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An interface current balandéCB) method for neutral particle transport is presented and specialized
to the calculation of neutral atom transport in background plasmas. A multigroup extension of the
ICB methodology is presented which enables the direct calculation of neutral atom energy
distributions and energy and momentum transport, as well as particle transport. Extension of the
ICB methodology to multidimensions recovers the transmission/escape probability method.
© 1997 American Institute of Physid$1070-664X97)02601-3

I. INTRODUCTION a multigroup formulation is developed. Extensions of the

i methodology to handle higher levels of anisotropy in the
Integral transport methods are widely used for neutron, o yra| particle distribution and anisotropic scattering are

transport calculations within heterogeneous reactor coregiscussed in Sec. X. The results of a model problem compu-
(e.g., Refs. 1-Band more recently have been adopted foriation are described in Sec. XI. Finally, the work is summa-
the calculation of neutral atom transport in the edge regiong; e in Sec. XII.
of fusion plasmase.g., Ref. 4, where they have found wide-
spread usage. One of the attractions of integral transport
methods is the physically intuitive nature of the various
terms in the computational algorithm. The major drawback!- EMERGENT CURRENTS AND REACTION RATES
to integral transport methods is that all regions in the disPUE TO INCIDENT CURRENTS
cretized problem are coupled, resulting itN& N matrix to Consider the slab geometry configuration depicted in
invert on each iteration, wheiv is the number of discretized Fig. 1, in which a slab regionis bounded by surfacasand
regions. Although various approximations have been devellr+1 \;vith incident currents)™ andJ™, , and emergent cur-
oped to circumvent this difficulty, the inherent coupling of [ 3= 243+ The angullar fluxlgflparticles at arising
all regions in an iterative solution procedure remains the Mag om al plane Is:)trce of unit strengthsdt<x is®
jor drawback of integral transport methods.
The purpose of this paper is to set forth an interface ,

. . =2(x=x")u
current balance(ICB) formulation of integral transport POOX! ) = e )
theory which results in coupling only among contiguous re- Sl m '
gions in the discretized problem. This ICB formulation pro-

vides a more efficient Computational algorithm for neutralwhere |t is assumed that the tota' Cross Sectmln, is uni_
atom transport calculations in the plasma edge region thafyrm over A;, and u is the cosine of the angle that the
the integral transport models presently in plasma edge codgsarticle direction makes with the axis. Further assuming
and is readily generalized to multidimension, where this adthat the incident currents are isotropically distributed in
vantage is retained. This ICB formulation is related to theangle over the incident hemispherge., a double P,
response matrix meth&d of neutron transport theory and approximatiof), the uncollided currents emergent from the
leads to and provides a theoretical basis for the transmissioagposite surface are given by
escape probability methodor neutral atom transport in the
edge regions of fusion plasmas. A 1 e-Sudiln
The ICB formulation is developed in Secs. [I-V in slab J:n(xi+1):Ji+j M(—)
geometry by using integral transport theory to express the H
emergent currents from a discrete region and the reaction 2
rates within that region in terms of the incident currents into . 0 [etZdilm
that region and the source of particles within that region. The Jun(xi)z‘]HlJ’lM(T) du=Ex(AiZ)Jisq,
relation to the response matrix method is established in Sec.
VI, and the ICB method is extended to treat energy depen- ) N .
dence in Sec. VII. The ICB method is extended to two di-WNereEn is the exponential integral function
mensions in Sec. VIII, and equivalence with the
transmission/escape probability method is established. Spe-
cialization of the ICB formalism to neutral particle transport
in the edge of fusion plasmas is discussed in Sec. IX, where

du=Ex(Ai=y)J;,

1
En(Z)EfO p"2eT e du. ()

The first collision rate for incident particles withik, is
dElectronic mail: weston.stacey@me.gatech.edu given by
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—» Ji+ —» J;-l A X|+1 X|+1 e Su(xx)/u
- - Air EMCI dx| ——
Ji = Jin=— A K

3 E 0 Xi+1 X' e Zti(x=x")/n
i §/(6=cos'1u +J d,uf dx’f dx| ———
-— A > -1 Xi Xi M

=CiAIL(1=Po)=ci(J + 374y

¥ i+l X[1-Ex(AiZ4) (1 Pgi). )
. _ As before, the fractiort; of this collision rate constitutes a
FIG. 1. Slab geometry configuration. source of twice-collided particles which are assumed to be

isotropic. The emergent currents of twice-collided particles
are given by Eqgs(5) but with A;; replaced byA,,

=Zi(x=x))/ ~ ~ ~
Air= 2t|[J|+ ld,uJXI+1 ( ‘ M) 35 (Xi+1) =35 (Xi) = 5CiA1P i

= 5c7(3 + 35 DL Eax(AiZy)]
0 x|+1 = (X=X 4+ 1)/n
+‘]|+lf 1dﬂf ( )
Continuing this line of argument, we derive general ex-

X(l_ Poi)Poi- (8)
=3+ DI1-Ex(AZ)]. (4)  pressions for the rate at which incident particles undergo
their nth collision in A,

The fractionc; of the collision rate which is due to scattering
(i.e., to events which do not remove the partiadenstitutes
a source of once-collided particles, which we assume to band for the emergent currentsofcollided incident particles
isotropic (1/2 emerge going to the right and 1/2 to the )left - . L

and uniformly distributed oved; . The emergent currents of Iy (Xiv1) =35 (X)) =367 (I + 374 )[1-Ex(AiZy) ]
once-collided particles are then

An=c] M3+ D1 Eo(AZ0))(1-Pe)" (9)

X(1=Pg)" " *Py;. (10
S (X The total collision rate im\; due to incident currents is ob-
x,+1 e 24 (Xj+ 1= X)) ) A
J (X|+1)—f f C. A p du tained by summing Eq9)
1cA; L A= An=(3F I35 D[1-Ex(AZ)] Y [6i(1—Pg)]"
=515, L2~ Ea(AiZ4)]=2CiPoiAir, n=t n=0
2 |Et| N B (]_]_)
(5) :(‘]i I D[1-Ex(AZy)]
1-ci(1-Pgy)

J1 (i) =3CiPoiAI1=3Ci Poi(J + 315 D1 - Eo(AZy)],
and the total emergent currents due to incident currents are
é)btalned by summing Eq10) and adding the uncollided

where the average first-flight escape probability for sourc Zontributions of Eqs(2)

particles distributed uniformly ovek; has been defined

. 1Pl 1-Ex(AiSy)]
+ . 2CiFoi 2\ j~ti +
% Xii1 efEti(Xi-*—l*X)/:U‘ J (Xi+1)_ 1_Ci(1_Poi) EZ(AiEti) J

S YR W Laitaid

' H 3CiPoi[ 1-Ex(AiZy)]

% X|+1 et (x—xi)/n 1-¢i(1-Pg) R
IR 1 a2
' 3 (x) = ECiPoi[l_EZ(AiEti)] Azl
( i/ 1_Ci(1_Poi) ( ti |+l

:_ -[3-E3(AiZy)]. (6)
3CiPoi[1—Ex(AiZy)]
1-ci(1-Py)

Note that we are distinguishing between the total partial

currents ak; , denoted byl;"’~, and the various components
gl . . . EMERGENT CURRENTS AND REACTION RATES
of that current, denoted by, '~ (x;), wherez is a descriptive  pyE TO INTERNAL SOURCES

subscript pertaining to the particular component.
The collision rate for incident particles undergoing a sec-  We consider a uniform distribution of particle sources
ond collision inA; is within A, of strengths;/A; per unit length. This source is
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allowed to be anisotropic, with a numbsf emitted to the

1
_sP .
right ands; emitted to the left. The emergent currents of  J¥(x;,,)=(s"—38)Poi+ S —
uncollided source particles are 1-¢i(1=Po)
) (19
+ ) =X 41— X) _ _ ESiPoi
S: Xjt+1 1 e tilki+1 Ve (e _ la o
JJn,s(XHl):jf dXJ du M(—) Js ()= (i = 28)Poi 1-ci(1-Py) °
i Jx 0 M
:SiJr Pois IV. TOTAL REACTION RATES AND EMERGENT
(13 CURRENTS
~ rx 0 = (x=x))/u
3 ()= S J’X'dej du M(e“—') The total reaction rate id; due to incident currents and
' Ai Jx -1 H to internal sources is obtained by adding Ed4) and (18)
=Si Poi- a0 (A To) +5(1-Po) 0
The first collision rate of source particles withixy is " 1-ci(1-Py) ’
iven b . . : . .
g y where the first-flight, or uncollided, transmission probability
. _Si+ . fx”ld ,fxi*ld J'ld o Si X has been identified
E Ll P ) P m Toi=Ea(AiZy). (22)
s i1 v 0 o= Si(x—x)u Further identifying the total escape probability
O T A m
Ai ! X; X -1 H M p.—p 2 1-p n POi 29
. =Poi 2. [ci(1-Pgi)] “1-c(1-P.) (22)
=(s/ +5 )| 1— < [2-Ea(Z4A)]}=si(1-Pgy). the total reflection probability
AIE"[I
(14 L
. : : 3CiPoil 1-Ex(AiZy)] |
As before, treating the fractiooy of these particles that un- R= 1—c(1=P.) =5¢;Pi(1—-Ty) (23
dergo scattering collisions as an isotropic source of once- : ol
collided particles, the emergent currents of once-collidechnd the total transmission probability
source particles are given by
Ti=Toi+Ri=Toi+ 3¢ Pi(1-Ty). (24)
1 i . = Z(Xj+1=X) ) )
st(xiﬂ):f du fo +ldx%ci Airs (e e ) Equations(12) and (19) can be summed to obtain expres-
0 Xi A; K sions for the total emergent currents due to incident currents
and internal particle sources
= 3CiAi1sPoi= 2Cs8i (1= Pgi) Po; P
(19 J1=Tid +R I+ 3P+ (s —38)Poi
_ _(° Xie1 o Ajgg et (X=Xl (25)
Jusx0)= Ldﬂ “f A vl I =T +RIT + ISPt (s7 — 3P
= 3CiAi1sPoi = 3CiSi(1— Pyi) Po; - The inherent advantage of an ICB formulation of inte-

S ) ) gral transport theory is evident from Eq5). In order to
Continuing in this fashion, the general expression for thesp|ve for the currents across interfaceone needs only the

nth collision rate of source particles il is currents at interface+1 and the source in the intervening
. region. By contrast, in the standard integral transport formu-
Ains=C Si(1—Pg)" (16)  Ilation, the fluxes in all other regions in the problem and the

(t)pnsition probabilities from these regions to the region in
guestion are needed in order to solve for the flux in a given
region. In both formulations, an iterative solution is needed,
but each iteration should be much quicker with the ICB for-

and the general expressions for the emergent currents
n-collided source particles are

Jne(Xi 1) =Jng(X) = 35 Poicl (1~ Pgi)", AD  ietion.
The total collision rate of source particles withlj is It is informative to sum Eq925) to obtain an intuitively
obvious balance between incident and emergent currents and
* s(1—Pg) internal sources
A= 2 Ain,s:% (18) . _ P
A=1 i oi Uit I =(Ti+ R + i, 1) +siPy

and the total emergent currents due to an anisotropic particlg,

source withinA; are obtained by summing E(L7) and add-

ing Eqs-(lS) Jout:(Toi+(1_Toi)CiPi)‘]in+sipi . (26)
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V. BOUNDARY CONDITIONS energy dependence of the flux or current in a given region or
Boundary conditions take on a particularly simple form at a given interface by summing over _the contributions to

for an interface current formulation of integral transport. Letthat flux or current from the different regions of the problem.

x=0, i=0 represent the leftmost surface of the transporto‘ga'”' the ICB formulation has some inherent computational

medium. If a vacuum or nonscattering medium with no par-advantages because only the region in question and those

ticle source exists fox<0, thenJg =0 is the appropriate Next to it must be considered in the sum.

boundary condition. If, on the other hand, a source-free scat- We rewrite the first of Eqs(25) in a form that now

tering medium exists for<0, an albedo or reflection con- reflects the different energy dependence of currents incident

dition of the formJg = aJy, wherea is the reflection coef- from the left and right and the corresponding differences in

ficient or albedo, is appropriate. Finally, if a known currentCross sections and hence in the parameters of the model

of particlesI’;, is incident upon the medium from the left at

x=0, the appropriate boundary conditionJg =T}, .

VI]. RESPONSE MATRIX FORMULATION I 1 (B)=Tod ¢ (E)+57 x3(E)Pg+[3(1—Ty)

Solving the first of Eqs(25) for J;* and using the result X I P+ 1 -TH N el TPt
in the second equation leads to a matrix relation between the (E)
currents at adjacent surfaces Xi
! : N +38iCH(1—Pgy)] m (28)
S I G G 2 VI IS ' °
I LRTTH  (Ti-RTR) | Jiva
_-1 In this equation;" (E) is the energy distribution of;" (E),
+1s4 P 1—R-IT’1 x{(E) is the energy distribution of the soursgE) within
i A;, and x{(E) is the energy distribution taken on by either
I Y incident or source particles as a result of scattering collisions
P, i (s —3S) ] _ (27) within A;, all normalized to integrate over energy to unity.
(sT—3s)—RT; (s —3s) The overbar indicates the average over energy, i.e., the total

value, of the quantity. The superscriptaindi+1 on Ty,
Poi. andc; indicate that these quantities are to be evaluated
with cross sections averaged over the incident current spectra
#it (E) andyi, 1(E), respectively; the superscripindicates
that the corresponding quantity is to be evaluated with cross
VIl. ENERGY DEPENDENCE sections averaged ovgf(E); and the superscrigtindicates
that the corresponding quantity is to be evaluated with cross
sections averaged ovef(E).

Integral transport in general, and the ICB formulation in Integrating Eq.(28) over energy yields the equation for
particular, provides a natural methodology for calculating thethe total emergent current

Equation (27) has the form of the response matrix
formalismt? of neutron transport theory, which is well suited
for numerical evaluation by simply marching from one
boundary of the problem to the other.

A. Component summation method

- B(1=To)d eiPo+ (1= To HJjaci TPo; '+ 3sici(1- P5)

I =Todi +57PS+ 1-c(1-P°) (29
and dividing Eq.(28) through byJ;", ; yields the equation for the spectrum of the emergent current at
R = 1-T )3 cPL +41-THH NI et P 4 Ises(1— PS))
'+ E:TI I +E+S—+ ol SE+CE [Fad B | | I I I I | I.

lib|+l( ) oi \]i++l ¢| ( ) i Ji++l X|( ) X|( ) Jltrl[l_clc(l_Pgl)]

(30)
|
The second of Eqg25) can be similarly recast. particle distribution into equilibrium, then(E) can be

This component summation method should be able tg#eadily determined. We next consider a method that can be
provide an accurate energy dependence of the neutral particksed when local equilibration is not a good approximation.
currents, in principle. In practice, it is necessary to calculate
the energy distributiony(E), taken on by incident and B, Multigroup method
source particles as a result of scattering collisions withjin

. g - . If the energy interval &cE<« is subdivided intoG
If these scattering collisions are sufficient to bring the neutragubi 9y

ntervals, or groups, and the neutral particle reaction rates
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are integrated over each grogpwithin E;<E<E,_,, ef-
fective total cross section®, may be defined for each
group and effective group-to-group ‘“‘scattering” transfer Ty

cross sections?9 can be defined. The choice of group
structure is usually dictated by the physics, but may be made Ju F J
as detailed as required to obtain an adequate approximation
to the energy dependence.

A pair of Egs.(25) can be written for each group. The
approximate value of? is now defined in terms of the frac- FIG. 2. Two-dimensional geometry configuration.
tion of collisions which do not remove a neutral from group

g

ted across regionwithout collision, times the probabilitg;
9= 39939 (31) tha.lt' the first collision is a scatteri'ng event, times the prob-
ability P; that the scattered particles subsequently escape
The current balance equations for the different groupgrom regioni, times the probability\; . ; that escaping par-
are coupled through the scattering transfer of particles beticles escape across surfacel; and(3) the total particle
tween groups, which can be represented as a scatterirmpurces; in regioni times the probabilityP; that these par-

sourceS?;%, so that the total source to group may be ticles will escape from region, times the probabilityA 7, ;
written that escaping source particles escape across surfate
Note thatA;,; and A}, can differ because an anisotropic

source is allowed, i.eA;,;=1/2 andA},, is given by Eq.

F=F et > FI, (320 (33 for slab geometry.

9’49 Generalization to multidimension is straightforward in
whereS? . is the “true” source of new particles introduced principle. Consider the two-dimensionéD) configuration
into groupg by some “external” means. in Fig. 2. The current from regiok into regioni is denoted

Detailed definitions of the parameters in the multigroupJ,;, the probability that the current entering regibrirom
method will be presented in Sec. IX. regionk is transmitted across regianwithout collision to
contribute to the current from regidninto regionj is de-

VIIl. EXTENSION TO MULTIDIMENSION notedT§!, and the probability that a particle escaping from

. ) regioni escapes into regiopis denotedA;; . The generali-
The ICB formulation of integral transport theory can be ,4ii0n of Eqs(34) to 2D is then

extended to two and three dimensions. First, for conceptual

purposes, we make the identificatiahl =J", J; =3, i i i
I =34, Jh,=J", and ‘]ij:§k: Tg{JkiJFEk: 1_2 Tclgli)‘]kiCiPiAij"_AisjsiPi
AF18iPi=38iPi+ (] — 28) Poi, , @9
(33)  Where the summatiol is over all regionk that are con-
A’sPi=3s;Pi+ (s, —3Si)Poi, tiguous to region. The three terms in Eq35) correspond

physically to:(1) the sum of the currents incident into region
i from all contiguous regions times the probability that each
is transmitted across regidnwithout collision to exit into
regionj (note that the possibility of concave surfaces is al-
lowed by including uncollided transmission from regipn
out in i in across region back into regionj); (2) the sum of the cur-
i+1= Toidi (1= Toi) (74375 1)CiPiA 1 rents incident into region from all contiguous regions times
+AS, SP;, the probab_ility that each is not tre_msmitted v_vithout_ collision
across region to any of the contiguous regions, times the
out_ in in  =in s (34) probability that the first collision is a scattering event, times
IT= ol F (A= To) (I Ji ) GiPIA T+ ATS P, the probability that the scattered particle eventually escapes
where A;=A;,,=1/2 is the fraction of the escaping scat- from regioni into regionj; and(3) the source of patrticles in
tered incident particles which escape across surfacesd  regioni times the probability that a source particle in region
i+1, respectively. i eventually escapes into regipnEquation(35) is identical
In this form, the terms in Eqs(34) for the emergent to the equation previously derivegurely from these same
currents have a direct physical interpretation which leads imphysical considerations for a 2D model; the present deriva-
mediately to a generalization to multidimension. The out-tion now provides a more rigorous theoretical basis.
ward current across surface-1 consists of three termgl) Thus, extension of the ICB formulation of integral trans-
the inward current across surfacéimes the probabilityT ,; port theory to 2D[and three dimension&D)] is formally
that it is transmitted across regiowithout collision to sur-  straightforward. Practically, one must calculate the first flight
facei+1; (2) the inward currents across all surfaces timestransmission probabilitiess! and the first flight escape prob-
the probability (1-T;) that these currents are not transmit- abilities Py;. Calculation of the former is straightforward

where A} is the fraction of escaping source particles which
escapes to the left across surfacand Aj,; is the fraction
escaping to the right across surfacel. Then, using Eqs.
(200—(24), Egs.(25) may be rewritten
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analytically for regular geometrigand may readily be done impact ionization cross section; the definition can be ex-
by numerical integration for any geometry. Analytical ex-tended in an obvious way to include also ion-impact ioniza-
pressions folP; exist only for slabs, spheres, cylinders, andtion. The quantitiess,, and o, are the neutral-ion charge
other regular geometriésput a useful approximate form is exchange and elastic scattering cross sectionsggps the
given by neutral—neutral scattering cross section.

The scattering probability is

1
Poi= 1+4V,=,/S’ (36) Ci={Ni[{oc0 (e} ]+ Nn{oem}i /2y . (39
whereV; andS, are the aregvolume and bounding surface The source term is
perimeten(area of regioni in a 2D (3D) configuration. Since
. . . s . Xi 4+ © ®
Poi s the average first flight escape probability for a uniform i:j Lix Sexﬁff dE fi(Ei)f dE. f.(E,)
distribution of particle sources over regionit may readily X; 0 0

be calculated by Monte Carlo methods for irregular geom-

etries. Once the geometry is fixed, these first flight transmis-
sion and escape probabilities depend only on the total cross
section in region and hence may be precomputed as a func
tion of total cross section for later table lookup.

lee_vilo'rec(vi_ve) ) (40)

Wwhere g, is the recombination cross section agg is any
external sourcée.g., pellet fueling, molecular dissociatjon
Equation (40) is written for two-body recombination pro-
cesses. It can be extended to handle three-body processes by
appropriate modification of the energy integral term.
A. Component summation method If the charge exchange is highly anisotrofécg., plasma
éons flowing towards the divertor plate with near sonic aver-
age speed will produce neutrals directed predominantly to-
wards the divertor plaf this anisotropy can be incorpo-
Ne rated by treating charge exchange as a removal plus an
>=N; N (Tion o H{Te) | + Np{ T e, (37)  anisotropic source. The energy spegifassociated with the
! components of the source are the calculated energy spectrum
whereN;, N, andN, are the ion, electron, and atom den- of atoms ablating from a pellet, the Franck—Condon energy
sities and for atoms formed by molecular dissociation, and the local
ion energy distribution for atoms formed from ions by re-
(Tion) combination and charge exchange.
o o The energy spectré, (E) associated with the current of
_ JodEn fn(En)[odE fe(Ee)[ve—vnl Tion(ve—vn) neutral atoms reflected from a wall at one boundary of the
[JodEn fa(En)vn(En)][[odE. fe(Ee)] ’ transport problem would be taken from wall reflection data
(383 (e.g., as discussed in Ref).8he energy spectrung,(E)
associated with the current “reflectedfalbedo conditioh
(o) from the plasma at the other boundary of the neutral atom
transport problem would be taken as the energy spectrum of
JodE, fo(En) [odE; fi(E|vi—vplo(vi—v,) the plasma ions at that location.

[fi)chn fn(En)Un(En)][fngi fi(E)] ’
(38b B. Multigroup method

IX. SPECIALIZATION TO NEUTRAL ATOM
TRANSPORT IN THE PLASMA EDGE

The total cross section for neutral atoms in the plasm
edge can be written

For the multigroup energy treatment, the above results

(e are generalized by writing
_ JodEy, fr(En)fodE; fi(ED|vi—vn|oe(vi—vp) G
 [JodEn fa(Envn(En)ILSGdE; fi(E)] SI=Ne(aion) 9+ N; > {0699 +(oe)99'}
(380 o'=1
G G
(e + 2 NS (ol (41)

g"=1 g'=1
_ fz)chn fn(En)fE)chr; 1En(Er,1)|Urll_Un|(7'eln(vr,1_vn)

[JodE, fa(En)vn(En) ]S odE, fo(EN] '
Eg-1
(38d Ng= J dE, fo(Ep) (42)
wheref is a distribution functiony is the velocity,E is the Eg

energy and the, i, e subscripts refer to neutral atoms, ions, is the particle density of the neutral species with energy in
and electrons, respectively. The quantty, is the electron-  the groupE,<E,<E, ,, and

where
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[0 dE, fo(En)[§dEe fo(Ee)lve—vnloion(ve=vn)

(Tion 9= — ~ , (433
. [ng HE, fo(En)vn(En) ]S odEe fe(Ee)]
. TEE, W(EafEg T dE fi(ED|vi—valon(vi—vn)
(0699 = - = , (430)
UEZ dE, fo(En)vn(En LS odE; fi(Ei]
| T2, fo(E)[GAE, fi(EDlvi—valoe(vi—vn) [5G dE; Po(E: EnEp)
)99 = , (430
(el [/ *dEq fu(Enon(EnLIGAE; fi(E))]
. T dE, fo(EnfEg T, fo(EDlo—valown(vi—vn [E "dE] Pa(Ef En—Ep)
(Tamgr = - Ty , (43d)
[IEE dE, fn(En)Un(En)][ng" dEj; n(E )]
|
wherePg(E; ,E,—E)) is the probability that a neutral atom Xii1 L , ,
of energyE,, upon scattering from an ion of energy will s?sc—f dx D (U9 N[ N{(009 9+ (099}
have a final energ¥,, and Py (E; E,—E)) is similarly Xi 9'#9
defined for scattering from a neutral atom of eneEjy.
We define the average group speed + Z Ng <geln> , (49)
g’'=1
[0 dEy vn(En)fo(En)
(vn)9= (5 dE f(E (44 s the scattering source.
By men The multigroup version of Eq$25) then becomes

The definitions of Eqgs.(42—(44) are such that g 01401 B 950 1o 1.\
Nﬂ(vn>9Ni,e,n(aX>99’ preserves the correspondirgeaction IE=TPA I+ RIS+ 280PP+ (79— 25) PG,

rate—the numerator on the right side of EgE)—when the g I 950 g g (50
actual neutral and ion/electron/neutral distribution functions  Ji 0= TPdish TR 9+ 3s7PP+ (57 9—287) PG,
are used to evaluate Egel3). The exact distribution func-
tions are, of course, not known; however it should be pos- 9=1...G,
sible to make reasonable approximations to the distribution h h _ b q
functions for the purpose of evaluating Eg43) and (44). where the sources?, is given by Eqs(46)—(49) an
The scattering probability;?, for each group equation is
given by 9p ¥ grotp €9 RI=1c9PY(1—TY), (51)
_Nf(06)9+(00) 9%+ 25 _NT (0anfy Toi=BalAiZD), (52
1
i.e., the probability that the collision event results in a neutral Pgi=m [3—E3(AiE))], (53
particle in groupg. -
The appropriate source term for each group in each re- pg
gion is PI=— (54)
1-ci(1-PY)’
Sig:Sig,eX'[+ (B rec+ SI sc? (46)
where TI=T5+R? (55
N1 [Fe-t ith =g given by Eq.(41)
s¢ Ef de' dE, Sex(X,E 4 with 24 9 y EQ-{2L). , ,
b I, E n Sex(X.En) “n The response matrix formulation of Eq4&7) generalizes

is the external fuelingpellet, neutral beainsource : . .
sources with multigroup column vectors, i.e.,

S? o= f de dE fi(Ej) Ji+1
Xf dE; fe(Ee)|ve—viloredve—vi) (48 Ji+_)Ji+E Ji+g ' (56)
0 :
VA

is the recombination source, and i
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immediately to multigroup by replacing the currents and



slpl L
vx )= 2 (214 D0p]) (), 0<pu<l,

siPi—SR=| s’P} (57 (61)

L
2, @I DIOP (), ~1<p<0,

sePP

and replacing the transmission and reflection coefficients
with diagonal multigroup matrices, i.e., with the assurance that the expansion could exactly represent
-1 - any angular flux distribution in the limlt —oo. The approxi-
LN 0 mation used in the preceding derivation corresponds to ter-
0 Ti2 0 e minating the summation after the first terin€0). The cal-
. . culation can obviously be extended to handle higher degrees
T—T,= ’ i i (58 of anisotropy by retaining>0 terms, at the price of in-
: o T 0 creased complexity. In an essentially one-dimensighB)
o configuration, the only phenomenon which could produce
G I>0 components of the angular distribution is the injection
L0 T (reflection from the wa)lof neutral atoms with a distribution
The proper choice of group structure and within-groupwhich contained!>0 components. However, scattering
weighting function,f(E), for evaluating the “group con- would be expected to quickly isotropize the injected distri-
stants” of Eq.(43) must be guided by the physics. Energy bution. Thus, theL=0 approximation should be valid for
ranges over which important cross sections change rapidlgssentially 1D configurations, and certainly is valid for a 1D
(e.g., low eV range for ionization and recombinajishould = model which can only represent 1D configurations. The issue
be represented by several groups, while a large energy ranggecomes more complicated for multidimensional configura-
over which the important cross sections vary slowly cartions.
probably be represented by a single group. For sufficiently Isotropic elastic scattering and charge exchange in the
fine energy groups, a uniform weighting may suffice, whilelaboratory system have also been assumed in the preceding
choosingf(E) as a Maxwellian at the local background derivation by the assumption that 1/2 of the neutral particles
plasma temperature may be a better choice for broader emesulting from such an event are directed forwéte) and
ergy groups. Numerical experimentation is required to inves/2 directed backward-). If these events are highly aniso-
tigate the choice of group structure and weighting function.tropic, as would be the case at least for charge exchange with
ions flowing towards the plate with sonic average spéeds,
there are ways to incorporate scattering anisotropy into the
X. ANISOTROPY calculational model. The scattering or charge-exchange event
may be treated as a particle loss event coupled with an an-
A certain degree of isotropy has been assumed in th&otropic particle source event, or the assumption of 1/2 of
preceding development. The neutral particle flux has beethe particles going in each the forward and backward direc-
assumed to be isotropic in the forward) directional hemi-  tions may be removed. We will develop the latter option.
sphere and to be isotropic in the backgro@rd directional Let f,,_ be the fraction of neutral particles emerging
hemisphere; i.e., any direction in the forward hemisphere ifrom a charge-exchange or scattering event going in the
equally probable and any direction in the backward hemisame directior{+/—) as the incident particle. In the case of
sphere is equally probable, but the probability for a directiomeutral particles interacting with a near sonic plasma flow,
in the forward hemisphere is different than the probabilityf, andf_ will be different® The average scattering sources
for a direction in the backward hemisphere. These forwardf once-collided incident neutral particles per unit length
and backward probabilities are relatedJto andJ™~ within x;<x=<x;,,; emerging in the forward+) direction
and the backward—) direction are

2J7(x), 0O<u<1, 59
5 . Ci -
237 (x), 1<u<0, S|+1§A_I.{f+[‘]i+_‘]:n(xi+l)]+(1_f—)
wherep is the cosine of the angle with respect to the positive !
axis. _ | X377 1(6) = J5n(x) T}
Since the Legendre polynomial®,(x), constitute a
complete set on the interval1<u<1, the half-range Leg-

P(X, )=

C.
endre polynomiafs =A—I_ [ +(1-f)3 0 [1-Ex(AZy)], (62
I
P (1) =Pi(2p—1), .
o | _
i (60) Si=3 [(L=F)3 + 37 11— Ex(AZy)].
P (w)=P(2u+1), !
constitute complete sets on the intervalss@<1l and The emergent currents of once-collided neutral particles
—1=<u=<O0, respectively. Thus, we can expand resulting from incident currents are
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(e_zti(XHl_X)/#) Equationg67) generalize Eqg912) and reduce to them when

~ Xj+1 1 ~
‘J1+(Xi+1)5f dxfo du(Sh) e f,,_=1/2, which allows the summation to be performed
i analytically.
=c[f4 37 +(1—f )i 11Pol1—Ex(S4A)], When the deviation from isotropic scattering is small

63  (If1,——3<1), only linear terms in|f.,_—3|) need be
- N B retained in the above analysis and the summations can be
Ji (X)) =c[(1=F1) 37 +F 37 1 IPoil 1-Ex(Z4A))]. performed analytically to obtain

Equations(63) generalize Eqgs(5), to which they reduce

whenf,, =1/2, F(Xi+1)=[3G[1-Ex(A =) IP{1+2g.

The average scattering sources of twice-collided incident —Ci[1-Poi(g4s +g) I +Ex(AZ)13;
neutral particles per unit length withig,<x<x;,, in the
forward (+) and the backward—) directions are +{3¢[1-Ex(A=)]1Pi{1—2g_
Sh=f, Si EtifldeXi+ldX/in+ldX 5.x) +Ci[1-Poi(9++9)1H i1,
A o Jx X’ A (69)
- =lic.[1— S :
e_zti(x_xl)/:“ G 0 Xii1 J (Xi)_[ZCI[l EZ(AIEtI)]PI{l—i_Zg*
A=) § Enjldﬂjxi dx —C[1-Pei(g+ +9 )+ Ea(Ai )19,
fxr . e Zt(x—x")/p +{%Ci[1_EZ(AiEti)]Pi{1_29+
X | dx §(xX")| ————
oo Iz +ei[1-Poi(g+ +g) I
[ 1 ++ 2 (1—=T_)]ci(1—Pyy), (64  where
Xi+ N _=f,,_—1/2. 69
—1 f+) f duf " f Ly S (x) g+/-=fy (69
Equations(68) reduce to Egs(12) wheng,,_=0.
o S0 X)) u ' 0 « Generalization of the results related to internal particle
% +f = an d'“f Hldx’ sources follows the same general procedure. The emergent
1] A - i currents ofn-collided source particles are given by
o - e—Eﬁ(x—x’)/,u) J+ _S+ P
X dx X' (— , in,s™ 0is
in 5169 M (70)

j_ Si; spoi , n=1,
=[S5(1- 1) +S:f_1c(1-Py). : : :
) ) o where the scattering sources per unit lengthnedollided
In general, the scattering sourcergh-collided incident neu-  internal source particles in the forware-) and backward
tral particles per unit length withix;<x<X;,, in the for- (_) direction are calculated recursively
ward (+) and backward—) directions are

ASIF:[§;71f++§;71(1_f7)]ci(1_poi), |ns [3n 1s ++$n 15(1 f_)1ci(1—Py),

¢ e (65 S =[50 1T+ o f Toi(1—Poy, ol
Sp=[Sn1(1-F)+S; 4fJe(1-Py), n=2. Sns=1Sn-1s(17 1)+ S TG (A7 Poi), - 1=
The emergent currents afcollided incident neutral par- from the scattering sources per unit length for once-collided

ticles are source particles
Etl(X|+1 X) + -
ot SI SI
J (XI+1) dX d,l,L Iu M Il,S: A_I f++ A_I (1_f,) Ci(l_POi)l
72
=S.ﬁAiPoi, (66) s s 72
Sis=|| | (A=f )+ | —|f_[ci(1—Pg).
' A A

Jn(X)=SpA{Py, n=2.

Equations(66) generalize Eq(10) and reduce to it when Equations(68)—(70) generalize Eqs(15) and (17) and re-
fo,_=1/2. duce to them wheri_,_=1/2. The total emergent currents

The total emergent currents due to incident currents ardU€ 0 internal sources are

j+(xi+1)=2 er-FEZ(AiE“)Jr, (X|+1) Si P0|+z ‘]ns.
n=1
. (67) . (73
I700= 2 Iy FE(AZ)I 35 04) =8 Poit 2, Jns.
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Equationg73) generalize Eqg19) and reduce to them when NEUTRAL ATOM DISTRIBUTION

f,,_=1/2, which allows the summation to be performed 1E+20
analytically.
When the deviation from isotropic scattering is small Eerol
(lg+|<1), only linear terms irg-. need be retained, and the
summations can be performed analytically to obtain g Eats =~
35 (Xiv1) ={8 = 38[1+(9. =9 ) ]}Po, g S
E 1E+17
[1+(9+—9-)]si =
+1ip . +c(1— )
ZPOI 1_Ci(1_Poi) Cl(l I:)OI) {E+16 _
X|gy(s—3s)— s‘—ls-
9+(S 251) —9-| S 2 ! B 10 15 20 55 % 95 40 45

(74) DISTANCE FROM RECYCLING PLATE (cm)
Js (xp)={s{ —3Si[1+(9-— g+ )]} Poi
[1+(g-—g)]s

1p
+2P°'{ T (1 Py)
U DA
g-1S 25| g+(si —38)

FIG. 3. One-dimensional model problem.

+¢i(1-Py)
the mean free paths for the various atomic processes vary by
a factor of 5 or more over the model problem dimensions,
X ] this is coincidental.
The numerics of the code used to solve EE$) to give
Equations(74) reduce to Eqs(19) wheng,,_=0. the results shown in Fig. 3 have been checked by repeating
The formalism of Secs. IV and V can be reconstitutedthe calculation with the transmission/escape probability code

with anisotropic scattering by defining directional-dependenGTNEUT; the results are indistinguishable from those shown

reflection coefficients and modifying the source terms. in Fig. 3. SinceGTNEUT solves essentially the same equa-

The anisotropic scattering functions are defined, withtions, this provides a check on the coding. However, since
reference to Fig. 1, as GTNEUT has been successfully benchmarkadainstbEGAS
1 . , Monte Carlo calculations, this comparison also provides an
f= flod,ufo?,u P(u'—u) indirect benchmark of the methodology presented in this pa-
Jodufodu P(p' —p)’ per.

0 0 (75) We plan to undertake an extensive comparison of the
[T dpf T du ' P(p' — ) interface current balance method with other methods of neu-

T dpS 0 du P — ) tral particle transport, which will be published at a future

date.

where P(u'— u) is the probability that a neutral particle
entering a scattering event with direction cosideresults in
a neutral particle emerging from the scattering event with<Il- SUMMARY

directional cosineu. For scattering from ions or other neutral A new interface current baland¢CB) formulation of
particles with an isotropic velocity distributiorf,, =f_.  neutral particle transport theory has been developed. The
However, for scattering from ions streaming towards the dipartial current exiting a region across a surface is formulated
vertor plate at near sonic speeds,#f_, as discussed in in terms of(1) the currents entering the region across other
Ref. 8. surfaces times a transmission probability; plBsthe current
entering the region across the surface in question times a
reflection probability; plug3) the internal source of particles
X|. MODEL PROBLEM CALCULATION within the region times an escape probability. Integral trans-
port theory is employed to calculate the transmission, reflec-
We solved Eqs(25) for the physical situation of deute- tion, and escape probabilities exactly in slab geometry. The
rium plasma ions incident upon a plate and reflected as neunethod is shown to be similar to the response matrice
tral atoms. The reflected neutral flux at the plate wasmethod in neutron transport theory, but extends the latter by
1.55<10°¥m?s. The fixed plasma density and temperatureproviding analytical results for the transmission, reflection,
varied linearly from(n=5x10'¥m3 T=10eV) justin front  and escape probabilities. When extended to multidimension,
of the plate to(n=1x10'%m?> T=100 e} at a distance of the interface current balance formulation is shown to be
50 cm away. The dominant atomic processes in this plasmiglentical to the transmission/escape probability methafd
regime are electron-impact ionization, charge exchange angeutral atom transport theory, thus providing a more rigorous
elastic scattering. We assume that the neutral atoms acquitkeeoretical formulation for the latter.
the same local average energy as the plasma ions via scatter- The ICB formulation of general neutral particle transport
ing and charge exchange and use the Maxwellian-averageabeory is specialized to the transport of neutral atoms in a
data from Ref. 8. The resulting neutral atom distributionbackground plasma. The reflection, transmission, and escape
shown in Fig. 3 appears to be nearly exponential but, sincerobabilities are specified in terms of suitably averaged ion-
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