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SUMMARY 

This thesis is concerned with the design of a test apparatus 

for the study of rarified flows. The function of the apparatus is to 

provide regulated air pressures upstream and downstream of a test 

section. The test section is assumed to behave pneumatically as a 

variable area nozzle. Only the analysis portion of the design is 

considered here. 

The apparatus consist of two control valves, two tanks, a 

test section, a vacuum pump, and a two-loop feedback control system. 

Atmospheric air is used as the supply since the pressure range of 

interest is below atmospheric. 

The analysis of the system is divided into two parts. The 

steady-flow analysis portion develops the relations necessary to 

determine the valve and vacuum pump sizes. The second portion of the 

analysis deals with controlling the pressures automatically with a 

feedback control system. 

Although much of the analysis is specifically for the appli­

cation at hand, some generality concerned with the controlling of 

pressures in a series of volumes and restrictions is achieved. 



NOMENCLATURE 

area, square inches; dimensionless area ratio 

nozzle exit area, square inches 

nozzle throat area, square inches 

valve orifice area, square inches 

constants used to calculate mass flow rate 

coefficient of discharge 

speed of sound, ft/sec 

steady-state error 

constant, 2.71828 ... 

function of pressure ratio used to calculate 
mass flow rate 

area change factor 

dimensionless feedback gain 

maximum angular speed, RPM 

function of 9 used in calculations 

feedback gain 

Knudsen Number, dimensionless 

specific heat ratio, dimensionless 

Mach Number, dimensionless 

mass, pounds-mass 

number of valve stem turns to shutoff, revolutions 

pressure, mmHg; dimensionless pressure ratio 

volume flow rate, ft /min 

gas constant, 19.16 mmHg-ft3/lbm-°R 



X 

S maximum angular speed, RPM 

T temperature, degrees Rankine 

T time constant, seconds 
c ' 
t time, seconds 

U, u reference pressure input, mmHg 

V volume, cubic feet 

v velocity, ft/sec 

w mass flow rate, lbm/sec 

x characteristic dimension of flow channel, inches 

Z dimensionless volume ratio 

d intermediate calculation constant 

/B intermediate calculation constant 

* area coefficient 

*X 
mean free path, inches 

3 
/o density, lbm/ft 

T dimensionless time ratio 

«M natural frequency, radians/sec 

* damping coefficient, dimensionless 



CHAPTER I 

INTRODUCTION 

This thesis was motivated by a project to design and build 

a test apparatus to study the flow of air through models of fluidic 

devices at high Mach Number and low Reynolds Number. In order to 

achieve a reasonable size for the models, low pressures are required. 

This necessitates a vacuum pump in the system. 

The need to provide a means of controlling the pressure in the 

tanks upstream and downstream of the test section gives rise to the 

design utilizing the upstream and downstream control valves in Figure 

I. The problem was then generalized to designing a test apparatus 

with the configuration of Figure 1 but5, instead of restricting the 

design to fluidic models in the test section, any restriction charac­

terized by a cross section area and Mach Number is considered. 

An early consideration is the determination of the size of 

the upstream valve, the downstream valve, and vacuum pump that is 

necessary to produce the desired steady-flow conditions. In Chapter 

III, this analysis is made first for the general case and then for 

fluidic models. 

A second consideration is that of designing an automatic 

feedback control system for properly manipulating the valves. It 

has been found that maintaining constant pressure in the tank by 

manual regulation of the valve is difficult. Ordinary differential 

pressure regulators which depend on the fluid itself for energy are 
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not feasible because of the low pressures involved. Therefore some 

type of feedback control with power amplification is required for 

providing the regulation. Two such systems were analyzed: one 

using proportional control v/ith saturation and the other using an 

integral control with saturation. 

The transient response was analyzed to determine the choice 

of parameters that gives the best results. In this respect the 

upstream and downstream tanks are considered part of the control 

system since their volumes affect the response of the system. The 

automatic control system analysis, like the steady-flow analysis, 

is performed first in general and then for the fluidic models. 

This analysis is in Chapter IV. 

Chapter II develops the equations that are used to describe 

the flow through valves, nozzles, and volumes. The equations are 

based on the one-dimensional., isentropic flow of a perfect gas. 

The constants are evaluated for air at standard temperatures and 

pressures. 



CHAPTER II 

COMPRESSIBLE FLOW THROUGH VOLUMES 
AND RESTRICTIONS 

This chapter presents the equations used to describe the 

flow of air through the various components of the apparatus. The 

flow through nozzles, orifices, and valves is discussed as well as 

the flow of a compressible fluid through volumes. 

Units and Constants 

A consistent set of units is utilized in numerical examples, 

Millimeters of mercury are used as the units for pressure since 

these units are common for vacuum systems. The othor units are 

common in general engineering usage. A summary of these units is 

given in Table 1. 

Table 1. Units and Abbreviations 

Quantity Units Abbreviation 

mass 

density 

pressure 

area 

mass flow rate 

volume flow rate 

pounds mass 

pounds mass 
per cubic foot 

millimeters of 
mercury 

square inches 

pounds mass per 
second 

cubic feet per 
minute 

lbm 

lbm/ft3 

mmHg 

in^ 

lbm/sec 

CFM 
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temperature degrees, Rankine °R 
Scale (°F + 460) 

velocity feet per second ft/sec 

angular velocity revolutions per RFM 
minute 

Flow Through Nozzles 

Perfect Gas Law 

Air is assumed to obey the perfect gas law 

where R=19.16 mmHg ft3 . 
lbm OR 

Isentropic Process 

The flow of air through nozzles is assumed to be isentropic. 

Hence 

P-/^MK < 2' 2> 
P o ^ /sfe» / 

and 

i=(i) ¥ ^-3) 

where k is the usual ratio of specific heats and the subscript, o, 

indicates the value at any reference state at the same, entropy. 

Mach Number 

The Mach Number, M, is defined as 
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Area Ratio 

With one-dimensional flow, the continuity equation yields 

w= /vA (2.9) 

where 

w = mass flow rate 
P = density 
v = velocity 
A = area 

Since the mass flow rate must be eqvial at any two stations, 

equation (2.9) can be used to obtain 

/WiAi= f>2 Va A 2 (2.10) 

Solving for the area ratio yields 

41- A^Z. (2.11) 
A2 p\\t\ 

Using equation (2.4), this can be written 

AJL = ^ M n / T ^ (2r12) 
ACL /?, M, / — 

and with equat ion (2.1) and equat ion ( 2 . 3 ) , the r e s u l t i s 

A+J. 

Az M I I T I J (2.13) 

F i n a l l y , us ing equat ion (2„7) , t h i s becomes 

2 A l l 
Ai _ M * [ 2 + CK-0 Ml' I 2Ck-0 
A l " M1L2 + C K - / ) M | " J (2.14) 
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Putting in the throat condition at station 2, equation (2.14) 

becomes 

^ T U ( M - ¥ ^ ) J ^ (2.15) 

This last form is the most useful since it allows the necessary 

cross section of an isentropic nozzle to be calcialated as a function 

of the throat area and the Mach Number. 

Critical Pressure Ratio 

The critical pressure ratio, pcr/pOJ can be found from equation 

(2.8) by letting M=l. This is 

k_ 
i 

(2.16) Po \ **l ) 

With K=1.4, equation (2.16) becomes 

|^=.5283 (2.17) 
ro 

Mass Flow Rate 

As given earlier, the mass flow rate for one-dimensional flow 

can be written 

r (2.18) 

If equation (2.1), equation (2.4), and equation (2.7) are com­

bined with equation (2.18), the result is 
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^ P V ^ M / ^ T ^ < 2 - 1 9 > 

Letting C]_»yk/RTq, equation (2.19) becomes 

w- C,p^MV\ -t- .2M2 (2'20) 

For air at 537°R 

C,= 7.6,72 x IO~4 Sec ^ K T ^ T (2'21) 

Using equation (2.8), equation (2.20) can be written 

M 
w "

p<V4 UTo , . k+-l (2.22) 

Equations (2.19) through (2.22) have given the mass flow rate 

in terms of the Mach Number. The mass flow rate can also be written 

in terms of the pressure ratio. This equation is 

4 c — i 

W-fW(£7jW SV'-fl) " (2.23) 

Equation (2.23) is valid for both subsonic and supersonic flow. 

Letting ^2= / 2k j equation (2.23) becomes 
V(k-1)RT„ 

_L / f" 
w=C2p.A(f> Ji-llr) K" (2.24) Vt 
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For air at 537°R, 

-3 Ibrrt 
Ci= 1.716 X \0 " — 7 (2.25) 

sec îrvi H<:} 1N 

All of the mass flow equations developed thus far are, under 

the conditions stated, valid for all positive Mach Numbers and all 

pressure ratios between zero and one. It is necessary, however, for 

the nozzles to have certain geometries for these conditions to be 

reached isentropically. In a practical situation, the geometry is 

fixed and the flow conditions vary. It would then be beneficial to 

discuss the mass flow rates in relation to fixed geometries. 

Consider first the strictly convergent, or subsonic nozzle. 

The Mach Number can never be greater than unity, and therefore equation 

(2.19), equation (2.20), and equation (2.22) are only valid for 

0*M*1. Equation (2.23) and equation (2.24) are only valid for 

•Pcr/P0*p/P0* 1. 

When the ratio of the exit pressure and the stagnation pressure 

is less than or equal to the critical pressure ratio, the nozzle is 

choked and the mass flow rate is at a maximum. This maximum is 

*r 1 2. • • " ' 
W*^AVEWk-° (2.26) 

The area, Ae, is the exit area of the nozzle, 

Letting 

lc+-

C3--/T US"*-" (2.27) 
Ve.T* Vic4-1 / 
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equation (2.20) can be written 

w - C-zp0 Ae? (2.28) 

For a i r a t 537°R 

C*= 4.4-41 X lo~* ~!11-T—^ ( 2 ' 2 9 ) 

s e c mroH^ IM 

The other nozzle that will be considered is one that initially 

converges and then diverges. This is called a convergent-divergent 

or supersonic nozzle. The minimum area in the nozzle is the throat 

area and will be designated by A*. For the flow in the supersonic 

nozzle to be isentropic, two conditions must be met simultaneously. 

The area ratio as given by equation (2.15) and the pressure ratio as 

given by equation (2.8) must both be satisfied at the nozzle exit. 

When this happens for supersonic nozzles, all of the mass flow equations 

will apply without restriction. 

What happens when these conditions are not met simultaneously 

will be discussed in the next section. However, for any convergent-

divergent nozzle, the mass flow can be written in terms of the throat 

area, A*, with only the restriction that the ratio of the exit pressure 

and the stagnation pressure be less than the critical pressure ratio. 

This mass flow rate is the same as given in equation (2.26) with A* 

in the place of Ae. Thus 

kf i 

w= p-Vero te7^-'> (2-30) 

With 
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C,-f£ (J-)l£» (2-3D 
M VLTTo V fc + I / 

equat ion (2.30) becomes 

W= C3 p»A* (2.32) 

and the value of C3 given in equation (2.29) can be used. 

Convergent-Divergent Nozzles with Subsonic Flow 

The mass flow rate relations that have already been developed 

for supersonic nozzles have been for the case where the nozzles were 

at least choked. This section discusses the relationship between the 

mass flow and the pressure ratio when the nozzle is not choked. 

Figure 2(a) shows a convergent-divergent nozzle. Figure 2(b) 

shows the relationship between the pressure ratio along the nozzle 

axis for four different back pressure ratios and Figure 2(c) shows 

the relationship between the mass flow rate at the full range of back 

pressure ratios. Also indicated on Figure 2(c) are the four cases 

of Figure 2(b). 

Consider the flow represented by line (1). In this situation 

the pressure decreases in the converging section and the Mach Number 

increases. The Mach Number, however, never reaches unity nor does the 

pressure ever reach the critical pressure. As the flow passes the 

throat, the pressure begins to increase and the Mach Number begins to 

decrease. Assuming that the flow is isentropic throughout, the mass 

flow rate can be found using equation (2.24). Using the exit area, 

Ae, and the back pressure, pg, this becomes 



vWI^ 
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#v 
As the pressure is lowered more, the situation depicted by line 

(2) results. The Mach Number at the throat reaches 1.0 and any 

further decrease in the back pressure, as shown by lines (3) and (4), 

will not affect the mass flow rate. This is the range referred to 

earlier where equation (2.30) applies. Notice that the pressure 

ratio at which the nozzle chokes is greater than the critical pressure 

ratio. 

It would be of interest to find the pressure ratio at which the 

nozzle chokes. Suppose the nozzle is designed for a Mach Number of M^. 

The ratio of the exit area, Ae, and the throat area, A*, is 

k+i 
Ac i T/ Z W k-l z\l ---

A ^ ^ L ( ^ ) r + - r Mj/J2(k-" (2.34) 

If the flow depicted by line (4) is assumed (i.e. isentropic 

and supersonic), the mass flow rate can be found by equation (2.22). 

This is 

^P'Ae/r-
*-r° I IC-I 2 V ̂ — (2'35) 

(i + V M d )2U*° 

The mass flow rate found from equation (2.33) will be equal to 

the mass flow rate given by equation (2.35) when the nozzle becomes 

choked. Thus the solution of the equation 
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(£) V'- (£) ̂  = M« (> + 41 "*)'*«'» (2-36) 

will give the ratio at which the nozzle chokes. 

For any particular M^ there will be two values of PTVP that 

satisfy equation (2.36). One pressure ratio will be below the critical 

pressure ratio and will be the same as that given by equation (2.8). 

The other solution is greater than the critical pressure ratio and is 

the solution sought here. 

Equation (2.36) cannot: be solved explicitly for p /p ; however 

Table 2 gives a few sample values. 

Table 2. Pressure Ratios for Choking 
in Supersonic Nozzles 

M^ A /A* Pressure Ratio for 
Choking 

1.0 1.00 .528 
1.5 1.18 .778 
2.0 1.69 .907 
2.5 2.67 .967 
3.0 4.23 .987 
4.0 10.72 .998 

Flow Through Valves and Orifices 

All the equations that have been developed for the mass flow 

rates through subsonic nozzles can also be applied to valves and 

orifices if a coefficient of discharge, C^, is used. The coefficient of 

discharge is necessary since the mass flow rate through a valve or 

orifice will not be as large as the mass flow rate through a subsonic 
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nozzle of the same area. For example, the flow through a choked 

subsonic nozzle 

w == C3PoAe (2.28) 

For a valve or o r i f i c e of the same a r e a , the flow i s 

w = CdC3PoAe (2.37) 

However , if the product of Cj and Ae is thought of as an 

effective area, then equation (2.28) can be used for the flow through 

valves and orifices with the understanding that the area is the ef­

fective area instead of the actual area. Throughout the remainder 

of this thesis the areas associated with any valve or orifice will be 

assumed to be the effective area instead of the actual area unless 

otherwise stated. Discharge coefficients for many valves and orifices 

can be found in reference 1. 

For convenience let a function, Fl—=•) , be defined: 
* 1 • • • £ ) • 

&)T,AT7&rf, (^-)h i (»K 
, N. ,, , ?\ VK+ i / IP' 

p, I k + ( 

^ W - 5 - ^ <2-ls> 

The mass flow rate through a valve or orifice can be written 

Wii= Czp, Al2 ?(—) (2.39) 
r V pi / 
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where Q, for air is given by equation (2.25). 

With the constants evaluated for air, equation (2.38) becomes 

^)™V'-(S) .2351 

\ lirJ ~V {-[V,) 
Y .2533 (2.40) 

It is noted in equation (2.39), that when the valve is choked, 

C * F / — \ = C S , — £ .5^83 (2.41) 

\?\J ?\ 

Flow Through Volumes 

Consider the system shown in Fig;ure 3. 

w12(t) 1 I w23(t) 
«- P2, T2, V2 — » * 

v TI L_ r > Ts 

Figure 3. Flow Through a Volume 

From the conservation of mass principle, the total mass in the 

volume at any time, t, is 

Jo 
m4(t) =r \ [ W,a(r) - W 2 3 ( T - ) J cif +- m<? (2.42) 
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The mass, m , is the initial mass in the volume. 

If it is assumed that the fluid properties are homogeneous 

throughout the volume, and the fluid is a perfect: gas, then the mass, 

m2, can also be written 

fV)Z ' e.T2 (2.43) 

It is known that the temperature and the pressure in the inlet 

jet will be different from the temperature and pressure in the re­

mainder of the volume. Yet it is assumed that the jet will be small 

compared to the volume and that the error caused by assuming homogeneous 

properties is small. 

The initial temperature of the fluid in Figure 3 is T^. If 

it is assumed that there is no heat transfer to or from the fluid as 

it enters the volume, and that the fluid in the volume is at rest, 

then T2=T^. This equality is a result of the conservation of energy 

equation for a perfect gas. 

With T2=Ti and equation (2.43), equation (2.41) becomes 

¥i£ - W W I - L C O - W«. Cr)] dv H- mo (2.44) 
e/r, JoL 

When equation (2.44) is differentiated with respect to time, the 

result is 

^ P 3 = B£[L f w . z c H - w ? 5 ( t i l 
dfc V 2

 L J (2.45) 

This result will be used later to describe the transient be­

havior of air through tanks. 



CHAPTER III 

ANALYSIS OF THE TEST APPARATUS UNDER 
STEADY-FLOW CONDITIONS 

This chapter uses the relations developed in Chapter II to 

determine the required size of the upstream and downstream valves, 

and the required vacuum pump capacity. 

The first part of this chapter considers the somewhat general 

case of designing the system where the test section is characterized 

only by a throat area and a Mach Number. An analysis is presented 

which provides a method of finding the upstream and downstream valve 

effective areas as a function of this throat: area and Mach Number. 

Also a method is preseated for estimating the vacuum pump size. 

The last part of this chapter is devoted to designing the 

system for a particular type of test model. These are to be models 

of fluidic devices. The flow conditions at which the models are to 

operate and the dimensions of the models are given., Therefore the 

mass flow rates are known and the specific size of the upstream and 

downstream valves can be found. The vacuum pump size is estimated 

and a method is presented thai: will allow any specific vacuum pump 

with its particular pumping characteristics to be evaluated. 

Figure 4 shows the notation that will be used in this chapter. 

The supply pressure, p0, is the standard atmospheric pressure of 

760 mmHg and the temperature, T , is 537°R. The two control valves 

are characterized by their effective areas of Ai and Ao. The pressur 

in the upstream and downstream tanks are p- and P2 respectively. 
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The pressure P3 is the exit pressure of the downstream valve as well 

as the vacuum pump inlet pressure. 

Analysis for General Case 

Upstream Valve: General 

The function of the upstream valve is to control the pressure 

in the upstream tank. The analysis in this section is to help de­

termine the valve size necessary to provide this control. 

The mass flow rate through any valve can be found from equation 

(2.38). For the upstream valve this is 

W-C2p*A.F(^) (3.1) 

For steady flow, the mass flow rates through the valves, as 

well as the nozzle, must be equal. Solving equation (3.1) for Ai 

yields 

W 
A - -^T\ (3.2) 

CipoF Po 

It can be seen that the upstream valve effective area, A-̂ , 

is a function of the system mass flow rate, w; the atmospheric pressure, 

p ; the upstream tank pressure, pi ; and the constant, C2- With the 

atmospheric pressure considered! to be constant, the valve area becomes 

a function of the system mass flow rate and the upstream tank pressure. 

It might also be mentioned that if the upstream tank pressure is below 

the critical pressure, then the valve area is only a function of the 

system mass flow rate. 

It would be desirable to relate the system mass flow rate to 
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the nozzle conditions. There are several ways to write the mass flow 

rate but here, as mentioned previously, the exit Mach Number and the 

throat area will be used. This gives rise to two cases: subsonic 

flow and supersonic flow. The mass flow rate is thus written (see 

equation (2.19) and equation (2.28)) 

W = 

r n A * M _ 
Ci pi A Z N a 

(14-. 2.M r 

Csp> A* 

, M < I 

(3.3) 

The constants Ĉ  and CU are given by equation (2.21) and equation 

(2.29) respectively. The area, A*, is defined in both the subsonic 

and supersonic case as the smallest cross section area of the nozzle. 

For the subsonic nozzles this is the exit area and for the supersonic 

nozzles this is the throat area. 

By substituting the mass flow rate of equation (3.3) into e-

quation (3.2), it can be written 

A* 

c, 
c 

l p o ) [ 
* f/2L\ 0+-2.M2) 

1T5 / M < l 

(3.4) 

CS V£o 

Ci F(£) 
, M> I 

Figure 5 is a plot of equation (3.4) and can be used to find 

the necessary effective area for the upstream valve as a function of 

A*, pj_, and M. The Mach Number, M, is the Mach Number at the exit of 

nozzle in the test section. This also assumes the upstream or ambient 



23 
2.0 

1.9 

1.8 

1.7 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

Al 
T* 1-0 A* 

.9 

.8 

.7 

\ 

, 

. 

j 

i T 

j i 
—I-J 

1 
j 

/ 

i / 

7 , 

i if 

i / 
" T 

ll / 1 ! 

1 j /j 1 h 
} . 

\ 

1 1 / / / / 

J 1 J 7 ' ' 
/ 

/ / f / 
' V , ' r 
/ / 

^ V * / / 

;\ h 
0 

\y 
/ / -4 

\ 
h 

0 /^Y / 

4 y H j*k 
/ 1 / 

/ 
/ M f \x t 

/ 
< 

y o, ' 

1 
o, 

i / 
' s C-s / s s 

./ / * ^ 
•* s s s* 

,y 
V? 

/ 

x * X S s *> s y >/ T 

** <> ̂ k" 
\ ' • / 

^ 
!> ^ r-" r

J 

^ 1 £ "̂ *" \** ~* 

I 
100 200 

Figure 5. 

300 500 600 400 
P1 mmHg 

Design Chart for Upstream Tank 

700 760 

% 



24 

conditions to be those of the atmosphere. 

Downstream Valve: General 

The function of the downstream valve is to control the pressure 

in the downstream tank and this analysis is to help determine the 

size of the valve. There are two important differences between this 

analysis for the downstream valve and the previous analysis for the 

upstream valve. The first difference is that the upstream valve 

controls the pressure by regulating the inlet flow, while the down­

stream valve controls the pressure by regulating the exit flow. The 

second difference is that the relation between the pressure and the 

mass flow rate at the exit of the downstream valve are not derived 

from isentropic flow theory since the relations are influenced by the. 

characteristics of the vacuum pump. Therefore, under some flow con­

ditions there are no analytical relations to describe the flow through 

the downstream valve. 

This second difference complicates the downstream valve 

analysis to the extent that the analysis is not easily performed in 

general. However, as will be shown, some useful results can be 

achieved for the general case. 

The mass flow rate through the downstream valve can be found 

from equation (2.39) and is 

w=C*p^A^F(j|) (3.5) 

Solving for A2 yields 

A w 

a=
 7P7~\

 (3-6) 
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The pressure, po, is the pressure at the inlet of the vacuum 

pump as well as at the exit of the downstream valve. Usually the 

inlet pressure a vacuum pump can produce is a function of the mass 

flow rate and varies for each pump. Therefore k^ in equation (3.5) 

cannot be evaluated unless a specific pump curve is used and then only 

with an iterative solution. For the present consider the downstream 

valve to be choked and therefore knowledge of po will not be necessary, 

With the downstream valve choked, equation (3.6) becomes 

A , - " (3 .7) 

Cspo. 

For the subsonic nozzle, the mass flow ra te can be writ ten 

W = Cpz A*"M Vl f . ^ M 2 , M^l (3.8) 

Putting th is into equation (3.7) gives 

± = £ M V( 4- .2M i P , M « I <3-9> 
A C3 

which is only a function of the Mach Number. 

For the supersonic nozzle the mass flow rate can be written 

W = Csp, A* , M>l <3'10> 

Putting this into equation (3.7) gives 

** = A , M>l < 3' U ) 

A* P2. 

By using equation (2.8), equation (3.11) becomes 



^-=CI4-.2M2)3'5 , M>l (3-12) 
A"* 

and again this is only a functi'on of the Mach Number. Therefore if 

the downstream valve is choked, the area ration, A2/A*, is only a 

function of the Nozzle Mach Number. Table 3 gives this area ratio 

for several Mach Numbers. 

Table 3. Downstream Valve Area Ratio 
and Nozzle Mach Number 

M A2/A* 

.1 .1730 

.2 .3470 

.4 .7022 

.6 1.074 

.8 1.468 
1.0 1.893 
1.5 3.671 
2.0 7.825 
2.5 17.08 
3.0 36.74 
3.5 76.28 
4.0 152.0 

Two other implications can be made from equation (3.9) and 

equation (3.12). Consider the case where a nozzle of some specified 

A* is in the test section. If the size of the downstream valve is 

only a function of the nozzle Mach Number (when the downstream valve 

is choked), then the Nozzle Mach Number must only be a function of 

the downstream valve area. Consequently, once a Mach Number is set 

by the downstream valve, the upstream valve will raise and lower 

both pressures but will not change the pressure ratio or Mach Number. 



This could be used advantageously when performing the experiment. 

For the second implication, again consider A* fixed. Any 

particular valve used for the downstream valve will have some maxi­

mum effective area. This maximum effective area according to equation 

(3.8) and equation (3.11) will determine the maximum Mach Number 

that can be achieved. Table 3 can then be interpreted as giving the 

minimum necessary area ratio to achieve the corresponding Mach Number. 

If the downstream valve is choked, then the area ratio given will 

be adequate, but, if the downstream valve is not choked, an even 

larger area ratio may be required. 

Vacuum Pump: General 

A vacuum pump is a constant displacement device . For this 

reason the capacity of vacuum pumps is usually given as a volume flow 

rate. However, because of clearance volumes and leakages, the volume 

flow rate does change with inlet pressure and even reduced completely 

to zero for very low pressures. Therefore the capacity is usually 

given as volume flow rate versus inlet pressure. It must be deter­

mined then what volume flow rate is necessary/ to accommodate the flow 

conditions in the test section. 

When determining the pump capacity, the same complication 

associated with the subsonic downstream valve is present. However 

for the general case, this problem will be circumvented by only 

considering a method of estimating the needed capacity. Later when 

determining the pump capacity needed for the fluidic models, the sub­

sonic downstream valve will be considered. 

There are two assumptions that lead to simple direct compu-
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tations of the pump capacity. One assumption will lead to a maximum 

capacity and the other leads to a minimum capacity,, Thus the two 

methods that are developed next can be used to bracket the necessary 

pump capacity and this is what is meant by estimating the capacity. 

From the perfect gas law and the one dimensional continuity 

equation, the relation between the mass flow rate and the volume flow 

rate, Q, is 

Q = (3.13) 

P 

The volume flow rate, Q£, at the downstream tank conditions 

can be written 

^ w£.To (3.14) 
c?z = 

P* 

And similarly for the volume flow rate at the pump inlet con­

ditions 

_ w (LTo 
^ 3 = ~ p 7 ~ (3.15) 

In equation (3.15) it was assumed that there is a sufficiently 

large volume at the pump inlet for the air to come to rest after 

leaving the downstream valve and consequently for the temperature to 

become T . o 

Equations (3.14) and (3,15) can be solved for w and equated. 

The result is 

Gh^f* - ^3f? (3.16) 
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Thus the volume flow rate, Q3, can be written 

<2,= ~ (3-17> 

P^ 

The problem now is to find P3/P2 a nd Q2• 

Using equation (2.19), the mass flow ra te for a subsonic nozzle 

can be writ ten 

*=^AVS M ^ T ^ ' M i l (3.18) 

Putting this into equation (3.14) yields 

~£ - / k 2-To N y i + ̂  MZ , M i l (3.19) 

Thus the ratio Q2/A* is only a function of the Mach Number for 

subsonic flow. 

With a supersonic nozzle the mass flow is 

-p'AVS (^rK-° > M i l 
(LTo V io-l I • ' (3.20) 

Equation (3.20) can be written in terms of P2 and the nozzle 

Mach Number by using equation (2.8). The result is 

^AVgLT7)^(-^2)- . M, (3.21) 
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Putting equation (3.21) into equation (3.14) yields 

k-M , L 
Oz 
A* 

= / - ~ W ( k i - i ) VbCTo ( l +• ^ MZ) k--l , M M (3.22) 

From equation (3.17) and (3.18) it can be seen that Q2 is 

only a function of the Mach Number and A*. 

Going back to equation (3.17) it. can be seen that Qo can be 

found in terms of the Mach Number and A* if the pressure ratio across 

the downstream valve is known. However for the present consider the 

maximum and minimum values the pressure ratio can have. The largest 

P3/P9 c a n become is unity which means that there is no pressure drop 

across the downstream valve. This is not very realistic but it does 

provide a minimum vacuum pump capacity. There is no limit to how 

small the ratio P3/P9 c a n become and therefore it would seem as though 

there were no maximum Qo. Once the downstream valve becomes choked, 

no further decrease in the pressure ratio will affect the flow through 

the downstream valve. Thus s\ipplying enough pump capacity to choke 

the downstream valve will be the maximum capacity needed to accommodate 

that particular Q£. 

The pressure ratio at choking in 

fc-?3 / 2 \ — -

P2. VH-l / (3.23) 

And the maximum pump capacity required for any particular 

Q2 is 
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6)3 * r (3.24) 

fc+f 

Using equation (3.24), equation (3.19), and equation (3.22), 

the volume flow rate necessary to choke the downstream valve can be 

written 

A* 1 \k+i/ (3.25) 

/*\U*'? (n-^Ma)l?T, M> 

With the constants in equation (3.25) evaluated, the result is 

. ©£G.5 M(j +- '2-M1) , M & I 
^ 3 = J (3.26) 
A* ' 513.£ ( I +-.2M1)3'5 ' M>l 

with Q~ in CFM, and A* in in2, 

Table 4 gives several values of Q2/A*., Q3/A* with the downstrea 

valve just choked, and the corresponding Mach Number. 

If the Mach Number and the throat: area are known, then the 

corresponding volume flow rate can be found from Table 4. There is 

still no way to determine the required vacuum pump capacity if the 

downstream valve is not choked. Assuming no pressure drop across the 

downstream valve, Column (1) can be used to give the volume flow rate 

required at the downstream tank pressure. The volume flow rate re­

in 
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Table 4. Required Pump Capacity 

(1) (2) (3) 
M Q2/A* Q3/A* A2/A* 

.1 52.16 98.74 .1736 

.2 95.11 180.0 .3470 

.4 192.5 364.3 .7022 

.6 294.3 557.0 1.074 

.8 402.4 761.8 1.468 
1.0 518.8 982.1 1.893 
1.5 1006 1904 3.671 
2.0 2145 4060 7.825 
2.5 4683 8865 17.08 
3.0 1.007x104 1.906x104 36.74 
3.5 2 .091xl0 4 

4 .166x l0 4 
3. 958x10'f 76.28 

4 .0 
2 .091xl0 4 

4 .166x l0 4 70885x104 152.0 

quired will always be larger than this since there will always be 

some pressure drop across the downstream valve. Assume that the 

downstream valve has the area obtained from Column (3). (Column (3) 

is obtained from Table 3). If the vacuum pump meets the volume flow 

rate requirements obtained from Column (2) at a pressure of .5283 

times the downstream tank pressure, then no additional capacity will 

be required. If the downstream valve can be made larger than that 

found in Column (3), then some capacity that is between the capacities 

given in Column (1) and Column. (2) will be required. 

Analysis for Fluidic Models 

The remainder of this chapter considers the design of the 

test apparatus for a specific test model. These test models are of 

fluidic devices. 



Model Description 

The fluidic models are similar to compressible flow nozzles 

and, as far as the analysis of the flow is concerned, they are considered 

to be compressible flow nozzles. Both the subsonic and the supersonic 

nozzles are present. 

The nozzle walls are cut from a one inch thick aluminum plate, 

and sandwiched between two cover plates. Before the walls are clamped 

between the plates, they can be adjusted to give any desired throat 

and exit area. 

For this particular study, all of the nozzles are to have an 

2 
exit area of 0.2 in . This means that with the nozzle construction 

described, the walls at the exit will always be spaced 0.2 inches 

apart at the exit, and the throat area is changed to vary the Mach 

Number. 

Some of the models will also have a control jet as exemplified 

in Figure 6. The interaction of this control jet with the main jet 

will also be an objective of the fluidic model study. 

Range of Operation 

It is necessary to determine the range of operation before the 

size of the system components can be determined. For the fluidic 

models, it was desired to have a capability of producing Mach Numbers 

of 0.5 to 3.5 and Knudsen Number of 10"1 to 10""4. 

The Mach and Knudsen Number range can be used to find the 

corresponding pressure range. In order to produce a Mach Number of M 

at the model exit, the upstream and downstream tank pressures must be 

related by 



Control 
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Figure 6. Diagram of Test Apparatus with Fluidic Model 
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— ~ ( I f . Z M 1 ) 3 ' " ' (3.27) 
F-z 

Taking the logar i thm of both s ides y i e l d s 

U ' e ioP ' ^ L o ' 3 ioP3 +• 3<Sloq[D U - K 2 M " ) (3.28) 
.2 

Equation (3.28) is a linear relation between log^QP2 anc* 

logiQPo for a constant Mach Number. Therefore equation (3.28) is a 

straight line on log-log graph paper. 

The Knudsen Number can also be found in terms of p-, and p~. 

The definition of the Knudsen Number, Kn, is 

KM = -7- (3.29) 

where 7v is the mean free path of the gas molecules and x is a charac­

teristic dimension of the flow area. 

To determine the mean free path of the air molecules, it was 

assumed that the product of the density and the mean free path is 

constant. Thus 

/>*= K (3.30) 

3 -7 
where /O is in lbm/ft , ̂  is in inches, and K=l.966x10 lbm in. 

ft3" 

Using the equation of state for a perfect gas along with equation 

(3.29) and equation (3.30), the downstream tank pressure can be written 

P,-—^ (3.31) 
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The temperature, To, used in the above calculation is the tem­

perature of the fluid jet as it passes through the nozzle exit which 

is different from the temperature of the fluid when it comes to rest 

in the downstream tank. 

Using equation (2.3), the temperature ratio can be written 

T.HT:) * < 3 - 3 2 ) 

Equation (3.31) thus becomes 

r XKw \?\ J (3.33) 

The characteristic dimension, x, used to calculate the Knudsen 

Number was chosen to be the distance between the nozzle walls at the 

exit. This dimension is 0.2 inches. 

With the constants evaluated, equation (3.33) becomes 

-, .2.657 Jj^Si / fr.\ 
pz~ <M \VJ (3.34) 

Taking the logar i thm gives 

k*3ioP< = - 1 ^ . 9 5 2 ( . o f o / 6 1 - 2 . 5 L o ^ p z (3.35) 

For a constant Knudsen Number equation (3.35) is a linear 

relation between loglrp^ and log-,Qp2. 

Figure 7 displays conveniently the pressures that must be 

produced in the upstream and downstream tank to obtain the required 



500 1000 

Figure 7. Range of Operation 
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Mach and Knudsen Numbers. The region of interest lies between the 

-4 line for M=3.5 and M=0.5, and between the lines for Kn=10 and 

Kn=10"1. 

Upstream Valve: Fluidic Models 

With the pressure range shown in Figure 7 and a means of cal­

culating the mass flow rate, the required size of the upstream valve 

can be determined. 

By using equation (2.39), the mass flow rate through the up­

stream valve is 

w=C2po A,F^J (3.36) 

Solving equation (3.34) for A, gives 

VM 

A.- (3.37) 

fc 

The mass flow r a t e through the nozzle can be found by us ing 

equat ion (2 .22 ) . The r e s u l t i s 

w = C,PlAe * — - <3-38> 

( l+ ~ - ^)l(k-\) 

By equat ing the mass flow r a t e s , equat ion (3.35) becomes 

A s C i p i A e M (3.39) 

C1 fbF(J)(n-^M2
/ )2(k-0 

Equation (3.39) now allows the effective area of the upstream 
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valve to be calculated for any known Mach Number and any upstream tank 

pressure, p-i. 

The smallest valve of A, that will be required can be found 

by putting in the conditions at a Mach Number of 0.5 and a Knudsen 

Number of 10 . At that point the upstream tank pressure, p-. , is 

0.12 mmHg. With this upstream tank pressure, the upstream valve is 

choked and equation (3.39) becomes 

C ' ? i Ae M (3>0) 

Czpo/ (+ ~~ M ^ Z t k - l ) 

A-L i s 

With Po=760 mmHg, p1=0.12 mmHg, Ae=0 .2 in . 2 , and M=0.5, then 

>M= 2 . Z 4 - X I O b I M Z 

(3.41) 

It is assumed that a valve can provide good regulation at an 

area, of 10% of its maximum flow area, then the area of 2.24X10"-1 in 

-4 
could be achieved by a valve with maximum eftective area of 2.24x10 

2 
in . With a discharge coefficient of 0.75, the actual area would be 

2.987x10 in which corresponds to a valve orifice .0195 inches in 

diameter. Thus a very small needle valve will be required for good 

regulation at low upstream tank pressures. 

Since valves are limited to the range of effective area at which 

they can provide good control and since the desired range of operation 

is so large, it will be necessary to provide several graduated valves 

in parallel to provide good control. Graduations by a factor of 10 

would probably provide good control or graduations by a larger factor 



could be used if economy dictated. The analysis thus far has only 

provided a method of determining the smallest valve. Finding the 

largest upstream valve area that is required presents a different 

problem. As seen in Figure 7, the highest upstream tank pressure 

that is required is above atmospheric pressure. Since atmospheric 

air is being used as the; supply air, the upstream tank cannot have a 

pressure greater than 760 mmHg. How close the upstream tank pressure 

comes to being atmospheric depends on how large the upstream valve is. 

It would be of interest to find the maximum pressures that can be 

obtained for some given maximum valve opening. 

First consider the case where the upstream valve is choked. 

The mass flow rate through the valve is 

\A)=C3p©A| , p, ̂ 40:2_ rvAmV^ (3.42) 

The mass flow rate through the nozzle is given by equation1 

(3.38). Equating the mass flow rates gives 

_ C 3 P * A | ( l 4 - ^ M 2 ) 
F*" C, Ae M ~ (3.43) 

Let 

k+1 
C3A,/ 1+ 4 r M2)2(k-0 

2 ... : ± 1 - (3.44) 
C, A e M 

Equation (3.43) becomes 

y^potf > / ?< . , 5Z.&3 (3.45) 
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If p>.5283, then the upstream valve is not choked. The mass 

flow rate from equation (2.39) is 

w=c^A'(£W'-(-g) 
k-J B 

pb/ > ?o 
(3.46) 

Equating the mass flow rates and substituting in the definition 

of /3 yields 

*, ^ ) V I + ( - S K =CT? -
3 /?>.<52&3 (3.47) 

Squaring both sides of equation (3.47) yields 

fLfC^ pU V C ^ J '°>r Z ^ 3 0.48) 

which is a quadratic equation in [ —=- ) and can be solved to give 
°0 

1-k 
Pi \ k 

? i = P<? WV'Wc&N* 
- k 

,ft>.5Z8& (3.49) 

With the constants evaluated, equation (3.49) is 

Pi-Po 

- , - 3 .5 

^ + - £ * / ' + 
5 I 7 6 ^ \ Z 

/ * 
, ^ ^ 5 - 2 & 3 (3.50) 
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Thus the largest pressure, p-, , that can be reached for any 

particular A, can be found from equation (3.45) and equation (3.50). 

An example using these equations is given in a later section. 

Downstream Valve: Fluidic Models 

As mentioned previously in connection with the more general 

discussion of the downstream valve, determining the proper valve size 

is complicated by the fact that vacuum pump characteristics are usually 

given graphically. Assuming the downstream valve to be choked, which 

is usually the case anyhow, allows the valve analysis to be conducted 

independent of the characteristic of the pump. Such will be the case 

here. 

The mass flow rate through the downstream valve is 

W= C5Azpz (3>51) 

and the mass flow rate through the nozzle is (equation (2.20)) 

w= C,p̂  AeM VTT (1M
T (3.52) 

Equating these gives the following equation for A£: 

A l « 5 i A<LVTT~2M2
 (3>53) 

Equation (3.53) shows that the necessary downs;tream valve 

area is only a function of the desired Mach Number. Several values 

are shown in Table 5. 
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Table 5. Downstream Valve Effective Area 
and Nozzle Mach Number 

M A2 ( i n 2 ) 

.177 

.349 

.624 

.927 
1 .269 
1 .735 
2 .192 

.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 

As can be seen from Table 5, one butterfly valve will probably 

provide the necessary control. Characteristics of available valves 

would have to be examined to determine this. 

Vacuum Pump: Fluidic Models 

The only method given thus far for determining the vacuum 

pump capacity is to determine the maximum and minimum capacity re­

quired. This will be the method used in this section. The next section, 

however, offers an alternative yet it is still desirable to have an 

estimate of the required capacity. 

The volume flow rate at the downstream tank condition is 

<&•- —y^ (3.54) 

The mass flow rate for the fluidic models is (equation (2.19)) 

V0 = ^ A e V / CT, M V 1 4 " 1 T M l ' M > ° (3-55) 
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Thus 

Qz = A e / k £ T i M y i -h ~ - M 1 , M > O (3.56) 

With the constants evaluated, 

^ 2 = 9 4 , 7 M y i f ! l M Z , M > 0 (3.57) 

Equation (3.57) is the volume flow rate at the downstream tank 

conditions and if it is taken to be the volume flow rate that the 

pump must handle it will be a minimum capacity since it assumes no 

pressure drop across the downstream valve. As discussed in the section 

which determined the pump capacity for the general case, the maximum 

capacity required can be found by dividing Q2 in equation (3.57) by 

.5283. 

Table 6 gives a summary of these capacities. The minimum 

capacity is at the downstream tank pressure but the maximuir. capacity 

must be at a pressure of 0.5283 times the downstream tank pressure. 

Table 6. Maximum and Minimum 
Volume Flow Rates 

M Maximum (CFM) Minimum (CFM) 

.5 91.8 48.5 
1.0 197 104 
2.0 481 254 
3.0 901 476 
3.5 1166 616 
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Fixed Downstream Valve Area 
• • • ' i i ' " . \ ~ 

The last section assumed no pressure drop across the downstream 

valve. This section takes the pressure drop into account. 

Assume that a graph of volume flow rate versus the inlet pressure 

for a vacuum pump is available. Solving equation (3.15) for the mass 

flow rate gives w as a function of Ao and p, which are available from 

the assumed graph. This relation is 

_ Q 3 p3 
W " ~e?fo~ (3.58) 

Consider f i r s t the case where the valve i s choked. The mass 

flow r a t e i s 

w = £ 3 p z Az (3.59) 

Equating the mass flow r a t e s gives 

?5 C 3 A<2 K-Tb 
?z Q 3 

(3.60) 

L e t t i n g 

&0 C3A2.IZ.T0 
^ - (3.61; 

^ 3 

Equation (3.60) can be w r i t t e n 

Ps 
P^= — , c*^ . 5 Z & 3 (3.62) 

If <*>. 5283 then the downstream valve is not choked. The mass 

flow rate from equation (2.39) is 

C3A2.IZ.T0
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w = c ^ M # V H f l ) ^ >(?>-52*3 (3-63) 

Equating this to equation (3.58) and using the definition of 

a, the result is 

m'm^- 8 ) * V c:3 = — — , 4 > -52£>3 (3.64) 

Similar to equation (3.,47), this can be solved to yield 

?*.= ?* * vl n — ) 
-I 3.5 

, <X >.52B3 (3.65) 

From this equation, p can be found if the pump capacity in CFM, 

r) 
the pump inlet pressure in mmHg, and the downstream valve area in in*-. 

is known. 

Now if p, can be found, a line can be drawn on Figure 7 showing 

the limiting conditions that can be reached with any particular vacuum 

pump and downstream valve. 

From equation (2.24), the mass flow rate through the nozzle 

can be written as 

*«Ctp,Ae(g)lS 
-, fcdi FM IT 
pT 

(3.66) 

This can be equated to the mass flow rate in equation (3.58) 



yielding 

^ • M f f / l ^ -1? 
Dividing by p2 gives 

By l e t t i n g 

g^ ZQ3?* 

p.=p*|i + ivf7/32] 
3.5 

(3. 

/ « V ^ V , J ^ T « Sa£5. ,3 
V R L A P , / V \ ? J <pOHT e CiAcpi ^ 

G O O ^ Q L Aepz. (3, 

equation (3.68) can be solved to give 

(3 

These equations will be used in the next section to plot a 

limiting curve for a particular vacuum pump and downstream valve. 

An Example of Equipment Capabilities 

In previous sections, equations have been developed for de­

termining the capabilities of the equipment. This section works 

an example using these equations for the fluidic devices. 

First consider an upstream valve with an orifice diameter of 

o 
0.5 in. The orifice area is 0.1963 in and, with a coefficient of 



discharge of 0.75, the effective area is 0.1425. Using equation 

(3.50) and equation (3.44), the maximum upstream tank pressure can be 

found for each nozzle Mach Number. Then by using equation (2.8) 

the downstream pressure can be found by using the same Mach Number. 

This line is shown in Figure 9 designated by A-, . 

With the pump capacity estimated by methods given in the last 

section, a vacuum pump of the approximate capacity can be selected. 

For this example, the pump curve given in Figure 8 is used. 

I2O0 

IOO0 

Boo 

&K fcOO 

<y 

4 0 0 

200 

O 

•0\ e>5 .\ -!5 • 5 \o :5© \oo soo n*>o 

Po, mmHg 

Figure 8. Sample Vacuum Pump Characteristics 

Let the downstream valve have a 2 in. diameter orifice with a 

coefficient of discharge of .75. The effective area then is 2.356 in . 

The object now is to find the largest Knudsen Number and Mach Number 

that can be reached with this pump and this downstream valve. Equation 

/ 

/ 

/ 



(3.61), (3.62), (3.65), (3.67), and (3.70) can be used for this purpo 

The resulting line is shown on Figure 9 designated by A_. No con­

ditions above this line can be reached. 

Since this line indicates that the region around K=10~ and 

M=3.5 cannot be reached, it would be of interest to know if this is a 

vacuum pump limitation or a downstream valve limitation. If no 

pressure drop across the downstream valve is assumed and a line is 

drawn from the vacuum pump curves, then any region excluded would 

definitely be the result of inadequate vacuum pump capacity. The 

region between the two lines can possibly be recovered with a larger 

downstream valve. The line showing the limitations caused by the 

vacuum pump can be found by using equation (3.69) and equation (3.70) 

with p£ equal to p„. This line is also shown on Figure 9. 
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Figure 9. Range of Operation and Equipment Capabilities 
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CHAPTER IV 

AUTOMATIC CONTROL SYSTEM ANALYSIS 

This chapter analyzes two control systems for automatically 

regulating the pressures in the upstream and downstream tanks. 

The first system is a representation of a system that has 

d.c. motors operating the upstream and downstream control valves. The 

error signal, which is the difference between the reference input 

signal and the signal from the pressure transducer, is amplified to 

supply the motor input voltage. The motors act as integrators, in­

tegrating their input signal. For this reason the first system is 

referred to in this thesis as the integral control system. 

A second system was analyzed for the possibility of improving 

the performance. The second system assumed a position controller to 

maintain the control valve area proportioned to the error signal. 

The strategy is to use a very large feedback gain so that the error 

signal is forced to be small. This system is referred to in this 

thesis as the proportional control system. 

Integral Control System 

The integral control system was chosen because it would be 

comparitively easy to implement. A diagram of the system is shown 

in Figure 10. 

The voltage to the valve motors is supplied by the power 

amplifier. The output of the power amplifier is assumed to be pro-



Reference 
Input Reference 

Input 

Figure 10. Apparatus with Integral Controller 
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portional to the difference between the reference input and the 

pressure transducer signal. It is assumed that the power amplifier 

as well as the pressure transducer act as a straight gain. Also it 

is assumed that the speed of the motor is proportional to its input 

voltage and there is no associated inertia. The flow area of the 

control valves are considered to be linearly related to the angular 

position of the valve stem. Thus the flow area of the control valves 

will be proportional to the position of: the motor shaft. 

Using equation (2.44) to describe the transient behavior of the 

pressures in the volume, the system equation can be written (Figure 11) 

^ - = K.[u,(fr)-p,U:)] (4.1a) 

77" = —T L Woi (^ "W»i(t)| (4.1b) 
d-fc vi 

^p-fct[p»tt)-U»l«] (4.1c) 

The reference inputs are u.. (t) and u«(t). The gains associated 

with the pressure transducer, the power amplifier, and the valve 

are contained in the constants Ki and K2. The mass flow rates are 

w , (t), w,2(t)> and W£3(t). The volume Vi is the upstream tank volume 

and V is the downstream tank volume. It is assumed (Chapter I) 

that the temperature in the tanks is T , and R is the gas constant for 

air. 

In general the mass flow rates through the restrictions will be 

non-linear functions of the associated pressures. Considering the 



ul(fc) u2(t) 
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Figure 11. Diagram of Appa 
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mass flow rates to be only functions of the time varying parameters, 

equations (4.1) can be written 

^ ~ = lC,[u,tfc)- p. Ct)] (4.2a) 

^ ^ J •"V^E 1 0" U>^),P>^))- W»i(p.(i)y pz^O] (4.2b) 

^ f P = K*[p*(fc)-U*(0] (4.2c) 

^ T - t ) = : ^[ w^(f»^);M^)"- w23U2W,p2lt),pslt))] (4.2d) 

The mass flow rate, WQ-I, can be obtained from equation (2.39) 

as a function of the pressure ratio and the valve area. The mass flow 

rate, w^2, which is the mass flow rate through the nozzle, can be 

found from equations (2.33) until the flow becomes choked and by equation 

(2.32) after it becomes choked. The pressure ratio at which the flow 

becomes choked must be found from equation (2.36). The mass flow rate, 

w2o, is a little more difficult. This is the mass flow rate through 

the downstream valve. When the downstream valve is subsonic, the mass 

flow rate through it is a function of p2 and po. The pressure P3 

is the pressure at the inlet to the vacuum pump and it is, in turn, a 

function of the mass flow rate. In general the relation between the 

mass flow rate and p^ is given graphically and not analytically. 

This leads to difficulties when trying to solve the system equations 

analytically. The difficulties could possibly be overcome by obtaining 

an analytical curve fit of the vacuum pump characteristics, but even 

so it is not likely the mass flow rate could be found as an explicit 

function of p2 and po. 
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Also it is possible to consider the inlet to the vacuum pump 

to be a small volume resulting in the system in Figure 12. The system 

equations become 5th degree instead of 4th degree, but the advantage 

is that all the required functions are known explicity since w (t) 

as a function of Po(t) could be found. If V3 is small compared to V-, 

is small compared to V-, and V2, the response of the system in Figure 

12 should be very similar to the response of the system in Figure 11. 

However for the present case the downstream control valve will 

be considered to be choked and the mass flow rate through the downstream 

valve will be independent of the pressure at the vacuum pump inlet. 

Thus the mass flow rate can be found from equation (2.39). 

Considerable simplifications occur when the flow through a nozzle 

or valve becomes choked. These simplified cases will be used as a 

starting point to analyze the response of the system. 

When the nozzle becomes choked, the flow becomes independent of 

the pressure in the downstream tank. Therefore the upstream and 

downstream systems can be analyzed independently. The following two 

sections do just this. 

Upstream Tank System with Integral Controller 

This section considers the transient behavior of the upstream 

tank with an integral control system. 

With the nozzle choked, the upstream tank system is independent 

of the pressure in the downstream tank. This system appears in 

Figure 13. 
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da1(t) 

w01<*> 

X_', 
ai(t) 

(t) A* 

Figure 13. Upstream Tank System 
with Integral Controller 

The system equations can be written 

daM) 
d{ -K,[a,tt)-p,a)] 

dP.tf) tTor , ,,, .,.. -, 

"̂p = - ^ - L W w f Q ' ( t ) / piC-t))- w.a i p » a ) ) j 

(4.3a) 

(4.3b) 

Since i t i s assumed tha t the nozzle i s choked, the mass flow 

r a t e , w-j^, i s given by equat ion ( 2 . 2 3 ) . Thus 

vJiiltr)- C s A*fi t t> (4.4) 

If the assumption is made that the upstream control valve is 

also choked, then the system equations become linear. Equations (4.3) 

become 

^i'-K.IWU-p.LU] (4.5a) 
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^ ^ . ^ e p ^ a . l H - A V t t t ] (4.5b) 

Equations (4.5) can be reduced to a convenient form if u,(t) 

is assumed to be constant. There are two cases of interest where 

u. (t) would be constant. If the response to a step input is desired, 

then u can be assumed to be a constant: with the initial conditions 

supplying the step input. If the system is to be considered a regulator, 

then u, would be constant, and the response of the system to a dis­

turbance would be analyzed. 

Let u,(t)=U,, and define the following dimensionless variables 

as 

? Ui (4.6) 

^ ' - ^ k Q'Lt) (4-7) 

Equations (4.5) can be written in terms of the variables de­

fined in equation (4.6) and equation (4.7) to give 

6ath) PoK.r n 
-^T~-~- ~J*rl ' -P c t\| (4.8a) 

" J T ~ ~ L oLh ~ Pl*U (4.8b) 

Assuming equations (4.8) are stable (as will be determined 

later), equating the left-hand side to zero gives the steady*state 

values of a(t) and p(t). 

Denoting the steady-state points by p and a , the equations 

are 



CgliT.A* (4*9a) 

— 7 7 — ( a5 5 - p5S)» o 
V> r ^ (4.9b) 

The solutions to equations (4.9) are 

p5S= 1 
(4.10a) 

(4.10b) 
a5s - 1 

Let two new variables be defined 

Aptt)=p(t)-| ( 4 U a ) 

4a(tJ-o«)-l (4'Ub) 

The variables Ap(t) and Aa(t) have a physical significance. 

Using the definitions of p(t) and a(t) along with equations (4.10), 

i he steady-state values of the variables p-j (t) and a-, (t) are 

P 1 5 ^ a ' ( 4 . 1 2 a ) 

UiA* ( 4 . 1 2 b ) 
UI55 ~ ——— 

?o 

where pi and a-i a re the s t e a d y - s t a t e v a l u e s . 
The v a r i a b l e £*p(t) can be w r i t t e n 

ApCt)= p(t)-l 

i £ i ^ _ i 

a, 

p, W - U| 

u. 
_p,(^)-pl5s 

Piss (4.13) 

Thus &p(t) is the fractional deviation of the upstream tank 
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pressure from its steady-state value. 

Similarily, Aa(t) can be written 

Aatt) = ««*-*«> (4.14) 

a IS-5 

The v a r i a b l e A a ( t ) i s the f r a c t i o n a l d e v i a t i o n of a-̂  ( t ) from 

i t s s t e a d y - s t a t e va lue . 

The system equat ions (4.8) can be w r i t t e n in terms of the new 

v a r i a b l e s as 

d A a t f ) Pokli 
Ap(4r> 

(4.15a) 

(4.15b) 

d t A* 

d A p t t ) Cs1LToA*rA x n 

-5r-~—vT" f>^-^>] 
Differentiating equation (4.15b) and combining it with equation 

(4.15a) yields 

d2ApCt) C3ET0A* dAp(t) Po<,C3R-To 
d-t2 v, " d* "*" v, p l ) (4.16) 

Equation (4.16) can be written in the form, 

d A p ( « 0 0 d A p C U a 

d^ 2 d t 

where 

C*>M 

A* 
5 = — 

Z 

aK,C3gTo 
v, 

£ 3 £-T0 

2. 

X 

(4.17) 

(4.18) 

(4.19) 

V,K, R> 

Equation (4.17) is the well known second order differential 

equation. The response is governed by the initial condition, the 
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damping ratio,? , and the natural frequency, 60 n. For any given set 

of initial conditions, the amplitude of the response is determined 

by the damping ratio. The natural frequency is a time scale and has 

no effect on the amplitude. 

Before it can be determined what control system parameters 

should be selected to give the best results, a performance criteria 

needs to be established. One obvious procedure would be to assume a 

typical reference input and then evaluate the systems response to that 

input. However this control system was intended primarily to be a 

regulator and the response to a change in the reference input would 

not be particularly important so long as the response was reasonably 

well behaved. And since the system was intended to be a regulator, the 

control systems ability to recover from a disturbance would be of 

interest. One likely source of a disturbance would be the application 

of the control jet during operation. It was decided then that the 

control systems response to a step application of the control jet would 

be the subject of analysis to determine the best control system. 

Consider the fluidic model shown in Figure 6. If the main jet, 

with area A^, is choked then the mass flow rate will be 

Wm-C3p,Arvi (4.20) 

Let A, be the control jet area. When the control jet is opened 

an additional mass flow rate of 

V\Jj = C3p) ̂ j (4.21) 
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r e s u l t s . 

The to ta l mass flow ra te between the tanks is 

W n = v ^ +• w T - C3 pi ( Am-t- A ; r ) (4.22) 

Since the mass flow is proportional to the sum of the areas, 

the application can then be reflected by a step change in the area 

A* between the two tanks. Therefore the control systems will be 

evaluated according to their response to a step change in A*. 

It is necessary now to find what initial conditions correspond 

to the sudden application of the control jet. 

Assume that the system was at its steady-state values before 

the application of the disturbance. Then for time before the dis­

turbance 

ApUr)=-0 j >c«D (4.23) 

Pl(t) 
Since Ap(t)= — ~ -1, Ap(t) does not change in value for a 

step change in A*. Thus 

Ap(fc) = C J h=o (4.24) 

Let the value of the exit area of the upstream tank, A*, before 

the application of the control jet be 

A*-A£ (4-25) 

Let the area of the control jet be defined as a fraction of 

the nozzle area such that after the application of the control jet, 

the area is 
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A*«fA*0 ;tzO (4.26) 

The natural frequency is 

C '̂NT 
PoK,C3JLTo]Z 

V, 
(4.27) 

which does not depend on A* and the re fo re i s not a l t e r e d by a 

change in A*. 

The damping r a t i o i s 

$= j$?[C3£To a 
2 [ V,K, j?o 

,-t̂ o (4.28) 

which is proportioned to A*. After the application of the jet, the 

damping ratio becomes 

s - -
$&[ CsZTo~fa 

2. V.K.P t^o (4.29) 

The q u a n t i t y £>a(t) i s 

A a a ) = ^ £ - I = O , -b<C (4.30) 

From equation (4.30), it can be obtained 

a»(t)= - ^ ^ ; t<o (4.31) 

The q u a n t i t y , A a ( t ) , for t * 0 , i s 

?a a , (H A ^ - ^ ? ^ - ' >^° (4.32) 
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or 

Using equat ion (4.31) and (4.32) to find & a ( t ) a t t=0 gives 

ACLCO) •=- ~ 

A ate) - — - (4.33) 

Equations (4.15) can be w r i t t e n in terms of 3 and u)n to give 

dAait) = __ co» (4.34a) 

^ ^ - 2 S ^ [ A a ( « - A p ( t ) ] <4'35b> 

P u t t i n g the value of £>a(0) from equat ion (4.33) and the value 

of Ap(0) from equat ion (4.24) i n t o equat ion (4.32b) r e s u l t s in 

^ g ^ ' = 2<?oU A a ( o > ~ ApCo)] 

28 to* C l - f ) 
•f 

In summary, the equation describing the transient pressure 

changes in the upstream tank is 

(4.36) 

d ^ A p t O d A p ^ t ) 2 A /L.v ~ 

with the i n i t i a l cond i t ions 

Ap(o)=0 ( 4 # 2 4 ) 

d A p & ) 2 g u > M l \ - V ) (4.36) 
d t ' •? 
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Figures 14 and 15 show the solution of these equations for 

various ? and f. The natural frequency, U) n, the damping ratio, 

^, and the area increase factor, f, determine the response of the 

differential equation in equation (4.18). Consider that some f 

is chosen as typical and it is desired to find the best response 

possible with the proper choice of ? and ttJn. The quantities f and 

iJ2> n are functions of many factors. The temperature, TQ, the supply 

pressure, PQ, and the constants, Co, and R, are considered to be 

fixed. Also it will be assumed that the area, A*, is fixed. The 

only two variables that can be manipulated to achieve the best 9 

and <a)n are the tank volume, V\ , and the feedback gain, K, . The tank 

volume V is a variable since this is one of the quantities to be 

specified by this design. The gain, K,, represents the gain of 

several elements in the feedback circuit. However, since a power 

amplifier is included in the feedback circuit, it will be assumed 

that the amplifier gain can be varied enough to allow any overall 

gain to be achieved. 

The strategy for selecting the proper K. , and Vi will be to 

assume that no matter what V, is chosen, a K^ can be selected that 

will allow any ? to be obtained. An equation to give the value of 

K necessary to produce any particular $ can be obtained by solving 

equation (4.20) for K, . This is 

C^QTo I A*\ 2 

K , -~v^~( i77 (4-37) 

Using equation (4.37) to eliminate K-, from equation (4.20) 

yields 



Figure 14. Upstream Pressure Response with Integral 
Controller, f Variable 
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an,- Q^oPT (4.38) 

with Wn in radians/sec. 

Following the strategy of holding ? constant (by appropriate 

choice of K, ) while making (£> n as large as possible calls for, ac­

cording to equation (4.38), making V-, as small as possible. And 

as seen from equation (4.37)., the appropriate choice of K. becomes 

increasingly large as V becomes small,, It is obvious that this 

strategy cannot be carried to the ultimate conclusion of making 

Vi=0 and K^ = ^> . What then is the best design with the available 

information? If it were possible to find a maximum gain, Kmax, 

then the best design would be to calculate the voliime from equation 

(4.37). This would be 

y,. C s £ T ° / A!\2 (4.39) 
R> Kmax * ̂ ^ 

because this would result in the largest: possible <Ji>n while still 

exercising control over 1 . However at. this; point it would be 

difficult to obtain a reliable value for the maximum feedback gain, Ki 

There are other possible equipment limitations that might be 

easier to estimate and indeed may be more of a limitation than that 

of a maximum feedback gain. Saturation of the feedback elements 

seems a likely candidate and will be the one used here. Whether 

it be the amplifier, valve motor, or some other element in the feed­

back circuit that saturates, it: will be assumed to be manifested in 

a upper limit on the speed at which the valve can be driven. 
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Let the maximum rate at which the valve stem can be turned 

be designed by S. Let the Maximum effective valve area be A^ and 

let the valve have N terms from full open to full closed. Assume 

that the effective valve area is proportional to the number of turns 

the stem is from shutoff. If r represents the number of turns the 

stem is from shutoff, then the effective area, A, can be expressed 

* - ^ (4.40) 
N 

Differentiating equation (4.40) yields 

6k _ _/V*2 dr 
d F ~~ N dt 

Using equation (4.41), it can be written 

(4.41) 

dM AmS 

^katr — ( 4 - 4 2> 

where (dA/dt)gat is the valve area rate at saturation, 

Equation (4.38) becomes 

/£*M = ^ S 
UUsafc £PM ( ' 

where (dA/dt) is in in2/sec, A is in in. , S in RPM, and N sac m 

is in revolutions. This then will allow the area rate to be calculated 

from a knowledge of the valve orifice area and the maximum motor speed. 

Since the system equations are most conviently utilized in terms 

of the dimensionless parameter, it would be desirable to relate the 

actual maximum area rate to a maximum allowable value of some dimension-
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less parameter 

The definition of Aa(t) is 

Po 

UA" 
Aa(t)-^a,(t) - (4.44) 

Differentiating (4.44) gives 

dAa(f) p0 da,(t) 
dt U, A* df 

(4.45) 

Thus we obtain 

dAQL(U\ VQ I d a , U) 
dt Aat U.AM d t /-sat 

(4.46) 

Equation (4.46) gives the maximum dAa(t)/dt that will be allowed. 

When the control jet is applied, it is desirable to have the 

absolute value of dAa (t) at its maximum value equal to the saturation 
dt 

value in- equation (4.46). Thus it is necessary to find where the 

maximum dka(t) occurs. 
dt 

From equation (4.34a) it is found that 

dt max T" Ap(t) rv\a.)L 
(4.47) 

Thus the maximum dAa(t) can be found from knowing the maximum 
dt 

Ap(t). 

To find the maximum &p(t) consider the system equation, 
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d^A£lt) + 2 ? W N
 d y ^ ^ Apt t ) - O (4.48) 

with the initial conditions 

A P ^ - ° (4.49) 

dApto)_ gggjH U--Q (4.50) 

at" f 

If the damping ratio is less than 1, then the solution is 

A?LU=p±JL e
Su}lit S'IM ^ N v T ^ 4 r (4.51) 

+ y I - 5 

To find where the maximum Ap(t) occurs, differentiate equation 

(4.51) and set the derivative equate to zero. 

£^£i i> =
 2!%^{) e - S ^ f c *,N(u>»VTF 4- *) (4.52a) 

di f V i - s 

4>=TaNi — 3 (4.52b) 

The d e r i v a t i v e i s zero when 

>w V\ - §2 ' t +- <£ = NTT , M = O, 1, 2 «• <WNY1 - S * t +- q^ = N 'I , N ^ o , i , ^ ••• (4.53a) 

or 

t = - = _ _ _ , N - 0 , l , 2 - - (4.53b) 

^ M V I - %1 

As can be seen from Figure 14, the largest peak is the first. 

Then the maximum occurs at n=0; and this value of t is 
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t - - "* 
cou V T ^ 

(4.54) 

Putting this value of t into equation (4.51) yields 

S4> 

Apmo* = *1LU± e / P I 7 siN ( - ^ (4.55) 

vP?^ * 

Now l e t 

?4> 
2S 

M ( ! ) = - £ f = : e V i - ? x
 S1N(-4>) <4-56> 

A>f-s7 

Equation (4.55) becomes 

1-f 
A p m a x - ( ^ ) U(§) (4.57) 

ind Table 7 can be used to find H(S) for severa l values of S • 

Table 7. H(5) Functions for Several Values of $ 

H(S) 

0 0 
.1 .1725 
,2 .3024 
,3 .4030 
,4 .4823 
,5 .5463 
.6 .5986 
.7 .6421 
8 .6784 
9 .7074 

All the equations are now available to find the desired volume 

of the upstream tank. 
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From equation (3.46), the value of /dAa(t)\ j.. 
\ dt / sat 

dA<x(t) 
d t /^ah U, A i n0 

/do,CM] 
\ d t / sat (4.58) 

and with equation (4.43) this can be written 

d ACLi.±) V>o Ano S 

d-t / s a t Ui A*> 6 0 N (4.59) 

which gives the dfla(t) at saturation in terms of more easily esti-
dt 

mated parameters. 

Now /d Aa(t)\ 9 which is the maximum value of -dAa(t) that 
\ d t / max d t 

occurs after application of control jet, needs to be found. 

Equation (3.47) gives 

d AafU 
dt 

C&)M 

noay 
Ap(-t)[ 

(Yiav 
(4.60) 

and kp(t)| m a x can be found from equation (4.57) to give 

dAa(t) 

at mav. § 

1-g M(?) (4.61) 

ma 

As stated in deriving equation (4.38) it is assumed that no 

tter what V-, is chosen, a Ki can be found that will permit any S 

to be obtained. With this assumption, U)n could then be written in 

terms of $ and V^ which is equation (4.38). Putting this into equa­

tion (4.62) gives 
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d A a ( 0 fCa(Z.ToA$» 
mcu 2?2V t ( T 1 ) ^ d t 

fCa(Z.ToA$» 
mcu 2?2V t ( T 1 ) ^ (4.62) 

To prevent saturation, it must be true that 

dAGLU) 
d t 

<L 

man d-fc / s a t (4.63) 

The equality corresponds to the largest <4u and smallest V ; 

therefore equating equation (4.59) and equation (4.62) gives 

VCzZTofit 
2S2V, 

\ - f 
wen 

Po A m S 

UiA*o6C~N 
(4.64) 

Solving for V-̂  y i e l d s 

V, = 
CzWo A * 2 | ( l - - f ) M ( ^ I U 6?ON 

~~2£2P* AmS (4.65) 

This equation can be used to calculate the value of Vi. Notice 

that equation (4.65) contains U^ which would indicate that the value 

of V^ is dependent on the pressure at which the system is operating. 

For the fluidic models the pressure varies over a range of several 

orders of magnitude. Even though it is true that V-. does depend on 

U , it is not necessarily true that this will cause Vi to vary over 

several orders of magnitude. Suppose that a-i is the steady-state 

position corresponding to U,. Now let A be some constant, # , times 

this equilibrium value. Thus 

A m =" ~?f &-iSS 
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This implies that the valve is selected with at least some 

consideration as to the range of operation. Putting this into equation 

(4.65) gives 

x, C3 RTo ASZ| ( \ - f ) H(*)| U.fcON 
v '" IFSTS^s < 4 • 6 6 > 

At equilibrium it is known that (equation (4.12b) 

Po t f l 5 S = U.Ao ( 4 . 6 7 ) 

and e q u a t i o n ( 4 . 6 6 ) becomes 

C3RT0 .A«o l ( \ - t )H(g) l fcQN 6 8 

' " 2 S 2 * S 

As an example consider calculating the volume for a typical 

system. Since most of the upstream pressures call for a small orifice, 

let a needle valve be used. For a needle valve, a value of N=10 

would be typical. Let the damping ratio be 0.7. Since needle valves 

stems for vacuum application are packed very tightly, a high torque 

motor with gear reduction will probably be required. Therefore let 

the maximum speed be 60 RPM. If parallel valves are used with each 

successive valve having an orifice area of 10 times the previous, 

the value of 6 would be between 1 and 10 depending on the operating 

point. However, considering the worst case (the case giving the largest 

volume), tf=1 will be used. Therefore the constants will be 
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? = .7 
Ag= .2 in2 

¥ = 1 
S = 60 RPM 
N = 10 
f = 1.2 

This gives 

Vi = .239 -ftS (4.69) 

The natural frequency can be found from equation (4.38). In 

cycles/sec this is 

.72 74 f A* 

" ^ —£7vT~ (4-70) 

2 3 
with A* in in and V in ft . For this example, it: is 

O P M = -52\7 cycles /sec (4.71) 

The value of Ap was fixed by the damping ratio. Its 
rmax J r o 

value is 

ApooQ)c= -AOl (4.72) 

or 

Apr^a* - -\C.l°7c? (4.73) 

Downstream Tank System with Integral Controller 

The downstream tank is similar to the upstream tank. 
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uo(t) 

w12(
t-) 

da2(t) 

P3(t) 

Figure 16. Downstream Tank System 
with Integral Controller 

The system equations can be written (Figure 16) 

— — - - k ' J Uztk)-pzU:)\ 
a t L 

dpztt) (2-77, r . , , -, 0 
" • j r - '= - ; 7 " L^ii <• P- / P-) - ^ 2 3 I a* , \?s)\ 

at - v-2 

(4.74a) 

(4.74b) 

Assume that the nozzle and the downstream control valve are 

choked, and assume that the upstream tank pressure, p-. (t), is equal to 

a constant, P, . 

The mass flow rates for choked flow can be obtained from 

equation (2.28). The resulting equations are 

da2.(4r) '-^=*z[u*W-palt>] (4.75a) 

dfc 
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.l£iii).. £^ i2 [p , A *-p i ( t ) a 2 ( t ) ] 
dr V2 

(4.75b) 

The principle difference between the equation for the upstream 

tank and the equations above for the downstream tank is that in equation 

(4.75b) there is a product of two state variables. Thus, unlike the 

upstream tank analysis of the last section, the equations for the 

downstream tank are not linear. 

An analytical solution, to these nonlinear equations is diffi­

cult to find. An analog computer was therefore used to find the solu­

tion. 

In order to reduce the number of variables, dimensionless 

quantities were formed. Letting the reference input, u (t), be a 

constant, \J , the equations (4.75) can be written 

1)2 dao-lU 
R A* dt 

± d^^} 
U 2 ~ - d t 

k-i ul r pi.Li\ _ " 
Pi i\* L u 2 

CsK-TcPi A" 
~v2 u 2 

f i - Yl^i 
L u 2 

(i) U T 

R A * a i l t ) 

( 4 . 7 6 a ) 

( 4 . 7 6 b ) 

Let the dimensionless quantities be defined 

cut)-

P-2.(t) 

Ua 

P,A * cu(t 

(4.77) 

(4.78) 

Using these dimensionless quantities, equation (4.76) can be 

written 

d t Pi A*" L •- ' J 
(4.79a) 
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If equations (4.79) are linearlized, the resulting second 

order system of equations will have a natural frequency and damping 

ratio given by 

" > M - [ r̂ J (4.80) 

_ P.A*T C 3RTcl^ 

With the constants of equations (4.79) written in terms of 

these parameters, the result is 

da(t) C*)H [pUO-i] (4.82a) 
dt -2? 

^ | p = 2.*tt>N[/-pttOa6<t-)] (4.82b) 

If equations (4.70) aire time scaled by the relation 

1-= **>w-b (4.83) 

Then equations (4.70) can be written 

^ ^ 1 } ==-L Tpe-r^-l I (4.84a) 
dr ^ L J 

^ ^ =• 25f" \ - pC*)aCr/j (4.84b) 

The variables Aa(r) and Ap(r) can also be introduced. Let 
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these be defined as 

1 (4.85) 

A ?c?) = p e n - i ( 4 * 8 6 ) 

These variables have the same interpretation as did their 

counterparts in the upstream tank. The quantity Ap(r) represents 

the fractional deviation of the pressure in the downstream tank from 

the reference input, and the quantity /la(r) is the fractional de­

viation the downstream control valve area is from its steady-state 

position. 

Equations (4.84) can be written in terms of these new variables 

;—— = — A P ^) (4.87a) 

dAp(D 
dr 

= 25j"Ap^f)Aafr)+- Aa.LT) +- Ap(tr)] (4.87b) 

It is desired now to find the initial conditions that correspond 

to a sudden application of the control jet. Let A* be the inlet area 

before the let is applied and let fA* be the area after the control 
j rr 0 

jet is applied. 

The natural frequency is 

Cs R- l^KiUaTl r Cs K.loKi.V'Llv 

**"! . Vz J <4-88> 

which is unchanged for an increase in A*. 

The damping ratio, $ , is 

Aa.LT
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v^r r c.3 e.To " 

After the application of the control jet, the damping ratio 

(4.89) 

becomes 

ygA*rcsgTo i i 
S= ZUzLVzK^J (4.90) 

The quantity Ap(f) i s 

Ap(?-)= E~ | (4.91) 

Since it is assumed that the system is at equilibrium for 

t<0, then 

ApCr)=0 , r < 0 (4.92) 

because p2 (r)=uV at equilibrium. And Ap(r) is unchanged as the jet 

is applied because Ap(r) does not depend on A*. 

The quantity Aa(f) is 

1/2 
A a . W =^-r* a^^> ~ I (4-93) 

Pi A.* 

at equilibrium and therefore for t<0, 

P. A*£ 
A i ^ ) « ~ - ^ , r <£> (4-94) 

U2 

For ?->0, Aa(r) is 
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* * W * ^ T O - I / ^ ( 4 ' 9 5 ) 

Using equation (4.95) and (4.94), A a ( r ) at t=0 i s 

Aa(o) = — (4>96) 

Therefore, the system equations are 

d A q t r ) i Q7 

• = -— A d t ) (4.87a) 
d/c 2? Y 

d^
iT) = -'2-S[A?lT) A(X(r) + AaCr ) +- A p ( r ) ] (4.87b) 

with the initial conditions 

A(xLo)= — - ( 4 > 9 6 ) 

Ap(o) = o 

Notice that these equations only depend on the damping ratio, 

?, and the fractional area increase, f. 

Figure 17 and 18 give the response of the downstream system 

for several values of 3 and f. 

The same procedure will be followed to find the size of the 

downstream tank as was followed to find the volume of the upstream 

tank. The size of the tank will be made large enough so that the . 

downstream valve motor will not saturate under a sudden application 

of the control jet. 

It is assumed that the feedback gain, K2j can be made as large 

or as small as necessary to give any desired damping ratio, $ . The 

(4.97) 



Figure 17. Downstream Pressure Response with Integral Controller,? Variabl, 

00 



U)tfc 

Figure 18. Downstream Pressure Response with Integral 
Controller, f Variable 

oo 
Ui 
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equation giving the damping ratio in terms of the downstream system 

components can be solved for the feedback gain to give 

.. Cs e-To 
K'2." 

J!lA*r (4.98) 
Vz UT. i 2 U2 S J 

If equation (4.98) is used to eliminate K? from the natural 

frequency, the result is 

C±(LTo?\h* 
Co). _ 

V22U2S (4.99) 

Now from equation (4.99), the downstream tank volume can be 

obtained in terms of (̂ n, ? , and the other system parameters as 

CaE.T3>P, A* 
Vz - , , ? , , ! - (4.100) 

05N ^ U2 S 

The n a t u r a l frequency a t which the downstream valve motor 

s a t u r a t e s needs to be found. 

Equation (4.43) gives the maximum area r a t e in terms of valve 

and motor c h a r a c t e r i s t i c s . Thus 

d(Xa\ Am 5 

d-t /sat &° N 

And then from the d e f i n i t i o n of A a ( t ) 

(4.101) 

d A a ( t ) \ _ U_2_ / d a i ( b ) \ 
~ d k / s a t " P~ A* I d i )sat (4.102) 



Combining these equations, 
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d A q ( t ) \ = Ui Am S 
d-t /sat PiAv*<bOU (4.103) 

Equation (4.82a) can be used to give 

dait)\ /dAQL(t)\ / dait)\ (̂ M 

( - S T - ) r v , a r ( " d T ^ a r i ? A ^ ™ * (4.104) 

Equation (4.104) gives the natural frequency in terms of 

(J£|i£>) and P < S W 
max 

d A a C U \ 
a / o a a c t ) \ 

2S —iz— 
M , N " A K t W (4-105) 

By equating /dAa(t)>\ to /dAa(t) \ , the result of com-
\ dt / \ dt i 

max sat. 
bining equation (4.105), equation (4.103) and equation (4.102) is 

V^^o^j ^W3 (4'106) 

2 
The quantity / P-, A*\ can be found as a function of the Mach 

if) '2 

Number. Let this be written 

Pi A V . 
Ife. J 

A* Pi A V . 
Ife. J U^L Ae" 

L Pi A*J 

(4.107) 

The denominator on the right hand side of the equality can be 

calculated in terms of the mach Number from the equations of Chapter 

II. A few of these values are given in Table 8. 



Table 8. Table 

Several Mach Numbers 

of (^\fb, 
^ P : L A * ; 

M /¥e] 
V P^*/ 

1.0 .5283 
1.5 .3204 
2.0 .2157 
2.5 .1543 
3.0 .1153 
3.5 .0892 

As mentioned before, the control required of the downstream 

valve could probably be supplied by one butterfly valve. Choosing 

the constants that might be considered typical, let the following 

constants be 

? = .7 
M = 1.0 
f = 3 . 2 

A e = 
Am= 

. 2 i n 2 

1 2 i n 2 

S = 10RPM 
N = k 

The Mach Number, M, given as 1 is used in conjunction with 

Table 8. 

From equation (4.106), the tank volume is 

V2 - 3 1 5 U 3 , (4.108) 

The natural frequency from Equation (4.99) is 

C3 QSTo ?\ -P ho (4.99) 
OJN =•• — J ^ T U I l 



89 

The ratio P../U can be found by knowing the Mach Number and 

in this example, M=l. The natural frequency is 

au^ -- 4-.SCP vad / ^>?c 

~ '77.(0 c y c l e s / s e c 

The maximum o v e r s h o o t i s 

( 4 . 1 0 9 ) 

A p l H m a K -- ^ - 1 ^ ( 4 . 1 1 0 ) 

o r 

A p {-ir) rv^a y — I U> °7c> , (4.111) 

Summary of Design Proceedure for Integral Control System 

This section is intended to bring together the more important 

design considerations given throughout the integral control system 

analysis and to describe a proceedure for designing such a system. 

The integral control system consist of a pressure transducer, 

a power amplifier, and a motor driven valve, for the upstream as well 

as the downstream tank. By assuming the Mach Number in the nozzle to 

be one or greater the two tanks can be analyzed independently. The 

primary difference between the two analyses is that the upstream 

system controls the pressure in the upstream tank by controlling the 

inlet flow and the downstream system controls the pressure in the 

downstream tank by controlling the outlet flow. For the upstream 

tank system this led i.o a linear second order system, and for the 

downstream tank system the result was a nonlinear second order system 

that in many ways resembles the linear upstream system response. 
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The systems would be functioning primarily as a regulator and 

therefore the response of the system to a disturbance would be the 

criteria for determining the system parameters. A step application 

of the control jet of a fluidic amplifier was selected as the dis­

turbance . 

The equations for the upstream tank system response, with the 

initial conditions that correspond to step increase in the nozzle 

throat area (the nozzle throat area increase is equivalent to the 

application of the control jet) are given by equation (4.18), equation 

(4.24), and equation (4.36). The solution to these equations is given 

graphically in Figure 14 and Figure 15. Correspondingly, the equations 

for the downstream tank system are given by equations (4.87), equation 

(4.96), and equation (4.97). The solution of the downstream system 

equations as determined by an analog computer is given in Figure 17 

and Figure 18. The variable Ap(t) plotted in these figures is the 

normalized pressure error. 

As mentioned before the upstream tank is a linear second order 

system and the downstream tank is a nonlinear second order system, 

but for the range of variables involved, the downstream tank response 

is similar to the upstream tank response, The variable f is a measure 

of the size of the control jet in relation to the nozzle throat area. 

If f is considered to be constant then the overshoot or magnitude of 

the pressure error for a sudden application of the control jet is 

solely a function of the parameter ? . For the upstream tank system, 

$ is the conventional damping ratio and is defined in equation (4.19). 

For the downstream tank, S should perhaps not be called the damping 



ratio since the system is nonlinear, but it excersizes the same in­

fluence on the downstream system performance as does the damping 

ratio in that the magnitude of the normalized pressure error is solely 

a function of S for a constant f. This same transitional quality 

from linear to nonlinear is also true of LH> ti . In the upstream tank 

system, cvH (defined by equation (4.18)) is the natural frequency and 

therefore determines the time scale of the response. In the downstream 

tank system, the quantity Wu (defined by equation (4.80)) cannot 

be called a natural frequency in the strictest sense but influences 

the response as would the natural frequency. 

From the definitions of 5 and LOH , it can be seen that they 

may be made any desired value by the appropriate values of the feed­

back gains, K^ and Ko (referred to collectively as K), and the tank 

volumes, V-i and V? (referred to collectively as V). When attempting 

to obtain the best system response it becomes obvious that some limi­

tation must be placed on the range of system parameters or else the 

conclusion is reached that the natural frequency can be made arbi­

trarily large by making the tank volume small. Saturation of the 

speed of the valve motor was the limitation imposed here. 

By thinking of X as an independent variable and the feedback 

gain as a dependent variable, i.e. S can be chosen freely and the 

feedback gain must be chosen to accomodate this choice, the strategy 

for choosing the tank volume becomes that of making Wu as large as 

possible (by making V small) without causing saturation of the valve 

motor. It is necessary then to determine the relation between the 

motor speed and the other parameters. The relation between the maximum 
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area rate and motor speed is dependent on the size and type of valve 

used. Therefore the parameters A and N were introduced to reflect 
r m 

the valve type and size. The area, A , is the size of the maximum 

valve orifice area and N is the number of valve stems turns from full 

opened to full closed. 

Thus far, the comments made on the operation on the integral 

system have applied equally to the upstream as well as the downstream 

tank systems. However the following discussion points out a difference 

in the two systems. 

The relation between ti)u and V-, for the upstream tank is still 

dependent on the pressure at which the upstream system was operating. 

But it is very likely that the size of the upstream valve will be 

dependent on the pressures at which the upstream tank is operating. 

The variable % was used to reflect this dependence and thus elimi­

nates the dependence on the upstream tank pressure. 

With all these considerations, equation (4.68) gives the up­

stream tank volume in terms of these various parameters. The variable 

S in this equation is the maximum valve motor speed in RPM. The 

function H(S) is given in Table 7. Then with V-, chosen, equation 

(4.70) can be used to determine if the resulting uunis acceptable. 

For the downstream tank the relation between uun and Vo is not 

dependent on the absolute value of the tank pressure as with the 

upstream tank, but dependent on the Mach Number at which the nozzle 

is operating. The worst case (largest V?) for the choked nozzle is 

M=l. Also since the downstream tank system equations could not be 

solved analytically, Ap(t) (the maximum value taken on by &p(t)) 
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must be estimated from Figures 17 and 18. Equation (4.106) can 

2 
therefore be used to find V«. The ratio /J^;'c\ can be found from 

\"u2 / 

equation (4.107) and Table 8. Equation (4.99) can be used to check 

the resulting 

This completes the design of the integral control system since 

the minimum V, and V^ can be calculated for some given maximum area 
1 2 

rate and some chosen % . The resulting (JU* can be calculated to de­

termine if it is suitable large. If Wn is not large enough, equip­

ment must be selected that allows a larger maximum area rate. 

Proportional Control System 

This section considers the analysis of the test apparatus with 

the proportional control system. With this control system the upstream 

and downstream valve areas are proportional to the error signal whereas 

the valve area rate was proportional to the error signal with the 

integral control system. The proportional control system is analyzed 

in an effort to find a control system with better transient characteris­

tics than the integral control system. Even if the control characteris­

tics of proportional control system are more desirable than the charac­

teristics of the integral control system, the disadvantage of the 

proportional control system is that it would be more difficult to 

implement. Since the valve area must be proportional to the error 

signal, there must be some element to sense the valve area. This 

is an additional eiement that would not be required with the integral 

control system. 

Figure 19 shows the complete proportional control system. As 
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Figure 19. Apparatus with Proportional Controller 
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before, the upstream and downstream tanks can be analyzed separately 

if the test section, is assumed to be choked. Thus the following two 

sections determine the size of, first, the upstream tank and, second, 

the downstream tank, both with the proportional control system. Also 

the transient response of the proportional control system will be 

analyzed and compared to the response of the integral control system. 

The Upstream Tank System With Proportional Control 

When the test section is choked., the equations for the up­

stream tank (Figure 20) can be written 

dp,.(H _ ?.3^Tb 
dt V, L r J 

a , i t ) •=•• K , [ u i l H - pi I t ) ] 

(4.112a) 

(4.112b) 

ui ( t ) 

w01 <t> 

Ki 

x * l ( t ) 

£L 

MO 
w i 2<0 

A* 

Figure 20. Upstream Tank System 
with Proportional Controller 
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The test section is characterized by A*. 

Equation (4.98a) and equation (4.98b) can be combined into one 

equation yielding 

^r - ^ P £p°*'Ui M'c p°K ' + ^ } f l t , J (4-U 3> 

I f i t i s assumed t h a t 

u., (+) •= Ui 
(4.114) 

p t t l * Eli*] (4.115) 
Ui 

(4.116) 
APCt)= pf-{-)-| 

then equat ion (4.113) becomes 

1 ^ = _ E i ^ f r A * _ C ? 0 < , + A*)ApH)] (4.117) 
d b Vi L 

In a d d i t i o n , l e t the two paramete rs , G and Z, be defined 

G = 
A*" (4.118) 

z ^ ^1 (4.119) 
CsEXo/V-

The purpose for defining G and Z by the above equations is that 

G and Z are proportional to the two design variables, K̂  and V-. . 

Therefore, for example, the effect of making V-, small can be seen by 

examining the effects of making Z small. 

Equation (4.117) is now written 
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d|p = _!.[,<. u + Cl,AFCt,]
 (4a20) 

Equation (4.120) is a first order, linear differential equation 

and the solution is 

-.Lpt 
ApHl- r> + (H-G)Ap(Q)]e

 Z - I ( 4 > 1 2 2 ) 

. I +Ci 

where Ap(0) is the initial condition of Ap(t). 

The time constant, T , is » c' 

T c = --|s (4.121) 

It would be desirable to adjust the design parameters so that 

the time constant can be minimized. This can be accomplished (equation 

(4.121)) by either making Z small or by making G large or both. 

Another factor to consider is the steady-state error. This is, 

of course, unlike the integral control system which had no steady-

state error. The error, Ap , can be found by equating equations 

(4.120) to zero. The result is 

Since Ap(t) can be written 

A p ( t , = £ii«ZH» 
Ui (4.124) 

then the error as defined in equation (4.123) is the fractional de­

viation of p-ĵ  (t) from the desired value of Ui. Making Ap small is 
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another consideration when choosing the design parameter. And ^P s s 

can be made small by making G large. Therefore, making G large by 

making K-, large will reduce the time constant and the steady-state 

error. As with the integral control system, determining the practical 

limit on how large to make K, is difficult; other factors may become 

more important before K reaches its upper limit. Again it will be 

considered that saturation in the feedback is the limiting factor. 

The time constant and the steady-state error will be made as small as 

possible without allowing the valve motor to saturate. 

If the variable a(t) is defined to be 

L \JT£*~ (4.125) 

then equation (4.112b) can be written 

ftlt)--GApW (4.126) 

Differentiating this equation gives 

dac-t) dAp(-t) 

~dT = ~^ - d T " <4-127> 

Equation (4.127) provides a means to calculate the maximum 

area rate, da (t), from a knowledge of the maximum d^p(t). 
dt dt 

To find the maximum dAp(t), consider the response of equation 
dt 

(4.120) to a step input. A plot of dAp(t) versus Ap(t) under such 
dt 

an input is shown in Figure 21. The arrows show the movements of the 
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states as time progresses. The movement is always to decrease 

d&p(t); therefore, the largest dAp(t) must occur at the application 
dt dt 

of the step. As before the following analysis will be for the ap­

plication of the control jet. 

dj^t) 
dt 

•V 
1 
.+G 

P(t) 

Figure 21 . P lo t of Equation (4.120) 

By p u t t i n g equat ion (4.120) in to equat ion (4 .127) , the r e s u l t i s 

da.Ob) G r , -, 
- a f — — [ 1 4 - CM-G)Apl t> ] (4.128) 

The largest da (t) occurs at t=0. Therefore 
dt 

i-~r) = § - [ H - I I + « ) A P ( O ) ] (4.129) 

By assuming that the system is at: equilibrium before the appli­

cation of the control jet, Ap(0) can be written 
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A P ( ° ) = 
r I 4 G 0 

(4.130) 

where 

r - P o K l (4.131) 
Go = "^T 

As before, the area after the application of the control jet is 

A*-f A5 , i^O (4.132) 

Putting equation (4.130) into equation (4.129) gives 

/daU-)\ ^ f - i j _ Gg 
I ~db / m a y ' f Ho \ f G o (4.133) 

where 

z ^ Yl (4.134) 

The time constant, T , can be written 

Zo 
Tc --= - r — — (4.135) 

P + G D 

From equation (4.119), it can be seen that adjusting the 

parameter to make the time constant and steady-state error small, i.e. 

making ZQ small and GQ large, has the effect of making /da (t)\ large. 
\ dt /max 

And since /da (t)\ must be kept below some maximum value, it would be 
• \ dt / max 

beneficial to examine these equations for tradeoffs. 
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Using equation (4.120) to eliminate ZQ from equation (4.133) 

gives 

doij-)\ = £2j_ J _ Go 
dk/r^w f Tc G 2

0 H i f n G 0 f f (4.136) 

For large G , equation (4.136) is seen to be primarily a func­

tion of the time constant T . 
c 

As stated before it is desired to have /da(t)\ as large as 
I dt J 
x ' max 

possible without exceeding some limit. Let this limit be designated 

by (djL\ • ^n equation (4.136) it was found that the maximum area 
Idt/ , sat 

rate was primarily a function of Tc. By letting the maximum area 

te> /da(t) \ , equal the maximum possible, i.e. /d_a\ , then it 

* d t ' „ _ W ' s a c 

follows 

Tc ^ t l - 1 

£~(i&-\ (4.137) 
dt'/^ar 

Let the steady-state error, after the application of the con­

trol jet, be (equation (4.124)) 

Pt(t)-Ui __ ^ _ (4.138) 

where E is the error. 

Considering f to be fixed, the error is only a function of G . 

It would be necessary then to make G large so that the steady-state 

error will be small. Also, since E is only a function of G , speci-



102 

fying a permissable E fixes G . 

Combining equation (4.136) and equation (4.139) to eliminate 

GQ results in 

z o - - ~ (4.139) 

and by using the definition of Z , it can be written 
o 

V | , - f T c : C 3 g T o A S ( 4 1 4 0 ) 

Equation (4.140) gives the upstream tank volume, Vi, as a 

function of the time constant, Tc, and the steady-state error, E. 

The time constant is primarily a function of the maximum area rate 

permissible for large GQ and this makes choosing V.. primarily a 

tradeoff between keeping V, small and keeping E small. 

The area rate at saturation can be estimated using equation 

(4.43). This is 

/ d a i \ A*mS 
v d-b /sat G?o NJ 

Then from equat ion (4 .125) , i t i s obta ined t h a t 

(4.141) 

/ d a \ _ PoAr^S 
U f c / s a t " f U.A£6C?N (4.142) 

Define two a d d i t i o n a l v a r i a b l e s , tf and A1 , to be 

Aoo 
y - "AT < 4 - 1 4 3 > 
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Ui A* 
Ai - -pr- (4.144) 

The area A, will not be the value of a,(t) at equilibrium 

since there is a steady-state error with the proportional control 

system. However if the steady-state error is small, then the dif­

ference between a-i (t) at equilibrium and A., will be small. Then 

2f is essentially the constant that relates the maximum valve area to 

the equilibrium position of the valve. Now equation (4.142) can be 

written 

d_a\ _ rS_ 
cH W~f6tfN (4.145) 

Using constants similar to the numerical example of the integral 

controller, let the following constants be 

t = 1 
S = 60RPM 
f = 1.2 
N = 10 

then 

da 
,. . - O.0333 
dt Jmav. (4.146) 

Putting this value of /da\ into equation (4.139) gives 

Wat 

T'Zz 2 sec (4.147) 

Equation (4.140) then gives 

— 1 / 2 
V, = -±-F- (4.148) 
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Downstream Tank System with Proportional Control 

When the test section is choked, the equations for the down­

stream tank system (Figure 22) can be written 

dp*Mr) CSZTQ r A « 0 ; 1 N , M n 

~J^- = ~ ^ - [A*P, - Fi.(t) a2(+)J 

Qa(r) = K z f f M H - lLn.Lt]] 

(4.149a) 

(4.149b) 

w 1 2 ( t ) 

A* 

A 
w 2 3 ( t ) 

P 2 ( 0 

u 2 ( t ) 

K. 

" \ K 
a 2 ( t ) 

Figure 22. Downstream Tank System 
with Proportional Controller 

Let the following variables be defined as 

U^ (t ) = U 2 

p ( ^ f i l i l 

G = ^2 Ug 
A* P, 

U2V2 Z = 
C3VT0W1 

U* a ( t ^ irr* aitt; 

(4.150a) 

(4.150b) 

(4.150c) 

(4.150d) 

(4.150e) 

P, A*-

lLn.Lt
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With these definitions, equations (4.149) can be written 

^ = - l r , - a < t , ( A P ( t , - . ) ] 

CL(i:) •=• G A p C t ) 

(4.151a) 

(4.151b) 

Equations (4.151) can be combined to yield 

d-^i)^_-irOAp^4:) +- GAp(t>-l] 
dt ~7 L Z 

(4.152) 

Equation (4.152) is a first order equation but it is not 

linear as was* the upstream tank system equation. The solution to 

equation (4.152) is 

where 

and 

_(j_p.( 

A p ( H ^ 
( D-0+ ( l+D)Be z 

- B e 
_G_D ^ 

D = i n - i yi 
G, 

(4.153a) 

(4.153b) 

B-
2ApCo)4- I - D 
'2Ap(o)TTT6 (4.153c) 

It is interesting to compare the non-linear downstream tank 

system response to the linear upstream tank system response. 

Define two new variables, q(t) and f3 in terms of the upstream 

tank variable to be 
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-\(\)^- -( I +G,) Ap(r) 

T 
z 

-b 

(4.154a) 

(4.154b) 

With the new variables, all the upstream tank system responses 

can be represented by one plot. If we let the new variable have the 

same definition for the downstream tank system except for the minus 

sign in equation (4.154a), then it too can be plotted on the same 

coordinates but the response will still be a function of G. Figure 

23 shows a plot of the upstream tank system response as well as for 

the downstream tank system response with G=l and G=10. The initial 

condition is q(0)=.25. 

From the figure it can be seen that when G becomes large, the 

two responses become very similar. 

Figure 23. Upstream and Downstream System 
Response with Proportional Controller 
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Therefore the same design procedure would be valid for de­

termining the size of the downstream tank as was used for the upstream 

tank. The equivalent of the time constant for the downstream tank is 

Tc = - — (4.155) 
G, ( I 4- ;r yi 

Ca 

The steady-state error is 

A p ^ - - ^ + - ^ - y i -H- (4.156) 

Table 9 gives a few values of the steady-state error as a 

function of G. 

Table 9. Steady-State Error for 
Downstream Tank System 

Pss<*> 

1 61.8 
2 3 6 . 6 
5 1 7 . 1 
10 9 . 2 
25 3 . 9 
50 2 . 0 
100 1.0 

Again thr maximum area rate (saturation) will be the factor 

that will determine how large to make G and how small to make Z. 

By differentiating equation (4.151b) and by combining it with 

equation (4.152), an equation giving the area rate as a function of 

Ap(t) can be written as 
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d a i t ) ^ _ ^ _ r G j A p ^ ( 4 r ) + G A p ( t ) - | ] 
d-t -7 L r j 

(4.157) 
"Z-

Figure 24 i s a p l o t of t h i s eqtjation. 

d.a£t) 
dt 

i[-f] 
4Hvi+T 

Ap( t ) 

Figure 24. Plot of Equation (4.157) 

The arrows in Figure 24 indicate the movement of the state 

along the line for some initial displacement: from the equilibrium 

position. 

From the figure it might appear as if the system could become 

unstable if the initial conditions were to put the system on the left­

most portion of the curve. However since the point at which the curve 

crosses the Ap(t) axis on the left is to the left of the -1 point, and 

since 

A p r t ) - X - Q ^ — (4.158) 



then it would be necessary for either P£(t) or Uo to be negative 

in order to reach this portion of the curve. The. pressure P2(t) 

will not be negative and it would be simple to constrain the refe­

rence input, Uoj to be always positive. Thus the system should not 

be unstable. 

Now the maximum area rate needs to be found for the step ap­

plication of the control jet. Let the size of the test section area, 

A*, be designated by Ag before the application of the control jet. 

Also let the following variables be defined as: 

aiif) Ux 
a * C t ) = AtP, 

v~ 
G o -

o n 

v2 U2 f- u| (4.159) 

A*o Pi (4.160) 

U2 W Z"'P7^=TKin (4.161) C3l2-ToA*0R 

A p c - s — 2 - ^ y / ±Zo 
41 (4.162) 

(4.163) 

Since the dimensionless parameter a(t) will change in value 

with a change in A* even if a2(t) does not change, then so will 

da (t). The subscript will designate this difference. 
dt 

Figure 25 shows two trajectories: one for the control jet 

closed and one for the control jet open. 

For the closed jet, the equation is 

^ - ^ [ G o i p ^ H G o A p t t l - l ] (4.164) 

and for-the open control jet the equation is 
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daott). __Gi£ ^ G o A p i ( J t )4 -Go A p l t ) - -FJ 
dx 

(4.165) 
Z< 

daQ(t) 
^dT* 

.^v^TTJ 

Figure 25. Response of Downstream Pressure 
to Control Jet Disturbance 

It is assumed that Ap(t) is at the equilibrium point with the 

jet closed and since Ap(t) does not change value instantaneously with 

the opening of the jet (does not depend on A*), then the initial 

condition for the response corresponds to projecting the equilibrium 

point straight up until it intersects the upper line. This is obviously 

the largest da^ (t) that will occur for a step jet application. 
dt 

By substituting equation (4.164) into equation (4.166) the 

maximum area rate is found to be 

d CLo W 
dt iv\&x 

L f - i ] (4.166) 



I l l 

Using (4.155) to eliminate T gives 

daolW ^ - 0 

(̂ i dt U « T ( 1 / l + . M\a <4-167> 

which shows t h a t for l a r g e GQ, 

U-0 
Tc ̂ ' d a o U ) \ (4.168) 

d"t" /max 

This is similar to the upstream tank in the respect that the 

time constant, T , is primarily a function of the maximum area rate 

allowable. By using equation (4.43) and equation (4.154), the satu­

ration limit can be obtained as 

d a 0 C-b) \ _ Ife/kmS 
dt / ^ -pP,A*60N (4.169) 

The ratio U2 can be obtained from Table 8, 
P1A§ c 

If the constants are 

M = 1.0 
Ae= .2in

2 

A ^ 12 in2 

S = 10RPM 
N = k 

then 

/dao(t)\ 

\~6f-)^rn'^ (4-170) 

Putting this into equation (4.169) gives 
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T«= O. 0\ 13 sec (4.171) 

The desired volume can be found from equation (4.161) and 

equation (4.155) as 

V^Cs^TcG.j^fl + g ) 4
 (4.172) 

and the corresponding steady-state error is 

E = - r + r V ' + % t <4-173> 

Several values of V2 and E are given in Table 10. 

Table 10. Values of V2 and E for T=0.067 

GQ V2(ft
3) E(%) 

1 .0471 70.4 
2 .0721 42.2 
5 .137 20.0 
10 .238 10.8 
25 .534 4.6 
50 1.02 2.3 
100 2.00 1.2 

Summary of Design Proceedure for Proportional Control System 

The proportional control system differs from the integral 

control system in that the valve area itself is proportional to the 

error signal with the proportional control system ins Lead of having 

the valve area rate proportional to the error signal as with the inte-
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gral control system. This difference causes the proportional control 

systems to be first order instead of second order like the integral 

control system. With the proportional control system the object is 

to make the feedback gain large so that the error will be small. 

The upstream tank and the downstream tank system were analyzed 

separately. The upstream tank system was found to be a linear first 

order equation while the downstream tank system was a non-linear first 

order equation. 

With the integral control system, the response characteristics 

used to determine the control parameter valves were the overshoot and 

settling time. These were characterized conveniently by ? and ton 

and controlled by the feedback gain and tank volume. For the pro­

portional system the factors which determine the performance are 

rise time (so called in first order system) and steady-state error. 

Recall that there was no steady-state error with the integral control 

system. 

These are characterized conveniently by T and E. The para­

meter T is the time constant when applied to the upstream tank and 

similar to a time constant when applied to the downstream tank system. 

The parameter E is the normalized steady-state error in both the up­

stream and downstream tank systems. And in turn Tc and E can be 

found in terms of two more parameters G and Z. 

The parameter G is defined by equation (4.118) for the upstream 

tank and by equation (4.150c) for the downstream tank. In both cases, 

it is proportional to the feedback gain. The parameter Z is defined 

by equation (4.119) for the upstream tank and by equation (4.150d) 
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for the downstream tank. The parameter Z was thus defined for con­

venience and because it is proportional to the tank volumes. 

Again the control jet. application was used as the disturbance, 

and saturation of the valve motor was set to reflect equipment limi­

tations. 

Several simplifications can be made if we assume that the 

feedback gain is sufficiently large. In order to justify this, notice 

in equation (4.124) and equation (4.156) that the steady-state error 

is only a function of G. Thus specifying some G fixes the steady-

state error. For errors of 10% or smaller, G must be 10 or larger. 

If G is 10 or larger then it is sufficiently large to make the desired 

simplifications. 

The first simplification is made with regard to Figure 23. 

Even though the analytical solutions look quite different, the upstream 

and downstream tank system responses are essentially the same for G 

equal to or greater than 10. Therefore unless stated to the con­

trary, the following discussion is pertinent to both the upstream 

and downstream systems. 

For large G and f fixed, the minimum time constant, Tc, is 

found to be only a function of the maximum allowable normalized area 

rate. As the normalized area rate increases, the time constant de­

creases. With tf, S, and N (as defined for the integral control 

system) used, the maximum normalized area rate can be found from 

equation (4.145). The upstream system time constant is thus approxi­

mated by equation (1.37) and the downstream system (pseudo) time 

constant is given by equation (4.168). 



Since the minimum time constant is primarily a function of the 

maximum normalized area rate and not the gain, G, then equation 

(4.140) shows that the upstream tank size is only a function of the 

steady-state error. Therefore, to make E small, V-, must be made 

large. This tradeoff between E and tank volume is also true for 

the downstream system; however, G cannot be eliminated to give a 

direct relation between V2 and E as in equation (4.140). Instead 

equation (4.172) and equation (4.173) must be used with GQ as the 

independent variable. 
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