|
E3

TE o el

:_:_':;.g"

e e 3
NP LE.

"

R
A

4%
B

In presenting the dissertation as a partial fulfillment of
the requirements for an advanced degree from the Georgisa
Institute of Technology, I agree that the Library of the
Institute shsall make it available for inspection and
circulation in accordance with its regulations governing 1
materials of this type. I agree that permission to copy §
from, or to publish from, this dissertation may be granted I
by the professor under whose direction it was written, or, i
in his absence, by the Dean of the Graduate Division when b
such copying or publication is solely for scholarly purposes il
and does not involve potential financial gain. It is under- '&?
stood that any copying from, or publication of, this dis- ;
sertation which involves potential finanecial gain will not i
.~ be allowed without written permission. i

T (ST T T T AR LT LN

7/25/68




THE DESIGN OF A PRESSURE CONTROL
SYSTEM FOR A COMPRESSIBLE

FLOW TEST APPARATUS

A THESIS
Presented to
The Faculty of the Graduate Division
by

Roscoe McClendon Hinscen, Jr,

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanical Engineering

Geqrgia Institute of Technology

Qctober, 1970

PR PRI RO DR R I

B . TRt

ST LT T
P i P R U, B

T 7 ISR R
i b e o s o Bt o

Wl el

D T st o g AV g A1 Ly

i

1 & enngiors e

T

i ir Sl e

it



THE DESIGN OF A PRESSURE CONTROL

SYSTEM FOR A COMFRESSIBLE

FLOW TEST APPARATUS

Approved

|
|

— .

appaoved by Chairman }}l

-

Datgj

P B i

Bev e mmy e Wi

et D gt e e s i AL

T Py

e SR I



ACKNOWLEDGMENTS

The author would like to”exﬁress"his'appréciation to his

advisor, Dr. S. L. Dickerson, for his guidance throughout the writing

tion is extended to Dr. P, V. Desai and Dr. J. J. Talavage.
The author also wishes to thank his wife for her constant

encouragment and to extend his deepest appreciation to his parents

for thelr support.

~of this thesis. For their service on the thesis committee, apprecia-

ii




ACKNO‘HLEDGD’ENTS F R R R I R R R I A R B I R R R I N B U A R PR RN

LIST OF

LIST OF

TABLE OF CONTENTS

TABLES +.evvevsvotstssntssoannsanerineonranans s eratseeesan

IIJJUSTRATIONS L R R R R I I I I A I L B B N R N}

NOMENCLATURE .....c.cceveuen. Serareasaesretase st eatacaranTnran

CHAPTER

1.

II.

III.

INTRODUCTION ....vciinuneenens, O
COMPRESSIBLE FLOW THROUGH VOLUMES AND RESTRICTIONS .......

Units and Counstants
Flow Through Nozzles
Perfect Gas Law
Isentropic Process
Mach Number
One-Dimensional Isentropic Flow
Temperature and Pressure Ratio
Area Ratio
Critical Pressure Ratio
Mass Flow Rate
Convergent-Divergent Nozzle with Subsonic Flow
Flow Through Valves and Orifices
Flow Through Volumes

ANALYSIS OF THE TEST APPARATUS UNDER STEADY-FLOW
CONDITIONS ..vvvevvrrrnvronnreansorssrorssssnssnnanannnss .

Analysis for (General Case
Upstream Valve: General
Downstream Valve: General
Vacuum Pump: General

Analysis for Fluidic Models

. Model Description
Range of Operation
Upstream Valve: Fluidic Models
Downstream Valve: Fluidic Models
Vacuum Pump: Fluidic Models

iid




CHAPTER

Fixed Downstream Valve Area
An Example of Equipment Capabilities

IV. AUTOMATIC CONTROL SYSTEM ANALYSIS .......ivuuvacentsnne,

Integral Control System
Upstream Tank System with Integral Controller
Downstream Tanlk System with Integral Controller
Summary of Design Proceedure for Integral Control
System
roportional Control System
Upstream Tank System with Proportional Controller
Downstream Tank System with Proportional Control
Summary of Design Proceedure for Proportional Con-
trol System

F_'F‘t t - - L . o R N P S S PR

BIBLIOGRAPHY thveveuecnconsnennnsnsnonnonsss e tiiieesanans cveans

iv

Page

51

116




LIST OF TABLES

Page
Untits and Abbreviations ..c.veieiseervvssrrarestvrsonvacsosnas 4
Pressure Ratios for Choking in Supersonic Nozzles .......... 15
Downstream Valve Area Ratio and Nozzle Mach Number ......... 26
Required Pump CApPacCity .ecuvevuivivvionnsnonasscnaccassaacnnss . 32
Downstream Valve Effective Area and Nozzle Mach Number ...., 43
Maximum and Minimum Volume Flow Rates ............. seeeanas . 44
H({%) Function for Several Values of § ... vivevvvervvncus ven 73
Table of (fgzif) for Several Mach Numbers ....... Cesemasanes 88
Steady-StatJ-Error for Downstream Tank SysCem .....ccossuvess 107
Values of Vz and E for T=0.067 ..... ereseas ...;.....¢...... 1i2

Ty} g s IS

By

b
1;



for.T~0.067

e SRR

vi
LIST OF ILLUSTRATIONS
Figure Page
1. Diagram of TesSt APparatusS .....uieecertonrovesavsanearsnsnsss 2
2. Supersonic NoZzle Flow ...t vetiinaensresrrssssasessanansane 13
3. Flow Through a Volume .....vuieetusernessronesoatrvnssssvnnes 17
4, Diagram of Apparatus .......eeecaeess theseavesaessanerrnanas 20
5. Design Chart for Upstream Valve ............. sasmamesarraaes 23
6. Diagram of Test Apparatus with Fluidic Model ......svcvuuaes 34
7. Range of Operation ...ieeeeinrvenssarannaranenss Cereeatcaans 37
8. Sample Vacuum Pump Characteristics .....veecerrcnscasnanonns 48
9. BRange of Operation and Equipment Capabilities ....vivvvvvnrn 50
10. Apparatus with Integral Comtroller ....vievrrntvensreneennas 52
11. Diagram of Apparatus with Integral Controller ...vvevvvesesn 34
12, Modified Apparatus with Integral Controller ......eveeveeuus 57
13. Upstream Tank System with Integral Controller ......ecvienns 58
14, Upstream Pressure Response with Integral Controller, §
Variable ..cvaeirineentvtseatonesticsacnasetroncanarsnrannne 67
15. Upstream Pressure Response with Integral Controller, f
Variable ..vucevestosserererirsncersntesssanearnees resaeasnnn 68
16. Dowastream Tank System with Integral Controller........cuess 78
17. Dowmstream Pressure ReSponse with Integral Controller 8
Variable ..ieieoviiiunsionensvoosvosnsacnsasonsnasscsnsnsnssss 84
18. Dowmstream Pressure Re3ponse with Integral Controller, f
Variable soeveesnenccednanns sieceacaccenenas Seararasasasanas 85
19, Apparatus with Proportional Controller ......iicovevveccssnns 94
20, Upstream Ténk System with Proportional Coatroller .......... 95

P g T

T T X
AT e e e R

]

—
i

. O U AU ey
L Y R T A A e,

T TP TR TR L T AR S



e g sy i
v i P

Figure
21.
22,
23.

24.

25.

Plot of Equation (4,120) ....ee.... Cheeaenn tereaanas Sieenaes

Downstream Tank System with Proportional Controller ........

Upstream and Dowmstream System Response with Pro=-
portional Controller .....iciscisesscstocnanssssnnsaneses -

Plot of Equation (4.157) ...iciiiinnnnanns rtetreraeen tevens

Response of Downstream Pressure to Control Jet Disturbance .

vii

Page
95

104

106
108

110

o,

N

i

=k

i ‘

i TR Al




viii

SUMMARY

This thesis is concerned with the design of a test apparatus
for the study of rarified flows. The function of the apparatus is to
provide regulated air pressures upstream and downstream of a test
section, The test section is assumed to behave pneumatically as a
variable area nozzle. Only the analysis portion of the design is
considered here.

The apparatus cénsist of two control valves, two tanks, a
test section, a vacuum pump, and a two=loop feedback control system.
Atmospheric air is used as the supply since the pfessure range of
interest is below atmospheric.

The analysis of the system is divided into two parts. The
steady-flow anaiysis portion develops the relations necessary to
determine the valve and vacuum pump sizes. The second portion of the
analysis deals with controlling the pressures automatically with a
feedback control system,

Al though much of the analysis is specifically for the appli-
cation at hand, some generality concerned with the controlling of

pressures in a series of volumes and restrictions is achieved.
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NOMENCLATURE

area, square inches; dimensionless area ratio
nozzle exit area, square inches

nozzle throat area, square inches

valve orifice area, square inches

constants used to calculate mass flow rate
coefficient of discharge

speed of sound, ft/sec

steady-state error

constant, 2,71828 ...

function of pressure ratio used te calculate
mass flow rate

area change factor

dimensionless feedback gain
maximum angular speed; RPM
function of ¢ used in calculations
feedback gain

Knudsen Number, dimensionless
specific heat ratio, dimensionless
Mach Number, dimensionless

mass, pounds-mass

number of valve stem turns to shutoff, revolutions

pressure, mmHg; dimensionless pressure ratio
volume flow rate, ft3/min

gas constant, 19.16 mmHg-£t3/1bm-°R
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maximum angular speed, RPM
temperature, degrees Rankine
time constant, seconds

time, seconds

reference pressure input, mmHg
volume, cubic feet

velocity, ft/sec

mass flow rate, lbm/sec

characteristic dimension of flow channel, inches

dimensionless volume ratio
intermediate calculation constant
intermediate calculation constant
area coefficient

mean free path, inches

density, lbm/ft3

dimensionless time ratio

natural frequency, radians/sec

damping coefficient, dimensionless
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CHAPTER I
INTRODUCTION

This thesis was motivated by a project to design and build
"a test apparatus to study the flow of air through models of fluidie
devices at high Mach Number and low Reynolds Number. In order to
achieve a reasonable size for the models, low pressures are required,
This necessitates a vacuum pump in the system.

The need to provide a means of controlling the pressure.in the
tanks upstream and downstream of the test secticn gives rise to the
degsign utilizing the upstream and downstream control valves in Figure
I. The problem was then generalized to designing a tégt apparatus
with the configuration of Figure 1 but, instead of restricting the
design to fluidic models in the test section, any restriction charac-
terized by a cross section area and Mgch Number is considered.

An early consideration is the determination of the size of
the upstream valve, the downstream valve, and vacuum pump that is
necessary to produce the desired steady-flow conditions, 1In Chapter
III, this analysis is made first for the general case and then for
fluidic models,

A second consideration is that of designing an automatic
feedback control system for properly manipulating the valves., It
has been found that maintaining constant pressure in the tank by
manual regulation of the valve is difficult. Ordinary differential

pressure regulators which depend on the fluid itself for energy are

PRI

i
A Al Az e i

sifw .

[ R,




T e T T T oy e T TEATL I Lk Fu-to - L L A Rl
Atmospheric
Air
t
: Upstream Test Downstream Vacuum
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Control Control
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Figure 1. Diagram of Test Apparatuys
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TIVE

not feasible because of the low pressures involved. Therefore some
type of feedback control with power amplification is required for
providing the regulation. Two such systems were analyzed: one
using proportional control with saturation and the other using an
integral control with saturation.

The transient response was analyzed to determine the choice
of parameters that gives the best results., 1In this respect the
upstream and downstream tanks are considered part of the control
system since their volumes affect the response of the system. The
automatic control system analysis, like the steady-flow analysis,
is performed first in general and then for the fluidic models,
This analfsis is in Chapter IV,

Chapter II develops the equations that are used to describe
the flow through valves, nozzles, and velumes. The equations are
based on the one~dimensional, isentropic flow of a perfect gas,

The constants are evaluated for air at standard temperatures and

pressures.
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CEAPTER 11

COMPRESSIBLE FLOW THROUGH VOLUMES
AND RESTRICTIONS
This chapter presents the equations used to describe the
flow of air through the various components of the apparatus. The
flow through nozzles, orifices, and valves is discussed as well as

the flow of a compressible fluid through vclumes.

Units and Constants

A consistent set of units is utilized in numerical examples.
Millimeters of mercury are used as the units for pressure since
these units are common for vacuum systems. The other units are
common in general engineering usage, A surmary of these units is

given in Table 1.

Table 1, Units and Abbreviations

Quantity Units Abbreviation
mass pounds mass 1bm
density pounds mass 1bm/ft3
per cubic foot -
pressure millimeters of mroHg
mercury
area square inches in?
mass flow rate " pounds mass per 1bm/sec
second
volume flow rate cubic feet per CFM

minute

s oiem
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5
temperature degrees, Rankine O°R
Scale (OF + 460)
velocity feet per second ft/sec
angular velocity revolutions per RPM
minute
Flow Through Nozzles
Perfect Gas Law
Alr 1s assumed to obey the perfect gas law
p=PRT 2.1)
where R=19.16 mmHg ft3 .
1bm OR
Isentropic Process
The flow of air through nozzles is assumed to be isentropic.
Hence
L )" (2.2)
Fo pPo
and
k-
-
T-&)F @3

where k is the usual ratio of specific heats and the subscript, o,

indicates the value at any reference state at the same entropy.

Mach Number

The Mach Number, M, is defined as

D i-fimiNENTOETT i
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7
Area Ratio
With one~dimensional flow, the continuity equation yields
Wz oyh 2.9)
where
w = mass flow rate
P2 = density
v = velocity
A = area
Since the mass flow rate must be equal at any two stations,
equation (2.9) can be used to obtain
AViA: v Ap . (2.10)
Solving for the area ratio yields
Fon LR A va . (2.11)

2 Fa |

Usihg equation (2.4), this can be written

Ay = 22 Mg?i; ©(2,12)
Axr 2 MU, .

and with equation (2,1) and equation.(2.3), the result is

K+
Al = Mg ( T\ 2Lk
T () (2.13)
Finally, using equation (2.7), this becomes
_ ki1
Ay . Mzf2t( =1} M Z (kD
Az MILZ ¥ (k-TM] . (2.14)

e T
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Putting in the throat condition at station 2, equation (2.14)

becomes

B L0 )

156

(2.15)

This last form is the most useful since it allows the necessary

cross section of an isentropic nozzle to be calculated as a function

0f the throat area and the Mach Number.

Critical Pressure Ratio

The critical pressure ratio, pcr/po, can be found from equation

(2.8) by letting M=1. This is

With K=1.4, equation (2.16) becomes

l}h 5283
(=]

Mass Flow Rate

(2.16)

(2.17)

As givén earlier, the mass flow rate for one-dimensional flow

can be written

w= pvA

(2.18)

If equation (2.1), equation (2.4), and equation (2.7) are com-

bined with equation (2.18), the result is

Gk e T
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WW"%E: Mﬁ%m _ (2.19)

Letting Cl=4k/RTo, equation (2.19) becomes

w= CopAMV 1 + 2042 (2.20)
For air at 537°R
Ci= 7672 IO~4 [bm (2.21)
L X Ssec mmbgq Y .2
Using equation (2.8), equation (2.20) can be written
W= po [k M
P K | ket (2.22)
(I + -—-2:- Mz)ztk—n-_

Equations (2.19) through (2.22) have given the mass flow rate
in terms of the Mach Number. The mass flow rate can also be written

in terms of the pressure ratio, This equation is

" k=
W=P°AV('E:%£E€ (%)k\/l B (%) > (2.23)

Equation (2.23) is valid for both subsonic and supersonic flow.

Letting Cz=/ 2k, equation (2.23) becomes
(k-1)RT,

p L k-l |
w =CzpoA(§)K %—(%) w (2.24)
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For air at 537°R,

'brnm
sec mmHg N

Ca= .71 X 10 > > (2.25)
All of the mass flow equations developed thus far are, under
the conditions stated, valid for all positive Mach Numbers and all
pressure ratios between zero and one. It is necessary, however, for
the nozzles to have certain geometries for these conditions to be
reached isentropically. 1In a practical situation, the geometry is
fixed and the flow conditions vary. It would then be beneficial to
discuss the mass flow rates in relation to fixed geometries.
Consider first the strictly convergent, or subsonic nozzle.
The Mach Number can never be greater than unity, and therefore equ#tion
(2.19), equation (2.20), and equation (2.22) are only valid for

0<Msl., Equation (2.23) and equation (2.24) are only valid for

P /Py P/ % 1.

When the ratio of the exit pressure and the stagnation pressure
is less than or equal to the critical pressure ratio, the nozzle is

chioked and the mass flow rate 138 at a maximum, This maximum is

K+l
[ ( 2 )
= — -1
W= pe ey T U 20! (2.26)
The area, Ap, is the exit area of the nozzle.
Letting
kel
k 2 \a{k=D
= f—m (= 2.27
S @) .27
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equation (2.20) can be written
&iﬁ w= CapsAa (2.28)

For air at 537°R

;" Cs= 4441 x 10 ¢ lbm (2.29)
; s@c mmHg 1wl

ﬁ The other nozzle that will bé considered is one that initially
converges and then diverges. This is called a convergent-divergent

or supersonic nozzle, The minimum area in the nozzle is the throat

area and will be designated by A*. For the flow in the supersonic

;I nozzle to be isentropic, two conditions must be met simul taneously.

The area ratio as given by equation (2.15) and the pressure ratio as

given by equation (2.8) must both be satisfied at the nozzle exit.

When this happens for supersonic nozzles, all of the mass flow equations
will apply without restriction.

What happens when these conditions are not met simultaneously
will be discussed in the next section. However, for any convergent-
divergent nozzle, the mass flow can be written in terms of the throat
area, A*, with only the restriction that the ratio of the exit pressure
and the stagnation pressure be less than the critical pressure ratio,
This mass flow rate‘is the same as given ip equation (2,26} with A%

in the place of A,. Thus

N 2 k+
W= poAl o () .30

Wicth

F;'Hi '2.-'[ e i e . L e . - R
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k4l
[k 2 (2 31)
- —— — 2 -l -
Cs ETo (Ki-i ) Ck-b)
equation (2.30) becomes

w= Cz po A" (2.32)

and the value of C5 given in equation (2.29) can be used.

Convergent-Divergent Nozzles with Subsonic Flow

The mass flow rate relations that have already been developed
for supersonic nozzles have been for the case where the nozzles were

at least choked., This section discusses the relationship between the

mass flow and the pressure ratio when the nozzle is not choked.

Figure 2(a) shows a convergent-divergent nozzle. Figure 2(b)
shows the relationship between the pressure raﬁio along the nozﬁle
axis for four d;fferent back pressure ratios and Figure 2(c) shows
the relationship between the mass flow rate at the_full range of back
pressure ratios. Also indiéated on Figure 2(c) are the four cases
of Figure 2(b).

Consider the flow represented by line (1). In this situation

the pressure decreases in the converging section and the Mach Number
increases. The Mach Number, however, never reaches unity nor does the
Pressure ever reach the critical pressure. As the flow passes the
threoat, the pressure begins to increase an& the Mach Number begins to
decrease, Assuming that the flow is isentropic throughout, the mass
flow rate can be found using equation (2.24). Using the exit area,

Ay, and the back pressure, pp, this becomes
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K=l

w= CzpoAe (—lfj—)_’i 1 -—(—F-,Pi) 3 (2.33)

As the pressure is lowered more, the situation depicted by line
{2) results, The Mach Number at the throat reaches 1,0 and any
further decrease in the back pressure, as shown by lines (3) and (4),
will not affect the mass flow rate. This is the range referred to
earlier where equation (2.30) applies, Notice that the pressure
ratio at which the nozzle chokes is greater than the critical pressure
ratio.

It would be of interest to find the pressure ratio at which the
nozzle chokes. Suppose the nozzle is designed for a Mach Number of My.

The ratio of the exit area, A,, and the throat area, A%, is

k
A [ ) B

If the flow depicted by line (4) is assumed (i.e. isentropic

and supersonic), the mass flow rate can be found by equation (2.22).

This is
k Mg
w=pelle o 2. EA (2.35)
(l + = Mg ) 2060 -

The mass flow rate found from equation (2.33) will be equal to
the mass flow rate given by equation (2.35) when the nozzle becomes

choked, Thus the solution of the equation

- - i o ——— -
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k=i k+!

E (%ﬁ\/“ (%)T = My (1 + %—‘- Md )-z"(_k——a) (2.36)

will give the ratio at which the.nozzle chokes.

For any particular My there will be two values of pB/po that
satisfy equation (2.36). One pressure ratio will be below the critical
pressure ratio and will be the same as that given by equation (2.8).
The other solution 1s greater than the critical pressure ratio and is
the solution sought here,

Equation (2.36) cannot be solved explicitly for pB/po; however
Table 2 gives a few sample values,

Table 2. Pressure Ratios for Choking
in Supersonic Nozzles

My A /A% Pressure Ratio for
Choking

1.0 1.00 .328

1.5 1.18 778

2.0 1.69 . 907

2.5 2.67 967

3.0 4.23 . 987

4.0 10,72 . 998

Flow Through Valves and Orifices

All the equations that have been developed for the mass flow
rates through subsonic nozzles can also be applied to valves and
orifices if a coefficient of discharge, C3, is used. The coefficient of

discharge is necessary since the mass flow rate through a valve or

orifice will not be as large as the mass flow rate through a subsenic
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nozzle of the same area, For example, the flow thrOugB a choked

subsonic nozzle
W = C3pohe (2.28)
For a valve or orifice of the same area, the flow is
w = C4C3poh, (2.37)

However , if the product of Cg and A, is thought of as an

effective area, then equation (2.28) can be used for the flow through

valves and orifices with the understanding that the area is the ef-

fective area instead of the actual area, Throughout the remainder

of this thesis the areas associated ﬁich any valve or orifice will be
assumed to be the effective area instead of the actual area unless
otherwise stated. Discharge coefficients for many valves and orifices
can be found in reference 1.

P
For convenience let a function,F(Eg) s be defined;:

1
: = k.
LV EEO B G e (B
F(P_:’)‘ k 41 k

The mass flow rate through a valve or orifice can be written

wiz= Cap Az F (%.2-) (2.39)
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where 02 for air is given by equation (2.25).
With the constants evaluated for air, equation (2.38) becomeé
(p;._' '7'534/l . (f_z).z&s?‘
c (fﬁ)= PI) Pt
Pl 2588 (2.40)
It is noted in equation (2.39), that when the valve is choked,
C’zF(EZ‘):Cg , ¢ . s283 (2.41)
P P
Flow Through Volumes
Consider the system shown in Figure 3.
- - G TV,
B h ' P T3
Figure 3., Flow Through a Volume
From the conservation of mass principle, the total mass in the
volume at any time, t, is
t+
mdﬂ--S [Wi(t)-wzg(m]de + mo (2.42)
-]
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The mass, m,, is the initial mass in the volume.
If it is assumed that the fluid properties are homogeneous
throughout the volume, and the fluild is a perfect gas, then the mass,
my, can also be written
\Qz\ﬂz
Mz =
Tz (2.43)

It is known that the temperature and the pressure in the inlet
jet will be different frOm the temperature and pressure in the re-
mainde? of the volume, Yet it is assumed that the jet will be small
compared to the volume and that the error caused by assuming homogeneous
properties 1s small,

The initial temperature of the fluid in Figure 3 is Ty. 1If
it is assumed that there is no heat transfer to or from the fluid as
it entexrs the volume, and that the fluid in the volume is at.rest,
then Tp=T;. This equality is a result of the conservation of energy
equation for a perfect gas,

With T,=T) and equation (2.43), equation (2.4l1) becomes

t, |
Vapr _ (" [wiato) —wascm)]de + mo (2.44)
ZT e

When equation (2.44) is differentiated with respect to time, the

result 1is

apa R
- =L (b = waa (¥
m Vz [wee 23 (+]

(2.45)

This result will be used later to describe the transient be-~

havior of air through tanks.




CHAPTER IIl

ANALYSIS OF THE TEST APPARATUS UHDER
STEADY-FLOW CONDITIONS

This chapter uses the relations developed in Chapter II to
determine the required size of the upstream and downstream valves,
and the required vacuum pump capacity.

The first part of this chapter considers the somewhat general
case of designing the system where the test section is characterized
only by a throat area and a Mach Number. An anilysis is presented
ﬁhich provides a method of finding the upstream and dowmstream valve
effective areas as a function of this throat area and Mach Number.
Also a method is preseated for estimating the vacuum pump size.

The last part of this chapter is devoted to designing the
system for a particular type of test/model. These are to be models
of fluidic devices. The flow conditions at which the models are to
operate and the dimensions of the models are given. Therefore the
mass flow rates are known and the specific size of the upstream and
downstream valves can be found. The vacuum pump size 1s estimated
and a method is presented that will allow any specific vacuum pump
with its particular pumping characteristics to be evaluated.

Figure 4 shows the notation that will be used in this chapter.
The supply pressure, p,, is the standard atmospheric pressure of
760 muHg and the temperature, T, is 537°R. The two control valves

are characterized by their effective areas of A; and A,. The pressures

in the upstream and downstream tanks are p; and py respectively,

14
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The pressure pj is the exit pressure of the downstream valve as well

as the vacuum pump inlet pressure.

Analysis for General Case

Upstream Valve: General

The function of the upstream valve is te control the pressure
in the upstream tank, The analysis in this section is to help de-
termine the valve size necessary to provide this control.

The mass flow rate through any valve can be found from equation

(2.38). For the upstream valve this is

Capone (2]

For steady flow, the mass flow rates through the valves, as
well as the nozzle, must be equal. Solving equation (3.1) for 4

yields

A= ———XG—E‘ (3.2)
CzFbF:(Pb) . I

It can be seen that the upstream valve effective area, Ap,
is a function of the system mass flow rate, w; the atmosbheric pressure,
Py the upstream tank pressure, pj; and the constant, Cz. With the
atmospheric pressure considered to be constant, the valve area becomes
a function of the system mass flow rate and the upstream tank pressure,
It might also be mentioned that if the upstream tank pressure is below
the critical pressure, then the valve area is only a function of the
system mass flow rate,

It would be desirable to relate the system mass flow rate to
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the nozzle conditions. There are several ways to write the mass flow
rate but here, as mentioned previcusly, the exit Mach Number and the
throat area will be used, This gives rise to two cases: subsonic
flow and supersonic flow, The mass flow rate is thus written (see

equation (2.19) and equation (2.28))

M
(1 +.2M%)3

Capi A¥ ) Mzl

CIPIA*

(3.3)

The constants C; and C, are given by equation (2.21) and equation
(2.29) respectively. The area, A%, is defined in both the subsonic
and supersonic case as the smallest cross section area of the nozzle.
For the subsonic nozzles this is the exit area and for the supersonic
nozzles this is the throat area.

By substituting the mass flow rate of equation (3.3) into e~

quation (3.2), it can be written

o @B
Cz F(_E_) n+rzmy3 M

—E-i': pe (3.4)
C (—%’) M2
)

Figure 5 is a plot of equation (3.4) and can be used to find
the necessary effective area for the upstream valve as a function of
A%, p1, and M. The Mach Number, M, is the Mach Number at the exit of

nozzle in the test section. This also assumes the upstream or ambient
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conditions to be those of the atmosphere.

Downstream Valve: General

The function of the dowmstream valve is to control the pressure
in the downstream tank and this analysis is to help determine the
size of the valve, There are two Important differences between this
analysis for the downstream valve and the previous analysis for the
upstream valve. The first difference is that the upstream valve
controls the pressure by regulating the inlet flow, while the down-
stream valve controls the pressure by regulating the exit flow. The
second difference is that the relation between the pressure.and the
mass flow rate at the exit of the downstream valve are not derived
from isentropic flow theory since the relations are influenced by the
characteristics of the vacuum pump. Therefore, under some flow con-
ditions there are no analytical relations to describe the flow through
the downstream valve,

This second difference complicates the downstream valve
analysis to the extent that the analysis 1s not easily performed in
general., However, as will be shown, some useful results can be
achieved for the general case.

The mass flow rate through the downstream valve can be found

from equation (2.39) and is
w=CaprAzF (“;—i) (3.5)
Solving for A, yields

Ap= ——— (3.6)
CapeF %%) T

EAR - A
AP Ay i S,

STRET
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The pressure, pj, i3 the pressure at the inlet of the vacuum
pump as well as at the exit of the downstream valve. Usually the
inlet pressure a vacuum pump can produce.is a function of the mass
flow rate and varies for each pump, Therefore A, in equation (3.5)
cannot be evaluated unless a specific pump curve is used and then only
with an iterative solution. TFor the present consider the downstream
valve to be choked and therefore knowledge of py will not be necessary.
With the downstream valve choked, equation (3.6) becomes
Az = C:JP':. (3.7)

For the subsonic nozzle, the mass flow rate can be written
w=Cp AYMYI + . 2M5 |, Me (3.8)

Putting this intc equation (3.7) gives

T

Mg {3.9)
AY  Ca g

which is only & function of the Mach Number.

For the supersonic nozzle the wass flow rate can be written

W=Cap| A* ; M}I (3.10)

Putting this into equation (3.7) gives
M > (3.11)

i
A¥ T Pz

By using equation (2.8), equation (3.1l) becomes
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f_:=(|+.2Mz)3 , M>| (3,12

A‘l

and again this is only a function of the Mach Number, Therefore 1if
the downstream valve is choked, the area ration, Ap/A*, is only a
function of the Nozzle Mach Number. Table 3 gives this area ratio
for several Mach Numbers.

Table 3. Downstream Valve Area Ratio
and Nozzle Mach Number

M Ag fa¥x

.1730
« 3470
.7022
1,074
1.468
1,893
3.671
7.825
17.08
36.74
76.28
152.0

CUOLOULOO P

£l b b RO e

Two other implications can be made from equation (3.9) and
equation (3.12)., Consider the case where a nozzle of some specified
A* is in the test section. If the size of the dowmstream valve is
only a function of the nozzle Mach Number (when the downstream valve
is choked), then the Nozzle Mach Number must only be a function of
the dowmstream valve area, Consequently, once a Mach Number is set
by the downstream valve, the upstream valve will rsise and lower

both pressures but will not change the pressure racio or Mach Number.
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This could be used advantageously when performing the experiment.

For the second implication,.again consider A¥* fixed. Any
particular valve used for the downstream valve will have some maxi-
mum effective area. This maximum effective area according to equation
(3.8) and equation (3.11) will determine the maximum Mach Number
that can be achieved. Table 3 can then be interpreted as giving the
minimum necessary area ratio to achieve the corresponding Mach Number.
If the dowmstream valve is choked, then the area ratio given will
be adequate, but, if the downstream valve is not choked, an even
larger area ratio may be required.

Vacuum Pump: General

A vacuum pump is a constant displacement device . For this
reason the capacity of vacuum pﬁmps is usually given as a volume flow
rate. However, becaﬁse of clearance volumes and leakages, the volume
flow rate does change with inlet pressure and even reduced completely
to zero for very low preséures. Therefore the capacity is usually
given as volume flow rate versus inlet pressure. It must be deter-
mined then what volume flow rate is necessary to accommodate the flow
conditions in the test section.

When determining the pump capacity, the same complication
associated with the subsonic downstream valve is present. However
for the geﬁeral case, this problem will be circumvented by only
considering a method of estimating the needed capacity. Later when
determining the pump capacity needed for the fluidic models, the sub-
sonic downstream valve will be considered,

There are two assumptions that lead to simple direct compu=-
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tations of the pump capacity. One assumption will lead to a maximum
capacity and the other leads to a minimum capacity. Thus the two
methods that are developed next can be used to bracket the necessary
pump capacity and this is what is meant by estimating the capacity,
From the perfect gas law and the one dimensional continuity
equation, the relation between the mass flow rate and the volume flow

rate, Q, is

o = “_“_F"f-_'f (3.13)

The volume flow rate, Qy, at the downstream tank conditions

can be written

w ETo (3.14)
P2

Glp =

And similarly for the volume flow rate at the pump inlet con-
ditions

wlTe
Xs= "o (3.15)

In equation (3.15) it was assumed that there is a sufficiently
large volume at the pump inlet for the air to come to rest after

leaving the downstream valve and consequently for the temperature to

become T .
O .
Equations (3.14) and (3.15) can be solved for w and equated.

The result is

@1F’i= G3F; (3.16)
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Thus the volume flow rate, Q3, can be written

=)

The problem now is to find p3/p; and Q3.

Qs =

3.17)

Using equation (2.19), the mass flow rate for a subsonic nozzle

can be written
o pr [ oz, |
w=peAL o M\/“’ z ;) M (3.18)

Putting this into equation (3.14) yields

%=1/kzn My /1 + %1 ME L, Mt (3.19)

Thus the ratio Q2/A%* is only a function of the Mach Number for

subsonic flow.

With a supersonic nozzle the mass flow is

k +1
s pA* /X [ 2 \;o-
w= PAY o (ua )Z“‘ Doy Mt (3.20)

Equation (3.20) can be written in terms of p, and the nozzle

Mach Number by using equation (2.8). The result is

K 4+ K
= e [x {2\ Kl a2 T
il CaRYr=g (u:) (et (H' 7 M )"' b Mz (3.21)
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Putting equation (3.21l) into equatiom (3.14) yields
kL k.
@z 2 - - K-l z)—_—
_A? =(E;-{'—)2.fk. t) ’\/k’.ﬂ.To (l'i“—ZT—M k1 ! Mz (3'22)

From equation (3.17) and (3.18) it can be seen that Q, is
only a function of the Mach Number and A%, |

Going back to equation (3.17) it can be seen that Q3 can be
found in terms of the Mach Number and A* if the pressure ratio across

the downstream valve is known. However for the present consider the

maximum and minimum values the pressure ratio can have. The largest
p3/pp can become is unity which means thaé there is no pressure drop
across the downstream valve. This is not very realistic but it does
provide a minimum vacuum pump capacity, There is no limit to how
small the ratio p3/p2 can become and therefore it would seem as though
there were no maximum Q3. Once the downstream valve becomes choked,
no further decrease in the pressure ratio will affect the flow through

the downstream valve, Thus supplying enough pump capacity to choke '

the downstream valve will be the maximum capacity needed to accommodate
that particular Q.

The pressure ratic at choking in

g:’ n(E%> =  3.23)

And the maximum pump capacity required for any particular ’

Q2 is

(¥ et . : . : T " e ke = e
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2 Q= ——7 (3.24)
(.._‘g‘._.) k~~|
K+
Using equation (3.24), equation (3.19), and equation (3.22),
the volume flow rate necessary to choke the downstream valve can be
written
1{ —
k v 2
@s _ (_’4‘_)';:," -
.3
A K+1 . (3.25)
KRTo(k+t) A Trvers
N R (+ )%, m
With the constants in equation (3.25) evaluated, the result is
2 -5
8565 M1 +.2M%) , M£I
&3 _ (3.26)
*
A sig.e (1 +.2M)%% 1 M>

with Q3 in CFM, and A% in in2.

Table & gives several values of QZIA*, Q3/A* with the downstream

valve just choked, and the corresponding Mach Number.

If the Mach Number and the throat area are known, then the
corresponding volume flow rate can be found from Table 4. There 1is
still no way to determine the required vacuum pump capacity if the
downstream valve is not choked. Assuming no pressure drop across the
downstream valve, Column (1) can be used to give the volume flow rate

required at the downstream tank pressure. The volume flow rate re-
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Table 4. Required Pump Capacity

(L) _ (2) (3)
M Q2/A* Qq/A% AZIA*
.1 52.16 98.74 1736
.2 95.11 180.0 L3470
G 192.5 364, 3 .7022
.6 2943 557.0 1.074
.8 402.4 761.8 1.468
1.0 518.8 932.1 1.893
1.5 1006 1904 3,671
2.0 2145 4060 7.825
2.5 4683 8865 17.08
3.0 1.007x10% 1.906x10% 36, 74
3.5 2.091x10ﬁ 3.958x102 76.28
4.0 4.166x10 7.885x10 152.0

quired will always be larger than this since there will always be
some pressure drop across the downstream valve., Assume that the
downstream valve has the area obtained from Columan (3). (Column (3)
is obtained from Table 3). If the vacuum pump meets the volume flow
rate requirements obtained from Column (2) at a pressure of ,5283
times the downstream tank pressure, then no additional capacity will
be required. If the downstream valve can be made larger than that
found in Column (3}, then some capacity that is between the capacities

given in Column (1) and Column (2) will be required.

Analysis for Fluidic Models

The remainder of this chapter considers the design of the
test apparatus for a specific test model. These test models are of

fluidic devices.
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Model Description

The fluidic models are similar to compressible flow nozzles
and, as far as the analysis of the flow is concerned, they are considered
to be compressible flow nozzles. Beoth the subsonic and the supersonic
nozzles are present.

The nozzle walls are cut from a one inch thick aluminum plate,
and sandwiched between two cover plates. Before the walls are clamped

between the plates, they can be adjusted to give any desired throat

and exit area.

For this particular study, all of the nozzles are to have an
exit area of 0.2 inz. This means that with the nezzle construction
described, the walls at the exit will always be spaced 0,2 inches
apart at the exit, and the throat area is changed to vary the Mach

Number.

Some of the models will also have a control jet as exemplified
in Figure 6, The interaction of this control jet with the main jet
will also be an objective of the fluidic model study.

Range of Operation

It is necessary to determine the range of operation before the

size of the system components can be determined. For the fluidic

models, it was desired to have a capability of producing Mach Numbers
of 0.5 to 3.5 and Knudsen Number of 1071 to 107%,

The Mach and Knudsen Number range can be used to find the
corresponding pressure range. In order to produce a Mach Number of M
at the model exit, the upstream and downstream tank pressures must be

related by

Cp e - o o SRR
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T

fé B o Oeamy)®® (3.27)
- Pz

Taking the logarithm of both sides yields

log,, Pr = log o P3 +3,Slog|o{l+.2M1) (3.28)

Equation (3.28) is a linear relation between logigp2 and
log)gpy for a constant Mach Number. Therefore equation (3.28) is a
straight line on log-log graph paper.

The Knudsen Numbe? can also be found in terms of P1 and Py.

The definition of the Knudsen Number, Kn, is

Ky = % (3.29)

where A is the mean free path of the gas molecules and x is a charac-
teristic dimension of the flow area.
To determine the mean free path of the air molecules, it was

assumed that the product of the density and the mean free path is

constant, Thus

on= K (3.30)

where 2 is in lbm/ft3, A is in inches, and K=1.966x10-7 lbm in.
ft

Using the equation of state for a perfect gas along with equation

(3.29) and equation (3.30), the downstream tank pressure can be written

KRT=
P = o (3.31)

e A ST T R T
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The temperature, T,, used in the above calculation is the tem-
perature of the fluid jet as it passes through the nozzle exit which
is different from the temperature of the fluid when it comes to rest

in the dowvnstream tank.

Using equation (2.3), the temperature ratio can be written

T () 6.

Equation (3.3l) thus becomes

Pz:ii? (PL) ® (3.33)

The characteristic dimension, x, used to calculate the Knudsen
Number was chosen to be the distance between the nozzle walls at the

i
exit. This dimension is 0.2 inches.

With the comnstants evaluated, equation (3.33) becomes

_jasT EE)Z&ST
= (% (3.34)
Taking the logarithm gives
LO(]IO = e P52 Loilo n— 2.5 Loglo pz (3.35)

For a constant Knudsen Number equation (3.35) is a linear

" relation between log) 4p1 and log; opy.

Figure 7 displays conveniently the pressures that must be

produced in the upstream and downstream tank to obtain the required
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Mach and Knudsen Numbers. The region of interest lies between the

line for M=3,5 and M=0.5, and between the lines for kn=10"% and

Kn=10"1.

Upstream Valve: Fluidic Models

With the pressure range shown in Figure 7 and a means of cal-
culating the mass flow rate, the required size of the upstream valve
can be determined.

By using equation (2.39), the mass flow rate through the;up-

stream valve is

w=C2p A.F(E;) (3.36)

Solving equation (3,34) for Ay glves

Fn=—w— (3.37)

r )

=

Cere (Fc:

The mass flow rate through the nozzle can be found by using

equation (2.22). The result is

_ M
w=C\pAe N (3.38)

(|+ %’— MQ)Q—(T——H

By equating the mass flow rates, equation (3.35) becomes

A = CipiAeM _ (3.39)
) 4+
C1po F(%)( [+ g—' MZ) 2(k-1)

Equation (3.39) now allows the effertive area of the upstream
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valve to be calculated for any kinown Mach Fumber and any upstream tank

pressure, pj.

d The smallest valve of A; that will be rejuired can be found

J by putting in the conditions at a Mach Number of 0.5 and a Knudsen
Number of 10-1. At that point the upstream tank pressure, p;, is
0.12 rnmHg. With this upstream tank pressure, the upstream valve is

choked and equation (3.39) becomes

! | A, = Cipy Ae M (3.40)
: k..| - }:.L'_.
CZ.PO(I"f’ -—2":-" ML)Z-“‘-—D
With p,=760 mmHz, p;=0.12 mmHg, Ae=0.2in.2, and M=0.5, then
!:; A]. is
A= 0”2 Wl
%y Z2.24X%10 IN (3.41)

It is assumed that a valve can provide good regulation at an -
area of 10% of its maximum flow area, then the area of 2. 24%10"2 inz

could be achieved by a valve with wmaximum effective area of 2.24x10-4

inz. With a discharge coefficient of 0.75, the actual area would be
2,987x10™% 1n? which corresponds to a valve orifice .0195 inches in
diameter. Thus a very small needle valve will be required for good
regulation at low upstream tank pressures.

Since valves are limited to the range of effective area at which

they can provide good control and since the desired range of operation

is so large, it will be necessary to provide several graduated valve:
in parallel to provide good coutrol. Graduations by a factor of 10

would probably provids gned control or graduations by a larger factor

RIS [ _— 4 b o M m T ST InT o Tee emiem e
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could be used if economy dictated. The analysis thus far has only

provided a method of determining the smallest valve. Finding the

largest upstream valve area that is required presents a different

problem. As seen in Figure 7, the highest upstream tank pressure
¥ that is required is above atmospheric pressure. Since atmospheric
air is being used as the supply air, the upstream tank cannct have a
pressure greater than 760 mmig. How close the upstream tank pressure
comes to being atmospheric depends on how large the upstream valve is,
It would be of interest to find the maximum pressures that can be
obtained for some given maximum valve opening,

First consider the case where the upstream valve is choked.

The mass flow rate through the valve is

w=CapehAr , P <402 mmig (3.42)

The mass flow rate through the nozzle is given by equation’

{3.38). Equating the mass flow rates gives

3.5
- Capo A (l -|—-'2..M1)
P T A M (3.43)

Let

k+1

Cat( 1+ % MZ)EITE')

2 = ‘ (3.44)
3 C| AB M

Equation (3.43) becomes

prped , F <5283 (3.45)
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If ﬂ>.5283, then the upstream valve is not choked, The mass

flow rate from equation (2.39) is

W= Capoh (%)':? \/1 -(B) %, 25283 (3.46)

Equating the mass flow rates and substituting in the definition

of £ yields

R R

Squaring both sides of equation (3.,47) yields

(%S)ZC%) B (Til) C%)"iii%%)z =0, £>.5183 (3.8

1-k

3|

which is a quadratic equation in ( ) and can be solved to give

K

> -k
P = Po [L+~ﬂ/ +4(CC; } , f 75183 (3.49)

With the constants evaluated, equation (3.49) is

| ~35
BTN\ 2
pI= Po -*?:+7'2-.\/| +( Z ) :’ , BB (3.50)

12 0 S PR e . L gl T
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Thus the largest pressure, py, that can be reached for any
particular Al can be found from equation (3.45) and equation (3.,50).
An example using these equations is given in a later section.

Downstream Valve: Fluidic Models

As mentioned previocusly in connection with the more general
discussion of the dowmstream valve, determining the proper valve size
is complicated by the fact that vacuum pump characteristics are usually
given graphically. Assuming the downstream valve to be choked, which
1s usually the case anyhow, allows the valve analysis to be conducted
independent of the characteristic of the pump. Such will be the case

here.

The mass flow rate through the downstream valve is

w= CsAzpz (3.51)
and the mass flow rate through the nozzle is (equation (2.20))
w= Cp2 te MVl + 2T (3.52)
Equating these zives the followiﬁg equation for Aj:
Ar= %:; AVl + 2M" (3.53)

Equation (3.53)'shows that the necessary downstream valve

area is only a function of the desired Mach Number. Several values

are shown in Table 5.

. PR T -t R L T e S
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-y Table 5. Downstream Valve Effective Area
?} and Nozzle Mach Number
j
M Ay (in?)
] .5 177
] 1.0 . 349
g 1.5 624
' 2,0 .927
2.5 1.269
3.0 1.735
3.5 2,192
As can be seen from Table 5, one butterfly valve will probably
provide the necessary contrel. Characteristics of available valves
would have to be examined to determine this.
Vacuum Pump: Fluidic Models

The only method given thus far for determining the vacuum

h pump capacity is to determine the maximum and minimum capacity re-

quired. This will be the method used in this section. The next section,
however, offers an alternative yet it is still desirable to have an
estimate of the required capacity.

The volume flow rate at the downstream tank condition is

wiTo

P2 (3.54)

The mass flow rate for the fluidic models is (equation (2.19))

w=pa Ao o M+ EL M2
=Pz Ao Myl+—= ; M>O (3.55)

e . .- : : ad SR T e e e




Thus

Q= Aef/kER MyJi + L M, m>0 (3.56)

With the constants evaluated,

Q= 947 Myt +.2M% |, M>o0 (3.57)

Equation (3.57) is the volume flow rate at the downstream tank

.conditions and if it is taken to be the volume flow rate that the

pump must handle it will be a minimum capacity since it assunes no
pressure drop across the downstream valve. As discussed in the section
which determined the pump capacity for the general case, the maximum
capacity required can be found by dividing Q; in equation (3.57) by
.5283, '

Table 6 gives a summary of these capacities, The minimum
capacity is at the downstream tank pressure but the maximum capacity
rust be at a pressure of 0.5283 times the downstream tank pressure.

Table 6. Maximum and Minimum
Volume Flow Rates

M Maximum (CFM) Minimum (CFM)
.5 91.8 48,5
1.0 197 104
2.0 481 254
3.0 301 476
3.5 1166 616
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Fixed Dowmstream Valve A;eg

The last section assumed no pressure drop across the downstream

valve. This section takes the pressure drop into account,

Agsume that a graph of volume flow rate versus the inlet pressure

for a vacuum pump is available. Solving equation (3.15) for the mass

flow rate gives w as a function of A; and p,y which are available from

the assumed graph., This relation is

- XR3ps
W= 7o (3.58)
Consider first the case where the valve is choked. The mass
flow rate is
w= CapzAz (3.59)
Equating the mass flow rates gives
Pz _ CzA2RTo '
- _ (3.60)
Letting
o 22C2AETE (3.61)
Ra
Equation (3.60) can be written
Ps
Pz= ';1— , ot 5283 (3.62)
If «» 5283 then the dowmstream valve is not choked. The mass

flow rate from equation (2.39) is
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w=c-zpzAz(%)'|F = %)%‘" ,(%—2)4.5253 (3.63)

Equating this to equation (3.58) and using the definition of

o, the result is

BT - om0

Similar to equation (3.47), this can be solved to yield

3.5
BT 2
PL'“"PSI:JZ""JZ_ H_( : ) } , & >5283 (3.65)

From this equation, p, can be found if the pump capacity in CFM,
the pump inlet pressure in mmilg, and the dowmstream valve area in in?,
is known,

Now Lif P, can be found, a line can be drawn on Figure 7 showing
the limiting conditions that can be reached with any particular vacuum
pump and downstream valve.

From equation (2.24), the mass flow rate through the nozzle

can be written as

1 k-1
- Pk _ & K '
W-C'Z‘PIA!: (E-"> | (PI ) (3.66)

This can be equated to the mass flow rate in equation (3.58)




yielding

ETo

i Czp.%(%)%J —(TF:—) b‘;—l . Sapa (3.67)

Dividing by p, gives

|
| . =
i (ﬁ)( ﬁ-)“ lﬂ(.'i’-‘)’l: = 32 3.68)
‘f_ P P i CORToCrAe ps (3.68
lt
: By letting
5: 2Gl3 P
GO LToCz Aepe (3.69)
equation (3.68) can be solved to give
- 3.5

-

These equations will be used in the next section to plot a
limiting curve for a particular vacuum pump and downstream valve,

An Example of Ecuipment Capabilities

In previous sections, equations have been developed.for de=-
termining the capabilities of the equipment. This section works
an example using these equations for the fluidic devices,

First consider an upstream valve with an orifice diameter of

0.5 in. The orifice area is 0.1963 in? and, with a coefficient of
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i; discharge of 0.75, the effective area is 0.1425. Using equation

(3.50) and equation (3.44), the maximum upstream tank pressure can be

found for each nozzle Mach Number. Then by using equation (2.8)

A the dowmstream pressure can be found by using the same Mach Number.
; This line is showm in Figure 9 designated by Al.

5 With the pump capacity estimated by methods given in the last

section, a vacuum pump of the approximate capacity can be selected.

For this example, the pump curve given in Figure 8 is used.

1200

L~
800 /,!//’
/]
é [
&
400
200
[}
.0l L3 250t s 1o 50 100 200 Tho

P3, mmHg
Figure 8, Sample Vacuum Pump Characteristics

Let the downstream valve have a 2 in, diameter crifice with a

coefficient of discharge of .75, The effective area then is 2.356 1n2

The object now is to find the largesf Knudsen Number and Mach Number

that can be reached with this pump and this downstream valve. Equation

48
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(3.61), (3.62), (3.65), (3.67), and (3.70) can be used for this purpose,
The resulting line is shown on Figure 9 designated by AZ‘ No con-
ditions above this line can be reached.

Since this line indicates that the region around k=10"1 and
M=3,5 cannot be reached, it would be of interest to know if this is a
vacuum pump limitation or a dowmstream valve limitation. If no
pressure drop across the downstream valve is assumed and a line is
drawn from the vacuum pump curves, then any region excluded would
definitely be the result of inadequate vacuum pump capacity. The
region between the two lines can possibly be recovered with a larger
dowvmstream valve, The line showing the limitations caused by the
vacuum pump can be found by using equation (3.69) and equation (3.70)

with p, equal to P3. This line is also shown on Figure 9,
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CHAPTER IV
AUTOMATIC CONTROL SYSTEM ANALYSIS

This chapter analyzes two control systems for automatically
regulating the pressures in the uypstream and downstream tanks.

The first system is a representation of a system that has
d.c. motors operating the upstream and downstream control valves. The
error signal, which is the difference between the reference input
signal and the signal from the pressure transducer, is amplified to
supply the motor input voltage. The motors act as integrators, in-
tegrating their input signal, For this reascn the first system is
referred to in this thesis as the integral control system,

A second system was analyzed for the possibility of improving
the performance., The second system assumed a position controller to
maintain the control valve area proportioned to the error signal,
The strategy is to use a very large feedback gain so that the error
signal is forced to be small. This system is referred to in this

thesis as the proportional control system,

Integral Control System

The integral control system was chosen because 1t would be
comparitively easy to implement. A diagram of the system is showmn
in Figure 10.

The voltage to the valve motors is supplied by the power

amplifier., The output of the power amplifier is assumed to be pro-
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P Ty

portional to the difference between the reference input and the

S L i

pressure transducer signal, It is assumed that the power amplifier
- as well as ﬁhe pressure transducer act as a straight gain. Also it
.; is assumed that the speed of the motor is proportional to its input
voltage and there is no associated inertia. The flow area of the

control valves are considered to be linearly related to the angulaf

position of the valve stem. Thus the flow area of the control valves

will be proportional to the position of the motor shaft.

Using equation (2.44) to describe the transient behavior of the

pressures In the volume, the system equation can be written (Figure 11)

B [ ww-pw) (4.1a)
E’J;—':—J"-; %‘i [ woy (4) = wie (£)] (4.1b)
dj‘t“k K] ) — ua ()] (4.1c)
S - E P [wn - was )] (4.1d)

The reference inputs are ul(t) and uz(t). The gains associated
with the pressure transducer, the power amplifier, and the valve
are contained in the constants Ki and K;. The mass flow rates are
w01(t), wlz(t), and wp3(t). The volume V) is the upstream tank volume
and V2 is the downstream tank volume, It is assumed (Chapter I)

that the temperature in the tanks is T,s and R is the gas constant for

air.

In general the mass flow rates through the restrictions will be

non=linear functions of the associated pressures. Considering the
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Figure 11. Diagram of Apparatus with Integral Controller
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mass flow rates to be only functions of the time varying parameters,
equations (4.1) can be written

da,(t)

—%ﬂ = Kl[mU:)- 7 H:)] (4.2a)
dpi(t) 2To
—5’—;) =T[wa Can 8), pule)) = Wiz { py (&), pel))] (4.2b)
daz(® |

di = Kz palt) = uz ()] (4.2¢)
dp2(b_ o

il - we( ok, Pz({-)) - w2zl a2(t), p2it), psi i:))] (4.2d)

The mass flow rate, Wgy» can be obtained from equation (2.39)
as a function of the pressure ratio and the valve area, The mass flow

rate, wjp, which is the mass flow rate through the nozzle, can be

found from equations (2.33) until the flow becomes choked and by equation

(2.32) after it becomes choked. The pressure ratio at which the flow
becomes choked must be found from equation (2.36). The mass flow rate,
Wy3s is a little more difficult, This is the mass flow rate through
the downstream valve. When the downstream valve is subsonic, the mass
flow rate through it is a function of py and py. The pressure p3

is the pressure at the inlet to the vacuum pump and it is, in turn, a
function of the mass flow rate, In general the relation between the
mass flow rate and py is given graphically gnd not analytically,

This leads to difficulties when trying to solve the system equations
analytically. The difficulties could possibly be overcome by obtaining
an analytical curve fit of the vacuum pump characteristics, but even

so it is not likely the mass flow rate could be found as an explicit

function of pp and pj.
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Also it is possible to consider the inlet to the vacuum pump
to be a small volume resuiting in the system in Figuré 12. The system
equations become 5th degree instead of 4th degree, but.:he advantage
is that all the required functions are knowm explicity since wp(t)
as a function of p3(t) could be found. If V5 is small compared to V,
is small compared to Vi and Vy, the response of the system in Figure
12 should be very similar to the response of the system in Figure ll.
However for the present case the downstream control valve will
be considered to be choked and the mass flow rate through the downstream
valve will be independent of the pressure at the vacuum pump inlet.
Thus the mass flow rate can be found from equation (2.39).
Considerable simplifications occur when the flow through a nozzle
or valve becomes choked. These simplified cases will be used as a
starting point to analyze the response of the system.
When the nozzle becomes choked, the flow becomes independent of
the pressure in the downstream tank, Therefore the upstream and

‘downstream systems can be analyzed independently. The following two

sections do just this,

Upstream Tank System with JIntegral Controller

This section considers the transient behavior of the upstream
tank with an integral control system,

With the nozzle choked, the upstream tank system is independent
of the pressure in the downstream tank, This system appears in

Figure 13,




vy (£

/)
22N

=i

Fain
t
N

N i ek a0 B
uy (t) uz(t)
Ky Ky
Wy o (t) wyz(t) L Ul wy(ey L
12 j<— p
Py (8) Py (t) ay(t) p3(t)
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Ul(t)
daj (t)
dt Kk, [
§ f
w01 (t) T wy o (B
P, X p e - A%
ay (&£} Vl

Figure 13. Upstream Tank System
with Integral Controller

The system equations can be written

d:f) = K1[u. &)— py ('l:}] (4.3a)
d—fi-@ ﬂTC’[W;.-»((::[H;I Py — Wi Lpy ()] (4.3b)
Since it is assumed that the nozzle is choked, the mass flow
rate, wy,, is given by equation (2.23). Thus
wielt)= Ca A% () (4.4)

If the assumption is made that the upstream control valve is

also choked, then the system equations become linear. Equations (4.3)

become

dah)
d‘ =K wth - g Wy] (4.5a)

Rt i s bt
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dt i

[ oot — A%p: ()] (4.5b)

Equations (4.5) can be reduced to a convenient form if ul(t)
is assumed to be constant. There are two cases of interest where
ul(t) would be constant. If the response to a step input is desired,
then uw, can be assumed to be a constant with the initial conditioné
supplying the step input, 1If the system is to be considered a regulator,
then v would be constant, and the response of the system to a dis-

turbance would be analyzed.

Let ul(t)=Ul, and define the following dimensionless variables

as

_ Ec(f)
piE) T (4.6)
He A o
af ) UIA* Q U:) (4.7)
Equations (4.5) can be written in terms of the variables de-
fined in equation (4.6) and equation (4.7) to give
dalt)  PK, _
Fraliy [ 1—pw) (4.8a)
dpld) CsRT,A®
ot = v, [O“:)"P(‘t'ij {4,8b)

Assuming equations (4.8) are stable (as will be determined
later), equating the left-hand side to zero gives the steady=state

values of a(t) and p(t).
Denoting the steady-state points by Py and a_ ., the equations

are

e e VAT

b,
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ok
A¥ (1~ Pss)y = O
(-15 L?—Tc: A* (4. 93)
= (Qss— =0
Vi Pss) (4.9b)
The solutions to equations (4,9) are
pss = | (46.10a)
Qs = | (4.10b)
Let two new variables be defined
Aptd= ptt)—~| (4.11a)
Aa)= alt)~i (4.11b)
The variables A p(t) and Aa(t) have a physical significance.
Using the definitions of p(t) and a(t) along with equations (4.10},
ihe steady-state values of the variables P1 (t) and ay (t) are
Piss= U (4.12a)
U, Ak (4.12b)
Quge =
o
where p; ., and a;  , are the steady-state values.
The variable & p(t) can be written
. APH:)= pitl—i
= plE) \
= ——-\LL‘
_pd) - U,
Uh
_ ) - piss
Piss (4.13)

Thus &p(t) is the fractional deviation of the upstream tank

N P 4 (i St WL L =
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pressure from its steady-state value,

Similarily, &a(t) can be written

nawy = 28" Qs | (4.16)
155
The variable Ba(t) is the fractional deviation of a) (t) from
its sready=-state value,.
The system equations (4.8) can be written in terms of the new

variables as

dﬁﬂ_“‘) - _Pokl A ({‘)
at A °P (4.15a)

Gt v Lbed—apw)] (4.15b)

Differentiating equation (4.15b) and combining it with equation

{4.15a) vields

dlaptty | CaRToA" dapl) | BKCaRT
. T at ¥ v APw=0 (4.16)

Equation (4.16) can be written in the form,

2 3
E‘_‘%‘-ﬂ zgwu?*—":‘j%‘—*- ¢ wh Aplt)=0 %.17)

whexe
|

[P:!KIC3 QTO]E
I

V3 (4.18)
¢ L A [CaTo 12 (4.19)
2 VK P

Equation (4.17) is the well known second order differential

equation., The responze is governed by the initial condition, the
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damping ratio, 8, and the natural frequency,®n. For any given set
of initial conditions, the amplitude of the response is determined

by the damping ratio., The natural frequency is a time scale and has

ne effect on the amplitude,

Before it can be determined what control system parameters

should be selected to give the best results, a performance criteria

needs to be established. One obvious procedure would be te assume a

typical reference input and then evaluate the systems response to that
input. However this control system was intended primarily to be a

regulator and the response to a change in the reference input would

not be particularly important so long as the response was reasonably
well behaved., And since the system was intended to be a regulator, the
control systems ability to recover from a disturbaﬁce would be of
interest. One likely source of a disturbance would be the application
of the control jet during operation. It was decided then that the
control systems response to a step application of the control jet would
be the subject of analysis to determine the best control system,
Consider the fluidic model shown in Figure 6. If the main jet,

with area A, is choked then the mass flow rate will be

Wm=Cszpi Bm (4.20)

Let AJ be the control jet area. When the control jet is opened

an additional mass flow rate of

W]"=C3P| P‘J’ {(4.21)
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results.

The total mass flow rate between the tanks is
Wiz = Wen + WJ—"‘CsP' (Am"“ A]‘) (4.22)

Since the mass flow is proportional to the sum of the areas,

the application can then be reflected by a step change in the area

A* between the two tanks, Therefore the control systems will be

evaluated according to their response to a step change in A%,

It is necessary now to find what initial conditions correspond

to the sudden application of the control jet.

Assume that the system was at its steady-state values before

the application of the disturbance., Then for time before the dis-

turbance

Ap) =0 | t+<o {4.23)

pp (E)

Since Ap(t)= =~ -1, Hp(t) does not change in value for a

step change in A%. Thus

Aplb)I= € t=0o (4.24)
Let the value of the exit area of the upstream tank, A%, before
the application of the control jet be
* »
AT = AZ (4.25)

Let the area of the control jet be defined as a fraction of

the nozzle area such that after the application of the control jet,

the area is
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AF= A% ;=0 {(4.26)
The natural frequency is
L
_ Pk, CaRTol2
@ “"‘—"'-—V‘ (4.27)
which does not depend on A% and therefore is not altered by- a
change in A%.
The damping ratio is
. 2
g - A |CsRTe 12 4 1 (4.28)
‘2 V| K, Po
which is proportioned to A%, After the application of the jet, the
damping ratio becomes
|
AT CaRTo [Z
= _— — 20
=z [v«.vo ot 4-29)
The quantity aAaft) is
Po ault)
Ul Ao g
From equation (4.30), it can be obtained
U A% -
o= L2 oo (4.31)

The quantity, Aa(t), for tz0, is

Po O (t)
olt) U A% | , 2o ( )
- e -

i e W T
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Using equation (4.31) and (4.32) to find Oa(t) at t=0 gives
L
Aale) T !
or
Aato) = lj-;—f (4.33)
Equations (4.15) can be written in terms of S and wn to give
dAalt) wp (&4.34a)
3 ST AplE)
dApt) _ 4. 350
S = 28 wa[ Aatt)— Apie)] (4.35b)
Putting the value of Aa(0) from equation (4.33) and the value
of Ap(0) from equation (4.24) into equation (4.32b) results in
dAdJL(D) =2 ng[ACL(O)-— AP(O)]
:ZS wn(_l“{:) _ (4.36)
+
In summary, the equation describing the transient pressure
changes in the upstream tank is
d’Aptd) daplt) o
= E)=0
with the initial conditions
Ap(@=0 (4.24)
dAplt)  28wnli-F) (4.36)
dt 5
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Figures 14 and 15 show the solution of these equations for

various % and f. The natural frequency, wn, the damping ratio,

¢, and the area increase factor, f, determine the response of the
differential equation in equation (4.18)., Consider that some £
is chosen as typical and it is desired to find the best response

possible with the proper choice of § and @n. The quantities ¢ and

wn are functions of many factors. The temperature, T., the supply

Q
pressure, P,, and the constants, Cj, and R, are considered to be

fixed. Also it will be assumed that the area, A%, is fixed. The
only two variables that can be manipulated to achieve the best §

and @n are the tank volume, Vl, and the feedback gain, Kl. The tank

velume Vl is a variable since this 1ls one of the quantities to be

specified by this design. The gain, Kl’ represents the gain of

several elements in the feedback circuit, However, since a power

amplifier is included in the feedback circuit, it will be assumed

that the amplifier gain can be varied enough to allow any overall

gain to be achieved,

The strategy for selecting the proper Kl’ and V; will be to
assume that no matter what Vl is chosen, a K; can be selected that
will allow any § to be obtained. An equation to give the value of
Kl necessary to produce any particular § caan be obtained by solQing

equation (4.20)} for Kl. This is

Ki=

CaRTo | A¥\2
e {28 (4.3)

Using equation (4.37) to eliminate K, from equation (4.20)
yields

i

o g A A
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Figure 14, Upstream Pressure Response with Integral
Controller, § Variable
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_ CaRTo A" (4.38)
= 2o

with @Wn in radians/sec,.

Following the strategy of holding Y constant (by appropriate
choice of Kl) while making wn as large as possible calls for, ac-
cording to equation (4,38), making Vi as small as possible. And
as seen from equation (4.37), the appropriate choice of Kl becomes
in¢reasingly large as Vl becomes small. It is obvious that this
strategy cannot be carried to the ultimate conclusion of making
V;=0 and Kj=. What then is the best design with the available

information? If it were possible to find a maximum gain, Knaxs

then the best design would be to calculate the volume from equation

(4.37). This would be

CalkTo A*\2 (4.39)
Ve —2ete A .
! Fo Kmay (25)

because this would result in the largest possible Wn while still

exercising control over § . However at this point it would be

difficult to obtain a reliable value for the maximum feedback gain, K.
There are other possible equipment limitations that might be

easier to estimate and indeed may be more of a limitation than that

of a maximum feedback gain. Saturation of the feedback elements

seems a likely candidate and will be the one used here, Whether

it be the amplifier, valve motor, or some other element in the feed-

back circuit that saturates, it will be assumed to be manifested in

a upper limit on the speed at which the valve can be driven.
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Let the maximum rate at which the valve stem can be turned
be designed by S. Let the Maximum effective valve area be Ay and
let the valve have N terms from full open te full closed. Assume
that the effective valve area is-prOportional to the number of turns
the stem is from shutoff. If r represents the number of turns the
stem is from shutoff, then the effective area, A, can be expressed
A=r3m (4, 40)
Differentiating equation (4.40) yields
dA Am dr
it N af (4.41)
Using equation (4.41), it can be written
(C—i'&) = Am’ (4.42)
d+t ij_{:ﬂ N *
where (dA/dt)sat is the valve area rate at saturation.
Equatibn {4.38) becomes
5
(EHE) = AmS (4.43)
dt/eat &ON

where (dA/dt) .. is in in®/sec, A_ is in in.2, S in RPM, and N

is in revolutions. This then will allow the area rate to be calculated

from a knowledge of the valve orifice area and the maximum motor specd.
Since the system equations are most conviently utilized in terms
of the dimensionless parameter, it would be desirable to relate the

actual maximum area rate te a maximum allowable value of some dimension-

. e rm————— -
¥ R S S 11—
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%f less parameter
£
%3‘ The definition of Aafc) is
Aa®)=—2 o) - | T
g U ax '
Ef
- Differentiating (4.44) gives
dbalt) . P doyh) -
: dt U AF T dk (4.43)
Thus we obtain
) t
A; (dAcL( )) - Po*( da,(%:_)) 4.46)
-_ dt sab Ui A dt /egt
Equation (4.46) gives the maximum dAa(t)/dt that will be allowed.
When the control jet is applied, it is desirable to have the
absolute value of dAa(t) at its maximum value equal to the saturation
dt
value in equation (4.46)., Thus 1t is necessary to find where the

maximum gha(t) occurs,
dt

From equation (4.34a) it is found that

d?it&) ' max %E ‘ \AP(H]maz (47

Thus the maximum dga(t) can be found from knowing the maximum
dt

Ap(t).

To find the maximum Ap(t) consider the system equation,
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with the initial conditions

Aplor=o (4.49)
dAPC0)= 28 ewn L1-%) (4.50)
at ¥

If the damping ratio is less than 1, then the solution is

2(1-§)

.—gw + . .
Aplt)= == € " ° SIN wnAI-8 t (4.51)
‘};;i'—f

To find where the maximum Ap(t) occurs, differentiate equation

(4.51) and set the derivative equate to zero.

dApE) _ 28w (1-4) -Sawnt SIN(@wnV1 =87 + &) (4.52a)

at £y -%%
Yi1-8%

¢ =Ton! = (4.52b)
The derivative is zero when
V-t p= NT , N=O, 1,2 (4.53a)
ar
ro NT-9 L N=O, 1,2 | @.53b)

Wy VI - 87'

As can be seen from Figure l4, the largest peak is the first,

Then the maximum occurs at n=0; and this value of t is

el e = s B ST 2
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Puttiﬁg this value of t into equation (4.51) yields

S
APMOK"" ?'_E_.‘T_'_:.i)_ e '\h-—gt SIN("d?)

V=57 5
Now let

0

23 e ioE sin(-4)

H{$) =

-32

Equation (4.55) becomes

Apmgx==(%;)H{@

and Table 7 can be used to find H($) for several values of §.

Table 7. H(}) Functions for Several Values of §

73

(4.54)

(4.55)

(4.56)

4.57)

g H(%)
0 0
.1 L1725
.2 .3024
.3 L4030
4 L4823
.5 .5463
.6 .5986
a7 . 6421
.8 .6784
.9 7074

All the equations are now available to find the desired volume

of the upstream tank.
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From equation (3.46), the value of (clb:jla (t))
t sat

(d zi(t))%a’c = U?C:&z (dc;:f))sat (4.58)

and with equation (4.43) this can be written

(dAa_i’c)) _ P AmS
"ot Jsat Ui A% GON (4.59)

dbda(t) at saturation in terms of more easily esti-
dt

which gives the

mated parameters.

Now Ci££§££)) , which is the maximum value of -dAa(t) that
dt max dt

 occurs after application of control jet, needs to be found.

Equation (3.47) gives

dt’-\a(’cﬁl _ @
dat may S

[
APH‘). nay (4.60)

and hp(t)lmax can be found from equation (4.57) to give

d Aalt)

et

Ety Imanﬁ %I (léﬁ) H(g)l , (4.61)

As stated in deriving equation (4.38) it is assumed that no
matter what Vl is chosen, a K; can be found that will permit any §
to be obtained. With this assumption, Ww could then be written in

terms of § and V, which is equation (4.38). Putting this into equa-

tion (4.62) gives

R
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g |d Aalt) _ fC3lTo A%
' At Max 2 ¢4\,

( ';“‘) His)| (4.62)

To prevent saturation, it must be true that

dhau_._)| d,_( dAam)
at  Imox” \ dt sak (4.63)

e

The equallty corresponds to the largest @s and smallest V

1;
therefore equating equation (4.59) and equation (4,62) gives
x - 5
PCSQ-?-TOA‘: (". 'f] H(ﬂl: Po)a;m (4. 64)
285V 5 WAL 60N
Solving for V; yields
o CaRTe AEZ[U-6) HID | Ui bON
V= T 28 P AmS (4.65)
This equation can be used to calculate the value of V;. Notice

that equation (4.65) contains Uj; which would indicate that the value
of V; is dependent on the pressure at which the system is operating.

For the fluidic models the pressure varies over a range of several

orders of magnitude. Even though it is true that Vy does depend on
Ul’ it is not necessarily true that this will cause Vl to vary over

several orders of magnitude. Suppose that a;. is the steady-state

position corresponding to Ul' Now let A be some constant, ¥ , times

this equilibrium value. Thus

A= ¥ Q qq

el T A

i e ke — 1en

——




TR

76

This implies that the valve is selected with at least some

consideration as to the range of operation. Putting this inte equation

(4.65) gives

CaRTo 82 (1=£) K U, 6ON

V -
| 23%0,% Giss S (4.606)

At equilibrium it is known that (equation (4.12b)
Poaiss = Ui A (4.67)

and equation (4.66) becomes

CaRToMN [ (=5 H(S) 6CN
v= S2R °A;L§1;] ) (4.68)

As an example consider calculating the volume for a typical

system., Since most of the upstream pressures call for a small orifice,

let a needle valve be used., For a needle valve, a value of N=10

would be typical. Let the damping ratio be 0.7. Since needle valves

stems for vacuum application are packed very tightly, a high torque

motor with gear reduction will probably be required, Therefore let

the maximum speed be 60 RFM. 1If parallel valves are used with each

successive valve having an orifice area of 10 times the previous,
the value of & would be between 1 and 10 depending on the operating
point. However, considering the wirst case (the case giving the largest

volume), ¥ =1 will be used. Therefore the constants will be

St A

cer|
A gt

o S e e
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L
; 3
3 B
T; A= .2 in? ?
X ¥ =1 ¥
3 S = 60 RPM

2 N =10

f£=1.2

- This gives

V= . 239 #43 (4.69)
The natural frequency can be found from equation (4.38). 1In
cyclesfsec this is

g L at

{ 7274 FaA%

5 Wy ————— 4.70

F N rAAY ( )

with A% in in® and v, in £67. For this example, it is

|

i. wn= 5217 cycles /sec (4.71)

l

|

The value of AP oy WS fixed by the damping ratio. Its
\ value is
Apmoax= —. 107 (4.72)

H or

|

\ SHpmay = — 10,77 (4.73)

\ Downstream Tank System with Integral Controller

The downstream tank is similar to the upstream tank.
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Figure 16. Downstream Tank System
with Integral Controller

The system equations can be written (Figure 16)

dazlt) "
dzt = Ki’.[ ’.Lq_(‘{';‘j -9z ({']‘] (4.74a)

d .‘!H:] ‘2—_[:3 . }
"”‘E‘E_' = —\}:' [_wiz L Py P’J—) - \U‘ZB L Ouz., ]Js)] (4. 74‘))

Assume that the nozzle and the downstream control valve are
choked, and assume that the upstream tank pressure, p; (£), 1s equal to
a constant, Pl'

The mass flow rates for choked flow can be obtained from

equation (2.28). The resulting equations are

daz(¥)

(4.75a)
T = K walt = LE)] '




g S Ay S T R
e e
S R

T
i

B S

SET

prngn i e

o on vt 12

= e

gt o

Ty

dpett), C3l&Terpa¥_ o by ayg (b)) (4.75b)
gt V2

The principle difference between the equation for the upstream
tank and the equations above for the downstream tank is that in equation
(4.75b) there is a product of two state variables, Thus, unlike the
upstream tank analysis of the last section, the equations For the

dovnstream tank are not linear.

An analytical solution to these nonlinear equations is diffi-

cult to find. An analog computer was therefore used to find the solu-

tion.
In order to reduce the number of variables, dimensionless
quantities were formed. Letting the reference input, uz(t), be a

constant, UZ’ the equations (4.75) can be written

Uz dawlt) K2 U3 [ prit) |:|

BAY dt =~ RAYL W (4.76a)
Jodpalt)  CakTep A" prtl Vs /
U; dt B V72 U2 [ |9F] P A¥ %2 U:)J (4.76b)

Let the dimensionless quantities be defined

_ P
plt) = - (4.77)
_ Uz (6.78)
awy = 55, aalt]

Using these dimensionless quantities, equation (4.76) can be

written

Jalt) K2 U3 ‘_P“‘T] ]

T PR (4.79a)

it wii
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dpit) _ CakTePA*r .
o U L~ Pwaw] (4.79b)
If equations (4.79) are linearlized, the resulting second
order system of equations will have a natural frequency and damping
ratio given by
wa=] &3 Q.TQK'!.U‘LJJ?: \ 50
CON VA (4.80)
PAY( C3RT,12
$ = ]
With the constants of equations (4.79) written in terms of
these parameters, the result is
dalty ww [
at - ag L PP ¢.822)
92l 2swn[i~plzrale)] (4.82b)
dat
If equations (4.70) are time scaled by the relation
T = wyt (4.83)
Then equations (4.70) can be written
dalty | _ '
=2 — (Y —l : 4,.84a
dt 24 [P ] ( )
4B - 28]\ - pmace)] (4.84b)

The variables Aa(r) and AOp(?r) can also be introduced. Let

e ot e ek §

e

ST
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these be defined as

Aal?)= alw)—| (4.85)

(4.86)

i

Aplt) = p(Ty)— |

These variables have the same interpretation as did their
counterparts in the upstream tank. The quantity Ap(r) represents
the fractional deviation of the pressure in the downstream tank from
the reference input, and the quantity Aa(z) is the fractional de-
viation the downstream control valve area is from its steady-state

pesition.

Equations (4.84) can be written in terms of these new variables

dAa(w) oA

- 57 AP (4.87a)

d Ap(T) '

LLED - 2sfap aaln + sace) + Apc]  (4.87)
It is desired now to find the initial conditions that correspond

to a sudden application of the control jet. Let A% be the inlet area

before the jet is applied and let ng be the area after the control

Jet is applied.

The natural frequency is

(4.88)

e [ C2RTE ug}%

which is unchanged for an increase in A%,

The damping ratio, § , is
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|
PAY 7 CaRTe 17
g= PAT [T L3lTe °] (4.89)
22U L VaKabh
After the application of the control jet, the damping ratio
becomes
1
. 'FRA:[CSRT:- ]—i
2Uz L VaKe Uz {4.90)
The quantity Ap{r) is
P2({T)
Ap(t)= — ~ :
P Uz | (4.91)
Since it is assumed that the system is at equilibrium for
t<0, then
AplT)=0 , T<O (4.92)
because ps (1")=U2 at equilibrium. And Ap{(y) is unchanged as the jet
is applied because Ap{r) does not depend on A%,
The quantity Aa(?) is
Aalr) -2 Galz) — | (4.93)
P AR '
at equilibrium and therefore for t«0,
*
satmr= B o (4.94)
2

For 20, Aa(r) is
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Ug 0.2(T)

Aol = BT

~1, 20 (4.95)

Using equation (4.95) and (4.94), Aa(r) at t=0 is

l-—
Aate) = .3 (4.96)

Therefore, the system equations are

dAalzy_ v

dt 2¢ Lp(D) (4.87a)
%;‘_tit-)f-—?.?[ﬂvtﬂ Ao(D) + Aol + Ap(D)] (4.87b)

with the initial conditions

| \—F
Aaloy= T (4.96)

Ap(or= o (4.97)

Notice that these equations only depend on the daﬁping ratio,
¢, and the fractional area increase, f.

Figure 17 and 18 give the response of the downstream system
for several values of_ § and f.

The same procedure will be followed to find the size of the
downstream tank as was followed to find the volume of the upstream
tank. The size of the tank will be made large enough sc that the ,
downstream valve motér will not saturate uynder a sudden application
of the control jet,

It is assumed that the feedback gain, Ky, can be made as large

or as small as necessary to give any desired damping ratio, §. The

e BBl T, .

T T TR TR A
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equation giving the damping ratio in terms of the downstream system
components can be solved for the feedback gain to give

— .2
K,?':ICBF’-UJ [ P A% ; (4.98)
Vady L 2U28!
If equation (4.98) is used to eliminate Kz from the natural
frequency, the result is
_ C3RTaP A*
NT Va2 U8 (4.99)
Now from equation (4.99), the downstream tank volume can be
obtained in terms of wn, ¢, and the other system parameters as
CaRTo P AKX
V2 = o 2 U5 % {(4.100)
The natural frequency at which the downstream valve motor
saturates needs to be found.
Equation (4.43) gives the maximum area rate in terms of valve
and motor characteristics., Thus
(dﬁl:z _ A O
at )‘ilf T LON (4.101)
And then from the definition of Aa(t)
(gaa(t)) _ M2 (daq-.(n)
4t Jeqt PAS at.  /sat (4.102)

-y I3 - e Tt 2
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7 Combining these equations,
o
‘f; dﬂa{t)) Y Am S
dt  Jsat PIA*YEON (4.103)
Equation (4.82a) can be used to glve
dAa(t ( dau:)) @Wn
= — = — Apd)
( dt )mm 3t Jmax™ 2g APEImax (4.104)
Equation (4.104) gives the natural frequency in terms of
(dba!t)) and  p(t) ...
dt  /nax _
ddo.u:)j
23( dt s
W A mox {4.105)
By equating (d&agt!} to (d_e.a t ) , the result of com-
dt dt
max sat |
bining equation (4.105), equation (4.103) and equation (4.102) is
B P AF\L CaRTe Ap&dmay N
Va= w( Uz ) 43P AmS ' (4.106)
The quantity (P A*)z can be found as a function of the Mach f
Ez ' ‘5
Number., Let this be written j

[ Uz Ae]2 (£.107)
VoA

The denominator on the right hand side of the equality can be

(P‘uf >‘12 ;

calculated in terms of the mach Number from the equations of Chapter

I1. A few of these values are given in Table 8,

T

P EE
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Table 8. Table of ( 2 e) for
P A%

Several Mach Numbers

As mentioned before, the control required of the downstream
valve could probably be supplied by one butterfly valve. Choosing
the constants that might be considered typical, let the following

constants be

?= 0?
M=1.0
£=1.2
A= .2inZ

{n2
A= 12in
S = 10RPM
N =%

The Mach Number, M, given as 1 is used in conjunction with

Table 8.

From equation (4.106), the tank volume is

V2 = 315 §7 (4.108)

The natural frequency from Equation (4.99) is

o = CaRiabB AL (4.99)
N Vo d Uz %
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The ratio PI/U2 can be found by knowing the Mach Number and

in this example, M=l. The natural frequency is

ety 4.3 vagd [/ eec

!

4
7L cycles /sec (4.109)

The maximum overshoot is
Ap(Bmay = Ol ' (4.110)
or

ApBirayx = b 7o (4.111)

Summary of Design Proceedure for Integral Control System

This section is intended to bring together the more important
design considerations given throughout the integral control system
analysis and to describe a proceedure for designing such a system.

The integral control system consist of a pressure transducer,
a power amplifier, and a motor driven valve, for the upstream as well
as the downstream tapk. By assuming the Mach Number in the nozzle to
be one or greater the two tanks can be analyzed independently. The
primary difference between the two analyses is that the upstream
system controls the pressure in the upstream tank by controlling the
inlet flow and the downstream system controls the pressure in the
downstream tank by con:iznlling the outlet flow. For the upstream
tank system this led .v a linear second order system, and for the

dowmstream tank system the result was a nonlinear second order system

that in many ways resembles the linear upstream system respcase,

55!

P e




The systems would be functioning primarily as a regulator and
therefore the responsc of the system to a disturbance would be the
criteria for determining the system parameters. A step application
of the control jet of a fluidic amplifier was selected as the dis-
turbance.

The equations for the upstream tank system response, with the
initial conditions that correspond to step increase in the nozzle
throat area (the nozzle throat area increase is equivalent to the
application of the control jet) are given by eguation (4.18), equation
(4.24), and equation (4.36). The solution to these equations is given
graphically in Figure 14 and Figure 15. <Correspondingly, the equations
for the downstream tank system are given by equations (4.87), equation
(4.96), and equation (4.97). The solution of the downstream system
equations as determined by an analog computer is given in Figure 17
and Figure 18. The variable A p(t) plotted in these figures is the
normalized pressure error.

As mentioned before the upstream tank is a linear second order
system and the downstream tank is a nonlinear second order system,
but for the range of variables involved, the downstream tank response
is similar to the upstream tank response, The variable f is a measure
of the size of the control jet in relation to the nozzle throat area,
If £ is considered to be constant then the overshoot or magnitude of
the pressure error for a sudden application of the control jet is
solely a function of the parameter ¥ ., For the upstream tank system,
$ is the conventional damping ratio and is defined in equation (4.19).

For the downstream tank, $§ should perhaps not be called the damping

90
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ratio since the system is nonlinear, but it excersizes the same in-
fluence on the downstream system performance as does the damping

ratio in that the magnitude of the normalized pressure error is solely

a function of 9§ for a constant f£. This same transitional quality

from linear to nonlinear is also true of ww . In the upstream tank

system, wp (defined by equation (4.18)) is the natural frequency and

therefore determines the time scale of the response. In the downstream

tank system, the quantity ww (dcfined by equation (4.80)) cannot
be called a natural frequency in the strictest sense but influences

the response as would the natural frequency.

From the definitions ¢f § and ¢wn, it can be seen that they
may be made any desired value by the appropriate values of the feed-
back gains, Ky and K, (referred to collectively as K), and the tank
volumes, Vi and Vz {referred to collectively as V). When attempting
to obtain the best system response it becomes obvious that some limi-
tation must be placed on the range of system parameters or else the
conclusion is reached that the natural frequency can be made arbi-
trarily large by making the tank volume small. Saturation of the

speed of the valve motor was the limitation imposed here.

By thinking of 3 as an independent variable and the feedback

s e e W T e

R

i if gain as a dependent variable, i.e. % can be chosen freely and the

feedback gain must be chosen to accomodate this choice, the strategy
for choosing the tank volume becomes that of making wws as large as

possible (by making V small) without causing saturation of the valve

mator. Lt is necessary then to determine the relation between the

motor speed and the other parameters. The relation between the maximum




area rate and motor speed is dependent on the size and type of valve
used. Therefore the parameters A and N were introduced to reflect
the valve type and size. The area, A , is the size of the maximum
valve orifice area and N is the number of valve stems turns from full
opened to full closed.

Thus far, the comments made on the opevation on the integral

system have applied equally to the upstream as well as the downstream

tank systems. However the following discussion points out a difference

in the two systems,

The relation between @w and ] for the upstream tank is still
dependent on the pressure at which the upstream system was operating.
But it is very likely that the size of the upstream valve will be
dependent on the pressures at which the upstream tank is operating.
The variable ¥ was used to reflect this dependence and thus elimi-
nates the dependence on the upstream tank pressure.

With all these considerations, equation {(4.68) gives the up-
stream tank volume in terms of these various parameters. The variable
S in this équation is the maximum valve motor speed in RPM. The
function H($) is given in Table 7. Then with Vl chosen, equation
(4.79) can be used to determine if the resulting wwis acceptable.

For the dowmstream tank the relation between ww~ and V, is not
dependent on the absolute value of the tank pressure as with the
upstream tank, but dependent on the Mach Number at which the nozzle
is operating. The worst case (largest V;) for the choked nozzle is
M=1. Also since the downstream tank system equations could not be

solved analytically, Ap(t) (the maximum value taken on by ap(t))

max
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must be estimated from Figures 17 and 18. Equation (4.106) can

2
therefore be used to find Vz. The ratio (PlA*) can be found from
U

equation (4.107) and Table 8. Equation (4.99) can be used to check
the resulting .

This completes the design of the integral control system since
the minimum Vl and V2 can be calculated for some given maximum area
rate and some chosen § ., The resulting wucan be calculated to de-

termine if it is suitable large. If wy is not large enough, equip-

ment must be selected that allows a larger maximum area rate.

Proportional Control System

This section considers the analysis of the test apparatus with
the propertional control system. With this control system the upstream
and downstream valve areas are proportional to the error signal whereas
the valve area ratre was proportional to the error signal with the
integral contrel system. The proportional control system is analyzed
in an effort to find a control system with better transient characteris-
~tics than the integral control system. Even if the countrol characteris-
tics of proportional control system are more desirable than the charac-
teristics of the integral control system, the disadvantage of the
proportional control system is that it would be more difficult to
implement., Since the valve area must be proportional to the error
signal, there must be some element to sense the valve area. This
is an additional ciement that would not be required with the integral
control system.

Figure 19 shows the complete proportional control system. As
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before, the upstream and downstream tanks can be analyzed separately
if the test section is assumed to be choked. Thus the following two
sections determine the size of, first, the upstream tank and, second,
the dowmstream tank, both with the proportional control system, Also
the transient response of the proportional contrcl system will be

analyzed and compared to the response of the integral control system,

The Upstream Tank System With Proportional Control

g

When the test section is choked, the equations for the up-

stream tank (Figure 20) can be written

dp () | 23pTo
dt Vi

95

[ Poastbr = A¥pat ] (4.112a)

aitey = K[ ua(6) ~ py L) (6.112b)

b | (t)

Yoy (t) Wy 5 ()

b ——g Pl () —— A

a) (¢} Vi

Figure 20. Upstream Tank System
with Proportional Controller
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The test section is characterized by A%,
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Equation (4,98a) and equation (4.98b) can be combined into one

equation yielding

I

QEL{'E} = g"'-'3'.'2'9‘I:P';“K.l Ly H’)"’ ( Pa Kr 4+ A*) P| l{']-]
dt Vi

If it is assumed that

w{t) = U,

pitt)
"_—} = !
P.( 3

1

Aplt)= pr+i~)

then equation (4.113) becomes

%_Eﬁ:l - *CBVET" [ A% (Poky+ A%) Apct]
: J

In addition, let the two parameters, G and Z, be defined

Ps &

_._A*__

z ==
Cs 7o A®

& =

.113)

(4.114)
(4.115)

{(4.116)

(4.117)

(4.118)

(4.119)

The purpose for defining G and Z by the above equations is that

G and Z are proportional to the two design variables, Ky and V.

Therefore, for example, the effect of making V; small can be seen by

examining the effects of making Z small.

Equation (4.117) is now written

it T om e o LT L
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dg—“fﬁ}=—~}_—[l tUra) ap ] (4.120)

Equation (4.120) is a first order, linear differential equation

and the solution is

o
Y Aplo)e -1
Aptt)= [l + (1 +GYAp ]] (4.122)
1+ a
where Ap(0) is the initial condition of Ap(t).
The time constant, T, is
7z
= .5 4.121)
Te=1va

It would be desirable to adjust the design parameters so that

the time constant can be minimized, This can be accomplished (equation

{(4.121)) by either making Z small or by making G large or both,

Another factor to consider is the steady-state error. This is,
of course, unlike the integral control system which had no steady-

state error. The error, Ap,,, can be found by equating equations

(4.120) to zero, The result is

\
Apss = _*l’:_'-é (4.123)

Since Ap(t) can be written

(Y=L
Aplt)= P‘—(_‘.I—— (4.124)

then the error as defined in equation (4.123) is the fractional de-

viation of pj(t) from the desired value of U;. Making Ap.. small is

e o e
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another consideration when choosing the design parameter, And Ap
can be made small by making G large. Théfefore, making G large by
making Ky larze will reduce the time constant and the steady-state
error. As with the integral control system, determining the practical
limit on how large to make K, is difficult; other factors may become
more important before K1 reaches its upper limit. Again it will be
considered that saturation in the feedback is the limiting factor.
The time constant and the steady-state error will be made as small as
possible without allowing the valve motor to saturate,
If the variable a(t) is defined to be
Vo oo (1)
At === (4.125)
then equation (4.112b) can be written
a{ty = —G Apit) (4.126)
Differentiating this equation gives
da{t) d Apit)
aE T TY T3E (4.127)

-Equation (4.127) provides a means to calculate the maximum

area rate, da(t), from a knowledge of the maximum dap(t).
dt dt

To find the maximum dap(t), consider the response of equation
dt

{4.120) to a step input. A plot of dAp(t) versus Ap(t) under such
‘ dt

an input is shown in Figure 21. The arrows show the movements of the

B N
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states as time progresses. The movement is always to decrease

dAp(t); therefore, the largest dAp(t) must occur at the application
dt dt

of the step., As before the following analysis will be for the ap=-

plication of the control jet.

d_p(t)
§ o

1 p(t)

Figure 21. Plot of Equation (4.120)
By putting equation (4.120) intc equation (4.127), the result is

(k)
9—3?;—:—%—[1 + u+<3).e.pt’c)] (4.128)

The largest da(t) occurs at t=0. Therefore

dt
dalt) .8 ;
(B3 = [+ 1001 200 (4.129)

By assuming that the system is at equilibrium before the appli-

cation of the contreol jet, Ap(0) can be written
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) = (4.130)
Apte | 4+ Go
where
_ }%#i. (4.131)
Go= 5%

As before, the area after the application of the control

jet is
A= LAY iz (4.132)
Putting equation (4.130) into equation (4.129) gives
/dah E-1 :
W ™ 7 TG (4.133)
where
Zo = E;,_R%_E (4.134)
The time constant, T, can be written
g (4.135)
F+Go

From equation (4.119), it can be seen that adjusting the

parameter to make the time constant and steady-state error small, i.e.

large.

making Z, small and G, large, has the effect of making (daﬁt))
max

dt

And since C@iLEn

must be kept below some maximum value, it would be
dt

max

beneficial to examine these equations for tradecffs.




e o et
PRSI |

G 101 ¥
if: .
13 1%
lé'-‘f F"
by ;

Rgiciy
IR

ki

Using equation (4.120) to eliminate Z, from equation 4.133)

a

Ao TH

gives

= £:_.]_._l_._. Gg 4 6
FoTe GLTUHR) Go + f (4.136)

(dam)
dt Moy

For large Gy» equation (4.136) is seen to be primarily a funec-

tion of the time constant Tc'

As stated before it is desired to have (dagt!) as large as
' dt
max

possible without exceeding some limit., Let this limit be designated
by Qﬂ)

dc sat

In equation (4.136) it was found that the maximum area

rate was primarily a function of T,. By letting the maximum area

da s then it

rate, (dagt!) » equal the maximum possible, i.e, (
dt

i)
MAX sat
follows

R (éﬁk) (4.137)

Let the steady-state error, after the application of the con-

trel jet, be (equation (4.124))

e A= F

(4.138)
| Ui T $4+Go

where E is the error.

Considering f to be fixed, the error is only a function of G,-

It would be necessary then to make G, large so that the steady-state

error will be small. Also, since E is only a- function of G,» speci=

F R T P S S FERE b b i
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fying a permissable E fixes Go’
Combining equation (4.136) and equation (4.139) to eliminate
G, results in
£Te
Zo= — =" {(4.139)
and by using the definition of Z,, it can be written
_ - . -~ *
E
Equation (4.140) gives the upstream tank volume, V;, as a
function of the time constant, T., and the steady-state error, E.
The time constant is primarily a function of the maximum area rate
permissible for large G, and this makes choosing Vl primarily a
tradeoff between keeping Vl small and keeping E small.
The area rate at saturation can be estimated using equation
(4.43). This is
dal AenS
—&?)m: e (4.141)
Then from equation (4.,125), it is obtained that
(é&) - paAMS
dt/sat £ Ui A% 6ON (4.142)
Define two additional variables, ¥ and Ajs to be
¥ = Am

A (4.143)
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A= (4.144)

The area Al will not be the value of al(t) at eguilibrium
since there is a steady-state error with the proportional control
system. However if the steady-state error is small, then the dif-
ference between a; (t) ae equilibrium and Al will be small, Then

¥ is essentially the coastant that relates the maximum valve area to

the equilibrium position of the valve. Now equation (4.142) can be

written

o |
dt lsat” feonN (4.143)

Using constants similar to the numerical example of the integral

controller, let the following constants be

Zoeh 00
i n oo

" then

95) = 0.0833
dat /may (4.146)

Putting this value of (dal into equation (4.139) gives
dt
at

TAa 2 sec (4.147)

Equation (4.140) then gives

~2 (o2
Vi = ZE“’ (4.148)
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Downstream Tank System with Proportional Control .
When the test section is choked, the equations for the down- ;
stream tank system (Figure 22) can be written ;
dp’l[{")_ C5 ETE *
T v [A*R - pa B a2 (D] (4.149a)
aa(t) = Ka[ pa(t) — ua (£]] (4.149b)
ujy (t)
.
%2
Pl . PZ(t) ]
A%® V) ag(t)
Figure 22, Downstream Tank System
with Proportional Controller
Let the following variables be defined as:
Wy (t) = Uy
" (4.150a)
pit)= £218)
IJSo . {4.150b)
1
- X2 U; (4.150c)
A¥ P,
- Ug s (4.1504d)
CaRToA* : '
3 J;A i (4.150e) |
a(t)= ——
|
ﬁ
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With these definitions, equations (4.149) can be written
dAple) {
=—— =) ApEi—1|
I =1 -aw(apw-1) (4.151a)
alt) = G Hpidd (4.151b)
Equations (4.151) can be combined to yield
d et | 2 -
=l Ve — Al Gaptd) + Ghaplt) — | 4.152
-z loer P ] (4.152)
Equation (4.152) is a first order cquation but it is not
linear as was® the upstream tank system equation. The solution to
equation (4.152) is
-2by
Ao = tDD+ (14D)Be =
pr= GD - (4.153a)
2[1 -Be % J
where
D= (1+ 2y (4.153b)
G
and
L 24p@+ |1 =D
== 2Ap(0)+1 +D (4.153c)

It is interesting to compare the non~linear downstream tank

system response to the linear upstream tank system response.

Define two new variables, q(t) and 2=, in terms of the upstream

tank variable to be
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Cf”’-): — (1 +3) A‘P(_'H (4.154a)

| + G (4.154b)

With the new variables, all the upstreém tank system responses
can be represented by one plot., If we let the new variable have the
same definition for the downstream tank éystem except for the minus
sign in equation (4.154a), then it too can be plotted on the same
coordinates but the response will still be a function of G. Figure
23 shows a plot of the upstream tank system response as well as for
the downstream tank system response with G=1 and G=10. The initial

condition is q({0)=.25.

From the figure it can be seen that when G becomes large, the

two responses become very similar.

q(r)

1.2 - Dovmstream System Response

1.0

G=1 G=10

0.8 - Upstream System Response
{for all G)

0.6 —
0.4 —

0.2 -

' T J | T 1_5 —
0 0.5 1.0 1.5 2.0 2.5 3,0 ©
?.-

Figure 23. Upstream and Downstream System
Response with Proportional Controller
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Therefore the same design procedure would be valid for de-
termining the size of the downstream tank as was used for the upstream

tank. The equivalent of the time constant for the downstream tank is

Te= -~ (4.155)
J:[. )%

The steady-state error is

SRy
APE.,:_%J,_E | +Z (4.156)

Table 9 gives a few values of the steady-state error as a

function of G.

Table 9., Steady-State Error for
Downstream Tank System

T B

T

Pgg (%)
i 61.8
2 36,6
5 17.1
10 9.2
25 3.9
50 2.0
100 1.0

Apain the maximum area rate (saturation) will be the factor
that will determine how large to make G and how small to make Z.

By differentiating equation (4.1531b) and by cowbining it with
equation (4,152}, an equation giving the area rate as a fﬁnction of

A p(t) can be written as




T et BT Troimupiyyt WIS

daltlt)

P =—~:CZ—[C=&P""{H+C-AP(’C)"I] (4.157)

Figure 24 is a plot of this equatioa.

da(t)
- dE
1%

N A

\ Ap(t)

Figure 24, Plot of Equation (4.137)

The arrows in Figure 24 indicate the movement of the state
along the line for some initial displacement from the equilibrium
position,

From the filgure it might appear as if the system could become
unstable if the initial conditions were to put the system on the left-
most portion of the curve. However since the point at which the curve

crosses the Ap(t) axis on the left is to the left of the -1 point, and

siace

poit)~Ua

Api) = 5 (4.158)
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then it would be necessary for either py(t) or U, to be negative

in order to reach this portion of the curve,

The pressure pjy(t)

will not be negative and it would be simple to constrain the refe-

rence input, U,, to be always positive. Thus

be unstable.

the system should not

Now the maximum area rate needs to be found for the step ap-

plication of the control jet., Let the size of the test section area,

A%, be designated by A% before the application of the control jet.

Also let the following variables be defined as

Q) U
Qo (£) = = 2r
e A% P,
K U3
Ge= AP
> - Uz Va
® TCaRTe ALP,
' -t 4
Aposs 7tz :+E_;o
E=—t4d /i 4
272 Go

(4.159)
(4.160)
(4.161)
(4.162)

(4.163)

Since the dimensionless parameter a(t) will change in value

with a change in A% even if az(t) does not change, then so will

da(t). The subscript will designate this difference.

dt

Figure 25 shows two trajectories: one for the control jet

closed and one for the control jet open.

For the closed jet, the equation is

dan(t) Ge
daetB)__Se [Goap™H) +GoAplt)-1] (4.164)

and for.the open control jet the equation is

109
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daolt) . _Go(Gonptit) +Gonplt) ~F) (4.165)
dt Lo
da_(t)
dt

-3+5V 1 + g—f-
\\\j Yo
i Ap(t)
// VL g

Figure 25. Response of Downstream Pressure
to Control Jet Disturbance
It is assumed that Ap(t) is at the equilibrium point with the
jet closed and since Ap(t) does not change value instantaneously with
the opening of the jet (does not depend on A%), then the imitial
condition for the response corresponds to projecting the equilibrium
point straight up until it intersects the upper line. This is obviously

the largest da (t) that will occur for a step jet application.
dt

By substituting equation (4.164) into equation (4.166) the

maximum area rate is found to be

dap(x) = Ge
( 3t )mm" Z, LF-1] (4.166)
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Using (4.1553) to eliminate T, gives

(do.ovc\) - S L
at  /moy _fﬁ)z
Te 1+ T
which shows that for large Go’
(F£-1)
T“"'(daottu)
dt  /may

111

(4.167)

(4.168)

This is similar to the upstream tank in the respect that the

time constant, T., is primarily a function of the maximum area rate

allowable. By using equation (4.43) and equation (4,154}, the satu-

ration limit caﬁ be obtained as

(d&o(‘l:}) _ U AmS
dt  Jept  FPRALGON

The ratio U2 can be obtained from Table §.
P]. Ag‘ c

If the constants are

o
o]

L
o
=l
=
]

12in?
10RPM

z2wnp
H ugzmu ]

»e

then

(dao(i:)

Putting this into equation (4.169) gives

(4;169)

(4.170)

d
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T= ©. 0113 sec (4.171)

The desired volume can be found from equation (4.161) and

equation (4.155) as

'
"
5
e
1]
s
A
-
.
s

E

1
A% P Af\zZ
Vo= CaRToTe Go( BQI)(I + — )

B Go (4.172)

% and the corresponding steady-state ervor is :
: 4f i
! S T —_ !
g E=—g+3 b+ Go (4.173) :

piail i

Several values of V, and E are given in Table 10. ;

[l
Table 10. Values of V2 and E for T=0.067 ?
3 Il
G, Vy(fe”) E(%) 1l
1 ' L0471 70.4 i
2 .0721 42,2 5
5 .137 20,0 ;
10 .238 10.8 1!
25 .534 4,6 il
50 1.02 2.3 1
100 2.00 1.2 |

Sumnary of Design Proceedure for Proportional Control System

The proportional.control system differs from the integral
control_system in that the valve area itself is proportional to the
error signal with the proportional control system insiead of having

the valve area rate proportional to the errcr signal as with the inte-

e o - IR

e e — b




gral control system. This difference causes the proportional control
systems to be first order instead of second order like the integral
control system. With the proportional control system the object is
to make the feedback gain large so that the error will be small.

The upstream tank and the downstream tank system were analyzed
separately, The upstream tank system was found to be a linear first
order equation while the downstream tank system was a non-linear first
order equatiom,

With the integral control system, the response characteristics
used to determine the control parameter valves were the overshoot and

.settling time. These were characterized conveniently by ¢ and wy
and controlled by the feedback gain and tank volume. For the pro-
portional system the factors which determine the performance are
rise time (so called in first order system) and steady-state error.
Recall that there was no steady-state error with the integral coatrol
system,

These are characterized conveniently by T, and E. The para-
meter Tc is the time constant when applied to the upstream tank and
similar to a time coanstant when applied to the downstream tank system.
The parameter E is the normalized steady-state error in both the up-
stream and downstream tank systems. And in turn T, and E can be
found in terms of two more parameters G and Z,

The parameter G is defined by equation (4.118) for the upstream
tank and by equation (4.150¢) for the downstream tank. In both cases,
it is proportional to the feedback gain. The parameter Z is defined

by equation (4,119) for the upstream tank and by equation (4.150d)
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for the downstream tank, The parameter Z was thus defined for con-
venience and because it is proportional to the tank volumes,

Again the control jet application was used as the disturbance,
and saturation of the valve moﬁor was set to reflect equipment limi-
tacions.

Several simplifications can be made if we assume that the
feedback gain is sufficiently large. In order to justify this, notice
in equation (4.124) and equation (4,156) that the steady-state errox
is only a function of G, Thus specifying some G fixes the steady-
state error. For errors of 10% or smaller, G must be 10 or larger,
.If G 1is 10 or larger then it is sufficiently large to make the desired
simplifications.

The first simplification is made with regard to Figure 23,

Even though the analytical solutions look quite different, the upstream
and downstream tank system responses are essentially the same for G
equal to or greater than 10, Therefore unless stated to the con-
trary, the following discussion is pertinent to both the upstream

and downstream systems,

For large G and f fixed, the minimum time constant, T,, is

c?
found to be only a function of the maximum allowable normalized area
rate, .As the normalized area rate increases, the time constant de=
creases. With ¥, 8, and N (as defined for the integral coﬁtrol
system) used, the maximum normalized area rate can be found from
equation (4,145). The upstream system time constant is thus approxi-

mated by equation (1.37) and the dowmstream system {pseudo) time

constant is given by équation {4.168).

PIEACE TG TCA

o
———T
AT R

e P R W




Tk B A I

IS e

Since the minimum time constant is primarily a function of the
maximum normalized area rate and not the gain, G, then equation
{(4.140) shows that the upstream tank size is only a function of the
steady-state error. Therefore, to make E small, Vl must be made
large. This tradeoff between E and tank volume is also true for
the downstream system; however, G cannot be eliminated to give a
direct relation between V, and E as in equation (4.140). Instead

equation (4.172) and equation (4.173) must be used with G, as the

independent wvariable,
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