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Abstract 
Analysis of single-cell RNA-sequencing (scRNA-seq) data is plagued by dropouts, zero 

counts for mRNA transcripts due to low mRNA in individual cells and inefficient mRNA 

capture. Dropouts are traditionally treated as an error to be corrected through normalization 

while performing unsupervised clustering of single cells based on highly expressed, variable 

transcripts. A novel algorithm, co-occurrence clustering, treats dropouts as a signal and binarizes 

scRNA-seq data for cell clustering, producing the same clusters as Seurat.  

Previous application of Seurat to single nuclear RNA-sequencing (snRNA-seq) data 

taken from the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) of patients with 

autism spectrum disorder (ASD) found no difference in clusters between brain regions. This 

seems at odds with literature suggesting tissue-specific emergence of co-expression networks 

and regional specialization in the brain. We applied co-occurrence clustering to ASD samples to 

parse interregional heterogeneity between the PFC and ACC and identify novel cell clusters.  

Introduction 
Autism spectrum disorder (ASD) affects 1.9% of children in the United States. Complex 

gene-environment interactions give rise to ASD, and recent studies suggest that at least 50% of 

the risk of developing ASD is attributable to genetic variation [1]. Despite this, ASD and other 

psychiatric disorders are highly heterogeneous, which makes identification of important genetic 

risk factors difficult. Historically, approaches involving genome-wide association studies 

(GWAS) to identify common genetic variants in the form of single-nucleotide polymorphisms 

(SNPs) have been successful [2]. However, common genetic variants individually explain just a 
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small amount of the variance in liability, and cumulatively genome-wide significant SNPS 

account for only 1-2% of observed variance [3]. As such, no singular genetic variant can be 

attributed to ASD. Nevertheless, from the array of genes identified with relevance to ASD,  gene 

networks have been constructed that show convergence on neuronal development, modulation, 

and intracellular transcriptional mechanisms.  

Gene expression profiling by RNA-seq can be used to identify cell types associated with 

ASD, offering an additional layer of granularity. Indeed, evidence of convergent dysregulation 

from cell types has been revealed in the first of its kind study using single-nucleus RNA 

sequencing (snRNA-seq) [4]. Postmortem samples of ASD and control patients were taken from 

the Anterior Cingulate Cortex (ACC) and Prefrontal Cortex (PFC) and processed for nuclei 

isolation and snRNA-seq using the 10x Genomics platform. Unbiased clustering of the ACC and 

PFC together and separately resulted in the identification of the same cell types. This appears to 

be at odds with literature suggesting tissue-specific co-expression networks emerge 

spatiotemporally from different cell types [5]. Recent advances in neural circuits using the 

research domain criteria (RDoC) shows that the PFC and ACC serve together and separately in 

mood and anxiety disorders [6]. Significant genetic overlap with ASD and hierarchical 

transcriptomic specialization across brain regions suggest that some distinction should be 

apparent between the PFC and ACC [7].  

Potential explanations for why this was not captured in the original study include sample 

size and dropout events. Dropout events are a limitation of single-cell RNA-seq studies, arising 

from low mRNA in individual cells and inefficient mRNA capture [8]. In existing scRNA-seq 

methods, feature selection is typically performed only once through principal component 
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analysis of highly variable genes. In this pipeline, dropouts are filtered out and the remaining 

transcript abundance counts are normalized such that only highly expressed variable genes are 

considered. A new co-occurrence clustering algorithm developed by Dr. Peng Qiu at Georgia 

Tech treats these dropouts as a useful signal instead of noise to identify additional cell types. 

Furthermore, feature selection is re-visited for each iteration of clustering to characterize the 

heterogeneity of cells under consideration. An initial assessment of this approach shows that 

co-occurrence clustering produces more clusters than previous analyses of the same datasets. 

This suggests that different bioinformatic strategies may be optimal for analyzing cell 

populations with varying levels of heterogeneity, such as those found in the PFC and ACC.  

To further understand region-specific cellular heterogeneity in ASD, this study will 

examine how dysregulation of the ACC and PFC contribute to ASD through the application of 

co-occurence clustering to scRNA-seq samples. It is predicted that this method will identify 

additional cell types implicated in tissue-specific gene networks through subsequent differential 

gene expression analyses of the ACC and PFC. This novel approach seeks to further characterize 

the heterogeneous nature of ASD, identifying novel dysregulated pathways for therapeutic 

intervention and diagnosis. 
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Literature Review 
Clinical heterogeneity is a hallmark of autism spectrum disorder (ASD) as reflected in the 

current Diagnostic and Statistical Manual for Mental Disorders (DSM-5). Likewise, recent 

research initiatives to detect the biological basis of psychiatric disorders have revealed 

significant genetic heterogeneity that underpins phenotypic expression[1]. However, the path 

from gene to behavior is complex and arduous. Network-based approaches seek to integrate the 

common and rare genetic variants involved in autism and identify cellular pathways [2]. Recent 

advances in single-cell RNA sequencing (scRNA-seq) have introduced a new level of granularity 

in this approach. Unbiased clustering of expression leads to the identification of cell types 

involved in disease pathogenesis. Subsequent differential gene expression analysis of cell types 

and gene ontology analysis constructs gene networks that provide new insights into ASD through 

the identification of affected cellular pathways. Despite these advances, dropout reads from 

scRNA-seq data acquisition and increasing evidence of region-specific transcriptomic profiles in 

the brain pose barriers, and present opportunities for further research [3,4]. To address this, a 

novel co-occurrence clustering algorithm has been developed that uses dropout reads as a signal 

[5]. This approach may detect intra-region heterogeneity with greater precision than traditional 

methods, potentially yielding new insight into therapeutic targets for ASD.  

An overarching goal of current research is to define ASD by its genetic components. At 

least 50% of the risk of developing ASD is attributable to genetic variation [7]. Hundreds of 

genes are likely related to autism. Unfortunately, genome-wide association studies (GWAS) have 

failed to identify single variants at genome-wide significance [6]. It is only within the past 

several years that sample sizes have grown large enough to detect the minuscule effect sizes of 
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pathogenic variants on the disease itself. One explanation for why GWAS has failed to identify 

additional variants lies in the focus of GWAS on susceptibility loci, which ignores other variants 

that are not causative alone [8]. Connections between genes and behaviors are further 

complicated by how etiology is shared across multiple complex disorders. Indeed, results from 

the Psychiatric Genomics Consortium show a significant overlap between variants associated 

with schizophrenia and autism [8]. Furthermore, epigenetic factors can have a profound impact 

on the transcriptome of an organism. Epigenetic factors may be causative in of themselves but 

may also influence the expression of risk genes to modulate disease state [7,8]. In the journey 

from gene to behavior, gene-gene and gene-environment interactions result in hierarchical 

disease manifestations across the genome, transcriptome, proteome, etc. It is thus imperative to 

explore each of these -omic analyses both independently and jointly, in order to uncover how 

ASD behavior emerges from lower biological levels.  

 Co-occurence clustering of dropout reads may yield an additional level of precision by 

detecting layers of complexity to neural circuit composition that are not apparent from studies of 

only highly abundant genes. Large-scale neural circuits serve as endophenotypes and 

theoretically lie closer to the underlying biology of ASD. The central idea is that neural circuits 

compute behavioral actions and that this computation is heavily influenced by the physical 

architecture of neuronal connectivity encoded by genetic variants [9]. One example of a 

large-scale neural circuit is negative valence, which interprets the intrinsic averseness of 

environmental stimuli [9]. Negative valence systems involve connectivity and activation between 

the anterior cingulate cortex, insula, and amygdala. Because neural circuits define physical 

regions of the brain, studying which variants are associated with altered architecture should yield 
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dysfunctional pathways. However, several well-powered genetic studies of psychiatric disorders 

have failed to demonstrate more than a handful of correlations between genetic variants and 

structural imaging traits derived from fMRI scans [10]. A likely explanation for this is that 

pathogenic variants do not significantly alter gross brain structure, but act at the cellular or 

subcellular level. One line of evidence to support this hypothesis comes from the study of 

transcriptomic specialization across the human cortex. Hierarchical transcript gradients define an 

axis shared by transcriptomic and anatomical architecture of the cortex [11]. Transcriptomic 

diversity influences microscale properties that contribute to macroscale function. With the advent 

of single-cell RNA sequencing, it is now possible to characterize individual cell types within 

micro and macro neural circuits that contribute to ASD.  

One of the advantages of co-occurence clustering using single-cell RNA is the level of 

precision it yields compared to traditional bulk-brain sequencing. Single-cell RNA sequencing 

has introduced an unprecedented level of granularity in identifying how neuropsychiatric 

conditions affect individual cell types [12]. Single-nucleus RNA sequencing analysis identified 

that synaptic signaling of upper-layer excitatory neurons and microglia are preferentially affected 

in autism [13]. However, few differentially expressed genes were observed compared to 

bulk-brains sequencing and even fewer between regions sampled (prefrontal cortex and anterior 

cingulate cortex). One potential explanation is due to the infamous issue of dropouts. Limitations 

of scRNA-seq include low capture efficiency and sequence coverage that results in a higher level 

of noise than bulk RNA-seq data [14]. Dropouts occur when no transcript is captured. This issue 

is particularly pernicious in regions of high cell-to-cell heterogeneity, where dropout events 

increase. Dropouts are typically handled through normalization when focusing on highly variable 
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genes (e.g. Seurat) or used to perform feature selection through methods like M3Drop [14-16]. A 

new co-occurrence clustering algorithm developed by Dr. Qiu uses dropouts as a useful signal 

similar to M3Drop [17,18]. Unlike M3Drop, however, feature selection is re-visited for each 

iteration of clustering to produce more clusters than traditional methods like Seurat. Because of 

the method’s ability to handle varying levels of heterogeneity, co-occurrence clustering may be 

particularly well-suited to the transcriptomic diversity and specialization of neural circuits. As 

such, the application of co-occurrence clustering to characterize intraregional heterogeneity in 

ASD samples should detect novel pathways that are otherwise obscured by focusing on highly 

expressed, variable genes.  

In sum, genetic variation affects multiple levels of biology, at different developmental 

periods, within certain cell types, altering the physical structure of neural circuits, affecting how 

circuits perform computations, and producing canonical behavioral symptoms of ASD [9,10]. By 

researching how ASD affects individual cell types within neural circuit regions, it may be 

possible to identify new pathways for disease treatment and identification. Crucial to this 

endeavor will be how to handle dropouts that influence data quality and, ultimately, the accuracy 

of implicated pathways. Co-occurrence clustering and similar methods that treat dropouts as a 

useful signal may complement or outperform existing strategies that focus on highly expressed 

variable genes. The unprecedented precision these methods offer into how ASD emerges at the 

cellular level will help to redefine ASD by its biological components and identify new 

therapeutic targets. 
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Methods 

snRNA-seq data from ASD patients was obtained from a previous study conducted by 

Velmeshev et al and available at the SRA accession PRJNA434002. Information about nuclei 

extraction and quality control are available in Velmeshev’s supplementary materials. Samples 

were split into groups based on the cortical region they were obtained from (PFC or ACC) and 

phenotype (ASD or control).  

Library demultiplexing, fastq file generation, read alignments, and unique molecular 

identifiers (UMI) quantification was achieved using CellRanger software v 1.3.1 and default 

parameters. Samples were aligned against the pre-mRNA reference file (ENSEMBL GRCh38) to 

capture introns. After processing by CellRanger, we performed two separate methods of 

dimensionality reduction, clustering, and visualization through a MATLAB-based 

implementation.  

Samples from the PFC and ACC for ASD and control patients are run through the 

MATLAB-based co-occurrence clustering algorithm to produce cell clustering results. A full 

description of co-occurrence clustering is provided by Qiu on biorxiv 

(https://www.biorxiv.org/content/10.1101/468025v2.full.pdf+html). For the purposes of this 

paper, we will provide a brief summary of the methodology. 

First, the algorithm binarizes the scRNA-seq count matrix and evaluates a statistical 

measure for co-occurrence between each pair of genes through the Jaccard index. The graph is 

then partitioned into gene clusters using the Louvain algorithm, leaving gene clusters with high 

co-occurrence that represent pathways for major groups of cell types in heterogeneous 

https://www.biorxiv.org/content/10.1101/468025v2.full.pdf+html
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populations. Percentages of detected genes in each cell are used to build a cell-cell graph. 

Community detection is then applied to further partition the graph into smaller clusters in an 

iterative manner. Cluster validity is assessed by mean difference and mean ratios. Similar 

clusters are merged while heterogeneous ones continue to be partitioned into subclusters.  

After cell clustering and visualization with co-occurrence clustering, the same samples 

are clustered using a MATLAB-based Seurat implementation. A confusion heatmap compares 

the cell clusters generated by co-occurrence clustering and Seurat to demonstrate the difference 

in the algorithms’ ability to partition heterogeneity in cortical samples.  

Results 

One sample clustering 
 
Application of co-occurrence clustering to sn-RNAseq data gathered from the PFC of one ASD 

patient produced 34 cell clusters (Fig. 1), and Seurat identified 15 (Fig. 2). 

 

Figure 1: Co-occurrence clustering of one ASD PFC sample 
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Figure  2: Seurat clustering and tSNE representation of one ASD PFC sample 

Aggregate Sample Clustering 

Co-occurrence clustering was performed on aggregate samples from the ACC and PFC of 

patients with ASD. We found 119 robust cell clusters in the PFC and 98 clusters in the ACC. 

Furthermore, 142 gene clusters were found in the PFC compared to 125 clusters in the ACC.  

 

Figure 3: Co-occurence clustering of ASD PFC samples 
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Figure 4: Co-occurence clustering of ASD ACC samples 

 

Seurat Clustering  

Seurat with tSNE for dimensionality reduction was used to cluster cells within the PFC 

(Figure 5) and ACC (Figure 6), identifying 20 clusters for both regions. A MATLAB-based 

implementation of Seurat, as part of the co-occurence clustering pipeline, was used to perform 

dimensionality reduction and generate respective tSNE plots.  
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Figure 5: PFC Seurat clusters 

 

Figure 6: ACC Seurat clusters 
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Discussion 

Our results demonstrate the utility of co-occurrence clustering for parsing interregional 

heterogeneity in the brain. Within a single sample of the PFC from one ASD patient, 34 cell 

clusters were identified by co-occurrence clustering (Fig. 1) compared to 15 by Seurat (Fig. 2). 

The high ratio of co-occurrence to Seurat clusters observed in a single sample generalizes to 

aggregate samples of the PFC and ACC. Seurat only identified 20 cell clusters for both regions 

(Fig. 5 and 6), whereas co-occurrence clustering produced 119 clusters in the PFC (Fig. 3) and 

98 clusters in the ACC (Fig. 4). The identification of the same number of cell clusters by Seurat 

is consistent with prior analysis by Velmeshev et al [1]. The 5x difference in cluster count 

between Seurat and co-occurrence clustering confirms our initial hypothesis that co-occurrence, 

owing to its use of dropouts and iterative feature selection, would produce more clusters than 

Seurat. It is worth noting, however, that this is the first application of co-occurrence clustering to 

sn-RNAseq data. Therefore, it is possible that the high cluster ratio is, in part, a technical error 

for not adjusting parameters of co-occurrence clustering to the new data type and the pre-mRNA 

reference.  

Co-occurrence clustering not only identified more clusters than Seurat, but produced a 

marked difference in cluster count between brain regions. Our observed discrepancy between 

cell clusters found in the PFC and ACC (119, 98 respectively) matches the disparity in gross 

brain volume between the two regions [2]. The larger volume of the PFC presents the 

opportunity for greater intraregional specialization, and thus more cell types and subtypes, 

compared to the ACC. Furthermore, additional studies have highlighted the region-dependent 
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emergence and specialization of gene co-expression networks in the brain [3, 4]. The difference 

in cluster count between the ACC and PFC from co-occurrence clustering supports the existence 

of region-specific dysregulation in gene co-expression networks in the context of ASD.  

In sum, we have demonstrated the utility of co-occurrence clustering for snRNA-seq data, 

identified novel cell clusters implicated in ASD, and reported the first-known delineation of 

interregional heterogeneity between PFC and ACC clusters from our data set. Our results show 

that dropouts, typically viewed as a source of technical error, can be used as a valuable signal to 

analyze highly heterogeneous regions of the brain. Further analysis of identified cell clusters may 

yield novel dysfunctional pathways unique to our sampled brain regions and improve our 

understanding of the biological emergence of ASD.  
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