1 chromosome
gi—83309099—ref—NC˙007626.1— Magnetospirillum magneticum AMB-1 chromosome
gi—52424055—ref—NC˙006300.1— Mannheimia succiniciproducens MBEL55E chromosome
gi—114568554—ref—NC˙008347.1— Maricaulis maris MCS10 chromosome
gi—120552944—ref—NC˙008740.1— Marinobacter aquaeolei VT8 chromosome
gi—152994043—ref—NC˙009654.1— Marinomonas sp. MWYL1 chromosome
gi—50364815—ref—NC˙006055.1— Mesoplasma florum L1 chromosome
gi—57165207—ref—NC˙002678.2— Mesorhizobium loti MAFF303099 chromosome
gi—124265193—ref—NC˙008825.1— Methylibium petroleiphilum PM1 chromosome
gi—91774356—ref—NC˙007947.1— Methylobacillus flagellatus KT
gi—163849457—ref—NC˙010172.1— Methylobacterium extorquens PA1 chromosome
gi—77128441—ref—NC˙002977.6— Methylococcus capsulatus str. Bath chromosome
gi—166362741—ref—NC˙010296.1— Microcystis aeruginosa NIES-843 chromosome
gi—83588874—ref—NC˙007644.1— Moorella thermoacetica ATCC 39073 chromosome
gi—118462219—ref—NC˙008595.1— Mycobacterium avium 104 chromosome
gi—41406098—ref—NC˙002944.2— Mycobacterium avium subsp. paratuberculosis K-10
gi—31791177—ref—NC˙002945.3— Mycobacterium bovis AF2122/97 chromosome
gi—121635883—ref—NC˙008769.1— Mycobacterium bovis BCG str. Pasteur 1173P2 chromosome
gi—145220606—ref—NC˙009338.1— Mycobacterium gilvum PYR-GCK chromosome
gi—15826865—ref—NC˙002677.1— Mycobacterium leprae TN chromosome
gi—118467340—ref—NC˙008596.1— Mycobacterium smegmatis str. MC2 155 chromosome
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gi—126432613—ref—NC˙009077.1— Mycobacterium sp. JLS chromosome
gi—119866057—ref—NC˙008705.1— Mycobacterium sp. KMS chromosome
gi—108796981—ref—NC˙008146.1— Mycobacterium sp. MCS chromosome
gi—50953765—ref—NC˙002755.2— Mycobacterium tuberculosis CDC1551 chromosome
gi—148821191—ref—NC˙009565.1— Mycobacterium tuberculosis F11 chromosome
gi—148659757—ref—NC˙009525.1— Mycobacterium tuberculosis H37Ra chromosome
i—448814763—ref—NC˙000962.3— Mycobacterium tuberculosis H37Rv complete genome
gi—118615919—ref—NC˙008611.1— Mycobacterium ulcerans Agy99 chromosome
gi—120401028—ref—NC˙008726.1— Mycobacterium vanbaalenii PYR-1 chromosome
gi—148377268—ref—NC˙009497.1— Mycoplasma agalactiae PG2 chromosome
gi—83319253—ref—NC˙007633.1— Mycoplasma capricolum subsp. capricolum ATCC 27343 chromosome
gi—294660180—ref—NC˙004829.2— Mycoplasma gallisepticum str. R(low) chromosome
gi—108885074—ref—NC˙000908.2— Mycoplasma genitalium G37
gi—54019969—ref—NC˙006360.1— Mycoplasma hyopneumoniae 232 chromosome
gi—72080342—ref—NC˙007332.1— Mycoplasma hyopneumoniae 7448 chromosome
gi—71893359—ref—NC˙007295.1— Mycoplasma hyopneumoniae J chromosome
gi—47458835—ref—NC˙006908.1— Mycoplasma mobile 163K
gi—127763381—ref—NC˙005364.2— Mycoplasma mycoides subsp. mycoides SC str. PG1 chromosome
gi—26553452—ref—NC˙004432.1— Mycoplasma penetrans HF-2
gi—13507739—ref—NC˙000912.1— Mycoplasma pneumoniae M129 chromosome
gi—15828471—ref—NC˙002771.1— Mycoplasma pulmonis UAB CTIP
gi—71894025—ref—NC˙007294.1— Mycoplasma synoviae 53
gi—108756767—ref—NC˙008095.1— Myxococcus xanthus DK 1622 chromosome
gi—59800473—ref—NC˙002946.2— Neisseria gonorrhoeae FA 1090 chromosome
gi—161869018—ref—NC˙010120.1— Neisseria meningitidis 053442 chromosome
gi—121633901—ref—NC˙008767.1— Neisseria meningitidis FAM18 chromosome
gi—77358697—ref—NC˙003112.2— Neisseria meningitidis MC58 chromosome
gi—15793034—ref—NC˙003116.1— Neisseria meningitidis Z2491 chromosome
gi—88607955—ref—NC˙007798.1— Neorickettsia sennetsu str. Miyayama chromosome
gi—152989753—ref—NC˙009662.1— Nitratiruptor sp. SB155-2
gi—92115633—ref—NC˙007964.1— Nitrobacter hamburgensis X14 chromosome
gi—75674199—ref—NC˙007406.1— Nitrobacter winogradskyi Nb-255 chromosome
gi—77163561—ref—NC˙007484.1— Nitrosococcus oceani ATCC 19707 chromosome
gi—30248031—ref—NC˙004757.1— Nitrosomonas europaea ATCC 19718 chromosome
gi—114330036—ref—NC˙008344.1— Nitrosomonas eutropha C91 chromosome
gi—82701135—ref—NC˙007614.1— Nitrosospira multiformis ATCC 25196 chromosome
gi—54021964—ref—NC˙006361.1— Nocardia farcinica IFM 10152 chromosome
gi—119714272—ref—NC˙008699.1— Nocardioides sp. JS614 chromosome
gi—17227497—ref—NC˙003272.1— Nostoc sp. PCC 7120 chromosome
gi—87198026—ref—NC˙007794.1— Novosphingobium aromaticivorans DSM 12444 chromosome
gi—23097455—ref—NC˙004193.1— Oceanobacillus iheyensis HTE831 chromosome
gi—153007346—ref—NC˙009667.1— Ochrobactrum anthropi ATCC 49188 chromosome 1
gi—153010078—ref—NC˙009668.1— Ochrobactrum anthropi ATCC 49188 chromosome 2
gi—116490126—ref—NC˙008528.1— Oenococcus oeni PSU-1
gi—255961248—ref—NC˙005303.2— Onion yellows phytoplasma OY-M
gi—148283997—ref—NC˙009488.1— Orientia tsutsugamushi str. Boryong
gi—150006674—ref—NC˙009615.1— Parabacteroides distasonis ATCC 8503 chromosome
gi—119382757—ref—NC˙008686.1— Paracoccus denitrificans PD1222 chromosome 1
gi—119385557—ref—NC˙008687.1— Paracoccus denitrificans PD1222 chromosome 2
gi—154250456—ref—NC˙009719.1— Parvibaculum lavamentivorans DS-1 chromosome
gi—15601865—ref—NC˙002663.1— Pasteurella multocida subsp. multocida str. Pm70 chromosome
gi—50118965—ref—NC˙004547.2— Pectobacterium atrosepticum SCRI1043 chromosome
gi—116491818—ref—NC˙008525.1— Pediococcus pentosaceus ATCC 25745
gi—90960985—ref—NC˙007498.2— Pelobacter carbinolicus DSM 2380 chromosome
gi—118578449—ref—NC˙008609.1— Pelobacter propionicus DSM 2379 chromosome
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gi—147676335—ref—NC˙009454.1— Pelotomaculum thermopropionicum SI chromosome
gi—160901491—ref—NC˙010003.1— Petrotoga mobilis SJ95 chromosome
gi—54307237—ref—NC˙006370.1— Photobacterium profundum SS9 chromosome 1
gi—54301680—ref—NC˙006371.1— Photobacterium profundum SS9 chromosome 2
gi—37524032—ref—NC˙005126.1— Photorhabdus luminescens subsp. laumondii TTO1
gi—121602919—ref—NC˙008781.1— Polaromonas naphthalenivorans CJ2 chromosome
gi—91785913—ref—NC˙007948.1— Polaromonas sp. JS666 chromosome
gi—145588189—ref—NC˙009379.1— Polynucleobacter necessarius subsp. asymbioticus QLW-P1DMWA-1 chromosome
gi—34539880—ref—NC˙002950.2— Porphyromonas gingivalis W83 chromosome
gi—123967536—ref—NC˙008816.1— Prochlorococcus marinus str. AS9601
gi—159902540—ref—NC˙009976.1— Prochlorococcus marinus str. MIT 9211
gi—157412338—ref—NC˙009840.1— Prochlorococcus marinus str. MIT 9215 chromosome
gi—126695337—ref—NC˙009091.1— Prochlorococcus marinus str. MIT 9301
gi—124021714—ref—NC˙008820.1— Prochlorococcus marinus str. MIT 9303 chromosome
gi—78778385—ref—NC˙007577.1— Prochlorococcus marinus str. MIT 9312
gi—33862273—ref—NC˙005071.1— Prochlorococcus marinus str. MIT 9313 chromosome
gi—123965234—ref—NC˙008817.1— Prochlorococcus marinus str. MIT 9515
gi—124024712—ref—NC˙008819.1— Prochlorococcus marinus str. NATL1A
gi—162958048—ref—NC˙007335.2— Prochlorococcus marinus str. NATL2A chromosome
gi—33239452—ref—NC˙005042.1— Prochlorococcus marinus subsp. marinus str. CCMP1375 chromosome
gi—33860560—ref—NC˙005072.1— Prochlorococcus marinus subsp. pastoris str. CCMP1986 chromosome
gi—50841496—ref—NC˙006085.1— Propionibacterium acnes KPA171202 chromosome
gi—109896332—ref—NC˙008228.1— Pseudoalteromonas atlantica T6c chromosome
gi—77358982—ref—NC˙007481.1— Pseudoalteromonas haloplanktis TAC125 chromosome I
gi—77361923—ref—NC˙007482.1— Pseudoalteromonas haloplanktis TAC125 chromosome II
gi—152983466—ref—NC˙009656.1— Pseudomonas aeruginosa PA7 chromosome
gi—110645304—ref—NC˙002516.2— Pseudomonas aeruginosa PAO1 chromosome
gi—116048575—ref—NC˙008463.1— Pseudomonas aeruginosa UCBPP-PA14 chromosome
gi—104779316—ref—NC˙008027.1— Pseudomonas entomophila L48 chromosome
gi—255961261—ref—NC˙007492.2— Pseudomonas fluorescens Pf0-1 chromosome
gi—146305042—ref—NC˙009439.1— Pseudomonas mendocina ymp chromosome
gi—70728250—ref—NC˙004129.6— Pseudomonas protegens Pf-5 chromosome
gi—148545259—ref—NC˙009512.1— Pseudomonas putida F1 chromosome
gi—167031021—ref—NC˙010322.1— Pseudomonas putida GB-1 chromosome
gi—26986745—ref—NC˙002947.3— Pseudomonas putida KT2440 chromosome
gi—146280397—ref—NC˙009434.1— Pseudomonas stutzeri A1501 chromosome
gi—71733195—ref—NC˙005773.3— Pseudomonas syringae pv. phaseolicola 1448A chromosome
gi—66043271—ref—NC˙007005.1— Pseudomonas syringae pv. syringae B728a chromosome
gi—28867243—ref—NC˙004578.1— Pseudomonas syringae pv. tomato str. DC3000 chromosome
gi—71064581—ref—NC˙007204.1— Psychrobacter arcticus 273-4 chromosome
gi—93004831—ref—NC˙007969.1— Psychrobacter cryohalolentis K5 chromosome
gi—148651817—ref—NC˙009524.1— Psychrobacter sp. PRwf-1 chromosome
gi—119943794—ref—NC˙008709.1— Psychromonas ingrahamii 37 chromosome
gi—113866031—ref—NC˙008313.1— Ralstonia eutropha H16 chromosome 1
gi—116693960—ref—NC˙008314.1— Ralstonia eutropha H16 chromosome 2
gi—73539706—ref—NC˙007347.1— Ralstonia eutropha JMP134 chromosome 1
gi—73537298—ref—NC˙007348.1— Ralstonia eutropha JMP134 chromosome 2
gi—17544719—ref—NC˙003295.1— Ralstonia solanacearum GMI1000 chromosome
gi—163838769—ref—NC˙010168.1— Renibacterium salmoninarum ATCC 33209 chromosome
gi—86355669—ref—NC˙007761.1— Rhizobium etli CFN 42 chromosome
gi—116249766—ref—NC˙008380.1— Rhizobium leguminosarum bv. viciae 3841 chromosome
gi—77461965—ref—NC˙007493.1— Rhodobacter sphaeroides 2.4.1 chromosome 1
gi—77464988—ref—NC˙007494.1— Rhodobacter sphaeroides 2.4.1 chromosome 2
gi—146276058—ref—NC˙009428.1— Rhodobacter sphaeroides ATCC 17025 chromosome
gi—126460778—ref—NC˙009049.1— Rhodobacter sphaeroides ATCC 17029 chromosome 1
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gi—126463752—ref—NC˙009050.1— Rhodobacter sphaeroides ATCC 17029 chromosome 2
gi—111017022—ref—NC˙008268.1— Rhodococcus jostii RHA1 chromosome
gi—89898822—ref—NC˙007908.1— Rhodoferax ferrireducens T118 chromosome
gi—32470666—ref—NC˙005027.1— Rhodopirellula baltica SH 1 chromosome
gi—115522030—ref—NC˙008435.1— Rhodopseudomonas palustris BisA53 chromosome
gi—90421528—ref—NC˙007925.1— Rhodopseudomonas palustris BisB18 chromosome
gi—91974482—ref—NC˙007958.1— Rhodopseudomonas palustris BisB5 chromosome
gi—39933080—ref—NC˙005296.1— Rhodopseudomonas palustris CGA009 chromosome
gi—86747127—ref—NC˙007778.1— Rhodopseudomonas palustris HaA2 chromosome
gi—83591340—ref—NC˙007643.1— Rhodospirillum rubrum ATCC 11170 chromosome
gi—157825125—ref—NC˙009881.1— Rickettsia akari str. Hartford chromosome
gi—157826385—ref—NC˙009883.1— Rickettsia bellii OSU 85-389 chromosome
gi—91204815—ref—NC˙007940.1— Rickettsia bellii RML369-C chromosome
gi—157803189—ref—NC˙009879.1— Rickettsia canadensis str. McKiel
gi—15891923—ref—NC˙003103.1— Rickettsia conorii str. Malish 7
gi—67458392—ref—NC˙007109.1— Rickettsia felis URRWXCal2 chromosome
gi—157964072—ref—NC˙009900.1— Rickettsia massiliae MTU5 chromosome
gi—15603881—ref—NC˙000963.1— Rickettsia prowazekii str. Madrid E chromosome
gi—157827862—ref—NC˙009882.1— Rickettsia rickettsii str. ’Sheila Smith’ chromosome
gi—319717301—ref—NC˙010263.2— Rickettsia rickettsii str. Iowa chromosome
gi—51473215—ref—NC˙006142.1— Rickettsia typhi str. Wilmington
gi—156740028—ref—NC˙009767.1— Roseiflexus castenholzii DSM 13941 chromosome
gi—148654188—ref—NC˙009523.1— Roseiflexus sp. RS-1 chromosome
gi—110677421—ref—NC˙008209.1— Roseobacter denitrificans OCh 114 chromosome
gi—108802856—ref—NC˙008148.1— Rubrobacter xylanophilus DSM 9941 chromosome
gi—56694928—ref—NC˙003911.11— Ruegeria pomeroyi DSS-3 chromosome
gi—99079841—ref—NC˙008044.1— Ruegeria sp. TM1040 chromosome
gi—90019649—ref—NC˙007912.1— Saccharophagus degradans 2-40 chromosome
gi—134096620—ref—NC˙009142.1— Saccharopolyspora erythraea NRRL 2338 chromosome
gi—83814055—ref—NC˙007677.1— Salinibacter ruber DSM 13855 chromosome
gi—159035674—ref—NC˙009953.1— Salinispora arenicola CNS-205 chromosome
gi—145592566—ref—NC˙009380.1— Salinispora tropica CNB-440 chromosome
gi—161501984—ref—NC˙010067.1— Salmonella enterica subsp. arizonae serovar 62:z4
gi—62178570—ref—NC˙006905.1— Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67 chromosome
gi—56412276—ref—NC˙006511.1— Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150 chromosome
gi—161612313—ref—NC˙010102.1— Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7 chromosome
gi—16758993—ref—NC˙003198.1— Salmonella enterica subsp. enterica serovar Typhi str. CT18 chromosome
gi—29140543—ref—NC˙004631.1— Salmonella enterica subsp. enterica serovar Typhi str. Ty2 chromosome
gi—16763390—ref—NC˙003197.1— Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 chromosome
gi—157368249—ref—NC˙009832.1— Serratia proteamaculans 568 chromosome
gi—119773142—ref—NC˙008700.1— Shewanella amazonensis SB2B chromosome
gi—126172257—ref—NC˙009052.1— Shewanella baltica OS155 chromosome
gi—152998555—ref—NC˙009665.1— Shewanella baltica OS185 chromosome
gi—160873126—ref—NC˙009997.1— Shewanella baltica OS195 chromosome
gi—91791369—ref—NC˙007954.1— Shewanella denitrificans OS217
gi—114561188—ref—NC˙008345.1— Shewanella frigidimarina NCIMB 400 chromosome
gi—127510935—ref—NC˙009092.1— Shewanella loihica PV-4 chromosome
gi—414561716—ref—NC˙004347.2— Shewanella oneidensis MR-1 chromosome
gi—157959830—ref—NC˙009901.1— Shewanella pealeana ATCC 700345 chromosome
gi—146291111—ref—NC˙009438.1— Shewanella putrefaciens CN-32 chromosome
gi—157373141—ref—NC˙009831.1— Shewanella sediminis HAW-EB3 chromosome
gi—117918459—ref—NC˙008577.1— Shewanella sp. ANA-3 chromosome 1
gi—113968346—ref—NC˙008321.1— Shewanella sp. MR-4 chromosome
gi—114045513—ref—NC˙008322.1— Shewanella sp. MR-7 chromosome
gi—120596833—ref—NC˙008750.1— Shewanella sp. W3-18-1 chromosome
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gi—82542618—ref—NC˙007613.1— Shigella boydii Sb227 chromosome
gi—82775382—ref—NC˙007606.1— Shigella dysenteriae Sd197
gi—30061571—ref—NC˙004741.1— Shigella flexneri 2a str. 2457T
gi—344915202—ref—NC˙004337.2— Shigella flexneri 2a str. 301 chromosome
gi—110804074—ref—NC˙008258.1— Shigella flexneri 5 str. 8401 chromosome
gi—74310614—ref—NC˙007384.1— Shigella sonnei Ss046 chromosome
gi—150395228—ref—NC˙009636.1— Sinorhizobium medicae WSM419 chromosome
gi—15963753—ref—NC˙003047.1— Sinorhizobium meliloti 1021 chromosome
gi—85057978—ref—NC˙007712.1— Sodalis glossinidius str. ’morsitans’ chromosome
gi—162448269—ref—NC˙010162.1— Sorangium cellulosum ’So ce 56’ chromosome
gi—148552929—ref—NC˙009511.1— Sphingomonas wittichii RW1 chromosome
gi—103485498—ref—NC˙008048.1— Sphingopyxis alaskensis RB2256 chromosome
gi—82749777—ref—NC˙007622.1— Staphylococcus aureus RF122
gi—57650036—ref—NC˙002951.2— Staphylococcus aureus subsp. aureus COL chromosome
gi—150392480—ref—NC˙009632.1— Staphylococcus aureus subsp. aureus JH1 chromosome
gi—148266447—ref—NC˙009487.1— Staphylococcus aureus subsp. aureus JH9 chromosome
gi—49482253—ref—NC˙002952.2— Staphylococcus aureus subsp. aureus MRSA252 chromosome
gi—49484912—ref—NC˙002953.3— Staphylococcus aureus subsp. aureus MSSA476 chromosome
gi—21281729—ref—NC˙003923.1— Staphylococcus aureus subsp. aureus MW2
gi—156978331—ref—NC˙009782.1— Staphylococcus aureus subsp. aureus Mu3
gi—57634611—ref—NC˙002758.2— Staphylococcus aureus subsp. aureus Mu50 chromosome
gi—29165615—ref—NC˙002745.2— Staphylococcus aureus subsp. aureus N315 chromosome
gi—88193823—ref—NC˙007795.1— Staphylococcus aureus subsp. aureus NCTC 8325 chromosome
gi—87159884—ref—NC˙007793.1— Staphylococcus aureus subsp. aureus USA300˙FPR3757 chromosome
gi—161508266—ref—NC˙010079.1— Staphylococcus aureus subsp. aureus USA300˙TCH1516 chromosome
gi—151220212—ref—NC˙009641.1— Staphylococcus aureus subsp. aureus str. Newman chromosome
gi—27466918—ref—NC˙004461.1— Staphylococcus epidermidis ATCC 12228 chromosome
gi—57865352—ref—NC˙002976.3— Staphylococcus epidermidis RP62A
gi—70725001—ref—NC˙007168.1— Staphylococcus haemolyticus JCSC1435 chromosome
gi—73661309—ref—NC˙007350.1— Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305
gi—22536185—ref—NC˙004116.1— Streptococcus agalactiae 2603V/R chromosome
gi—76786714—ref—NC˙007432.1— Streptococcus agalactiae A909 chromosome
gi—25010075—ref—NC˙004368.1— Streptococcus agalactiae NEM316
gi—157149651—ref—NC˙009785.1— Streptococcus gordonii str. Challis substr. CH1 chromosome
gi—347750429—ref—NC˙004350.2— Streptococcus mutans UA159 chromosome
gi—116515308—ref—NC˙008533.1— Streptococcus pneumoniae D39 chromosome
gi—15902044—ref—NC˙003098.1— Streptococcus pneumoniae R6
gi—194172857—ref—NC˙003028.3— Streptococcus pneumoniae TIGR4 chromosome
gi—94989509—ref—NC˙008022.1— Streptococcus pyogenes MGAS10270
gi—50913346—ref—NC˙006086.1— Streptococcus pyogenes MGAS10394 chromosome
gi—94993396—ref—NC˙008024.1— Streptococcus pyogenes MGAS10750 chromosome
gi—94991497—ref—NC˙008023.1— Streptococcus pyogenes MGAS2096 chromosome
gi—21909536—ref—NC˙004070.1— Streptococcus pyogenes MGAS315 chromosome
gi—71909814—ref—NC˙007297.1— Streptococcus pyogenes MGAS5005 chromosome
gi—71902667—ref—NC˙007296.1— Streptococcus pyogenes MGAS6180 chromosome
gi—19745201—ref—NC˙003485.1— Streptococcus pyogenes MGAS8232 chromosome
gi—94987631—ref—NC˙008021.1— Streptococcus pyogenes MGAS9429 chromosome
gi—15674250—ref—NC˙002737.1— Streptococcus pyogenes SF370 chromosome
gi—28894912—ref—NC˙004606.1— Streptococcus pyogenes SSI-1 chromosome
gi—139472888—ref—NC˙009332.1— Streptococcus pyogenes str. Manfredo chromosome
gi—125716887—ref—NC˙009009.1— Streptococcus sanguinis SK36 chromosome
gi—146317663—ref—NC˙009442.1— Streptococcus suis 05ZYH33 chromosome
gi—146319850—ref—NC˙009443.1— Streptococcus suis 98HAH33
gi—55821993—ref—NC˙006449.1— Streptococcus thermophilus CNRZ1066 chromosome
gi—116626972—ref—NC˙008532.1— Streptococcus thermophilus LMD-9
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gi—55820103—ref—NC˙006448.1— Streptococcus thermophilus LMG 18311 chromosome
gi—162960844—ref—NC˙003155.4— Streptomyces avermitilis MA-4680
gi—32141095—ref—NC˙003888.3— Streptomyces coelicolor A3(2) chromosome
gi—78776201—ref—NC˙007575.1— Sulfurimonas denitrificans DSM 1251 chromosome
gi—152991597—ref—NC˙009663.1— Sulfurovum sp. NBC37-1 chromosome
gi—51891138—ref—NC˙006177.1— Symbiobacterium thermophilum IAM 14863 chromosome
gi—56750010—ref—NC˙006576.1— Synechococcus elongatus PCC 6301 chromosome
gi—81298811—ref—NC˙007604.1— Synechococcus elongatus PCC 7942 chromosome
gi—113952711—ref—NC˙008319.1— Synechococcus sp. CC9311
gi—78211558—ref—NC˙007516.1— Synechococcus sp. CC9605
gi—78183584—ref—NC˙007513.1— Synechococcus sp. CC9902 chromosome
gi—86607503—ref—NC˙007776.1— Synechococcus sp. JA-2-3B’a(2-13) chromosome
gi—86604733—ref—NC˙007775.1— Synechococcus sp. JA-3-3Ab chromosome
gi—148241099—ref—NC˙009482.1— Synechococcus sp. RCC307 chromosome
gi—148238336—ref—NC˙009481.1— Synechococcus sp. WH 7803 chromosome
gi—33864539—ref—NC˙005070.1— Synechococcus sp. WH 8102
gi—16329170—ref—NC˙000911.1— Synechocystis sp. PCC 6803 chromosome
gi—116747452—ref—NC˙008554.1— Syntrophobacter fumaroxidans MPOB chromosome
gi—114565576—ref—NC˙008346.1— Syntrophomonas wolfei subsp. wolfei str. Goettingen chromosome
gi—85857845—ref—NC˙007759.1— Syntrophus aciditrophicus SB chromosome
gi—167036431—ref—NC˙010321.1— Thermoanaerobacter pseudethanolicus ATCC 33223 chromosome
gi—167038675—ref—NC˙010320.1— Thermoanaerobacter sp. X514 chromosome
gi—20806542—ref—NC˙003869.1— Thermoanaerobacter tengcongensis MB4 chromosome
gi—72160406—ref—NC˙007333.1— Thermobifida fusca YX chromosome
gi—150019913—ref—NC˙009616.1— Thermosipho melanesiensis BI429 chromosome
gi—22297544—ref—NC˙004113.1— Thermosynechococcus elongatus BP-1 chromosome
gi—157362870—ref—NC˙009828.1— Thermotoga lettingae TMO chromosome
gi—15642775—ref—NC˙000853.1— Thermotoga maritima MSB8 chromosome
gi—148269145—ref—NC˙009486.1— Thermotoga petrophila RKU-1 chromosome
gi—46198308—ref—NC˙005835.1— Thermus thermophilus HB27
gi—55979969—ref—NC˙006461.1— Thermus thermophilus HB8 chromosome
gi—74316018—ref—NC˙007404.1— Thiobacillus denitrificans ATCC 25259 chromosome
gi—118139508—ref—NC˙007520.2— Thiomicrospira crunogena XCL-2 chromosome
gi—42516522—ref—NC˙002967.9— Treponema denticola ATCC 35405 chromosome
gi—15638995—ref—NC˙000919.1— Treponema pallidum subsp. pallidum str. Nichols chromosome
gi—113473942—ref—NC˙008312.1— Trichodesmium erythraeum IMS101 chromosome
gi—28572175—ref—NC˙004551.1— Tropheryma whipplei TW08/27
gi—32447382—ref—NC˙004572.3— Tropheryma whipplei str. Twist
gi—13357558—ref—NC˙002162.1— Ureaplasma parvum serovar 3 str. ATCC 700970 chromosome
gi—121607004—ref—NC˙008786.1— Verminephrobacter eiseniae EF01-2 chromosome
gi—15640032—ref—NC˙002505.1— Vibrio cholerae O1 biovar El Tor str. N16961 chromosome I
gi—15600771—ref—NC˙002506.1— Vibrio cholerae O1 biovar El Tor str. N16961 chromosome II
gi—147671401—ref—NC˙009456.1— Vibrio cholerae O395 chromosome 1
gi—147673035—ref—NC˙009457.1— Vibrio cholerae O395 chromosome 2
gi—172087630—ref—NC˙006840.2— Vibrio fischeri ES114 chromosome I
gi—172087787—ref—NC˙006841.2— Vibrio fischeri ES114 chromosome II
gi—156972381—ref—NC˙009783.1— Vibrio harveyi ATCC BAA-1116 chromosome I
gi—156975952—ref—NC˙009784.1— Vibrio harveyi ATCC BAA-1116 chromosome II
gi—28896774—ref—NC˙004603.1— Vibrio parahaemolyticus RIMD 2210633 chromosome 1
gi—28899855—ref—NC˙004605.1— Vibrio parahaemolyticus RIMD 2210633 chromosome 2
gi—326423644—ref—NC˙004459.3— Vibrio vulnificus CMCP6 chromosome I
gi—326424156—ref—NC˙004460.2— Vibrio vulnificus CMCP6 chromosome II
gi—37678184—ref—NC˙005139.1— Vibrio vulnificus YJ016 chromosome I
gi—37675660—ref—NC˙005140.1— Vibrio vulnificus YJ016 chromosome II
gi—32490749—ref—NC˙004344.2— Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis chromosome
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gi—42519920—ref—NC˙002978.6— Wolbachia endosymbiont of Drosophila melanogaster
gi—58584261—ref—NC˙006833.1— Wolbachia endosymbiont strain TRS of Brugia malayi
gi—34556458—ref—NC˙005090.1— Wolinella succinogenes DSM 1740 chromosome
gi—154243958—ref—NC˙009720.1— Xanthobacter autotrophicus Py2 chromosome
gi—21240774—ref—NC˙003919.1— Xanthomonas axonopodis pv. citri str. 306 chromosome
gi—66766352—ref—NC˙007086.1— Xanthomonas campestris pv. campestris str. 8004 chromosome
gi—21229478—ref—NC˙003902.1— Xanthomonas campestris pv. campestris str. ATCC 33913 chromosome
gi—78045556—ref—NC˙007508.1— Xanthomonas campestris pv. vesicatoria str. 85-10 chromosome
gi—58579623—ref—NC˙006834.1— Xanthomonas oryzae pv. oryzae KACC 10331 chromosome
gi—84621657—ref—NC˙007705.1— Xanthomonas oryzae pv. oryzae MAFF 311018 chromosome
gi—57014152—ref—NC˙002488.3— Xylella fastidiosa 9a5c chromosome
gi—28197945—ref—NC˙004556.1— Xylella fastidiosa Temecula1 chromosome
gi—123440403—ref—NC˙008800.1— Yersinia enterocolitica subsp. enterocolitica 8081 chromosome
gi—162418099—ref—NC˙010159.1— Yersinia pestis Angola chromosome
gi—108805998—ref—NC˙008150.1— Yersinia pestis Antiqua chromosome
gi—16120353—ref—NC˙003143.1— Yersinia pestis CO92 chromosome
gi—22123922—ref—NC˙004088.1— Yersinia pestis KIM 10 chromosome
gi—108810166—ref—NC˙008149.1— Yersinia pestis Nepal516 chromosome
gi—145597324—ref—NC˙009381.1— Yersinia pestis Pestoides F chromosome
gi—45439865—ref—NC˙005810.1— Yersinia pestis biovar Microtus str. 91001 chromosome
gi—153946813—ref—NC˙009708.1— Yersinia pseudotuberculosis IP 31758 chromosome
gi—51594359—ref—NC˙006155.1— Yersinia pseudotuberculosis IP 32953 chromosome
gi—283856168—ref—NC˙006526.2— Zymomonas mobilis subsp. mobilis ZM4 chromosome
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gi—215481761—ref—NC˙011595.1— Acinetobacter baumannii AB307-0294
gi—375133618—ref—NC˙016603.1— Acinetobacter calcoaceticus PHEA-2 chromosome
gi—384141246—ref—NC˙017171.1— Acinetobacter baumannii MDR-ZJ06 chromosome
gi—523529121—ref—NC˙021733.1— Acinetobacter baumannii BJAB0715
gi—217957581—ref—NC˙011658.1— Bacillus cereus AH187 chromosome
gi—222093774—ref—NC˙011969.1— Bacillus cereus Q1 chromosome
gi—229599883—ref—NC˙012659.1— Bacillus anthracis str. A0248
gi—316994385—ref—NC˙013791.2— Bacillus pseudofirmus OF4 chromosome
gi—384157612—ref—NC˙017188.1— Bacillus amyloliquefaciens TA208 chromosome
gi—449086670—ref—NC˙020238.1— Bacillus thuringiensis serovar kurstaki str. HD73
gi—530612796—ref—NC˙022081.1— Bacillus amyloliquefaciens subsp. plantarum UCMB5113
gi—375356399—ref—NC˙016776.1— Bacteroides fragilis 638R
gi—403529933—ref—NC˙018533.1— Bartonella quintana RM-11 chromosome
gi—384200575—ref—NC˙017221.1— Bifidobacterium longum subsp. longum KACC 91563 chromosome
gi—386866198—ref—NC˙017834.1— Bifidobacterium animalis subsp. animalis ATCC 25527 chromosome
gi—384202563—ref—NC˙017223.1— Bordetella pertussis CS chromosome
gi—408414082—ref—NC˙018518.1— Bordetella pertussis 18323
gi—412337338—ref—NC˙019382.1— Bordetella bronchiseptica 253
gi—189022234—ref—NC˙010740.1— Brucella abortus S19 chromosome 2
gi—376274175—ref—NC˙016778.1— Brucella canis HSK A52141 chromosome 1
gi—384210366—ref—NC˙017246.1— Brucella melitensis M5-90 chromosome chromosome I
gi—170731356—ref—NC˙010508.1— Burkholderia cenocepacia MC0-3 chromosome 1
gi—172059067—ref—NC˙010551.1— Burkholderia ambifaria MC40-6 chromosome 1
gi—312794749—ref—NC˙014722.1— Burkholderia rhizoxinica HKI 454 chromosome
gi—386860126—ref—NC˙017831.1— Burkholderia pseudomallei 1026b chromosome 1
gi—488601775—ref—NC˙021173.1— Burkholderia thailandensis MSMB121 chromosome 1
gi—312134082—ref—NC˙014657.1— Caldicellulosiruptor owensensis OL chromosome
gi—384447320—ref—NC˙017279.1— Campylobacter jejuni subsp. jejuni IA3902 chromosome
i—543945414—ref—NC˙022351.1— Campylobacter jejuni subsp. jejuni 00-2538 genome
gi—293977746—ref—NC˙014004.1— Candidatus Sulcia muelleri DMIN chromosome
gi—330812975—ref—NC˙015380.1— Candidatus Pelagibacter sp. IMCC9063 chromosome
gi—440509586—ref—NC˙020075.1— Candidatus Blochmannia chromaiodes str. 640 chromosome
gi—527324386—ref—NC˙021894.1— Candidatus Carsonella ruddii DC
gi—237802433—ref—NC˙012686.1— Chlamydia trachomatis B/Jali20/OT chromosome
gi—376282008—ref—NC˙016798.1— Chlamydia trachomatis A2497
gi—407453476—ref—NC˙018619.1— Chlamydia psittaci 84/55 chromosome
i—478459453—ref—NC˙020968.1— Chlamydia trachomatis D/SotonD6 high quality draft genome sequence
gi—568111252—ref—NC˙023060.1— Chlamydia trachomatis C/TW-3
gi—330443755—ref—NC˙015408.1— Chlamydophila pecorum E58 chromosome
gi—384450095—ref—NC˙017287.1— Chlamydophila psittaci 6BC chromosome
gi—170754211—ref—NC˙010516.1— Clostridium botulinum B1 str. Okra chromosome
gi—226947222—ref—NC˙012563.1— Clostridium botulinum A2 str. Kyoto chromosome
gi—337735209—ref—NC˙015687.1— Clostridium acetobutylicum DSM 1731 chromosome
gi—479133135—ref—NC˙017175.1— Clostridium difficile M68
gi—383843666—ref—NC˙017178.1— Clostridium difficile complete genome
gi—384460459—ref—NC˙017297.1— Clostridium botulinum F str. 230613 chromosome
gi—550916528—ref—NC˙022571.1— Clostridium saccharobutylicum DSM 13864
gi—376244562—ref—NC˙016786.1— Corynebacterium diphtheriae HC01 chromosome
gi—511052542—ref—NC˙021351.1— Corynebacterium glutamicum SCgG1
gi—530314182—ref—NC˙022040.1— Corynebacterium glutamicum MB001
gi—374298386—ref—NC˙016629.1— Desulfovibrio africanus str. Walvis Bay chromosome
gi—387151873—ref—NC˙017310.1— Desulfovibrio vulgaris RCH1 chromosome
gi—218556939—ref—NC˙011742.1— Escherichia coli S88 chromosome
gi—218687878—ref—NC˙011745.1— Escherichia coli ED1a chromosome
gi—218703261—ref—NC˙011751.1— Escherichia coli UMN026 chromosome
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gi—238899406—ref—NC˙012759.1— Escherichia coli BW2952 chromosome
gi—254791136—ref—NC˙013008.1— Escherichia coli O157:H7 str. TW14359 chromosome
gi—260842239—ref—NC˙013353.1— Escherichia coli O103:H2 str. 12009
gi—387605479—ref—NC˙017626.1— Escherichia coli 042
gi—443615330—ref—NC˙020163.1— Escherichia coli APEC O78
gi—471332236—ref—NC˙020518.1— Escherichia coli str. K-12 substr. MDS42 DNA
gi—187930913—ref—NC˙010677.1— Francisella tularensis subsp. mediasiatica FSC147 chromosome
gi—379716390—ref—NC˙016933.1— Francisella tularensis TIGB03 chromosome
gi—387885754—ref—NC˙017909.1— Francisella noatunensis subsp. orientalis str. Toba 04 chromosome
gi—423049750—ref—NC˙019537.1— Francisella tularensis subsp. holarctica F92 chromosome
gi—312193897—ref—NC˙014666.1— Frankia sp. EuI1c chromosome
gi—336176139—ref—NC˙015656.1— Frankia symbiont of Datisca glomerata chromosome
gi—384898367—ref—NC˙017365.1— Helicobacter pylori F30
gi—385230889—ref—NC˙017381.1— Helicobacter pylori 2018 chromosome
gi—386745526—ref—NC˙017733.1— Helicobacter pylori HUP-B14 chromosome
gi—386748726—ref—NC˙017737.1— Helicobacter cetorum MIT 00-7128 chromosome
gi—425788638—ref—NC˙019560.1— Helicobacter pylori Aklavik117 chromosome
gi—526465356—ref—NC˙021882.1— Helicobacter pylori UM298
gi—238892256—ref—NC˙012731.1— Klebsiella pneumoniae NTUH-K2044 chromosome
gi—402778297—ref—NC˙018522.1— Klebsiella pneumoniae subsp. pneumoniae 1084 chromosome
gi—184152655—ref—NC˙010609.1— Lactobacillus reuteri JCM 1112
gi—191636824—ref—NC˙010999.1— Lactobacillus casei BL23 chromosome
gi—268318562—ref—NC˙013504.1— Lactobacillus johnsonii FI9785 chromosome
gi—315037230—ref—NC˙014724.1— Lactobacillus amylovorus GRL 1112 chromosome
gi—313122775—ref—NC˙014727.1— Lactobacillus delbrueckii subsp. bulgaricus ND02 chromosome
gi—347524522—ref—NC˙015975.1— Lactobacillus ruminis ATCC 27782 chromosome
gi—385812838—ref—NC˙017467.1— Lactobacillus helveticus H10 chromosome
gi—385839818—ref—NC˙017481.1— Lactobacillus salivarius CECT 5713 chromosome
gi—448819523—ref—NC˙020229.1— Lactobacillus plantarum ZJ316
gi—472405735—ref—NC˙020819.1— Lactobacillus brevis KB290 DNA
gi—529087732—ref—NC˙021181.2— Lactobacillus acidophilus La-14
gi—501145339—ref—NC˙021224.1— Lactobacillus plantarum subsp. plantarum P-8
gi—512590512—ref—NC˙021494.1— Lactobacillus reuteri I5007
gi—523512490—ref—NC˙021721.1— Lactobacillus casei LOCK919
gi—560151351—ref—NC˙022909.1— Lactobacillus johnsonii N6.2
gi—459284225—ref—NC˙020450.1— Lactococcus lactis subsp. lactis IO-1 DNA
gi—378775961—ref—NC˙016811.1— Legionella pneumophila subsp. pneumophila ATCC 43290 chromosome
gi—221229343—ref—NC˙011896.1— Mycobacterium leprae Br4923 chromosome
gi—224988383—ref—NC˙012207.1— Mycobacterium bovis BCG str. Tokyo 172 chromosome
gi—315441696—ref—NC˙014814.1— Mycobacterium gilvum Spyr1 chromosome
gi—340625033—ref—NC˙015848.1— Mycobacterium canettii CIPT 140010059 chromosome
gi—385989534—ref—NC˙017522.1— Mycobacterium tuberculosis CCDC5180 chromosome
gi—386003090—ref—NC˙017528.1— Mycobacterium tuberculosis RGTB423 chromosome
gi—387873410—ref—NC˙017904.1— Mycobacterium sp. MOTT36Y chromosome
gi—499074415—ref—NC˙021200.1— Mycobacterium avium subsp. paratuberculosis MAP4
gi—544161316—ref—NC˙022350.1— Mycobacterium tuberculosis str. Haarlem
gi—291319937—ref—NC˙013948.1— Mycoplasma agalactiae chromosome
gi—339320528—ref—NC˙015725.1— Mycoplasma bovis Hubei-1 chromosome
gi—385325086—ref—NC˙017502.1— Mycoplasma gallisepticum str. R(high) chromosome
gi—385326614—ref—NC˙017504.1— Mycoplasma pneumoniae FH chromosome
gi—401771165—ref—NC˙018413.1— Mycoplasma gallisepticum NC08˙2008.031-4-3P chromosome
gi—402550799—ref—NC˙018495.1— Mycoplasma genitalium M2321 chromosome
gi—479052799—ref—NC˙020076.1— Mycoplasma pneumoniae M129-B7
gi—479183780—ref—NC˙021025.1— Mycoplasma mycoides subsp. mycoides SC str. Gladysdale MU clone SC5
gi—525903163—ref—NC˙021831.1— Mycoplasma hyopneumoniae 7422
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gi—194097589—ref—NC˙011035.1— Neisseria gonorrhoeae NCCP11945 chromosome
gi—254804028—ref—NC˙013016.1— Neisseria meningitidis alpha14 chromosome
gi—385323172—ref—NC˙017501.1— Neisseria meningitidis 8013
gi—385854193—ref—NC˙017517.1— Neisseria meningitidis M01-240355 chromosome
gi—330806657—ref—NC˙015379.1— Pseudomonas brassicacearum subsp. brassicacearum NFM421 chromosome
gi—330500914—ref—NC˙015410.1— Pseudomonas mendocina NK-01 chromosome
gi—339492077—ref—NC˙015740.1— Pseudomonas stutzeri ATCC 17588 = LMG 11199 chromosome
gi—426406915—ref—NC˙019670.1— Pseudomonas sp. UW4 chromosome
gi—431799958—ref—NC˙019905.1— Pseudomonas putida HB3267
gi—558672313—ref—NC˙022808.1— Pseudomonas aeruginosa PA1
gi—568136993—ref—NC˙023064.1— Pseudomonas sp. TKP
gi—568179884—ref—NC˙023075.1— Pseudomonas monteilii SB3078
gi—568306739—ref—NC˙023149.1— Pseudomonas aeruginosa SCV20265
gi—221368938—ref—NC˙011958.1— Rhodobacter sphaeroides KD131 chromosome 2
gi—294675557—ref—NC˙014034.1— Rhodobacter capsulatus SB 1003 chromosome
gi—378722019—ref—NC˙016909.1— Rickettsia rickettsii str. Arizona chromosome
gi—379017167—ref—NC˙016914.1— Rickettsia rickettsii str. Hino chromosome
gi—379022404—ref—NC˙016929.1— Rickettsia canadensis str. CA410 chromosome
gi—379713087—ref—NC˙016931.1— Rickettsia massiliae str. AZT80 chromosome
gi—383489123—ref—NC˙017051.1— Rickettsia prowazekii str. Dachau chromosome
gi—383500935—ref—NC˙017058.1— Rickettsia australis str. Cutlack chromosome
gi—383842824—ref—NC˙017062.1— Rickettsia typhi str. B9991CWPP chromosome
gi—478693373—ref—NC˙020993.1— Rickettsia prowazekii str. Breinl
gi—198241740—ref—NC˙011205.1— Salmonella enterica subsp. enterica serovar Dublin str. CT˙02021853 chromosome
gi—339998036—ref—NC˙015761.1— Salmonella bongori NCTC 12419
gi—386589256—ref—NC˙017623.1— Salmonella enterica subsp. enterica serovar Heidelberg str. B182 chromosome
gi—488652559—ref—NC˙021176.1— Salmonella enterica subsp. enterica serovar Typhi str. Ty21a
gi—525855729—ref—NC˙021818.1— Salmonella enterica subsp. enterica Serovar Cubana str. CFSAN002050
gi—549722728—ref—NC˙022544.1— Salmonella enterica subsp. enterica serovar Typhimurium str. DT2 chromosome
gi—167621941—ref—NC˙010334.1— Shewanella halifaxensis HAW-EB4 chromosome
gi—217971216—ref—NC˙011663.1— Shewanella baltica OS223 chromosome
gi—386311792—ref—NC˙017566.1— Shewanella putrefaciens 200 chromosome
gi—386322495—ref—NC˙017571.1— Shewanella baltica BA175 chromosome
gi—187730020—ref—NC˙010658.1— Shigella boydii CDC 3083-94 chromosome
gi—377520096—ref—NC˙016822.1— Shigella sonnei 53G
gi—384541581—ref—NC˙017328.1— Shigella flexneri 2002017 chromosome
gi—560154719—ref—NC˙022912.1— Shigella dysenteriae 1617
gi—224475494—ref—NC˙012121.1— Staphylococcus carnosus subsp. carnosus TM300 chromosome
gi—379794527—ref—NC˙016941.1— Staphylococcus aureus subsp. aureus MSHR1132
gi—387141638—ref—NC˙017331.1— Staphylococcus aureus subsp. aureus TW20
gi—387149188—ref—NC˙017340.1— Staphylococcus aureus 04-02981 chromosome
gi—385782956—ref—NC˙017353.1— Staphylococcus lugdunensis N920143
gi—470192280—ref—NC˙020532.1— Staphylococcus aureus subsp. aureus ST228 complete genome
gi—537459744—ref—NC˙022226.1— Staphylococcus aureus subsp. aureus CN1
gi—194396645—ref—NC˙011072.1— Streptococcus pneumoniae G54 chromosome
gi—209558587—ref—NC˙011375.1— Streptococcus pyogenes NZ131 chromosome
gi—221230948—ref—NC˙011900.1— Streptococcus pneumoniae ATCC 700669
gi—222152201—ref—NC˙012004.1— Streptococcus uberis 0140J chromosome
gi—225860012—ref—NC˙012469.1— Streptococcus pneumoniae Taiwan19F-14 chromosome
gi—253752822—ref—NC˙012925.1— Streptococcus suis P1/7
gi—290579526—ref—NC˙013928.1— Streptococcus mutans NN2025
gi—383479207—ref—NC˙017040.1— Streptococcus pyogenes MGAS15252 chromosome
gi—386343608—ref—NC˙017581.1— Streptococcus thermophilus JIM 8232
gi—386587281—ref—NC˙017622.1— Streptococcus suis A7 chromosome
gi—410593712—ref—NC˙019048.1— Streptococcus agalactiae SA20-06 chromosome
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i—479134147—ref—NC˙021003.1— Streptococcus pneumoniae SPN032672 draft genome
i—512538239—ref—NC˙021485.1— Streptococcus agalactiae 09mas018883 complete genome
gi—538369494—ref—NC˙022244.1— Streptococcus anginosus C1051
gi—556587607—ref—NC˙022665.1— Streptococcus suis T15
gi—170076636—ref—NC˙010475.1— Synechococcus sp. PCC 7002 chromosome
gi—427711179—ref—NC˙019680.1— Synechococcus sp. PCC 6312 chromosome
gi—383489963—ref—NC˙017052.1— Synechocystis sp. PCC 6803 substr. PCC-N
gi—451813329—ref—NC˙020286.1— Synechocystis sp. PCC 6803
gi—307723218—ref—NC˙014538.1— Thermoanaerobacter sp. X513 chromosome
gi—320114857—ref—NC˙014964.1— Thermoanaerobacter brockii subsp. finnii Ako-1 chromosome
gi—197333880—ref—NC˙011184.1— Vibrio fischeri MJ11 chromosome I
gi—197336667—ref—NC˙011186.1— Vibrio fischeri MJ11 chromosome II
gi—294510242—ref—NC˙011744.2— Vibrio splendidus LGP32 chromosome 2
gi—294514841—ref—NC˙011753.2— Vibrio splendidus LGP32 chromosome 1
gi—320154846—ref—NC˙014965.1— Vibrio vulnificus MO6-24/O chromosome I
gi—320157827—ref—NC˙014966.1— Vibrio vulnificus MO6-24/O chromosome II
gi—360034408—ref—NC˙016445.1— Vibrio cholerae O1 str. 2010EL-1786 chromosome 1
gi—360037214—ref—NC˙016446.1— Vibrio cholerae O1 str. 2010EL-1786 chromosome 2
gi—375129161—ref—NC˙016602.1— Vibrio furnissii NCTC 11218 chromosome 1
gi—375132168—ref—NC˙016628.1— Vibrio furnissii NCTC 11218 chromosome 2
gi—433656322—ref—NC˙019955.1— Vibrio parahaemolyticus BB22OP chromosome 1
gi—433659170—ref—NC˙019971.1— Vibrio parahaemolyticus BB22OP chromosome 2
gi—379009272—ref—NC˙016893.1— Wigglesworthia glossinidia endosymbiont of Glossina morsitans morsitans (Yale colony) chromosome
gi—188574270—ref—NC˙010717.1— Xanthomonas oryzae pv. oryzae PXO99A chromosome
gi—285016821—ref—NC˙013722.1— Xanthomonas albilineans GPE PC73 chromosome
gi—346722940—ref—NC˙016010.1— Xanthomonas axonopodis pv. citrumelo F1 chromosome
gi—384425691—ref—NC˙017271.1— Xanthomonas campestris pv. raphani 756C chromosome
gi—471265562—ref—NC˙020815.1— Xanthomonas citri subsp. citri Aw12879
gi—186893344—ref—NC˙010634.1— Yersinia pseudotuberculosis PB1/+ chromosome
gi—294502110—ref—NC˙014029.1— Yersinia pestis Z176003 chromosome
gi—384120592—ref—NC˙017154.1— Yersinia pestis D106004 chromosome
gi—384412706—ref—NC˙017265.1— Yersinia pestis biovar Medievalis str. Harbin 35 chromosome
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Accession Organism
ERR193649 Acinetobacter baumannii ATCC 17978
ERR776855 Acinetobacter sp. ADP1
ERR788913 Acinetobacter sp. ADP1
SRR006330 Acinetobacter sp. ADP1
SRR006332 Acinetobacter sp. ADP1
SRR006465 Acinetobacter sp. ADP1
ERR200084 Actinobacillus pleuropneumoniae
ERR271099 Actinobacillus pleuropneumoniae
ERR271132 Actinobacillus pleuropneumoniae
SRR191908 Actinobacillus succinogenes 130Z
DRR015722 Aeromonas hydrophila subsp. hydrophila
DRR015723 Aeromonas hydrophila subsp. hydrophila
SRR253101 Alkaliphilus oremlandii OhILAs
SRR000278 Anaeromyxobacter dehalogenans 2CP-1
SRR000279 Anaeromyxobacter dehalogenans 2CP-1
SRR422133 Anaplasma marginale str. St. Maries
SRR422132 Anaplasma phagocytophilum str. HZ
SRR1776687 Bacillus anthracis Ames BBF
ERR760543 Bacillus cereus ATCC 10987
DRR000002 Bacillus subtilis subsp. subtilis str. 168
DRR000852 Bacillus subtilis subsp. subtilis str. 168
DRR008448 Bacillus subtilis subsp. subtilis str. 168
ERR055715 Bacillus thuringiensis
SRR253092 Bacillus weihenstephanensis KBAB4
SRR1173438 Bartonella bacilliformis str. Heidi Mejia
SRR1173496 Bartonella bacilliformis str. Heidi Mejia
SRR445757 Bartonella henselae str. Zeus
SRR445766 Bartonella quintana JK 19
SRR2088903 Bifidobacterium longum
ERR225614 Bordetella bronchiseptica
ERR380650 Bordetella parapertussis
ERR370327 Bordetella pertussis
SRR1772332 Borrelia burgdorferi B31
ERR418017 Brucella canis
ERR485956 Brucella canis
ERR554818 Brucella canis
SRR642809 Brucella canis
SRR960778 Brucella canis 96-7258
SRR011104 Brucella melitensis bv. 1 str. 16M
SRR2146152 Brucella melitensis bv. 1 str. 16M
SRR2146907 Burkholderia ambifaria AMMD
SRR2146908 Burkholderia ambifaria AMMD
ERR406386 Burkholderia pseudomallei K96243
SRR1614021 Burkholderia pseudomallei K96243
SRR1614022 Burkholderia pseudomallei K96243
SRR1614023 Burkholderia pseudomallei K96243
SRR1146477 Burkholderia thailandensis E264
SRR1146481 Burkholderia thailandensis E264
SRR1146490 Burkholderia thailandensis E264
SRR1146496 Burkholderia thailandensis E264
SRR1146508 Burkholderia thailandensis E264
SRR1146510 Burkholderia thailandensis E264
SRR253095 Caldicellulosiruptor saccharolyticus DSM 8903
SRR942779 Campylobacter jejuni subsp. jejuni 81-176-55
SRR942780 Campylobacter jejuni subsp. jejuni 81-176-55-O1
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Table D.3 “Unknown” short read files. Continued

Accession Organism
SRR942781 Campylobacter jejuni subsp. jejuni 81-176-55-O3
SRR942782 Campylobacter jejuni subsp. jejuni 81-176-55-T1
SRR942783 Campylobacter jejuni subsp. jejuni 81-176-55-T3
SRR064701 Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819
SRR437910 Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819
SRR437911 Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819
SRR437914 Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819
SRR437931 Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819
SRR497623 Campylobacter jejuni subsp. jejuni NCTC 11168-PO
SRR824843 Caulobacter crescentus CB15
SRR824846 Caulobacter crescentus CB15
SRR824849 Caulobacter crescentus CB15
SRR824857 Caulobacter crescentus CB15
SRR824865 Caulobacter crescentus CB15
SRR834582 Caulobacter crescentus CB15
ERR386226 Chlamydia muridarum str. Nigg
SRR1736658 Chlamydia muridarum str. Nigg CM972
SRR125859 Chlamydia trachomatis D/UW-3/CX
SRR125860 Chlamydia trachomatis D/UW-3/CX
ERR386222 Chlamydia trachomatis L2b/UCH-1/proctitis
ERR386223 Chlamydia trachomatis L2b/UCH-1/proctitis
ERR768074 Chromobacterium violaceum
SRR769602 Chromobacterium violaceum
SRR1981078 Chromohalobacter salexigens DSM-3043
SRR1981208 Chromohalobacter salexigens DSM-3043
ERR163867 Citrobacter koseri
ERR772459 Citrobacter koseri
SRR755330 Citrobacter koseri ADL-328
SRR1609114 Citrobacter koseri
SRR1656096 Citrobacter koseri
SRR1656442 Citrobacter koseri
DRR018799 Clostridium botulinum
ERR022312 Clostridium botulinum A5(B’) str. H04402 065
SRR036930 Clostridium botulinum 5311a
SRR764973 Clostridium botulinum str. LANGELAN F
SRR770049 Clostridium botulinum CFSAN002367
ERR171255 Clostridium perfringens
SRR065411 Clostridium perfringens WAL-14572
SRR096826 Clostridium perfringens F262
SRR1655401 Clostridium perfringens
SRR2089300 Clostridium perfringens
ERR599177 Clostridium phytofermentans
SRR253100 Clostridium phytofermentans ISDg
SRR400549 Clostridium thermocellum ATCC 27405
SRR891397 Clostridium thermocellum ATCC 27405
SRR891400 Clostridium thermocellum ATCC 27405
SRR891797 Clostridium thermocellum ATCC 27405
SRR089499 Corynebacterium efficiens YS-314
ERR845240 Coxiella burnetii RSA 493
SRR253103 Delftia acidovorans SPH-1
SRR253097 Desulfococcus oleovorans Hxd3
SRR402910 Desulfovibrio vulgaris str. Hildenborough
SRR1291430 Desulfovibrio vulgaris str. Hildenborough
SRR1291434 Desulfovibrio vulgaris str. Hildenborough
ERR506948 Dichelobacter nodosus
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Table D.3 “Unknown” short read files. Continued

Accession Organism
ERR506983 Dichelobacter nodosus
ERR506989 Dichelobacter nodosus
ERR314470 Enterobacter sp.
ERR387211 Enterobacter sp.
ERR502553 Enterobacter sp.
SRR2127604 Enterobacter sp. BIDMC92
SRR172995 Enterococcus faecalis V583
SRR182361 Enterococcus faecalis V583
SRR638571 Enterococcus faecalis V583
SRR248516 Erythrobacter litoralis HTCC2594
ERR351257 Escherichia coli 536
ERR305884 Escherichia coli APEC O1
ERR305901 Escherichia coli APEC O1
SRR1021212 Escherichia coli O157:H7 str. EDL933
SRR1509640 Escherichia coli O157:H7 str. EDL933
SRR1509643 Escherichia coli O157:H7 str. EDL933
SRR1509803 Escherichia coli O157:H7 str. EDL933
SRR1783841 Escherichia coli O157:H7 str. EDL933
SRR1795985 Escherichia coli O157:H7 str. EDL933
ERR687900 Escherichia coli UTI89
ERR687901 Escherichia coli UTI89
SRR000868 Escherichia coli UTI89
SRR000871 Escherichia coli UTI89
ERR376619 Escherichia coli str. K-12 substr. MG1655
ERR376625 Escherichia coli str. K-12 substr. MG1655
SRR1635255 Escherichia coli str. K-12 substr. MG1655
SRR253105 Fervidobacterium nodosum Rt17-B1
SRR000311 Francisella tularensis subsp. holarctica OSU18
SRR292171 Francisella tularensis subsp. holarctica OSU18
SRR999318 Francisella tularensis subsp. tularensis str. SCHU S4 substr. FSC237
SRR999323 Francisella tularensis subsp. tularensis str. SCHU S4 substr. SL
SRR1061349 Francisella tularensis subsp. tularensis str. SCHU S4 substr. SL
SRR1714340 Francisella tularensis subsp. tularensis str. SCHU S4 substr. NR-28534
SRR1284499 Francisella tularensis subsp. tularensis WY96-3418
SRR1284500 Francisella tularensis subsp. tularensis WY96-3418
SRR1284501 Francisella tularensis subsp. tularensis WY96-3418
SRR896553 Frankia sp. CcI3
ERR125051 Haemophilus influenzae
ERR125090 Haemophilus influenzae
ERR658012 Haemophilus influenzae Rd KW20
ERR716321 Haemophilus influenzae
SRR065202 Haemophilus influenzae Rd KW20
SRR065206 Haemophilus influenzae 86-028NP
SRR253108 Halorhodospira halophila SL1
SRR1980752 Helicobacter pylori J99
SRR1980757 Helicobacter pylori J99
SRR1981186 Helicobacter pylori J99
SRR1981237 Helicobacter pylori J99
SRR1981622 Helicobacter pylori J99
DRR003232 Klebsiella pneumoniae subsp. pneumoniae JCM 1662
ERR706867 Klebsiella pneumoniae subsp. pneumoniae MGH 78578
ERR706873 Klebsiella pneumoniae subsp. pneumoniae MGH 78578
ERR718767 Klebsiella pneumoniae subsp. pneumoniae
SRR515628 Klebsiella pneumoniae subsp. pneumoniae KPNIH15
SRR770033 Klebsiella pneumoniae subsp. pneumoniae WGLW2
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Table D.3 “Unknown” short read files. Continued

Accession Organism
SRR1166990 Klebsiella pneumoniae subsp. pneumoniae
SRR1510962 Klebsiella pneumoniae subsp. pneumoniae KPR0928
SRR1510963 Klebsiella pneumoniae subsp. pneumoniae KPR0928
SRR1510964 Klebsiella pneumoniae subsp. pneumoniae KPR0928
ERR570198 Lactobacillus casei
ERR256994 Lactobacillus delbrueckii subsp. bulgaricus
ERR387526 Lactobacillus delbrueckii subsp. bulgaricus
ERR433470 Lactobacillus delbrueckii subsp. indicus
ERR204049 Lactobacillus gasseri
ERR570066 Lactobacillus gasseri MV-22
ERR570280 Lactobacillus gasseri
ERR204044 Lactobacillus helveticus
ERR387534 Lactobacillus helveticus
SRR077393 Lactobacillus helveticus DSM 20075 = CGMCC 1.1877
ERR570285 Lactobacillus plantarum
SRR010987 Lactobacillus plantarum subsp. plantarum ATCC 14917 = JCM 1149 = CGMCC 1.2437
SRR010988 Lactobacillus plantarum subsp. plantarum ATCC 14917 = JCM 1149 = CGMCC 1.2437
SRR1552613 Lactobacillus plantarum ATCC 801
ERR022445 Lactobacillus reuteri ATCC 53608
ERR256993 Lactobacillus reuteri
SRR011135 Lactobacillus reuteri CF48-3A
SRR1151170 Lactobacillus reuteri DSM 20016
DRR003258 Lactobacillus sakei subsp. sakei DSM 20017 = JCM 1157
ERR387465 Lactobacillus sakei subsp. sakei
SRR1151267 Lactobacillus sakei subsp. sakei DSM 20017 = JCM 1157
ERR570279 Lactobacillus salivarius
SRR010995 Lactobacillus salivarius DSM 20555 = ATCC 11741
SRR010996 Lactobacillus salivarius DSM 20555 = ATCC 11741
SRR1151172 Lactobacillus salivarius DSM 20555 = ATCC 11741
SRR1656220 Lactobacillus salivarius
DRR003259 Lactococcus lactis subsp. lactis JCM 5805 = NBRC 100933
ERR387536 Lactococcus lactis subsp. lactis
ERR440991 Lactococcus lactis subsp. lactis
SRR088758 Lactococcus lactis subsp. lactis KF147
ERR340950 Legionella pneumophila
ERR351253 Legionella pneumophila str. Paris
ERR351261 Legionella pneumophila str. Corby
ERR351262 Legionella pneumophila str. Lens
ERR485161 Legionella pneumophila
SRR801743 Legionella pneumophila subsp. pneumophila str. Philadelphia 1
SRR801793 Legionella pneumophila subsp. pneumophila str. Philadelphia 1
SRR801840 Legionella pneumophila subsp. pneumophila str. Philadelphia 1
SRR714504 Leptospira interrogans serovar Copenhageni str. Fiocruz LV4174
SRR717627 Leptospira interrogans serovar Copenhageni str. Fiocruz LV2750
SRR717876 Leptospira interrogans serovar Copenhageni str. Fiocruz LV4113
ERR760535 Listeria monocytogenes EGD-e
SRR1031054 Listeria monocytogenes serotype 4b str. NCTC 11994
SRR1031055 Listeria monocytogenes serotype 4b str. NCTC 11994
ERR760535 Listeria monocytogenes EGD-e
SRR2352237 Listeria monocytogenes
SRR000215 Methylobacterium extorquens PA1
SRR000217 Methylobacterium extorquens PA1
SRR190860 Methylobacterium extorquens DSM 13060
SRR1046370 Methylobacterium extorquens AM1
ERR037949 Mycobacterium avium subsp. paratuberculosis

250



Table D.3 “Unknown” short read files. Continued

Accession Organism
SRR060191 Mycobacterium avium subsp. paratuberculosis K-10
SRR1793723 Mycobacterium avium subsp. paratuberculosis
SRR799346 Mycobacterium leprae 3125609
ERR274521 Mycobacterium smegmatis
ERR550505 Mycobacterium smegmatis
SRR071425 Mycobacterium smegmatis str. MC2 155
SRR453241 Mycobacterium smegmatis JS623
ERR760549 Mycobacterium tuberculosis H37Ra
SRR024229 Mycobacterium tuberculosis F11
SRR974839 Mycobacterium tuberculosis F11
SRR974842 Mycobacterium tuberculosis H37Rv
SRR1949885 Mycobacterium tuberculosis H37Rv
ERR339034 Mycoplasma agalactiae
SRR006331 Mycoplasma agalactiae PG2
ERR486835 Mycoplasma genitalium G37
ERR486841 Mycoplasma genitalium
ERR713979 Mycoplasma hyopneumoniae 232
ERR736802 Mycoplasma hyopneumoniae 232
SRR631043 Mycoplasma pneumoniae M129
SRR643250 Mycoplasma pneumoniae M129
SRR2135833 Mycoplasma pneumoniae
SRR2135852 Mycoplasma pneumoniae
ERR191802 Neisseria gonorrhoeae
ERR355927 Neisseria gonorrhoeae
SRR004146 Neisseria gonorrhoeae SK-92-679
SRR016778 Neisseria gonorrhoeae F62
ERR051677 Neisseria meningitidis
ERR484778 Neisseria meningitidis
ERR636419 Neisseria meningitidis MC58
SRR057353 Neisseria meningitidis K1207
SRR1425912 Nitrosococcus oceani C-27
SRR1020892 Nostoc sp. PCC 7120
ERR841688 Ochrobactrum anthropi
SRR253117 Parvibaculum lavamentivorans DS-1
SRR253118 Petrotoga mobilis SJ95
SRR001351 Porphyromonas gingivalis W83
SRR001352 Porphyromonas gingivalis W83
SRR413299 Porphyromonas gingivalis W50
SRR248518 Prochlorococcus marinus str. MIT 9211
SRR253119 Prochlorococcus marinus str. NATL2A
SRR1805320 Prochlorococcus marinus
ERR246369 Pseudomonas aeruginosa
SRR396638 Pseudomonas aeruginosa MPAO1/P1
SRR1103537 Pseudomonas aeruginosa PAO1-GFP
SRR1374997 Pseudomonas aeruginosa PAO1
SRR2099465 Pseudomonas aeruginosa PAO1
DRR001171 Pseudomonas fluorescens Pf0-1
DRR001172 Pseudomonas fluorescens Pf0-1
SRR567996 Pseudomonas fluorescens
SRR949275 Pseudomonas fluorescens BBc6R8
DRR017738 Pseudomonas putida JCM 9802
SRR253120 Pseudomonas putida F1
SRR924720 Pseudomonas putida LF54
ERR005143 Pseudomonas syringae pv. syringae B728a
SRR020199 Pseudomonas syringae pv. syringae FF5
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Table D.3 “Unknown” short read files. Continued

Accession Organism
SRR1039777 Pseudomonas syringae pv. tomato
SRR1039794 Pseudomonas syringae pv. tomato
ERR726246 Rhizobium leguminosarum
SRR004795 Rhizobium leguminosarum bv. trifolii WSM2304
ERR760546 Rhodobacter sphaeroides 2.4.1
SRR387291 Rhodobacter sphaeroides 2.4.1
SRR522245 Rhodobacter sphaeroides 2.4.1
SRR620446 Rhodobacter sphaeroides 2.4.1
ERR039479 Rhodopseudomonas palustris BisB5
SRR031640 Rhodopseudomonas palustris DX-1
SRR1791643 Rhodopseudomonas palustris
SRR1791673 Rhodopseudomonas palustris
SRR949058 Saccharopolyspora erythraea D
ERR212582 Salmonella enterica subsp. enterica serovar Choleraesuis
SRR955200 Salmonella enterica subsp. enterica serovar Choleraesuis str. ATCC 10708
SRR1586583 Salmonella enterica subsp. enterica serovar Choleraesuis Var. Kunzendorf str
ERR235289 Salmonella enterica subsp. enterica serovar Typhimurium
ERR744244 Salmonella enterica subsp. enterica serovar Typhimurium
SRR1176802 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2-4
SRR072372 Shewanella amazonensis SB2B
SRR1798623 Shewanella amazonensis SB2B
SRR058889 Shewanella baltica OS678
SRR253122 Shewanella baltica OS195
DRR003249 Shewanella putrefaciens JCM 20190 = NBRC 3908
SRR253124 Shewanella putrefaciens CN-32
SRR1801183 Shewanella putrefaciens HRCR-6
ERR017663 Shigella sonnei
ERR017664 Shigella sonnei
ERR212316 Shigella dysenteriae
ERR852667 Shigella dysenteriae
SRR364091 Shigella dysenteriae 225-75
SRR765082 Shigella dysenteriae
ERR126957 Shigella flexneri
ERR590906 Shigella flexneri 2a
ERR591308 Shigella flexneri 5
SRR041664 Shigella flexneri 2a str. 2457T
SRR1165139 Sinorhizobium meliloti 1021
ERR142616 Staphylococcus aureus subsp. aureus TW20
ERR580966 Staphylococcus aureus subsp. aureus COL
SRR292151 Staphylococcus aureus subsp. aureus USA300˙TCH1516
SRR528763 Staphylococcus aureus strain Newman
SRR578343 Staphylococcus aureus subsp. aureus USA300˙FPR3757
SRR1955495 Staphylococcus aureus
SRR1955594 Staphylococcus aureus
SRR1955595 Staphylococcus aureus
SRR1955861 Staphylococcus aureus
DRR017649 Staphylococcus epidermidis JCM 2414
ERR234787 Staphylococcus epidermidis
ERR387262 Staphylococcus epidermidis
SRR014815 Staphylococcus epidermidis W23144
SRR071338 Staphylococcus epidermidis VCU120
SRR1609104 Staphylococcus epidermidis
SRR1656424 Staphylococcus epidermidis
ERR085220 Staphylococcus haemolyticus
SRR1656451 Staphylococcus haemolyticus
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Table D.3 “Unknown” short read files. Continued

Accession Organism
ERR204108 Streptococcus pneumoniae
ERR204135 Streptococcus pneumoniae
ERR654515 Streptococcus pneumoniae
ERR716254 Streptococcus pneumoniae
SRR068305 Streptococcus pneumoniae GA17457
SRR1408840 Streptococcus pneumoniae 13856
ERR046238 Streptococcus pyogenes
ERR144738 Streptococcus pyogenes
ERR662589 Streptococcus pyogenes
SRR004693 Streptococcus pyogenes AA216
SRR090459 Streptococcus pyogenes ATCC 10782
SRR1147086 Streptococcus pyogenes
SRR1655199 Streptococcus thermophilus
SRR1770414 Streptomyces avermitilis MA-4680 = NBRC 14893
ERR588636 Synechococcus sp. WH 8103
SRR038529 Synechococcus sp. CB0205
SRR1798191 Synechococcus sp. PEB5 55AY5-B PE B5
DRR001143 Synechocystis sp. PCC 6803 PCC-N strain
SRR253126 Thermoanaerobacter sp. X514
SRR516571 Thermoanaerobacter sp. X514
SRR253128 Thermosipho melanesiensis BI429
SRR896531 Thermotoga maritima MSB8
SRR000332 Treponema pallidum subsp. pallidum str. Nichols
SRR029224 Treponema pallidum subsp. pallidum str. Nichols
SRR364930 Vibrio cholerae O1 biovar El Tor str. N16961
SRR1124794 Vibrio cholerae O1 biovar El Tor
SRR1199311 Vibrio cholerae O1 biovar El Tor
DRR017980 Vibrio parahaemolyticus RIMD 2210633
DRR017981 Vibrio parahaemolyticus RIMD 2210633
DRR017982 Vibrio parahaemolyticus RIMD 2210633
DRR017983 Vibrio parahaemolyticus RIMD 2210633
ERR175748 Wolbachia endosymbiont of Drosophila simulans
SRR2064179 Wolbachia endosymbiont of Brugia malayi
SRR1998069 Wolinella succinogenes
SRR1207369 Xanthomonas oryzae pv. oryzicola
SRR1592663 Xanthomonas oryzae ATCC 35933
ERR015575 Yersinia enterocolitica
SRR2149856 Yersinia enterocolitica
SRR2149857 Yersinia enterocolitica
SRR2149858 Yersinia enterocolitica
ERR245863 Yersinia pseudotuberculosis
ERR752453 Yersinia pseudotuberculosis
SRR2148416 Yersinia pseudotuberculosis
SRR2148805 Yersinia pseudotuberculosis
SRR017901 Zymomonas mobilis subsp. mobilis ZM4 = ATCC 31821
SRR191898 Zymomonas mobilis subsp. mobilis ATCC 29191
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Table D.4: PacBio, ABSolid and Oxford Nanopore Short Reads Data.

Accession Accession Accession Accession Accession
ERR845240 DRR021341 ERR234280 SRR001354 SRR1635255
SRR328412 ERR557006 ERR557023 SRR656856 SRR656873
SRR546564 ERR202400 SRR1950255 SRR1950259 SRR2034255
ERR421272 ERR421274 ERR421275 SRR538068 SRR538825
SRR542334 SRR542433 SRR653010 SRR653053 SRR653609
SRR653610 SRR3169819 ERR029927 SRR350980 SRR350983
SRR578343 SRR1014692 SRR1014693 SRR1014695 SRR1014696
SRR1014697 SRR353676 SRR353678 SRR364894 SRR908310
SRR908311 SRR909270 SRR909545 SRR909586 SRR909667
SRR035442 SRR035443 SRR035444 SRR035445 ERR701171
ERR776851 ERR776853 ERR776854 ERR776855 SRR2671867
SRR2671868 ERR977574 ERR637419 ERR701174 ERR764952
ERR968962 ERR968963 ERR968968 ERR968971 ERR968974
ERR1309549 SRR1596423 ERR701176 SRR3473969 SRR1177097
SRR1177844 SRR1178887 SRR3893881 ERR581145 SRR3951708
ERR1046620 SRR2146908 SRR1206479 SRR2863235 SRR2148792
SRR1614023 ERR849508 ERR1354173 ERR1366099 ERR768074
SRR1981078 ERR772459 SRR1609114 SRR4095613 SRR1003149
SRR1003209 SRR1004230 SRR1004237 SRR1509640 SRR1509803
SRR1795985 SRR1284501 SRR1714340 ERR526296 ERR526297
SRR386136 SRR1980752 SRR1980757 ERR768078 SRR1980767
ERR706867 SRR1510964 SRR1556927 SRR3756808 SRR1950323
ERR550505 SRR1757045 SRR1776953 SRR2048552 SRR631043
SRR643250 SRR631043 SRR643250 ERR1466806 SRR1223220
SRR2063176 SRR3723122 ERR1109366 ERR841688 SRR387291
SRR386671 SRR386717 SRR2063211 SRR1177090 SRR1178078
SRR1178840 SRR1425899 SRR1425900 SRR1425901 ERR852667
ERR159975 SRR1179003 SRR1955594 SRR1609103 SRR1609104
ERR1562473 ERR654515 ERR1517154 DRR015080 SRR364930
DRR017980 SRR1207369 SRR2149858 ERR752453
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Table D.5: MRSA outbreak strains.

Accession STtype Patients
ERR070033 ST2371 P8
ERR070034 ST2371 P9
ERR070035 ST8 NonOutBreak
ERR070036 ST2371 P10
ERR070037 ST22 NonOutBreak
ERR070038 ST2371 P13
ERR070039 ST2371 P11
ERR070040 ST2371 P12
ERR070041 ST1 NonOutBreak
ERR070042 ST2371 P2
ERR070043 ST2371 P3
ERR070044 ST2371 P4
ERR070045 ST2371 P1
ERR070046 ST2371 P5
ERR070047 ST2371 P6
ERR070048 ST2371 P7
ERR072246 ST2371 P14
ERR072247 ST2371 P23
ERR072248 ST772 NonOutBreak
ERR108054 ST2371 P15
ERR124429 ST2371 P16
ERR124430 ST2371 P17
ERR124431 ST2371 P20
ERR124432 ST2371 P19
ERR124433 ST2371 P21
ERR124434 ST2371 P22
ERR124435 ST2371 P24
ERR124436 ST772 NonOutBreak
ERR128707 ST2371 P26
ERR128708 ST2371 P25
ERR128709 ST2371 Staff
ERR128710 ST2371 Staff
ERR128711 ST2371 Staff
ERR128712 ST2371 Staff
ERR128713 ST2371 Staff
ERR128714 ST2371 Staff
ERR128715 ST2371 Staff
ERR128716 ST2371 Staff
ERR128717 ST2371 Staff
ERR128718 ST2371 Staff
ERR128719 ST2371 Staff
ERR128720 ST2371 Staff
ERR131800 ST772 NonOutBreak
ERR131801 ST22 NonOutBreak
ERR131802 ST22 NonOutBreak
ERR131804 ST772 NonOutBreak
ERR131805 ST22 NonOutBreak
ERR131806 ST22 NonOutBreak
ERR131807 ST22 NonOutBreak
ERR131808 ST2371 Staff
ERR131809 ST2371 Staff
ERR131810 ST2371 Staff
ERR131811 ST2371 Staff
ERR131812 ST2371 Staff
ERR131813 ST2371 Staff
ERR131814 ST2371 Staff
ERR131815 ST2371 Staff
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D.2 Thresholds Constructing and Typing Accuracies

Figure D.1: Sorted test statistics from assembled bacterial sequences. (A) 3-mer. (B)
6-mer. (C) 9-mer. The orange curve is the false assignments and the blue curve is the
correct assignments. The black line is the threshold determined from the 95% test statistics
of the correct assignments.
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Figure D.2: Sorted test statistics (3-mer) from pooled short reads data (raw reads data
files). (A) 16 bins, (D) 32 bins, and (G) 64 bins for Illumina. (B) 16 bins, (E) 32 bins, and
(H) 64 bins for LS454. (C) 16 bins, (F) 32 bins, and (I) 64 bins for all data. The orange
curve is the false assignments and the blue curve is the correct assignments. The black
line is the threshold determined from the 95% test statistics of the correct assignments for
Illumina and Overall data. For LS454, 90% was used.
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Figure D.3: Sorted test statistics (6-mer) from pooled short reads data (raw reads data
files). (A) 16 bins, (D) 32 bins, (G) 64 bins, (I) 128 bins, and (M) 256 bins for Illumina.
(B) 16 bins, (E) 32 bins, (H) 64 bins, (K) 128 bins, and (N) 256 bins for LS454. (C) 16
bins, (F) 32 bins, (I) 64 bins, (L) 128 bins, and (O) 256 bins for all data. The orange curve
is the false assignments and the blue curve is the correct assignments. The black line is the
threshold determined from the 95% test statistics of the correct assignments for Illumina
and Overall data. For LS454, 90% was used.
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Figure D.4: Sorted test statistics (9-mer) from pooled short reads data (raw reads data
files) (A) 16 bins, (D) 32 bins, (G) 64 bins, (J) 128 bins, and (M) 256 bins for Illumina. (B)
16 bins, (E) 32 bins, (H) 64 bins, (K) 128 bins, and (N) 256 bins for LS454. (C) 16 bins,
(F) 32 bins, (I) 64 bins, (L) 128 bins, and (O) 256 bins for all data. The orange curve is
the false assignments and the blue curve is the correct assignments. The black line is the
threshold determined from the 95% test statistics of the correct assignments for Illumina
and Overall data. For LS454, 90% was used.
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Figure D.5: Pooled Sequence Typing for PacBio, AB Solid and Oxford Nanopore (raw
reads data files without threshold). Percent correct genus assignments of (A) 3-mers, (B)
6-mers, and (C) 9-mers. PB-sQF analyses of raw reads files compared to reconstructed
whole genome libraries. Percent correct species assignments using (D) 3-mers, (E) 6-mers,
and (F) 9-mers. Again, there are 80, 49 and 20 total number of data files for PacBio, AB
Solid and Oxford Nanopore respectively.
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APPENDIX E

SUPPORTING INFORMATION FOR CHAPTER 7

E.1 Aligners and Reads Lengths

In this section, the linearity at different read lengths for mrFAST, MAQ, BWA-MEM, NN,

and Bowtie2 are reported.
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Figure E.1: Mapping Linearity using mrFAST with different read length.
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Figure E.2: Mapping Linearity using MAQ with different read length.
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Figure E.3: Mapping Linearity using BWA-MEM with different read length.
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Figure E.4: Mapping Linearity using NN with different read length.
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Figure E.5: Mapping Linearity using Bowtie2 with different read length.
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E.2 CNVs Detection with Different Similarity

In the section, the detected CNV lists is reported with the grouping function is on, and the

CNV regions are detected by rejecting the regions that have estimated query copy numbers

within 0.9 of the estimated reference copy numbers (|CopyNumberAvg−CopyNumberAvg×

CopyNumberTS| >= 0.9). In all the tables, CNV size is presented in base pairs (bps) and

the breakpoints are listed in the reference (Seq-2) genome index. The negative group num-

bers represent deletions and there is no false duplications detected.

Table E.1: CNV detection results for similarity test. CNV size is in base pairs (bps).

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
286208 287168 2.39 0.105 0.0929 -1 960
373248 374400 2.22 0.284 0.162 -1 1152
818944 819968 2.98 0.391 0.185 -1 1024
1544768 1545536 3.62 1.18 0.445 -1 768
1607616 1608448 3.63 0.576 0.105 -1 832
1859328 1860160 3.61 0.758 0.167 -1 832
2684928 2685952 3.17 1 0.4 -1 1024
608768 609024 0.806 0.618 0.792 -2 256
532096 532224 0.928 0.69 0.799 -3 128
1718656 1718784 0.871 0.749 0.85 -4 128
287105 287168 0.861 0.351 0.405 -5 63
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E.3 CNVs Detection with Different Read Lengths

In the section, the detected CNV lists and the read depth trajectories from all read lengths

are reported. For each read length, two sets of data are reported. One is using Seq-2 (re-

peated sequence) as the query sequence and the original sequence as the reference sequence

and vice versa.

For all the lists reported here, the grouping function is off, and the CNV regions are de-

tected by rejecting the regions that have estimated query copy numbers within 0.9 of the es-

timated reference copy numbers (|CopyNumberAvg−CopyNumberAvg×CopyNumberTS| >=

0.9). To reduce false discoveries, regions with TS read depth within Poisson noise of the

average TS read depth are also rejected. In all the tables, CNV size is presented in base

pairs (bps) and the breakpoints are listed in the reference genome index. For group num-

bers, positive groups represent duplications while negative groups represent deletions. As

a result, group−n 6= groupn, in which n is the group number.

E.3.1 CNV Lists
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Table E.2: CNV detection results of 36-bp reads with the original as reference se-
quence. CNV size is in base pairs (bps). The list is generated by excluding regions within
Poisson Noise of the average TS read depth and without applying the grouping function.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
39360 39432 8.06 5.11 1.22 4 72
49616 49920 8.08 8.01 1.21 9 304
50048 50144 8.94 9.25 1.52 10 96
60928 60992 6.94 5.71 1.35 13 64
78784 78920 5.89 4.54 1.19 17 136
89920 90000 4.3 4.21 1.39 19 80
106112 106192 4.47 3.43 1.21 26 80
114384 114432 5.31 2.3 1.2 29 48
114816 114864 3.66 2.66 1.29 30 48
121344 121548 3.85 3.31 1.33 31 204
170112 172160 4.43 5.28 1.46 39 2048
183296 183344 6.35 3.77 1.23 43 48
196512 198656 4.26 5.02 1.3 47 2144
377040 377154 7.07 6.48 1.34 73 114
387216 387296 4.55 5.01 1.44 74 80
393216 393280 7.18 6.8 1.31 75 64
397632 397952 5.45 4.94 1.26 78 320
412176 412272 7.78 7.45 1.4 79 96
423232 423344 9.99 10.9 1.26 83 112
443952 444080 9.8 10.1 1.36 90 128
444096 444208 7.38 6.62 1.25 91 112
462880 463168 9.36 9.12 1.34 93 288
463200 463328 6.27 3.71 1.16 94 128
519232 519328 10.6 10.3 1.27 97 96
519392 519488 7.69 7.81 1.24 98 96
530304 530464 7.62 7.85 1.32 102 160
532416 532528 6.48 7.77 1.46 104 112
554816 554992 3.48 2.85 1.33 108 176
564918 564960 26 9.16 1.23 113 42
565507 565578 18.5 6.35 1.21 121 71
565668 565712 34 11.8 1.25 123 44
567204 567252 29.4 9.02 1.18 139 48
583424 583552 5.98 5.41 1.29 155 128
586432 586528 3.82 2.62 1.24 156 96
620672 622208 5.03 6.14 1.32 158 1536
651488 651536 6.23 5.05 1.37 161 48
651712 651776 4.03 3.73 1.39 162 64
676736 676928 8.56 8.95 1.4 165 192
684832 684912 4.92 4.46 1.24 167 80
689718 689824 6.31 6.38 1.29 168 106
701632 701760 4.68 4.76 1.29 170 128
742688 742880 4.2 4.11 1.29 178 192
759744 759800 5.26 3.44 1.24 185 56
759968 760032 7.16 2.58 1.17 186 64
785856 786112 5.83 7.69 1.63 187 256
788976 789096 10.4 9.86 1.23 188 120
789120 789312 8.17 8.22 1.32 189 192
821728 823264 6.21 5.96 1.21 192 1536
834304 836672 1.05 2.08 1.98 195 2368
888312 888448 5.11 5.1 1.4 208 136
895872 895968 5.32 4.3 1.26 209 96
927168 1052032 1.08 2.07 1.98 212 124864
940448 940528 6.19 6.9 1.82 213 80
944152 944280 5.44 6.88 2.05 214 128
955904 956096 5.49 6.67 1.76 215 192
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Table E.2 CNV detection results of 36-bp reads with the original as reference se-
quence. Continued

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
956112 956288 5.41 6.35 1.87 216 176
1005952 1006016 7.78 8.51 1.89 217 64
1011184 1011232 5.31 7.07 1.95 218 48
1011328 1011368 8.23 6.92 1.68 219 40
1018816 1018912 3.55 6.88 2.29 220 96
1025184 1025248 6.36 4.94 2.06 221 64
1025280 1052160 1.03 2.01 1.98 222 26880
1076064 1076176 4.72 3.46 1.22 232 112
1148416 1148560 9.13 9.65 1.35 240 144
1181664 1181778 7.02 4.8 1.22 244 114
1203808 1205248 5.07 6.12 1.27 248 1440
1205249 1205344 3.37 3.67 1.34 249 95
1253616 1253664 4.31 4.49 1.34 262 48
1266208 1266328 7.22 6.78 1.38 264 120
1272368 1272448 7.39 4.64 1.22 266 80
1307984 1308096 7.53 7.1 1.35 269 112
1331872 1331988 6.64 3.99 1.18 271 116
1339264 1339360 10.8 11.3 1.27 273 96
1339408 1339584 7.8 9.79 1.53 274 176
1358944 1359040 7.29 7.64 1.43 277 96
1399888 1399968 8.61 6.54 1.19 281 80
1402336 1402448 4.82 5.97 1.57 283 112
1415552 1415616 2.33 2.62 1.44 287 64
1418272 1418496 3.12 3.77 1.39 288 224
1477888 1477952 5.32 4.92 1.25 298 64
1504560 1504640 6.98 6.17 1.47 304 80
1504800 1504928 8.49 5.5 1.17 305 128
1533856 1533920 3.96 3.28 1.32 309 64
1545552 1545632 5.38 4.27 1.22 312 80
1551472 1553024 4.99 5.9 1.26 314 1552
1553184 1553248 8.39 5.53 1.17 315 64
1558528 1808384 1.06 2.04 1.97 318 249856
1613120 1613312 4.19 6.37 2.05 319 192
1644416 1644480 3.49 4.95 2.14 320 64
1690432 1690496 3.85 4.38 2.13 321 64
1715248 1715328 7.08 10 2.12 322 80
1717440 1717632 5.02 6.63 2.11 323 192
1730400 1730448 6.83 5.53 1.79 324 48
1739808 1739856 6.65 5.54 1.76 325 48
1739904 1739970 8.78 7.47 1.9 326 66
1748864 1748944 3.06 5.44 2.1 327 80
1763968 1764096 5.6 4.31 1.77 328 128
1774720 1794048 1.05 2.04 1.99 329 19328
1794080 1808384 1.05 2.06 2 330 14304
1808896 1808936 4.54 2.58 1.22 331 40
1836976 1837024 3.92 2.99 1.33 341 48
1842560 1842624 7.25 5.32 1.27 343 64
1851904 1852032 5.27 5.32 1.33 345 128
1859376 1859442 5.53 4.62 1.3 348 66
1862896 1862992 6.81 5.46 1.21 349 96
1905888 1905960 7.62 7.46 1.41 350 72
1930688 1930752 6.54 6.13 1.46 356 64
1958464 1958528 3.98 3.39 1.29 360 64
1996288 1997824 6.22 6.21 1.38 365 1536
2047232 2047368 6.3 6.41 1.38 382 136
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Table E.2 CNV detection results of 36-bp reads with the original as reference se-
quence. Continued

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
2056176 2056224 11.9 5.75 1.26 386 48
2056240 2056352 10.7 4.58 1.19 387 112
2057496 2057544 12.2 4.42 1.17 397 48
2086620 2086687 7.14 5.39 1.28 407 67
2088032 2088072 4.66 3.57 1.29 408 40
2130624 2130816 4.97 5.98 1.36 413 192
2131384 2131488 7.37 4.98 1.17 414 104
2176464 2176560 6.02 4.56 1.25 419 96
2248944 2249008 9.06 5.06 1.2 426 64
2257648 2257984 6.54 6.53 1.3 429 336
2257912 2257968 9.59 8.88 1.22 430 56
2286592 2288192 4.83 5.55 1.36 433 1600
2348160 2348208 4.11 4.06 1.33 440 48
2371760 2371928 7.4 6.41 1.33 443 168
2394752 2394832 6.6 6.64 1.51 447 80
2404992 2405096 4.91 3.78 1.21 449 104
2433184 2433312 6.22 4.64 1.26 453 128
2437656 2437760 5.84 4.04 1.2 456 104
2441472 2441792 5.17 4.85 1.19 458 320
2452864 2452952 6.47 6.31 1.2 460 88
2464512 2464768 5.65 5.82 1.34 463 256
2469952 2470080 5.09 6.31 1.6 464 128
2479520 2479680 5.35 4.58 1.27 469 160
2483264 2483328 6.42 5.89 1.19 473 64
2535680 2536096 1.66 2.28 1.58 480 416
2640960 2641024 3.93 3.53 1.27 496 64
2692512 2692560 9.22 7.42 1.4 507 48
2721993 2722064 7.39 5.77 1.28 508 71
2732096 2732192 7.09 6.42 1.34 510 96
2742016 2766848 1.09 2.05 1.98 511 24832
2743104 2743168 6.63 5.97 1.61 512 64
2743968 2744080 7.3 6.85 1.78 513 112
2754944 2758144 1.05 1.93 1.95 514 3200
2758208 2766848 1.03 2.02 1.97 515 8640
2793488 2793600 5.61 4.91 1.32 520 112
2856720 2856834 60.1 17.2 1.22 537 114
2856784 2856896 65.1 19.2 1.19 538 112
2857176 2857232 60.1 14.1 1.18 542 56
2857248 2857307 63.6 14.9 1.32 543 59
2857504 2857560 67.5 21.7 1.3 547 56
2857627 2857692 60.5 21.9 1.18 549 65
2857840 2857890 73 23.9 1.22 552 50
2858700 2858742 84 26.9 1.3 563 42
2858826 2858880 66.6 19 1.18 565 54
2859024 2859072 66.5 17.8 1.45 568 48
2859288 2859336 66.7 17.6 1.19 572 48
2860416 2860464 70.1 18.2 1.21 586 48
2860740 2860794 70.5 23.1 1.28 590 54
2861592 2861652 69 23.4 1.23 599 60
2861800 2861844 83.4 26.9 1.22 602 44
2862060 2862114 62.3 12.1 1.17 606 54
2862528 2862576 67.6 21.6 1.28 611 48
2863128 2863168 73.3 17.6 1.18 618 40
2863248 2863368 62.5 20.3 1.17 620 120
2863446 2863566 60.8 17 1.18 622 120
2864232 2864288 64 15.1 1.17 628 56
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Table E.2 CNV detection results of 36-bp reads with the original as reference se-
quence. Continued

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
2865019 2865144 54.4 16.3 1.18 636 125
2865162 2865210 69.3 12.4 1.17 637 48
2865354 2865408 75.1 29.1 1.17 640 54
2865424 2865474 76.4 22.5 1.2 641 50
2865558 2865606 72.7 17.7 1.22 643 48
2865824 2865864 70.8 14.3 1.17 646 40
2865888 2866072 47 10.2 1.19 647 184
2866144 2866215 51.2 16.9 1.23 649 71
2867400 2867448 63.6 12.4 1.17 663 48
2867532 2867580 67.1 21 1.32 665 48
2868000 2868048 80.3 25 1.27 668 48
2892176 2892288 6.9 6.36 1.31 673 112
2900992 2901032 4.59 2.2 1.33 675 40
181376 181504 0.901 0.707 0.778 -8 128
431360 431424 0.942 0.718 0.789 -13 64
1073408 1073472 0.891 1.08 1.23 -26 64
1391360 1391424 1.03 0.823 0.825 -32 64
1545472 1545536 0.91 1.11 1.2 -36 64
2188416 2188480 0.848 0.642 0.778 -51 64
2689152 2689248 0.882 0.649 0.737 -61 96
2857770 2857824 68.5 15.2 0.833 -67 54
2858166 2858216 71.6 17.5 0.818 -68 50
2899392 2899456 0.819 0.634 0.787 -69 64
2901856 2901944 8.17 2.39 0.809 -70 88
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Table E.3: CNV detection results of 36-bp reads with Seq-2 as reference sequence.
CNV size is in base pairs (bps). The list is generated by excluding regions within Poisson
Noise of the average TS read depth and without applying the grouping function.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
17760 17824 4.64 3.42 1.31 1 64
43520 43712 2.57 3.05 1.35 6 192
74816 74928 9.87 10.4 1.48 26 112
74929 75138 7.63 8.63 1.41 27 209
180592 180640 4.71 2.06 1.19 50 48
217806 217848 6.4 3.02 1.24 59 42
221504 223520 4.32 4.31 1.22 61 2016
223904 223952 4.89 2.62 1.21 63 48
230328 230368 5.41 3.39 1.36 67 40
240492 240567 4.99 2.8 1.28 68 75
356672 358592 2.79 3.63 1.42 81 1920
397632 399552 2.82 3.61 1.38 85 1920
412224 412288 5.18 4.9 1.39 89 64
437184 437280 8.48 7.3 1.34 95 96
448032 448352 8.39 8.84 1.39 99 320
464720 464768 5.2 2.4 1.18 104 48
468960 469092 9.91 9.3 1.3 105 132
477804 477888 8.62 7.48 1.28 107 84
487896 488000 10.5 11.3 1.38 109 104
488048 488160 7.86 7.81 1.29 110 112
544240 544320 11.6 10.1 1.18 115 80
544384 544512 6.8 6.12 1.17 116 128
555312 555392 9.49 8.98 1.32 119 80
555361 555472 6.76 6.78 1.36 120 111
557312 557384 11.5 9.54 1.24 121 72
557408 557536 6.72 6.61 1.26 122 128
589920 589962 27.4 11.4 1.25 134 42
590856 590916 23.5 9.8 1.39 145 60
591204 591252 28.7 9.28 1.21 149 48
591264 591318 27.4 9.68 1.27 150 54
592051 592122 18.6 5.84 1.18 161 71
592408 592458 27.3 10.2 1.26 165 50
592476 592528 28 8.48 1.25 166 52
592872 592928 25.9 10.8 1.2 168 56
593550 593600 28.5 9.27 1.18 176 50
593616 593687 19.8 6 1.17 177 71
593731 593802 21.6 8.08 1.17 179 71
750744 750784 4.79 2.61 1.2 203 40
814112 814336 8.27 6.96 1.19 218 224
892176 892320 4.14 3.24 1.27 230 144
920896 920976 7.1 4.97 1.21 237 80
1113248 1113408 4.21 3.05 1.22 297 160
1173432 1173568 9.74 9.8 1.34 305 136
1206656 1206784 6.47 4.36 1.25 309 128
1278616 1278688 4.18 3.68 1.24 325 72
1291392 1291440 5.8 2.53 1.2 328 48
1297368 1297440 7.69 4.46 1.28 329 72
1364272 1364352 11.7 11.2 1.22 337 80
1364416 1364576 7.86 8.71 1.37 338 160
1364481 1364576 6.6 6.6 1.24 339 95
1374752 1376304 6.22 7.44 1.51 340 1552
1383936 1384032 7.99 6.71 1.22 342 96
1427264 1427304 5.81 3.16 1.31 347 40
1427328 1427456 5.26 4.52 1.18 348 128
1459032 1459072 5.37 3.04 1.22 354 40
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Table E.3 CNV detection results of 36-bp reads with the Seq-2 as reference sequence.
Continued

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
1484672 1484752 5.28 2.36 1.19 360 80
1502880 1502944 5.64 3.96 1.17 366 64
1740248 1740320 9.02 8.38 1.34 429 72
1876896 1877024 5.91 4.67 1.2 480 128
1930896 1930963 9.12 7.95 1.39 486 67
2021280 2022848 6.22 7.4 1.28 501 1568
2024320 2024384 6.66 3.37 1.16 503 64
2024616 2024880 5.99 3.44 1.22 506 264
2197248 2197376 6.49 5.66 1.39 560 128
2205976 2206016 13.2 6.08 1.18 563 40
2206110 2206152 12.2 6.26 1.36 565 42
2206153 2206224 8.75 4.11 1.19 566 71
2206304 2206352 12.4 7.2 1.29 568 48
2206368 2206416 8.33 3.29 1.2 569 48
2221440 2221504 7.72 4.49 1.22 582 64
2236624 2236672 9.68 5.68 1.24 583 48
2292096 2293632 6.24 7.52 1.19 592 1536
2320032 2322048 2.85 3.68 1.47 596 2016
2375136 2375200 6.47 2.36 1.19 604 64
2459776 2459840 4.2 2.6 1.22 617 64
2498160 2498208 5.29 4.14 1.25 620 48
2521760 2521871 5.98 4.7 1.19 623 111
2521872 2521928 11.9 8.35 1.18 624 56
2693336 2693408 8.82 9.43 1.45 666 72
3196352 3197888 6.26 7.54 1.19 786 1536
3252992 3254528 6.25 7.46 1.21 794 1536
3258816 3258870 70.4 22.4 1.16 801 54
3259408 3259458 64.2 16.6 1.22 808 50
3259812 3259992 48.8 12.5 1.19 812 180
3260008 3260058 62.4 16.8 1.3 813 50
3261448 3261492 78.8 22.4 1.3 827 44
3261774 3261824 54.2 11.4 1.18 830 50
3261904 3261960 64.7 14 1.19 832 56
3262104 3262152 65.3 14 1.19 835 48
3262302 3262356 65.4 23.7 1.25 837 54
3262640 3262680 73.4 18.6 1.27 842 40
3263104 3263144 75.5 19.6 1.18 848 40
3263560 3263610 66.7 17.9 1.38 855 50
3264414 3264468 66.6 23 1.22 865 54
3264469 3264600 49.6 13.9 1.22 866 131
3264876 3264930 70.6 24 1.17 870 54
3264931 3264996 52.6 12.5 1.16 871 65
3265480 3265520 70.6 18.5 1.22 878 40
3265680 3265722 75.8 22.8 1.2 880 42
3267054 3267104 69.3 13.4 1.22 896 50
3267114 3267168 62 17 1.29 897 54
3267367 3267432 55.1 17.5 1.2 900 65
3268312 3268352 75.2 21.4 1.19 911 40
3268768 3268884 62.8 17.4 1.25 915 116
3269034 3269072 76.3 15.9 1.22 918 38
3269232 3269357 53 12.2 1.25 921 125
3269296 3269336 71 14.7 1.29 922 40
3269941 3270000 62.4 21.1 1.36 930 59
3270024 3270072 74.8 21.7 1.17 931 48
3270084 3270138 65.7 19.1 1.3 932 54
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Table E.3 CNV detection results of 36-bp reads with the Seq-2 as reference sequence.
Continued

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
3270273 3270330 59.2 21.3 1.2 935 57
3270348 3270402 63.7 13.7 1.33 936 54
3270750 3270800 76.5 26.6 1.24 939 50
3294924 3295040 7.31 5.57 1.25 943 116
45696 70656 1.97 1.06 0.552 -1 24960
860160 861696 1.98 1.05 0.545 -3 1536
952192 952256 2.9 1.45 0.465 -4 64
952320 1077248 2 1.06 0.538 -5 124928
1083776 1083839 6.24 3.09 0.797 -6 63
1564448 1564576 5.09 2.09 0.792 -7 128
1570552 1570624 6.42 3.59 0.837 -8 72
1583104 1740288 1.93 1.05 0.553 -9 157184
1740321 1833472 1.96 1.06 0.557 -10 93151
1883392 1883504 6.63 2.15 0.815 -11 112
2040704 2040768 6.76 2.23 0.809 -12 64
2048000 2173952 1.99 1.06 0.543 -13 125952
2217312 2217472 5.9 2.85 0.831 -14 160
2415420 2415552 5.71 2 0.819 -15 132
2536448 2786304 1.94 1.06 0.555 -16 249856
3142144 3142656 1.97 0.981 0.486 -17 512
3143088 3143168 8.18 3.9 0.668 -18 80
3145728 3166208 1.91 1.03 0.554 -19 20480
3166720 3166976 1.64 0.92 0.564 -20 256
3197952 3200512 1.93 1.07 0.567 -22 2560
3334728 3334784 8.54 1.81 0.715 -23 56
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Table E.4: CNV detection results of 50-bp reads with the original as reference se-
quence. CNV size is in base pairs (bps). The list is generated by excluding regions within
Poisson Noise of the average TS read depth and without applying the grouping function.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
49616 49920 6.69 7.41 1.24 10 304
78592 78720 6.04 4.43 1.17 16 128
143264 143360 4.49 4.1 1.21 28 96
177504 178400 4.95 6.11 1.23 30 896
281696 281920 7.55 6.78 1.16 40 224
346672 346880 6.7 5.36 1.19 46 208
362336 364320 4.17 5.07 1.33 47 1984
377056 377152 7.13 7.22 1.4 51 96
397632 397952 4.41 4.27 1.37 55 320
412160 412272 5.85 4.82 1.25 56 112
423024 423104 8.39 8.08 1.17 59 80
443950 444192 7.82 7.77 1.34 63 242
452800 452960 5.76 5.43 1.38 64 160
462896 463168 8.07 7.93 1.19 65 272
519230 519504 7.59 8.68 1.41 69 274
530160 530240 8.56 7.09 1.24 71 80
530304 530480 6.86 6.99 1.33 72 176
532320 532544 6.73 6.25 1.23 73 224
583480 583552 7.18 7.6 1.62 84 72
651488 651552 3.42 3.68 1.5 89 64
676576 676704 7.82 6.75 1.2 92 128
676784 676928 7.3 7.2 1.26 93 144
684832 684912 3.38 3.38 1.4 95 80
689720 689840 5.28 4.74 1.26 96 120
737460 737580 7.83 7.19 1.28 100 120
785856 786112 4.53 5.78 1.56 108 256
788976 789088 8.07 7.6 1.22 109 112
789152 789312 6.99 6.59 1.19 110 160
834560 836608 1.06 1.94 1.86 116 2048
845109 846592 6.1 6.87 1.17 118 1483
888384 888448 2.17 2.96 1.48 126 64
927232 1052096 1.04 2 1.95 130 124864
1095712 1095808 3.98 3.59 1.39 138 96
1148416 1148544 7.76 7.38 1.25 141 128
1181664 1181776 4.87 4.36 1.4 146 112
1182912 1183011 5.8 4.37 1.22 147 99
1317152 1317216 5.89 4.05 1.27 164 64
1339248 1339584 7.83 9.39 1.44 166 336
1358848 1358912 5.14 4.31 1.34 168 64
1358944 1359040 6.01 6.71 1.38 169 96
1363392 1363504 5.43 4.26 1.28 170 112
1399872 1399968 6.46 4.53 1.19 173 96
1476736 1476848 4.96 5.45 1.47 184 112
1477888 1477952 4.01 4.3 1.39 185 64
1504544 1504640 6.12 4.46 1.2 191 96
1551488 1553024 4.64 4.94 1.33 199 1536
1558528 1688576 1.05 2.04 1.95 202 130048
1611584 1611680 3.07 6.48 2.22 203 96
1613504 1613600 2.48 5.76 2.56 204 96
1644544 1684608 1.05 2.06 1.97 205 40064
1684736 1688576 1.01 1.93 1.93 206 3840
1688640 1724544 1.06 2.01 1.95 207 35904
1724672 1808384 1.04 2 1.94 208 83712
1739904 1739968 6.66 5.86 1.98 209 64
1792512 1802112 1.02 2.01 1.98 210 9600
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Table E.4 CNV detection results of 50-bp reads with the original as reference se-
quence. Continued

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
1802176 1808384 1.03 1.93 1.91 211 6208
1810896 1811040 5.73 4.12 1.2 212 144
1822224 1822304 5.7 4.4 1.21 215 80
1834944 1835008 4.47 4.31 1.32 218 64
1842464 1842630 6.03 5.03 1.27 220 166
1851904 1851968 6.13 5.74 1.35 222 64
1859392 1859456 3.3 2.99 1.35 226 64
1862912 1862992 6.45 4.23 1.2 227 80
1905888 1905960 5.56 4.88 1.4 228 72
1925776 1925888 5.61 3.57 1.17 232 112
1930688 1930752 6.74 4.13 1.3 233 64
1932896 1932960 4.47 2.98 1.23 234 64
1958448 1958528 5.79 3.47 1.2 237 80
1996288 1997824 6.2 7.17 1.26 241 1536
2047232 2047368 5.26 5.43 1.41 247 136
2047296 2047360 7.56 8.58 1.73 248 64
2070176 2070272 4.49 3.15 1.22 251 96
2130624 2130832 6.82 8.11 1.27 259 208
2131380 2131460 6.98 5.03 1.17 260 80
2176472 2176560 5.75 4.32 1.35 265 88
2239200 2239264 4.02 3.62 1.36 270 64
2257648 2257984 4.81 4.32 1.29 274 336
2315904 2316032 4.74 3.34 1.21 280 128
2320912 2321024 4.57 3.33 1.2 281 112
2352480 2352544 2.14 3.02 1.58 285 64
2371744 2371936 5.61 4.74 1.23 286 192
2394752 2394848 5.52 5.12 1.42 292 96
2423680 2423808 2.78 3.33 1.38 295 128
2433216 2433312 6.12 4.08 1.21 297 96
2452864 2452952 6.05 5.68 1.49 302 88
2456192 2456280 7.81 8.8 1.64 303 88
2464512 2464768 4.41 4.9 1.44 306 256
2469952 2470176 4.63 5.43 1.46 307 224
2640640 2640768 4.66 4.14 1.3 336 128
2692256 2692560 4.41 3.41 1.22 344 304
2722000 2722072 6.9 5.15 1.32 345 72
2732096 2732208 5.77 5.76 1.47 347 112
2742272 2766848 1.07 2 1.95 348 24576
2796350 2797824 6.05 7.22 1.41 353 1474
2797825 2797888 4.16 4.24 1.3 354 63
2850496 2852032 6.22 7.16 1.25 360 1536
2892160 2892288 5.4 5.69 1.45 368 128
2923790 2923851 6.86 3.71 1.24 370 61
65408 65472 0.927 1.01 1.17 -1 64
302592 302656 0.952 1.19 1.26 -4 64
838048 838144 4.02 1.35 0.746 -11 96
869808 869872 5.15 1.6 0.794 -13 64
885632 885720 5.07 2.71 0.791 -14 88
1546624 1546688 1.25 0.773 0.773 -23 64
2797888 2797952 1.31 0.578 0.539 -33 64

276



Table E.5: CNV detection results of 50-bp reads with Seq-2 as reference sequence.
CNV size is in base pairs (bps). The list is generated by excluding regions within Poisson
Noise of the average TS read depth and without applying the grouping function.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
75008 75152 7.4 7.96 1.22 31 144
195105 197120 4.25 5.51 1.35 47 2015
202496 203392 4.82 6.15 1.31 48 896
204928 205216 4.08 5.25 1.28 49 288
221504 223520 4.24 5.6 1.35 51 2016
245552 247552 4.28 5.53 1.24 54 2000
306688 306944 6.71 6.1 1.19 55 256
371841 371904 3.43 2.06 1.35 62 63
387328 389344 4.16 5.37 1.41 64 2016
402048 402160 6.91 5.32 1.22 68 112
412224 412288 3.65 3.74 1.37 69 64
437180 437280 6.75 5.06 1.3 73 100
448032 448576 6.84 7.9 1.21 77 544
451792 451920 6.1 4.45 1.32 78 128
468952 469216 7.76 7.53 1.31 80 264
477792 477952 5.49 5.43 1.46 82 160
487888 488000 8.09 7.58 1.2 83 112
488048 488160 6.63 6.81 1.31 84 112
544224 544512 7.36 8.18 1.41 88 288
555153 555248 8.13 6.53 1.19 90 95
555312 555472 7.44 6.79 1.16 91 160
608448 608560 6.14 4.72 1.18 103 112
680384 680640 5.31 4.4 1.18 110 256
708640 708704 3.25 3.27 1.35 113 64
709824 709920 3.51 3.5 1.33 114 96
714720 714832 6.14 5.26 1.26 115 112
810848 811136 5.05 5.5 1.33 126 288
813968 814080 7.42 7.41 1.26 127 112
814160 814336 6.6 5.79 1.21 128 176
846720 848256 6.07 7.25 1.22 131 1536
870112 871648 5.93 7.06 1.39 139 1536
920880 920992 3.52 3.18 1.33 147 112
1083840 1085080 6.54 7.21 1.22 207 1240
1120720 1120800 5.11 3.88 1.27 213 80
1173420 1173568 7.76 7.37 1.17 215 148
1291200 1291328 5.68 6.31 1.26 234 128
1297360 1297440 7.26 4.45 1.22 236 80
1332992 1333088 6.53 5.73 1.27 239 96
1364224 1364352 6.4 5.66 1.2 244 128
1364416 1364608 6.27 7.35 1.38 245 192
1374753 1376312 6.16 7.41 1.17 246 1559
1383936 1384032 6.59 6.52 1.44 248 96
1424880 1424960 7.39 5.28 1.25 252 80
1434848 1434931 6.88 3.99 1.19 256 83
1576448 1578048 4.65 4.74 1.21 277 1600
1876896 1877024 5.51 4.56 1.18 467 128
2021280 2022848 6.09 7.49 1.22 487 1568
2197248 2197376 5.98 5.06 1.23 540 128
2280629 2280832 6.91 8.1 1.28 550 203
2281376 2281472 6.01 4.83 1.35 551 96
2292096 2293632 6.17 7.43 1.17 553 1536
2293184 2293248 8.06 10.2 1.31 554 64
2521728 2521855 4.31 3.7 1.27 580 127
2521856 2521930 7.91 6.21 1.25 581 74
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Table E.5 CNV detection results of 50-bp reads with Seq-2 as reference sequence.
Continued

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
2794752 2794848 6.47 4.55 1.21 742 96
3040640 3040768 5.62 4.69 1.21 783 128
3122000 3122080 6.79 4.34 1.21 791 80
3132096 3132224 6.28 4.69 1.22 793 128
3196352 3197888 5.97 7.45 1.43 816 1536
3252992 3254544 6.14 7.43 1.21 822 1552
3262528 3262656 4.03 2.9 1.26 829 128
3294928 3295040 7.09 5.37 1.17 837 112
45568 70656 1.92 1.03 0.546 -1 25088
82784 82880 4.52 1.53 0.715 -2 96
117824 117992 5.88 4.02 0.839 -3 168
401792 401920 5.3 2.08 0.788 -4 128
859136 861696 2.05 1.09 0.523 -5 2560
952320 1077248 1.93 1.06 0.548 -6 124928
1432480 1432576 4.44 1.64 0.754 -7 96
1583616 1740288 1.85 1.06 0.578 -8 156672
1740352 1833472 1.84 1.05 0.578 -9 93120
2048000 2173760 1.92 1.06 0.55 -11 125760
2536576 2693376 1.85 1.06 0.579 -13 156800
2693440 2785280 1.84 1.05 0.579 -14 91840
3142144 3166976 1.93 1.03 0.537 -15 24832
3197889 3200512 2.04 1.07 0.516 -16 2623
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Table E.6: CNV detection results of 76-bp reads with the original as reference se-
quence. CNV size is in base pairs (bps). The list is generated by excluding regions within
Poisson Noise of the average TS read depth and without applying the grouping function.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
443952 444160 4.5 4.02 1.25 21 208
620672 622208 5.15 5.75 1.2 35 1536
834496 836672 1.04 2.11 2.03 46 2176
927232 1052096 1.03 2.05 2.01 50 124864
1203808 1205248 5.28 5.89 1.23 59 1440
1339264 1339584 4.78 5.25 1.33 70 320
1551488 1553024 5.17 5.78 1.18 74 1536
1558528 1808384 1.02 2.04 2 76 249856
2469984 2470080 2.74 3.21 1.39 103 96
2535936 2536064 1.14 2.24 2.04 105 128
2742016 2753664 1.04 2.05 1.99 118 11648
2753792 2766848 1.01 2.01 1.98 119 13056
2796352 2797904 6.58 7.05 1.2 121 1552
2797888 2797952 1.52 0.463 0.451 -9 64
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Table E.7: CNV detection results of 76-bp reads with Seq-2 as reference sequence.
CNV size is in base pairs (bps). The list is generated by excluding regions within Poisson
Noise of the average TS read depth and without applying the grouping function.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
195072 197120 4.33 5 1.21 18 2048
202496 203392 4.99 5.85 1.21 19 896
205296 206336 5.5 6.23 1.18 21 1040
371680 371840 3.89 2.99 1.24 27 160
589824 590096 7.08 8.73 1.31 41 272
645632 647200 4.99 5.78 1.3 47 1568
1228800 1230336 5.08 5.77 1.22 91 1536
1364256 1364544 5.05 5.67 1.28 101 288
1576448 1577984 5.13 5.88 1.23 106 1536
3252992 3254528 6.49 6.58 1.17 272 1536
45568 70656 1.93 1.04 0.545 -1 25088
859136 861696 1.93 1.01 0.525 -2 2560
952320 1077248 1.96 1.03 0.539 -3 124928
1583616 1833984 1.95 1.02 0.533 -4 250368
2048640 2050048 1.92 0.915 0.479 -5 1408
2052544 2052864 3.38 1.32 0.447 -6 320
2060800 2062208 2.07 1.06 0.531 -7 1408
2062336 2065280 1.92 0.965 0.51 -8 2944
2065728 2076928 1.95 1.01 0.529 -9 11200
2077184 2080128 2.15 1.18 0.567 -10 2944
2080768 2081024 2.38 1.25 0.56 -11 256
2081280 2091008 1.94 1.02 0.532 -12 9728
2092032 2095360 2.12 1.13 0.537 -13 3328
2106624 2124160 1.98 1.05 0.542 -14 17536
2124288 2126848 1.95 1.02 0.535 -15 2560
2168960 2170624 2.06 1.03 0.527 -16 1664
2170880 2171392 2.09 1.12 0.542 -17 512
2171904 2172416 2.05 1.06 0.537 -18 512
2172672 2173440 2.11 1.07 0.532 -19 768
2536448 2786624 1.95 1.02 0.533 -21 250176
3142144 3166976 1.93 1.03 0.545 -22 24832
3197889 3200448 1.95 1.04 0.543 -23 2559
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Table E.8: CNV detection results of 100-bp reads with the original as reference se-
quence. CNV size is in base pairs (bps). The list is generated by excluding regions within
Poisson Noise of the average TS read depth and without applying the grouping function.

519232 519424 3.82 3.78 1.25 23 192
834304 836608 1.04 2.17 2.06 37 2304
927232 1052160 1.02 2.04 2 41 124928
1558528 1808384 1.03 2.05 2 61 249856
2742016 2766848 1.03 2.07 2.02 92 24832
2796352 2797888 6.85 7.65 1.18 94 1536
376960 377024 0.84 0.55 0.704 -2 64
1450368 1450496 0.843 0.669 0.798 -5 128

Table E.9: CNV detection results of 100-bp reads with Seq-2 as reference sequence.
CNV size is in base pairs (bps). The list is generated by excluding regions within Poisson
Noise of the average TS read depth and without applying the grouping function.

195072 197120 4.5 5.43 1.23 7 2048
202496 203392 5.12 6.13 1.2 8 896
221504 223520 4.48 5.43 1.22 11 2016
387328 389376 4.43 5.39 1.27 16 2048
544256 544448 3.62 4.01 1.39 24 192
3196352 3197824 6.75 7.57 1.18 177 1472
45568 70656 1.99 1.02 0.512 -1 25088
859136 861696 2.07 1.14 0.547 -2 2560
952320 1076991 2.02 1.04 0.515 -3 124671
1076992 1077120 1.74 0.68 0.419 -4 128
1583104 1835008 1.98 1.02 0.522 -6 251904
2048512 2173952 2.02 1.04 0.514 -7 125440
2536448 2786688 1.99 1.03 0.52 -8 250240
3142144 3166976 2 1.02 0.511 -9 24832
3197889 3200512 2.06 1.12 0.535 -10 2623
3260416 3260672 1.94 0.694 0.35 -11 256
3338752 3338848 0.986 0.239 0.249 -12 96
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Table E.10: CNV detection results of 150-bp reads with the original as reference se-
quence. CNV size is in base pairs (bps). The list is generated by excluding regions within
Poisson Noise of the average TS read depth and without applying the grouping function.

834304 836608 1.05 2.23 2.13 29 2304
927232 1051904 1.01 2.03 2 32 124672
1551360 1553024 5.6 5.96 1.16 45 1664
1558528 1808384 1.01 2.04 2.01 46 249856
2742016 2766848 1.01 2.06 2.05 71 24832
2797888 2797952 3.13 0.48 0.333 -5 64

Table E.11: CNV detection results of 150-bp reads with Seq-2 as reference sequence.
CNV size is in base pairs (bps). The list is generated by excluding regions within Poisson
Noise of the average TS read depth and without applying the grouping function.

45568 70784 2 0.979 0.491 -1 25216
859136 862208 2 0.971 0.521 -2 3072
952064 1077248 2.02 1.02 0.505 -3 125184
1583616 1833984 2 1.02 0.513 -4 250368
2048640 2048768 1.14 0.277 0.276 -6 128
2048769 2173952 2.03 1.02 0.504 -7 125183
2536448 2786688 2 1.02 0.512 -8 250240
3142144 3166976 2 0.982 0.492 -9 24832
3197824 3200512 2.18 0.971 0.452 -10 2688
3260416 3260672 1.61 0.563 0.337 -11 256

282



Table E.12: CNV detection results of 200-bp reads with the original as reference se-
quence. CNV size is in base pairs (bps). The list is generated by excluding regions within
Poisson Noise of the average TS read depth and without applying the grouping function.

834304 836608 1.06 2.07 1.99 22 2304
927232 1052032 1.02 2.06 2.03 25 124800
1558528 1808384 1.02 2.04 2 37 249856
2742272 2766848 1.01 2.02 2 59 24576
2797888 2797952 3.73 0.537 0.278 -4 64

Table E.13: CNV detection results of 200-bp reads with Seq-2 as reference sequence.
CNV size is in base pairs (bps). The list is generated by excluding regions within Poisson
Noise of the average TS read depth and without applying the grouping function.

195072 197120 4.63 5.51 1.21 12 2048
204928 205216 3.64 3.07 1.25 14 288
221440 223520 4.65 5.52 1.2 16 2080
245504 247552 4.64 5.51 1.2 17 2048
387328 389376 4.59 5.33 1.21 19 2048
3196352 3197920 7.06 7.82 1.19 101 1568
45568 70784 2 1.03 0.519 -1 25216
859136 861184 2.23 1.14 0.511 -2 2048
861440 861568 1.99 1.02 0.561 -3 128
952320 1077248 2.01 1.02 0.509 -4 124928
1583616 1834496 2.01 1.03 0.517 -5 250880
2048000 2174976 2 1.02 0.513 -6 126976
2535424 2786688 2.02 1.03 0.516 -7 251264
3142144 3142656 1.86 0.927 0.512 -8 512
3143680 3167232 2 1.03 0.52 -9 23552
3197824 3200512 2.13 1.06 0.499 -10 2688
3260288 3260800 1.55 0.201 0.128 -11 512
3338240 3338743 0.98 0.485 0.504 -12 503
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Table E.14: CNV detection results of 250-bp reads with the original as reference se-
quence. CNV size is in base pairs (bps). The list is generated by excluding regions within
Poisson Noise of the average TS read depth and without applying the grouping function.

834304 836608 1.08 2.21 2.07 24 2304
927232 960000 1.02 2.04 2 27 32768
960256 1007104 1.02 2.04 2 28 46848
1007616 1051648 0.998 1.98 1.99 29 44032
1203776 1205248 5.53 5.94 1.2 35 1472
1551488 1552896 5.61 5.88 1.2 41 1408
1558528 1805568 1.01 2.05 2.02 42 247040
2742272 2749440 1.01 2.08 2.06 64 7168
2750464 2754560 1.01 2 1.99 65 4096
2755584 2766848 1.01 2.05 2.02 66 11264
45568 45824 0.874 0.297 0.356 -1 256
2797888 2798080 1.91 0.424 0.392 -2 192

Table E.15: CNV detection results of 250-bp reads with Seq-2 as reference sequence.
CNV size is in base pairs (bps). The list is generated by excluding regions within Poisson
Noise of the average TS read depth and without applying the grouping function.

195072 197120 4.21 5.28 1.29 10 2048
221504 223488 4.19 5.26 1.28 14 1984
245536 247552 4.2 5.26 1.27 15 2016
387328 389376 4.21 5.02 1.24 18 2048
1576448 1577984 5.4 5.69 1.2 55 1536
45568 46592 2.04 1 0.515 -1 1024
47616 48640 2.27 1.27 0.558 -2 1024
49152 70912 2.03 1 0.501 -3 21760
861184 861696 2.03 1.14 0.609 -4 512
952320 1077248 2 1.01 0.506 -5 124928
1583616 1584896 2.1 1.16 0.556 -6 1280
1585152 1835008 2 1.02 0.518 -7 249856
2048640 2049024 1.52 0.515 0.295 -9 384
2049024 2173952 2 1.01 0.508 -10 124928
2535424 2785280 2 1.02 0.518 -11 249856
2786560 2786688 1.63 0.412 0.293 -12 128
3142144 3166720 2.01 1.02 0.514 -14 2688
3260416 3260800 1.5 0.271 0.197 -15 384
3338496 3338695 0.921 0.265 0.257 -16 199
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Table E.16: CNV detection results of 300-bp reads with the original as reference se-
quence. CNV size is in base pairs (bps). The list is generated by excluding regions within
Poisson Noise of the average TS read depth and without applying the grouping function.

220544 222592 4.22 4.97 1.22 10 2048
620672 622208 5.06 5.32 1.23 17 1536
834304 836608 1.03 2.23 2.15 22 2304
927232 978944 1.03 2.04 2.01 24 51712
979456 1051904 1.01 2.03 2.01 25 72448
1203840 1205248 5.25 5.55 1.19 30 1408
1551488 1552960 5.16 5.51 1.25 34 1472
1559808 1623040 1.02 2.07 2.03 35 63232
1623296 1808384 1.01 2.01 1.99 36 185088
2742272 2753536 1.03 1.99 1.95 58 11264
2753792 2766848 0.99 2.03 2.05 59 13056
45568 45824 0.904 0.304 0.306 -1 256
2849792 2850304 0.802 0.5 0.582 -2 512
2857728 2857984 0.928 0.359 0.389 -3 256
2935552 2935808 0.785 0.319 0.415 -4 256
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Table E.17: CNV detection results of 300-bp reads with Seq-2 as reference sequence.
CNV size is in base pairs (bps). The list is generated by excluding regions within Poisson
Noise of the average TS read depth and without applying the grouping function.

195072 197120 4.19 5.05 1.26 9 2048
221504 223488 4.17 5.07 1.28 12 1984
245568 247552 4.17 5 1.24 13 1984
387328 389312 4.17 4.88 1.23 15 1984
3196416 3197888 7.16 7.45 1.2 94 1472
45568 46080 1.66 0.551 0.354 -1 512
46081 70912 2.01 1.03 0.518 -2 24831
859392 859648 2.12 1.08 0.524 -3 256
860160 861696 1.99 1.04 0.533 -4 1536
875008 875520 1.13 0.751 0.67 -5 512
952320 1077248 2.03 1.02 0.509 -6 124928
1091584 1092096 0.965 0.556 0.591 -7 512
1583616 1833472 2.01 1.02 0.526 -8 249856
2048000 2048511 1 0.823 0.834 -9 511
2048512 2049024 1.44 0.411 0.28 -10 512
2049024 2172928 2.03 1.02 0.51 -11 123904
2172928 2173952 1.9 0.753 0.401 -12 1024
2535424 2785280 2.01 1.03 0.525 -13 249856
2786304 2786816 1.86 0.59 0.32 -14 512
3142144 3167232 2.01 1.03 0.521 -15 25088
3197696 3200512 2.07 1.08 0.528 -16 2816
3260416 3260672 1.1 0.029 0.0229 -17 256
3260673 3260928 1.21 0.702 0.594 -18 255
3338240 3338645 1.09 0.579 0.484 -19 405
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E.3.2 Trajectories
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Figure E.6: The read depth trajectories reconstructed from 50-bp reads. (A) to (C)
reference: original sequence. Query: Seq-2. (D) to (F) reference: Seq-2. Query: original
sequence. (A) and (D) are the average number of assignments trajectories. (B) and (E) are
the binary read depth trajectories. (C) and (F) are the test statistics trajectories.
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Figure E.7: The read depth trajectories reconstructed from 76-bp reads. (A) to (C)
reference: original sequence. Query: Seq-2. (D) to (F) reference: Seq-2. Query: original
sequence. (A) and (D) are the average number of assignments trajectories. (B) and (E) are
the binary read depth trajectories. (C) and (F) are the test statistics trajectories.
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Figure E.8: The read depth trajectories reconstructed from 100-bp reads. (A) to (C)
reference: original sequence. Query: Seq-2. (D) to (F) reference: Seq-2. Query: original
sequence. (A) and (D) are the average number of assignments trajectories. (B) and (E) are
the binary read depth trajectories. (C) and (F) are the test statistics trajectories.
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Figure E.9: The read depth trajectories reconstructed from 150-bp reads. (A) to (C)
reference: original sequence. Query: Seq-2. (D) to (F) reference: Seq-2. Query: original
sequence. (A) and (D) are the average number of assignments trajectories. (B) and (E) are
the binary read depth trajectories. (C) and (F) are the test statistics trajectories.
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Figure E.10: The read depth trajectories reconstructed from 250-bp reads. (A) to (C)
reference: original sequence. Query: Seq-2. (D) to (F) reference: Seq-2. Query: original
sequence. (A) and (D) are the average number of assignments trajectories. (B) and (E) are
the binary read depth trajectories. (C) and (F) are the test statistics trajectories.
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Figure E.11: The read depth trajectories reconstructed from 300-bp reads. (A) to (C)
reference: original sequence. Query: Seq-2. (D) to (F) reference: Seq-2. Query: original
sequence. (A) and (D) are the average number of assignments trajectories. (B) and (E) are
the binary read depth trajectories. (C) and (F) are the test statistics trajectories.
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E.4 CNV Detection of Different Number of Copies

In the section, the detected CNV lists from all the sequence pairs are reported. In all

the tests, the grouping function is on, and the CNV regions are detected by rejecting the

regions that have estimated query copy numbers within 0.9 of the estimated reference copy

numbers (|CopyNumberAvg − CopyNumberAvg × CopyNumberTS| >= 0.9). To insure

small differences are detected, the Poisson noise in the TS trajectory is not considered here.

In all the tables, CNV size is presented in base pairs (bps) and the breakpoints are listed

in the reference genome index. For group numbers, positive groups represent duplications

while negative groups represent deletions. As a result, group−n 6= groupn, in which n is

the group number.

E.4.1 Query:Sequence-1

Table E.18: CNV detection for sequence-1 maps to sequence-1. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
29184 30208 2.26 3.37 1.52 14 1024
573665 574848 2.21 3.33 1.57 14 1183
2578368 2578752 24 23.1 1.06 21 384
2736896 2740224 0.975 0.705 0.738 -1 3328
1401856 1402880 0.885 0.67 0.763 -3 1024
2735104 2735616 0.96 0.787 0.831 -4 512
2324480 2324992 0.994 0.596 0.604 -5 512
2543616 2544128 1.02 0.607 0.649 -6 512
298496 299008 0.895 0.593 0.664 -7 512
866304 866816 1.08 0.625 0.587 -8 512

293



Table E.19: CNV detection for sequence-1 maps to sequence-2. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
28288 30208 2.2 3.35 1.53 3 1920
582144 583936 2.18 3.4 1.6 3 1792
340928 342720 3.2 4.28 1.4 6 1792
382912 384704 3.21 4.17 1.39 6 1792
1850432 1852160 3.21 4.29 1.38 6 1728
334272 335360 19.1 20.2 1.12 9 1088
353920 354880 19.8 20.9 1.18 9 960
552624 553744 19.3 20.2 1.09 9 1120
662016 663104 19 20.5 1.15 9 1088
769632 770731 19 20.2 1.15 9 1099
770048 770432 19.7 20.7 1.14 9 384
782840 783920 19.2 20.3 1.1 9 1080
885184 886112 20 21 1.1 9 928
950910 952016 19.1 20.6 1.2 9 1106
1216064 1216896 19.9 20.9 1.1 9 832
1313600 1314688 19.2 20.7 1.15 9 1088
1522944 1524000 19.3 19.8 1.11 9 1056
1780720 1781824 19.2 20.7 1.13 9 1104
1805056 1806080 19 20.1 1.09 9 1024
2124160 2125250 19.1 20.7 1.13 9 1090
2575872 2576960 19.1 20.8 1.2 9 1088
2591232 2592320 19.2 19.1 1.06 9 1088
2693568 2694672 19.1 20.1 1.12 9 1104
2914336 2915328 18.9 20.5 1.13 9 992
250112 258816 4.04 1.99 0.518 -1 8704
849664 857856 4.02 2.04 0.525 -1 8192
1259136 1267712 4.04 2.02 0.52 -1 8576
1513472 1521920 4.02 2.04 0.524 -1 8448
306688 307200 0.898 0.62 0.671 -2 512
2556928 2557440 1.01 0.645 0.65 -3 512
2794496 2795008 0.886 0.525 0.572 -4 512
553472 553984 9.94 4.02 0.508 -5 512
874496 875008 1.05 0.635 0.591 -6 512
2608512 2608896 1.08 0.42 0.409 -7 384
1408512 1409024 0.852 0.344 0.4 -8 512
1045504 1046016 1.12 0.47 0.469 -9 512
782336 782976 3.68 1.28 0.609 -10 640
928256 928768 1.11 0.469 0.413 -11 512
885888 886272 10.8 4.04 0.45 -12 384
680192 680704 0.967 0.407 0.437 -13 512
1304064 1304576 1.09 0.514 0.493 -14 512
675072 675584 0.908 0.435 0.445 -15 512
661888 662272 9.27 4.31 0.448 -16 384
1649152 1649664 0.796 0.28 0.339 -17 512
884736 885248 7.49 3.28 0.46 -18 512

294



Table E.20: CNV detection for sequence-1 maps to sequence-3. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
28160 30208 2.2 3.52 1.63 3 2048
571776 573696 2.2 3.49 1.64 3 1920
85728 86816 10.7 20.1 2.04 6 1088
779520 780544 10.4 19.9 2.02 6 1024
831936 833280 7.24 5.9 0.967 6 1344
855296 856864 7.09 5.6 0.994 6 1568
1368160 1369600 7.21 6.76 0.993 6 1440
1452416 1453504 10.7 20.4 2.05 6 1088
1507616 1508608 10.7 19.5 1.95 6 992
1733696 1734784 10.7 19.8 1.94 6 1088
2033152 2034432 7.3 6.82 0.992 6 1280
2178880 2181359 8.22 10.4 1.29 6 2479
2180352 2181312 11 20.5 1.97 6 960
2388736 2389760 10.5 20.5 2.2 6 1024
2576896 2577984 10.7 20.2 2 6 1088
2592320 2593280 10.8 19.8 2.04 6 960
2764960 2766051 10.7 20.2 2.01 6 1091
2836224 2837632 7.25 6.78 0.992 6 1408
2898496 2899968 7.18 6.74 0.996 6 1472
332800 334592 3.21 4.34 1.46 8 1792
373696 375552 3.19 4.26 1.45 8 1856
1850432 1852224 3.18 4.35 1.46 8 1792
695552 704512 5.9 1.95 0.345 -1 8960
845568 853760 6.03 2.04 0.347 -1 8192
1353472 1361920 6.06 2.03 0.347 -1 8448
1544960 1553664 6.05 2.01 0.356 -1 8704
1628160 1636864 6.01 1.99 0.339 -1 8704
2859520 2867968 6.02 2.05 0.363 -1 8448
1508608 1509376 3.12 1.8 0.598 -2 768
2593280 2593792 3.46 2.16 0.754 -2 512
779264 779648 2.73 1.24 0.605 -3 384
2557952 2558464 1.04 0.627 0.649 -4 512
1591296 1591808 1.13 0.524 0.49 -5 512
86656 87040 4.63 2.57 0.59 -6 384
2859008 2859519 0.93 0.725 0.752 -7 511
1039360 1039872 1.09 0.482 0.491 -8 512
1400320 1400832 0.909 0.358 0.384 -9 512
923136 923648 1.11 0.46 0.412 -10 512
2609536 2609920 1 0.378 0.405 -11 384
1288832 1289216 1.04 0.427 0.421 -12 384
669056 669440 0.952 0.353 0.355 -13 384
2795520 2795904 0.827 0.444 0.534 -14 384
1650176 1650688 0.809 0.296 0.342 -15 512
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Table E.21: CNV detection for sequence-1 maps to sequence-4. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
687872 688940 4.21 19.2 4.95 1 1068
1521920 1524224 3.58 9.21 2.48 1 2304
1522945 1524224 3.24 3.77 1.25 1 1279
2588160 2589184 4.22 19.6 4.94 1 1024
2591744 2593024 3.25 4.04 1.27 1 1280
2603520 2605952 3.56 8.93 2.39 1 2432
2604545 2605824 3.28 3.84 1.23 1 1279
110336 118784 10.1 2.05 0.207 -1 8448
844288 852480 10 2.02 0.214 -1 8192
1084672 1093376 10.1 2 0.207 -1 8704
1175296 1183744 10.1 2.05 0.207 -1 8448
1456896 1465344 10.1 2.04 0.21 -1 8448
1860608 1869312 10.1 2 0.207 -1 8704
2030080 2038528 10.1 2.04 0.206 -1 8448
2641408 2650112 10.1 2 0.207 -1 8704
2732032 2740480 10.1 2.05 0.216 -1 8448
2958848 2967552 10.1 2.02 0.219 -1 8704
28672 29184 2.32 0.971 0.428 -2 512
29185 29440 2.16 1.63 0.785 -2 255
579072 580096 2.36 0.963 0.415 -2 1024
1859584 1860607 1.03 0.799 0.791 -3 1023
1597440 1597952 1.14 0.597 0.548 -5 512
306688 307200 0.89 0.614 0.672 -6 512
2569216 2569728 1 0.631 0.67 -7 512
2620672 2621184 1.05 0.481 0.505 -8 512
869376 869888 1.05 0.636 0.593 -9 512
1407488 1408000 0.849 0.328 0.395 -10 512
1038336 1038848 1.03 0.456 0.479 -11 512
922112 922624 1.08 0.464 0.436 -12 512
1304064 1304576 1.13 0.54 0.485 -13 512
2776320 2776832 0.917 0.311 0.366 -14 512
676096 676608 0.931 0.412 0.445 -15 512
670976 671488 0.912 0.445 0.471 -16 512
2822144 2822528 0.82 0.391 0.468 -17 384
1648128 1648640 0.812 0.288 0.331 -18 512
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Table E.22: CNV detection for sequence-1 maps to sequence-5. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
1537280 1539584 3.16 7.18 2.32 1 2304
2628096 2629120 3.27 15.5 5.11 1 1024
2631616 2632704 3.23 3 0.953 1 1088
2643456 2645760 3.16 6.8 2.28 1 2304
2644417 2645760 3.18 2.86 0.957 1 1343
28160 30208 2.18 3.98 1.86 3 2048
595200 597248 2.17 4.12 1.94 3 2048
1999872 2001792 2.96 3.73 1.26 4 1920
2243584 2245632 2.96 3.85 1.33 4 2048
2883584 2885632 2.94 3.97 1.44 4 2048
348160 349824 3.23 4.52 1.48 6 1664
388992 390784 3.17 4.45 1.53 6 1792
1862656 1864448 3.18 4.38 1.45 6 1792
288768 297216 12.1 2.03 0.173 -1 8448
320512 328960 12.1 2.01 0.173 -1 8448
415872 424448 12.1 2.01 0.172 -1 8576
791040 799488 12.1 2.03 0.18 -1 8448
868096 876032 12 2.02 0.174 -1 7936
1014400 1022976 12.1 2.03 0.173 -1 8576
1487360 1496064 12 1.98 0.173 -1 8704
1963008 1971456 12 2.02 0.178 -1 8448
2047232 2055680 12.1 2.03 0.179 -1 8448
2176896 2185472 12.1 2.01 0.177 -1 8576
2354432 2362880 12 2.02 0.178 -1 8448
2412544 2421248 12.1 2 0.171 -1 8704
2799872 2801664 0.863 0.625 0.729 -2 1792
2609152 2609664 1.05 0.725 0.715 -3 512
2362881 2363392 0.941 0.665 0.702 -4 511
306688 307200 0.908 0.62 0.657 -5 512
892928 893440 1.03 0.588 0.583 -6 512
1422848 1423360 0.898 0.362 0.385 -7 512
1319424 1319936 1.12 0.553 0.533 -8 512
692480 692992 0.997 0.428 0.43 -9 512
2845696 2846080 0.892 0.449 0.478 -10 384
687360 687872 0.893 0.404 0.431 -11 512
1663488 1664000 0.78 0.291 0.36 -12 512
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E.4.2 Query:Sequence-2

Table E.23: CNV detection for sequence-2 maps to sequence-1. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
841472 849664 2.04 4.02 2.02 1 8192
1268736 1276928 2.04 4.02 2.02 1 8192
28416 30464 1.9 2.82 1.55 4 2048
571904 573055 5.71 2.12 0.625 4 1151
573697 574976 2.12 3.54 1.73 4 1279
1966080 1968000 2.91 3.59 1.25 5 1920
2193536 2195456 2.85 3.71 1.43 5 1920
2821312 2823168 2.87 3.7 1.39 5 1856
500992 502272 23.4 17.3 0.798 -1 1280
572672 573952 23.9 15.6 0.714 -1 1280
611584 612832 22.1 17.4 0.843 -1 1248
666304 667392 24.5 16.4 0.703 -1 1088
672000 673408 21.8 15.8 0.769 -1 1408
681472 682752 22.7 17.7 0.839 -1 1280
890112 891648 22.4 14.5 0.688 -1 1536
920064 921344 22.4 17.2 0.803 -1 1280
1037312 1038848 22.5 14.8 0.69 -1 1536
1295872 1297408 22.2 15 0.747 -1 1536
1400320 1401856 22.3 15.2 0.782 -1 1536
1507584 1508672 23 17.9 0.842 -1 1088
1583104 1584512 22.9 16.4 0.768 -1 1408
1634816 1636352 21.8 14.7 0.72 -1 1536
1744128 1745536 21.5 15.5 0.769 -1 1408
1849344 1850624 23 17.7 0.835 -1 1280
2501376 2502656 22.5 17.3 0.799 -1 1280
2562560 2563648 22.8 18.5 0.864 -1 1088
2577952 2579040 23 18.2 0.89 -1 1088
2595072 2596608 21.6 14.6 0.713 -1 1536
2735488 2736768 22.3 17.6 0.847 -1 1280
2781184 2783744 11 7.38 0.73 -1 2560
1306368 1307136 1.18 0.767 0.657 -2 768
543232 543744 0.949 0.483 0.494 -3 512
1791488 1792000 1.08 0.459 0.472 -4 512
326016 326400 0.814 0.291 0.324 -5 384
1506048 1506560 0.916 0.332 0.375 -6 512
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Table E.24: CNV detection for sequence-2 maps to sequence-2. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
334272 335360 19 19 1.09 9 1088
353856 354880 19.4 19.5 1.11 9 1024
552960 553728 20 19.8 1.03 9 768
662016 663104 18.9 19.2 1.06 9 1088
769664 770736 19.1 19.1 1.1 9 1072
782912 783920 19.4 19.3 1.04 9 1008
885184 886096 19.9 20.2 1.05 9 912
950976 952016 19.4 19.5 1.1 9 1040
1215904 1217024 19.1 19.4 1.04 9 1120
1313664 1314560 19.3 19.4 1.05 9 896
1522944 1524000 19.1 18.6 1.04 9 1056
1780928 1781824 19.9 20.2 1.05 9 896
1805056 1806144 18.9 18.9 1.05 9 1088
2124160 2125248 19 19.4 1.05 9 1088
2575872 2576960 19 19.3 1.07 9 1088
2591232 2592320 19 18 0.979 9 1088
2693568 2694672 18.9 18.9 1.09 9 1104
2914336 2915424 19 19.4 1.05 9 1088
552640 552959 13.7 9.88 1.15 21 319
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Table E.25: CNV detection for sequence-2 maps to sequence-3. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
28416 30208 2.12 3.3 1.57 4 1792
571904 573696 2.13 3.2 1.56 4 1792
332800 334592 3.18 4.23 1.4 6 1792
373760 375552 3.16 4.26 1.43 6 1792
1850432 1852288 3.12 4.26 1.46 6 1856
85728 86816 10.6 17.4 1.76 9 1088
779536 780672 10.5 17.5 1.79 9 1136
1452429 1453504 10.6 17.8 1.78 9 1075
1507648 1508672 10.7 17.3 1.69 9 1024
1733696 1734784 10.6 17.2 1.73 9 1088
2180544 2181376 11.1 18.1 1.7 9 832
2388736 2389856 10.5 17.9 1.86 9 1120
2576896 2577984 10.6 17.5 1.77 9 1088
2592288 2593344 10.6 17.3 1.77 9 1056
2764960 2766080 10.5 17.5 1.75 9 1120
164352 165120 2.93 3.79 1.34 15 768
695552 704000 6.09 3.98 0.686 -1 8448
845568 853760 6.08 4 0.675 -1 8192
1353216 1361920 6.01 3.88 0.684 -1 8704
1544960 1553408 6.07 3.98 0.709 -1 8448
1628416 1636864 6.08 3.98 0.672 -1 8448
2859520 2868224 5.95 3.87 0.689 -1 8704
2388480 2388864 2.95 1.23 0.541 -2 384
1452032 1452544 2.44 1.09 0.538 -3 512
779264 779648 2.48 1.04 0.561 -4 384
543232 543744 0.933 0.479 0.493 -5 512
2181248 2181632 3.27 1.24 0.509 -6 384
327040 327424 0.782 0.29 0.317 -7 384
778496 779008 0.917 0.395 0.457 -8 512
1506048 1506560 0.845 0.332 0.384 -9 512
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Table E.26: CNV detection for sequence-2 maps to sequence-4. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
687872 688928 4.12 16.7 4.34 2 1056
1521920 1524224 3.44 8.29 2.27 2 2304
1522945 1524224 3.05 3.8 1.3 2 1279
2588160 2589184 4.12 17 4.39 2 1024
2589185 2592896 2.27 2.3 1.01 2 3711
2603520 2605824 3.45 8.33 2.27 2 2304
2604545 2605824 3.04 3.82 1.25 2 1279
110336 118784 10.2 4.02 0.408 -1 8448
844544 852672 10.2 4.05 0.409 -1 8128
1084928 1093632 9.9 3.87 0.416 -1 8704
1175168 1183744 10.2 3.99 0.404 -1 8576
1456896 1465344 10.1 3.98 0.418 -1 8448
1860608 1869312 10.1 3.93 0.404 -1 8704
2030080 2038784 10.1 3.95 0.402 -1 8704
2641664 2650112 10.1 3.98 0.409 -1 8448
2732032 2740480 10.1 4.01 0.436 -1 8448
2958848 2967424 10.1 3.98 0.429 -1 8576
28672 29440 1.92 0.936 0.495 -2 768
578560 580096 2.04 0.926 0.488 -2 1536
879744 880640 0.98 0.607 0.616 -3 896
1520384 1521152 0.82 0.35 0.414 -4 768
1519616 1520128 1.06 0.837 0.814 -5 512
550400 550912 0.947 0.505 0.504 -6 512
2639360 2639872 1.22 0.706 0.613 -7 512
1172992 1173504 1.09 0.63 0.624 -8 512
334208 334592 0.78 0.294 0.326 -9 384
1802752 1803264 1.05 0.445 0.457 -10 512
778624 779008 0.936 0.298 0.343 -11 384
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Table E.27: CNV detection for sequence-2 maps to sequence-5. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
1537280 1539584 3.03 6.33 2.06 3 2304
2628096 2629120 3.22 13.6 4.48 3 1024
2629248 2632768 2.27 1.99 0.91 3 3520
2643456 2645760 3.04 5.96 1.98 3 2304
2644417 2645760 3.02 2.47 0.854 3 1343
28416 30208 2.09 4.09 1.93 4 1792
595456 596992 2.05 2.78 1.39 4 1536
596736 597248 2.14 9.3 4.52 4 512
1999872 2001792 2.95 3.78 1.34 5 1920
2243584 2245632 2.96 3.85 1.36 5 2048
2883648 2885632 2.92 3.88 1.46 5 1984
348160 349824 3.08 3.84 1.29 7 1664
389120 390912 3.05 3.87 1.37 7 1792
1862656 1864448 3.05 3.77 1.28 7 1792
288768 297472 12.1 3.92 0.337 -1 8704
320512 329216 12.1 3.9 0.34 -1 8704
415744 424448 12 3.88 0.34 -1 8704
791040 799488 12.1 3.99 0.36 -1 8448
868032 876160 12.1 4.02 0.345 -1 8128
1014528 1022976 12.1 3.98 0.341 -1 8448
1487616 1496064 12.1 3.97 0.345 -1 8448
1963008 1971456 12.1 3.98 0.348 -1 8448
2047232 2055680 12.1 3.99 0.355 -1 8448
2177008 2185232 12.1 4.01 0.356 -1 8224
2354176 2362880 12.1 3.9 0.344 -1 8704
2412544 2421248 12.1 3.93 0.338 -1 8704
1972224 1973760 0.912 0.638 0.679 -2 1536
1538304 1539072 3.01 2.03 0.707 -3 768
2644480 2644992 2.85 2.01 0.74 -3 512
903296 904192 0.962 0.61 0.63 -4 896
1535744 1536512 0.929 0.419 0.485 -5 768
2055681 2056192 0.966 0.62 0.71 -7 511
1783808 1784320 1.04 0.628 0.597 -8 512
1818112 1818624 1.03 0.413 0.453 -9 512
802048 802560 0.999 0.393 0.395 -10 512
675200 675584 0.846 0.284 0.316 -11 384
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E.4.3 Query:Sequence-3

Table E.28: CNV detection for sequence-3 maps to sequence-1. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
841472 849408 2.09 6.34 3.08 1 7936
1268736 1276928 2.09 6.36 3.09 1 8192
1966080 1968000 2.9 3.63 1.27 4 1920
2193536 2195456 2.86 3.78 1.4 4 1920
2821312 2823168 2.83 3.77 1.4 4 1856
2781184 2783744 11.1 3.88 0.521 -1 2560
500992 502272 23.8 8.99 0.412 -2 1280
572416 573952 22.6 7.3 0.356 -2 1536
611584 612864 22.1 8.73 0.436 -2 1280
665600 667392 18 5.89 0.379 -2 1792
672128 673536 23.1 8.31 0.396 -2 1408
681472 682752 23 8.97 0.419 -2 1280
889856 891392 19 6.51 0.354 -2 1536
920064 921344 22.6 8.54 0.379 -2 1280
1037312 1038720 22.2 7.94 0.361 -2 1408
1295872 1297408 22.4 7.48 0.366 -2 1536
1400320 1401856 22.4 7.66 0.391 -2 1536
1507648 1508480 22.8 8.79 0.475 -2 832
1583104 1584384 22.7 8.83 0.405 -2 1280
1634816 1636352 21.7 7.42 0.368 -2 1536
1744384 1745536 23.3 9.66 0.446 -2 1152
1849344 1850624 23.3 8.97 0.426 -2 1280
2501376 2502656 22.7 8.62 0.388 -2 1280
2562688 2563648 24.3 9.85 0.419 -2 960
2578048 2578816 23 9.18 0.465 -2 768
2595328 2596608 23.6 8.96 0.401 -2 1280
2735616 2736896 23.9 8.94 0.417 -2 1280
1267712 1268736 1.04 0.721 0.693 -3 1024
15360 15872 1.05 0.634 0.622 -4 512
2752512 2753024 0.858 0.411 0.463 -5 512
85504 86016 0.912 0.376 0.404 -6 512
776192 776704 0.935 0.366 0.402 -7 512
1544960 1545472 1.03 0.506 0.487 -8 512
2374272 2374656 0.82 0.363 0.43 -9 384
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Table E.29: CNV detection for sequence-3 maps to sequence-2. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
250368 258560 4.16 6.38 1.6 1 8192
849664 857856 4.16 6.43 1.58 1 8192
1259264 1267456 4.16 6.38 1.6 1 8192
1513472 1521664 4.16 6.4 1.59 1 8192
334080 335872 15.2 5.94 0.448 -1 1792
353280 355072 15 6.01 0.421 -1 1792
552448 553984 18.8 7.33 0.411 -1 1536
661888 663296 18.9 8.31 0.473 -1 1408
769536 771072 17.9 7.15 0.417 -1 1536
782592 784896 11.4 4.31 0.449 -1 2304
884736 886272 18.3 7.4 0.406 -1 1536
950784 952064 18.8 8.77 0.495 -1 1280
1215744 1217024 18.4 8.62 0.48 -1 1280
1313408 1314816 18.5 8.28 0.473 -1 1408
1522944 1525248 9.8 5.15 0.791 -1 2304
1780736 1782016 20 8.81 0.476 -1 1280
1804800 1806336 18.3 7.25 0.408 -1 1536
2124032 2125312 18.7 8.75 0.478 -1 1280
2575872 2576960 19.4 9.6 0.549 -1 1088
2579456 2580736 3.23 2.85 0.912 -1 1280
2591232 2593664 9.59 4.92 0.764 -1 2432
2693376 2694912 18.8 7.42 0.424 -1 1536
2914304 2915584 19.6 8.97 0.481 -1 1280
1521664 1522176 1.11 0.705 0.678 -2 512
15360 15872 1.05 0.635 0.621 -3 512
1259008 1259392 2.13 1.03 0.56 -4 384
85504 86016 0.913 0.376 0.404 -5 512
250112 250496 2.15 0.799 0.413 -6 384
1635328 1635840 0.872 0.414 0.433 -7 512
2764800 2765184 0.831 0.288 0.327 -8 384

Table E.30: CNV detection for sequence-3 maps to sequence-3. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
332800 334592 3.16 3.89 1.31 7 1792
373696 375552 3.14 3.89 1.31 7 1856
1850432 1852288 3.15 3.9 1.32 7 1856

304



Table E.31: CNV detection for sequence-3 maps to sequence-4. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
687872 688928 4.2 8.58 2.1 3 1056
1521920 1524224 3.48 5.62 1.69 3 2304
2588160 2589184 4.18 8.9 2.28 3 1024
2591744 2593024 3.23 4.04 1.3 3 1280
2604545 2605952 3.18 3.93 1.27 3 1407
830912 832448 6.94 6.38 1.07 6 1536
854304 855840 7.02 5.77 0.973 6 1536
1375360 1376768 6.99 7.95 1.23 6 1408
2046336 2047872 6.93 7.78 1.23 6 1536
2192192 2193664 6.97 7.91 1.21 6 1472
2862848 2864128 7.07 7.87 1.17 6 1280
2916992 2918400 7.01 7.85 1.34 6 1408
2603520 2604544 4.16 8.28 2.09 10 1024
110336 118784 10.4 6.39 0.623 -1 8448
844528 852480 10.4 6.43 0.626 -1 7952
1084416 1093376 10.1 6.01 0.62 -1 8960
1175040 1183616 10.4 6.3 0.614 -1 8576
1456640 1465344 10.4 6.19 0.626 -1 8704
1860608 1869312 10.4 6.22 0.622 -1 8704
2030080 2038656 10.4 6.34 0.621 -1 8576
2641664 2650112 10.4 6.31 0.63 -1 8448
2732032 2740480 10.4 6.35 0.658 -1 8448
2958848 2967296 10.4 6.36 0.666 -1 8448
28672 29184 2.15 1.19 0.574 -2 512
85504 86016 0.906 0.383 0.415 -3 512
1634304 1634816 0.793 0.399 0.451 -4 512
779264 779776 0.953 0.347 0.374 -5 512
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Table E.32: CNV detection for sequence-3 maps to sequence-5. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
1537408 1539584 3.13 4.35 1.4 3 2176
2628096 2629120 3.4 7.73 2.37 3 1024
2631680 2632832 3.29 3.23 1.02 3 1152
2643456 2645760 3.12 4.39 1.45 3 2304
1999872 2001728 2.97 3.76 1.27 4 1856
2243648 2245632 2.93 3.93 1.41 4 1984
2883584 2885632 2.94 3.98 1.45 4 2048
348032 349824 3.13 3.89 1.27 7 1792
388992 390784 3.12 3.87 1.33 7 1792
1862656 1864448 3.11 3.86 1.29 7 1792
28672 30208 2.15 3.14 1.55 8 1536
595456 597248 2.16 2.94 1.45 8 1792
288768 297472 12.4 6.24 0.518 -1 8704
319488 329216 11.2 5.55 0.527 -1 9728
415744 424704 12.2 6 0.505 -1 8960
791040 799616 12.4 6.31 0.534 -1 8576
868032 876032 12.4 6.4 0.528 -1 8000
1014272 1022976 12.4 6.25 0.518 -1 8704
1487616 1496064 12.5 6.28 0.524 -1 8448
1963008 1971456 12.4 6.31 0.534 -1 8448
2046976 2056192 11.9 5.87 0.517 -1 9216
2176768 2185344 12.4 6.27 0.531 -1 8576
2354176 2362880 12.4 6.18 0.526 -1 8704
2412544 2421248 12.4 6.24 0.517 -1 8704
15360 15872 1.06 0.636 0.622 -2 512
85504 86016 0.898 0.348 0.386 -3 512
1649664 1650176 0.872 0.405 0.441 -4 512
802816 803328 0.869 0.341 0.372 -5 512
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E.4.4 Query:Sequence-4

Table E.33: CNV detection for sequence-4 maps to sequence-1. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
841472 849408 2.07 10.7 5.23 1 7936
1268736 1276928 2.07 10.7 5.25 1 8192
827872 829376 7.14 6.65 1.07 7 1504
851264 852736 7.13 6.21 1.06 7 1472
1368160 1369600 7.02 7.92 1.2 7 1440
2019808 2021312 7.03 7.83 1.26 7 1504
2165600 2167168 7.04 7.88 1.19 7 1568
2823936 2825472 6.98 7.83 1.29 7 1536
2878080 2879488 7.01 7.94 1.24 7 1408
500736 502272 22.2 3.58 0.171 -2 1536
572416 573824 22.2 3.86 0.195 -2 1408
611328 612864 19.2 3.25 0.199 -2 1536
666112 667648 19.1 3.04 0.195 -2 1536
672000 673536 22.2 3.63 0.17 -2 1536
681472 682752 22.8 4.27 0.193 -2 1280
889856 891904 16.4 2.44 0.229 -2 2048
920064 921344 22.6 4.12 0.189 -2 1280
1037312 1038592 22 3.85 0.176 -2 1280
1296000 1297408 22.9 3.88 0.173 -2 1408
1400320 1401856 22.3 3.58 0.177 -2 1536
1583104 1584384 22.6 4.26 0.192 -2 1280
1634816 1636352 21.9 3.52 0.169 -2 1536
1743872 1745920 16.4 2.45 0.212 -2 2048
1849344 1850752 23.1 3.77 0.181 -2 1408
2501376 2502656 22.6 4.19 0.193 -2 1280
2562560 2563584 22.9 4.34 0.195 -2 1024
2595328 2596864 19.8 3.3 0.201 -2 1536
2735488 2737152 19.3 3.09 0.187 -2 1664
2782208 2783744 22.2 3.57 0.162 -2 1536
2699264 2699776 1 0.452 0.467 -3 512
2919936 2920448 0.858 0.382 0.411 -4 512
2011648 2012160 1.06 0.487 0.435 -5 512
665600 666111 0.997 0.735 0.728 -6 511
685568 686080 0.849 0.383 0.444 -7 512
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Table E.34: CNV detection for sequence-4 maps to sequence-2. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
250368 258560 4.09 10.6 2.69 1 8192
849664 857856 4.1 10.7 2.67 1 8192
1259232 1267456 4.09 10.7 2.73 1 8224
1513472 1521696 4.1 10.7 2.68 1 8224
836096 837568 7.19 6.72 1.04 9 1472
859392 860960 7.05 6.27 1.11 9 1568
1376384 1377792 7.11 7.98 1.26 9 1408
2033152 2034624 7.15 7.94 1.18 9 1472
2179968 2181440 7.14 7.93 1.18 9 1472
2835200 2836736 7.09 7.92 1.23 9 1536
2889344 2890752 7.02 7.92 1.34 9 1408
1955840 1956864 0.987 0.599 0.59 -2 1024
334080 335872 15 2.76 0.224 -3 1792
353790 355072 19 3.94 0.21 -3 1282
552448 553728 18.3 3.85 0.218 -3 1280
662016 663552 15.8 2.96 0.208 -3 1536
769536 770816 18.6 4.05 0.239 -3 1280
782848 784128 19.1 3.82 0.214 -3 1280
884736 886272 18.2 3.35 0.186 -3 1536
950784 952064 18.5 4.09 0.217 -3 1280
1215488 1217280 16.1 2.82 0.187 -3 1792
1313536 1314816 18.8 4.04 0.22 -3 1280
1523200 1523712 18.7 4.29 0.257 -3 512
1780480 1782016 18.3 3.45 0.19 -3 1536
1805056 1806336 19 3.88 0.211 -3 1280
2124032 2125312 18.6 4.01 0.215 -3 1280
2576000 2576896 19.9 4.35 0.213 -3 896
2591232 2592256 18.6 4.2 0.248 -3 1024
2693376 2694912 18.4 3.43 0.192 -3 1536
2914304 2915584 19 3.99 0.21 -3 1280
2189312 2190336 0.882 0.541 0.651 -4 1024
335360 335872 0.913 0.62 0.652 -5 512
258560 259072 1.21 0.718 0.594 -6 512
2712576 2713088 0.974 0.453 0.468 -7 512
2932224 2932736 0.855 0.375 0.423 -8 512
2024960 2025472 0.999 0.462 0.444 -9 512
691712 692224 0.853 0.412 0.451 -10 512
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Table E.35: CNV detection for sequence-4 maps to sequence-3. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
695696 703936 6.15 10.6 1.79 1 8240
845536 853760 6.15 10.6 1.75 1 8224
1353600 1361872 6.14 10.6 1.82 1 8272
1545168 1553408 6.13 10.6 1.85 1 8240
1628512 1636752 6.16 10.6 1.75 1 8240
2859584 2867808 6.13 10.7 1.85 1 8224
332800 334592 3.15 4.41 1.45 6 1792
373760 375552 3.15 4.39 1.47 6 1792
1850432 1852288 3.13 4.33 1.44 6 1856
181312 182272 5.59 5.36 1.14 8 960
621696 623168 5.21 5.69 1.36 8 1472
819200 820736 5.38 5 1.09 8 1536
1214016 1215488 5.39 5.64 1.19 8 1472
1579072 1580544 5.39 5.55 1.17 8 1472
2324480 2326016 5.29 5 1.09 8 1536
85504 87040 10.2 3.33 0.34 -1 1536
779264 780800 10 3.42 0.351 -1 1536
831936 833280 7.1 6.34 1.02 -1 1344
855328 856864 7.01 5.99 1.09 -1 1536
1368160 1369600 7.08 7.19 1.08 -1 1440
1452032 1453568 8.84 3.03 0.351 -1 1536
1507840 1508352 10.1 4.09 0.461 -1 512
1733632 1734912 10.5 3.94 0.388 -1 1280
2033152 2034432 7.14 7.32 1.1 -1 1280
2178880 2181632 8.5 4.88 0.688 -1 2752
2388480 2390016 10.1 3.36 0.345 -1 1536
2576896 2577920 10.6 4.06 0.381 -1 1024
2764800 2766336 10.2 3.35 0.337 -1 1536
2836224 2837504 7.05 7.26 1.13 -1 1280
2898528 2899968 7.03 7.19 1.11 -1 1440
372736 373760 1.1 0.697 0.61 -2 1024
1628160 1628672 2.49 1.19 0.539 -3 512
2712576 2713088 0.981 0.444 0.464 -4 512
2940416 2940928 0.92 0.386 0.417 -5 512
2024960 2025472 1.02 0.484 0.446 -6 512
680448 680960 0.861 0.388 0.449 -7 512

Table E.36: CNV detection for sequence-4 maps to sequence-4. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
830944 832448 7.14 7.2 1.11 4 1504
854304 855840 7.12 6.62 1.12 4 1536
1375296 1376768 6.99 8.53 1.31 4 1472
2046464 2047872 7.06 8.68 1.35 4 1408
2192192 2193664 7.04 8.57 1.29 4 1472
2862848 2864128 7.05 8.81 1.32 4 1280
2916992 2918400 7.02 8.6 1.41 4 1408
384512 385024 0.771 0.549 0.714 -1 512
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Table E.37: CNV detection for sequence-4 maps to sequence-5. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
1999872 2001792 2.88 3.63 1.31 4 1920
2243648 2245632 2.86 3.76 1.36 4 1984
2883584 2885632 2.87 3.74 1.39 4 2048
348160 349824 3.16 3.9 1.28 7 1664
389120 390784 3.12 3.92 1.35 7 1664
1862720 1864448 3.14 3.92 1.31 7 1728
854432 855968 7.12 6.29 1.04 10 1536
877824 879360 7.14 6.05 1.04 10 1536
1390720 1392128 7.12 7.62 1.19 10 1408
2061696 2063232 7.05 7.46 1.2 10 1536
2215680 2217248 7.06 7.48 1.14 10 1568
2886272 2887680 7.02 7.46 1.16 10 1408
2940416 2941984 7.02 7.47 1.18 10 1568
2045440 2045952 1.01 0.482 0.468 -2 512
704000 704512 0.849 0.358 0.421 -3 512
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E.4.5 Query:Sequence-5

Table E.38: CNV detection for sequence-5 maps to sequence-1. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
841472 849408 2.07 12.6 6.18 1 7936
1268736 1276928 2.07 12.6 6.19 1 8192
827840 829184 6.89 6.34 1.06 7 1344
851232 852736 7 5.86 1.01 7 1504
1368160 1369600 6.97 7.49 1.15 7 1440
2019776 2021120 6.85 7.48 1.2 7 1344
2165600 2167168 7.03 7.44 1.13 7 1568
2823936 2825472 7 7.44 1.16 7 1536
2878080 2879488 6.9 7.48 1.21 7 1408
1507584 1509952 10.2 2.66 0.6 -1 2368
2563840 2567424 2.35 2.07 0.926 -1 3584
2572288 2574336 2.18 2.05 0.977 -1 2048
2578112 2580480 8.63 2.63 0.666 -1 2368
500992 502272 22.3 2.98 0.148 -2 1280
572544 573696 21.8 2.98 0.143 -2 1152
611584 612864 21.2 2.98 0.15 -2 1280
665984 667392 21.8 2.71 0.131 -2 1408
672128 673792 17.9 2.21 0.187 -2 1664
681472 682752 21.6 2.98 0.15 -2 1280
889856 891392 18 2.26 0.154 -2 1536
920064 921344 21.5 2.85 0.134 -2 1280
1037312 1038592 20.8 2.67 0.132 -2 1280
1295872 1297408 21.4 2.48 0.126 -2 1536
1400320 1401856 21.2 2.58 0.132 -2 1536
1583104 1584384 21.6 2.89 0.138 -2 1280
1635072 1636352 21.9 3.04 0.15 -2 1280
1744128 1745664 21 2.51 0.131 -2 1536
1849344 1850624 22 3.02 0.144 -2 1280
2501376 2502656 21.5 2.89 0.138 -2 1280
2562752 2563584 23 3.44 0.159 -2 832
2595328 2596608 22.1 2.91 0.138 -2 1280
2735616 2736896 22.1 3.02 0.148 -2 1280
2782208 2783744 21.2 2.39 0.114 -2 1536
1584640 1585152 1.07 0.774 0.762 -3 512
772608 773120 0.973 0.48 0.493 -4 512
288768 289280 1.11 0.463 0.41 -5 512
2962944 2963456 0.897 0.452 0.49 -6 512
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Table E.39: CNV detection for sequence-5 maps to sequence-2. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
250336 258560 4.09 12.6 3.19 1 8224
849664 857856 4.09 12.6 3.19 1 8192
1259232 1267456 4.09 12.6 3.22 1 8224
1513472 1521664 4.1 12.6 3.19 1 8192
1522688 1525248 9.03 2.61 0.635 -1 2560
2577152 2580736 2.35 2.18 0.962 -1 3584
2585344 2587392 2.12 2.07 1.01 -1 2048
2591232 2593792 8.29 2.7 0.65 -1 2560
334208 335360 18.1 2.91 0.178 -2 1152
353664 354944 17.8 2.83 0.172 -2 1280
552448 553728 17.5 2.72 0.16 -2 1280
661888 663296 18.1 2.66 0.158 -2 1408
769536 770816 18 2.76 0.161 -2 1280
782720 784128 18.2 2.65 0.15 -2 1408
884992 886272 18.6 2.86 0.158 -2 1280
950784 952064 17.9 2.82 0.171 -2 1280
1215744 1217024 17.6 2.83 0.16 -2 1280
1313536 1314816 18.3 2.89 0.17 -2 1280
1780736 1781800 18.3 3.18 0.178 -2 1064
1804800 1806336 17.7 2.37 0.135 -2 1536
2124032 2125312 17.8 2.86 0.162 -2 1280
2576000 2576896 18.8 3.35 0.194 -2 896
2693376 2694656 17.5 2.58 0.161 -2 1280
2914304 2915584 18.4 2.91 0.162 -2 1280
876544 877056 1.01 0.555 0.53 -3 512
296960 297472 1.11 0.474 0.426 -4 512
1473024 1473536 0.844 0.428 0.515 -5 512
2368512 2369024 0.963 0.39 0.39 -6 512
998016 998400 1.06 0.358 0.347 -7 384
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Table E.40: CNV detection for sequence-5 maps to sequence-3. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
695712 703967 6.14 12.5 2.11 1 8255
845568 853760 6.15 12.6 2.08 1 8192
1353616 1361856 6.14 12.6 2.14 1 8240
1545168 1553408 6.12 12.6 2.21 1 8240
1628512 1636752 6.15 12.6 2.08 1 8240
2859584 2867808 6.12 12.6 2.17 1 8224
28288 30208 2.16 2.85 1.39 4 1920
571776 573440 2.11 2.94 1.46 4 1664
332800 334592 3.18 4.3 1.4 6 1792
373760 375552 3.19 4.28 1.4 6 1792
1850432 1852288 3.16 4.2 1.35 6 1856
85728 86912 10.3 2.89 0.294 -1 1184
779392 780800 9.98 2.58 0.274 -1 1408
832000 833280 7 5.79 0.99 -1 1280
855360 856704 6.87 5.3 1.06 -1 1344
1368128 1369600 7.08 6.41 0.958 -1 1472
1452288 1453568 9.83 2.82 0.31 -1 1280
1507840 1509376 6.24 2.3 0.501 -1 1536
1733632 1734912 10.2 2.73 0.285 -1 1280
2033152 2034432 7.16 6.42 0.948 -1 1280
2178880 2181632 8.33 4.09 0.627 -1 2752
2388480 2390016 9.66 2.39 0.259 -1 1536
2576896 2577920 10.1 3.03 0.321 -1 1024
2764800 2766336 9.79 2.37 0.251 -1 1536
2836224 2837504 7.06 6.41 0.964 -1 1280
2898560 2899968 7.15 6.45 0.953 -1 1408
2867712 2868224 2 0.947 0.633 -2 512
2983424 2983936 0.97 0.418 0.38 -3 512
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Table E.41: CNV detection for sequence-5 maps to sequence-4. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
110464 118720 10.3 12.7 1.25 1 8256
844528 852736 10.3 12.7 1.25 1 8208
1084928 1093200 10.2 12.6 1.29 1 8272
1175328 1183584 10.3 12.7 1.25 1 8256
1456896 1465168 10.2 12.6 1.29 1 8272
1860832 1869072 10.3 12.6 1.27 1 8240
2030264 2038528 10.3 12.6 1.25 1 8264
2641664 2649904 10.3 12.6 1.27 1 8240
2732160 2740400 10.2 12.6 1.33 1 8240
2959040 2967296 10.2 12.6 1.33 1 8256
830912 832256 6.96 6.54 1.04 5 1344
854272 855840 6.99 6.13 1.03 5 1568
1375360 1376768 7.04 8.04 1.21 5 1408
2046400 2047744 6.97 7.94 1.24 5 1344
2192160 2193664 6.99 7.87 1.18 5 1504
2862848 2864128 7.01 7.94 1.21 5 1280
2916928 2918400 6.98 7.85 1.23 5 1472
579072 579584 2.23 1.34 0.611 -1 512
2967040 2967552 4.59 2.33 0.567 -2 512
1868928 1869312 3.84 1.31 0.469 -3 384
296960 297472 1.09 0.466 0.419 -4 512
688640 689152 2.71 1.29 0.486 -5 512
1175168 1175552 5.93 2.44 0.476 -6 384
1480192 1480704 0.884 0.456 0.504 -7 512
2380800 2381312 0.983 0.361 0.377 -8 512
1464960 1465344 5.38 2.12 0.389 -9 384
687616 688128 2.15 0.756 0.397 -10 512
2641408 2641792 3.7 1.08 0.541 -11 384
3010048 3010496 0.851 0.368 0.402 -12 448
1456640 1456960 1.68 0.544 0.558 -13 320

Table E.42: CNV detection for sequence-5 maps to sequence-5. CNV size is in base
pairs (bps). Positive groups represent duplications. Negative groups represent deletions.

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
1999872 2001792 2.97 3.46 1.2 4 1920
2243648 2245632 2.93 3.57 1.33 4 1984
2883648 2885632 2.9 3.63 1.38 4 1984
348160 349952 3.14 3.9 1.28 6 1792
389120 390784 3.1 4.01 1.38 6 1664
1862720 1864512 3.11 3.96 1.33 6 1792
894976 895488 1.03 0.549 0.524 -1 512
3025408 3025856 0.813 0.34 0.332 -2 448
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E.5 Comparing wiht CNVnator

In the section, the detected CNV list from CNVnator is reported.

Table E.43: CNVs report from CNV-MM The table is taken directly from the CNVnator
output except the first column indicating all CNVs are duplications is deleted. Coordinate:
CNV breakpoints. RD: read depth. P-val: p-value. q0: Quality score. For details of the
column, please see CNVnator[42].

Coordinate CNV-Size RD P-val1 P-val2 P-val3 P-val4 q0
28301-30450 2150 2.23555 0 2.23253e-29 497428 17.3433 1
45951-47400 1450 2.68503 0.000626263 7.65628e+06 1 1 1
177551-178300 750 5.32745 2.7384e-05 8.95024e-191 1 1 1
180351-181250 900 4.51578 1.68581e-06 6.4933e-145 1 1 1
417701-423050 5350 2.81295 0 9701.95 0 1.07686e+06 1
565351-568850 3500 1.69867 0 2.4299e-05 0.000121186 2672.92 1
570651-572900 2250 2.18276 0 1.29493e-15 123129 541.452 1
809051-810400 1350 4.29401 1.88886e-09 3.38017e-154 1 1 1
827751-828800 1050 2.12186 0.00024832 1.7156e-06 1 1 1
1053451-1059950 6500 3.50688 0 8.32469e+06 0 5.0256e+07 1
1203551-1205250 1700 3.81133 1.17778e-05 3.35185e+08 1 1 1
1223901-1224600 700 1.95137 0.0218964 4.29084e-08 1 1 1
1228551-1232100 3550 1.63153 1.97532e-09 198.572 0.0420266 2.14677e+06 1
1443151-1444800 1650 2.194 0 4.02213e-09 1 1 1
1488201-1490550 2350 2.92859 0 8.47598e+08 9576.86 9.76731e-05 1
1553201-1554600 1400 4.41865 1.36605e-09 4.39256e-16 1 1 1
1815351-1817050 1700 4.21932 0 8.2999e-147 1 1 1
1944301-1946150 1850 3.06671 0 1.59164e-88 1 1 1
1994601-1996400 1800 2.11166 0 2.77406e-12 1 1 1
2002151-2003800 1650 2.05565 8.46123e-08 666.624 1 1 1
2011051-2012900 1850 2.50232 0 2.87152e-16 1 1 1
2057851-2059800 1950 1.77522 0.00491184 0.0724911 1 1 1
2171551-2173600 2050 2.91904 0 3.34486e-15 1 1 1
2255951-2257700 1750 2.13136 0 2.51779e-20 1 1 1
2288351-2289750 1400 4.0658 0 7.22966e-59 1 1 1
2303301-2305200 1900 2.11804 0 3.64459e-27 1 1 1
2384151-2388900 4750 1.80368 0 4.01408e+07 0 1.08221e+07 1
2539801-2540750 950 2.7549 4.86506e-08 1.3771e-64 1 1 1
2540901-2544500 3600 2.47723 0 2.68849e-27 5.84439e-06 2.7884e-07 1
2549101-2551350 2250 2.15837 0 8.71375e-14 7574.44 0.688413 1
2555201-2557500 2300 2.95321 0 5.50771e+06 4719.09 8.11376e-13 1
2579201-2581000 1800 2.12205 0 2.77825e-09 1 1 1
2683551-2684600 1050 2.29531 0.00650178 5643.56 1 1 1
2795301-2797400 2100 2.91666 0 1.14939e-10 1.62959e+06 8.91547e-15 1
2798051-2799450 1400 7.81974 0 3.34122e-236 1 1 1
2856401-2869450 13050 1.69711 0 1.40966e-11 0 1.82638e-08 1
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E.6 CNV Detection of A. baumannii Clinical Isolate

In the section, the detected CNV lists of real short read data SRR25588867 using either

A. baumannii strain ATCC 17978 or strain MDR-ZJ06 is reported. In all the tests, the

grouping function is on, and the CNV regions are detected by rejecting the regions that

have estimated query copy numbers within 0.9 of the estimated reference copy numbers

(|CopyNumberAvg − CopyNumberAvg × CopyNumberTS| >= 0.9). To insure small

differences are detected, the Poisson noise in the TS trajectory is not considered here. In

all the tables, CNV size is presented in base pairs (bps) and the breakpoints are listed in the

reference genome index. Deletions and duplications are listed in separated tables.

E.6.1 Reference: A. baumannii strain ATCC 17978

Table E.44: Duplication in SRR2558867 when using A. baumannii strain ATCC 17978
as the reference sequence. CNV size is in base pairs (bps)

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
799744 800768 1.27 13.9 10.1 2 1024
2375168 2376192 1.02 2.43 2.39 4 1024
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Table E.45: Deletions in SRR2558867 when using A. baumannii strain ATCC 17978
as the reference sequence. CNV size is in base pairs (bps)

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
1651968 1654784 0.628 0.346 0.503 1 2816
1685504 1688538 0.558 0.267 0.509 2 3034
1634304 1637888 0.525 0.213 0.362 3 3584
1637463 1638400 0.684 0 0 3 937
2494810 2498047 0.48 0.189 0.352 4 3237
1579008 1582080 0.799 0.337 0.37 5 3072
2193177 2195456 0.608 0.331 0.541 6 2279
2771584 2774016 0.472 0.178 0.372 7 2432
88064 90112 0.533 0.147 0.257 8 2048
1333505 1335295 0.67 0.472 0.831 9 1790
535296 537600 0.469 0.145 0.29 10 2304
1650176 1651712 0.726 0.316 0.442 11 1536
1568768 1570432 0.629 0.402 0.542 12 1664
1493389 1495040 0.689 0.27 0.35 13 1651
1507841 1509376 0.521 0.262 0.544 14 1535
847872 849920 0.434 0.14 0.311 15 2048
1642474 1644543 0.651 0.228 0.398 16 2069
1575680 1577472 0.394 0.153 0.372 17 1792
1573120 1574912 0.486 0.199 0.419 18 1792
1441792 1443328 0.567 0.282 0.459 19 1536
141312 143360 0.42 0.0878 0.242 20 2048
97307 98816 0.629 0.239 0.406 21 1509
3598080 3601408 0.275 0.113 0.183 22 3328
879361 880640 0.737 0.493 0.715 23 1279
855552 857600 0.446 0.124 0.236 24 2048
1261824 1263616 0.483 0.12 0.181 25 1792
2113537 2114754 0.746 0.632 0.782 26 1217
112640 114176 0.488 0.236 0.454 27 1536
3757056 3758592 0.671 0.237 0.366 28 1536
2073345 2074584 0.862 0.45 0.459 29 1239
1274347 1318912 0.0388 0.00429 0.00718 30 44565
1056000 1062912 0.216 0.0445 0.0885 31 6912
91649 92858 0.619 0.279 0.48 32 1209
2668544 2669965 0.7 0.576 0.753 33 1421
2363136 2374656 0.089 0.0156 0.0277 34 11520
2140928 2142208 0.609 0.191 0.343 35 1280
2153984 2156543 0.518 0.138 0.276 37 2559
2767104 2768409 0.66 0.251 0.471 38 1305
2076032 2077952 0.477 0.216 0.389 39 1920
954368 956160 0.809 0.362 0.374 41 1792
2752512 2753536 0.431 0.278 0.555 42 1024
1998848 1999872 0.525 0.128 0.321 43 1024
1558510 1559552 0.487 0.145 0.332 44 1042
2078208 2080105 0.489 0.153 0.332 45 1897
1678336 1679530 0.532 0.44 0.648 46 1194
563072 566272 0.276 0.0489 0.121 47 3200
247296 248832 0.733 0.15 0.222 48 1536
2498048 2500096 0.369 0.0891 0.236 49 2048
1121280 1122304 0.446 0.186 0.375 50 1024
2148352 2150400 0.518 0.075 0.16 51 2048
1987584 1988864 0.354 0.127 0.346 54 1280
3434524 3435776 0.49 0.117 0.28 56 1252
1607680 1608704 0.7 0.507 0.602 57 1024
3342807 3344083 0.475 0.191 0.461 58 1276
2758656 2759680 0.515 0.266 0.602 60 1024

317



Table E.45 Deletions in SRR2558867 when using A. baumannii strain ATCC 17978 as
the reference sequence. Continued

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
2493423 2494909 0.477 0.217 0.445 61 1486
3748864 3750143 0.9 0.346 0.412 62 1279
2596864 2597888 0.669 0.278 0.392 64 1024
1691648 1693184 0.453 0.113 0.243 66 1536
3755521 3756544 0.545 0.382 0.607 67 1023
57344 72448 0.0683 0.00837 0.0191 68 15104
3750144 3754368 0.0769 0.0124 0.0293 70 4224
2054657 2055680 0.69 0.234 0.299 71 1023
1488891 1489920 0.648 0.39 0.477 72 1029
1195008 1196288 0.35 0.14 0.386 73 1280
1062913 1063936 0.674 0.44 0.538 74 1023
1554176 1555456 0.381 0.0501 0.231 76 1280
1201152 1205761 0.218 0.0231 0.0432 77 4609
1110784 1112063 0.701 0.463 0.621 79 1279
2351104 2353024 0.278 0.0517 0.154 80 1920
1103872 1104896 0.443 0.237 0.541 81 1024
929536 933376 0.161 0.027 0.064 83 3840
3463168 3464192 0.283 0.033 0.112 84 1024
2744320 2745344 0.807 0.441 0.506 85 1024
850944 851967 0.57 0.38 0.651 87 1023
1483776 1484800 0.686 0.287 0.366 89 1024
3603456 3604479 0.657 0.0328 0.0366 90 1023
3064320 3070464 0.0182 6.79e-06 1.66e-05 91 6144
223232 225280 0.239 0.0479 0.0606 93 2048
82432 83456 0.536 0.0567 0.16 94 1024
561152 562176 0.445 0.116 0.261 95 1024
3607552 3608576 0.386 0.074 0.162 99 1024
2150337 2151424 0.762 0.131 0.276 101 1087
1680896 1681920 0.338 0.0458 0.153 102 1024
1501952 1505536 0.0548 0.00213 0.0059 115 3584
96256 97280 0.556 0.17 0.198 116 1024
1495296 1496320 0.432 0.0936 0.267 119 1024
2026496 2028032 0.337 0.068 0.214 120 1536
163072 164096 0.526 0.203 0.52 121 1024
664576 665600 0.286 0.0257 0.0832 122 1024
1841587 1845248 0.095 0.0206 0.0545 124 3661
1645305 1647616 0.171 0.00778 0.0297 127 2311
2024448 2025472 0.264 0.00917 0.046 128 1024
1481216 1482240 0.388 0.0923 0.278 129 1024
1594368 1595391 0.58 0.379 0.56 133 1023
1546752 1547776 0.857 0.222 0.266 134 1024
2769408 2770437 0.321 0.0954 0.241 138 1029
1236480 1260032 0.00901 0.00136 0.00279 140 23552
3758847 3760128 0.502 0.0625 0.0976 152 1281
2674688 2676224 0.238 0.000686 0.00344 153 1536
1592313 1593856 0.438 0.0798 0.212 158 1543
1585408 1587200 0.18 0.00231 0.00896 159 1792
2170624 2174592 0.12 0.00616 0.0254 163 3968
3909248 3910656 0.44 0.137 0.194 168 1408
2166784 2169856 0.103 0.00804 0.0202 194 3072
17408 18432 1.2 0.0486 0.0165 209 1024
1562624 1563647 0.53 0.238 0.403 212 1023
564224 566272 0.214 0.0109 0.0417 216 2048
2400768 2401792 0.252 0.00611 0.0153 218 1024
1688064 1689600 0.245 0.033 0.075 220 1536
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Table E.45 Deletions in SRR2558867 when using A. baumannii strain ATCC 17978 as
the reference sequence. Continued

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
2060097 2061312 0.318 0.118 0.246 225 1215
1838575 1841152 0.049 0.00534 0.0198 226 2577
1570688 1571839 0.374 0.0705 0.243 232 1151
854017 855197 0.59 0.149 0.211 234 1180
3885056 3886403 0.333 0.00891 0.0262 236 1347
2093056 2094605 0.522 0.0739 0.137 238 1549
821248 826880 0.0701 0.0159 0.0337 251 5632
3903488 3907584 0.0542 0.00584 0.0131 259 4096
2156019 2157568 0.151 0.0152 0.0431 262 1549
674048 687104 0.0266 2.51e-05 6.16e-05 279 13056
2944491 2950656 0.0396 0.000637 0.00112 279 6165
3184640 3186176 0.293 0.0419 0.0898 287 1536
2030080 2031103 0.398 0.207 0.481 291 1023
1597440 1598463 0.328 0.103 0.354 294 1023
2074496 2075648 0.348 0.125 0.227 301 1152
2134400 2137600 0.0616 0.00294 0.00855 306 3200
871168 879360 0.0811 0.0118 0.0153 322 8192
2067456 2072832 0.0301 0.00251 0.0088 327 5376
2016256 2017279 0.352 0.0511 0.0757 351 1023
863232 864768 0.222 0.0415 0.126 353 1536
2329600 2334209 0.0314 0.000262 0.00079 370 4609
1506301 1507840 0.25 0.0492 0.145 378 1539
638208 639232 0.307 0.0202 0.0561 387 1024
2062336 2063360 0.344 0.13 0.337 392 1024
2446848 2447872 0.364 0.0207 0.0599 396 1024
2314752 2316288 0.232 0.0645 0.186 397 1536
1345536 1375751 0.00875 0.000788 0.00194 415 30215
99072 106752 0.0333 0.0034 0.00785 422 7680
1828864 1837824 0.0347 0.00337 0.00778 426 8960
1597952 1598976 0.372 0.0211 0.0627 429 1024
2174848 2176512 0.101 0.00106 0.00417 456 1664
124416 125952 0.163 0.0131 0.0484 466 1536
2004887 2006016 0.211 0.00829 0.0221 472 1129
1053696 1054720 0.249 0.00306 0.00767 490 1024
3008512 3012608 0.0773 0.0202 0.031 522 4096
1061888 1062912 0.312 0.0945 0.237 562 1024
2129463 2132224 0.113 0.0176 0.026 593 2761
2360064 2362379 0.105 0.0153 0.0517 607 2315
3229817 3233408 0.0762 0.00113 0.00142 681 3591
2107392 2113536 0.0444 0.00391 0.00963 691 6144
511488 514560 0.214 0.00618 0.00532 746 3072
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E.6.2 Reference: A. baumannii strain MDR-ZJ06

Table E.46: Deletions in SRR2558867 when using A. baumannii strain MDR-ZJ06 as
the reference sequence. CNV size is in base pairs (bps)

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
3474944 3480576 3.12 1.77 0.524 1 5632
3507328 3512960 3.12 1.77 0.604 1 5632
3974144 3980544 2.96 1.75 0.545 1 6400
70656 76715 0.704 0.517 0.748 2 6059
1095363 1098245 0.465 0.254 0.568 3 2882
1640448 1642752 0.804 0.536 0.696 4 2304
66223 68511 0.565 0.311 0.475 6 2288
1421251 1423079 0.779 0.614 0.786 7 1828
1393152 1395712 0.516 0.231 0.423 9 2560
1407488 1409536 0.577 0.422 0.681 10 2048
1402880 1405440 0.625 0.316 0.53 11 2560
1430528 1432185 0.689 0.376 0.651 12 1657
1427438 1429635 0.704 0.451 0.588 13 2197
1375232 1376805 0.615 0.414 0.805 14 1573
1092864 1094067 0.809 0.97 1.16 15 1203
1423189 1424384 0.67 0.57 0.831 16 1195
1433600 1435648 0.668 0.422 0.604 17 2048
2419107 2420736 0.277 0.174 0.247 18 1629
1418179 1419264 0.641 0.522 0.843 19 1085
1424896 1426503 0.738 0.615 0.737 20 1607
1432205 1433561 0.726 0.251 0.554 21 1356
1649791 1651456 1.96 0.586 0.54 22 1665
95616 108032 0.0595 0.0183 0.0515 23 12416
1384448 1385549 0.753 0.285 0.574 24 1101
1414133 1415659 0.425 0.194 0.484 27 1526
1101824 1102848 0.549 0.334 0.716 29 1024
2429952 2438173 0.0877 0.0338 0.0732 30 8221
68608 69632 0.495 0.296 0.762 32 1024
3141632 3143168 1.03 0.519 0.514 33 1536
1412608 1413632 0.523 0.463 0.699 35 1024
1371136 1372160 0.761 0.37 0.495 37 1024
76800 94592 0.0367 0.00492 0.0128 39 17792
1008128 1009152 0.869 0.347 0.449 41 1024
2441507 2444032 0.123 0.011 0.0234 42 2525
1567232 1568237 0.868 0.687 0.82 43 1005
1762304 1763328 1.1 0.846 0.691 45 1024
1477632 1478656 1.01 0.324 0.317 49 1024
1534976 1536000 0.907 0.174 0.196 50 1024
2876416 2878407 0.218 0.0108 0.0148 57 1991
2426368 2428352 0.157 0.00154 0.00482 125 1984
2686976 2690304 0.133 0.0164 0.0164 173 3328
2439680 2440704 1.33 0.168 0.0786 186 1024
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Table E.47: Duplications in SRR2558867 when using A. baumannii strain MDR-ZJ06
as the reference sequence. CNV size is in base pairs (bps)

5’ end 3’ end CN in Ref CN in query CN ratio Group Size
39424 44800 3.17 4.59 1.46 2 5376
218112 223744 3.14 4.52 1.43 2 5632
716544 721920 3.17 4.6 1.37 2 5376
2406656 2410240 1.04 3.09 2.87 3 3584
2410624 2414080 1.05 2.72 2.54 4 3456
3211648 3212544 1.56 9.69 7.16 5 896
1259256 1260416 1.11 3.02 2.65 7 1160
94464 95712 4.28 7.48 1.68 8 1248
2051712 2052960 4.3 7.54 1.65 8 1248
2058975 2060160 4.3 7.72 1.88 8 1185
2363392 2364647 4.29 7.61 1.68 8 1255
2446976 2447936 1.01 2.58 2.57 10 960
2404608 2405504 0.988 2.02 2.04 12 896
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