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SUMMARY 

 

A new innovative polymer pyrolysis method was proposed for creation of 

attractive carbon molecular sieve (CMS) membranes.  Oxygen exposure at ppm levels 

during pyrolysis was hypothesized and demonstrated to make slit-like CMS structures 

more selective and less permeable, which I contrary to ones expectation.  Indeed prior to 

this work, any exposure to oxygen was expected to result in removal of carbon mass and 

increase in permeability.  The results of this study indicated that the separation 

performance and CMS structure may be optimized for various gas separations by careful 

tuning of the oxygen level.  This finding represents a breakthrough in the field of CMS 

membranes. Simple replacement of pyrolysis atmospheres from vacuum to inert can 

enable scale-up.  The deviation in CMS membrane performance was significantly 

reduced once oxygen levels were carefully monitored and controlled.  The method was 

shown to be effective and repeatable not only with dense films but also with asymmetric 

hollow fiber membranes.  As a result, this work led the development of the “inert” 

pyrolysis method which has overcome the challenges faced with previously studied 

pyrolysis method to prepare attractive CMS membranes. 

 The effect of oxygen exposure during inert pyrolysis was evaluated by a series of 

well-controlled experiments using homogeneous CMS dense films.  Results indicated 

that the oxygen “doping” process on selective pores is likely governed by equilibrium 

limited reaction rather than (i) an external or (ii) internal transport or (iii) kinetically 

limited reaction.  This significant finding was validated with two polyimide precursors: 

synthesized 6FDA/BPDA-DAM and commercial Matrimid®, which implies a possibility 
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of the “inert” pyrolysis method application extending towards various precursors.  The 

investigation was further extended to prepare CMS fibers.  Despite the challenge of two 

different morphologies between homogeneous films and asymmetric hollow fibers, the 

“inert” pyrolysis method was successfully adapted and shown that separation 

performance can be tuned by changing oxygen level in inert pyrolysis atmosphere. 

Moreover, resulting CMS fibers were shown to be industrially viable.  Under the 

operating condition of ~80 atm high pressure 50/50 CO2/CH4 mixed gas feed, the high 

separation performance of CMS fibers was shown to be maintained.  In addition, elevated 

permeate pressures of ~20 atm did effect the theoretically predicted separation factor.  

While high humidity exposures (80%RH) resulted in reduced permeance, high selectivity 

was sustained in the fibers.  Recommendations to overcome such negative effects as well 

as future investigations to help CMS membranes to be commercialized are provided.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 NATURAL GAS PROCESSING 

According to Baker and Lokhandwala, consumption of natural gas in the United 

States is around 22 trillion scf/yr and around 95 trillion scf/yr worldwide (scf is defined 

as standard cubic feet) [1].  Natural gas is one of the fastest growing energy sources 

because it is abundant and relatively cleaner than liquid fossil fuels or coal [1].  Raw 

natural gas contains methane with various impurities, such as carbon dioxide, hydrogen 

sulfide, water, heavy hydrocarbons, and inert gases [1, 2], and these impurities must be 

removed to meet pipeline standards for the natural gas to be fed to the mainline gas 

transportation system.  The specifications are shown in Table 1.1.  

 

 

Table 1.1: Composition of natural gas required for delivery to the US national pipeline 
[3]. 

Component Specification 

CO2 <2 % 

H2O <120 ppm 

H2S <4 ppm 

C3+ 95-1050 Btu/scf 

Content Dew point, -20 ˚C 

Total inert (N2, CO2, He, etc) <4 % 
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Among the natural gas impurities, CO2 is usually the most abundant and can be above 

50% in some cases [1, 4].  In enhanced oil recovery application, CO2 contents can be 

>70% of the natural gas stream [5].  The removal of CO2 is usually an important step and 

it became the main focus of this research.  The presence of H2O and acid gases such as 

CO2 and H2S may cause corrosion in pipelines; thus their removal is essential to the 

functioning of a stable pipeline network grid.  Moreover, removal of non-fuel gases like 

CO2 and N2 increases heating value of the natural gas which can reduce compression cost 

required for the gas transportation.  

Currently, separation technologies, specifically for CO2 removal from natural gas, 

include various absorption processes, such as BenfieldTM process (hot potassium 

carbonate solutions) and Amine Guard-FSTM processes (formulated solvents), cryogenic 

distillation, adsorption processes, such as pressure swing adsorption (PSA) and thermal 

swing adsorption (TSA), and membranes [6].  Cryogenic distillation is an energy 

intensive process since the gas must be cooled to very low temperatures to achieve a 

separation [7].  Amine absorption processes are currently well accepted and are 

considered the standard for such applications because they have been used extensively in 

the past with success [8].  Despite these facts, the capital and maintenance costs 

associated with these absorption units can be high since the size of the absorption tower 

and the amount absorbent liquid required scales with the amount of CO2 that must be 

removed [1].  Moreover, additional costs are associated with regeneration of the solvents 

used in the absorption processes; and the environmental restrictions on the disposal of 

such solvents make the processes more cumbersome especially where the level of CO2 to 

be removed is high.  

While each processes has its own advantages and disadvantages, membranes are 

excellent candidates for applications that have large flows, have high CO2 contents, or are 

in remote locations.  The high CO2 content typical of raw natural gas wells makes the 
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current amine technologies less competitive and gives membranes an opportunity to 

prove itself as a viable technology for the future [1]. 

 

1.2 MEMBRANES FOR NATURAL GAS SEPARATIONS 

Membrane systems are attractive over the other, rather traditional, separations 

methods, due to their lower cost, lower energy consumption, smaller size, and smaller 

environmental impact.  Membrane systems require lower capital cost since site 

preparation are minimal and the installation costs are significantly lower than alternative 

technologies, especially for remote areas.  Membrane units do not require the additional 

facilities, such as solvent storage and water treatment, required by other processes, which 

saves capital cost as well.  Another advantage is the lower operating cost because the 

only major operating cost for single-stage membrane systems is membrane replacement 

[6]. Membranes systems have high adaptability.  It should be also noted that membrane 

systems are environmentally friendly because they do not involve periodic removal and 

handling of spent solvents or adsorbents.  Permeate gases can be flared, used as fuel, or 

reinjected into well [6] in many cases. 

Polymer membranes have gained attention as a separation material due to the 

processability of polymers and their inherent permselectivity for different molecules.  

The transport properties of these glassy polymer membranes can be tailored by 

introducing packing-inhibiting bulky groups and intrinsically rigid linkages in the 

polymer backbone [9, 10].  However, the separation performance of these polymeric 

membrane materials has stagnated at an “upper bound curve” trade-off [11] relating CO2 

permeability and CO2/CH4 selectivity as shown in Figure 1.1.  This trade-off can result in 

relatively high methane loss associated with removing high amount of CO2.  Expensive 

cost also associates with the compressors for recycle stream as shown in Figure 1.2.   
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Figure 1.1: Robeson’s upper bound for CO2/CH4 separation, adapted from [11], along 
with a performance of carbon molecular sieve membranes. 

 

 

Figure 1.2: Schematic showing a two stage membrane process to purify a natural gas 
stream using (a) a cellulose acetate membrane and (b) a yet to be developed high 
performance membrane [2].  
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Ideally, the higher flux reduces the membrane area required to achieve the separation 

requirements and the higher separation efficiency reduces the compression required to 

recycle the methane that would otherwise be lost to the permeate stream.  Moreover, such 

higher methane recoveries translate to higher returns on investment as well. 

 While polymer membranes have a trade-off performance, carbon molecular sieve 

(CMS) membranes are known to have outstanding separation performance.  CMS 

membranes are formed from high temperature pyrolysis of polymeric membranes and 

perform well for many challenging gas separations, such as oxygen/nitrogen, 

ethane/ethylene, and olefin/parafin [12-16], including natural gas due its amorphous and 

unique nature of its structure [12, 17].  One of the barriers to be overcome, however, is 

the economical feasibility of the CMS production.  While cost of the polymer membranes 

is estimated to be ~20 $/m2 [18], CMS membranes are estimated to be 50-100 $/m2 [19].  

Traditionally, this economical barrier comes from the required polymer processing 

method, especially use of vacuum pyrolysis as opposed to inert pyrolysis for attractive 

CMS production.  This research will aim to develop an economically favored process to 

form CMS membranes with attractive CO2/CH4 separation performance using polymer 

precursors. 

 

1.3 OVERVIEW OF MEMBRANE TECHNOLOGY 

 A number of practical requirements must be met to develop a membrane for 

commercial application.  An article by Koros identifies four elements for membrane 

technology advancement [7]: (i) development of high-efficiency modules with high 

surface area/volume for large scale processes, (ii) development of advanced materials, 

(iii) development of a capability to tailor morphologies at multiple levels along the cross 

section of a membrane, and (iv) development of manufacturing methods to rapidly and 

efficiently link the previous three elements. 
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 To meet such requirement, the asymmetric hollow fiber membrane morphology 

was chosen over other membrane module configurations that are shown in Figure 1.3.  

 

 

Figure 1.3: Principal gas separation membrane module configurations [2]. 
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 Asymmetric hollow fibers are tubular forms of a membrane and provide high fluxes 

required for productive separations due to the ability to reduce the separating layer to a 

thin integral “skin” on the outer surface of the membrane [20].  Specifically for CMS 

membranes, the asymmetric hollow morphology is also practically preferred over 

homogeneous flat sheets because of better strength and/or flexibility, presumably due to 

the selective “skin” layer supported by the micropore structure.  Such small diameter, 

cylindrical morphologies also can provide high surface area to volume ratios and high 

packing densities, with the ability to withstand large transmembrane driving force 

pressure differences, as shown in Figure 1.4.  

 

 

Figure 1.4: Graph representing the surface area/volume achievable in various module 
types [2]. 

 

 

 In this work, all of the elements described above are addressed for production of 

attractive CMS membranes.  Advanced material, CMS membranes, and its economically 

feasible production method were developed based on fundamental studies with 

homogeneous dense film morphology.  The study was advanced by applying the method 

from dense film to asymmetric hollow fiber morphology.  The following are the main 

research objectives for this dissertation. 
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1.4 RESEARCH OBJECTIVES 

1. Develop economically favored method to control separation performance 

properties of CMS membranes.  

While CMS membranes have excellent separation performance, its production 

cost is speculated to be much more than for commercially available polymer membranes.  

One of the reasons for this is the use of vacuum as pyrolysis atmosphere because it 

consumes large amount of energy to pump down the pyrolysis oven in commercial scale.  

Moreover, large vacuum vessels are costly and difficult to control.  In the past, 

researchers have tried inert pyrolysis to produce CMS membranes, but the separation 

performance was not as attractive as ones produced under vacuum and the performance 

was unpredictable.  In this work, chemical composition of inert atmosphere is monitored.  

Specifically, the effect of oxygen partial pressure in the pyrolysis atmosphere is 

investigated.  A polymer precursor 6FDA/BPDA-DAM was synthesized and used to 

benchmark against literature values of homogeneous flat CMS membranes pyrolyzed 

under vacuum.  Then the investigations of oxygen exposure during inert pyrolysis to 

produce CMS membranes were conducted with the 6FDA/BPDA-DAM and extended to 

commercially available polymer Matrimid®.  The effect of oxygen exposure to CO2/CH4 

separation performance and the resulting CMS structures are discussed. CMS membranes 

are amorphous in nature and difficult to characterize their structure.  In order to have a 

better understanding of the structure, diffusion coefficients are used to probe the pore size 

distributions.  As a result of these investigations, a guidance to produce and control CMS 

separation performance was developed using an economically preferred pyrolysis method.  
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2. Create “first generation” asymmetric hollow fiber CMS membranes by adapting 

method developed in Objective 1. 

Asymmetric hollow fiber membrane morphology is preferred in industry due to 

its high surface area to volume ratio.  For CMS membranes, it appears to have an 

additional advantage of better mechanical strength and flexibility due to the combination 

of a thin integral “skin” on the outer surface of the membranes supported by microporous 

layer. Defect-free asymmetric hollow fibers are spun and used to evaluate efficacy of the 

CMS membrane production method developed in objective 1.  Mixed gas feed with high 

feed pressure are used to characterize the asymmetric hollow fiber CMS membranes. In 

addition to the method demonstration, the experimental mixed gas separation properties 

are compared with theoretical values predicted using the single gas permeation and 

sorption experimental results. 

 

 

3. Characterize the asymmetric hollow fiber CMS membranes under realistic feed 

and permeate conditions. 

For the CMS membranes to be scaled-up, it is essential to demonstrate its ability 

under realistic conditions.  The asymmetric hollow fiber CMS membranes produced with 

the method investigated in objective 1 and 2 are further characterized under aggressive 

feed conditions.  Using the mixed gas feed of 80 atm, permeate pressures are varied from 

1 to 20 atm and the experimental results were compared with theoretical values.  

CMS membranes are known to lose capabilities with humidity exposure. 

Homogeneous dense CMS membranes are exposed to 80%RH air for a term of (i) a week 

and (ii) a month and the effect to the separation performance is evaluated.  Moreover, 

humidified mixed gas feed is used to characterize asymmetric hollow fiber CMS 
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membranes.  An amorphous Teflon coating technique is also applied to demonstrate the 

possibility of humidity effect prevention. 

 

 

1.5 DISSERTATION OVERVIEW 

 Chapter 2 presents background and theory of the concepts referred to in this 

dissertation, chapter 3 contains the material development details and description of the 

experimental methods used; chapter 4 describes the effective “inert” pyrolysis method 

developed with two polyimide precursors using homogeneous dense films, 6FDA/BPDA-

DAM and Matrimid® to produce attractive CMS membranes; chapter 5 contains 

description of the process translation from dense films to asymmetric hollow fiber 

membranes; chapter 6 contains results from characterizing the membrane performance 

(1) with realistic permeate pressures and (ii) in the presence of humidity containing 

natural gas feeds; and chapter 7 summarizes the results and scientific contributions made 

from this work and mentions recommendations for future work. 
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CHAPTER 2 

BACKGROUND AND THEORY 

 

2.1 OVERVIEW 

 Carbon molecular sieve (CMS) membranes are an attractive alternative to 

polymeric materials due to their unique structure and morphology.  The unique structure 

of such membranes results in excellent performance for many challenging gas separations, 

such as O2/N2, CO2/CH4, C2H4/C2H6, and C3H6/C3H8 [1, 2].  In this chapter, a background 

of gas transport through membranes, especially through CMS membranes is described in 

section 2.2.  The structure of CMS membranes is described in section 2.3 and the 

formation of CMS membranes is described in section 2.4.  

 

2.2 FUNDAMENTAL GAS TRANSPORT THEORY 

2.2.1 Transport in membranes 

 Membranes are defined as selective barriers between two phases [3], and several 

mechanisms are associated to describe the transport of small gas molecules through 

membranes.  When a membrane consists of pores, the size of the pores and the mean free 

path of the penetrant govern the transport process.  When the pore radius is much larger 

than the mean free path of the penetrants molecule at a given temperature and pressures, 

viscous flow occurs and there is no discrimination among penetrants.  When pore size is 

reduced to the point where it is less than the mean free path of the penetrants molecules, 

Knudsen flow occurs, and there may be discrimination between the small penetrants 

depending on their molecular weights.  For selective membrane-based gas and vapor 
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separations our possible mechanisms are discussed: (i) the Knudsen diffusion, (ii) surface 

diffusion, (iii) molecular sieving, and (iv) sorption-diffusion as shown in Figure 2.1.  

 

 

Figure 2.1: Four possible general mechanisms for selective membrane based gas and 
vapor separations adapted from Koros [4]. 

 

Selective adsorption occurs when one or more penetrants are preferentially 

adsorbed into the membrane, followed by diffusion of the adsorbed species across the 

membrane form one sorbed site to the other.  The physiochemical nature of the pore 

surface and the pore size governs the efficacy of this mechanism, and exclusion of the 

rejected penetrant from sorption sites is known to be critical for successful application [5].  

Unlike other mechanisms, the driving force of the selective adsorption is the difference in 

adsorbed phase concentration of the diffusion species; therefore, only low partial pressure 
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is required as the driving force for strong adsorbing gases.  One of the commercial 

membranes developed to utilize this mechanism is called selective surface flow, SSFTM, 

membranes, and this type has caught attention for the separation of low sorbing hydrogen 

from highly sorbing hydrocarbon streams [5-7]. 

While size selective molecular sieving allows passage of the smallest of the 

multiple components in molecular sieving transport mechanism, a combination of size 

(diffusivity) and condensability (solubility) determine which component passes the 

fastest in sorption-diffusion mechanism.  Gas transport through glassy polymers and 

molecular sieves is commonly described by a sorption-diffusion mechanism.  Here the 

transport is governed by the polymer/penetrant or sieve/penetrant thermodynamic 

partitioning and thermally activated transient gaps within the molecular sieves for 

diffusion.  The diffusion of a penetrant molecule in an isotropic medium can be described 

as a function of the frequency of the diffusion jumps and the average jump length that 

takes place in the sieving medium according to Equation 2.1 [8]: 

 𝐷� = ��∙��
�

�
                                                          (2.1) 

 
where f is the frequency of diffusive jump and λ is the effective diffusion jump length. 

The frequency of diffusive jump, f, can be further expressed by: 

 
 𝑓 = 𝑒𝑥𝑝 �∆�

∗

�
� ∙ 𝑒𝑥𝑝 ��∆�

∗

��
�                                           (2.2) 

 
where ∆S* is related to the control of configurational degrees of freedom of the molecule 

required to make a diffusive jump, R is the ideal gas constant, and T is the absolute 

temperature.  ∆E* is related to the repulsion between the penetrants and the pore mouth of 

the molecular sieves [9].  
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 In solution-diffusion membranes, the thermodynamic partitioning between the 

membrane and the penetrants is influenced by the condensability of the penetrant gas and 

the membrane/penetrant chemical affinity.  The critical temperature or boiling point of 

penetrant gases correlates well with their condensabilities.  Gases with higher critical 

temperatures tend to have higher sorption [10], and to permeate faster through dense 

membranes where sorption is the dominating mechanism for transport and diffusion is 

not highly size dependent. This is usually the case for rubbery polymers.  The diffusivity 

of the gas depends on the kinetic diameter of the penetrants, and smaller molecules tend 

to have higher permeation rates through membranes where diffusion is dominant, which 

is the case for molecular sieves and many glassy polymers.  In the solution-diffusion 

driven process, a separation can be implemented by maintaining a chemical potential 

gradient between the upstream and downstream sides of the membrane with lower 

pressures on the permeate side of the membrane compared to the feed side. When this is 

satisfied, for a gas feed containing CO2 and CH4, purification of CH4, nonpermeable 

product, can be achieved as shown in Figure 2.2. 

 

 

Figure 2.2: Schematic of CO2/CH4 separation process. 
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The stage cut is defined as the ratio of the permeate flow rate to the feed flow rate and 

can be adjusted to achieve the desired product purity.  Membranes are primarily governed 

by the intrinsic separation capability of the membrane material which largely determines 

the amount of product lost in the permeate stream. 

 

2.2.2 Transport in CMS membranes 

2.2.2.1 Permeation 

As mentioned previously, gas transport through CMS membranes is modeled by 

the sorption-diffusion mechanism.  Specifically, gas molecules sorb into the membrane at 

the upstream, then diffuse under the influence of a chemical potential gradient, and 

finally desorb from the membrane at the downstream.  Two intrinsic properties, 

“permeability” and “selectivity,” are used to evaluate the performance of membrane 

materials.  Permeability is a measure of the membrane material’s intrinsic productivity, 

and the selectivity is a measure of the membrane’s separation efficiency. T he 

permeability equals the pressure and thickness normalized flux, described as:   

     𝑃� = ��∙�
∆��

                                                               (2.3) 

where ni represents the flux of component “i” gas molecules through the membrane of the 

membrane thickness, l, and Δpi is the transmembrane partial pressure difference that acts 

as the driving force across the membrane.  In asymmetric hollow fibers, which will be 

considered later, the actual membrane thickness is not readily known, so the productivity 

in these membranes is described by the permeance, which is simply the pressure 

normalized flux as follows: 

     ��
�
�
�

= ��
∆��

.                                                          (2.4) 
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A most common unit for permeability is the Barrer which is defined as: 

    1 𝐵𝑎𝑟𝑟𝑒𝑟 [=] 10−10  𝑐𝑚
3∙(𝑆𝑇𝑃)∙𝑐𝑚

𝑐𝑚2∙𝑠∙𝑐𝑚𝐻𝑔
                                              (2.5) 

, and the permeance unit is the GPU defined as: 

    1 𝐺𝑃𝑈 [=] 10��  𝑐𝑚
3∙(𝑆𝑇𝑃)

𝑐𝑚2∙𝑠∙𝑐𝑚𝐻𝑔
.                                            (2.6) 

Diffusion of a gas through a membrane is governed by Fick’s law, and the diffusion 

coefficient is assumed to be independent of the concentration of the penetrants, and the 

flux is given by Fick’s law, viz., 

     𝑛� = −𝐷�,� ∙ ���
��

.                                                 (2.7) 

where Ci is the concentration of the component “i”.  Using the definition of flux and 

substituting into the equation for permeability, Equation 2.3, or permeance, Equation 2.4, 

the following equation is obtained: 

     ��
�

=
���,� ∙

���
��

∆��
.            (2.8) 

Integrating Equation 2.8 over the membrane thickness, l, and representing the 

concentrations of component “i” in the upstream and downstream faces of the membrane 

as Ci,U and Ci,D respectively, Equation 2.9 is obtained. 

   ∫ ��
�
𝑑𝑥 = −∫ ��,�

∆��
𝑑𝐶� = ∫ ��,�

∆��

��,�
��,�

��,�
��,�

�
� 𝑑𝐶�                                 (2.9) 

The average diffusion coefficient in the membrane is defined by Equation 2.10 and can 

be substituted into Equation 2.9 to yield Equation 2.11. 

     𝐷��,� =
∫ ��,�
��,�
��,�

���

��,����,�
.                                           (2.10) 
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              𝑃�,� = 𝐷��,� ∙ ��,����,�
∆��

.                                         (2.11) 

Also, the average sorption coefficient can be defined as: 

       𝑆�̅ = ��,����,�
∆��

.                                                  (2.12) 

Therefore, when the diffusion process is Fickian, the permeability can also be described 

in terms of the governing kinetic and thermodynamic parameters, namely the diffusion 

coefficient, Di, and the sorption coefficient, Si, by: 

     𝑃� = 𝐷�� ∙ 𝑆�̅.                                                      (2.13) 

The selectivity is a measure of the membrane’s separation efficiency.  The “ideal 

selectivity” (for pure gas feeds) of a membrane is described by the ratio of the component 

permeabilities or permeances for the case of a negligible downstream permeate pressure: 

    𝛼�/� = ��
��

= (�/�)�
(�/�)�

= ���∙�̅�
���∙��̅

.                                             (2.14) 

In the case of mixed gas feeds where interactions between the permeating gases and the 

polymer occur or where nonzero downstream pressured exist, the separation factor is a 

more practical measure used to describe the separation by: 

     𝑆.𝐹. =  
���/����
���/����

                                                  (2.15) 

, where x represents the mole fractions of the gas components in the downstream, D, and 

upstream, U, sections of the membrane.  The mixed gas separation factor (Equation 2.15) 

can also be written in terms of the diffusion and solubility coefficients by including a 

driving force controlled factor, viz. [8]:  

    𝑆.𝐹. =  ��
��
∙ ��
��
∙ ∆��/(��)�
∆��/(��)�

.                                               (2.16) 
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Therefore the ideal selectivity or permselectivity can still be obtained using mixed gases 

once the downstream compositions and pressures are known.  The permselectivity is 

more reflective of the membrane’s intrinsic separation capability since the separation 

factor is dependent of the downstream pressure.  The separation factor in Equation 2.16 

approaches the ideal selectivity in Equation 2.14 as the downstream partial pressure 

approaches zero as long as D’s and S’s applicable in the actual mixed gas feed condition 

are considered.  In commercial applications of membranes, the permeability and 

selectivity must be balanced to achieve a practical optimum, since there is usually a 

trade-off between the two parameters [11].   
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2.2.2.2 Sorption 

The sorption coefficient describes the amount or concentration of gas taken up by 

a membrane material at a given pressure at equilibrium.  It depends on the condensability 

of the gas penetrant and the gas penetrant’s interactions with the membrane material.  For 

molecular sieving material, like carbon molecular sieves with rigid saturatable capacities, 

a Langmuir isotherm is commonly used. Using the Langmuir isotherm, the sorption 

coefficient is given by: 

     𝑆� = ��
��

= ������
������

                                                (2.17) 

where Ci is the equilibrium uptake of penetrant “i” by the sorbent, pi is the partial 

pressure, CHi’ is the Langmuir hole filling capacity and bi is the Langmuir affinity 

constant.  In CMS materials, the majority of the penetrants are assumed to sorb into large 

pores characterized by dTV and dc in Figure 2.3(a) since CMS membranes presumably 

consist of these pores and the interaction energy of the molecule sorbed in the large pores 

is generally lower than the critical pore windows, dc, as shown in Figure 2.3(b). 

 

 
Figure 2.3: (a) Idealized gas molecule’s equilibrium positions at various locations inside 
the pore structures and (b) potential energy of penetrants associated with the locations. 
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2.2.2.3 Diffusion 

As previously mentioned, four transport mechanisms are discussed for selective 

membrane separations: (i) Knudsen diffusion, (ii) selective surface adsorption with 

surface diffusion, (iii) molecular sieving and (iv) sorption-diffusion [4, 5, 7].  Assuming 

that the pores are straight and round, when pore size is smaller than the mean free path of 

the molecule, Knudsen diffusion can occur. The diffusion coefficient of component “i”, 

Di,K in m2/s,  is represented as: 

                                                     𝐷�,� = 97.0 ∙ 𝑟 ∙ � �
��
�
�.�

                                        (2.18) 

, where r is the pore radius in m, T is the absolute temperature in Kelvin, and M is the 

molecular weight of the component. The Knudsen diffusivity selectivity can be written 

as: 

     𝛼�/� = �
��

��
.                                                      (2.19) 

The Knudsen selectivity is relatively low, especially for gases of similar molecular 

weight such as oxygen and nitrogen of being 1.07.  

 Molecular sieving occurs when the penetrants are separated by the size of the 

molecules relative to the size of pore windows of the membranes.  Smaller pores limit the 

diffusion of the penetrant and therefore control efficacy of the separation performance.  

Diffusion through the smaller pores requires penetrating molecules to overcome the 

repulsive interaction energy with the pore walls.  Molecules of similar sizes can be 

effectively separated because very small changes in size result in considerable differences 

in the activation energy of the diffusion.  The diffusivity is correlated with temperature 

by the energy of the activation for the diffusion jump and can be expressed by an 

Arrhenius relationship: 
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                           𝐷� = 𝐷�,� 𝑒𝑥𝑝 ����
��
�                                         (2.20) 

where Di,O is the pre-exponential term, Ed is the activation energy of diffusion, R is the 

ideal gas constant, and T is the absolute temperature.  Singh and Koros evaluated the 

importance of entropic selectivity and found that there is a substantial difference in the 

pre-exponential factor for separations which diffusion activation energy is similar, such 

as O2/N2 separation [12].  The pre-exponential factor can be represented as: 

               𝐷�,� = 𝑒𝜆� ��
�

 𝑒𝑥𝑝 ���
�
�                                       (2.21) 

where k is the Boltzmann constant, h is the Planck’s constant, and Sd is the activation 

entropy of diffusion [13].  The thermodynamic sorption coefficient decreases with 

temperature according to the van-Hoff’s equation: 

                𝑆� = 𝑆�,�𝑒𝑥𝑝 �
���
��
�                                           (2.22) 

where Si,O is the pre-exponential term and ∆Hi,j is the apparent heat of sorption for a 

penetrants.  Entropic selectivity,𝑒𝑥𝑝 �∆��,�
�
�, and enthalpic selectivity, 𝑒𝑥𝑝 �∆��,�

��
�, can be 

combined to give the overall diffusivity selectivity since λ2, the jump length, is 

effectively the same between equilibrium sorption size, viz., 

    ��
��

= 𝑒𝑥𝑝 �∆��,�
�
�  𝑒𝑥𝑝 ��∆��,�

��
�.                                      (2.23) 

According to Glasstone et al., diffusion is accompanied by a negligible volume change:   

-∆H is essentially the same as –Ed.  The jump length λ correlates with the pore structure 

and penetrant size, and Equation 2.20 can be written as [13]: 

               𝐷 = 𝜆� ��
�
��

�
 𝑒𝑥𝑝 ����

�

�
�                                    (2.24) 
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where F is the partition function in the normal state and F+ is in the transition state [13].  

For molecular sieving material, the sorbed state is in the large pores and the transition 

state is in the selective pores.  The overall partition function in either state is expressed as 

the product of translational, rotational, and vibrational contributions: 

               𝐹 = 𝐹����� ∙ 𝐹��� ∙ 𝐹���.                                       (2.25) 

Note that the partition function in the activated state F+ does not consider the 

translational partition in the direction of the gas diffusion since the factor kT/h in 

Equation 2.23 accounts for it [12].  Combining Equation 2.21 and 2.24, the entropic 

selectivity can be written as: 

                𝑒𝑥𝑝 ���,����,�

�
� =

���/���
(��/�)�

.                                     (2.26) 

For separating gas molecules which have different dimensions, pores can limit rotational 

freedom for one molecule while allowing it for the other.  For CMS membranes, it is 

known that the entropic selectivity plays a major role in the enhanced separation 

performance.  For instance, oxygen has an approximate diameter of 2.8 Å with a length 

of 3.7 Å while nitrogen has a length of 4 Å with a diameter of 3.7 Å.  If CMS material 

has a selective pore window of ~3.8 Å in diameter, oxygen is allowed to rotate freely 

while nitrogen loses its freedom, leading to the entropically selective separation 

mechanism. 
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2.3. STRUCTURE OF CMS MEMBRANES 

CMS membranes are formed by thermal decomposition of polymer precursors 

and result in an almost pure carbon material, in many cases above 95 % carbon [14-18]. 

When polymers are pyrolyzed, either coke or char is formed [14, 19].  

Coke forms graphite at a temperature above 2200 ˚C and results in a layer of 

many graphene sheets in a form of AB stacking as depicted in Figure 2.4.  The density of 

hexagonal graphite is ~2.25 g/cm3, and the distance between the layers is 0.335 nm with 

two bonded carbon atoms 0.142 nm being apart [20].  Within the layers, the bonding is 

trigonal sp2-hybrid sigma-bonds with delocalized pi-bonds within the layers.   There is no 

chemical bond between the layers, and the force of attraction is limited to van der Waals 

forces.  

 
Figure 2.4: The structure of graphite made of the AB stacking of graphene sheets [21]. 

 

Graphene is a single sheet of condensed aromatic hydrocarbons to an infinite dimension.   

In the rigid graphene sheet, the sp2 bonded carbon atoms form a 2D extended electronic 

structure [21].  The single graphite layer of honeycomb structure with solid density >1 

g/cm3 comes with strong covalent binding.  Carbon consists of six electrons in the ground 
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state, 1s22s22p2.  Moreover, in the lattice, the 2s and 2p electrons form an sp2 hybrid 

orbital, where three electrons are localized. Graphene has attractive mechanical strength, 

far exceeding graphite. In addition, it has been measured to be 200 times greater in a 

breaking strength than steel [22]. 

While coke forms crystalline structure, char remains in an amorphous structure 

[14, 19].  Such amorphous materials are believed to have a highly aromatic structure 

comprised of disordered sp2 hybridized carbon sheets with angles of disorientation that 

can attain values of several degrees as illustrated in Figure 2.5(a) [19].  The structure can 

be envisioned to comprise roughly parallel layers of condensed hexagonal rings with no 

three-dimensional crystalline order.  The majority of CMS membranes used for gas 

separation have a turbostratic structure [23] with very little long range order and are 

considered essentially isotropic as shown in Figure 2.5(b).   

 

 

Figure 2.5: Structures of carbon material, adapted from (a) Jenkins and Kawamura [19] 
and (b) Pierson [14]. 

 

Pores are formed from packing imperfections between microcrystalline regions in the 

material, and the pore structure in CMS membranes is described as “slit-like” with an 

“idealized” pore structure illustrated in Figure 2.6(a).  This pore structure can be further 

represented as shown in Figure 2.6(b) in terms of an idealized bimodal pore distribution.  

 

(a) (b) 
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Figure 2.6: Idealized “slit-like” carbon structure and bimodal pore size distribution [2, 9, 
24]. 

 

 

The distribution consists of large pores of 6 to 20 Å connected by smaller pores known as 

“ultramicropores” [2].  Such a combination of ultramicropores and micropores is believed 

to provide the combined molecular sieving function and high permeability characteristic 

of these unusual materials.  The disordered structure of the carbon material is different 

from zeolites, which have a uniform, well defined set of pores.  Despite the distribution 

of the ultramicropores, CMS materials offer the important advantage of facile formation 

of defect free membranes for use in gas separation applications.  Structures of CMS 

membranes have been investigated by many researchers using traditional techniques, 

such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and 

adsorption.  Unfortunately, due to the amorphous nature of CMS, it has been difficult to 

determine the structure, especially the ultramicropore region that governs the molecular 

sieving process.  When XRD was performed, as shown in Figure 2, broad peaks were 

observed due to its amorphous nature.  Therefore, the accuracy with which one can 

deconvolute information to estimate actual pore structure is poor [9, 16, 25, 26].  The 

results of high resolution TEM were also inconclusive due to the amorphous structure, 

and the image hardly showed any pores in the material [2, 15].  Chen, Loo, Wang, and 

(a) (b) 

Critical 
ultramicropore Micropore 

Critical 
ultramicropore 

Micropore 
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Do conducted an argon adsorption isotherm to obtain a pore size distribution of CMS 

membranes, but the argon molecule was too large to analyze the selective ultramicropore 

region [27].  Similarly, Steel and Koros and Campo and Mendes concluded that the pore 

size distribution derived from CO2 adsorption equilibrium may not be enough to explain 

CMS pore structures that are responsible for molecular sieving [25, 28].  A part of this 

chapter describes an investigation of the CMS structures, namely the applicable 

ultramicropore distribution, by using various gas molecules as probes.  Details of the 

investigation are described in chapter 4. 

                     

2.4 FORMATION OF CMS MEMBRANES 

The separation performance and morphology of CMS membranes is influenced by 

many factors, such as the polymer processing method and polymer precursors. In this 

section, some of the primary factors are described: (i) polymer precursor composition, (ii) 

pyrolysis temperature, (iii) ramp rate, (iv) thermal soak time at maximum pyrolysis 

temperature, and (v) pyrolysis atmosphere. 

 

 2.4.1 Polymer precursor  

In 1983, Koresh and Soffer pioneered the production of defect-free hollow fiber 

CMS membranes by pyrolyzing cellulose hollow fibers [29], and since then many 

polymers have been used to produce CMS membranes in fiber and the dense film forms.  

Viable precursors include cellulose derivatives [29], phenolic resin [30, 31], 

poly(vinylidene) based polymers [32], polyetherimide [33, 34], and polyimides.  Among 

them, polyimides have preferably been used because of their high glass transition 

temperature, ease of processability, and good separation performance as polymeric 

membranes. Indeed, Jones and Koros mentioned that polyimides are the best currently 
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available polymer precursors for CMS membrane based on separation performance and 

mechanical strength [17, 35].  

Using the polyimide Matrimid®, Steel and Koros worked on dense CMS films [2, 

9].  The films were pyrolyzed at 550 ºC and 800 ºC in a vacuum with a maximum 

pressure of 0.03 torr.  In addition to Matrimid®, non-commercial polyimide 

6FDA/BPDA-DAM was synthesized and pyrolyzed in the same manner.  The results in 

Figure 2.7 show that Matrimid based membranes are more selective and less permeable 

than the 6FDA based membranes produced.  This was caused primarily by differences in 

precursor chemical structures.  In addition, differences in evolved gases during 

decomposition also contributed to the differences in performance.  According to Williams, 

Matrimid® evolves volatile products, such as aniline, toluene, CO2, and CO.  In addition 

to these products, 6FDA/BPDA-DAM also evolves large amount of CF3- compounds 

[36].   This evolution of the large molecule apparently contributes to higher permeability.  

 

Figure 2.7: Transport properties of CMS dense film using two different polyimide 
precursors.  The points on the graph are average of 2-3 samples and the circles around the 
points represent the spread of data, adapted by [2, 9]. 
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The effect of polymer precursor on asymmetric hollow fiber CMS membranes was 

demonstrated by previous researchers in the Koros group.  Vu investigated carbon 

dioxide/methane separation using Matrimid® and 6FDA/BPDA-DAM CMS fibers [18, 

24].  Results indicate that CO2 permeance of 6FDA/BPDA-DAM CMS fibers are higher 

than Matrimid® CMS fibers while its selectivity is somewhat similar.  This trend with 

asymmetric hollow fibers is the same as that observed with dense films shown in Figure 

2.7.  Normalization of these two studies indicates that the choice of polymer precursor 

does indeed affect CMS performance. 

 

2.4.2 Pyrolysis temperature 

The term pyrolysis temperature is defined as the highest temperature to which a 

precursor is heated during the pyrolysis process. The pyrolysis temperature is chosen in a 

range between the decomposition of the polymer and the graphitization temperature. The 

previous Figure 2.7 shows that an increase in pyrolysis temperature lowers the 

permeability of the CMS membranes and increases the selectivity [9, 24, 37].  

 

2.4.3 Ramp rate 

 An increase in the ramp rate is known to increase permeability and lower the 

selectivity of the membrane.  Suda and Haraya prepared Kapton® based CMS membranes 

in inert pyrolysis and found that the permeability of the membranes to all gases decreased 

with lower heating rates by varying the heating rate from 13.3 K/min to 1.33 K/min [15].  

Williams and Koros suggest two reasons for this dependence: (i) the rate of evolution of 

by-products and (ii) an increased pyrolysis time that allows pore sintering to occur [38].  
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2.4.4 Thermal soak time 

The term “thermal soak time” is defined as the duration of time at the pyrolysis 

temperature. This thermal soak time can be used to tune the microstructure of the carbon 

membranes.  Several researchers found that increasing the thermal soak time results in 

more selective yet less permeable CMS membranes.  In Figure 2.8, results by Steel show 

that increasing the soak time led to a decrease in the permeability and increase in the 

selectivity [2].  In addition, data with the higher pyrolysis temperature has smaller effect 

on the selectivity, yet a larger effect on the permeability than the lower pyrolysis 

temperature. 

 

Figure 2.8: Transport properties of CMS dense films pyrolyzed with different soak time, 
adapted from [2]. 
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The effect of shorter soak times was investigated on BTDA–ODA polyimide 

dense films by Kim et al [39].  The polymer precursor was pyrolyzed at 700 ºC with 

various thermal soak times from 0 to 60 minute.  Comparison showed that changing soak 

time from 0 to 60 minute resulted in decreasing O2 permeability from 632 to 136 Barrer 

while increasing the O2/N2 selectivity from 9 to 15.  

This thermal soak effect was also investigated on asymmetric hollow fiber CMS 

membranes.  Vu performed mixed-gas separation of 10%/90% carbon dioxide/methane 

using Matrimid®.  Results show that reducing the thermal soak time from 2 hours to 1 

hour at 550 ºC in a vacuum environment increases CO2 permeance by 35% while 

maintaining CO2/CH4 selectivity [24].  These three studies show that the effect of thermal 

soak time is a strong function of polymer precursor and pyrolysis temperature. 

 

2.4.5 Pyrolysis atmosphere 

Suda and Haraya investigated pyrolysis under different environments. CMS dense 

films were prepared from polyimide Kapton® at 1000 ºC in either argon or in vacuum of 

10-5 torr.  According to their permeation properties, the results of an O2/N2 separation 

were almost the same between membranes formed under the different atmosphere [15].  

In addition, Geiszler and Koros conducted work on asymmetric hollow fiber CMS 

membranes using 6FDA/BPDA-DAM [40, 41].  Considering the uncertainty of the 

permeance data, Geiszler concludes that there is no difference between fibers produced in 

helium and argon for both O2/N2 and H2/N2 separations.  However, a slightly higher 

selectivity and less permeability was observed with the vacuum pyrolysis than the inert 

pyrolysis.  Using the same pyrolysis equipment as Geiszler, Vu also experienced this 

trend using the asymmetric hollow fiber CMS membranes of Matrimid® for 10%/90% 

carbon dioxide/methane separations [24].  
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In addition, Geiszler and Koros have also investigated the effect of inert purge 

flow rate on the separation performance of CMS hollow fiber membranes [40, 41].  Two 

different flow rates of 20 and 200 ccSTP/min were investigated at atmospheric pressure.  

 

Table 2.1: Transport properties of asymmetric hollow fiber CMS membranes, adapted 
from [40]. 

Pyrolysis atmosphere Flow rate 
(cc(STP)/min) 

O2 flux 
(GPU) αO2/N2 

Argon 200 174 ± 75 4.3 ± 1.4 

Argon 20 0.24 ± 0.21 4.5 ± 2.5 

Helium 200 97 ± 37 5.4 ± 0.7 

Helium 20 0.08 ± 0.05 4.6 ±0.9 

 

 

Table 2.1 shows that CMS membranes produced at 200 cc(STP)/min have higher 

permeability than those at 20 cc(STP)/min.  This shows that the purge flow rate appears 

to influence the effective decomposition of the polyimide and ultimately the performance 

of CMS membrane.  

In order to understand this phenomenon as well as the trend of emerging transport 

properties obtained in vacuum and in inert gases, Williams proposed a hypothesis that 

oxygen content affects separation performance of CMS membranes [36].  Jones and 

Koros also speculated that trace amount of oxygen may be a critical factor [17].  In 

Williams’ work, polymer 6FDA/BPDA-DAM was used to pyrolyze CMS dense films 

under different atmospheres.  Table 2.2 shows permeation data along with total exposure 

factors. This term “total oxygen exposure factor, qO2” describes the total number of moles 

of oxygen available for reaction during the pyrolysis.  For each condition, this total 

oxygen exposure factor was calculated using the ideal gas law. 
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Table 2.2: Summary of transport properties with calculated values of the total oxygen 
exposure factor, qO2, adapted from [36]. 

Purge gas Flow rate 
(cm3STP/min) 

PO2 
(Barrer) 

αO2/N2 
Calculated qO2 

(10-8 mol) 

0.005 torr Air - 630 8.8 9.3 

0.042 torr Air - 52 10 3100 

He (≤0.1 ppm O2) 50 620 7.5 2.8 

He (≤0.1 ppm O2) 200 581 7.3 11.2 

Ar (≤4 ppm O2) 50 537 7.1 110 

Ar (≤4 ppm O2) 200 647 6.4 440 
 

 

Results in Table 2.2 show that both the permeability and selectivity are correlated with 

the total oxygen exposure factor.  In the case of vacuum pyrolysis, a lower total oxygen 

exposure factor leads to a much higher permeability while selectivity is maintained 

relatively high.  In the case of both helium and argon inert purges, a similar trend was 

observed.  This indicates that pyrolysis atmospheres can be tuned by considering the 

“total oxygen exposure coefficient.” 
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CHAPTER 3 

MATERIALS AND EXPERIMENTAL PROCEDURES 

 

3.1 INTRODUCTION 

This chapter contains a description of the materials and experimental methods. 

Section 3.2 discusses the polymers and gases used for membrane formation and 

characterization.  Section 3.3 describes the procedures to synthesize polymeric and CMS 

membranes for both homogeneous dense and asymmetric hollow fiber membranes.  

Section 3.4 presents the characterization techniques and equipment. 

 

3.2 MATERIALS 

3.2.1 Polymer 

CMS membranes were formed by high temperature decomposition of polymeric 

precursor membranes.  Among polymers, polyimides probably are the best precursors [1, 

2].  In this work, in-house synthesized polyimide 6FDA/BPDA-DAM was first used to 

benchmark against literature and to develop an inert pyrolysis method for high 

performance CMS membrane production.  The method was then advanced by 

demonstrating with a commercially available polymer.  For commercially available 

polymers, polyimide Matrimid® 5218, provided by Vantico, Inc. and polyetherimide 

Ultem®, provided by GE Plastics were chosen for various reasons including their relative 

low costs and availability.  The chemical structure and the characteristics of the polymers 

are shown in Table 3.1 and 3.2. 
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Table 3.1: Chemical structures of polymers used in this work. 

Polymer Chemical structure 

6FDA/BPDA-
DAM 

 
2,4,6-trimethyl-1,3-phenylene diamine (DAM), 3,3′,4,4′-
biphenyl tetracarboxylic dianhydride (BPDA), and 5,5′-
[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis-1,3-

isobenzofurandione (6FDA). 
The ration of X to Y is 1:1. 

Matrimid® 
(BTDA-DAPI) 

 
3,3',4,4'-benzophenonetetracarboxylic acid dianydride-5(6)-

amino-1-(4' aminophenyl)-1,3,3-trimethylindane 

Ultem® 
(BPADA-
mPDA)  

2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl] propane 
dianhydride - 1,3-phenylenediamine 

 

Table 3.2: Polymer properties used in this work.  The decomposition temperature is 
symbolized as Tdecomp. 

Polymer MW PDI Tg (ºC) Tdecomp (ºC) 

6FDA/BPDA-DAM 103,170 2.2 424 450 

Matrimid® 99,369 3.1 302 425 

Ultem® 62,161 [3]  215 [4]  
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The synthesis of 6FDA/BPDA-DAM was conducted via a polycondensation 

reaction by addition of the dianhydride, 5,5′-[2,2,2-trifluoro-1-

(trifluoromethyl)ethylidene]bis-1,3-isobenzofurandione (6FDA, Aldrich), and diamines, 

2,4,6-trimethyl-1,3-phenylene diamine (DAM, Fluka) and 3,3′,4,4′-biphenyl 

tetracarboxylic dianhydride (BPDA, Aldrich), in solution using the solvent, n-

methylpyrrolidone (NMP).  The 6FDA, DAM, BPDA monomers and the reaction 

sequence are shown in Figure 3.1.  

 

 

 

Figure 3.1 Synthesis steps for 6FDA/BPDA-DAM (1:1) polyimide. 
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All monomers were purified by sublimation prior to use.  This sublimation was essential 

for the end product to have high molecular weight and lower polydispersity index (PDI).   

A low PDI was speculated to be required for the polymer to be spinnable as shown in 

Table 3.3.   

 

Table 3.3: Preliminary screening test results for spinning Matrimid® 5218.  Syringe tests, 
which are described by Carruthers [5], were conducted to check the spinnability.  
Unspinnable polymer was insoluble in any combination of solvent mixtures.  The results 
indicate that molecular weight more than 57K with 2<PDI<3.6 is preferred for hollow 
fiber spinning.  

Matrimid® supplier MW PDI Spinnable? 

Ciba 
(Lot # 47718442) 57K 3.6 Y 

Ciba-Geigy 
(Lot # 30948912) 66K 2.5 Y 

Vantico, Inc. 
(Lot # 778, used in this work) 99K 3.1 Y 

Huntsman 
(Lot # AG6605014) 69K 2.1 Y 

Huntsman 
(Lot # AG06005006) 76K 4.5 N 

 

 

In this study, the reaction stoichiometry was adjusted to have the ratio of BPDA 

to DAM of 1:1. The polycondensation is sensitive to water and minimal exposure to 

moisture was ensured.  The reaction produced polyamic acid, which is the precursor to 

polyimide.  Thermal imidization was chosen to dehydrate the polyamic acid to form a 

polyimide.  The reaction solution was heated to a temperature of ~180 ˚C in order for the 

imidization to occur [6].  
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3.2.2 Gases 

All gases used were provided by Air Products/Air Gas.  Pure gases (He, O2, N2, 

CO2, CH4, and SF6) were of purity 99.999 % or greater. The kinetic diameters and the 

critical temperatures of these gases are shown in Table 3.4. 

 

Table 3.4: Kinetic diameters [7] and critical temperatures [8] of gasses used in this work. 

Gas  
penetrants He O2 N2 CO2 CH4 SF6 

Kinetic diameter (Å) 2.6 3.46 3.64 3.3 3.8 5.5 

Critical temperature (K) 5.2 154.6 126.2 304.2 190.6 318.7 

 

 

In addition, a mixed 50.0 mol % CH4 with balance CO2 was used. Mixed gases of argon 

with a specific amount of oxygen (1-100 ppm O2) were used as purge for the “inert” 

pyrolysis process. 
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3.3 MEMBRANE FORMATION  

Production of CMS membranes involves two steps: (i) formation of polymeric 

membranes and (ii) pyrolysis of the polymeric membranes. This section describes the 

procedure to prepare dense film and asymmetric hollow fiber membranes. 

 

3.3.1 Formation of polymeric membranes 

3.3.1.1 Formation of homogeneous films 

Homogeneous polymeric dense films were prepared by first drying the polymer 

powder in a vacuum oven at 110 ºC for at least 12 hours to remove moisture.  

Immediately after removal from the oven, a polymer solution, usually 3-5 wt%, was 

prepared by dissolving in dichloromethane (99.99% purity from Aldrich), in 40 ml 

ICHEM vials (Fisher Scientific), and placed on rollers for at least 12 hours.  After mixing, 

dense films were prepared by a solution casting method as shown in Figure 3.2 at room 

temperature.  The polymer solution was placed in a glass syringe, filtered with pressure 

through a Millex®-RH 0.45 micron PTFE filter (Millipore Corporation), and slowly 

extruded onto the glass surface inside of the stainless steel ring or Teflon dish.  An 

inverted glass funnel with open end covered with a Kimwipe was placed over the solution, 

or the entire procedure was done in a glove bag to achieve a minimum solvent 

evaporation rate.  It was essential to prepare flat polymeric films to produce flat CMS 

membranes during the solution casting procedure.  In particular with Matrimid®, the 

Teflon dish was preferred to a casting ring because the films produced were flat as shown 

in Figure 3.3. 
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Figure 3.2: Schematic showing the solution-casting method for dense film production. 

 

 

 

                            (a) “Crinkled” CMS films       (b) Flat CMS films 

Figure 3.3: Resulting Matrimid® CMS membranes with polymer films casted with (a) a 
ring on a glass plate and (b) a Teflon dish.  While a ring casting achieved 44% flat film 
production rate, the Teflon casting resulted in more than 89% flat film production tested 
with at least 36 polymeric films. 
 

After the solvent was evaporated, films were removed with tweezers from the 

casting surface.  Occasionally films were removed by lifting the edge of the film with a 

razor blade and then squirting a few drops of deionized water under the exposed edge.  

This caused the film to lift off the plate. After the removal, films were placed in the 

vacuum oven at 110 ºC for at least 12 hours to remove residual solvent.  Once films were 

removed from the oven, they were cut into small discs with a one inch die.  Any visible 

stress points in the film during removal from the casting setting were not used for further 

CMS production.  It is also worth mentioning that the disc cutting was one of the critical 

steps for resulting CMS films to be flat and testable.  The film was cut by hitting the die 
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with a hammer only once to apply uniform forces across the edges.  Occasionally, 

scissors were used to cut out any small attachment points of the films. 

 

3.3.1.2 Formation of asymmetric hollow fibers: spinning 

For industrial application of novel membrane materials, it is essential to be 

formed into thin, low cost membranes that can be eventually packed into high surface 

area modules [9].  Asymmetric hollow fibers are the preferred industrial standard 

compared with other module configurations, such as spiral wound and plate-in-frame 

types, because of the high surface area to volume ratios.  Asymmetric hollow fiber 

membrane modules can achieve active surface to volume ratios as high as 10,000 m2/m3 

and offer high productivities [4].  In addition, asymmetric hollow CMS fibers offer 

higher mechanical strength compared with CMS dense films.  These are believed to be 

caused by the cylindrical geometry of the membrane which consists of the actual 

separating “skin” layer with the bulk of the membrane acting as support.  The support is a 

porous substructure that ideally has negligible resistance and lies underneath the outer 

skin layer as shown in Figure 3.4.  

 

 

Figure 3.4: SEM images of Matrimid hollow fibers.  Characteristic dimensions of the 
nodular, porous support layer are similar in size to the skin thickness [10]. 
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The process of making asymmetric hollow fiber membranes is called spinning.  

This occurs by co-extruding a polymer solution and a bore fluid through an annular die 

called a spinneret into an aqueous quench bath, where the polymer solution precipitates 

and is drawn up with a take-up device.  The method of spinning used in this work is 

referred to as the dry jet/wet quench method [5, 11-13].  In this process, the polymer 

solution passes through an air-gap before it precipitates in the aqueous quench bath.  The 

spinning process is depicted in Figure 3.5. 

 

 

Figure 3.5: Schematic of spinning process for producing asymmetric hollow fiber 
membranes.  

 

The polymer solution used in making the membranes is commonly called a “dope”.  This 

dope typically consists of the polymer, a solvent, and a non-solvent. N-methylpyrrolidone 

(NMP) is generally used as the solvent for dopes because it dissolves many of the 

polyimides used for these applications and is relatively environmentally friendly.  The 

non-solvent is usually chosen to bring the polymer solution close to the two phase 

unstable region on a ternary phase diagram, shown in Figure 3.6, so that rapid phase 

separation will occur when the dope is immersed in the quench bath.  The non-solvent is 
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also chosen to be relatively environmentally benign.  Water is typically adequate for most 

of the systems since most of the polymers used for gas separations are hydrophobic.  

Aliphatic alcohols, such as ethanol, are commonly used as non-solvents, because they 

provide a greater window for use than water, which tends to be too strong a non-solvent.  

Additives such as lithium nitrate salts are sometimes used in dopes for various reasons 

such as viscosity enhancement, phase separation enhancement, and pore formation.  

 

 

Figure 3.6: Ternary phase diagrams of polymer, solvent, and non-solvent for spinning 
hollow fibers.  On this ternary phase diagram, desired dope composition is represented as 
a star.  

 

In the ternary phase diagram, the vertices of the triangle represent each of the 

three pure components, while points on the interior of the triangle represent ternary 

compositions.  Phase diagrams that are relevant to this discussion display a stable one-

phase region and an unstable two-phase region where phase separation occurs.  Strictly 

speaking, a metastable two-phase region also exists.  In the two-phase region, the 

polymer solution phase separates into a polymer-lean phase and a polymer-rich phase. 
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The compositions of these polymer-lean and polymer-rich phases are given by 

equilibrium tie-lines.  The spin dope “A” on Figure 3.7 is formulated to lie close to the 

two-phase region.  While the detailed processes during dry jet/wet quench spinning that 

causes the outer region of the spinning dope to transition into a defect free skin remains 

unclear, it is believed that the formation of the defect-free skin and the porous 

substructure follow two separate composition paths on the ternary phase diagram, as 

shown in Figure 3.7.  

 

 

Figure 3.7: Spinning process depicted on a ternary phase diagram. 

 

When the dope passes through the air gap, solvent evaporates from the outer diameter of 

the fiber, and the outer region of the fiber is represented by “A’,” while the bulk of the 
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fiber still remains at composition “A.” Upon immersion in the non-solvent bath, solvent 

efflux and non-solvent influx results in a high non-solvent composition “B” which leads 

to phase separation along equilibrium tie lines to a polymer rich and lean phase.  The 

composition at “A’” is kinetically limited from phase separation if it is sufficiently high in 

polymer concentration. 

Spinning is a complex process and relies upon various parameters, such as 

composition of dope and bore fluids, air gap, spinneret temperature, extrusion rate, and 

draw ratio.  The draw ratio is defined as the ratio of the take-up to the extrusion rate.  

Therefore increasing the take-up speed of the fiber at a set extrusion rate increases the 

draw ratio and ultimately reduces the radial dimensions of the hollow fiber.  After a fiber 

is spun, it is usually dehydrated by exchanging with non-solvent fluids of decreasing 

surface tension before finally being dried.  This fluid exchange is done to minimize 

capillary forces that would act on the fiber if dried directly from high surface tension 

fluids like water.  Such capillary forces could collapse the porous support.  Details of the 

spinning parameters used in this work are described in chapter 5. 
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3.3.2 Formation of CMS membranes 

3.3.2.1 Pyrolysis protocol 

The polymer films were placed on a corrugated quartz plate, which was ridged to 

allow for the diffusion of volatile by-products from the top and bottom of the films into 

the effluent stream, and loaded into the pyrolysis setup.  In order to maintain consistency 

based on prior optimization, a pyrolysis temperature of 550 ºC and a two hour soak time 

was used, which was the same temperature protocol used in the work by Geiszler and 

Koros [14], Vu and Koros [15], and Williams [16] as a benchmark.  Specifically, the 

system was heated from room temperature to 50 ºC  in 15 min and soaked for 15 min, 

raised to 250 ºC  in 15 min, from 250 to 535 ºC in 74 min, from 535 to 550 ºC in 60 min, 

and soaked for 120 min.  In case of the 500 ºC protocol, a consistent heating rate and 

soak time was used and only the final temperature was differed from 550 to 500 ºC.  

 

3.3.2.2 Pyrolysis set-up 

Initially, a pyrolysis system was equipped with a customized quartz tube as shown 

in Figure 3.8; however, after many uses by various researchers [1, 16-21] the system was 

found to be leaky, especially after integrating the oxygen sensor (Cambridge Sensotec 

Ltd., Rapidox 2100 series, Cambridge, England, ±1 % accuracy between 10-20 ppm and 

100 % [22]).  The leaks took place on almost all of the connecting parts, and it prevented 

one from accurately measuring the oxygen level in the system.  Therefore, a new system, 

depicted below, was designed and constructed. 
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Figure 3.8: Schematic diagram of the old pyrolysis system. 
 

 

 

       

Figure 3.9: Schematic diagram of the new pyrolysis system. 
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Figure 3.10: Flanges with two silicon O-rings for vacuum tightening (MTI Co., CA). 
 

 

A new apparatus shown in Figure 3.9 was designed to provide a more controllable 

system under vacuum and/or an inert purge.  Instead of using the customized quartz tube, 

a cylindrical quartz tube, 55 mm ID x 59 mm OD x 4 ft length (National Scientific, PA) 

was used.  One should note that the cost of the tube was significantly reduced to 1/6 

compared with the custom made.  The tube is sealed with a flange with two silicon O-

rings (described in Figure 3.10) on both ends.  The diameter of the quartz tube is slightly 

larger than before to reduce the gap between furnace wall and the tube.  A new pressure 

reader (MTI Co., CA) was introduced to measure outlet pressure, and a 0.5 micron filter 

from Swagelok was attached to avoid the accumulation of byproducts from carbonation.  

A temperature controller (Omega, CT), an upstream pressure transducer (MKS 

Instrument, MA), and an oxygen analyzer (Cambridge Sensotec Limited, England) from 

the previous set-up were kept.  The transducer, temperature controller, and mass flow 

controllers (MKS Instrument, MA) were sent to the manufacture for periodic calibrations.  

All connecting parts, such as T-valves and Swagelok® valves, were replaced by new ones. 

Parts used in the system are listed in Table 3.5. 
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Table 3.5: List of equipment used to build the pyrolysis system used in this work.  Note 
that equipment marked with “*” indicates that it was purchased by previous Koros group 
members.  Adjustments on the vacuum sealing assembly were made by GTRI machine 
shop to have vacuum tight fittings with NPT. 

 

 

Name of equipments Specifications and/or 
catalog number Manufacture 

Furnace* Model 23-24-1ZH Thermocraft 

Temperature controller CN8241 Omega 

Thermocouple K-type Omega 

Vacuum pump Model RV3 Edwards 

Pressure reader and power supply PDR2000 MKS 

Pressure transducer 

Baratron®628B  
capacitance manometer 
(0.5 % accuracy below 

1 torr) 

MKS 

Quartz tube 55mm ID and 4 ft long National Scientific 
Company 

Quartz sample folder plate*   

Vacuum sealing assembly Model EQ-FI-60 MTI Corporation 

High temperature silicone O-rings 60mm diam. MTI Corporation 

SS tubings and bellow & needle 
valves  Swagelok 

Oxygen analyzer Rapidox 2100 Cambridge Sensotec Ltd 

Desktop computer  Dell 

Mass flow controller Type 247 MKS 

Bubble flow meter Model 520 Fisher Scientific 

Micron filter Nupro FW Filter 0.5 Swagelok 
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After assembling, leak tests were performed and to confirm that the pressure of 

0.005 torr was maintained for at least the duration of pyrolysis even with both system 

ends closed.  In addition, an inert pyrolysis blank run was performed as follows: pyrolysis 

experiments were run with argon flow of 200 cc(STP)/min and the oxygen level was 

monitored using the oxygen analyzer. The resulting baseline is shown in Figure 3.11. 

 

 

Figure 3.11: Baseline after installing a new pyrolysis tube. 
 

This baseline experiment was repeated twice and similar results were observed.  The 

constant oxygen level in the baselines indicates a negligible leak and negligible oxygen 

chemisorption on the system, these confirming that pyrolysis system was successfully 

constructed.  
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Pyrolysis atmospheres consisted of either continuous vacuum or continuous inert 

gas.  For vacuum pyrolysis, a pump (Edwards) was used to create a low pressure, below 

0.005 torr, and a liquid nitrogen trap was used to prevent any back diffusion of oil vapor. 

The pressure inside the tube was monitored by a pressure transducer (MKS Instruments) 

attached to a readout (MKS Instruments).  For experiments using purged gas during 

pyrolysis, the flow rate of the gas was controlled with a mass flow controller (MKS 

Instruments) and confirmed with a bubble flow meter (Fisher Scientific) before and after 

each experiment.  Between experiments, the quartz tube and plate were rinsed with 

acetone (Aldrich) and baked in air at 800 ºC to remove any deposited materials which 

could affect consecutive runs.  

 

3.3.2.3 Pyrolysis system cleaning 

Pyrolysis of polyimide materials produces large amounts of evolved by-products, which 

were observed to deposit on the inner tube surface.  In particular, it was observed that 

Matrimid® produces more “debris” than 6FDA/BPDA-DAM or Ultem®.  In order to 

prevent any of the by-products from consuming oxygen during pyrolysis, the tube was 

cleaned prior to each experiment.  As mentioned earlier, the cleaning normally involved 

two steps: (i) rinsing the entire tube in acetone with a bundle of long handled bottle 

brushes and (ii) burning out at 800 ºC for at least 2 hours.  It was important to use acetone 

instead of tap water since minerals calcinate and reside after burning, which made it 

impossible to remove them afterwards.  When this cleaning procedure was found to be 

ineffective after many pyrolysis runs, the tube was treated with more carefully.  First, the 

surface was cleaned with base solution.  This was done by first rinsing it with laboratory 

detergent (Alconox, NY) and DI water.  Then the surface was washed in KOH (8M) with 

a bundle of long handled bottle brushes (McMaster-Carr).  Since brown deposits were 

still observed adhering to the surface, the tube was filled with KOH solution overnight 



56 
 

(>12 hours.)  After the soak, the tube was rinsed with DI water and acetone to remove 

oils from fingerprints or other organic contaminants.  In order to remove any residual 

solvent, the tube was burned out at 800 ºC for 2 hours.  If any additional oxygen 

consumption was observed by the baseline experiments, acid cleaning was used to 

remove remaining residuals on the surface.  The quartz tube was first washed with the 

laboratory detergent and rinsed with HF solution (5% by vol.) for 5 min.  The 

concentration and duration of HF cleaning were carefully measured.  After cleaning with 

acid, the tube was rinsed with DI water and acetone and burned at 800 ºC for 2 hours.  

When this procedure was used, water condensation was sometimes observed during the 

burn out as a result of HF “eating” the quartz surface [23].  This indicates that most of the 

residuals on the surface were removed, and silicon surface was exposed, leaving the 

pyrolysis system free of oxygen consumption during pyrolysis. 

 

3.4 MEMBRANE CHARACTERIZATION 

 3.4.1 Permeation 

Once dense films and asymmetric hollow fiber membranes were prepared, 

permeation experiments were conducted as a part of membrane characterization. 

 

3.4.1.1 Dense film permeation 

After dense films were prepared as described in section 3.3.1.1 (polymeric films) 

and 3.3.2 (CMS films), the samples were immediately loaded into permeation cells, 

usually within 24 hours to minimize humidity exposure especially on CMS membranes.  

The films were first masked using impermeable aluminum tape, and only a specific area 

was exposed for permeation.  Five minute epoxy (Devcon, Danvers, MA) was applied at 
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the interface of the tape and the film to further minimize any gas leak.  This assembly 

was placed in a double O-ring flange permeation cell as depicted in Figure 3.12.  

 

 

                 

Figure 3.12: Schematic of a permeation cell.  A cross section through the cell is shown 
with a “sandwich” type masked membrane.  The membrane assembly is composed of 
membrane (yellow), filter paper (light gray), epoxy (brown), adhesive backed aluminum 
(chechered).  Bolts at both ends and O-rings shown by solid black circles assure a leak 
tight seal [24]. 

 

 

The cell was placed in a permeation system in which a constant-volume variable-pressure 

method [25, 26] was applied.  The schematic of the isochoric variable pressure 

permeation system is depicted in Figure 3.13. 
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Figure 3.13: A schematic of dense film permeation system [24]. 

 

Both upstream and downstream of the permeation system was evacuated for at least 12 

hours and a leak rate was measured, which was always less than 1 % of the permeate rate 

of the slowest gas.  Once the whole system was evacuated, the upstream was pressurized 

with a testing gas while the downstream was maintained at vacuum, but isolated from the 

vacuum pump.  The pressure rise (dp/dt) in a standard volume on the downstream was 

monitored with time by LabView (National Instruments, Austin, TX), and the membrane 

area was measured using Scion Image (Scion Corporation, MD). Finally, permeability, P, 

was calculated using Equation 3.1.  
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    𝑃 =
��.����×����∙������∙�∙��

�∙�∙∆�
                                                 (3.1) 

 

where dp/dt is in torr/min, l is the membrane thickness in microns, VR is the downstream 

reservoir volume in cm3, which was calibrated using the ideal gas law, T is the operating 

temperature in Kelvin, and ∆p is transmembrane pressure in psi.  The permeability, P, is 

in the units of Barrer as defined below: 

 

    𝐵𝑎𝑟𝑟𝑒𝑟 = 10��� ��(���)∙��
���∙����∙�

                                           (3.2) 

 

The system was evacuated each time before experiments with different gases for at least 

12 hours for CMS membranes and for at least ten times the time-lag for polymeric 

membranes. 

 

3.4.1.2 Asymmetric hollow fiber permeation 

 Hollow fibers were potted into modules according to the method described by 

Wallace [27].  The modules contained fibers with active membrane lengths varying from 

~5-20 cm depending on the types of fibers and permeation experiments performed (pure 

or mixed gas).  The number of fibers in a module was also chosen depending on the type 

of permeation to be performed.  For polymeric hollow fibers, for instance, as many as 40 

fibers in a module could be used for pure gas experiments; however, for mixed gas 

permeation experiments, the number of fibers is reduced to 1-2 to reduce the membrane 

surface area for the experiments.  A lower surface area reduces the amount of gas that is 

vented off the retentate stream since the stage cuts used are typically less than 1% (see 

section 3.4.1.2.2 for more information on mixed gas experimental set-up).  The reasons 
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for the low stage cuts are explained in the same section.  The pictures below in Figure 

3.14 shows typical hollow fiber module, and the module assembly is described in 

Appendix A. 

 

 

 

Figure 3.14: Schematic showing a hollow fiber membrane in a module housing. 

 

 

3.4.1.2.1 Hollow fiber pure gas permeation 

Counter-current flow scheme with the bore side feed was used to conduct pure 

gas permeation.  The entire feed stream permeates through the membrane and is collected 

only on the permeate side, the shell side, where the flow-rate can be measured using a 

bubble flow-meter.  Figure 3.15 shows a schematic of the pure gas permeation set-up for 

asymmetric hollow fibers.  

 

Active length 

Hollow fiber membrane in a module 
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Figure 3.15: A schematic of the pure gas permeation set-up for asymmetric hollow fiber 
membranes [6].  In this figure, six modules are connected to the feed and could be tested 
simultaneously. 

 

This configuration allows for multiple fiber modules to be tested head-on, with a 

common feed and under the same test conditions.  The permeance (P/l) can be obtained 

from multiple modules at the same time using the following equations: 
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                                                      (3.3) 

 

where vp is the volumetric flowrates in cc(STP)/sec, T is the operating temperature in 

Kelvin, A is the membrane area in cm2, and ∆p is the transmembrane pressure in psia. 

The permeance (P/l) is in the units of GPU, which is defined as: 

 

    𝐺𝑃𝑈 = 10�� ��(���)
���∙����∙�

                                                 (3.4) 

 

 

3.4.1.2.2 Hollow fiber mixed gas permeation 

Mixed gas permeation experiments were carried out using a counter-current flow 

scheme with the feed on the shell side of the hollow fibers.  The feed stream flows over 

the surface of the membrane and the permeate flux is controlled by a needle valve on the 

retentate side.  The percentage of the feed that permeate through the membrane is called 

the stage cut.  In determining intrinsic membrane properties, stage-cuts less than 1% were 

used to minimize concentration polarization and to minimize feed composition variation, 

as the membrane selectively permeates the penetrants along the module.  The permeate 

stream, collected on the bore side, is measured with a bubble flow-meter to determine the 

flux and can also be sent to a GC (EG&G Chandler Engineering Carle AGC Series 100, 

OK) to analyze the compositions.  A schematic of mixed gas permeation set-up is shown 

in Figure 3.16. 
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Figure 3.16: Schematic showing a variable volume system. 

 

 

Using the set-up shown in Figure 3.16, the permeance, 𝑃�/𝑙  in GPU, is obtained by 

following equation:  

 

    ��
�

= 10�� ∙ ��∙��∙���.��
�.��∙�∙�∙���∙��,�∙�����∙��,�∙���

                           (3.5) 

 

where l is the membrane thickness, vp is the volumetric flow-rate of permeate in cc/sec, yi 

is mole fraction of component i in permeate, xi is mole fraction of component i in the 

upstream, which is essentially equal to the mole fraction of i in the feed at low stage cut, 

A is the membrane active area in cm2, T is the testing temperature in Kelvin, px and py are 

feed and permeate pressures respectively in psia, and Φxi and Φyi are fugacity coefficients 

of component i in the upstream and permeate streams respectively.  Most of the work was 

done with ambient permeate pressure, and when it was necessary, a backpressure 

regulator was used to vary the permeate pressure. 
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3.4.2 Sorption 

In this study, a pressure decay method [28, 29] was mainly used to measure 

sorption capacity of samples.  In the pressure decay method, the equilibrium sorbed 

concentration at a given pressure can be used to calculate the solubility coefficient.  The 

pressure decay sorption system is depicted in Figure 3.17.  

 

 
 
Figure 3.17: Schematic of pressure decay sorption system used for gas sorption 
experiments. 
 
 
Once samples were loaded, the system was evacuated for ~24 hours.  A feed reservoir 

was pressurized with a certain amount of gas, allowing the system to equilibrate 

thermally.  The entire system was kept in a heated water bath with a circulator to 

maintain constant temperature.  Once the feed reservoir came to equilibrium, the pressure 

valve between the feed and the sample cell was opened and then quickly closed to 

introduce a dose of the feed gas into the cell.  The pressure in both chambers was 

monitored with pressure transducers.  The amount of gas sorbed was then calculated 

using a mole balance shown below: 
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                     𝑛� = �
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− ��,�
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��∙��,�
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��∙��,�
��       (3.6) 

 

where nP is the amount of gas sorbed into the CMS samples at equilibrium, T is the 

temperature, R is the ideal constant, VC is the volume of the sample cell, VCMS is the 

volume of CMS sample, VR is the volume of reservoir, pC,i is the initial pressure of the 

sample cell, pC,f is the final pressure of the sample cell, pR,i is the initial pressure of the 

reservoir, pR,f is the final pressure of the reservoir, and z is the compressibility factor for 

the testing gas at the pressures measured.  The compressibility factors were obtained 

using software Supertrapp (NIST) and used to correct for non-idealities.  

 

3.4.3 Fourier transform infra-red spectroscopy (FTIR) 

 The FTIR was done using a Bruker Tensor 27 FTIR spectrometer.  For polymer 

powder, samples were analyzed using a Harrick MVP2 micro ATR with at least 32 scans 

at a resolution of 2 cm-1. 

 

3.4.4 Thermal gravimetric analysis (TGA) 

 TGA was performed to analyze the decomposition process on polymeric samples.  

TGA was provided from Netzsch, STA 409 PC Luxx TGA/DSC. 

 

3.4.5 Thermal gravimetric analysis connected with FTIR (TGA-IR) 

 Thermal gravimetric analysis combined with Fourier transform infrared 

spectroscopy (TGA-FTIR), provided from Netzsch, STA 409 PC Luxx TGA/DSC) was 

performed to characterize the decomposition process of polymers. 
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3.4.6 Gel permeation chromatography (GPC) 

 Molecular weight (MW) and polydispersity index (PDI) of polymer batches were 

obtained by dissolving the polymer in solvent THF at 10 mg/ml.  The 1 ml samples were 

filtered through a Millex®-FG 0.20 micron PTFE filter (Millipore Corporation) into 2 ml 

vial before analysis and loaded into Viscotek GPCmax VE2001 GPC solvent/sample 

module, which was located in Prof. Jones laboratory at Georgia Institute of Technology. 

 

3.4.7 Nuclear Magnetic Resonance Spectroscopy (NMR)  

 1H NMR experiments were done in solution.  The solution NMR studies were 

performed by dissolving samples in deuterated dimethyl sulfoxide (DMSO) at ~2.5 wt%. 

The solutions were analyzed using a Varian Mercury Vx 300 spectrometer. 

 

3.4.8 Differential scanning calorimetry (DSC) 

 DSC was performed to determine the glass transition temperature (Tg) of 

polymers with a Seiko DSC 220.  It was located in Prof. Shofner laboratory at Georgia 

Institute of Technology. 

 

3.4.9 Density gradient column 

 The densities of membranes were determined using a Techne density gradient 

column.  The 70 cm long column was prepared by mixing solutions of calcium nitrate 

and water, placed in a water bath, and temperature controlled using a temperature 

controller.  The density gradient in the column was calibrated using glass balls calibrated 

to ± 0.0001 g/cm3 from Techne.  
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3.4.10 Scanning electron microscopy (SEM) 

 SEM images were obtained by first cryogenically fracturing the fibers in liquid 

nitrogen.  Most times, fibers were soaked in hexane prior to fracturing in liquid nitrogen.  

This helped to freeze the fibers and ensure a smooth cut.  The machine used in this work 

was a LEO 1530 thermally assisted field emission (TFE) scanning electron microscope. 

For polymeric fibers, samples were coated with gold prior to experiments. 

 

3.4.11 Wide angle X-ray diffraction (XRD) 

 XRD was performed to analyze pore sizes of porous materials using a Phillips 

Panalytical X-ray diffractometer in Prof. Nair’s laboratory at Georgia Institute of 

Technology. 
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CHAPTER 4 

DEVELOPMENT OF EFFECTIVE “INERT” PYROLYSIS 

CONDITIONS FOR ATTRACTIVE CMS MEMBRANES 

 

4.1 INTRODUCTION AND OVERVIEW 

4.1.1 Effect of pyrolysis atmosphere on separation performance of CMS membranes 

Gas separation performance of CMS membranes depends on the critical pore size 

and the pore size distribution.  These properties are known to be affected by many factors, 

such as polymer precursor [1-5] and pyrolysis temperature [4-6].  The effect of pyrolysis 

atmosphere has also been investigated and identified as one of the key factors.  When 

vacuum and inert pyrolysis are compared, some researchers observed that an inert 

pyrolysis provides much higher permeability and lower selectivity [5, 7, 8].  To the 

contrary, Suda and Haraya reported that CMS films prepared from polyimide Kapton® at 

1000 ºC in either argon or in high vacuum of 10-5 torr showed negligible differences [9].  

Geiszler and Koros conducted work on asymmetric hollow fiber CMS membranes using 

6FDA/BPDA-DAM and reported negligible differences between fibers produced under 

argon, helium, and carbon dioxide inerts for both O2/N2 and H2/N2 separations [7].  When 

high vs. low inert flows were compared, Geizler observed that the inert purge flow rate 

per se does not have a significant impact on a permeability of CMS membranes within 

the standard deviations of ±20 % typically observed for CMS membranes [7] formed 

under the same conditions.  These various discrepancies reveal the need to identify at 

least one additional factor to unite and explain the rather disparate observations in this 

CMS field, and this chapter addresses this need. 
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4.1.2 Effect of oxygen exposure on separation performance 

To explain the discrepancies between reported studies regarding effects of the 

pyrolysis atmosphere, a hypothesis regarding CMS formation was proposed.  The 

hypothesis relates the formation mechanism to the amount of oxygen exposure during 

pyrolysis as the key missing factor controlling CMS properties.  As mentioned in chapter 

2, CMS consists of irregularly packed sheets of sp2 hybridized carbon.  The CMS 

structures illustrated in Figure 2.4 have micropores providing adsorption sites and 

ultramicropores acting as molecular sieve sites.  These ultramicropores are speculated to 

be created at “kinks or defects” in the carbon sheet or at the edge of a carbon sheet.  

These sites have more reactive unpaired sigma electrons prone to oxidation as compared 

to other sites in the membrane [10-12].  In fact, studies on the electrochemical oxidation 

of carbon give evidence that the rate of gas-phase oxidation of carbon on the edge plane 

is close to 20 times greater than on the basal plane [10].  In addition, various 

characterizations have been performed by prior researchers to indicate the existence of 

chemisorbed oxygen.  Ishiguro et al. showed FTIR spectrum that indicates existence of 

the C-O bonding group on carbon samples heated at ~500°C [13].  When pyrolyzed in the 

presence of oxygen, it is hypothesized that oxygen reacts and binds to the reactive sites 

on CMS membranes at locations comprising the ultramicropores, thereby narrowing the 

average ultramicropore size.  This process, in turn, is hypothesized to lower the 

permeability of the membrane, and to increase the selectivity.  A schematic drawing of 

this hypothetical process is depicted in Figure 4.1. Tests of the above hypothesis are 

discussed in section 4.2. 
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Figure 4.1: Schematic of oxygen “doping” process during pyrolysis. 

 

 

The exact mechanism of the oxidation reaction that takes place during formation 

of pyrolytic carbon is not fully known, but as mentioned above, studies have shown that 

three stable oxides, CO, CO2, and surface oxides, such as carbonyls, are produced by 

oxygen molecules during the electrochemical oxidation on carbon [11, 12, 14].  de Soete 

showed measured adsorption and desorption rates of oxides at temperatures between 350 

and 700 °C using high surface area active carbons and concluded that the adsorption is 

the limiting step [15].  During CMS formation, the main source of oxygen in the 

pyrolysis system comes from the pyrolysis atmosphere.  As the highly reactive pores on 

the surface are oxidized, oxygen diffuses into the membrane and reacts with the next 

available site.  The limiting step of this complex carbon-oxygen reaction is investigated 

in section 4.3 and hypothetical reaction mechanisms are proposed in section 4.4. 
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4.2 EFFECT OF OXYGEN EXPOSURE ON CMS MEMBRANES 

The oxygen doping method described in section 4.1.2 was tested using two 

polymer precursors: in house synthesized polyimide, 6FDA/BPDA-DAM (1:1), and a 

commercially available polymer, Matrimid®.  The 6FDA/BPDA-DAM was chosen due to 

(i) high gas separation performance among other polymer materials prior to pyrolysis 

processing and (ii) data availability for benchmarking against literature and against data 

from previous Koros group members.  Among many commercial polymers, Matrimid® 

and Ultem® were chosen due to ease of accessability and processability, and their 

attractive CMS separation performance [3, 8, 16-21].  Between Matrimid® and Ultem®, 

Matrimid® was chosen because of its high glass transition temperature (Tg) and 

mechanical strength.  Also it was observed that Ultem® CMS films broke into small 

pieces due to its softening point around 230 ˚C while Matrimid® CMS films remained 

evenly flat.  A pyrolysis temperature of 550 ˚C and a two hour soak time was chosen to 

observe effectiveness of the oxygen doping process.  By creating more permeable and 

larger numbers of ultramicropore windows with 550 ˚C pyrolysis protocol [8], compared 

with higher temperature such as 800 ˚C, the probability of oxygen to penetrate and be 

sorbed during the doping process increases.  This makes the oxygen “doping” process 

more efficient. The purge gas of argon with specific amount of oxygen in ppm level was 

supplied by AirGas. 
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4.2.1 6FDA/BPDA-DAM CMS membranes 

4.2.1.1 Weight loss  

After each pyrolysis experiment, percentage weight losses were calculated using 

Equation 4.1.  

     

% 𝑤𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 =  (������)������ ����������(������)����� ���������

(������)������ ���������
 × 100              (4.1) 

 

As described before, all the polymer films were pyrolyzed using the same thermal 

process of 550 ºC.  Based on the hypothesis developed in this study, all films produced 

with the same thermal profile should have an intrinsic percentage weight loss, a weight 

loss solely based on the pyrolysis process without the doping oxygen.  This weight loss 

would remain the same regardless of oxygen content in the pyrolysis atmosphere.  In 

addition, the amount of oxygen doped would be higher as a concentration of oxygen in 

inert increases according to the aforementioned hypothesis.  This means that a weight 

loss as a result of the pyrolysis process would decrease as the amount of oxygen exposure 

increases since an exposure to higher amount of oxygen results in a larger amount of 

“doping”.  Results show a slight trend for the weight loss to actually decrease with 

increasing O2 exposure (and consumption); however, the percentages of the average 

weight losses remain in a range of 32-35 % in all cases and were not considered to be 

significant beyond experimental uncertainty.  Clearly, at some higher level of O2, one 

would expect actual losses in weight due to consumption of carbon with CO and CO2 

emission; however, at the lower level of O2 used here, this was not observed. 
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4.2.1.2 Production of flat CMS films 

An additional observation was that pyrolysis with higher oxygen exposure of inert 

gases leads to a larger amount of stressed, mostly untestable, films.  Unsuccessful films 

were “curled” or bent to a degree that inhibited the ability to test their performance as 

shown in Figure 4.2.  

 

 

 
(a) 

 
                             (b)                                                  (c) 
 

Figure 4.2: (a) Polymeric films, (b) mostly untestable “curled” CMS films, and (c) flat 
CMS films. 

 

 

One should note that the shape of the untestable Teflon dish casted precursor CMS film is 

different from that observed using a ring casting technique, previously shown in Figure 

3.3: the pyrolysis of the ring casted polymer film resulted in “crinkled” films whereas the 

pyrolysis of an untestable Teflon dish cast polymer resulted in “curled” films.  Additional 

experiments were conducted to soak polymer films at the Tg for 2-3 hours prior to 

pyrolysis, and this showed that the Tg annealing does not affect the shape of resulting 

CMS membranes significantly.  In fact, polymer films which just experienced Tg were 



76 
 

flat due to relaxation of polymer chains but the resulting CMS was most of times 

“crinkled or curled”.  This suggests that the precursor polymer film has “intrinsic” stress 

or chain orientation which is not easily removed by the relaxation or annealing.  This, 

among many other possibilities, could cause the different shapes of “crinkled” and 

“curled” films.  The stress or the unique polymer chain orientation could be developed by 

different hydrophobicity of casting substrate’s surface (either glass or Teflon), and this 

may cause the resulting CMS films to be either “crinkled or curled”.  

Of those Teflon casted polymer films, the success rate of producing the flat CMS 

films was evaluated and the results are shown in Table 4.1. 

 

Table 4.1: Success rates of producing flat CMS dense films under different pyrolysis 
environments.  In parenthesis, the numerator indicates numbers of flat CMS films, 
depicted in Figure 4.2 (c), and the denominator represents numbers of polymeric films 
pyrolyzed under the specified conditions. 

Pyrolysis 
environment Vacuum 

Inert (200 cm3(STP)/min of O2 doped in Ar gas) 

4 ppmO2 8 ppmO2 30 ppmO2 50 ppmO2 

Success rate 80% 
(8 / 10) 

100% 
(10 / 10) 

80% 
(8 / 10) 

40% 
(4 / 10) 

11% 
(3 / 27) 

 

 

The success of flat CMS production rate decreased as the oxygen exposure increases.  

This indicates that the number of curled films increased by increasing oxygen exposure.  

Based on the preceding hypothesis, a lower oxygen exposure results in less oxygen to 

diffuse into polymer films and be consumed.  Ultimately, using thicker polymeric 

precursors increased the success rate of producing flat films, due to greater resistance to 

curling and subsequent failure during subsequent handling. 
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4.2.1.3 Correlation between oxygen exposure and consumption  

The previous section 4.1.2 hypothesizes that the controlled oxidation of carbon at 

ultramicropores occurs during pyrolysis.  It was hypothesized to control the amount of 

“dopants” on carbon edges by varying total amount of oxygen exposure during pyrolysis.  

The total amount of oxygen is defined to be “total oxygen exposure coefficient, qO2, tot,” 

that expresses the amount of oxygen present to react during the pyrolysis process.  The 

polymer precursor 6FDA/BPDA-DAM was pyrolyzed with a mixed gas of argon and a 

specific amount of oxygen in ppm level flowing at a rate of 200 cm3(STP)/min.  In this 

controlled study, the total amount of oxygen exposure was varied by changing oxygen 

concentration in the purge gas.  All experiments were conducted at least three times to 

demonstrate repeatability.  

During each experiment, 0.12 ±0.02 mg of 6FDA/BPDA-DAM polymer films 

were pyrolyzed under specified atmospheres.  The oxygen analyzer was calibrated with 

air before and after the experiments and a blank run without polymer samples, the “base 

line experiment”, was performed to confirm no oxygen consumption by the system, as 

described in chapter 3.  Once the oxygen profiles like Figure 4.3 were obtained, the total 

amount of oxygen available, which is equivalent to the aforementioned parameter qO2, tot, 

and the amount of oxygen consumed were calculated using Equation 4.2 and 4.3. 
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Figure 4.3: Oxygen profile during pyrolysis of 6FDA/BPDA-DAM.  A specified amount 
of oxygen levels in argon gas was used as inert pyrolysis and vacuum pyrolysis was 
conducted at ~0.005 torr. 

 

                  

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑂� �𝑞��,������ =  �̇������ × �(𝑝𝑝𝑚 𝑂�)����� × 𝑡                (4.2) 

 

 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑂�𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 �𝑞��,��������� 

                                                 =  �̇������ × �(𝑝𝑝𝑚 𝑂�)���� − (𝑝𝑝𝑚 𝑂�)��������� × 𝑡    (4.3) 
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The parameter Q
．

purge is the volumetric flow rate of the “inert” gas containing the 

controlled amount of O2 impurity.  For vacuum pyrolysis, Q
．

purge was determined by a 

curve supplied by BOC Edwards, and by direct measurement by bubble flow meter for 

inert pyrolysis.  The values (ppm O2)Feed and (ppm O2)Measured are obtained by the oxygen 

analyzer at the entrance and exit of the pyrolysis chamber.  The value (ppm O2)Feed was 

the measured oxygen entering the pyrolysis chamber for both vacuum and inert pyrolysis 

prior to the initiation of the pyrolysis.  A duration of 720 minutes, time from onset of 

heating to cooling, was used to make an initial attempt to observe oxygen consumption 

during pyrolysis of polymer membranes.  

The oxygen consumption profile in Figure 4.3 shows that the oxygen level prior 

to the pyrolysis process, between 4-30 ppm level, dropped to an order of 10-16 ppm once 

the temperature reached the polymer decomposition temperature either in inert or vacuum 

pyrolysis.  The oxygen consumption slowly decreased when the temperature started to 

cool down and eventually stopped.  Considering all pyrolysis atmospheres, the polymer 

precursor tends to consume more oxygen as the amount of oxygen fed increased.  This is 

illustrated as the linearity in Figure 4.4 between the amount of consumed, consumed O2,q , 

and the total amount of oxygen available for consumption, tot O2,q .  
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Figure 4.4: Correlation between the total amount of oxygen and the amount of oxygen 
consumption normalized by weight of polymer precursors.  A linear relationship was 
observed with R2 = 99.7 %. 

 

It is speculated that a majority of the oxygen supplied is consumed by by-products 

evolved during pyrolysis process since the polymer precursor loses 40-45 % of the initial 

weight as a result of pyrolysis [8].  This indicates that the relatively large amount of 

“total amount of oxygen available” was consumed by the by-products, rather than as 

“dopants,” so the situation is complicated.  In addition, TGA analysis by Steel showed 

that most of the weight loss occurred just before the temperature protocol reaches the two 
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hour soak period: it is speculated that the majority of the by-products evolve before the 

two hour soaking period and consume a majority of the oxygen supplied in the bulk flow.  

Once the by-products flowing out of the pyrolysis system is completed, the remaining 

oxygen fed is speculated to be used mainly to treat the active carbon edges.  

  

4.2.1.4 Correlation between total amount of oxygen exposure and CMS separation 

performance 

Figure 4.5 shows separation properties of homogeneous dense CMS films 

pyrolyzed under each pyrolysis condition.  Each data point on the figure represents an 

average of at least three CMS dense films, and standard deviations of less than ±10 % in 

both permeability and selectivity were achieved.  It was demonstrated that CMS films 

pyrolyzed under inert gases with an oxygen concentration in a range of 4 to 30 ppm 

perform as attractively as CMS films pyrolyzed under vacuum, well exceeding the upper 

bound curve.  This finding leads one to believe that a selectivity as high as was obtained 

under vacuum pyrolysis can be accomplished by tuning the oxygen exposure. 
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Figure 4.5: Separation performance of 6FDA/BPDA-DAM CMS dense films. All were 
tested at 35 ºC.  A circular data point represents polymeric properties and square points 
represent properties of CMS membranes.  Pyrolysis atmospheres are indicated with data 
points for both vacuum and inert pyrolysis.  A dash line represents a trend between 
separation performance and oxygen concentration prior to pyrolysis.  The Robeson curve 
shows the trade-off from currently available polymer [22]. 

 

 

Figure 4.5 clearly shows that a strong relationship exists between the total amount 

of oxygen and the transport properties for inert pyrolysis.  Performance differences 

between the various “inert” atmospheres are especially revealing.  Selectivity increases 

and permeability decreases as the amount of oxygen in the inert gas increases.  However, 
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there is a cut-off point on the benefit to the amount of oxygen exposure such that once it 

exceeds a critical level, low values of both selectivity and permeability are observed as 

shown in Figure 4.6 and Figure 4.7.  
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Figure 4.6: Trend on CO2/CH4 selectivity as a function of the total amount of oxygen. 
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Figure 4.7: Trend on CO2 permeability as a function of the total amount of oxygen. 
 

 

This phenomenon is shown clearly by data with 50 ppm O2/Ar inert pyrolysis, possibly 

suggesting that the amount of oxygen was so high in this case that most of the oxygen 

used for the purpose of “doping” may have filled most of the “active” sites of 

ultramicropores, reducing both selectivity and permeability.  This hypothetical 

explanation can also be understood in terms of a shift in the ultramicropore size 

distribution as shown hypothetically in Figure 4.8.  Specifically, for the few remaining 

pathways in such a case are hypothesized to be larger and less susceptible to selectivity 
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enhancement by the oxygen chemisorption mechanism described earlier. In such a case, 

the permeability decreases as the total amount of oxygen exposed increases, but 

eventually selectivity actually drops due to only less selective paths remaining open for 

transport.  

 

 

Figure 4.8: Hypothetical effective “diffusivity based ultramicropore distribution” along 
with CMS slit like structures: (a) undoped “intrinsic” structure when pyrolized under no 
oxygen presents, (b) optimal selective structure with adequate amount of oxygen doped, 
(c) overdoped structure when slightly higher oxygen was introduced during pyrolysis.  

 

The previous section discussed a correlation between total amount of oxygen 

available and oxygen consumed.  One may note a discrepancy between the total amount 

of oxygen available and the CMS separation performance when inert and vacuum 

pyrolysis atmospheres are compared.  According to Figure 4.4, vacuum pyrolysis 

supplied the lowest total amount of oxygen available.  Theoretically, this would result in 

the most permeable and least selective CMS membranes when compared with other 

pyrolysis experiments conducted in this work; however, the experimental results show 

that the separation performance of CMS membranes via vacuum pyrolysis lies between 

CMS membranes pyrolyzed under 8 to 30 ppm oxygen level.  The oxygen profile in 

Figure 4.3 shows the oxygen level prior to the vacuum pyrolysis to be about 10 ppm. The 
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oxygen level measured in this work under the vacuum is equivalent of an oxygen 

concentration measured at 1 atmosphere pressure; i.e. a total pressure of 0.005 torr with 

21 % O2 is equivalent to an oxygen concentration of 10 ppm at 1 atm.  This suggests the 

possibility of the oxygen concentration being a governing factor of “doping” process, 

rather than total amount of oxygen exposed: further investigations were conducted and 

discussed in section 4.3. 

 

4.2.2 Matrimid® CMS membranes 

Similar to the experiments conducted on 6FDA/BPDA-DAM polymer, the effect 

of oxygen exposure was investigated experimentally on the commercially available 

polymer, Matrimid®.  The polymer precursor was pyrolyzed in the same manner under (i) 

vacuum and (ii) an inert gas of argon with 1-100 ppm level oxygen.  A correlation 

between the total amount of oxygen available and the amount of consumption existed as 

illustrated in Figure 4.4 for 6FDA/BPDA-DAM.  This section further seeks to verify the 

oxygen “doping” process by conducting FTIR analysis and evaluating separation 

performance on CMS membranes with various oxygen exposures. 

 

4.2.2.1 FTIR 

Figure 4.9 shows the FTIR result from CMS samples prepared with inert 

pyrolysis.  While typical CMS membranes show no significant peaks [23], the spectra in 

Figure 4.9 shows C=O group appearing in the vicinity of 1700 cm-1, indicating that the 

oxygen “doping” method was successfully applied to CMS membranes. 
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Figure 4.9: FTIR spectra of Matrimid® CMS membranes. 
 

 

4.2.2.2 Correlation between oxygen exposure and CMS transport properties 

4.2.2.2.1 Permeation 

The result of CO2/CH4 separation performance is shown in Figure 4.10. It 

demonstrates that the attractive separation performance, which is above the upper bound 

curve, can be achieved with pyrolysis under (i) vacuum and (ii) inert pyrolysis when the 

pyrolysis atmosphere is properly controlled.  These results are consistent with the 

observation with 6FDA/BPDA-DAM that oxygen exposure has a correlation with 

separation performance.  
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Figure 4.10: Separation performance of Matrimid® CMS dense films.  Tests were 
conducted at 35 ºC with an upsteam pressure of ~50 psia.  A circular data point represents 
polymeric properties and square points represent properties of CMS membranes.  On 
vacuum pyrolysis, oxygen concentration was ~1 ppm.  A dash arrow line represents a 
trend between separation performance and oxygen concentration prior to pyrolysis [24].  
Experiments were repeated and all had less than 10% deviation. 
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The results on Figure 4.10 show that the oxygen doping method caused decreases in both 

permeability and selectivity.  This trend is different from the trend observed with the 

6FDA/BPDA-DAM CMS membranes (shown on Figure 4.5). 

 

4.2.2.2.2 Equilibrium sorption 

In addition, sorption equilibrium was measured on CMS samples pyrolyzed with 

1, 30, and 100 ppm oxygen in argon inerts at 550 ˚C.  The sorption isotherms are 

presented in Figure 4.11-Figure 4.13, and the Langmuir model coefficients derived from 

the isotherms are shown in Table 4.2-Table 4.4.  These sorption isotherms and 

aforementioned permeabilities are used to predict mixed gas separation performance 

which will be discussed in next chapter. 
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Figure 4.11: Sorption isotherms for Matrimid® CMS membranes prepared with 1 ppm 
O2/Ar inert pyrolysis.  Test temperature was 35 ˚C.  The experiments were repeated, had 
deviation less than 5%, and fitted with Langmuir isotherm model described in lines. 
 

 

 

Table 4.2: Langmuir hole filling capacity CH’ and Langmuir affinity constant b calculated 
based on Matrimid® CMS sorption isotherms on Figure 4.11. 

Gas CH’ 
(cc(STP)/cc CMS) b (psia-1) 

CO2 74.3 0.02 

CH4 57.9 0.005 
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Figure 4.12: Sorption isotherms for Matrimid® CMS membranes prepared with 30 ppm 
O2/Ar inert pyrolysis.  Test temperature was 35 ˚C.  The experiments were repeated, had 
deviation less than 5%, and fitted with Langmuir isotherm model described in lines. 

 

 

Table 4.3: Langmuir hole filling capacity CH’ and Langmuir affinity constant b calculated 
based on Matrimid® CMS sorption isotherms on Figure 4.12. 

Gas CH’ 
(cc(STP)/cc CMS) b (psia-1) 

CO2 73.6 0.02 

CH4 57.6 0.005 
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Figure 4.13: Sorption isotherms for Matrimid® CMS membranes prepared with 100 ppm 
O2/Ar inert pyrolysis.  Test temperature was 35 ˚C.  The experiments were repeated, had 
deviation less than 5%, and fitted with Langmuir isotherm model described in lines. 

 

 

Table 4.4: Langmuir hole filling capacity CH’ and Langmuir affinity constant b calculated 
based on Matrimid® CMS sorption isotherms on Figure 4.13. 

Gas CH’ 
(cc(STP)/cc CMS) b (psia-1) 

CO2 74.5 0.02 

CH4 58.2 0.005 
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Results of the sorption isotherms of the three CMS samples are almost identical.  

In fact, sorption selectivities among these samples are almost the same as shown in 

Figure 4.14.  
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Figure 4.14: Normalized sorption selectivity values of CMS membranes pyrolyzed at 1, 
30, and 100 ppm O2/Ar.  The normalization was based on SCO2/SCH4 of 1ppm O2/Ar CMS 
membranes. 

 

 

This finding is significant since it essentially implies that the oxygen doping is likely 

taking place at ultramictopores, rather than micropores and affecting diffusion 

selectivities, as we hypothesized in section 4.1.2.  Therefore, it is speculated that the 

discrepancy observed on the different trend observed between 6FDA/BPDA-DAM and 

Matrimid® CMS membranes is caused by the difference in intrinsic CMS structures for 

the two samples.  It is hypothesized that Matrimid® CMS membranes, created from an 

intrinsically lower free volume precursor, has a less sorptive and less selective intrinsic 
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structure than 6FDA/BPDA-DAM CMS membranes.  Therefore, oxygen doping not only 

reduces pore sizes of ultramicropore- and micro-pores but also further closes selective 

pores, leading to a decrease in both permeability and selectivity.  This hypothesis was 

tested by several characterizations as discussed in the next section. 

 

4.2.3 Structural differences between 6FDA/BPDA-DAM and Matrimid® CMS 

membranes 

4.2.3.1 TGA-FTIR 

The decomposition process of each polymer was investigated using TGA-FTIR 

[24].  Polymeric samples were heated under argon purge, and the evolved gases were sent 

to an FTIR chamber to analyze the chemical composition. Figure 4.15 and Figure 4.16 

show decomposition results of 6FDA/BPDA-DAM and Matrimid®.  Polymer 

6FDA/BPDA-DAM produced HF (4250-4500 cm-1), CH4 (3017 cm-1), CHF3 (1150, 1178 

cm-1), CO2 (2110 cm-1), and CO (2190 cm-1).  On the other hand, Matrimid® produced 

mainly CH4 (3017 cm-1), CO2 (2110 cm-1) and CO (2190 cm-1).  
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Figure 4.15: TGA-FTIR result of 6FDA/BPDA-DAM [23]. 

 
Figure 4.16: TGA-FTIR result of Matrimid® [24]. 
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There are three stages of pyrolysis when polymers are heated up to 1200 ºC: (i) 

the precarbonation, (ii) the carbonization, and (iii) dehydrogenation [25].  A temperature 

range between 100 ˚C and up to the polymer decomposition temperatures, i.e. 450 ˚C for 

6FDA/BPDA-DAM and 425 ˚C for Matrimid®, would be considered as the 

precarbonation stage.  During this first stage, molecules, such as excess monomer and 

solvent are removed. Polymeric films turn black and linear conjugated C-C systems start 

to form near the decomposition temperature [25].  In the carbonization stage, rapid 

weight loss is observed due to the removal of entities, such as oxygen, nitrogen, and CF3 

[25].  As the large fluorinated compounds are produced and diffuse out of membrane 

films, more open ultramicropore structures are believed to be formed with 6FDA/BPDA-

DAM than with Matrimid®, which lacks these fluorinated moieties.  

As Figure 4.15 and Figure 4.16 show, major by-products evolve in this regime.  

An exact temperature range of this stage is difficult to define.  However, it is speculated 

to be between the decomposition temperature and the temperature where the rate of 

weight loss is significantly reduced (an elbow of the decomposition weight loss curve). 

Evolution of CO, CO2, and CH4 were also observed for Matrimid® by Barsema et al [26].  

At the end of this stage, a loose network of linear conjugated systems is formed [25].  In 

the dehydrogenation stage, hydrogen is gradually eliminated, typically between 500 and 

1200 ºC.  Presumably this results in the turbostratic structure with defective sites in each 

graphene sheets as suggested in Figure 4.17.  These defect sites can then react with 

oxygen as previously proposed in section 4.1.2. 
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(c) 

Figure 4.17: Schematic of folded graphite-like layers (top) [27] and graphene sheets 
(bottom): (a) the carbon atoms in the dotted circles are removed by electron beam, and 
(b) four dangling bonds are saturated by hydrogen (cyan), while the other four dangling 
bonds together with their carbon atoms are replaced by nitrogen atoms (green).  The pore 
electron density isosurface of the nitrogen functionalized porous graphene presumably 
has 3.0 Å pore window, adapted from [28]. 
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Jenkins and Kawamura note that the rate of the hydrogen removal is a characteristic of a 

given heat-treatment temperature [25].  Elemental analysis on carbon membranes 

pyrolyzed in similar manners shows 95-99 % of aromatic carbon content [9, 18, 29, 30]; 

moreover, the percentage of carbon element is dependent on pyrolysis temperature [25].  

 

4.2.3.2 Sorption isotherms 

Gas sorption was examined to characterize sorption coefficients, hole filling 

capacity and affinity constant [24].  Each polymeric film was pyrolyzed under a flow of 

200cc/min 1ppm O2/Ar to produce CMS membranes.  The lowest concentration of 

oxygen in argon mixture available was chosen to prepare CMS membranes with 

structures closest to their “intrinsic structures.” 

The sorption coefficients depend on the micropore sizes of carbon material and 

the critical temperature of the molecule, which reflects condensability and affinity of 

penetrants for the carbon.  If the ultramicropore size is small enough to effectively 

exclude one gas molecule while transmitting the smaller molecule in a pair, true 

molecular sieving occurs.  In this case, no uptake of the sieved component would be 

shown on the sorption isotherm.  For carbon material, however, a distribution of 

ultramicropore exists.  Therefore, only regions connected with perfect molecular sieving 

pore windows would be inaccessible to a larger gas molecule. 

Figure 4.18 and Figure 4.19 show sorption isotherms measured with six gases, 

He, CO2, O2, N2, CH4, and SF6.  The sorption isotherms were fitted to the Langmuir 

equation model in Equation 3.  The hole filling capacities, CH’, and affinity constants, b, 

are shown in Table 4.5 and Table 4.6, along with the kinetic diameters of the test gases.  
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Figure 4.18: Sorption isotherms for 6FDA/BPDA-DAM CMS membranes prepared with 
1 ppm O2/Ar inert pyrolysis.  The isotherms were obtained with six different gases: ○ 
CO2, ● CH4, ■ O2, □ N2, ∆ He, ▲ SF6.  The experiments were repeated, had less than 5% 
of deviations, and fitted with Langmuir isotherm model described in dot lines. 
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Figure 4.19: Sorption isotherms for Matrimid® CMS membranes prepared with 1 ppm 
O2/Ar inert pyrolysis.  The isotherms were repeated and obtained with six different gases: 
○ CO2, ● CH4, ■ O2, □ N2, ∆ He, ▲ SF6.  The experiments were repeated, had less than 
5% of deviations, and fitted with Langmuir isotherm model described in dot lines. 
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Table 4.5: Langmuir hole filling capacity CH’and Langmuir affinity constant b calculated 
based on 6FDA/BPDA-DAM CMS sorption isotherms. 

Gas Kinetic diameter 
(Å) [31] 

CH’ 
(cc(STP)/cc CMS) 

b  
(psia-1) 

He 2.6 13.0 0.005 

CO2 3.3 98.0 0.06 

O2 3.46 72.2 0.006 

N2 3.64 69.4 0.01 

CH4 3.8 78.0 0.025 

SF6 5.5 12.7 0.002 
 

 

 

Table 4.6: Langmuir hole filling capacity CH’ and Langmuir affinity constant b calculated 
based on Matrimid® CMS sorption isotherms. 

Gas Kinetic diameter 
(Å) [31] 

CH’ 
(cc(STP)/cc CMS) 

b  
(psia-1) 

He 2.6 11.7 0.003 

CO2 3.3 74.3 0.02 

O2 3.46 68.5 0.006 

N2 3.64 27.1 0.01 

CH4 3.8 57.9 0.005 

SF6 5.5 11.6 0.0005 

 

 

In all gas measurements, 6FDA/BPDA-DAM CMS membranes showed higher 

sorption coefficients and hole filling capacities than Matrimid® CMS membranes.  This 

indicates a larger available micropore volume in 6FDA/BPDA-DAM CMS membranes 

than for Matrimid® CMS membranes.  The ratio of (CH’) CO2 values for 6FDA/BPDA-

DAM vs. Matrimid® CMS membranes’ is about 1.3.  This ratio is similar to the reported 

value of 1.4 for the ratio of micropore volume for the 6FDA/BPDA-DAM vs. Matrimid® 

CMS samples by density functional theory (DFT) analysis in Steel and Koros [32].  
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The trend of isotherms for both sets of CMS membranes is similar.  The similarity 

can also be seen with the order of magnitudes on Langmuir constants, namely CH’ and b, 

in both CMS membranes.  This is likely caused by the fact that CMS samples were 

treated in the same manner and resulted in similar overall gross structure.  As previously 

mentioned, pyrolysis treatment above 550 ºC results in more than 95 % carbon in the 

final structure [9, 18], and the percentage presumably depends upon the intensity of heat 

treatment [25].  Despite its small molecular size, the sorption coefficients for He were 

significantly lower than other gases.  This is attributed to its non-condensable nature. On 

the other hand, the lowest sorption coefficients observed for both CMS materials was 

found for the highly condensable gas, SF6.  It is speculated that this is caused by the small 

population of ultramicropores in the range between 5 and 6 Ǻ. In fact, bimodal pore size 

distributions seen by various researchers suggest that the minimum for typical CMS 

materials lies around the size of an SF6 molecule [33-35].  This could explain the order of 

Langmuir affinity constants in both CMS membranes with SF6 being the lowest, because 

access of a large spherical molecule SF6 to the regular microvoids is simply too low to 

enable accurate measurement of the affinity constants for typical regular micropores.  A 

comparison of R2 values for the affinity constants on SF6 versus other gases shows poor 

fitting of the model: ~0.6 and 0.95 respectively, providing further evidence of this 

observation.  

 

4.2.3.3 “Molecular-ruler” 

Pore size distributions in the ultramicropore region were investigated in this study 

using various gas molecules as probes [24].  Diffusion coefficients were obtained from 

permeation and sorption experiments using Equation 2.13.  Similar to sorption isotherm 

experiments, CMS membranes were prepared under inert pyrolysis of 200 cc/min 1ppm 

O2/Ar to produce CMS membranes with close to “intrinsic” structures.  Once samples 



103 
 

were prepared, the sorption and transport experiments were conducted at 35 °C with a 

pressure of 50 psia using the test gases listed in Table 4.7, namely He (2.6 Å), CO2 (3.3 

Å), O2 (3.46 Å), N2 (3.64 Å), CH4 (3.80 Å), and SF6 (5.5 Å).  Table 4.7 lists permeability 

coefficients, Table 4.8 lists sorption coefficients, and Table 4.9 shows diffusion 

coefficients for 6FDA/BPDA-DAM and Matrimid® CMS membranes. 

 

Table 4.7: Permeability of 6FDA/BPDA-DAM and Matrimid® CMS membranes 
pyrolyzed under 1 ppm O2/Ar inert gas.  Tests were conducted at 35 °C with a pressure of 
50 psia. Units are in Barrer with % deviation of less than 10%. 

Polymer precursor He CO2 O2 N2 CH4 SF6 

6FDA/BPDA-
DAM 2530 7170 1530 204 247 0.6 

Matrimid® 605 1049 301 63 17 0.13 

 

Table 4.8: Sorption coefficients of 6FDA/BPDA-DAM and Matrimid® CMS membranes 
in ccSTP/(ccCMS-psia).  Experiments were repeated and had less than 10% of deviation. 

Polymer precursor He CO2 O2 N2 CH4 SF6 

6FDA/BPDA-
DAM 0.049 1.41 0.43 0.46 0.82 0.018 

Matrimid® 0.031 1.28 0.37 0.18 0.23 0.006 

 

Table 4.9: Diffusion coefficients of 6FDA/BPDA-DAM and Matrimid® CMS membranes 
in 10-8 cm2/s.  Experiments were repeated and had less than 10% of deviation. 

Polymer precursor He CO2 O2 N2 CH4 SF6 

6FDA/BPDA-
DAM 2680 262 237 22.8 15.5 1.72 

Matrimid® 1020 42.4 42.1 18.0 3.85 1.14 
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Permeabilities of 6FDA/BPDA-DAM CMS membranes are higher than for 

Matrimid® CMS membranes; presumably due to higher free volume of the polymer 

precursor and resultant larger CH’ as a result of evolution of CF3 group during the heating 

process as seen on TGA-FTIR. Table 4.8 confirms that transport in CMS membranes is 

not sorption dominant with regard to selectivity. For CO2/CH4 separation, sorption 

selectivity is less than half of diffusion selectivity.  In the case of O2/N2 separation on 

both 6FDA/BPDA-DAM and Matrimid® CMS membranes, the sorption selectivity is in 

the range between 0.9 and 2, which is similar to results observed by Singh and Koros 

[36].  The results of diffusion coefficients suggest that 6FDA/BPDA-DAM CMS 

membranes have a larger average number of accessible ultramicropore windows than 

Matrimid® CMS membranes.  For all tested gases, diffusion coefficients are much higher 

for 6FDA/BPDA-DAM CMS membranes than that of Matrimid® CMS membranes.  For 

instance, DHe is more than double, and DCO2 is more than six times higher than Matrimid® 

CMS membranes.  In addition, diffusion selectivity indicates that 6FDA/BPDA-DAM 

CMS membranes have more selective pore structures.  For CO2/CH4 separation, the 

diffusion selectivity is ~17 on 6FDA/BPDA-DAM CMS membranes while it is ~11 for 

Matrimid® CMS membranes.  By interpreting results of diffusion coefficients, effective 

semi-quantitative pore size distributions for the ultramicropore region were constructed 

and are shown in Figure 4.20.  The distributions were drawn to match the ratio of 

diffusion coefficients relative to the area of accessible ultramicropores for each respective 

molecule for the gas separations among CO2, O2, N2, CH4 gases.  In addition, the total 

area under the curve was adjusted to be about 2.6 times larger for 6FDA/BPDA-DAM 

CMS membranes than that of Matrimid® CMS membranes to reflect the relative diffusion 

coefficients of He in the two polymers.  This is based on an assumption that He samples 

all pores accessible to any gas molecule in both CMS membranes from the two 

precursors. 
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Figure 4.20: Diffusion coefficient based ultramicropore size distribution.  The dot line 
represents the distribution of 6FDA/BPDA-DAM CMS membrane and the solid line 
represents the distribution of Matrimid® CMS membranes.  The x-axis is linearly scaled 
with an indication of molecule’s kinetic diameters. 

 

Specifically, the overall shape of the curve was built with an assumption that the 

number of ultramicropores that are accessible to the SF6 molecule provides a useful 

metric of the minimal number of large size ultramicropores to which a value of unity was 

assigned.  Then the area which represents number of additional ultramicropores 

accessible for the rest of the gas molecules was scaled to be proportional to the diffusion 

coefficients.  Finally, distribution curves were drawn to satisfy the ratios of diffusion 

coefficients among challenging separation gas pairs listed in Table 4.10.   
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Table 4.10: Diffusion selectivity among challenging gas separations.  This was 
referenced to construct ultramicropore size distribution curves. 

Polymer precursor He/N2 CO2/CH4 O2/N2 

6FDA/BPDA-DAM 117 16.9 10.3 

Matrimid® 56.7 11.0 2.33 

 

 

The diffusion coefficient data on Table 4.10 and the diffusion coefficient based 

ultramicropore size distribution on Figure 4.20 suggest that 6FDA/BPDA-DAM CMS 

membranes have a larger number of large pores and a more selective pore structure than 

Matrimid® CMS membranes. 

Note that in Figure 4.20, the shape of the distribution between He (2.6 Å) and 

CO2 (3.3 Å) was drawn for convenience with uncertainty and is not important for this 

discussion.  Clarification of the shape in this range requires additional work with probes 

between 2.6 and 3.3 Å, such as neon molecule. 

 

4.2.4 Effect of pyrolysis temperature  

Previous sections have shown that Matrimid® CMS membranes have closed and 

less selective intrinsic pore structures that result in a decrease in both permeability and 

selectivity with an increase in oxygen exposure.  In order to utilize the oxygen doping 

method on the Matrimid® precursor, experiments were designed to create CMS 

membranes with more open intrinsic pore structures.  Like Figure 4.21 shows, 

researchers have shown that higher temperatures tend to produce more selective yet less 

permeable CMS membranes [5, 6, 8] presumably due to systematic relaxation of the 

CMS matrix.  
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Figure 4.21: Effect of pyrolysis temperature reported by Steel [8].  All data was from 
vacuum pyrolysis. 

 

This suggests that higher pyrolysis temperatures result in more selective and less 

permeable CMS structure.  In principle, lowering the pyrolysis temperature should lead to 

more open intrinsic CMS structure so that one can take advantage of the oxygen doping 

method.  In order to test this hypothesis, a slightly lower pyrolysis temperature of 500 ˚C 

with 1 ppm oxygen in argon gas was chosen to demonstrate the effect of temperature and 

the doping process. Results are shown in Figure 4.22.  
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Figure 4.22: Separation performance of Matrimid® CMS membranes pyrolyzed by 
different temperatures, 500 and 500 ˚C, with oxygen “doping” process.  Oxygen 
concentration in argon inert is listed.  A dot line represents a trend observed for CMS 
films pyrolyzed at 500 ˚C.  All data were repeated and had deviation of less than 10%. 
 

 

As predicted, the lower pyrolysis temperature produces more permeable, but less 

selective CMS membranes with “near-intrinsic” structures, when CMS membranes are 

exposed to low amounts of oxygen.  In addition, exposure to higher oxygen concentration 

enables use of the “doping” method, since the selectivity enhancement was more than 

double from 1 ppm O2/Ar to 30 ppm O2/Ar. When 50 ppm O2/Ar was used, the 

3 ppm 

100 ppm 

1 ppm 
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selectivity decreased, compared with 30 ppm O2/Ar. This may be due to “over doping” as 

seen on 6FDA/BPDA-DAM CMS membranes on Figure 4.5.  

 

4.3 EFFECT OF OXYGEN CONCENTRATION ON CMS FORMATION 

The method above allows one to enhance membrane performance by >100 times 

in permeability with doubled selectivity when CMS pyrolysis atmosphere is optimized, 

compared with separation performance of polymeric precursors [24, 37].  Although the 

total amount of oxygen exposure was hypothesized to govern effectiveness and amount 

of oxygen chemisorbed at the selective pore windows, this version has been refined to 

suggest that the oxygen-carbon reaction at the edges may be equilibrium limited, rather 

than kinetically controlled by observations from Figure 4.5 and Figure 4.10.  Oxidation of 

carbon is complex due to the fact that the oxygen-carbon reaction involves chemical 

kinetics with consequent heat transfer and mass transfer processes at a number of levels.  

Gaseous oxygen molecules move from the surrounding bulk atmosphere to the carbon 

surface and are adsorbed to form surface intermediates, which may rearrange, desorb, and 

return to the gas phase [11, 12, 38].  Moreover, emitted decomposition by-products can 

be reacted in the external bulk gas phase.  This section seeks to identify the limiting 

factor of the doping process during formation of CMS membranes. 

 

4.3.1 Review 

Three regimes are considered during the oxidation process: (i) oxygen fully 

penetrates the solid and all active sites are available for the reaction, (ii) oxidant 

penetration is partial and oxygen diffusion into the solid is insufficient to supply all 

reaction needs, and (iii) reaction only takes place at the outer surface [39, 40] for the 

available contact time. Investigation of the influence of diffusional resistance relative to 
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reaction resistance can be carried out using a fundamental analysis of the Thiele modulus, 

θ, which is defined as: 

 

    𝜃 = �
�
� ����
�����

�
�
�                                                   (4.4) 

 

where d is the particle diameter in meters, σP is its density in kg/m3, k is the carbon 

reaction rate in kg/kg-s, β is the stoichiometric mass ratio of oxygen to carbon, De is the 

effective diffusion coefficient in m2/s, and σOX is the bulk gas concentration of oxygen in 

kg/m3 [41].  The Thiele modulus is applied by means of an effectiveness factor, which 

varies between 0 and 1 [41, 42].  The effectiveness factor represents the fraction of 

internal surface which can react when exposed to the surface concentration of reactant 

gas [42].  When the Thiele modulus is larger than 1, the reaction rate hinders the ability 

of diffusion to supply oxygen to the reactive surface and the effectiveness factor is much 

smaller than 1.  When the Thiele modulus is smaller than unity, there is no resistance to 

pore diffusion.  In terms of formation of CMS membranes, factors like pyrolysis 

temperature, film thickness, and pore structure strongly influence the process and 

determine the three regimes described earlier.  A preliminary calculation can be made to 

identify one of three oxidation process regimes from the Thiele modules in Equation 6.  

The bulk oxygen concentration, σOX, of our interests is in 1-100 ppm,, which corresponds 

to 1.41*10-6 to 1.41*10-4 kg/m3.  The density, σP, of CMS membranes is reported to be in 

the order of 103 kg/m3, depending on polymeric precursors [8].  At temperatures of 500-

800 ˚C, where typical CMS membranes are produced, carbon oxidation produces 

chemisorbed CO as the dominant product [43].  According to Stanmore et al., this results 

in a β value of 4/3 [38]. Effective diffusion coefficients of oxygen in CMS membranes at 

high temperatures are in the order of 10-8 m2/s, according to Singh [18].  According to de 

Soete, the reaction is in the first order when oxygen adsorption dominates, and overall 



111 
 

reaction rate constants can be in the range of 0.5-0.9 kg/kg-s [15, 44, 45].  When either 

homogeneous dense films or asymmetric hollow fibers have a selective skin thickness of 

d = 0.1-30 µm, calculation of the Thiele modulus based on these literature values results 

in a value of 0.6 to 2500. Since this range clearly spans values less than and greater than 

one, it suggests the possibility of pore diffusion resistance control of the oxidation 

reaction. Nevertheless, there is considerable uncertainty in the above parameters, so this 

study probes this issue experimentally in detail. 

While the above theoretical calculation suggests possible pore diffusion resistance 

of oxygen during high temperature pyrolysis in carbon membranes, some researchers 

have seen inconsistent separation performance of CMS membranes pyrolyzed under 

atmosphere in which oxygen exists for possible oxidation reaction.  Variations have been 

reported in CMS separation performance with respect to polymer precursor thickness 

[23], and researchers have seen separation performance independent of inert flow rates as 

mentioned in section 4.1 [7, 23, 46]: observations and the theoretical calculation have not 

reached an agreement.  Therefore it is essential to draw a more definite conclusion by 

identifying the controlling factor in the oxygen doping process by a series of well 

controlled experiments, specifically, by means of oxygen consumption during pyrolysis 

and separation performance of the resulting CMS membranes. 

 

4.3.2 Effect of thermal soak time 

Effect of thermal soak time on the oxygen doping process was investigated by 

comparing oxygen consumption during pyrolysis and the separation performance 

between CMS membranes prepared at 550 ˚C with two different thermal soak times of 

two and eight hours. First, 6FDA/BPDA-DAM polymer precursor was pyrolyzed with an 

eight hour soak time under 200 cc(STP)/min inert flow of 7 ppm oxygen in argon gas. 

The result was compared with data of a two hour thermal soak time previously reported 
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[37]. Table 4.11 shows amounts of oxygen available and consumed during the pyrolysis 

process.  While the total amount of oxygen available during the eight hour soak time is 

higher than during the two hour soak, the consumption amount stays almost the same.  

Moreover, Figure 4.23 shows that the data falls within the range of correlation observed 

in the previous study between the total amount of oxygen and the amount of oxygen 

consumption.  This result indicates that a longer thermal soak time led to only a slight 

increase in the oxygen consumption.  

 

Table 4.11: Normalized values of the total amount of oxygen at different soak time 
obtained with 6FDA/BPDA-DAM. Inert pyrolysis under 200 cc/min of 7 ppm O2/Ar was 
conducted by eight hour soak time while the other was pyrolyzed for two hours 8 ppm 
O2/Ar. Weight of precursors on eight hour soak time was slightly higher than two hour 
soak time, which resulted in similar normalized values of total oxygen available amount. 
Experiments were repeated and have a standard deviation of less than 10%. 

Thermal soak time 
(hrs) 

Total O2 available 
(ccSTP/g) 

Total O2 consumed 
(ccSTP/g) 

2 11.8 5.24 

8 12.5 6.75 
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Figure 4.23: Correlation between the total amount of oxygen and the amount of oxygen 
consumption normalized by weight of polymer precursors.  Circles (●) represent data of 
two hour thermal soak time from previous study [37], and the rectangular (□) represents 
data of eight hour thermal soak time.  Inert compositions are listed along with data points. 
The data with longer thermal soak time falls within the trend seen with two hour soak 
time [47]. 
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In addition, the separation performance of 6FDA/BPDA-DAM CMS membranes 

from two thermal soak periods was evaluated.  As shown in Figure 4.24, CMS 

membranes prepared with an eight hour soak time have a slightly higher CO2 

permeability and lower CO2/CH4 selectivity compared with that of a two hour soak time.  

Based on these facts, it was speculated that the oxygen concentration may play a more 

major role during the doping process with oxygen than the period of soaking per se. 
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Figure 4.24: Separation performance of 6FDA/BPDA-DAM CMS films.  A filled circle 
(●) represents CMS pyrolyzed with eight hour thermal soak time, and open circles (○) 
represent CMS pyrolyzed with two hour soak time.  Each was repeated at 35 ˚C [47]. 
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The effect of thermal soak time on Matrimid® as a polymer precursor was also 

investigated.  A pyrolysis atmosphere of 200 cc(STP)/min inert flow with ~30 ppm 

oxygen in argon was used.  Oxygen consumption and separation performance results are 

shown in Table 4.12 and  

Figure 4.25, respectively.  The results show that samples with a shorter soak time 

consumed a smaller amount of oxygen compared with a longer one; however,  

Figure 4.25 indicates that their separation performances are similar.  During the 

Matrimid® pyrolysis process, large amounts of tan colored by-products adsorbed on the 

pyrolysis tube wall unlike the pyrolysis of 6FDA/BPDA-DAM.  Based on this 

observation, it is speculated that the difference in oxygen consumption could be caused 

by the oxidation of the by-products, which has little effect on the membrane properties. 

 

Table 4.12: Normalized values of the total amount of oxygen at different soak time 
obtained with Matrimid®.  Inert pyrolysis under 200 cc/min of ~30 ppm O2/Ar was 
conducted in both cases.  Experiments were repeated and have a standard deviation of 
less than 10%. 

Thermal soak time 
(hrs) 

Total O2 available 
(ccSTP/g) 

Total O2 consumed 
(ccSTP/g) 

2 154.2 50.0 

8 216.1 90.2 
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Figure 4.25: Separation performance of Matrimid® CMS films pyrolyzed with two 
different thermal soak times of two hours (●) and eight hours (○). The thickness of the 
films was ~80 µm. Inert carrier of ~30 ppm O2/Ar was used with a flow rate of 200 
cc(STP)/min. All was repeated at 35 ºC[47]. 
 

 

A combination of the oxygen consumption and the separation performance 

properties indicates that the effect of duration of oxygen exposure to the separation 

performance is relatively small.  This led us to hypothesize that the oxygen doping 

process during the pyrolysis to produce attractive CMS membranes is governed by 

oxygen concentration rather than total amount of oxygen exposed. A series of well 
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controlled experiments was conducted to identify the limiting factor on the oxygen 

“doping” process to support this hypothesis.  Three limiting factors are considered 

regarding the oxygen doping effect in dense films: external transport, internal transport, 

and chemical reaction.  They were studied with respect to oxygen consumption and 

CO2/CH4 separation performance. 

 

4.3.3 Effect of inert flow rate: external transfer limitation 

Researchers have shown that inert flow rate during pyrolysis does not affect 

separation performances [7, 23].  These studies showed that the external transport is not 

the limiting factor in determining the resulting CMS membrane performance.  In order to 

demonstrate this phenomenon in terms of the oxygen exposure, two sets of experiments 

were conducted as shown in Figure 4.26.  A gas mixture of 30 ppm of oxygen in argon 

was used as an “inert” with two different flow rates: 50 and 200 cc(STP)/min.  Two 

polymeric films (total of ~0.02g) were pyrolyzed with the thermal protocol of 550 ºC and 

a two hour thermal soak time for consistency.  It was hypothesized that if external mass 

transfer dominates the mechanism, oxygen consumption and separation performance 

would be dependent on the inert flow rates.  

 

 

Figure 4.26: Schematic of experiments to investigate external transfer limitation by 
applying two different inert flow rates.  Total of ~0.02g polymeric films, m1 + m2 = m3 + 
m4 were pyrolyzed at 550 ˚C with two hour soak time. Experiments were repeated twice. 
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Table 4.13 shows the result of oxygen consumption on the two different flow rates.  This 

further confirms that the flow rates do not affect the amount of oxygen consumption as 

noted above.  In addition, Figure 4.27 shows that the separation performances are almost 

the same for different flow rates, which also supports our hypothesis that rate effects due 

to external transport resistance are negligible factors in fixing membrane performance. 

 

 

Table 4.13: Normalized values of the total amount of oxygen at different inert flow rates 
of 50 and 200 cc(STP)/min with Matrimid®.  Inert gas of ~30 ppm O2/Ar was used in 
both cases. Experiments were repeated and have a standard deviation of less than 10%. 

Inert flowrate 
(cc(STP)/min) 

Total O2 available Total O2 consumed 

(ccSTP/g) (ccSTP/g) 

50 67.3 45.4 

200 154.2 50.0 
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Figure 4.27: Separation performance of Matrimid® CMS films pyrolyzed with two 
different inert flow rates of 200 (●) and 50 (○) cc(STP)/min.  Inert carrier of ~30 ppm 
O2/Ar was used. All was repeated at 35 ºC. 

 

Clearly when CMS membranes experience longer thermal soak times, both the 

total amount of oxygen available and consumed should increase; however, consumption 

stayed almost consistent despite a higher inert (and oxygen) flow rate.  Since the 

separation performances for the two different thermal soak times are almost the same, 

this discrepancy can be explained by suggesting that CMS oxidation may be equilibrium 

limited while by-products, or “molecular debris,” externally follow a kinetically limited 

reaction mechanism. 
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4.3.4 Effect of precursor film thickness: internal transfer limitation 

The above investigation shows that the transport mechanism is not likely 

dominated by the external transport.  Next, another investigation was conducted to 

determine any role of internal mass transfer limitations. This investigation consisted of 

two experiments as shown in Figure 4.28.  

 

 

 

Figure 4.28: Schematic design of experiments testing the internal mass transfer 
limitation.  About 0.02g of polymer precursor, m1 + m2 = m3, was prepared.  Gas mixture 
of argon and a slightly higher than 30 ppm of oxygen in argon gas was used as an inert 
with the flow of 200 cc(STP)/min. Experiments were repeated twice. 

 

The first experiment consisted of pyrolysis of two polymer films (m1 and m2) which each 

film had a thickness of 60 μm.  The second experiment consisted of a film (m3) whose 

mass was essentially a sum of m1 and m2 with a thickness of 120 μm.  It was 

hypothesized that if the internal mass transfer dominated the mechanism, the oxygen 

consumption and separation performance would depend strongly on the film thickness.  

Recall that about four times longer exposure to a given amount oxygen showed almost no 

effect on CMS oxygen uptake, so these experiments sought to further probe if the process 

of doping is an equilibrium limited, internal reaction process.  The results are shown in 

Table 4.14 and Figure 4.29. 
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Table 4.14: Normalized values of the total amount of oxygen with different polymer 
precursor thickness.  Inert gas of ~35 ppm O2/Ar was used in both cases.  Experiments 
were repeated and have a standard deviation of less than 10%. 

Thickness of polymer 
precursor 

Total O2 available Total O2 consumed 

(ccSTP/g) (ccSTP/g) 

60 μm 180 47 

120 μm 182 52 
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Figure 4.29: Separation performance of Matrimid® CMS films pyrolyzed with two 
different precursor thickness, 60 (●) and 120 (○) µm.  Inert carrier of ~35 ppm O2/Ar was 
used. All was repeated at 35 ºC. 
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Results of oxygen consumption in Table 4.14 indicate that oxygen consumption is 

almost the same regardless of the film thickness as long as the sample masses are the 

same.  In addition, the separation performance of CO2/CH4 in Figure 4.29 is similar as 

well. This indicates that the oxygen doping process is unlikely to be internal mass 

transfer limited. 

 

4.3.5 Oxygen-carbon reaction mechanism: chemical reaction limitation 

consideration 

The above experiments show that the CMS membrane separation performance 

and oxygen consumption during the high temperature pyrolysis are not likely influenced 

by the thickness of the polymer precursors, inert, or oxygen, flow rates, nor thermal soak 

time during pyrolysis.  The summation of all these facts implies that a carbon-oxygen 

equilibrium reaction governs the oxygen doping process via a chemisorption process.  

The oxygen chemisorption mostly likely takes place at the same time polymer precursors 

decompose, and evolved products diffuse out of the membranes.  This indicates that the 

actual full mechanism can be very complex.  

 

4.4 POSSIBLE MECHANISM OF OXYGEN “DOPING” PROCESS DURING PYROLYSIS 

As previous sections described, an oxygen doping process was successfully 

developed to tune separation properties of CMS membranes by controlling the CMS 

structure.  The method was built based on well-known scientific facts that (i) oxygen 

reacts with active carbon edges at high temperature during pyrolysis [11, 12, 14, 38] and 

that (ii) the adsorption step which involves surface oxides dominate the reaction process 

and is endothermic and reversible in the temperature range between 350 and 700 ˚C [15, 

48].  According to Marsh et al., several carbon-oxygen complexes could be produced as a 

result of the oxidation as shown in Figure 4.30.  
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Figure 4.30: Possible carbon-oxygen reactions suggested by Marsh et al. [12].  In the 
temperature of the interests, the O2 adsorption dominates the reaction [15, 48]; therefore, 
there is no actual carbon loss with “O2 doping” CMS production. 

 

 

 

As previously mentioned, the reaction is likely endothermic and reversible around the 

temperature our CMS samples were pyrolyzed; either at the carbon edges or basal planes.  

Equilibrium oxidation reactions associate with the equilibrium constants, Keqbm, as shown 

in Figure 4.31. 

 

 

 
Figure 4.31: Carbon-oxidation equilibrium reactions. 
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These constants are temperature dependent via the following correlation:  

 

𝑅𝑇 ln�𝐾����� = −∆𝐺                                                   (4.5) 

 

where R is the gas constant, T is the temperature, Keqbm is the equilibrium constant, and 

∆G is Gibbs free energy. Gibbs free energy is defined as: 

 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆                                                            (4.6) 

 

where ∆H is the enthalpic component based on the change in molecular interactions and 

∆S comprises any entropic element which accounts for the change in the number of 

possible configurations of the molecule from one state to another [49].  Hypothetically, 

this concept enables us to “post-tune” the CMS structures.  For example, if too much 

oxygen was doped, both permeability and selectivity would be lower than expected.  One 

could expose the CMS samples to lower oxygen concentration at the pyrolysis 

temperature so that the CMS samples would supposedly have a higher permeability and 

possibly increased selectivity. 

The oxygen-carbon mechanism can be very complex.  Here we seek to understand 

the pyrolysis process of polymer membranes with oxygen exposure by normalization of 

literature and our findings.  Section 4.2.3.1 described the three stages that occur during 

the polymer decomposition process: precarbonation, carbonation, and dehydrogenation 

[25].  In this study, oxygen was continuously supplied during the pyrolysis process.  

Precarbonation mostly involves removal of excess solvent and monomer [25], and as 

illustrated in Figure 4.3, consumption of oxygen does not start until temperature is close 

to the decomposition temperature.  During the carbonation stages, it is believed that a 

majority of the oxygen was consumed by by-products. Meanwhile, a transformation from 
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polymeric to CMS membranes takes place [25], and the “intrinsic” CMS structure results 

a product of the high temperature pyrolysis process.  Once most of the by-products are 

evolved, the dehydrogenation process begins, but consumption of oxygen by the by-

products continues at a significantly decreased rate, and a larger amount of oxygen 

became available to the CMS membranes compared with previous two stages.  As section 

4.3 described, the oxidation of the by-products is likely controlled kinetically while the 

oxidation of the active carbon edges for “doping” is likely equilibrium controlled.  

Therefore, the likelihood of oxygen molecules adsorbing on the surface and penetrating 

through CMS membranes to react with active carbon edges depend on oxygen 

concentration in the bulk flow.  The oxidation “doping” process also depends on the 

temperature which is related to the energetics of the chemisorption [15, 50].  Effects of 

the temperature on the “doping” process are complex since one also needs to consider the 

effect of pyrolysis temperature on the formation of the “intrinsic” CMS structure in the 

absence of oxygen chemisorption.  Section 4.2.4 depicted an experiment involving 

pyrolysis temperature of 500 ˚C.  Comparing separation performance of CMS membranes 

with 550 ˚C, it seems that the effect of temperature to the “doping” process is less 

significant compared to its importance on the formation of the intrinsic CMS structures.  

One should note, however, that a distribution of reactivity of carbon edges is speculated 

to exist to form carbonyl groups among ultramicropores, and the overall “doping” 

process is complex. 
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4.5 SUMMARY 

In this chapter, correlations observed during the development of a pyrolysis 

method were presented.  This enables the control of separation performance of CMS 

membranes.  This method utilized oxygen chemisorptions or “O2 doping” on selective 

pore windows at high temperature. Initially the method was developed using a 6FDA 

based polymer and extended to a commercially available polymer Matrimid®.  Observed 

correlations were shown (i) between the total oxygen exposure qO2, tot and oxygen 

consumption, qO2 consumed, and (ii) between qO2, tot and CMS CO2/CH4 separation 

performance.  Moreover, a series of controlled experiments allowed us to show that the 

oxygen-carbon reaction appears to be equilibrium limited and that a correlation exists 

between oxygen concentration in the inert gas and CMS CO2/CH4 separation 

performance.  These findings are significant for two major reasons: (i) they enable one to 

predict the trends in separation performance with the doping method after knowing the 

intrinsic structures created in low oxygen exposure pyrolysis conditions at a given 

temperature and (ii) they require only monitoring a primary variable of the oxygen 

concentration during the pyrolysis process for the doping method in inert pyrolysis.  
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CHAPTER 5 

ASYMMETRIC HOLLOW FIBER CMS MEMBRANES FOR 

NATURAL GAS (CO2/CH4) SEPARATION 

 

5.1 OVERVIEW 

The effective inert pyrolysis method was developed in Chapter 4 based on 

fundamental studies with homogeneous dense CMS membranes.  The method describes 

introduction of trace amount of oxygen during pyrolysis.  This project not only focused 

on  the process development but also translation of the dense film work with the oxygen 

“doping” method to asymmetric hollow fibers, since this is an industrially preferred form 

of the membranes [1, 2].  This chapter advances the previous chapter by applying the 

pyrolysis method to form asymmetric hollow fiber CMS membranes.  Asymmetric 

hollow fiber membranes provide higher mechanical strength than dense films due to a 

combination of a thin integral “skin” on the outer surface of the membrane supported by 

a microporous support layer.  In addition, the high transmembrane pressure differences 

capable of being handled, and the high surface area to volume ratios and high packing 

densities achieved from such cylindrical morphologies make this membrane structure 

industrially favorable.  Like dense films, asymmetric hollow fiber CMS membranes are 

prepared by pyrolysis of polymers.  Section 5.2 describes preparation of such polymer 

fibers including precursor screening, section 5.3 describes oxygen “doping” effect on 

CMS fibers using single gas testing, and section 5.4 investigates mixed gas separation 

performance of these CMS fibers. 
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5.2 DEFECT-FREE POLYMER PRECURSOR DEVELOPMENT 

Previously, it was observed that Ultem® films were fragmented and broken into 

pieces around the softening point (Section 4.2).  Indeed, most Ultem® based CMS 

membranes are supported on ceramic or aluminum [3-6].  On the contrary, Ultem® 

hollow fiber spinning has been well practiced in industry, and the raw material cost of 

Ultem® is lower than Matrimid® [7].  This allows Ultem® to be more favored precursor 

for economical scaling if adequate properties can be achieved.  The following section 

revisits investigation of Ultem® as a precursor, specifically for asymmetric hollow fiber 

morphology and describes CMS precursor preparation used in this study.  

 

5.2.1 Defect-free polymeric fiber spinning 

Asymmetric hollow fiber CMS membranes were prepared by spinning and 

pyrolyzing polymeric fibers.  Many researchers have reported that separation 

performance is enhanced by pyrolysis of the defect-free asymmetric hollow fibers [4, 8-

10]. In particular, Centeno and Fuertes observed 36% increase in CO2/CH4 permselctivity 

as a result of reducing the defectiveness of polymer precursor by thickening the polymer 

coating and reducing pin hole defects [4].  This indicates the importance of defectiveness 

influencing CMS hollow fiber performance.  In this work, defect-free asymmetric hollow 

fiber polymeric membranes were produced by the method called spinning.  The 

polymeric fibers were then pyrolyzed to use the oxygen doping method described on 

Chapter 4.  The spinning was conducted by making a polymer solution, commonly called 

a “dope”.  The dope of Ultem® and Matrimid® was prepared using phase diagrams by 

previous group members.  The specific mixing procedure was adapted from Clausi and 

Koros [11]. Dope compositions for each polymer are shown in Table 5.1 and Table 5.2.  
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Table 5.1: Dope composition of Ultem®. 

Component wt% 

Ultem® (polymer) 33.0 

NMP (solvent) 51.0 

THF (solvent) 10.0 

Ethanol (non-solvent) 4.7 

LiNO3 (pore former) 1.3 

 

 

Table 5.2: Dope composition of Matrimid®. 

Component wt% 

Matrimid® (polymer) 26.2 

NMP (solvent) 53 

Ethanol (non-solvent) 14.9 

THF 5.9 

 

 

The dopes were used to spin the fibers using the dry jet/wet quench method 

described in Chapter 3.  Table 5.3 shows typical spinning conditions used in this work for 

defect-free fiber production.  The bore fluid consisted of a mixture of de-ionized (DI) 

water (18 MΩ; Model: D4521, Barnstead International, Dubuque, IA) and NMP 

(Aldrich) with the composition of 90:10 wt% NMP: DI water. A 40 micron filter 

(Swagelok) were attached upstream of the  a monolithic spinneret [12] to trap large 

particles which could potentially block the spinneret channels.  The spinneret and filter 

blocks were heated up to 55 ˚C using multiple heating tapes (BriskHeatTM, Barnstead 

International) regulated by the temperature controllers (Omega Engineering Inc., 
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Stamford, CT).  The nascent membranes were extruded into the air gap and into the 

quench bath, passed under a PTFE guide roll in the bath and collected on a rotating drum 

which diameter is 0.32 m, partially immersed in tap water.  

 

Table 5.3: Optimized spinning conditions for defect-free asymmetric hollow fiber 
membranes. 

Polymer Ultem® Matrimid® 

Dope flow rate (ml/hr) 240 180 

Bore flow rate (ml.hr) 80 60 

Air-gap height (cm) 15 20 

Take-up rate (m/min) 55 76 

Draw ratio 4.3 2.6 

Quench bath (water) temperature 
(˚C) 25 25 

Fiber O.D. (microns) 260 250 

 

Once fibers were removed from the drum by cutting them using a razor blade, they were 

placed in DI water for three days.  The water bath was changed daily. On the fourth day, 

the fibers were solvent exchanged by immersing in three successive aliquots of methanol 

and hexane for 20 minutes each.  The fibers were removed from the hexane bath and 

dried in the hood for an hour.  Then the fibers were dried in a vacuum oven at 75 ˚C for 

overnight. The SEM images of each fiber are shown in Figure 5.1. 



135 
 

 

 
 

 
                                                                                         (b) 

Figure 5.1: SEM images of asymmetric hollow fiber precursors:  Ultem® (top) and 
Matrimid® (bottom). 
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The separation performance of the Ultem® and Matrimid® fibers are shown in Table 5.4 

along with selectivity results obtained on dense films.  Their separation performance 

shows successful spinning of defect-free asymmetric hollow fiber membranes. 

 

Table 5.4: Separation performance of Ultem® and Matrimid® asymmetric hollow fibers. 
Measurements were repeated and data has less than 5% deviations.  CO2/CH4 selectivity 
from dense film study is also listed as a reference. 

Polymer 
Fiber Film 

PO2 (GPU) O2/N2 O2/N2 

Ultem® 0.79 7.2 7.6 

Matrimid® 3.85 7.0 7.1 

 

5.2.2 Pyrolysis of defect-free asymmetric hollow polymeric fibers 

 The defect-free asymmetric hollow fibers were then pyrolyzed using the 550 ˚C 

pyrolysis protocol. Unlike broken Ultem® CMS films, the Ultem® CMS fibers were 

intact; however, the hollow morphology was destroyed as a result of the softening point. 

The details are shown in Figure 5.2 below. 

 

            

Figure 5.2: SEM images of asymmetric hollow fiber CMS membranes: Ultem® CMS 
fiber (left) and (b) Matrimid® CMS fiber (right). 
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Barbosa-Coutinho et al. reports pyrolysis of Ultem® hollow fibers with an additive such 

as polyvinylpyrrolidone (PVP) [13] without hollow morphology destroyed; however, 

they do not provide evaluations of the separation performance.  The morphology shown 

in the article suggests that their CMS fibers were quite defective.  This indicates that an 

additional technology is required to produce Ultem® hollow fiber CMS membranes.  The 

overall results on material selection for CMS dense films and fibers indicate that 

Matrimid® is easier to process for formation of processable CMS membranes. Therefore, 

Matrimid® was chosen to be our preferred precursor. 

 

5.3 EFFECT OF PYROLYSIS ATMOSPHERE ON ASYMMETRIC HOLLOW FIBER CMS 

MEMBRANES 

5.3.1 Review 

The effect of pyrolysis atmosphere on asymmetric hollow fiber CMS membranes 

has been investigated by several researchers.  Suda and Haraya reported that CMS 

prepared from polyimide Kapton® at 1000 ºC in either argon or in vacuum of 10-5 torr 

showed relatively minor differences [14].  Geiszler and Koros conducted work on 

asymmetric hollow fiber CMS membranes using 6FDA/BPDA-DAM and reported 

negligible differences between fibers produced under argon, helium, and carbon dioxide 

inerts for both O2/N2 and H2/N2 separations [15].  A previous chapter has shown that the 

oxygen concentration was a governing factor influencing separation performance of CMS 

membranes, and attractive CMS membranes can be produced by tuning oxygen 

concentration.  In this chapter, the effect of oxygen exposure on asymmetric hollow fiber 

membranes was investigated based on the dense film study. 
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5.3.2 Effect of oxygen exposure during pyrolysis process 

CMS asymmetric hollow fiber membranes were prepared by pyrolyzing the 

polymeric fibers at 550°C for two hours with exposure to the oxygen-containing argon 

inerts, specifically 1, 30, and 100 ppm.  Permeation measurements were conducted with a 

mixed gas feed of 50/50 CO2/CH4.  The feed pressure of 80 atm and the permeate 

pressure of 1 atm were used at a temperature of 35°C. The experiments were repeated to 

demonstrate reproducibility. 

 

5.3.2.1 Shrinkage 

When polymeric fibers were pyrolyzed, polymer shrinkage was observed in both 

axial and radial directions regardless of the oxygen exposure, and the deviations among 

samples pyrolyzed under a given oxygen exposures were small.  The polymer fibers were 

shortened by ~30-35% and Table 5.5 shows shrinkage in radial direction (fiber radius).  

Densification of the wall as a result of pyrolysis made the measurement of the CMS wall 

thickness difficult to distinguish between the skin and the transition layer.  

 

Table 5.5: Dimensions of Matrimid® polymeric and CMS fibers, pyrolyzed under various 
oxygen exposure. Measurements were the average of three samples, and the deviation 
was less than 10%. 

 Precursor 
Fiber 

CMS 
(1 ppm O2/Ar) 

CMS 
(30 ppm O2/Ar) 

CMS 
(100 ppm O2/Ar) 

O.D. (μm) 250 196 192 198 

I.D. (μm) 135 122 123 125 

 

Among the CMS samples at different oxygen doping levels, the difference in relative 

shrinkage was negligible, and the level of oxygen exposure did not affect overall fiber 
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dimensions.  This trend was similar to the weight loss of dense film. In section 4.2.1.1, it 

was reported that the percentages of the average weight losses was in a range of 32-35 % 

in all cases and deviations among CMS films exposed to different oxygen levels were not 

considered to be significant beyond experimental uncertainty. 

  

5.3.2.2 Correlation between oxygen exposure and consumption 

Like the dense film study, total amount of oxygen available and amount of 

oxygen consumed by polymeric precursors were calculated using Equation 4.2 and 4.3. 

The results are shown on Table 5.6.  

 

Table 5.6: Amount of oxygen available and consumed during Matrimid® 
asymmetric polymeric hollow fiber pyrolysis process.  All was repeated and has 
standard deviation less than 10%.   

Membrane O2 available 
(approx ccSTP/fiber) 

O2 consumed 
(approx ccSTP/fiber) 

CMS (1 ppm O2/Ar) 0.067 0.033 

CMS (30 ppm O2/Ar) 2.06 1.08 

CMS (100 ppm O2/Ar) 6.04 3.01 

 

The amount of oxygen consumed was proportional to concentration of oxygen and about 

49-52% of oxygen available was consumed in all cases.  The similarities between fibers 

and films indicate the validity of film studies.  
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5.3.2.3 Correlation between oxygen exposure and CMS separation performance 

 Once oxygen consumption was monitored during pyrolysis, the resulting CMS 

fibers were characterized for separation performance.  The 50/50 CO2/CH4 mixed gas at a 

pressure of 80 atm was fed to shell side of the membrane module. The results are shown 

in Figure 5.3.  
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Figure 5.3: Separation performance of Matrimid® CMS membranes using 50/50 CO2/CH4 
mixed gas with Pfeed= 80 atm and Ppermeate= 1 atm at 35˚ C.  Stage cut less than 1% was 
used. 
 

 In the previous chapter, 550˚ C pyrolyzed Matrimid® CMS film showed the trend 

of decrease in both permeability and selectivity as oxygen concentration in inert 

atmosphere increased.  Figure 5.3 showed essentially the same trend: an increase in 

oxygen concentration during pyrolysis resulted in decrease of both permeance and 

selectivity. It appears that at the higher oxygen doping levels, performance of the 
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asymmetric hollow fiber CMS and estimated dense film performance (scaled by a 

thickness ranging from 30 to 100% collapse of the asymmetric hollow fiber wall 

thickness) tend to converge.  Figure 5.4 shows the CMS data along with the upper bound 

curve and the currently best performing polymer membranes. 
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Figure 5.4: Comparison between Matrimid® CMS film and asymmetric hollow fiber 
membranes tested at 35 ˚C. The red circles represent transport properties obtained on 
asymmetric hollow fiber membranes with 50/50 CO2/CH4 mixed gas of Pfeed= 80 atm and 
Ppermeate= 1 atm, and the blue lines represent properties based on dense film experimental 
data obtained with single gas feed of ~3 atm. The permeability of the dense films was 
converted to a unit of permeance with 30 to 100% skin thickness of the 40μm wall. 
Robeson curves were converted with assumption of 10 μm of fiber skin thickness. 
Rectangular points represent separation performance of cross-linked PDMC. The filled 
point was measured at 35 ˚C with 10/90 CO2/CH4 mixed gas of Pfeed= 57 atm and 
Ppermeate= 1 atm, and the open was measured with 100 ppm toluene exposure [16]. 
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 In Figure 5.4, the Robeson upper bound curve, which was built based on 

processable polymer membrane performance, was converted from a unit of permeability 

(Barrer) to permeance (GPU) based on an assumption that the asymmetric hollow fibers 

have a skin thicknesses of 10μm.  While thinner skin thickness is preferred to increase 

productivity, thinner polymer membranes tend to plasticize more easily thus separation 

performance would be significantly reduced [17].  In fact, the plasticization usually 

occurs immediately after CO2 exposure on fibers with membrane thickness <500 nm [18]. 

This implies that polymer fibers which may be close to the trade-off curve could suffer 

from plasticization under realistic conditions and lose its ability.  In 2010, Omole et al. 

reported robust cross-linked PDMC fibers (skin thickness: ~3μm) developed for anti-

plasticizing membrane materials; however, these materials allow uptake by anti-

plasticizing aromatic contaminants that should be totally removed by the fine pore size of 

the current CMS materials.  In the presence of even 100 ppm aromatic, the robust cross-

linked fibers lose up to 43% of permeance, leading from the filled to the open rectangular 

data point and dashed line performance as shown in Figure 5.4 [18]. CMS membranes, on 

the other hand, do not plasticize and are known to be stable at high CO2 partial pressure 

exposure or aromatic contaminants [19]. 

 In Figure 5.4, both CMS film and asymmetric hollow fiber membranes pyrolyzed 

with 1 ppm O2/Ar inert atmosphere provide excellent performance, well exceeding the 

upper bound curve.  As noted, the small pores of the CMS should exclude contaminants, 

such as toluene, but this issue needs to be further investigated on oxygen doped CMS 

fibers.  While the trend of decrease in the transport properties between films (red circular 

points) and fibers (blue lines) are similar, two key findings should be addressed related to 

(i) possible densification and/or collapse of the CMS fibers and (ii) CO2/CH4 selectivity.  

 When CO2 permeance of CMS films and fibers is compared, CMS fibers 

pyrolyzed with 30 and 100 ppm O2/Ar lie in the range of permeance obtained on the 

CMS films.  These results indicate that about 30-45% of the wall thickness of the CMS 
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fiber is the selective skin. On the other hand, a permeance value of the CMS fibers 

pyrolyzed with 1 ppm O2/Ar is less than expected from the CMS dense films.  This 

suggests possible densification or collapse as a result of pyrolysis.  Exact reasons for this 

observation are unknown and further investigation needs to be conducted.  One 

possibility of the densification or collapse may be the result of complex morphology of 

asymmetric hollow fiber membranes.  The polymer chain arrangements of the fibers may 

be different from films since fibers are produced essentially by polymer extrusion process 

while films are produced by solution casting. 

 When CO2/CH4 selectivity was compared between films and fibers, selectivity of 

the CMS fibers were higher than CMS films.  This could be caused by the difference 

between mixed gas and single gas experiments: a competition for the Langmuir sorption 

sites between CO2 and CH4 could attribute this deviation.  In the previous chapter, 

sorption equilibrium isotherms were measured on CMS dense films.  As Equation 5.1 

shows, the sorption selectivity of the mixed gas is essentially the same as the ratio of the 

product of the sorption capacity, CH’, and the affinity constant, b. 
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As section 4.2.2.2.1 identified, sorption selectivity was almost constant regardless of the 

oxygen doping level, implying that much higher sorption of CO2, compared with CH4, on 

all oxygen doped samples.  Therefore, it is likely that the selectivity of mixed gas is much 

higher than single gas due to the competition effect. 

Using the permeation and sorption data obtained on CMS dense films in section 

4.2.2.2, selectivity of CMS membranes of the mixed gas tests was modeled and compared 

with experimental values obtained on asymmetric hollow fiber CMS membranes.  The 
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mixed gas selectivity was predicted using equations based on solution-diffusion 

mechanism, viz,: 

          𝑃�,𝑚𝑖𝑥 = 𝐷��𝑆�,𝑚𝑖𝑥                                                      (5.2) 

                                             𝑆�,𝑚𝑖𝑥 = ��,���
��

                                                           (5.3) 

        𝐶�,𝑚𝑖𝑥 = ��������
�����������

                                                     (5.4) 

                              𝛼�/�,��� = 𝑃�,𝑚𝑖𝑥/𝑃�,���                                                   (5.5) 

where Pi, mix is the permeability, DHi is the diffusion coefficient through the Langmuir 

environments, Si, mix is sorption capacity, Ci, mix is the amount of penetrants absorbed, and 

α is the selectivity in the binary mixture of the component “i” and “j”. In this model, a 

condition of total pressure, p, of 80 atm and 50/50 CO2/CH4 mixed gas was used. The 

result is presented in Figure 5.5.  
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Figure 5.5: Comparison of CO2/CH4 selectivity between experimental (asymmetric 
hollow fibers) and model (dense films) made under 50/50 CO2/CH4 mixed gas at a feed 
pressure of 80 atm at 35 ˚C. 
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 Permselectivity observed was in reasonable agreement with the model prediction.  

The experimental value was slightly higher than the prediction when low level of oxygen 

was used while it was slightly lower than prediction.  As previously motioned, the high 

sorption capacity of CO2 is likely contributing this difference, making CMS membranes 

more attractive at high pressure applications. 

 

5.4 SUMMARY 

 In this chapter, “inert” pyrolysis process developed on dense films was 

successfully adapted to produce asymmetric hollow fiber CMS membranes.  The 

translation from the films to fibers is inevitable for commercial scale up since asymmetric 

hollow fiber morphology offer much higher surface area to volume ratios compared with 

films.  Defect-free asymmetric hollow fiber CMS membranes were prepared using a 

commercially available polymer Matrimid® and the oxygen doping method was applied. 

Similar trends as films were observed on various aspects: % oxygen consumption, weight 

loss, and CO2/CH4 separation performance.  

The characterizations of the fibers were made with a realistic condition of a high 

pressure mixed gas feed instead of single gas feed.  And it demonstrated that the “oxygen 

doped” CMS fibers not only withstand the high pressure mechanically but also are able to 

show excellent performance, well exceeding the precursor efficiency.  Additional 

sorption isotherm experiments showed that the oxygen doping takes place at 

ultramicropores, rather than micropores, which validated our hypothesis of the oxygen 

doping method further.   A comparison between theoretical and experimental separation 

performance indicated that mixed gas separation performance of CMS membranes can be 

predicted theoretically and competition between CO2 and CH4 is likely negligible. 
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CHAPTER 6 

CHARACTERIZATION OF CMS MEMBRANES UNDER 

AGGRESSIVE OPERATING CONDITIONS 

 

6.1 INTRODUCTION 

This chapter contains the experimental characterization results for asymmetric 

hollow fiber CMS membranes under realistic very aggressive operating conditions.  This 

step is necessary not only to demonstrate CMS separation ability for realistic testing 

conditions but also to promote large scale CMS production for future work.  In chapter 5, 

the effective inert pyrolysis method, developed in chapter 4, was adapted to asymmetric 

hollow fiber membranes and the efficacy of the production method was demonstrated.  In 

this chapter, the CMS membranes are further characterized under more realistic 

conditions.  Section 6.2 demonstrates CMS membrane performances with various 

permeate pressures and section 6.3 investigates the effect of humidity on both 

homogeneous dense and asymmetric hollow fiber CMS membranes. 

 

6.2 PRACTICAL CONSIDERATION OF PERMEATE PRESSURE  

The permeance, or permeability, gives fundamental insight on the events 

occurring in the membrane as penetrants permeate through.  As previously mentioned, 

the ratio of the fast gas permeance to the slow gas permeance is called the permselectivity.  

However, this permselectivity is ideal relative to the actual separation performance, 

which is represented by the separation factor.  As the membrane’s permeate pressure 

increases from idealistic vacuum conditions, the separation factor deviates from the 
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permselectivity even though the membrane material itself may not be affected 

significantly.  Most of the work reported in the literature is done under vacuum permeate 

conditions; however, the relationship between the pressure ratio and selectivity is 

important because of the practical limitation.  Compressing the feed stream to very high 

pressure or drawing a very low vacuum on the downstream requires large amounts of 

energy and expensive pumps [1]. 

In this work, ambient permeate pressures are used, and both permselectivities and 

separation factors are reported to reflect practical separation performance values.  The 

separation factor can be derived from the operating pressures and feed compositions 

using mass balance equations.  The expression for the separation factor at a negligible 

stage cut is given by Equation 6.1 and 6.2: 

 

       𝑦��� = �
�
∙ �𝑥��� + �

�
+ �

���
− ��𝑥��� + �

�
+ �

���
�
�
− �∙�∙����

(���)�
�                 (6.1) 

     𝑆𝐹 =
����
���� ����

����

�                                                    (6.2) 

In the equations above, yCO2 and yCH4 are the permeate mole fraction for CO2 and CH4 

respectively, xCO2 and xCH4 are the feed mole fractions for CO2 and CH4 respectively, R is 

the pressure ratio (feed pressure/permeate pressure), and α is the intrinsic membrane 

selectivity (αCO2/CH4).   Based on these equations, the relationship between the pressure 

ratio and selectivity can be observed in Figure 6.1. 
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Figure 6.1: Calculated permeate CO2 concentration as a function of selectivity with 
various pressure ratios (R).  The feed CO2 concentration is 50%. 

 

Figure 6.1 indicates the benefit of highly selective membranes.  For instance, 

under the condition at which the pressure ratio is 4, increasing the membrane selectivity 

from 60 to 100 can increase % CO2 concentration in permeate stream by 1%, thus 

increasing purity of CH4 in the retentate stream.  The graph also shows the effect of 

pressure ratio.  The pressure ratio between 4 and 80 can be equivalent to having permeate 

pressure between 1 and 20 atm at a feed pressure of 80 atm.  At a given permeation % 

CO2 concentration, highly selective membrane is required as pressure ratio becomes 

small.  Indeed, Baker reports the practical values of the pressure ratio to be in a range of 5 

to 20 [1]. 

The best performing CMS membranes, pyrolyzed with 200 cc(STP)/min 1ppm 

O2/Ar was used as a model object.  The feed pressure was kept constant at 80 atm, and 

the permeate pressure was varied between 1 to 20 atm.  The permeate pressure was varied 
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by integrating a backpressure regulator (KBP series, pressure range: 0-500 psig, 

Swagelok) on the permeate side as shown in Figure 6.2. 

 

 
Figure 6.2: Schematic of fiber permeation system modified to measure separation 
performance with various permeate pressures. 
 

Results are shown in Table 6.1. As predicted, a significant reduction in separation factor 

was observed when permeate pressure was increased.  The deviations between 

experimental and theoretical are speculated to be caused by the competition effect as the 

previous chapter described.  It should also be noted that it was difficult to set the back-

pressure regulator to the target as the knob was relatively large.  Nevertheless, the results 

indicate that the equations 6.1 and 6.2 well described CMS membrane behavior 

considering standard deviation. 

 
Table 6.1. CMS membrane performance, pyrolyzed with 1ppm O2/Ar, and various 
permeate pressures.  Experiments were conducted at feed pressure of 80 atm with 50/50 
CO2/CH4 at 35 ˚C.  

Ppermeate (atm) Pressure ratio CO2 Permeance (GPU) SFExperimental SFTheoretical 

1 80 15.6 ± 1.2 90 ± 6.2 93 

10 8 19.3 ± 2.0 62 ± 4.3 68 

20 4 17.0 ± 1.0 42 ± 6.2 46 

High pressure 
transducer  

To GC 

Backpressure 
regulator 

To bubble flow 
meter 
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6. 3 PRACTICAL CONSIDERATION OF HUMIDITY EXPOSURE 

6.3.1 Review 

 Various researchers reported that the adsorption of water is strongly influenced by 

various factors such as the nature of carrier, temperature, and the humidity’s partial 

pressure.  The sorption mechanism differs depending on the vapor concentration, and 

water adsorption has been shown to follow Langmuir isotherm [2-5].  According to 

Gawryz et al. only active polar centers seem to be involved at relatively low humidity and 

this adsorption is so weak that the negative effect on separation can be easily removed [6].  

When relative humidity is more than 25%, the negative effect on separation may be 

substantial.  Hydrogen bonding between neighboring water molecules leads to clusters of 

adsorbed water, which may trap the carrier gas molecules. Other researchers also 

documented carbon materials experiencing severe loses of transport properties under 

humid rich environment [2-5].  Currently, an adequate solution to this phenomenon has 

not been fully explored. Jones and Koros developed a coating method on the CMS fiber 

using unique polymeric materials and saw significant improvements.  This method 

utilizes Teflon AF2400 which is highly hydrophobic yet does not prohibitively reduce the 

flux of other permeating species.  As a result of this coating, % O2 flux loss was 

improved by 40%  while maintaining the selectivity of O2/N2 separation [4].  In the study, 

permeation was carried out under a feed pressure of 105 psi and the CMS fiber 

membrane was exposed to humid air for 24 hours.  

In this work, two important experiments were conducted.  Section 6.3.2 reports 

analysis of experiments conducted on CMS dense films exposure to 80% relative 

humidity up to 30 days. Morphology, specifically physical appearance, as well as 

separation performance was investigated. Furthermore, regeneration of the lost separation 

performance was intended to be treated by heat treatment under vacuum. Section 6.3.3 

studies the effect of humidified feed on asymmetric hollow fiber CMS membranes.  
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These studies not only demonstrate CMS membranes durability against humidity but also 

show the stability of CMS membranes prepared with the oxygen “doping” method.  

 

6.3.2 CMS dense films 

6.3.2.1 Humidity exposure 

Both 6FDA/BPDA-DAM and Matrimid® CMS dense films were prepared using 

the 550 ˚C temperature protocol.  The oxygen concentration of 3 ppm in argon was used 

on Matrimid®, and 4 ppm was used on 6FDA/BPDA-DAM to produce each CMS 

membranes.  Multiple CMS films were produced in one batch of pyrolysis, and one of 

them was immediately loaded to a permeation system while some were (i) kept in a 

vacuum oven at room temperature and (ii) kept in a humidity controlled box depicted in 

Figure 6.3.  The system consists of a sample box which has an analog RH indicator and a 

Teflon® sealing door from Sigma-Aldrich. In addition, a digital RH and temperature 

monitor was integrated to make sure RH was controlled.  The 80% RH was accomplished 

by saturating the inside air with NaCl solution.  A duration of 1 week and 1 month 

(30days) was chosen to demonstrate humidity effects on CMS films. 
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Figure 6.3: Schematic of a humidity controlled sample box. 

 

When Matrimid® CMS films were studied, it was noticed that the appearance had 

been changed after 1 month as shown in Figure 6.4.  This could be caused by adsorption 

of water on the surface of CMS membranes. 

 

 

Figure 6.4: Matrimid® CMS dense films exposed to humidified conditions. 

 

When Matrimid® CMS films were kept in vacuum, it was noticed that some, not all, of 

the films became crinkled and non-testable. The specific reasons for this are unknown. 

 The films were then evaluated for their separation performance.  The separation 

performance of CMS membranes kept in vacuum did not change, and normalized values 

Initial                         7th day                     1 month 

NaCl soln 

Digital Temp & RH indicator 

(Sensor is inside the box) 

Analog          
RH indicator 
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of both permeability and selectivity for these “unexposed” values were essentially 

unchanged.  On the other hand, CMS membranes exposed to humidified air showed 

different results. Results of CMS films exposed to humidity are shown in Figure 6.5 and 

Figure 6.6.  
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Figure 6.5: Effect of humidity during ageing process on normalized CO2 permeability 
values (PCO2/PCO2,0).  PCO2,0 of 6FDA/BPDA-DAM CMS was 7169 Barrer and PCO2,0 of 
Matrimid® CMS was 1050 Barrer.  The experiments were conducted at 35 ˚C. They were 
repeated and had less than 10% deviation. 

 

 As expected, a significant reduction in permeability was observed.  In fact, most 

of the loss in permeability took place in a week, and the extent of permeability reduction 

decreased afterwards.  For Matrimid® based CMS, a ~35% reduction in permeability was 

observed after a week, and a ~40% of reduction was observed after a month. For 6FDA 
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based CMS, a ~40% of permeability was observed after a week, and a ~80% of reduction 

was observed after a month.  The 6FDA based CMS films seem to be influenced more by 

exposure to the humid environment.  Higher free volume of the 6FDA material, 

compared with Matrimid®, is speculated to be responsible for this observation. 
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Figure 6.6: Effect of humidity during ageing process on normalized CO2/CH4 selectivity. 
α0 of 6FDA/BPDA-DAM CMS is 31 and α0 of Matrimid® CMS is 48. The experiments 
were repeated and had less than 10% deviation. 

 

 Selectivity, on the other hand, showed unexpected results.  It was decreased by 

~20% after 7 days of exposure but increased to higher the initial selectivity value after a 

month for both 6FDA and Matrimid® based CMS membranes.  The samples were not 

dried at high temperature after exposure and were only evacuated at 35 ˚C.  Similar 
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phenomena were reported by Menendez and Fuertes [7].  While exact reasons remain 

unknown, one possible hypothesis for the selectivity decrease is that the selective pores, 

(which only CO2 can go through), become clogged by water vapor as depicted in Figure 

6.7.  This could result in reduction of both permeability and selectivity.  According to 

Figure 6.6, this phenomenon took place in a week and led to a decrease in both 

permeability and selectivity. 

 

 

Figure 6.7: Possible explanation of water adsorption taking place after a week.  

 

After one month, the samples were loaded into permeation cell in which they were 

evacuated at 35 ˚C for overnight.  As a result, it was found that the selectivity was 

increased and in fact, it was enhanced by humidity exposure.  CMS membranes have 

sorption-diffusion mechanism.  One possibility is that water being dissolved in CMS 

membranes and enhances CO2 sorption, thus increasing selectivity.  The other possibility 

is that water vapor formed clusters on the pore mouth which was originally available to 

CH4.  This water adsorption eventually made “new” selective pore slits which is now 

only available to CO2 as depicted in Figure 6.8.  This could lead to the increase in 

selectivity while a decrease in permeability was still observed.  At this point, we cannot 

speculate further, but the result is clearly an encouraging outcome. 

 

 

Figure 6.8: Possible explanation of water adsorption taking place after 1 month. 
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 In addition to permeation, sorption isotherms were measured on the CMS 

membranes.  Results of sorption isotherms are shown in Figure 6.9 and Figure 6.10 and 

the Langmuir coefficients are listed in Table 6.2 and Table 6.3. 
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Figure 6.9: CO2 sorption isotherm for Matrimid® CMS membranes with different levels 
of humidity exposure: 80% RH vs. in vacuum (~0% RH) in a month.  The experiment 
was conducted at 35 ˚C. 

 

Table 6.2: Langmuir hole filling capacity CH’ and Langmuir affinity constant b calculated 
based on Matrimid® CMS sorption isotherms on Figure 6.9. 

Gas CH’ 
(cc(STP)/cc CMS) b (psia-1) 

CO2  
(after 1 month in vacuum) 72.2 0.02 

CO2  
(after 1 month in 80% RH) 50.4 0.04 
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Figure 6.10: CH4 sorption isotherms of Matrimid® CMS membranes with different levels 
of humidity exposure. : 80% RH vs. in vacuum (~0% RH) in a month. The experiment 
was conducted at 35 ˚C. 

 

Table 6.3: Langmuir hole filling capacity CH’ and Langmuir affinity constant b calculated 
based on Matrimid® CMS sorption isotherms on Figure 6.10. 

Gas CH’ 
(cc(STP)/cc CMS) b (psia-1) 

CH4  
(after 1 month in vacuum) 50.2 0.006 

CH4  
(after 1 month in 80% RH) 33.0 0.005 
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Results of sorption isotherm showed that both CO2 and CH4 sorption capacity, CH’, was 

decreased by ~30%.  The sorption selectivity remained almost the same before and after 

the humidity exposure, implying that the small selectivity increase observed in Figure 6.6 

was caused by increase in diffusion selectivity.  

 

6.3.2.2 Regeneration study 

 Once CMS samples were exposed to humidity conditions, regeneration of the 

films was attempted.  CMS films were dried at 105 ºC overnight in a vacuum oven and 

transport properties were measured. The results of permeability are shown in Figure 6.11. 
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Figure 6.11: Recovery from humidity effect on CO2 permeability of CMS membranes.  
Data in red represents separation properties of regenerated CMS membranes. 
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 The result indicates that the short regeneration procedure recovered more than 

20% of permeability reduced by humidity exposure for both 6FDA based and Matrimid® 

CMS membranes; however, it is obvious that the negative effect was not eliminated 

completely.  Longer or more aggressive regeneration might recover even more of the 

function.  To probe this issue, additional experiment showed that the change in selectivity 

was negligible, indicating that the regeneration removed moisture sorbed in micropores 

without affecting ultramicropore structures.  TGA experiments were conducted on the 

CMS membranes exposed to humidified air for 30 days, and the result is shown in Figure 

6.12. 

 

Figure 6.12: TGA profile of 6FDA/BPDA-DAM CMS membranes exposed to 80%RH 
for 1 month. 

 

The result shows that the possible water removal takes place in the temperature range of 

32-120 ºC. Similar observation was seen for Matrimid® CMS membranes.  Since the 

regeneration in this study occurred at 105 ºC, it is speculated that residual water remained 
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which contributed to the partial recovery of the permeability.  It is possible that a higher 

temperature (120 ˚C) regeneration could almost completely regenerate the performance 

but heat resistance of the aluminum adhesive masking materials did not permit exploring 

this issue and alternative masking materials need to be utilized.  It is also speculated that 

regeneration by propylene exposure could be another regeneration method since CMS is 

known to swell under those conditions [8].  This further study needs to be addressed as a 

future work. 

 

6.3.3 Asymmetric hollow fiber CMS membranes 

The effect of humidify was also evaluated on asymmetric hollow fiber CMS 

membranes.  Matrimid® asymmetric hollow fibers were pyrolyzed using the 550 ˚C 

protocol under the best performance conditions: 1 ppm O2/Ar with a flow of 200 

cc(STP)/min.  Humidified stream was integrated in the existing permeation system to 

measure the separation performance with 50/50 CO2/CH4 mixed gas feed containing 

~80%RH at 35 ˚C.  The stainless steel canister was integrated to allow feed gas to bubble 

through the water phase. A pressure release valve was integrated for safety.  A moisture 

trap (SUPELCO, PA) was introduced in line prior to GC to prevent damaging the GC.  

Prior to measurements, a blank run was conducted to detect any effect of the moisture 

trap in the GC signals.  Actual percentage relative humidity was measured by the portable 

humidity indicator used previously in Section 6.3.2.1.  A schematic of the system is 

shown in Figure 6.13.  As seen in the figure, the single modules were fed in shell side to 

keep consistent with previous experiments. 
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Figure 6.13: Schematic of the permeation system used to measure separation performance 
of asymmetric hollow fiber CMS membranes under humidified feed conditions. 

 

 The effect of humidity was investigated using asymmetric hollow fiber CMS 

membranes, then the fibers were coated with Teflon AF2400 (DuPont, DE) to 

demonstrate efficacy of the coating method developed by a previous group member.   

Polymer, Teflon AF2400, is produced by polymerization of 2,2-bis(trifluoromethyl)-4,5-

difluoro-1,3-dioxole (BDD) and tetrafluoroethylen (TFE) as shown in Figure 6.14.  

 

 

Figure 6.14: Chemical structure of Teflon AF2400 which consists of m:n mole fraction of 
87:13 [9, 10]. 
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The reaction produces amorphous, a high free volume and glass transition polymer.  The 

transport properties are well studied [11-16], and it is known to have one of the highest 

permeabilities of all known polymers [16].  The permeation properties of interest include 

PCO2= 2800 and PCH4=340 Barrers [17].  A ~25wt% solution of Teflon AF2400 (400S1-

100-1, DuPont, DE) was purchased and used to soak the shell-side of a hollow fiber 

module.  A duration of 30 minutes was used, and the solution was drained from the 

module.   In order to remove any residual solvents, both feed and permeate streams was 

pulled under vacuum overnight. 

 The separation performance was measured at 35 ˚C with a 50/50 CO2/CH4 mixed 

gas feed of 80 atm.  Knowing the permeability of the barrier material from the literatures, 

the thickness of the coating material was calculated using an equation for the resistance in 

series, viz. [4], 

             ��
�
�
���,���������

= ��
�
�
���,���

+ ��
�
�
���,������ ��

                    (6.3) 

where P represents permeability and l is the thickness of the material.  From the 

calculation, coating of 2.3-3.0 µm in thickness was identified.  
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Table 6.4 shows CO2/CH4 separation performance of CMS membranes before and 

after the coating with dry feed gas and with humidified feed.  

 

Table 6.4: Separation performance of Matrimid® CMS membranes evaluated under 50/50 
CO2/CH4 mixed gas feed of 80 atm at 35 ˚C. CMS membranes were prepared by 550 ˚C 
with 1ppm O2/Ar. Tests were repeated at least twice and deviation was less than 10%. 

CMS properties 

Dry feed Wet feed 

No coating Teflon AF 
coating No coating Teflon AF 

coating 

CMS 
(1 ppm O2/Ar) 

PCO2 15.6 15.4 6.8 9.2 

αCO2/CH4 90 87 80 84 

 

 

 When CMS membranes are exposed to humidity, permeance was reduced by 

more than 50%.  As stated in the previous section, it was speculated that the moisture 

sorbes in micropore sites which reduce sorption capacity.  The % CO2 permeance loss 

was about 58%, which is similar to what Jones and Koros observed on O2/N2 separation 

[4] which validates our experiments and also implies that the oxygen doping on CMS 

membranes does not likely influence the separation performance of CMS under 

humidified condition.  When the Teflon coating was applied, the reduction due to 

humidity exposure was reduced but not eliminated.  It is recommended to explore other 

hydrophobic coating materials or to investigate the exact mechanism of the humidity 

effect on CMS materials.  This conclusion is similar to what Jones and Koros suggested, 

after exploring other coating materials, such as poly(4-methyl-1-pentene) (PMP) or 

Teflon AF1600 [4]. 
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6.4 SUMMARY 

In this chapter, CMS membranes were characterized under aggressive conditions, 

namely (i) change in permeate pressure and (ii) exposure to humidity.  An increase in the 

pressure ratio resulted in a decrease in the separation factor due to a reduction in the 

chemical potential driving force.  The CMS separation performance correlated well with 

the theoretical separation factor expression when the pressure ratio was within the values 

used in industry; however, further investigation should be conducted to address the 

deviation of excellent CMS separation performance which theory somewhat 

underestimated at high pressure ratio (or driving force).  The deviation may have been 

due to competitive sorption effects that enable CO2 to favorably depress CH4 sorption on 

permeation in mixed gases. 

When CMS films were exposed to humidified air for a period of 30 days, 

permeability was reduced by more than 50% but the selectivity remained almost constant.  

This and a significant reduction in the sorption isotherms indicated that the water 

adsorbed in micropore site, instead of critical ultramicropores. Similar observation was 

made on CMS asymmetric hollow fiber membranes that the permeance was significantly 

reduced with a small effect on selectivity.  These imply a high tolerance of “oxygen 

doped” CMS membranes to humidity, and there is no apparent reaction or effect from 

humidity exposure.  Additional experiments on asymmetric hollow fiber CMS 

membranes on Teflon coating demonstrated the ability to prevent the humidity effect on 

CMS membranes. 
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CHAPTER 7 

SUMMARY AND RECOMMENDATIONS 

 

7.1 SUMMARY AND CONCLUSIONS 

 The goal of this project was to develop an economically preferred method to 

produce industrially viable CMS membranes.  To start with the project, a high 

performance 6FDA based polyimide was synthesized and a CMS membrane was 

produced using vacuum pyrolysis to benchmark against the literature.  In order to 

produce CMS membranes in a more economical way, inert pyrolysis was chosen over 

traditional vacuum pyrolysis.  A hypothesis was made that oxygen exposure during 

pyrolysis would result in carbon-oxygen chemisorption reactions at ultramicropores 

which essentially results in efficiency (selectivity) enhancement. 

The effect of oxygen exposure during pyrolysis was evaluated by first changing 

oxygen concentration in purge gas using the aforementioned 6FDA derived polyimide.  

The results indicated that (i) inert pyrolysis can be used to produce attractive CMS 

membranes that well exceed the polymer trade-off curve, (ii) the data deviation of the 

CMS separation performance can be reduced to less than 10% from 20% of previously 

reported by controlling and carefully monitoring oxygen concentration, and (iii) a 

correlation between oxygen exposure and separation performance exists.  Once the 

“oxygen doping” method was developed, it was demonstrated on a commercially 

available polymer Matrimid® precursor.  A similar correlation was observed with a 

surprisingly different trend.  This led to the investigation of the structure of CMS 

membranes.  Sorption and permeation experiments were utilized to calculate diffusion 

coefficients of both 6FDA and Matrimid® derived CMS membranes.  Using various gas 

molecules as probes, diffusion coefficient based pore size distributions were constructed.  
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As a result, it was concluded that one can control and predict separation performance 

using the oxygen doping method once the intrinsic or “undoped” CMS structures are 

known. 

The oxygen doping method was developed with a hypothesis that oxygen 

exposure would control the chemisorption process.  The oxygen exposure can be tuned in 

two ways: (i) by changing oxygen concentration and (ii) by changing total oxygen 

exposure amount.  Previously, it was believed that the amount of oxygen exposure 

dominates the oxygen doping process.  A series of well controlled studies were conducted, 

namely (i) effect of thermal soak time, (ii) effect of precursor thickness, and (iii) effect of 

inert flow rates.  The result indicated that the oxidation process is likely governed by 

reaction equilibrium, rather than reaction kinetics, which was to be a key finding factor in 

this project. 

The oxygen doping process was then translated from homogeneous dense films to 

asymmetric hollow fiber membranes.  This step was important for CMS 

commercialization to attain high surface area to volume ratios.  Using defect-free 

asymmetric hollow fiber membranes, the oxygen doping method was successfully 

translated from films to fibers.  CMS fibers were characterized under realistic conditions 

of high pressure mixed gas feed with negligible stage-cut.  This also implies that an 

ability to control or predict separation performance of CMS fibers like films once 

intrinsic CMS structure is known.  In addition, the effect of permeate pressure as well as 

humidity exposure was investigated and it was demonstrated that the oxygen doping 

process would not likely to affect the resulting CMS material unstable under these 

conditions. 
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7.2 RECOMMENDATIONS 

 This research was successful in developing highly attractive CMS membranes, 

and during the course of the development, several potential research areas were 

discovered and explained below. 

 

7.2.1 Properties of CMS membranes 

7.2.1.1 Morphology 

As Chapter 2 explained, literature suggests two hypothetical CMS structures: (i) 

turbostratic structure in which short graphene sheets (<30 Å) are entangled in 3D 

orientation [1] and (ii) short “defective” graphene sheets oriented randomly as a result of 

polymer pyrolysis [2].  While both fits the bimodal pore size distribution model, the latter 

picture seems to fit the idea of having “defects to react with oxygen” to make pores even 

more selective on the graphene sheets as reported in Jiang’s simulation work [3].  The 

exact structure of CMS membranes remains unknown, but understanding the CMS 

formation and structure would lead to better control of the doping process developed in 

this work and also may be a key to solve the low permeance issue of asymmetric hollow 

fiber CMS membranes.  A combination of various characterization techniques, such as 

high resolution transmission electron microscope (TEM) often used in the  lithograry 

research field [4, 5], and transport properties may be a good starting point for this 

objective, especially to understand structure of ultramicropore regions.  

As discussed in chapter 2, CMS structures are known to be affected by various 

factors, such as the polymer precursor and the pyrolysis temperatures, and it is also 

important to conduct thorough investigation on this matter.  For instance, Lafyatis et al. 



172 
 

have examined the effect on CMS pore structure of adding PEG of various average 

molecular weights to PFA resin. They found that the added PEG resulted in a distinct 

effect of molecular weight on CMS structures [6].  While their focus was on microporous 

region, this implies that even change in molecular weight could result in slight difference 

in CMS structure, hence separation performance. 

 

7.2.1.2 Physical properties 

For production of commercial CMS module, it is important to understand 

mechanical strength of CMS fibers.  Flexibility (ability to bend) of CMS fibers was 

observed to be exceedingly high compared with the CMS dense films.  While polymer 

dense fibers are flexible, the pyrolyzed CMS films are rather brittle and made it difficult 

to successfully mask them.  Asymmetric hollow fiber morphology, on the other hand, 

made both polymer and CMS materials flexible and mechanically easy to process as 

depicted in Figure 7.1.  Negligible deviation was observed on the flexibility among CMS 

fibers exposed to various oxygen levels during module construction.  To understand the 

morphology and for CMS fibers to be commercialized the physical ability and stability 

should be further addressed. 

 

 

Figure 7.1: Matrimid® CMS fibers twisted to depict its flexibility. 
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Several mechanical test methods could be used to investigate both film and fiber 

flexibility [7]. Most of them are based on uniaxial bending.  For example, the Kawabata 

Evaluation System for Fabrics (KESF) includes a test measuring the bending moment of 

a strip of material as a function of its curvature, thus providing the uniaxial bending 

rigidity which is proportional to the material stiffness [8].  On the other hand, the test 

method used in the ISO 5979 standard  measures the uniaxial flexibility of elastomer 

coated textile fabrics; its principle consists in forming a loop with the material, the 

maximum height formed by this loop being proportional to the material stiffness [9].  In 

addition, ASTM D 1388 standard characterizes the flexibility properties of fibers, the 

bending length is measured according to two procedures, the cantilever test and the heart 

loop test, which allows the flexural rigidity to be calculated [10].  

 

7.2.2 “Other “dopants” 

The oxidation of carbon can be achieved with oxygen, carbon dioxide, water 

vapor, or nitrogen dioxide [11].  According to Jacquot et al., the reactivity of nitrogen 

dioxide, NO2, towards carbon is far greater than that of oxygen at low temperature of 500 

˚C [12].  Study shows that chemisorption takes place with surface species like C-NO2, C-

ONO, and C-N-NO2 [13, 14].  It would be interesting to investigate the comparison 

between the two dopants, especially related to stability and ageing of such CMS 

membranes. 

 

7.2.3 “Doping” method for other gas separations 

 Natural gas consists of various impurities, as mentioned in the introduction 

chapter.  The impurities include heavy hydrocarbons and other components, such as 

moisture and H2S.  One of the most difficult hydrocarbon separations is alkane/ alkene 

separation.  According to our hypothesis, pore size distribution shifts as the degree of 
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oxygen doping increases.  Based on this hypothesis, one could demonstrate the effect of 

the oxygen doping method and optimize these challenging separation performances.  In 

this work, the effect of a humidified feed was investigated on one of the best performing 

CMS membranes and with better coating technique, it was concluded that the humidity 

effect is likely to be treated.  For H2S separations, preliminary work using Matrimid® 

CMS membranes (pyrolyzed under 1ppm O2/Ar), resulted in H2S/CH4 selectivity of 

~23.1 with H2S permeability of 1.1, using 10/90 H2S/CH4 feed at 50 psia at 35 ˚C.  Using 

the same membrane, CO2/CH4 selectivity was reported to be 85.4 when a ternary mixture 

of 15% H2S, 15% CO2 and balance CH4 was fed (H2S permeability of 9.9 Barrer).  The 

exact mechanism of H2S transport in CMS is not known, and the transport properties, 

such as energetic and entropic contributions should be addressed. 

 

7.2.4 Prevention of permeance loss 

 Permeance of CMS membranes on asymmetric hollow fibers are observed to be 

slightly lower than expected from dense film study.  This phenomenon has been observed 

by various researchers.  In order to resolve this issue, integration of various techniques in 

the pyrolysis method is recommended.  One such example is the pyrolysis of dual layer 

polymer membranes.  In this study, 6FDA based CMS membranes were found to be more 

permeable than Matrimid® CMS membranes.  Having bulky 6FDA based polymer on the 

outer skin layer could provide more permeable fibers, and having the more economical 

polymer, Matrimid®, on the inside would reduce the cost compared with utilizing single 

layer 6FDA based fibers.  Several researchers have successfully demonstrated the 

efficacy and productivity of cross-linking hollow fiber membranes, but the CMS 

membranes of cross-linked polymer membranes may not be a solution.  For instance, Tin 

et al. showed that both selectivity and permeability of cross linked Matrimid® CMS 

membranes are not improved by cross linking.  In fact, a degree of cross linking 
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increased, both parameters started to decrease [15].  Instead of modifying the structure of 

the polymer precursor, it is also suggested to increase the rate of heating.  As previously 

mentioned, increasing the ramp rate results in an increase in permeability with a decrease 

in selectivity.  Suda and Haraya reported that the CO2 permeance increased from 0.5 to 

13.3 Barrer by increasing from 1.3 to 13.3 K/min with decrease in CO2/N2 selectivity 

form 122 to 83 [16].  

 

7.2.5 Alternative regeneration method 

 Chapter 6 demonstrated effect of humidity exposure on CMS membranes.  In this 

work, heat treatment was used as a method of the regeneration.  The results shows 

recovery of the reduced permeability, but it was not completely eliminated.  Another 

possibility is to expose CMS membranes to propylene to remove sorbed water on CMS 

membranes since Jones and Koros demonstrated that propane acts as a cleaning agent 

when CMS is exposed to organic contaminants [17].  

 

7.2.6 Alternative hydrophobic coating 

In this work, Teflon AF was utilized as a coating material for CMS membranes.  

One of the alternative methods is to use highly branched polymers which provide a 

barrier layer to inhibit access of water vapor or nonpolar oil contaminants to the surface 

of CMS membranes.  One such example is dendrimers.  The nature of the dendrimers can 

be tuned to enable the creation of diverse properties against various contaminants.  

Literature suggests that the highly branched hydrocarbon dendrimers, such as shown in 

Figure 7.2 are much larger than gas molecules and have hydrophobic high free volume 

natures.  This enables a coating comprising such dendrimers to hinder access of water to 

the CMS membrane surface by adding selective water resistance while causing minimal 

resistance to desired gas molecules being separated by the CMS structure.  This material 
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may be similarly effective and much less costly than highly expensive amorphous 

hydrophobic Teflon® coating that are known to fulfill this protective coating on CMS [18, 

19].  Such novel dendrimers are prepared with several routes, such as use of the Diels-

Alder reaction [20, 21].  Hydrocarbon dendrimers with functional groups, such as 

fluorine [22] and carboxylic acids [21], are interests since this allows one to possibly tune 

the hydrophobicity and/or hydrophilicity [21] of the coating and therefore overall 

performance of CMS membranes. 

 

 

Figure 7.2: Example of hydrocarbon dendrimers: (left) chemical structure and (right) 
space-filling molecular model [23]. 

 

 

7.2.7 Scale-up of CMS membrane production 

 This work has been currently expanded to the asymmetric hollow fiber CMS 

membrane production from a laboratory scale to a commercial scale using the method 

developed in this work.  While our current pyrolysis set-up allows producing 1~3 fibers 

in one batch, this next generation pyrolysis setting allows producing more than 200 fibers 

at once.  Preliminary results are encouraging and it is speculated that the CMS fibers 

would alter the current polymer membranes in near future. 
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APPENDIX A 

MANUFACTURE OF LAB-SCALE                                                   

HOLLOW FIBER MODULES [1, 2] 

 

A.1 INTRODUCTION 

Prior to permeation testing, hollow fiber modules are prepared.  The module 

serves as the interface between the permeation system (gas cylinder, tubing, valves, etc.) 

and the CMS or polymeric membrane.  This appendix consists of lists of the parts and 

procedures to construct a double-ended hollow-fiber module for laboratory-scale 

experiments.  This design has been used in a number of prior studies and is reported in 

work by Djoekita [3].  

 

A.2 PARTS 

 The main parts required to make a hollow fiber module are listed in Table A.1. 

 

Table A.1: Parts required for manufacture of double-ended lab scale hollow fiber module. 
Name Manufacture Materials 

Ferrules Swagelok Brass or Stainless Steel 
Nut Swagelok Brass or Stainless Steel 

Female Adapter Swagelok Brass or Stainless Steel 
Male Adapter Swagelok Brass or Stainless Steel 

Tee Swagelok Brass or Stainless Steel 
Metal Tubing Swagelok Brass or Stainless Steel 

Cap Swagelok Brass or Stainless Steel 
Plug Swagelok Brass or Stainless Steel 

ID Tag   
Tygon Tubing Fisher  

“5 Minute” Epoxy GC Electronics or Devcon  
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A.3 PROCEDURE 

 A “blank” module is first prepared then fibers are put into the module and the ends 

sealed with Teflon tape and epoxy.  Finally, the module is prepared to be put into the 

permeation testing system. 

 

Step 1:  The “blank” module (Figure A.1) 

a. Stainless Steel (S.S.) parts. 

i)   Cut a 2~ 12 cm piece of ¼” S.S. tubing. 

ii)  Bore out the ends with a ¼” countersink tool used as the bit in a drill press. 

iii) Test the ends for burrs with a Q-tip.  

iv)  Add a S.S. nut, ferrule and tee (either S.S or Brass) to each end. 

b. Brass Parts 

i)   Attach a Brass nut and ferrule to a Brass female ¼” NPT adapter. 

ii)  Attach the S.S. tee from step 1a (iv) to the Brass nut on the female adapter. 

iii) Repeat steps (i) and (ii) for the other end of the module.  Both ends should be 

identical. 

c. Attach an ID tag to the middle of the tubing and a weighting paper hold into 

cone-shaped to the end of the tubing.  

Step 2:  Adding the hollow fibers 

d. Prepare nominally 1 (for CMS) or 25 (polymer) hollow fibers. 

e. Tie a 2-ft. long string to the end of the fibers. 

f. Slide the string through the Blank Module, pulling the fibers through as well. 

This part needs to be done carefully and slowly as the fibers can break easily. 

g. Remove the string from fibers. 

h. Tape the other, non-tied, end of the fibers together with Scotch tape so that they 

can easily be threaded through ¼” tubing. 
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i. Slide the fibers so that equal length sections extend from each end of the 

module. 

Step 3:  Sealing the module 

j. Pack a Teflon tape “worm” into one of the Female Adapters and around the 

fibers.  Be careful not to crush the fibers, and assure a good seal between the 

fibers and the brass wall of the female adapter.  (A “worm” is a 5-cm long roll 

made up of ~16 layers of Teflon tape.) 

k. Put a 1-cm piece of 3/16” Tygon Tubing onto a Brass Male ¼” NPT Adapter.  

(Figure A.1(c)).  

l. Add a 1:1 ratio of the GC electronics or Stycast brand epoxy Hardener and Resin 

into a disposable container.  Mix for 30 seconds.  

m.  Pour the epoxy into the Brass Female Adapter, filling it slightly beyond the top. 

n. Slide the fibers through the piece from step 3l.  Screw the Male Adapter into the 

Female Adapter until the epoxy fills the Tygon tubing piece. 

o. Wait ~10 minutes, then flip the module and repeat steps 3a-e for the other end of 

the module. 

Step 4:  Prepare the Module for Permeation Tests 

p. Once the epoxy has fully cured (30 minuites after mixing for the GC Electronics 

‘5 minute’ epoxy), break off the Tygon tubing piece by tapping it on the 

countertop.  The fibers should be all open, with an encapsulating seal of epoxy 

around them. 

q. Put a Brass nut and ferrule on the Male Adapter on each end of the module. 

r. Put a Plug into one end of the module, and a Cap on the nearest Tee fitting, and a 

Port connecter on the furthest Tee fitting. 
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                           (a)                                 (c)                                       (d) 
Figure A.1: Picture of fiber modules in production: (a) Parts for a “blank” module, (b) the 
“blank” module, (c) a brass male adapter with Tygon tubing piece, and (d) the final 
module for permeation tests. 
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