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An interface current balance~ICB! method for neutral particle transport is presented and specialized
to the calculation of neutral atom transport in background plasmas. A multigroup extension of the
ICB methodology is presented which enables the direct calculation of neutral atom energy
distributions and energy and momentum transport, as well as particle transport. Extension of the
ICB methodology to multidimensions recovers the transmission/escape probability method.
© 1997 American Institute of Physics.@S1070-664X~97!02601-3#
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I. INTRODUCTION

Integral transport methods are widely used for neut
transport calculations within heterogeneous reactor co
~e.g., Refs. 1–3! and more recently have been adopted
the calculation of neutral atom transport in the edge regi
of fusion plasmas~e.g., Ref. 4!, where they have found wide
spread usage. One of the attractions of integral trans
methods is the physically intuitive nature of the vario
terms in the computational algorithm. The major drawba
to integral transport methods is that all regions in the d
cretized problem are coupled, resulting in aN3N matrix to
invert on each iteration, whereN is the number of discretized
regions. Although various approximations have been de
oped to circumvent this difficulty, the inherent coupling
all regions in an iterative solution procedure remains the m
jor drawback of integral transport methods.

The purpose of this paper is to set forth an interfa
current balance~ICB! formulation of integral transpor
theory which results in coupling only among contiguous
gions in the discretized problem. This ICB formulation pr
vides a more efficient computational algorithm for neut
atom transport calculations in the plasma edge region t
the integral transport models presently in plasma edge co
and is readily generalized to multidimension, where this
vantage is retained. This ICB formulation is related to t
response matrix method1–2 of neutron transport theory an
leads to and provides a theoretical basis for the transmiss
escape probability method5 for neutral atom transport in th
edge regions of fusion plasmas.

The ICB formulation is developed in Secs. II–V in sla
geometry by using integral transport theory to express
emergent currents from a discrete region and the reac
rates within that region in terms of the incident currents in
that region and the source of particles within that region. T
relation to the response matrix method is established in S
VI, and the ICB method is extended to treat energy dep
dence in Sec. VII. The ICB method is extended to two
mensions in Sec. VIII, and equivalence with th
transmission/escape probability method is established. S
cialization of the ICB formalism to neutral particle transpo
in the edge of fusion plasmas is discussed in Sec. IX, wh

a!Electronic mail: weston.stacey@me.gatech.edu
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a multigroup formulation is developed. Extensions of t
methodology to handle higher levels of anisotropy in t
neutral particle distribution and anisotropic scattering
discussed in Sec. X. The results of a model problem com
tation are described in Sec. XI. Finally, the work is summ
rized in Sec. XII.

II. EMERGENT CURRENTS AND REACTION RATES
DUE TO INCIDENT CURRENTS

Consider the slab geometry configuration depicted
Fig. 1, in which a slab regioni is bounded by surfacesi and
i11 with incident currentsJi

1 andJi11
2 and emergent cur-

rentsJi
2 andJi11

1 . The angular flux of particles atx arising
from a plane source of unit strength atx8,x is6

c~x,x8,m!5
e2( t~x2x8!/m

m
, ~1!

where it is assumed that the total cross section,( t , is uni-
form over D i , and m is the cosine of the angle that th
particle direction makes with thex axis. Further assuming
that the incident currents are isotropically distributed
angle over the incident hemisphere~i.e., a doubleP0
approximation7!, the uncollided currents emergent from th
opposite surface are given by

Ĵun
1 ~xi11!5Ji

1E
0

1

mS e2( t iD i /m

m Ddm5E2~D i( t i !Ji
1 ,

~2!

Ĵun
2 ~xi !5Ji11

2 E
21

0

mS e1( tD i /m

m Ddm5E2~D i( t i !Ji11
2 ,

whereEn is the exponential integral function

En~z![E
0

1

mn22e2z/m dm. ~3!

The first collision rate for incident particles withinD i is
given by
1791/$10.00 © 1997 American Institute of Physics
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Âi15( t iFJi1E
0

1

dmE
xi

xi11
dxS e2( t i ~x2xi !/m

m D
1Ji11

2 E
21

0

dmE
xi

xi11
dxS e2( t i ~x2xi11!/m

m D G
5~Ji

11Ji11
2 !@12E2~D i( t i !#. ~4!

The fractionci of the collision rate which is due to scatterin
~i.e., to events which do not remove the particle! constitutes
a source of once-collided particles, which we assume to
isotropic ~1/2 emerge going to the right and 1/2 to the le!
and uniformly distributed overD i . The emergent currents o
once-collided particles are then

Ĵ1
1~xi11!5E

xi

xi11
dxE

0

1

mS 12 ci
Âi1

D i
D S e2( t i ~xi112x!/m

m D dm

5
1

2

ciÂi1

D i( t i
@ 1
22E3~D i( t i !#5 1

2ciPoiÂi1,

~5!

Ĵ1
2~xi !5 1

2ciPoiÂi15
1
2ciPoi~Ji

11Ji11
2 !@12E2~D i( t i !#,

where the average first-flight escape probability for sou
particles distributed uniformly overD i has been defined

Poi[

1
2

D i
E
xi

xi11
dxE

0

1

dm mS e2( t i ~xi112x!/m

m D
1

1
2

D i
E
xi

xi11
dxE

21

0

dm mS e( t i ~x2xi !/m

m D
5

1

D i( t i
@ 1
22E3~D i( t i !#. ~6!

Note that we are distinguishing between the total par
currents atxi , denoted byJi

1/2, and the various componen

of that current, denoted byĴz
1/2(xi), wherez is a descriptive

subscript pertaining to the particular component.
The collision rate for incident particles undergoing a s

ond collision inD i is

FIG. 1. Slab geometry configuration.
180 Phys. Plasmas, Vol. 4, No. 1, January 1997

Downloaded¬27¬May¬2010¬to¬130.207.50.154.¬Redistribution¬subject¬
e

e

l

-

Âi25( t i
1
2ci

Âi1

D i
F E

0

1

dmE
xi

xi11
dx8E

x8

xi11
dxS e2( t i ~x2x8!/m

m D
1E

21

0

dmE
xi

xi11
dx8E

xi

x8
dxS e2( t i ~x2x8!/m

m D G
5ciÂi1~12Poi!5ci~Ji

11Ji11
2 !

3@12E2~D i( t i !#~12Poi!. ~7!

As before, the fractionci of this collision rate constitutes a
source of twice-collided particles which are assumed to
isotropic. The emergent currents of twice-collided partic
are given by Eqs.~5! but with Âi1 replaced byÂi2

Ĵ2
1~xi11!5 Ĵ2

2~xi !5 1
2ciÂ12Poi

5 1
2ci

2~Ji
11Ji11

2 !@12E2~D i( t i !#

3~12Poi!Poi . ~8!

Continuing this line of argument, we derive general e
pressions for the rate at which incident particles unde
their nth collision inD i

Âin5ci
n21~Ji

11Ji11
2 !@12E2~D i( t i !#~12Poi!

n21 ~9!

and for the emergent currents ofn-collided incident particles

Ĵn
1~xi11!5 Ĵn

2~xi !5 1
2ci

n~Ji
11Ji11

2 !@12E2~D i( t i !#

3~12Poi!
n21Poi . ~10!

The total collision rate inD i due to incident currents is ob
tained by summing Eq.~9!

Âi5 (
n51

`

Ain5~Ji
11Ji11

2 !@12E2~D i( t i !# (
n50

`

@ci~12Poi!#
n

~11!

5
~Ji

11Ji11
2 !@12E2~D i( t i !#

12ci~12P0i !

and the total emergent currents due to incident currents
obtained by summing Eq.~10! and adding the uncollided
contributions of Eqs.~2!

Ĵ1~xi11!5F 1
2ciPoi@12E2~D i( t i !#

12ci~12Poi!
1E2~D i( t i !GJi1

1F 1
2ciPoi@12E2~D i( t i !#

12ci~12Poi!
GJi11

2 ,

~12!

Ĵ2~xi !5F 1
2ciPoi@12E2~D i( t i !#

12ci~12Poi!
1E2~D i( t i !GJi11

2

1F 1
2ciPoi@12E2~D i( t i !#

12ci~12Poi!
GJi1 .

III. EMERGENT CURRENTS AND REACTION RATES
DUE TO INTERNAL SOURCES

We consider a uniform distribution of particle sourc
within D i of strengthsi /D i per unit length. This source is
W. M. Stacey
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allowed to be anisotropic, with a numbersi
1 emitted to the

right andsi
2 emitted to the left. The emergent currents

uncollided source particles are

Jun,s
1 ~xi11!5

si
1

D i
E
xi

xi11
dxE

0

1

dm mS e2( t i ~xi112x!/m

m D
5si

1Poi ,
~13!

Jun,s
2 ~xi !5

si
2

D i
E
xi

xi11
dxE

21

0

dm mS e2( t i ~x2xi !/m

m D
5si

2Poi .

The first collision rate of source particles withinD i is
given by

Ai1,s5
si

1

D
( t iE

xi

xi11
dx8E

x8

xi11
dxE

0

1

dmS e2( t i ~x2x8!/m

m
D

1
si

2

D i
( t iE

xi

xi11
dx8E

xi

x8
dxE

21

0

dmS e2( t i ~x2x8!/m

m
D

5~si
11si

2!H 12
1

D i( t i
@ 1
22E3~( t iD i !#J [si~12Poi!.

~14!

As before, treating the fractionci of these particles that un
dergo scattering collisions as an isotropic source of on
collided particles, the emergent currents of once-collid
source particles are given by

J1s
1 ~xi11!5E

0

1

dm mE
xi

xi11
dx12ci

Ai1,s

D i
S e2( t i ~xi112x!/m

m D
5 1

2ciAi1,sPoi5
1
2cssi~12Poi!Poi ,

~15!

J1s
2 ~xi !5E

21

0

dm mE
xi

xi11
dx12ci

Ai1,s

D i
S e( t i ~x2xi !/m

m D
5 1

2ciAi1,sPoi5
1
2cisi~12Poi!Poi .

Continuing in this fashion, the general expression for
nth collision rate of source particles inD i is

Ain,s5ci
n21si~12Poi!

n ~16!

and the general expressions for the emergent current
n-collided source particles are

Jns
1 ~xi11!5Jns

2 ~xi !5 1
2siPoici

n~12Poi!
n. ~17!

The total collision rate of source particles withinD i is

Ai ,s5 (
n51

`

Ain,s5
si~12Poi!

12ci~12Poi!
~18!

and the total emergent currents due to an anisotropic par
source withinD i are obtained by summing Eq.~17! and add-
ing Eqs.~13!
Phys. Plasmas, Vol. 4, No. 1, January 1997
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Js
1~xi11!5~si

12 1
2si !Poi1

1
2siPoi

12ci~12Poi!
,

~19!

Js
2~xi !5~si

22 1
2si !Poi1

1
2siPoi

12ci~12Poi!
.

IV. TOTAL REACTION RATES AND EMERGENT
CURRENTS

The total reaction rate inD i due to incident currents an
to internal sources is obtained by adding Eqs.~11! and ~18!

Ai5
~Ji

11Ji11
2 !~12Toi!1si~12Poi!

12ci~12Poi!
, ~20!

where the first-flight, or uncollided, transmission probabil
has been identified

Toi[E2~D i( t i !. ~21!

Further identifying the total escape probability

Pi[Poi(
n50

`

@ci~12Poi!#
n5

Poi

12ci~12Poi!
~22!

the total reflection probability

Ri[

1
2ciPoi@12E2~D i( t i !#

12ci~12Poi!
5 1

2ciPi~12Toi! ~23!

and the total transmission probability

Ti5Toi1Ri5Toi1
1
2ciPi~12Toi!. ~24!

Equations~12! and ~19! can be summed to obtain expre
sions for the total emergent currents due to incident curre
and internal particle sources

Ji11
1 5TiJi

11RiJi11
2 1 1

2siPi1~si
12 1

2si !Poi ,
~25!

Ji
25TiJi11

2 1RiJi
11 1

2siPi1~si
22 1

2si !Poi .

The inherent advantage of an ICB formulation of int
gral transport theory is evident from Eqs.~25!. In order to
solve for the currents across interfacei , one needs only the
currents at interfacei11 and the source in the intervenin
region. By contrast, in the standard integral transport form
lation, the fluxes in all other regions in the problem and t
transition probabilities from these regions to the region
question are needed in order to solve for the flux in a giv
region. In both formulations, an iterative solution is need
but each iteration should be much quicker with the ICB fo
mulation.

It is informative to sum Eqs.~25! to obtain an intuitively
obvious balance between incident and emergent currents
internal sources

~Ji11
1 1Ji

2!5~Ti1Ri !~Ji
11Ji11

2 !1siPi

or

Jout5~Toi1~12Toi!ciPi !Jin1siPi . ~26!
181W. M. Stacey
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V. BOUNDARY CONDITIONS

Boundary conditions take on a particularly simple for
for an interface current formulation of integral transport. L
x50, i50 represent the leftmost surface of the transp
medium. If a vacuum or nonscattering medium with no p
ticle source exists forx,0, thenJ0

150 is the appropriate
boundary condition. If, on the other hand, a source-free s
tering medium exists forx,0, an albedo or reflection con
dition of the formJ0

15aJ0
2, wherea is the reflection coef-

ficient or albedo, is appropriate. Finally, if a known curre
of particlesGin is incident upon the medium from the left a
x50, the appropriate boundary condition isJ0

15Gin .

VI. RESPONSE MATRIX FORMULATION

Solving the first of Eqs.~25! for Ji
1 and using the resul

in the second equation leads to a matrix relation between
currents at adjacent surfaces

F Ji1Ji2G5F ~Ti
21! ~2Ti

21Ri !

~RiTi
21! ~Ti2RiTi

21Ri !
GF Ji11

1

Ji11
2 G

1 1
2siH PiF 2Ti

21

12RiTi
21G

1PoiF 2Ti
21~si

12 1
2si !

~si
22 1

2si !2RiTi
21~si

12 1
2si !

G J . ~27!

Equation ~27! has the form of the response matr
formalism1,2 of neutron transport theory, which is well suite
for numerical evaluation by simply marching from on
boundary of the problem to the other.

VII. ENERGY DEPENDENCE

A. Component summation method

Integral transport in general, and the ICB formulation
particular, provides a natural methodology for calculating
t
rti
at

tra

182 Phys. Plasmas, Vol. 4, No. 1, January 1997
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energy dependence of the flux or current in a given region
at a given interface by summing over the contributions
that flux or current from the different regions of the proble
Again, the ICB formulation has some inherent computatio
advantages because only the region in question and t
next to it must be considered in the sum.

We rewrite the first of Eqs.~25! in a form that now
reflects the different energy dependence of currents incid
from the left and right and the corresponding differences
cross sections and hence in the parameters of the mode

J̄i11
1 c i11

1 ~E!5Toi
i J̄i

1c i
1~E!1 s̄i

1x i
s~E!Poi

s 1@ 1
2~12Toi

i !

3 J̄i
1ci

iPoi
i 1 1

2~12Toi
i11!J̄i11

2 ci
i11Poi

i11

1 1
2s̄ici

c~12Poi
c !#

x i
c~E!

12ci
c~12Poi

c !
. ~28!

In this equation,c i
1(E) is the energy distribution ofJi

1(E),
x i
s(E) is the energy distribution of the sourcesi(E) within

D i , andx i
c(E) is the energy distribution taken on by eith

incident or source particles as a result of scattering collisi
within D i , all normalized to integrate over energy to unit
The overbar indicates the average over energy, i.e., the
value, of the quantity. The superscriptsi and i11 on T0i ,
P0i , andci indicate that these quantities are to be evalua
with cross sections averaged over the incident current spe
c i

1(E) andc i11
1 (E), respectively; the superscripts indicates

that the corresponding quantity is to be evaluated with cr
sections averaged overx i

s(E); and the superscriptc indicates
that the corresponding quantity is to be evaluated with cr
sections averaged overx i

c(E).
Integrating Eq.~28! over energy yields the equation fo

the total emergent current
J̄i11
1 5Toi

i J̄i
11 s̄i

1Poi
s 1F 1

2~12Toi
i !J̄i

1ci
iPoi

i 1 1
2~12Toi

i11!J̄i11
2 ci

i11Poi
i111 1

2s̄ici
c~12Poi

c !

12ci
c~12Poi

c !
G ~29!

and dividing Eq.~28! through byJ̄i11
1 yields the equation for the spectrum of the emergent current ati11

c i11
1 ~E!5Toi

i
J̄i

1

J̄i11
1 c i

1~E!1 s̄i
1

Poi
s

J̄i11
1 x i

s~E!1x i
c~E!F 1

2~12Toi
i !J̄i

1ci
iPoi

i 1 1
2~12Toi

i11!J̄i11
2 ci

i11Poi
i111 1

2s̄ici
c~12Poi

c !

J̄i11
1 @12ci

c~12Poi
c !#

G .
~30!
be
n.

ates
The second of Eqs.~25! can be similarly recast.
This component summation method should be able

provide an accurate energy dependence of the neutral pa
currents, in principle. In practice, it is necessary to calcul
the energy distribution,x i

c(E), taken on by incident and
source particles as a result of scattering collisions withinD i .
If these scattering collisions are sufficient to bring the neu
o
cle
e

l

particle distribution into equilibrium, thenx i
c(E) can be

readily determined. We next consider a method that can
used when local equilibration is not a good approximatio

B. Multigroup method

If the energy interval 0<E<` is subdivided intoG
subintervals, or groups, and the neutral particle reaction r
W. M. Stacey
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are integrated over each groupg within Eg<E<Eg21, ef-
fective total cross sections( tot

g may be defined for each
group and effective group-to-group ‘‘scattering’’ transf

cross sections(sc
gg8 can be defined. The choice of grou

structure is usually dictated by the physics, but may be m
as detailed as required to obtain an adequate approxima
to the energy dependence.

A pair of Eqs.~25! can be written for each group. Th
approximate value ofci

g is now defined in terms of the frac
tion of collisions which do not remove a neutral from gro
g

ci
g5(c

gg/( tot
g . ~31!

The current balance equations for the different grou
are coupled through the scattering transfer of particles
tween groups, which can be represented as a scatte

sourceSi ,sc
g8g , so that the total source to groupg may be

written

Si
g5Si ,true

g 1 (
g8Þg

Si ,sc
g8g , ~32!

whereSi ,true
g is the ‘‘true’’ source of new particles introduce

into groupg by some ‘‘external’’ means.
Detailed definitions of the parameters in the multigro

method will be presented in Sec. IX.

VIII. EXTENSION TO MULTIDIMENSION

The ICB formulation of integral transport theory can
extended to two and three dimensions. First, for concep
purposes, we make the identificationJi

15Ji
in , Ji

25Ji
out,

Ji11
1 5Ji11

out , Ji11
2 5Ji11

in and

L i11
s siPi[

1
2siPi1~si

12 1
2si !Poi ,

~33!
L i
ssiPi[

1
2siPi1~si

22 1
2si !Poi ,

whereL i
s is the fraction of escaping source particles whi

escapes to the left across surfacei andL i11
s is the fraction

escaping to the right across surfacei11. Then, using Eqs
~20!–~24!, Eqs.~25! may be rewritten

Ji11
out 5ToiJi

in1~12Toi!~Ji
in1Ji11

in !ciPiL i11

1L i11
s siPi ,

~34!
Ji
out5ToiJi11

in 1~12Toi!~Ji
in1Ji11

in !ciPiL i1L i
ssiPi ,

whereL i5L i1151/2 is the fraction of the escaping sca
tered incident particles which escape across surfacesi and
i11, respectively.

In this form, the terms in Eqs.~34! for the emergent
currents have a direct physical interpretation which leads
mediately to a generalization to multidimension. The o
ward current across surfacei11 consists of three terms:~1!
the inward current across surfacei times the probabilityToi
that it is transmitted across regioni without collision to sur-
face i11; ~2! the inward currents across all surfaces tim
the probability (12Toi) that these currents are not transm
Phys. Plasmas, Vol. 4, No. 1, January 1997
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ted across regioni without collision, times the probabilityci
that the first collision is a scattering event, times the pro
ability Pi that the scattered particles subsequently esc
from regioni , times the probabilityL i11 that escaping par-
ticles escape across surfacei11; and ~3! the total particle
sourcesi in region i times the probabilityPi that these par-
ticles will escape from regioni , times the probabilityL i11

s

that escaping source particles escape across surfacei11.
Note thatL i11 andL i11

s can differ because an anisotrop
source is allowed, i.e.,L i1151/2 andL i11

s is given by Eq.
~33! for slab geometry.

Generalization to multidimension is straightforward
principle. Consider the two-dimensional~2D! configuration
in Fig. 2. The current from regionk into regioni is denoted
Jki , the probability that the current entering regioni from
region k is transmitted across regioni without collision to
contribute to the current from regioni into region j is de-
notedT0i

k j, and the probability that a particle escaping fro
region i escapes into regionj is denotedL i j . The generali-
zation of Eqs.~34! to 2D is then

Ji j5(
k

i

Toi
k jJki1(

k

i S 12(
l

i

Toi
kl D JkiciPiL i j1L i j

s siPi ,

~35!

where the summation(k
i is over all regionsk that are con-

tiguous to regioni . The three terms in Eq.~35! correspond
physically to:~1! the sum of the currents incident into regio
i from all contiguous regions times the probability that ea
is transmitted across regioni without collision to exit into
region j ~note that the possibility of concave surfaces is
lowed by including uncollided transmission from regionj
across regioni back into regionj !; ~2! the sum of the cur-
rents incident into regioni from all contiguous regions time
the probability that each is not transmitted without collisi
across regioni to any of the contiguous regions, times th
probability that the first collision is a scattering event, tim
the probability that the scattered particle eventually esca
from regioni into region j ; and~3! the source of particles in
region i times the probability that a source particle in regi
i eventually escapes into regionj . Equation~35! is identical
to the equation previously derived5 purely from these same
physical considerations for a 2D model; the present der
tion now provides a more rigorous theoretical basis.

Thus, extension of the ICB formulation of integral tran
port theory to 2D@and three dimensions~3D!# is formally
straightforward. Practically, one must calculate the first flig
transmission probabilitiesT0i

k j and the first flight escape prob
abilities P0i . Calculation of the former is straightforwar

FIG. 2. Two-dimensional geometry configuration.
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analytically for regular geometries5 and may readily be done
by numerical integration for any geometry. Analytical e
pressions forP0i exist only for slabs, spheres, cylinders, a
other regular geometries,6 but a useful approximate form i
given by5

Poi.
1

114Vi( t i /Si
, ~36!

whereVi andSi are the area~volume! and bounding surface
perimeter~area! of regioni in a 2D~3D! configuration. Since
P0i is the average first flight escape probability for a unifo
distribution of particle sources over regioni , it may readily
be calculated by Monte Carlo methods for irregular geo
etries. Once the geometry is fixed, these first flight transm
sion and escape probabilities depend only on the total c
section in regioni and hence may be precomputed as a fu
tion of total cross section for later table lookup.

IX. SPECIALIZATION TO NEUTRAL ATOM
TRANSPORT IN THE PLASMA EDGE

A. Component summation method

The total cross section for neutral atoms in the plas
edge can be written

( t5NiFNeNi
^s ion&1^scx&1^sel&G1Nn^seln&, ~37!

whereNi , Ne , andNn are the ion, electron, and atom de
sities and

^s ion&

[
*0

`dEn f n~En!*0
`dEe f e~Ee!uve2vnus ion~ve2vn!

@*0
`dEn f n~En!vn~En!#@*0

`dEe f e~Ee!#
,

~38a!

^scx&

[
*0

`dEn f n~En!*0
`dEi f i~Ei !uv i2vnuscx~v i2vn!

@*0
`dEn f n~En!vn~En!#@*0

`dEi f i~Ei !#
,

~38b!

^sel&

[
*0

`dEn f n~En!*0
`dEi f i~Ei !uv i2vnusel~v i2vn!

@*0
`dEn f n~En!vn~En!#@*0

`dEi f i~Ei !#
,

~38c!

^seln&

[
*0

`dEn f n~En!*0
`dEn8 f n~En8!uvn82vnuseln~vn82vn!

@*0
`dEn f n~En!vn~En!#@*0

`dEn8 f n~En8!#
,

~38d!

where f is a distribution function,v is the velocity,E is the
energy and then, i , e subscripts refer to neutral atoms, ion
and electrons, respectively. The quantitysion is the electron-
184 Phys. Plasmas, Vol. 4, No. 1, January 1997
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a

impact ionization cross section; the definition can be
tended in an obvious way to include also ion-impact ioniz
tion. The quantitiesscx and sel are the neutral-ion charg
exchange and elastic scattering cross sections, andseln is the
neutral–neutral scattering cross section.

The scattering probability is

ci[$Ni@^scx&1^sel&#1Nn^seln&% i /( t i . ~39!

The source term is

si5E
xi

xi11
dxFsext1E

0

`

dEi f i~Ei !E
0

`

dEe f e~Ee!

3uve2v i us rec~v i2ve!G , ~40!

wheresrec is the recombination cross section andsex is any
external source~e.g., pellet fueling, molecular dissociation!.
Equation ~40! is written for two-body recombination pro
cesses. It can be extended to handle three-body process
appropriate modification of the energy integral term.

If the charge exchange is highly anisotropic~e.g., plasma
ions flowing towards the divertor plate with near sonic av
age speed will produce neutrals directed predominantly
wards the divertor plate8!, this anisotropy can be incorpo
rated by treating charge exchange as a removal plus
anisotropic source. The energy spectraxs associated with the
components of the source are the calculated energy spec
of atoms ablating from a pellet, the Franck–Condon ene
for atoms formed by molecular dissociation, and the lo
ion energy distribution for atoms formed from ions by r
combination and charge exchange.

The energy spectracw(E) associated with the current o
neutral atoms reflected from a wall at one boundary of
transport problem would be taken from wall reflection da
~e.g., as discussed in Ref. 8!. The energy spectrumcb(E)
associated with the current ‘‘reflected’’~albedo condition!
from the plasma at the other boundary of the neutral at
transport problem would be taken as the energy spectrum
the plasma ions at that location.

B. Multigroup method

For the multigroup energy treatment, the above res
are generalized by writing

( t
g[Ne^s ion&

g1Ni (
g851

G

$^scx&
gg81^sel&

gg8%

1 (
g951

G

Nn
g9 (
g851

G

^seln&g9
gg8 , ~41!

where

Nn
g[E

Eg

Eg21

dEn f n~En! ~42!

is the particle density of the neutral species with energy
the groupEg<En<Eg21, and
W. M. Stacey
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^s ion&
g[

*Eg
Eg21dEn f n~En!*0

`dEe f e~Ee!uve2vnus ion~ve2vn!

@*Eg
Eg21dEn f n~En!vn~En!#@*0

`dEe f e~Ee!#
, ~43a!

^scx&
gg8[

*Eg
Eg21dEn f n~En!*Eg8

Eg821dEi f i~Ei !uv i2vnuscx~v i2vn!

@*Eg
Eg21dEn f n~En!vn~En!#@*0

`dEi f i~Ei !#
, ~43b!

^sel&
gg8[

*Eg
Eg21dEn f n~En!*0

`dEi f i~Ei !uv i2vnusel~v i2vn!*Eg8
Eg821dEn8 Pel~Ei ,En→En8!

@*Eg
Eg21dEn f n~En!vn~En!#@*0

`dEi f i~Ei !#
, ~43c!

^seln&g9
gg8[

*Eg
Eg21dEn f n~En!*Eg9

Eg921dEn9 f n~En9!uvn92vnuseln~vn92vn!*Eg8
Eg821dEn8 Peln~En9 ,En→En8!

@*Eg
Eg21dEn f n~En!vn~En!#@*Eg9

Eg921dEn9 f n~En9!#
, ~43d!
n

os
tio

s

tra

r

nd
wherePel(Ei ,En→En8) is the probability that a neutral atom
of energyEn upon scattering from an ion of energyEi will
have a final energyEn8 , andPeln(En9 ,En→En8) is similarly
defined for scattering from a neutral atom of energyEn9 .

We define the average group speed

^vn&
g[

*Eg
Eg21dEn vn~En! f n~En!

*Eg
Eg21dEn f n~En!

. ~44!

The definitions of Eqs. ~42!–~44! are such that
Nn
g^vn&

gNi ,e,n^sx&
gg8 preserves the correspondingx-reaction

rate—the numerator on the right side of Eqs.~43!—when the
actual neutral and ion/electron/neutral distribution functio
are used to evaluate Eqs.~43!. The exact distribution func-
tions are, of course, not known; however it should be p
sible to make reasonable approximations to the distribu
functions for the purpose of evaluating Eqs.~43! and ~44!.

The scattering probability,cg, for each group equation i
given by

cg5
Ni$^scx&

gg1^sel&
gg%1(g951

G Nn
g9^seln&g9

gg

( t
g , ~45!

i.e., the probability that the collision event results in a neu
particle in groupg.

The appropriate source term for each group in each
gion is

si
g5si ,ext

g 1si ,rec
g 1si ,sc

g , ~46!

where

si ,ext
g [E

xi

xi11
dxE

Eg

Eg21
dEn sext~x,En! ~47!

is the external fueling~pellet, neutral beam! source

si ,rec
g [E

xi

xi11
dxE

Eg

Eg21
dEi f i~Ei !

3E
0

`

dEe f e~Ee!uve2v i us rec~ve2v i ! ~48!

is the recombination source, and
Phys. Plasmas, Vol. 4, No. 1, January 1997
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si ,sc
g [E

xi

xi11
dx (

g8Þg
^vn&

g8Nn
g8FNi$^scx&

g8g1^sel&
g8g%

1 (
g951

G

Nn
g9^seln&g9

g8gG ~49!

is the scattering source.
The multigroup version of Eqs.~25! then becomes

Ji11
1g 5Ti

gJi
1g1Ri

gJi11
2g 1 1

2si
gPi

g1~si
1g2 1

2si
g!Poi

g

~50!
Ji

2g5Ti
gJi11

2g 1Ri
gJi

1g1 1
2si
gPi

g1~si
2g2 1

2si
g!Poi

g ,

g51,...,G,

where the source,si
g, is given by Eqs.~46!–~49! and

Ri
g5 1

2ci
gPi

g~12Toi
g !, ~51!

Toi
g 5E2~D i( t i

g !, ~52!

Poi
g 5

1

D i( t i
g @ 1

22E3~D i( t i
g !#, ~53!

Pi
g5

Poi
g

12ci
g~12Poi

g !
, ~54!

Ti
g5Toi

g 1Ri
g ~55!

with ( t i
g given by Eq.~41!.

The response matrix formulation of Eqs.~27! generalizes
immediately to multigroup by replacing the currents a
sources with multigroup column vectors, i.e.,

Ji
1→Ji

1[F Ji11

A
Ji

1g

A
Ji

1G

G , ~56!
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siPi→SPi[F si1Pi
1

A
si
gPi

g

A
si
GPi

G

G ~57!

and replacing the transmission and reflection coefficie
with diagonal multigroup matrices, i.e.,

Ti→T i[3
Ti
1 0 ••• 0

0 Ti
2 0 ••• A

A �

A 0 Ti
g 0

� A

0 ••• ••• Ti
G

4 . ~58!

The proper choice of group structure and within-gro
weighting function,f n(E), for evaluating the ‘‘group con-
stants’’ of Eq.~43! must be guided by the physics. Energ
ranges over which important cross sections change rap
~e.g., low eV range for ionization and recombination! should
be represented by several groups, while a large energy r
over which the important cross sections vary slowly c
probably be represented by a single group. For sufficie
fine energy groups, a uniform weighting may suffice, wh
choosing f n(E) as a Maxwellian at the local backgroun
plasma temperature may be a better choice for broader
ergy groups. Numerical experimentation is required to inv
tigate the choice of group structure and weighting functio

X. ANISOTROPY

A certain degree of isotropy has been assumed in
preceding development. The neutral particle flux has b
assumed to be isotropic in the forward~1! directional hemi-
sphere and to be isotropic in the background~2! directional
hemisphere; i.e., any direction in the forward hemispher
equally probable and any direction in the backward he
sphere is equally probable, but the probability for a direct
in the forward hemisphere is different than the probabi
for a direction in the backward hemisphere. These forw
and backward probabilities are related toJ1 andJ2

c~x,m!5H 2J1~x!, 0,m,1,

2J2~x!, 21,m,0,
~59!

wherem is the cosine of the angle with respect to the posit
axis.

Since the Legendre polynomials,Pl(m), constitute a
complete set on the interval21<m<1, the half-range Leg-
endre polynomials8

pl
1~m![Pl~2m21!,

~60!
pl

2~m![Pl~2m11!,

constitute complete sets on the intervals 0<m<1 and
21<m<0, respectively. Thus, we can expand
186 Phys. Plasmas, Vol. 4, No. 1, January 1997
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c~x,m!5(
l50

L

~2l11!c l~x!p~ l !
1 ~m!, 0,m,1,

~61!

5(
l50

L

~2l11!c l~x!p~ l !
2 ~m!, 21,m,0,

with the assurance that the expansion could exactly repre
any angular flux distribution in the limitL→`. The approxi-
mation used in the preceding derivation corresponds to
minating the summation after the first term (L50). The cal-
culation can obviously be extended to handle higher deg
of anisotropy by retainingl.0 terms, at the price of in-
creased complexity. In an essentially one-dimensional~1D!
configuration, the only phenomenon which could produ
l.0 components of the angular distribution is the injecti
~reflection from the wall! of neutral atoms with a distribution
which contained l.0 components. However, scatterin
would be expected to quickly isotropize the injected dis
bution. Thus, theL50 approximation should be valid fo
essentially 1D configurations, and certainly is valid for a 1
model which can only represent 1D configurations. The is
becomes more complicated for multidimensional configu
tions.

Isotropic elastic scattering and charge exchange in
laboratory system have also been assumed in the prece
derivation by the assumption that 1/2 of the neutral partic
resulting from such an event are directed forward~1! and
1/2 directed backward~2!. If these events are highly aniso
tropic, as would be the case at least for charge exchange
ions flowing towards the plate with sonic average spee8

there are ways to incorporate scattering anisotropy into
calculational model. The scattering or charge-exchange e
may be treated as a particle loss event coupled with an
isotropic particle source event, or the assumption of 1/2
the particles going in each the forward and backward dir
tions may be removed. We will develop the latter option.

Let f1/2 be the fraction of neutral particles emergin
from a charge-exchange or scattering event going in
same direction~1/2! as the incident particle. In the case
neutral particles interacting with a near sonic plasma flo
f1 and f2 will be different.8 The average scattering sourc
of once-collided incident neutral particles per unit leng
within xi<x<xi11 emerging in the forward~1! direction
and the backward~2! direction are

Ŝi1
1[

ci
D i

$ f1@Ji
12 Ĵun

1 ~xi11!#1~12 f2!

3@Ji11
2 ~xi !2 Ĵun

2 ~xi !#%

5
ci
D i

@ f1Ji
11~12 f2!Ji11

2 #@12E2~D i( t i !#, ~62!

Ŝi1
25

ci
D i

@~12 f1!Ji
11 f2Ji11

2 #@12E2~D i( t i !#.

The emergent currents of once-collided neutral partic
resulting from incident currents are
W. M. Stacey
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Ĵ1
1~xi11![E

xi

xi11
dxE

0

1

dm~Ŝi1
1!S e2( t i ~xi112x!/m

m Dm

5ci@ f1Ji
11~12 f2!Ĵi11#Poi@12E2~( t iD i !#,

~63!

Ĵ1
2~xi !5ci@~12 f1!Ji

11 f2Ji11
2 #Poi@12E2~( t iD i !#.

Equations~63! generalize Eqs.~5!, to which they reduce
when f1/251/2.

The average scattering sources of twice-collided incid
neutral particles per unit length withinxi<x<xi11 in the
forward ~1! and the backward~2! directions are

Ŝi2
15 f1

ci
D i

( t iE
0

1

dmE
xi

xi11
dx8E

x8

xi11
dx Ŝi1

1~x8!

3S e2( t i ~x2x8!/m

m
D 1~12 f2!

ci
D i

( t iE
21

0

dmE
xi

xi11
dx8

3E
xi

x8
dx Ŝi1

2~x8!S e2( t i ~x2x8!/m

m
D

5@Ŝi1
1 f11Ŝi1

2~12 f2!#ci~12Poi!, ~64!

Ŝi2
25~12 f1!

ci
D i

( t iE
0

1

dmE
xi

xi11
dx8E

x8

xi11
dx Ŝi1

1~x8!

3S e2( t i ~x2x8!/m

m
D 1 f2

ci
D i

( t iE
21

0

dmE
xi

xi11
dx8

3E
xi

x8
dx Ŝi1

2~x8!S e2( t i ~x2x8!/m

m
D ,

5@Ŝi1
1~12 f1!1Ŝi1

2 f2#ci~12Poi!.

In general, the scattering source ofnth-collided incident neu-
tral particles per unit length withinxi<x<xi11 in the for-
ward ~1! and backward~2! directions are

Ŝin
15@Ŝin21

1 f11Ŝin21
2 ~12 f2!#ci~12Poi!,

~65!
Ŝin

25@Ŝin21
1 ~12 f1!1Ŝin21

2 f2#ci~12Poi!, n>2.

The emergent currents ofn-collided incident neutral par
ticles are

Ĵn
1~xi11!5E

xi

xi11
dxE

0

1

dmŜin
1~x!S e2( t i ~xi112x!/m

m Dm

5Ŝin
1D iPoi , ~66!

Ĵn
2~xi !5Ŝin

2D iPoi , n>2.

Equations~66! generalize Eq.~10! and reduce to it when
f1/251/2.

The total emergent currents due to incident currents

Ĵ1~xi11!5 (
n51

`

Ĵn
11E2~D i( t i !Ji

1 ,

~67!

Ĵ2~xi !5 (
n51

`

Ĵn
21E2~D i( t i !Ji11

2 .
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Equations~67! generalize Eqs.~12! and reduce to them whe
f1/251/2, which allows the summation to be performe
analytically.

When the deviation from isotropic scattering is sm
(u f1/22 1

2u!1), only linear terms in (u f1/22 1
2u) need be

retained in the above analysis and the summations can
performed analytically to obtain

Ĵ1~xi11!5@ 1
2ci@12E2~D i( t i !#Pi$112g1

2ci@12Poi~g11g2!#%1E2~D i( t i !#Ji
1

1$ 1
2ci@12E2~D i( t i !#Pi$122g2

1ci@12Poi~g11g2!#%%Ji11
2 ,

~68!
Ĵ2~xi !5@ 1

2ci@12E2~D i( t i !#Pi$112g2

2ci@12Poi~g11g2!#%1E2~D i( t i !#Ji11
2

1$ 1
2ci@12E2~D i( t i !#Pi$122g1

1ci@12Poi~g11g2!#%%Ji
1 ,

where

g1/2[ f1/221/2. ~69!

Equations~68! reduce to Eqs.~12! wheng1/250.
Generalization of the results related to internal parti

sources follows the same general procedure. The emer
currents ofn-collided source particles are given by

Ĵn,s
1 5Ŝin,s

1 Poi ,
~70!

Ĵn,s
2 5Ŝin,s

2 Poi , n>1,

where the scattering sources per unit length ofn-collided
internal source particles in the forward~1! and backward
~2! direction are calculated recursively

Ŝin,s
1 5@Ŝin21,s

1 f11Ŝin21,s
2 ~12 f2!#ci~12Poi!,

~71!
Ŝin,s

2 5@Ŝin21,s
1 ~12 f1!1Ŝin21,s

2 f2#ci~12Poi!, n>1

from the scattering sources per unit length for once-collid
source particles

Ŝi1,s
1 5F S si1D i

D f11S si2D i
D ~12 f2!Gci~12Poi!,

~72!

Ŝi1,s
2 5F S si1D i

D ~12 f1!1S si2D i
D f2Gci~12Poi!.

Equations~68!–~70! generalize Eqs.~15! and ~17! and re-
duce to them whenf1/251/2. The total emergent current
due to internal sources are

Ĵs
1~xi11!5si

1Poi1 (
n51

`

Ĵns
1 ,

~73!

Ĵs
2~xi !5si

2Poi1 (
n51

`

Ĵns
2 .
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Equations~73! generalize Eqs.~19! and reduce to them whe
f1/251/2, which allows the summation to be perform
analytically.

When the deviation from isotropic scattering is sm
(ug6u!1), only linear terms ing6 need be retained, and th
summations can be performed analytically to obtain

Ĵs
1~xi11!5$si

12 1
2si@11~g12g2!#%Poi

1 1
2PoiH @11~g12g2!#si

12ci~12Poi!
1ci~12Poi!

3Fg1~si
12 1

2si !2g2S si22
1

2
si D G J ,

~74!
Ĵs

2~xi !5$si
22 1

2si@11~g22g1!#%Poi

1 1
2PoiH @11~g22g1!#si

12ci~12Poi!
1ci~12Poi!

3Fg2S si22
1

2
si D2g1~si

12 1
2si !G J .

Equations~74! reduce to Eqs.~19! wheng1/250.
The formalism of Secs. IV and V can be reconstitut

with anisotropic scattering by defining directional-depend
reflection coefficients and modifying the source terms.

The anisotropic scattering functions are defined, w
reference to Fig. 1, as

f1[
*0
1dm*0

1dm8P~m8→m!

*21
1 dm*0

1dm8P~m8→m!
,

~75!

f2[
*21
0 dm*21

0 dm8P~m8→m!

*21
1 dm*21

0 dm8P~m8→m!
,

whereP(m8→m) is the probability that a neutral particl
entering a scattering event with direction cosinem8 results in
a neutral particle emerging from the scattering event w
directional cosinem. For scattering from ions or other neutr
particles with an isotropic velocity distribution,f15 f2 .
However, for scattering from ions streaming towards the
vertor plate at near sonic speeds,f1Þ f2 , as discussed in
Ref. 8.

XI. MODEL PROBLEM CALCULATION

We solved Eqs.~25! for the physical situation of deute
rium plasma ions incident upon a plate and reflected as n
tral atoms. The reflected neutral flux at the plate w
1.5531023/m2 s. The fixed plasma density and temperatu
varied linearly from~n5531018/m3, T510 eV! just in front
of the plate to~n5131019/m3, T5100 eV! at a distance of
50 cm away. The dominant atomic processes in this pla
regime are electron-impact ionization, charge exchange
elastic scattering. We assume that the neutral atoms acq
the same local average energy as the plasma ions via sc
ing and charge exchange and use the Maxwellian-avera
data from Ref. 8. The resulting neutral atom distributi
shown in Fig. 3 appears to be nearly exponential but, si
188 Phys. Plasmas, Vol. 4, No. 1, January 1997
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the mean free paths for the various atomic processes var
a factor of 5 or more over the model problem dimensio
this is coincidental.

The numerics of the code used to solve Eqs.~25! to give
the results shown in Fig. 3 have been checked by repea
the calculation with the transmission/escape probability c
GTNEUT5; the results are indistinguishable from those sho
in Fig. 3. SinceGTNEUT solves essentially the same equ
tions, this provides a check on the coding. However, sin
GTNEUT has been successfully benchmarked5 againstDEGAS
Monte Carlo calculations, this comparison also provides
indirect benchmark of the methodology presented in this
per.

We plan to undertake an extensive comparison of
interface current balance method with other methods of n
tral particle transport, which will be published at a futu
date.

XII. SUMMARY

A new interface current balance~ICB! formulation of
neutral particle transport theory has been developed.
partial current exiting a region across a surface is formula
in terms of~1! the currents entering the region across oth
surfaces times a transmission probability; plus~2! the current
entering the region across the surface in question time
reflection probability; plus~3! the internal source of particle
within the region times an escape probability. Integral tra
port theory is employed to calculate the transmission, refl
tion, and escape probabilities exactly in slab geometry. T
method is shown to be similar to the response matr
method in neutron transport theory, but extends the latte
providing analytical results for the transmission, reflectio
and escape probabilities. When extended to multidimens
the interface current balance formulation is shown to
identical to the transmission/escape probability method5 of
neutral atom transport theory, thus providing a more rigoro
theoretical formulation for the latter.

The ICB formulation of general neutral particle transpo
theory is specialized to the transport of neutral atoms i
background plasma. The reflection, transmission, and es
probabilities are specified in terms of suitably averaged i

FIG. 3. One-dimensional model problem.
W. M. Stacey
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ization, charge exchange, and atom-ion and atom–atom
tic scattering cross sections; and the internal sources
specified in terms of pellet fueling and recombinati
sources.

The methodology is extended to obtain a multigro
ICB formulation of neutral atom transport theory. This fo
mulation allows the direct calculation of the neutral ato
energy distribution, in the multigroup approximation, and t
direct calculation of neutral atom momentum and ene
currents, as well as particle currents.
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