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ABSTRACT 

This report summarizes the work performed during the NASA LANGLEY 

research program entitled "Development of an Analytical Technique for the 

Optimization of Jet Engine and Duct Acoustic Liners." This research program ran 

for one year (3/1/81-2/28/82) and carries the NASA number NAG 1-133. Detailed 

results of the work performed during the first six months of this contract are 

presented in the NASA LANGLEY SEMI-ANNUAL STATUS REPORT (3/1/81-

8/31/81) for NAG 1-133 and thus will not be repeated here in its entirety. 

During the past six months, a new method was developed for the 

calculation of optimum constant admittance solutions for the minimization of the 

sound radiated from an arbitrary axisymmetric body. This method utilizes both the 

integral equation technique used in the calculation of the optimum non-constant 

admittance liners and the independent solutions generated as a by product of these 

calculations. The results generated by both these methods are presented for three 

duct geometries: (1) a straight duct; (2) the QCSEE inlet; and (3) the QCSEE 

inlet less its centerbody. 
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I. INTRODUCTION 

The object of this research program was the development of an analytical 

technique for the determination of the optimum admittance distribution along the 

wall of an axisymmetric duct for the minimization of sound radiated from the duct 

given a specific source of acoustic radiation in the duct. The results of this method 

were to be checked against calculations performed for constant admittance liners 

to see if better results could be obtained with the new method. Finally, a 

parametric study was to be done, based on wave number, for at least two 

geometries in which the optimum constant and distributed admittance liners were 

to be calculated. 

The formulation of the problem which has been used in the parametric 

study is presented in detail in Chapter IV of the previous six month status report 

for this grant (See Reference 1.). This being the case, the precise mathematical 

formulation of the method will not be repeated. Instead, only a brief overview of 

the method will be presented here. 

The method itself is based upon a special integral formulation of the 

external solutions of the Helmholtz equation. The basic formulation of the 

governing equations for three dimensions is given in great detail in Reference 2. 

This formulation can be specialized for axisymmetric bodies 3  and it is this form of 

the equations which is used in this study. 

These integral equations govern the acoustic quantities on the surface of 

the body and take into account the Sommerfeld radiation conditions at infinity in 

the field so that only outgoing, decaying solutions are considered. To solve these 

equations, the surface of the body is discretized into many small areas and since 



the problem is elliptic in nature a boundary condition is applied over each small 

area. The boundary condition specified may be either the acoustic potential which 

is directly related to the acoustic pressure, the normal acoustic velocity, or a ratio 

of these two quantities referred to as the effective acoustic admittance at each 

point. 

When this is done, a system of linear equations can be developed in which 

the acoustic potential or the normal acoustic velocity is the unknown at each point 

on the body depending on which boundary condition is specified there. The 

boundary conditions themselves contribute to the inhomogeneous term in each equa-

tion and in some cases the diagonal term of the matrix. 

Since the resulting equations are linear, the solutions may be 

superimposed. Also, if the boundary conditions are chosen appropriately they do 

not effect the matrix coefficients, only the inhomogeneous vector terms. It is 

these two characteristics of this formulation which are exploited in both the 

calculation of the optimum varying admittance for a duct and the optimum 

constant admittance. 

Normally to find the optimum constant admittance for a duct, a 

parametric study must be done in which the real and imaginary parts of the 

admittance of the liner are varied. Usually, this means that a complete, separate 

solution must be generated for each admittance value; however, a method has been 

developed which utilizes the same independent solutions on the admittance surface 

which were generated for the calculation of the optimum varying admittance 

solution. This new method greatly reduces the amount of computing time required 

for the generation of constant admittance solutions and is presented in detail in the 

following section of this report. 



Having developed both the theory and the computer codes for the 

generation of both optimum constant and varying admittance liners for general 

finite axisymmetric ducts, a parametric study was performed on three separate 

duct geometries. The three duct geometries are: (1) a straight duct with a 

rounded lip; (2) the NASA QCSEE inlet of Reference 4; and (3) the NASA QCSEE 

inlet less its centerbody. The results of this parametric study are presented at six 

wave numbers for each geometry at which both the constant and varying optimum 

admittance liners are calculated for both constant acoustic potential and constant 

normal acoustic velocity drivers. 



II. CALCULATION OF OPTIMUM CONSTANT ADMITTANCE LINERS 

In this section, we will briefly go over the generation of the independent 

solutions on the surface of the body. Then, the development of constant 

admittance solutions will be discussed in detail. Since the development of the 

special integral formulation of the external solutions of the Helmholtz equation is 

given in References 1-3, only the final form of the equations will be presented 

here. It will be noted that although this form of the equations has been specialized 

for axisymmetric geometries, that any cylindrically symmetric acoustic mode may 

be calculated. 

Firstly, let us define the geometrical variables that we will use on a 

surface of revolution. In Fig. 1, the coordinate system employed on the body S is 

given (p , Z,0 ) along with an outward normal from the body, n+, and an element of 

area on the surface of the body, p dsd O. The variable s is the distance along the 

generating line of the surface of revolution and is assumed to go from o at one end 

of the body to 9, at the other. 

We now assume that the acoustic potential on the surface of a body of 

revolution can be written as 

(1) ( p, Z, 0 ) = 4)(s) cos (m9) 

and similarly that the normal acoustic veloticy on the surface of the body can be 

written as 

3 (I)(p, Z, 0) 
	

V(s) cos (m 0 ) 

3n 



In doing this we have incurred no loss in generality. Since all of the equations are 

linear, any acoustic radiation pattern may be generated as a sum of these simple, 

cylindrically symmetric patterns. Also, the variable m is commonly referred to as 

the tangential acoustic mode number. 

In order to write the equation in compact form we now define three sets 

of functions: 

Influence functions: 
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where rpq  is the distance between points P and Q and n p  and nq  are the outward 

normals from the points P and Q, respectively (See Fig. 2.). Also, G(P,Q) is the 

free space Green's function 

ikr 
G(P,Q) - e pq 

rpq  (6) 

where k is the wave number and a is the complex coupling constant for this 

particular formulation which is found to be 

a= 1 	 (7) 

It will be noted that in evaluating K 2  and F 2  the point at which Op= eq  is excluded 

from the integration as it constitutes a strong sigularity. 

Using the above definitions and equations, the special integral formulation 

of the external solutions of the Helmholtz equation may be written as 
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In this particular formulation of the problem the s and 0 coordinate directions 

have been uncoupled so that the solution of the problem has been reduced to the 

evaluation of line integrals on the surface of the body. 

Equation (8) represents a relationship between the acoustic pressure and 

normal acoustic velocity at any given point on a body (i.e., point P) to all of the 

values everywhere else on the body (i.e., at the Q points). If this equation is 

applied at each point on the body, along with the boundary condition at each point, 

a system of linear algebraic equations is obtained for the unknown variables at each 

point on the body. Thus, if there are N points on the body, a system of N complex 

equations in N complex unknowns is developed. 

In the numerical integration of the functions (See Eqns. (3) - (5).) a Gauss- 

Legendre integration formula is used. For the integration in the s direction, a 

simple two point integration is employed such that the point P is never actually 

equal to any of the integration points (i.e., the Q points). Also, when the body is 

divided into N points in the s direction, both the acoustic potential el) and the 

normal acoustic velocity V are assumed to be constant over each element even 

though there are two integration points per element. 

For the development of the independent solutions on the surface of the 

body let us assume that the body is divided into three distinct regions as in Fig. 3. 

These regions do not necessarily have to be contiguous however, for the sake of 

clarity they are presented as such here. The first solution which we must consider 

is the driver solution. To calculate it we must solve for the acoustic quantities on 

the surface of the body subject to the boundary conditions 

ci,(Q) 	(Q) 	on SD  

(9) 

V(Q) = 0 
	

on S
H and S

L 

7 



where 4)
D 

(Q) is some specified function of the acoustic potential on the driver. 

Solving this problem, we obtain the driver solution 

VD (Q) 	on SD  

ckl)(Q) 	on S
H 

and S
L 
	 (10) 

Next, the liner surface(s) is divided up into M finite regions as in Fig. 4. Then M 

independent solutions are generated which represent the effect of M simple 

acoustic velocity sources on the liner using the boundary conditions given below 

cti (Q) = 0 on S D  

V(Q) = 0 on SH  

1.• = 	j = 1,.. ., M 
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The M solutions thus generated are given by 

	

QV.
J 
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If we now sum these solutions multiplied by some arbitrary coupling constants 

designated by a.
J' 
 which we can do as the problem is linear,we generate a general 

solution which has the form 
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It will be noted here that the above solution has some interesting properties in that 

the acoustic potential on the driver surface (See Eqn. (13).) and the normal acoustic 

velocity on the hard walled surface (See Eqn. (14).) are not dependent upon the 

choice of the coupling constants a.. 

In this study we are interested in the effective acoustic admittance Y 

which is defined as 

a0 

an 	
V 
	 (16) 

This being the case, we can now represent the effective acoustic admittance at any 

point on the admittance surface as 

If we now specify that the effective acoustic admittance at all points on the 

admittance surface is to be the complex number C we obtain 

i=1 
a- et,  (Q.) —  C 	D a• = 	(Q.), 	

(18) 

= 



which represents a system of M linear complex equations for the M complex 

coupling constants, . a.
J 
 Using this method many constant admittance solutions can 

be generated very economically once the independent solutions on the surface of 

the body are known. Since the independent solutions have already been calculated 

for the generation of the optimum varying admittance, a relatively small amount of 

extra computing time is required for the determination of the optimum constant 

admittance solution. 

To find the optimum constant admittance solution for a specified 

geometry, driver and wave number, the values of C are chosen in a grid pattern and 

a solution is generated for each value. Once the surface solution is known it is an 

easy job to calculate the acoustic power radiated from the driver and the acoustic 

power lost to the admittance surface using
1
' 5  

Ea 55 [(1) R  (Q) VI  (Q) - 1 (Q) VR  (Q) dS(Q) 

	 (19) 

S
L  

where E is the acoustic energy radiated out of a surface and the superscripts R and 

I refer to the "real and imaginary part of", respectively. When the solution having 

the minimum radiated power is found, the region may be further subdivided to 

"home in" on the optimal value of the admittance. 

It is of interest to note here that strictly speaking all possible values of 

the effective admittance Y are not possible at each point on the liner surface. To 

demonstrate this, let us look at the point j=1 on the liner surface where 

MI ) = a
l 

 

M 

D(Q1)
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/
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ai 4i  (Q1) 

(20) 



we cannot generate the solution where 

1 )= 	1 

71"Fj) 
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we must hava a 1+ co . Thus, 
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with a finite value for the complex coupling constant, a.. 
J 
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III. SOME GENERAL COMMENTS 

The problem of acoustic radiation from a duct, as formulated for this 

study, is strictly elliptic so that only one boundary condition may be specified on 

any part of the body. Thus, either the acoustic potential (i.e., pressure) or the 

normal acoustic velocity may be specified on the driver but not both. This leads us 

to an interesting problem when trying to compare the results of this method to any 

other as other methods utilize the mathematical artifice of a semi-infinite dluct. 6 

This artifice allows them to keep the driver power and modal input constant while 

varying the acoustic properties of a liner. This tends to neglect any possible effect 

the acoustic properties of the liner could have on the amount or modal content of 

the power coming out of the driver. 

In the problem, as formulated for this study, the driver power and more 

importantly the radial modal output of the driver cannot be fixed as this would 

overspecify the problem. This being the case, there are two possible optimum 

constant admittance liners possible, one a relative measure of the percent of the 

driver power attenuated by the liner and the other an absolute measure of the 

power coming out of the duct. Both were calculated at each wave number for each 

geometry and are presented as such (i.e., Relative and Absolute optimum constant 

admittances). Also, since either the acoustic potential or the normal acoustic 

velocity could be specified on the driver runs were done with each and are noted as 

such. For the runs where the normal acoustic velocity is specified on the driver, 

the acoustic potential is specified on the admittance (i.e., liner) surface and vice 

versa (See Eqns. (9) and (11).). 

13 



IV. NUMERICAL CONSIDERATIONS 

The special integral formulation of the external solutions of the 

Helmholtz equation 2 ' 3  which is used as the basis for all of the calculations done in 

this study requires a closed body. Thus, all three of the ducts used in this 

study: the straight duct with the rounded lip; the NASA QCSEE inlet; and, the 

NASA QCSEE inlet less its centerbody were terminated with a 2:1 ellipse (See Figs. 

5-7.). Also, for the three geometries investigated the total height to the inner wall 

of the duct at the driver plane was normalized to one and the outer wall of the duct 

was 1.15. All of the ducts have an L/a of 2.0 

For the numerical calculations , points were spaced evenly along the inner 

walls of the ducts with a nominal spacing of 0.05a. On the outer walls of the ducts, 

the points were systematically spaced at larger and larger intervals as it has been 

found that the outer walls of ducts and their terminations have little effect on the 

total power radiated and the radiation pattern in the forward half plane. The total 

number of points used on the three geometries in the s direction for the 

calculations performed for this study were: 92 points for the straight duct; 108 

points for the NASA QCSEE inlet; and, 100 points for the NASA QCSEE inlet less 

its centerbody. For the 0 integration, a 32-point Gauss-Legendre integration 

formula was used in all cases. 

For all three of the ducts, the admittance surface consisted of 25 points 

or intervals over which the optimum admittance distributions were to be generated 

and ran from 0.4a to 1.6a in the Z direction along the inner walls of the ducts. 



Thus, a hard wall or driver solution and 25 independent source solutions were 

calculated for each geometry, wave number and type of driver specified (i.e., 

potential or velocity). 



V. RESULTS 

Each of the geometries was run with a plane wave as input on the driver 

for non-dimensional wave numbers of 1, 2, 3, 5, 7, and 10. That is, in all of the 

cases run, the tangential mode number was taken as zero. Although a plane wave 

was input, a plane wave driver did not necessarily result since only one variable 

could be specified at a time. 

The results for all of the straight duct runs are presented in Tables I-VI 

and in Figs. 8-13. In the Tables, the power radiated out of the driver and the power 

radiated into the field are tabulated along with their values, for the optimum 

distributed admittance and for the optimum absolute and relative constant 

admittances. In all the Tables, the power values are relative as they have been 

normalized by the power out of the hard walled configuration. Also, each table 

contains the results for one wave number for both the constant acoustic pressure 

and normal acoustic velocity drivers. 

It will be of interest to note here that for the lower wave numbers, the 

power out of the driver is negative (i.e., it is damping). This necessarily means that 

the liner surface is driving since the formulation of the integral equations only 

allows for the case where there is a net flow of power out of the body (i.e., no 

incoming waves). If the imaginary part of the effective admittance Y (See Eqn. 

(16).) is positive, this denotes driving; that is, an active suppressor. The relative 

optimum constant admittance must always be a damping admittance since it is 

determined as the smallest ratio of power out of the driver, to the power lost to 

the admittance surface. 



In general, it is found that the lowest power output is obtained from the 

optimum admittance distribution. Also, the relative constant admittance usually 

has the highest power output as measured in the field surrounding the duct. 

Each Figure constitutes a set of 6 plots for each wave number. The first 

group of three plots in each set are for the case where a constant acoustic pressure 

is specified on the driver and the second group is for the case where a constant 

normal acoustic velocity was specified. The first plot in each group (e.g., Figs. 8a 

dt d), contains a plot of the optimum admittance distribution on the inner wall of 

the duct from the driver end Z.0.4a (inner), to the open end, Z.1.6a (outer). As, can 

be seen even at the low wave numbers where there are a more than sufficient 

number of points on the body to generate an accurate solution, the effective 

admittance distribution is not very smooth. This is because it is a ratio of two 

functions on the surface of the body which tends to make it less continuous than 

either generating function. Of course, more points could be taken on the surface of 

the body to obtain a smoother function for the effective admittance; however, this 

would not substantially change the overall accuracy of the solution (i.e., the power 

output). At the higher wave numbers, the solution does become suspect however, 

and more points should probably have been used for the cases where ka.7 and 10. 

This should not detract from the overall validity of the method however. 

It will be noted that at the lower wave numbers, the distributed 

admittance found for the minimum power out of the body is totally driving. As the 

wave number gets higher, the optimum admittance distribution becomes mixed 

(i.e., some of the liner surface drives and some of it damps) and finally at some of 

the higher wave numbers, the distributed admittance is almost totally passive. This 



is probably due to the fact that at the higher wave numbers, the wave structure in 

the duct becomes more complicated so that interference patterns are more 

difficult to set up. Since an active suppressor damps out sound through the setting 

up of interference patterns, these types of suppressors are probably only useful at 

lower wave numbers where the wave patterns are less complicated. Also, since it 

is more difficult to set up interference patterns with the constraint of a constant 

admittance liner, the optimum absolute constant admittance liner transition from 

driving to damping occurs sooner. 

In the second plot in each group of three, is a plot of the absolute power 

out of the duct as a function of the admittance (constant) on the liner surface 

which is expressed in dB. The admittance value for which the minimum power out 

of the duct is obtained is marked with a large dot. Again, these values are 

tabulated in the tables (See Tables I-VI.). 

In the final plot in each group of three, is a plot of the relative power out 

of the duct as a function of admittance (constant) on the liner which is also 

expressed in dB. Only negative values of the imaginary part of the admittance are 

considered in this case as the power out of the duct is referrenced to the power 

out of the driver. As with the previous plot, the admittance value, for which the 

minimum percent power is radiated, is marked with a large dot and those values 

also are tabulated in the Tables. 

The results for the QCSEE inlet are presented in Tables VII-XII and in 

Figs. 14-19. As with the straight duct, the tables contain the results for the six 

wave numbers run, one wave number per table. The results at a non-dimensional 

wave number of ka=7.0 for the case where the acoustic potential is specified on the 

driver are not included since the optimum values for the absolute and relative 



constant admittances, fell outside of the initial search pattern. This pattern ran 

from -10 to 10 in increments of 1 for both the real and imaginary parts of the 

admittance. This is not to imply that they couldn't be calculated, just that they 

were not, since this would have required modification of the computer programs 

used for all of the other cases run. 

As with the straight duct, each figure for this geometry consists of the six 

plots done for each wave number. As before, the optimum admittance distribution 

for both the constant acoustic pressure and the constant normal acoustic velocity 

drivers are presented along with the contour power plots for the constant absolute 

and relative admittance liners. Again, the optimum values are marked with dots in 

these plots and are tabulated in the Tables. It will be noted in Fig. 18a and b that 

these points are not marked since they fell outside the range of the plots. 

The results for the QCSEE inlet less its centerbody are presented in 

Tables XIII-XVIII and in Figs. 20-25. The reason for running the cases for this 

particular geometry was to see if any trends could be established in going from the 

straight duct geometry to the full inlet geometry. At the lower wave numbers, the 

optimum admittance values calculated for it, seem to fall between those for the 

other two geometries as one would intuitively expect; however, this trend is not 

maintained at the higher wave numbers. 



VI. SUMMARY AND CONCLUSIONS 

During the past year, a method was developed for the calculation of 

optimum distributed admittance duct liners. This method is based upon a special 

integral representaiton of the external solutions of the Helmholtz equation which is 

valid (i.e., can be used to generate the correct, unique solutions) at all wave 

numbers. The equations used had been specialized for axisymmetric geometries but 

this is not a restriction on the method itself. 

As a by-product of this method, a procedure was developed for the 

identification of optimum constant admittance duct liners. This procedure utilizes 

solutions already developed for the optimum distributed admittance calculation. 

At present, it entails the use of a simple search pattern for the optimum constant 

admittance; however, it is believed that this could be refined if time allowed. 

To give some idea of the time involved in calculating these results , some 

typical computing times are presented below. These runs were done on the Georgia 

Tech CDC CYBER 760 and the programs are written in Fortran V. For the case 

where 100 points were used on the body in the s direction, a 32 point Gauss-

Legendre integration formula was used in the 0 direction (See Fig. 1.), and there 

were 25 points on the liner surface, the calculation of the 26 independent solutions 

required for the optimization procedure took 185 seconds of CPU time. The 

generation of the optimum distributed admittance then took an additional 10 

seconds and the identification of the optimum constant admittances took 390 

seconds. As can be seen, the calculation of the constant admittance solutions is 

slow compared to the calculation of the optimum distributed admittance. The 

contour plots of the sound radiated for each constant admittance chosen on the 



liner surface were done with the GPCP (General Purpose Contour Plotting) package 

which we have available here at Georgia Tech. It was developed originally for 

plotting contour maps but was found to be very useful in this research program. 

In conclusion, an effective, efficient method has been developed for the 

calculation of both optimum distributed and constant admittance liners for general 

geometries. It was found through the use of this method that even very similar 

geometries may have vastly different optimum liners associated with them. Also, 

it was found that at low wave numbers often the most efficient liners for the 

reduction of the sound radiated are active and not passive. At the higher wave 

numbers, the optimum distributed admittances are found to be almost always a 

combination of both active and passive elements. 
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TABLE I 

STRAIGHT DUCT 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 1.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 	 -0.57 
THE DRIVER 

TOTAL POWER 	 0.000017 
IN FAR FIELD 

-0.67 

0.000042 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD  

(-0.18, 4.88i) 

-0.64 

0.0014 

(-1.32, 4.60i) 

-0.53 

0.00063 

RELATIVE CONSTANT 
	

(-1.30, -3.40i) 
	

(-1.34, -3.33i) 
ADMITTANCE 

POWER OUT OF 
	

0.87 
	

0.65 
THE DRIVER 

TOTAL POWER 
	

0.0015 
	

0.0012 
IN FAR FIELD 
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TABLE II 

STRAIGHT DUCT 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 2.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

	

-0.65 	 -0.61 

	

0.00012 	 0.00014 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAF. FIELD 

(-2.95, 3.05i) 

-0.89 

0.00034 

(-2.70, -2.90i) 

0.75 

0.00054 

RELATIVE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-2.64, -3.14i) 

0.91 

0.00088  

(-2.65, -3.131) 

0.78 

0.00068 
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TABLE III 

STRAIGHT DUCT 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 3.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 	 -0.23 	 -0.016 
THE DRIVER 

TOTAL POWER 	 0.000075 
	

0.00011 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
TEE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-2.71, -2.38i) 

0.77 

0.00072  

(-2.65, -2.33i) 

0.13 

0.00014 

RELATIVE CONSTANT 
	

(-2.70, -2.39i) 
	

(-2.65, -2.32i) 
ADMITTANCE 

POWER OUT OF 
	

0.77 
	

0.13 
THE DRIVER 

TOTAL POWER 
	

0.00079 
	

0.00013 
IN FAR FIELD 
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TABLE IV 

STRAIGHT DUCT 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 5.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 	 -0.0011 
	

0.0075 
THE DRIVER 

TOTAL POWER 
	

0.00084 
	

0.000011 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-3.48, -1.66i) 
	

(-4.61, -2.29i) 
ADMITTANCE 

POWER OUT OF 
	

1.00 
	

0.043 
THE DRIVER 

TOTAL POWER 
	

0.37 
	

0.010 
IN FAR FIELD 

RELATIVE CONSTANT 
	

(-4.13, -1.77i) 
	

(-4.44, -2.38i) 
ADMITTANCE 

POWER OUT OF 
	

1.06 
	

0.043 
ThE DRIVER 

TOTAL POWER 
	

0.37 
	

0.010 
IN FAR FIELD 
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TABLE V 

STRAIGHT DUCT 

Relative power normalized with respect to the nard 
walled radiated power 

ka = 7.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.066 
	

0.014 
THE DRIVER 

TOTAL POWER 
	

0.00064 
	

0.054 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-5.17, -1.95i) 
	

(-4.72, -0.8Si) 
ADMITTANCE 

POWER OUT OF 
	

1.29 
	

0.016 
TUE DRIVER 

TOTAL POWER 
	

0.43 
	

0.0078 
IN FAR FIELD 

RELATIVE CONSTANT 
	

(-5.56, -1.30i) 
	

(-3.97, -1.76i) 
ADMITTANCE 

POWER OUT OF 
	

1.42 
	

0.019 
THE DRIVER 

TOTAL POKER 
	

0.42 
	

0.0086 
IN FAR FIELD 
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TABLE VI 

STRAIGIjI DUCT 

Relative power normalized with respect to tne hard 
walled radiated power 

ka = 10.0 

Constant Phi 	 Constant velocity 
on the Driver 	 on tree Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT Of 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

0.050 

0.0049 

0.00066 

0.00016 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
TEL DRIVER 

TOTAL PCWER 
IN FAR FIELD 

(-5.65, -2.80i) 

1.02 

0.48  

(-4.89, -2.69i) 

0.010 

0.0051 

RELATIVE CONSTANT 
	

(-5.41, -2.751) 
	

(-5.02, -2.83i) 
ADITTANCE 

POWER OUT OF 
	

1.02 
	

0.010 
ThE DRIVER 

TOTAL POWER 
	

0.43 
	

0.0051 
IN FAR FIELD 
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TABLE VII 

NASA QCSEE INLET 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 1.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMI'T'TANCE 
DISTRIBUTION 

POWER OUT OF 	 -1.91 	 -2.45 
THE DRIVER 

TOTAL POWER 
	

0.00012 	 0.00012 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-0.64, 4.03i) 

-1.25 

0.0015  

(-0.65, 4.11i) 

-0.74 

0.00082 

RELATIVE CONSTANT 
	

(-0.47, -3.78i) 
	

(-0.53, -3.77i) 
ADMITTANCE 

POWER OUT OF 
	

1.27 
	

0.79 
THE DRIVER 

TOTAL POWER 
	

0.0019 
	

0.0011 
IN FAR FIELD 
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TABLE VIII 

NASA QCSEE INLET 

Relative power normalized with respect to tne hard 
walled radiated power 

ka = 2.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF' 	 -1.11 	 -0.70 
THE DRIVER 

TOTAL POWER 
	

0.00011 	 0.000060 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER. 

TOTAL POWER 
IN FAR FIELD 

(-2.99, 3.91i) 

-0.79 

0.00074  

(-3.06, 3.581) 

-0.53 

0.00025 

RELATIVE CONSTANT 
	

(-2.35, -3.91i) 
	

(-2.36, -3.93i) 
ADMITTANCE 

POWER OUT OF 
	

0.82 
	

0.59 
THE DRIVER 

TOTAL POWER 
	

0.0013 
	

0.00094 
IN FAR FIELD 
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TABLE IX 

NASA QCSEE INLET 

Relative power normalized with respect to the hard 
walled radiated power 

Constant Velocity 
on the Driver 	 on the Driver 
Constant Phi 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
THE DRIVER 

-0.050 -3.69 

0.0096 0.000049 TOTAL POWER 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-3.'00, 

048 

0.00'020 

(-3.10, -3.20i) 

0.69 

0.00045 

RELATIVE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-3.04, -3.20i) 

0.69 

0.00061 

(-3.05, -3.16i) 

0.18 

0.00015 
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TABLE X 

NASA QCSEE INLET 

Relative power normalized with respect to the hard 
walled radiated power 

= 5.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

-0.023 	 0.00059 
THE DRIVER 

TOTAL POWER 
	

0.00040 	 0.000031 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-4.20, -1.80i) 
	

(-4.57, -1. 89i) 

	

0.80 
	

0.040 

	

0.13 
	

0.0065 

RELATIVE CONSTANT: 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-4.26, -1.96i) 
	

(-4.37, -1.87i) 

	

0.81 
	

0.041 

	

0.13 
	

0.0066 
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TABLE XI 

NASA QCSEE INLET 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 7.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 	 0.56 
	

0.0066 
THE DRIVER 

TOTAL POwLR 	 0.13 
	

6.06013 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMI1TANCE 

POWER OUT OF 
THL DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-5.42, -2.57i) 

0.018 

0.0022 

RELATIVE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

   

i) 	 (-5.28, -2.56i) 

0.018 

0.0022 
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TABLE XII 

NASA QCSEE INLET 

Relative power normalized with respect to tne hard 
walled radiated power 

ka = 10.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.29 
	

0.010 
THE DRIVER 

TOTAL POWER 
	

0.00075 
	

0.000064 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-4.32, -3.83i) 
	

(-4.02, -3.56i) 
ADMITTANCE 

POWER OUT OF 
	

0.94 
	

0.610 
TEL DRIVER 

TOTAL POWER 
	

0.22 
	

0.0026 
IN FAR FIELD 

RELATIVE CONSTANT 
	

(-4.27, -3.78i) 
	

(-4.05, -3.601) 
ADMITTANCE 

POWER OUT OF 
	

0.94 
	

0.010 
TEE DRIVER 

TOTAL POWER 
	

0.22 
	

0.0026 
IN FAR. FIELD 
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TABLE XIII 

QCSEE INLET LESS CENTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 1.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	 -1.20 	 -1.78 

THE DRIVER 

TOTAL POWER 
	

0.000025 	 0.000072 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(0.81, 4.68i) 	 (-0.75, 4.72:L) 

	

-1.19 	 -1.06 

	

0.0021 	 0.00091 

RELATIVE CONSTANT 
	

(-0.73, -3.49i) 
	

(-0.79, -3.44i) 
ADMITTANCE 

POWER OUT OF' 
	

1.71 
	

1.33 
THE DRIVER 

TOTAL POWER 
	

0.0029 
	

0.0023 
IN FAR FIELD 
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TABLE XIV 

QCSEE INLET LESS CLNTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 2.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

-0.56 	 -0.50 
THE DRIVER 

TOTAL POWER 
	

0.000044 	 0.000049 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-2.99, 3.73i) 
	

(-2.99, 3.41i) 
ADMITTANCE 

POWER OUT OF 
	

-0.74 
	

-0.65 
THE DRIVER 

TOTAL POWER 
	

0.00058 
	

0.00025 
IN FAR FIELD 

RELATIVE CONSTANT 
	

(-2.42, -3.78i) 
	

(-2.45, -3.791) 
ADMITTANCE 

POWER OUT OF 
	

0.76 
	

0.71 
THE DRIVER 

TOTAL POWER 
	

0.0011 
	

0.00093 
IN FAR FIELD 
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TABLE XV 

QCSEE INLET LESS CENTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 3.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	 -0.41 	 -0.024 

THE DRIVER 

TOTAL POWER 
	

0.000084 	 0.000032 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF' 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-3.06, 2.94i) 	 (-2.88, -3.02i) 

	

-0.67 	 0.13 

	

0.000087 	 0.000094 

RELATIVE CONSTANT 
	

(-2.90, -3.07i) 
	

(-2.91, -2.97i) 
AMITTANCE 

POWER OUT OF 
	

0.69 
	

0.13 
THE DRIVER 

TOTAL POWER 
	

0.00047 
	

0.000063 
IN FAR FIELD 
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TABLE XVI 

QCSEE INLET LESS OENTERBODY 

relative power normalized with respect to tne hart 
walled radiated power 

ka = 5.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADnITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.098 
	

0.00b9 
THE DRIVER 

TOTAL POWER 
	

0.00077 
	

0.0000071 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-3.89, -1.65i) 
	

(-3.93, -2.39i) 
ADMITTANCE 

POWER OUT OF 
	

0.74 
	

0.044 
THE DRIVER 

TOTAL POWER 
	

0.20 
	

0.0042 
IN FAR FIELD 

RELATIVE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-3.87, -1.98i) 

0.77 

0.21  

(-3.88, -2.24i) 

0.044 

0.0042 
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TABLE XVII 

QCSEE INLET LESS CENTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 7.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.14 
	

0.0091 
THE DRIVER 

TOTAL POWER 
	

0.0016 
	

0.00028 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD ,  

(-4.77, -2.07i) 

1.02 

0.29 

(-7.32, -1.671) 

0.020 

0.0058 

RELATIVE CONSTANT 
	

(-4.87, -2.06i) 
	

(-6.84, -1.57i) 
ADMITTANCE 

POWER OUT OF 
	

1.02 
	

0.021 
THE DRIVER 

TOTAL POWER 
	

0.29 
	

0.0062 
IN FAR. FIELD 
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TABLE XVIII 

QCSEE INLET LESS CENTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 10.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.33 	 0.00060 
THE DRIVER 

TOTAL POWER 
	

0.16 	 0.000060 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-5.27, -3.01i) 

0.97 

0.36  

(-4.38, -3.18i) 

0.010 

0.0039 

RELATIVE CONSTANT 
	

(-5.05, -2.91i) 	 (-4.49, -3.30i) 
ADMITTANCE 

POWER OUT OF 
	

0.98 
	

0.010 
THE DRIVER 

TOTAL POWER 
	

0.36 
	

0.0039 
IN FAR FIELD 
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Figure 1• ( P, Z, 0 ) coordinate system for a body of revolution 



Figure 2. Body S showing P and Q points, the distance between 

them r and their outward normals 
Pq 
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Figure 3. The three types of regions on the body 
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Figure 4. Liner surface divided into M finite regions. 
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