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NOMENCLATURE 

B. . Elements of the coefficient matrix of a system of linear 
i 1 

equations. 

B.T.E. Blade trailing edge. 

b Blade number. 

3 2 
C Induced Power Coefficient, C = P /[pCftRj IIRj . 

CT Thrust coefficient, C,r = TD/(p(ftR2)
 2nR^) . 

CT Thrust coefficient due to fan or propeller alone. 
P 

e Nondimenstional energy loss in the fan wake, e = E / 

(p(C!R2)
3JIR2). 

E Total induced kinetic energy loss in the fan wake, 

G Scale factor, G = 1 - IT /W sin^-. 

K(X) Goldstein coefficient, K(X) = br'(X)/2nR2WX2. 

KQ(X) K(X) for W = 0 case. 

m R-, / Rp. 

P Static pressure. 

P Static pressure of the undisturbed fluid. 
00 r 

P Non-dimensional d i s t a n c e from a vo r t ex f i lament to a c o n t r o l 
p o i n t . 

P I d e a l induced power of the duc t - fan system. 

P Stagnation pressure. 

Q_ Torque on the fan b l a d e s . 

r,̂ ,z Cylindrical-polar coordinates. 

r',f,z' Cylindrical-polar coordinates of a vortex filament. 
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Nondimensional radial coordinate, r = r/R~. 

Outer radius of the ultimate wake of the fan. 

Just inside of R„. 

Just outside of R~. 

Radius of the inner boundary sheet and hub trailing 
edge. 

Just inside of R . 

Just outside of L . 

A length of a vortex filament. 

Surface area. 

Time. 

Total thrust of the duct-fan system. 

Thrust due to fan alone. 

Distrubance velocity component in the direction of the sub
script. 

Distrubance velocity in £ direction at the innermost vortex 
filament of any B.T.E. sheet, U = U at r = R+ . 

>̂i s -L 

Tangential velocity component on the jet wake boundary in 
the ultimate wake, D, = U, at r = R_. . 

i / > . i p 1 
J 

Nondimensional v e l o c i t y , U = U/W. 

Veloc i ty desc r ib ing the motion of vo r t ex f i laments on the 
ou te r uniform boundary s h e e t . 

T o t a l d i s tu rbance v e l o c i t y . 

Tota l v e l o c i t y . 

Veloc i ty of the undis tu rbed flow. 

Nondimensional v e l o c i t y , V = V /W. 
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Disturbance axial velocity on the_jet boundary in the ul
timate wake, V. = U at r = R_ . 

j z 1 

Apparent axial disturbance velocity in the ultimate wake 
of the fan. 

Dimensionless W, W = W/fiR?. 

Nondimensional radial coordinate, X = r = r/R„. 

Nondimensional axial distance, z = z/(2IIR„A„/b) . 

Nondimensional axial coordinate, z = z/R„. 

Axial distance between the z = 0 plane and the point 
where the vortex filament intersects the rz-plane. 

Vortex filament strength. 

Nondimensional filament strength, y = y/4IIR„WG. 

Vortex sheet strength normal to the filaments. 

Vorticity per unit area. 

Vortex sheet strength of the outer uniform boundary sheet. 

Vortex sheet strength of the inner uniform boundary sheet. 

V V 2" 2 
Defined as e = f f | U XdX dz dip/211. L (I • '* J J I * 

Rl'"2 

1 21 _ 
Defined as e f f f U XdX dz d̂ /2IT, 

Defined as e / | I U XdX dz dij;/ 2n. 
z l f l z 

Vortex strength of an equivalent line vortex filament along 
the axis of the jet. 

Blade bound vortex strength at station X. 



£ Helical coordinate in the direction of the helix. 

C Helical coordinate normal to the helical filaments 

1 
K' Mass coefficient, K' = 2 f K(X)Xdx 

m 

K0 

2 

B i 

K ' f o r W = 0 c a s e . 

V + W 
A0 Wake geomet ry p a r a m e t e r , A 0 = — = tan<j>0. 
Z Z tf, Kry Z 

A_ Geometry parameter of outer uniform boundary sheet 
B, 

V + W 
A, Wake geometry parameter, A = n - p— = tanĉ -
J. L i& R - 1 

1 
Defined as, y' = 2 f — y ' dX. 

J (x2 + x;> 
m z 

y' y' for W = 0 case. 

Density of the fluid. 

Disturbance velocity potential. 

Pitch angle of any B.T.E. sheet at radius 'r'. 

i 4) at r = R . 

+ > 4) at r = RT. 

) Pitch angle of the outer uniform boundary sheet. 
Bo 

Pitch angle of the inner uniform boundary sheet 

y Total stream function, 

Q, Rotational speed of the fan blades. 
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SUMMARY 

Single-rotation high by-pass ratio ducted fans with a finite num

ber of fan blades, zero tip clearance and no stator vanes and with the 

highest induced efficiency generate an ultimate wake vortex system whose 

apparent motion is that of rigid helical surfaces of constant geometric 

pitch. This helical wake vortex system is bounded on the inside by a 

constant diameter cylindrical vortex sheet shed from the trailing edge 

of the hub and on the outside by an another constant diameter cylindri

cal vortex sheet shed from the trailing edge of the duct. The outer 

cylindrical vortex sheet represents the continuation of blade bound vor

tex on to the duct where it is spread out on the duct surface and finally 

shed at the trailing edge of the duct. Concentric with the fan wake and 

inside of the inner boundary sheet is the jet wake which is assumed to 

be generated by an infinite-bladed turbine. The jet wake is assumed to 

be given. 

A consistent mathematical potential wake model is presented for 

the fan wake and the boundary sheets and the compatibility relationships 

to be satisfied by each of the cylindrical boundary vortex sheets are 

obtained. It is shown that for the wake model to be consistent, the jet 

wake needs to satisfy certain conditions as far as the induced velocities 

in it are concerned. The compressibility and viscous effects are ne

glected in the analysis of the wake. Using the Biot-Savart law, the vor

tex strength distribution of the ultimate wake is found numerically and 
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then is related to the blade bound vortex strength distribution. The 

expressions for the thrust, induced power, and induced efficiency are 

developed using integral theorems and evaluated numerically. 

The ultimate wake vortex model for a ducted fan with infinite 

number of blades is also developed. It is shown that this wake consists 

of a constant diameter cylinder of vorticity. The vortex strength dis

tribution in the ultimate wake as well as the expressions for the thrust 

and induced power are obtained in closed form. 

The bound vortex strength distribution, the thrust, and induced 

power are obtained numerically for heavily loaded ducted fans with a 

finite number of fan blades for different values of by-pass ratio, blade 

number, and wake geometric parameter. It is shown that with increasing 

blade number these values converge to that of the infinite-bladed fan. 

A tentative procedure for the design of the duct which results in 

a compatible wake vortex system is suggested. 
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CHAPTER I 

INTRODUCTION 

Ducted fans are finding a wide application in modern aircraft 

either in the development of low-speed thrust as in the case of V/STOL 

aircraft or as high by-pass ratio ducted fan engines in the case of 

high-speed subsonic aircraft. In either case, these fans are the main 

propulsive units and are usually driven by jet-core engines housed in 

the hub of these fans. A review of ducted propellers or fans highlight

ing the theoretical as well as experimental investigations was given by 

Weetman and Cromack . However, in the past most of these investiga

tions are limited to fans without a finite hub and the emphasis was on the 

lightly loaded ducted fans. Optimum heavily loaded ducted fans with-

(2) 
out a hub but with a finite number of blades were analysed by Wright 

It is the purpose of this research to provide information regarding the 

design of optimum high by-pass ratio ducted fans which have a finite 

hub. The wakes of these ducted fans consist of two parts; one from the 

fan blades and the duct and the other from the turbine blades of the 

core engine. In this thesis, the wake of an optimum high by-pass ratio 

ducted fan with a finite as well as infinite number of blades is 

analyzed. The ducted fan is optimum in the sense that the induced 

efficiency of the duct-fan system excluding that of the core jet engine 

i s maximum. High by-pass r a t i o ducted fans only are cons idered , so 

t h a t t he most of the t h r u s t developed by the engine comes from the duc t -
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fan system. The primary emphasis of this thesis is on the wake of the 

duct-fan system. The classical analysis of an optimum free propeller 

due to Betz was the basis of the work of Gray * and Wright . 

It was shown by Betz that an isolated free propeller having the highest 

possible induced efficiency generates an ultimate wake vortex system 

which moves as if the vortex sheets of the wake formed a rigid helical 

structure of constant pitch. Application of this constraint to the 

motion of the vortex sheets provides a method for calculating the radial 

(2) 
vorticity distribution of the shed wake. Wright has shown that the 

same arguments are valid for the geometry and motion of the vortex 

sheets shed from the trailing edges of the blades of an optimum heavily 

loaded ducted fan. However, the presence of the duct results in a cyl

indrical vortex sheet shed from the trailing edge of the duct which rep

resents the continuation of blade bound vortex from tips into the duct. 

Thus, the helicoidal vortex sheets shed from the trailing edges of the 

fan blades have at their outer edges the cylindrical vortex sheet shed 

(2) 

from the trailing edge of the duct. Wright developed the compati

bility conditions required for the blade trailing edge sheets and the 

cylindrical boundary vortex sheet for a ducted fan without a finite hub 

and blade-tip clearance. With a straightforward application of Biot-

Savart law to the mathematical model of the constant diameter ultimate 

(2) 
wake, Wright obtained the vorticity distribution in the ultimate 

wake. The blade bound vortex strength distribution and the thrust, in

duced power, and induced efficiency of the ducted fan were then ob

tained from a knowledge of wake vorticity. 
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In this thesis, Wright's analysis has been extended to the 

case of an optimum heavily loaded high by-pass ratio ducted fan. In 

high by-pass ratio ducted fans, most of the thrust is developed by the 

fan which is driven by a core engine housed in a finite hub. 

The mathematical model assumed for the ultimate wake of an opti

mum high by-pass ratio ducted fan with finite number of blades consists 

of helicoidal vortex sheets of constant pitch bounded on the inside by 

the jet wake and on the outside by the cylindrical vortex sheet shed 

from the trailing edge of the duct. The jet wake is of constant diameter 

and is assumed to be that generated by an infinite-bladed turbine. The 

axial velocity in the jet wake may vary radially. The jet wake consists 

of a distribution of ring and line vorticies and it is assumed that the 

net vorticity in the jet wake is zero. This implies that the jet wake 

as a whole does hot affect the flow field outside of it. A cylindircal 

boundary vortex sheet equal in diameter to that of the trailing edge of 

the hub, referred to as the inner boundary sheet, accommodates the dis

continuity in the velocities between the jet wake and the fan wake and 

cancels the effect of fan wake in the jet wake. Since the outer bound-

(2) 

ary sheet is similar to the one used in Wright's model, the compati

bility conditions developed by Wright are used at the outer boundary 

sheet. The necessary compatibilit}^ conditions required at the inner 

boundary sheet must be developed. It is shown that for the jet wake to 

be compatible with the fan wake, the vorticity in the jet wake boundary 

has to satisfy certain conditions. 

(2) 
A numerical scheme similar to the one proposed by Wright has 

been employed to solve for the vorticity distribution in the fan wake. 
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The blade bound vortex strength distribution, the thrust, and induced 

power of the duct fan system, excluding the contribution due to the jet 

are computed. These results apply to the high by-pass ratio, single 

rotation, ducted fans without stator vanes and give an upper limit on 

the performance since compressibility and viscosity effects were ne

glected. 
f e.\ 

Based on unpublished work due to Gray , a wake model for the 

optimum high by-pass ratio ducted fan with infinite number of blades is 

developed and analyzed. Simple expressions for the bound vorticity dis

tribution as well as the thrust and induced power are obtained. These 

are necessary in the development of a preliminary design procedure for 

the duct as well as that of the fan. A design outline of the duct and 

fan which result in the assumed ultimate fan wake is given. 
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CHAPTER II 

FINITE-BLADED FAN 

Wake Model 

The wake vor tex model developed for the optimum high by-pass r a t i o 

ducted fans is essentially an extension of the constant diameter wake 

(2) 

vortex model used by Wright for heavily loaded ducted fans. The ul

timate wake of the optimum high by-pass ratio ducted fans consists of 

the following elements: the helical vortex sheets of constant pitch 

shed from the trailing edges of the fan blades, the cylindrical vortex 

sheet shed from the trailing edge of the duct, the cylindrical vortex 

sheet shed from the roots of the fan blades and subsequently from the 

trailing edge of the fan hub, and the jet wake from the turbine of the 

engine housed in the fan hub. The two cylindrical vortex sheets consist 

of helical vortex filaments and are of constant diameter. The vortex 

sheets shed from the trailing edges of the fan blades, hereafter referred 

to as B.T.E. sheets, are bounded by the two cylindrical sheets. Hence, 

these cylindrical sheets are referred to as boundary sheets. The outer 

boundary sheet separates the fan wake from the irrotational fluid out

side of the wake. The inner boundary sheet separates the jet wake from 

the fan wake. (See Fig. 1). 

The argument concerning the geometry and motion of the ultimate 

wake vortex system of an optimum single rotation, single-row, ducted fan 

or propeller is essentially the same as given by Theodorsen for a free 



Figure 1. Ul t imate Wake Of A High By-Pass Ratio 
Ducted Fan; Paths Of Line I n t e g r a l s 
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propeller. In Ref. 3 it was shown that the optimum condition, that is, 

the one which results in the highest possible induced efficiency, is 

obtained for the ducted fan when the helical vortex sheets shed from 

the blades have a constant geometric pitch and appear to move as rigid 

screw surfaces of constant diameter in the ultimate wake. This wake 

model was used for an optimum ducted fan without a hub in Ref. 2. In 

the present case it is assumed that the same conditions hold for the ul

timate wake of the fan of an optimum ducted fan with a finite hub. It 

is also assumed that the duct is designed such that there is no con

traction or expansion of the wake downstream of the trailing edge of the 

duct. This is a feasible design problem and guarantees that the duct is 

compatible with the wake geometry and the analysis. 

Wakes having an initial expansion or contraction can be treated 

if it is assumed for an incompressible flow, that a given vortex fila

ment remains at the same nondimensional local radius as it moves down 

the wake. But in this case, the analysis gets involved since the con

tinuity and force-free vortex must be maintained, while physical limita

tions such as flow separations must be avoided in the duct. Design of 

the fan blades also depends on the. geometry of the expanding wake and 

proceeding from the ultimate wake to the fan blades is more involved. 

While the expanding wake might give a higher induced efficiency for a 

given thrust and duct diameter, it: must be noted that the optimum con

dition referred to is for the assumed constant diameter wake downstream 

of the trailing edge of the duct. 

In order to maintain the apparent rigid motion of the B.T.E. 
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sheets, certain compatibility conditions are to be satisfied by the jet 

wake as well as the two cylindrical boundary sheets. The compatibility 

conditions required at the outer boundary vortex sheet have been de-

(2) 
veloped by Wright and are rederived here in a slightly different 

fashion. The necessary compatibility conditions required at the inner 

boundary vortex sheet are developed here. Since the inner boundary 

sheet separates the B.T.E. sheets from the jet wake, a suitable model 

for the jet wake has been assumed. 

The jet wake is assumed to be cylindrical with a volume distribu

tion of ring and line vorticity. Essentially it is thought of as a wake 

generated by an infinite bladed turbine. The diameter of the jet wake 

is assumed to be equal to that of the trailing edge of the hub. It is 

assumed that the net vorticity in the jet wake is zero. This implies 

that in the ultimate wake, the jet wake does not influence the velocity 

field outside of it. The axial velocity in the jet wake may vary across 

the jet. This idealized jet wake model does not take into account any 

viscous interaction between the wakes. 

Following the reasoning developed in Ref. 2, a description of 

the wake of the optimum high by-pass ratio ducted fan is given below. 

Consider a helical co-ordinate system, r, £, £, defined in terms 

of the cylindrical coordinates, r, i];, z, as shown in Fig. 2 such that 

at a given instant, a B.T.E. sheet in the ultimate wake coincides with 

z, = 0 surface. Then 



X , X T , r 

z,z 

E, ~ r ^ coscj) + z sincf) 
<; = z coscj) - ri|> sincf) 

J^ costp + U s ine 
U cosd) -f U, s ine 

z ty 

Figure 2. H e l i c a l Coordinate System. 
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r = r , 0 £ r £ °°. (1) 

E, = rty cos<|) + z sin<j>, -°° £ 5 £ °° (2) 

(VM + W)cos<J) (V^ + W)cos(j> 
C = -rip sin<j> + z cos<j>, <Zfn/o-\ < £ < 2b(fi/27r) - ^ - 2b(fi/27r) (3) 

where U is the angular velocity of the blades and W is the apparent 

axial velocity in the ultimate wake. The apparent rigid structure of 

a B.T.E. sheet suggests that the apparent axial velocity, W, of a point 

on the B.T.E. sheet, that is, the velocity with which a point on the 

B.T.E. sheet appears to be moving relative to an observer fixed in 

space, be the same as that of any other point. 

To maintain the apparent rigid structure of the B.T.E. sheets in 

the ultimate wake, a helical symmetry of the fan wake vortex system is 

necessary. This requires that the disturbance velocity vector is con

stant along the helical lines, r = constant and £ = constant, both in

side and outside the ultimate wake. Helical symmetry further requires 

that the boundary vortex sheet strength distribution be symmetric with 

respect to the lines of intersection of the B.T.E. sheets with the 

boundary vortex sheets for zero radial velocities at the B.T.E. sheets. 

The region of interest is the fan wake between the two boundary 

vortex sheets. Consider a line integral of the velocity along the path 

ABCDA within the wake as shown in Fig. 1. The velocity diagram at a 

point on the B.T.E. sheet with respect to a rotating fan blade is shown 

in Fig. 3. Along BC and DA in Fig. 1, U is constant by virtue of 

helical symmetry. AB and CD are the radial lines intersecting the 



Figure 3. Velocity Diagram At A Vortex Filament On A B.T.E. Sheet. 
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helical lines BC and DA. The points A and D are at R on the B.T.E. 

sheet. The path so described lies entirely on the surface of the B.T.E 

sheet and hence does not enclose any vorticity. 

Br Cf Dr kf 
J U r dr + J\] d£ + J U r dr + J u d£ = 0 

B 

AJ * B' " C ^ D 

s ince 

U r == U 
AB DC 

where 

V 5 c - V + n (eA - V - o, 

u = u 

h ^ - R1
+ 

After some simplification and using the fact that the B.T.E. sheets 

have a constant pitch, it can be shown that 

U = U sin<j>/sin<j> , R < r < R2- (4 ) 

From the requirement of helical symmetry, it can be shown that the pre

ceding relation holds along any arbitrary helical ine throughout the 

wake. A similar line integral along the path EFGHE establishes the 

same result outside of the ultimate wake. Further, for the helical co

ordinate C> 
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t a n <f> = (R / r ) t a n cf> (5) 

which is a consequence of the constant pitch condition. Thus since $ 

approaches zero as r approaches infinity, U from Eq. (4) becomes zero 

at infinite radial distances. 

The wake is subject to the additional condition that the line in

tegral of the velocity along a path enclosing all the wake must be zero 

to obtain a single-valued solution outside of the wake. Following the 

lines of reasoning given in Ref. 2, it can be shown by computing line 

integrals of the velocity along suitably chosen contours such as 

A'B'C'A' and A'C'D'E' (see Fig. 1) that for the flow to be irrotational 

outside of the wake U must be zero. This is true for a lightly loaded 

H 
ducted fan. However, for a heavily loaded system, U is not zero. For 

^1 
(2) 

this case, a geometry and motion similar to the one proposed by Wright 

is necessary for the flow to be irrational outside of the wake. 

In the heavily loaded case, the boundary vortex sheets will have 

an axial motion relative to the B.T.E. sheets and a symmetric strength 

distribution with respect to the lines of intersection between the B.T.E. 

sheets and boundary sheets. The relevant arguments given in Ref. 2 can 

be used here inspite of the presence of a coaxial jet wake, since the 

net vorticity in the jet wake is zero. Following the line of reasoning 

given in Ref. 2, it can be shown by taking line integrals of the velo

city along suitably chosen contours that the only possible irrotational 

flow satisfying continuity outside of the constant diameter wake is the 

one in which all the distrubance velocities are zero. 
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In summary, the wake model for the high by-pass ratio heavily 

loaded optimum ducted fan consists of a constant diameter cylindrical 

jet wake and a coaxial fan wake. The fan wake comprises constant 

diameter helical B.T.E. sheets bounded on the inside by an inner 

boundary vortex sheet which separates the jet wake from the fan wake 

and on the outside by an outer boundary vortex sheet which separates 

the fan wake from the irrotational fluid outside of it. The fan wake 

system is helically symmetric to maintain the apparent rigid motion of 

the helical B.T.E. sheets. The boundary vortex sheets move axially 

relative to the B.T.E. sheets as a consequence of the heavily loaded 

condition. Irrotationality of the flow outside of the fan wake requires 

that the disturbance velocities be zero there. The necessary compati

bility conditions required at the boundary vortex sheets are derived 

below. 

Boundary Vortex Sheets 

These sheets serve three purposes. First along the constant 

diameter boundaries, they must cancel the radial velocity field that is 

associated with the B.T.E. sheets. Second, they must accommodate the 

required discontinuities in the axial and tangential velocities as the 

boundary sheets are crossed. Third, they should not induce radial 

velocities at the B.T.E. sheets. The first and second conditions are 

satisfied by the boundary sheet strength distributions and geometries 

both as yet unknown. The third condition can automatically be satisfied 

by a strength distribution and geometry that is symmetrical with respect 

to the lines of intersection between the B.T.E. and boundary sheets. 
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The two boundary vortex sheets are considered separately. 

Outer Boundary Sheet 

This was the only boundary vortex sheet in the model developed 

(2) 
by Wright . The compatibility conditions for this sheet are derived 

in a similar fashion as in Ref. 2. At the outer edge of the B.T.E. 

sheet along the line of intersection with the outer boundary sheet, 

U = U sin<f>9/sin<}> , (6) 

U = W cos<}>2. (7) 

O u t s i d e t h e wake a t t h e l i n e of i n t e r s e c t i o n , t h a t i s , f o r 

r = R+ U = U = 0 . 
^ s <=> 

Therefore, the filaments on the outer boundary sheet, at the line of 

intersection must have a velocity normal to their helical coordinate of 

(see Fig. A) 

UC = i (U? sin2(j)2/sin
2(l)1 + W

2 cos2c()2)
2, (8) 

B2 1 

and the boundary sheet strength at the line of intersection must be 
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1 
2 2 2 2 2 2 

Y-a = (ur s i n ^ o / s i n <|> + W cos <|> ) . (9) 
B 2 K± 2 1 2 

The above relations are derived from the fact that the strength of a 

vortex sheet is equal to the discontinuity in the velocity components as 

the sheet is crossed and the velocity of the sheet is the mean of the 

velocities on either side of it. 

Therefore, the helical vortex filaments on the outer boundary 

sheet must all cross the lines of intersection at a constant pitch angle, 

$ , not equal to <)>», which is determined from the flight speed, the 
2 

blade rotational velocity, and the total disturbance velocity as given 

in Eq. (8). The boundary vortex sheet strength must also be constant at 

the lines of intersection and is equal to y . Thus, when relative 

B2 

motion exists between the B.T.E. sheets and the outer sheet, the two vor

tex systems are related by Eqs. (8) and (9) along the lines of inter

section. These are the compatibility conditions for the outer boundary 

sheet. On this boundary sheet between the lines of intersection, the 

filament strengths and pitch angle vary with the helical coordinate t,. 

(2) 
Wright devised a clever scheme to obviate the difficulty of 

having to solve for both the strength and geometry of the outer boundary 

vortex sheet. In his wake model, the boundary sheet vortex system is 

replaced by two simpler systems of vortex sheets whose combined effect 

does not change the flow field inside the wake. The first of these is 

a uniform sheet of helical vortex filaments having a constant strength 

equal to y and a constant helical pitch angle c|> . The second is a 
B2 B2 
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cylindrical sheet of helical filaments of varying and unknown strength 

but with a constant and known pitch angle <S> . The first sheet satis

fies the required conditions at the lines of intersection as previously 

derived. The second sheet has zero strength at the line of intersec

tion, has a symmetrical strength distribution about these lines and the 

mid point between the lines of intersection, and cancels the radial ve

locities on the boundary due to the B.T.E. sheets. Superposition of these 

two sheets must maintain the apparent rigid motion of the B.T.E. sheets. 

The geometry and motion of the outer uniform sheet relative to 

the outermost filament of an adjacent B.T.E. sheet is discussed below. 

The velocity diagram with respect to the fan blades shown in Fig. 4 

illustrates these relationships. From Fig. 4, it is seen, consistent 

with the compatibility conditions derived, that 

PB = -|AB, 

OPB = 90° 

and 

OA = OB. 

This means that the magnitude of the velocity just inside and outside 

of the outer boundary sheet at the line of intersection in a coordinate 

system fixed to the fan blades is the same. It is to be noted that the 

boundary vortex system is force-free and the static pressure should be 

continuous across it. From Fig. 4, considering the triangle ABC, it 



Figure 4. Velocity Diagram With Respect To The Rotating Fan Blades 
Of The Outermost Filament Of The B.T.E. Sheet And At The 
Adjacent Point Of The Outer Boundary Sheet. 

00 
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can be shown t h a t 

and , 

AB = Y B = w cos<}>2 sec(<|>2 - 4>B ) » ( 1 0 ) 

<J>? + <J>9 

P O D = <J>R = 2
 Z , (11) 

and 

where t a n <j>0 = V /fiR0 , 
2 °° 2 

t a n <|>0 = (V + W)/fiR0 = A0, 2 °° 2 2 

Thus YD a n a <J>T, » t n e strength and the pitch angle of the outer uniform 
B2 B2 

boundary sheet respectively are determined when W, A„ and b are given. 

The strength distribution of the nonuniform vortex sheet is de

termined later when the complete wake vortex system is solved. 

Inner Boundary Sheet 

As noted earlier, the inner boundary sheet like the outer one is 

cylindrical with helical vortex filaments wrapped on it. It accommo

dates the discontinuity of the velocity vector between the fan and the 

jet wake. It cancels the radial velocities associated with the B.T.E. 

sheets at the boundary sheets. It also cancels the velocities associ

ated with the fan wake and the outer boundary sheet inside the jet 

wake. It must not induce radial velocities at the B.T.E. sheets. As 

was done in the case of the outer boundary sheet, the inner boundary 
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sheet vortex system is replaced by two simpler vortex systems. One is 

a uniform vortex sheet of helical filaments with a constant strength 

equal to that at its line of intersection with the B.T.E. sheets and a 

pitch angle, cj> , to be determined. The other is a nonuniform vortex 
Bl 

sheet of helical filaments with unknown strength distribution but a 

constant known pitch angle, <$>^ , equal to the pitch angle of the inner

most filament shed from the blade. The nonuniform sheet has a symmetric 

strength distribution about the line of intersection and has zero 

strength at the line of intersection. At: a line of intersection with 

the B.T.E. sheets,for r = R , 

\ - \ 

U = W cosd)- . 

At r = R , that is, just inside the boundary of the jet wake, the 

axial and tangential induced velocities are V. and U, . In the case of 

most turbofans, the turbine directly drives the fan and as such has the 

same rotational speed as that of the fan. As per the wake model 

assumed, the outer radius of the ultimate wake of the jet is the same 

as that of the trailing edge of the hub and the radius of the inner 

boundary sheet in the ultimate wake. Therefore, the velocity diagram 

at the line of intersection on the inner boundary sheet can be drawn 

with respect to a coordinate system fixed to the fan blades and is 

shown in Fig. 5. In this figure, FO represents the resultant velocity 



iE& 

tan(J) 

FO J ; GE = GF 

V + W 

ft R-

F i g u r e 5 . V e l o c i t y Diagram With R e s p e c t To The 
R o t a t i n g Fan B l a d e s At The I n n e r Boundary S h e e t 
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of a vortex filament just outside the inner boundary sheet (r = R ) 

at the line of intersection and EO represents the resultant velocity of 

a vortex filament just inside (r = R ). The vector EF represents the 

discontinuity in velocity as the inner sheet is crossed at the line of 

intersection. The strength of the inner boundary sheet at the line of 

intersection is given by the magnitude of the vector EF. The vortex 

sheet at the line of intersection moves with a velocity equal to the 

mean of the velocities on either side of it and is represented by the 

vector GO. Since the direction of the vortex filament is perpendicular 

to the discontinuity velocity vector and since the pitch angle of these 

filaments is determined by their velocities, it follows from Fig. 5 

that |lo| = |F0| and OGE = OGF = 90°. Therefore, for the jet 

wake to be compatible, a particular combination of V. and U as illu-
J Vj 

strated in Fig. 5 which satisfies the above two conditions is needed. 

However, there are several such combinations of V. and U, which can 
3 * j 

satisfy the above conditions, with each particular combination giving 
rise to a particular value of the pitch angle, <j> , for the filaments 

Bl 

on the inner boundary sheet at the line of intersection. If the para

meters of the fan wake, \~ and W, are fixed, the vector FO in Fig. 5 is 

fixed. Then several combinations of V. and U, , each of which satisfy-
J i 

ing the condition |E0| = |FO|, can be chosen with each one giving a 

different <t>_ . A line vorticity distribution in the axial direction and 
Bl 

a ring vorticity distribution in the jet wake can induce the required 

values of U, and V. just inside of the jet wake boundary at the line 

* j J 

of intersection. As far as the tangential velocity U is concerned, 
j 

the line vorticity distribution in the jet wake is equivalent to a 
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resultant line vortex filament along the axis of the jet with a strength 

equal to T = U 2HR . Since the net vorticity in the jet wake is 

J 
zero, a line vorticity distribution of strength -U per unit angular 

J 
distance on the circular boundary of the jet wake is needed to cancel 

the line vorticity in the jet. At the line of intersection, for r = 

R*, (see Fig. 5) 

U, = U, = -W cosi sin^, + Ur cosi , (12) 
^ ^1 1 1 £ 1 

U = U = U sin<}> + W cos <J>-, (13) 
z z-i s-i -L -L 

and for r = R 

U, = U. , 

u = v.. 
z J 

The radial velocities on the boundary are zero. The magnitude of the 

vortex sheet strength at the line of intersection is given by, 

y - |EF| = - [ ( V - 0 ) 2 + (U " V > 2 ] 2 (14) 
1 1 y2 Yl 
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The negative sign has been chosen in accordance with the sign convention, 

that the strength of a vortex filament, y, located on a wake cylindrical 

surface of radius, a, is considered to be positive if the axial com

ponent of the velocity induced by the vortex filament at point for 

which r < a is in the direction of the positive z-axis. Bound vortex 

strengths are considered positive and vortex sheet strengths are con

sidered negative. The pitch angle, <}> , of these filaments is given by, 
Bl 

tan (J) = -(U - U )/(V - U ), (15) 
B2 ^ W-^ J Zj_ 

the negative sign chosen in accordance with the sign convention. It 

can be seen from Fig. 5, that when U, = U, and V. = U , the 

inner boundary vortex sheet does not exist. In most of the turbofans 

in use, V. is usually higher than U , and hence <j) is always greater 
J z± B 1 

than <|)n . However, Eqs. (14) and (15) are valid even if $„ is less than 
1 Bl 

$ . For the jet wake to be compatible, the engine has to be designed 

such that lu , I is greater than U , I . This can be seen in Fig. 5. 
i ,̂ i I ^ I 

S u b s t i t u t i n g E q s . (12) and (13) i n t o E q s . (14) and ( 1 5 ) , i t c a n be shown 

t h a t 

2 2 2 2 
Y„ = - [ ( V . - L L sin<}> -W cos <}> ) + (U, -\Jr cosdr+W costj).. s i n t J O ] 

B 1 j £ 1 r i>. £,1 1 1 1 

(16) 

and 
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t a n (j) = - ( U , - U , ) / ( V . - U r sincJK - W c o s V ) . (17) 
B x iK $1 3 ? x

 T l Y l 

Thus, the uniform sheet strength and pitch angle of the inner boundary 

sheet are determined, when A0, W, V., and U, are given. As discussed 
I i \b. 

_ J 
earlier, for each A~ and W, several combinations of V. and U, with 

2 j I|J 

lu, > |U, I can s a t i s f y the c o m p a t i b i l i t y c o n d i t i o n s . This uniform 
<K ' ^x 

sheet induces rotational velocities in the. fan wake. However, when the 

velocities induced due to the equivalent line vortex filament along the 

axis of the jet wake are taken into account, it is shown later that the 

velocity field in the fan wake is independent of the jet wake parameters 

V. and U, . This is consistent with the assumed mathematical model for 

the jet wake. However, for a given X„ and W, only certain combinations 

of V. and U, are compatible with the fan wake. These can be determined 

once (j)̂  is chosen. Therefore, for a given X , W and <p , V. and U, 
u 1 l a^ j \p 

are fixed, as can be easily seen from Fig. 5. The nonuniform sheet 

strength distribution of the inner boundary sheet is determined later. 

Analysis Of The Wake Model 

Having established the geometry and motion of the ultimate wake 

vortex sheets, a procedure to solve for the vortex strengths and the 

associated velocity field can be developed. The procedure is similar 

(2) 
to that proposed by Wright but is more general in that the latter 

can be obtained as a special case. 

It is noted that the assumed geometry and motion of the ultimate 

wake vortex sheets imply certain velocity boundary conditions. It is 



26 

the purpose of the discussion here to analyze the wake model and to 

develop a scheme that gives the vortex strength distribution which 

satisfies the required velocity boundary conditions. For the purpose 

of this analysis, it is sufficient to consider a unit length of ultimate 

wake, ABCDA, as shown in Fig. 6. The unit length is equal to the 

spacing between two adjacent B.T.E. sheets and is centered at a point on 

a line of intersection between a B.T.E. sheet and the boundary sheet. 

Each vortex sheet of this unit wake is divided into a finite number of 

strips of equal width. These strips are, for the purpose of numerical 

computation, replaced by vortex filaments of finite but unknown strengths 

lying on the centrelines of these strips. The strength of each filament 

must be equal to the integral of the sheet strength across the strip 

width. An adequate representation of the vortex sheet is achieved by 

placing each filament at the centreline of its corresponding strip, pro

vided the strip width is sufficiently small compared to a characteris

tic sheet width. 

The Biot-Savart law is used to provide a relation between the 

geometry, motion, and vortex strengths. The integral relations for the 

(8) velocity components in cartesian coordinates are given by Lamb and 

are reproduced here for a single vortex filament of finite strength. 

These are 
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Boundary 
Sheets 

Figure 6. A Radial Section Of The Ultimate Wake. 
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/ 

ATT / n-n\ I /dz' x - x' dx' z - z \ , , ,—2 
AU = (Y/4K) J (̂ - — — - ̂ -r - T — ) ds /p , 

P P 

and 

AUz . «m J fti^L.g.*^, *>&. 
•/ p p 

It is more convenient to express these integral relations for a finite 

strength helical vortex filament in polar coordinates using the follow

ing transformation. 

x' = r ' cosi|i, yf = r ' sini|i, 

x = r cosi|i, y = r sini|i, 

z? = z? + r?ij/ tan d/, z = z, s ' = r ' l j / seed/ 

The velocity boundary conditions are more conveniently expressed in 

terms of the velocity components along the vortex sheets and perpendi

cular to them. A helical coordinate system is then introduced, (see 

Fig. 2), where 

U = U cosijj + U siniK 
r x r y Y 

U = (U cosi|i - U sini|i) cosdp + U s ine 

and 

U U c o s * - (U cosiii - U simjj) s ind 
r, z Y y r x T N 
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Using these transformations and employing the helical relation (due to 

the rigid motion of B.T.E. sheets) 

r ' tan<f)' = R tant{> = R tant{> , (18) 

the elemental velocities associated with a helical filament of infinite 

length are given by 

AU f l~-
"1T = 74IIRJO J L r ' t a n *2 s in(* ' -*) 

2 -oo 

+ r , ( z - z ^ - ^ ' tan<J>2)cos(i(;,-i|;) I ^ j ~ - , (19) 
P 

AU 
00 

J Mr' tan<|>2(£- + £ 2 cos(i | ; f- i | ; ) ) 
2 - 0 ° r r 

+ ( z - z ' - i j / tancf) ) s i n ( i | / - i | , ) J ^ - (20) 

and 

AU 
£ = 1 J I ( r » _ r r » COS(i|;'-i|;)) - t a n <j>0 ( 1 - 3 COs(i | /-i | ,)) 

W 4HR0W J I v - vy y / / y 2 

2 —°o , r 

- —- s in( i | ; , - i | ; ) tan4> 2 (z-z , - i | ; l tan< | )~) Z^~"> 
r -̂  p 

(21) 
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where 

—2 —2 — 2 " 2 
p = r + r ' - 2r r ' cos (if/1 -if/) + ( z - z ' - if/1 tan<f> ) , 

and all the length dimensions are nondimensionalized by R?. The 

velocity boundary conditions on the ultimate wake vortex system can be 

written by summing up the contributions of every filament of the system, 

They are given by, 

2^(AU ? / W) = cos<|> (22) 

and 

on the B.T.E. sheets, 

2(AUr/W> " ° <23> 

2 A U
r / „ ) " °. <24) 

on the ou te r s h e e t , and 

\<i 
W 

V ( ^ ) = 0 (25) 

on the inner boundary sheet. The region of interest is the unit fan 

wake which is mathematically represented as, (see Fig. 6) 

R J L I * 1 V 

•JIR2A2/b £ z £ JIR2A2/b. J (26) 

As far as the velocity field in the above region is concerned, the line 
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vorticity in the jet wake is equivalent to a resultant line vortex fila

ment of strength T = (U ) 2IIR along the axis of the wake. This re-
j 

suitant line vortex filament can induce only tangential velocities in 

the ultimate wake. The uniform boundary sheets, ad described earlier, 

do not induce radial velocities anywhere in the ultimate wake. The non

uniform boundary sheets do not induce radial velocities on the B.T.E. 

sheets due to their symmetric strength distribution about the respective 

lines of intersection. 

Examination of the integrand of Eq. (19) shows that no radial 

velocities are induced at a B.T.E. sheet by the evenly spaced B.T.E. 

sheets themselves. Thus, Eq. (23) is satisfied identically. There is 

another constraint on the wake vortex system which requires that the 

sum of the strengths of all the vortex filaments in the ultimate wake 

be equal to zero. The various constraints on the ultimate wake vortex 

system are then represented as: 

On the B.T.E. sheets, 

2 AU \ * AU \ * AU \ 7 AU 

( £ \ . / ( £ N . / ( £ \ . 7 ( £ N 
B > T > E >

 VW c o s ^ A - ^ c o s ^ ^ J KVJ c o s ^ ^ VW c o s c j / 

V AU \ 7 AU 

+ Z ( s - b r ) + Z fc—2-T T W coS(j) TT. W cos A 
IN T jet T 

) = l ; (27) 

On the ou te r boundary s h e e t , 

AU 2 AU V * AU V * t 

(-—) +2L(^~) +Z<-
~ ) = o; (28) 

B.T.E. " 2N " IN 
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On the inner boundary s h e e t , 

T? AU V * AU T * AU 

Z <-JT> + Z (-̂ L) + Z (-ir> = 0 ; ( 2 9 ) 

and 

B..T.E. 2N IN 

" 4nR w^ + ^ 'ATTR vr + " ^4nR w^ 

B.T.E. HllK2 1U JI 2 IN ^JIK2 

+ Z (̂ EJ) + 2 - <ATffw> + 2- (: 
2U 2 2N 2 jet 2 

0; (30) 

y 
where / . refers to the summation over the blade trailing edge sheets 

B.T.E. V* 
refers to the summation over the inner uniform boundary sheet, / \ 

1U \J* 2U 
refers to that over the outer uniform boundary sheet, jb refers to the 

V * 2N 
outer nonuniform sheet, / refers to the inner nonuniform sheet, and 

2 IN 

refers to that over the jet wake. 
jet 

Since the geometry and strengths of the uniform boudary sheets 
and jet wake are known, their contributions can be derived explicitly. 
First, consider the outer uniform boundary sheet. The velocity field 
associated with this sheet is (see Ref. 2) 

U = y cos(j> , r < R , 
Z2U B2 B2 2 

U = U = 0, everywhere. 
r2U ^2U 

Using Eqs. (10) and (11), it can be shown that 



u 
(—) = cos<j>9 s e c ( ^ - <j> ) cos (A ) 
W 2 U 2 2 B 2 B 2 

o r , 

U 
( / ) = 1 / ( 1 + U ) . 

W 2U 2 B 2 

I t i s t o be n o t e d t h a t on t h e o u t e r B . T . E . s h e e t , 

(U /W) = ( U / W coscf>) = 1 / ( 1 + L L ) 
z 2U Q 2U 2 

From F i g . 4 and Eq . ( A ) , i t can be shown t h a t 

tan((f>0 - <j>., ) = Ur /W coscf>,, = U tancf> /W sincf).. 
z b 2 £, l ^\ l L 

Def ine 

G = 1 - U /W sincf) 
^1 X 

Using Eq. (11) and t h e above r e l a t i o n s , i t c a n be shown t h a t 
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G = 1 - tan((<|>2 - <J>2)/2) /taiKj) . (32) 

G i s t h e r e f o r e d e t e r m i n e d once A0 and e i t h e r W o r V /fiR„ a r e known. I t 
2 oo 2 

can a l s o be shown t h a t 

X„ - X, 

1 - 1 / ( 1 + A?A_ ) = ( A 9 / ( l + \ b 
2 B 2 2 2 x „ 2 x . . „ r B ^ I A l l + A,XR JJ 

and t h e n 

Gil 
(U /W) = 1 ^ - r - . (33) 

2U (1 + A p 

s i n c e t h e l e n g t h of t h e un i fo rm boundary s h e e t c o n s i d e r e d c o r r e s p o n d s 

t o t h a t of t h e u n i t wake , 

£ (y/4IIR0W) = (y /4IIR9W)(2IIR0 AD COS<J>__ / b ) 
2U l B2 I 2 B2 B 2 

which can be s i m p l i f i e d as 

2l(YMnR9W) = (G/2b)(A?/(l + A9)) . (34) 
2U 

It will be shown that when the contributions due to the jet wake 

are added to those of the inner uniform boundary sheet, the resulting 
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expression do not contain any of the jet wake parameters, U , and V.. 
J _ 3 

These expressions depend only on the. fan wake parameters, A , W, b and 

G. This can be expected due to the fact that the jet wake model is such 

that it does not affect the velocity field in the fan wake. 

In the region of interest as described by Eq. (26), the uniform 

vortex sheet of the inner boundary induces only tangential velocities. 

It can be shown that 

(Vw)iu = ~\ »H V^- r " R i 

From Fig. 5 and using the sign convention described earlier 

Y sin<j> = (U - U ) 
B l B l * j * l 

and 

(Vw)iu • \ - B*>Vr- ( 3 5 > 

The j e t wake induces t a n g e n t i a l v e l o c i t i e s i n the fan wake and i s equiva

l en t to a r e s u l t a n t l i n e vor tex f i lament along the wake ax i s of s t r e n g t h 

equal to r = (U, ) 2nR-. so t h a t 
ty* 1 

( U / W ) . = r /2nrW = (U, ) R , / r . (36) 
^ j e t ty 1 
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The inner boundary sheet is made up of the filaments on the boundary of 

the jet wake and the filaments that are shed from the roots of the fan 

blades. The jet wake, hereafter when it is referred to, does not in

clude its boundary since its boundary is already included in the inner 

boundary sheet. Combining Eqs. (35) and (36) 

( y w ) iu + ( v w )
j e t

 = \vr- (37) 

S i n c e U = U = 0 , U = -U, s i n * , and t h e r e f o r e 
Z1U Z j e t * * 

(U /W c o s ^ ) ^ + ( i y w cos*) = -U^ Rx tan<j>/r, 

Using Eq. (18) and t h e f a c t t h a t U = -G s i n * c o s * , i t c an be shown 

t h a t 

G A A R 
(U /W cos*) + (U /W cos* ) = ? 9 ( ~ ) . (38) 

C 1U C jet ( 1 + A2)x2 R2 

since the characteristic length of the fan wake need not correspond to 

that of the jet wake, the vorticity due to all the blades of the fan is 

considered while computing the total vorticity in the ultimate wake so 

that 

^(y/4nRW) = (v MnRW)2HR L cos* 
1U 1 1 1 
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or from Fig. 5, it can be shown that: 

£ (Y/4nR?W) = ±- J- <-±) 
1U 2 2 R2 

When computing the total vorticity in the jet wake, all the line vortex 

filaments excluding the ones on its boundary are taken into account 

since the latter are already included in the contribution from the inner 

boundary sheet. As noted earlier, all of the line vortex filaments in

side the jet wake are equivalent to a line filament along its axis so 

that 

^ (y/4lIR2W) = r/4IIR2W = U R1/2WR2 
jet ^j 

Combining the contributions due to the jet and the inner uniform 

boundary sheet, it can be shown that 

V V \ Rl G Al R l 
Z,(Y/4IIR9W) + 7 (YMnR9w) = - ^ — = -±—±-j (-i). (39) 
1U Z jet Z K2 1 + A7 2 

While computing f M (Y/4IIR9W), only a unit length of the wake has been 
2U Z V 1 

considered. The contribution to / . (y/4lIR9W) from all of the fan blades 
2U 

will be 'b' times the value given by Eq. (34). However, after summing 

up all the contributions, the resulting expression can be divided by 
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the number of b l a d e s , b , as i s done i n Eq. (A3) below. Equat ions (27 ) , 

(28) , (29) and (30) can now be w r i t t e n a s : 

On the B.T.E. s h e e t s , 

"v .y^Zs ,y_'°i _ cxJ ,_"i ( i ,^, .2^2 
B T F . E . W C ° S * 2N W COS* TS W COS* 1 + \\ ( 1 + \\) R2 X2 

On the ou t e r boundary s h e e t , 

2+ (AU /W) + 2 l (AU /W) +2* (< 

On the inne r boundary s h e e t , 

2L (AU /W) + ?L (AU /W) + A (AU /W) = 0; 
™, T-, r _,, r ^ ^ r B . T . E . 2N IN 

and 

y __x_ y _x_ y _L_ G \ AI 
" ^AIIR Ŵ  + " ^AIIR iP + " ^AIIR Ŵ  = ~2b ^R~^ 2 
B.T.E. ^iK2 2N ^UK2 IN ^Jm2 2 1 + A7 

G X2 

(A0) 

r , r. , _ .'AU /W) = 0; (Al) 
B.T.E. 2N IN 

(A2) 

2b (1 + 4) ' 
(A3) 

Eq. (A0) is evaluated at a number of control points on the 
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B.T.E. sheet. These points are placed between the. adjacent filaments 

and at the two end points (r = R-. and r = R ) of the sheet. Thus, 

the number of control points is one higher than that of the filaments. 

Equations (41) and (42) are evaluated at control points on the portions 

of the cylindrical boundary sheets which lie between a line of inter

section and the point midway between the adjacent lines of intersection. 

When the nonuniform strength boundary sheets are replaced by a set of 

vortex filaments of finite but unknown strength, the fact that the vor

tex strength distribution is symmetric with respect to any line of in

tersection and the midpoint between any two adjacent lines of inter

section is taken into account. Consequently only the vortex filaments 

that lie between a line of intersection and the midpoint between 

adjacent lines of intersection enter into the problem as those of un

known strength. The control points are placed between the adjacent 

vortex filaments. The end points of this portion of the boundary 

sheets (z = 0, z = IIR X /b) are excluded since the Eqs. (41) and 

(42) are satisfied identically at these points. While evaluating Eq. 

(43), all the vortex filaments of the characteristic unit length of the 

wake are taken into account. 

Now the integrals in Eqs. (19) and (21) are defined respectively 

as 

I = (AUr/W)/(y/4HR2W). (44) 

and 
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I = (AU /W)/(Y/4nR2W). (45) 

The system of Eqs. (40) through (42) can then be expressed in terms of 

I and I . It is also seen from Eqs. (19) and (21) that I and I de-r £ n \ / \ / r ^ 

pend only on the choice of L and b. Since the right hand side of 

Eqs. (40) through (43) is multiplied by G, this system of equations is 

written in terms of a new vortex filament strength, y = (y/4TIR9WG) . 

Using Eqs. (44) and (45) and the definition of y, the system of Eqs. 

(40) through (43) is written as: 

At the control points on the B.T.E. sheet, 

A? A, \n R„ 
2, i Y + 2l i Y + 2. i Y = — H — L - V (ir> ^ ^ 

B . T . E . ^ IN ^ 2N ^ 1 + A0 ( 1 + A j 2 x 

At the control points on the outer boundary sheet, 

Y = 0; (47) 2- U + Z i r + Z i 
B.T.E. IN 2N 

At the c o n t r o l p o i n t s on the inner boundary s h e e t , 

7 = o ; (48) 2L I Y +2- ir Y +2-1 
B . T . E . IN 2N 

and 
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Z Y + Z Y + Z Y = k [ir—•H H]- (49) 

B.T.E. IN 2N 2 1 + L 1 + A 

This system of equations does not contain the parameter W, so that a 

solution may be obtained which may be scaled directly for any value of 

W. This means that the equations are solved only once for the W = 0 

case (G = 1) to get the values of y. The wake vorticity distribution 

for any value of W is easily obtained by multiplying the values of y 

for the W = 0 case by the appropriate value of G. This scheme was 

(2) 
originally used by Wright. 

The blade bound vortex strength at any radial station is found 

by summing up the strengths of all the filaments of the B.T.E. sheet 

inboard of the radial station in question and then adding to it the 

strength of the vortex filament shed from the root of the blade. The 

strengths of the nonuniform sheet filaments are also obtained as part 

of the solution of Eqs. (46) through (49) and are used along with the 

vortex filaments on B.T.E. sheet to obtain the velocity field in the 

ultimate fan wake. The detailed numerical evaluation of the integrals 

of I and I , the positioning of the filaments, and the simultaneous 

solution of the system of linear equations that results from Eqs. (46) 

through (49) are considered in a forthcoming section of this chapter. 

Estimation Of Thrust, Power And Induced Efficiency 

The solution of the vorticity distribution in the ultimate wake 

allows a calculation of the velocity field in the wake. The knowledge 

of the velocity field in the wake, and hence the momentum and kinetic 



42 

energy in the wake leads to the de te rmina t ion of t h r u s t , induced power, 

and induced e f f i c i e n c y of the high by-pass r a t i o ducted fan. 

Thrust 

It is the main interest of this analysis to develop an expression 

for the thrust of the ducted fan in terms of the known velocity field 

of its ultimate wake. The thrust that may be developed due to the jet 

exhaust is not considered. Along the lines of Theodorsen's analysis 

a control volume enclosing the high by-pass ratio ducted fan and its 

wake is considered. (See Fig. 7.) Using the momentum theorem, the 

thrust of the ducted fan can be found by considering the average pres

sure forces acting on the control surface and the average flux of mo

mentum through the surface. The thrust thus obtained is the total 

thrust developed by the ducted fan and as such includes the thrust due 

to the jet exhaust. In the absence of the fan and the duct, with the 

jet wake parameters the same as those in the ultimate jet wake of the 

ducted fan with jet, the thrust due to the jet exhaust can be determined 

using a control volume approach similar to the one suggested earlier. 

Subtracting the expression for the thrust due to the jet exhaust from 

the expression for the total thrust gives an expression for the thrust 

developed by the fan with a finite hub and the duct. Implicit in this 

procedure is the assumption that there is no interaction between the 

jet wake and the fan wake. 

As noted earlier, the thrust of the ducted fan is found by con

sidering the average pressure forces acting on the control surface and 

the average flux of momentum through the surface. These averages are 

taken over a time At = 2IT/bfi and the integration is performed with 
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r e s p e c t to time d t = dz/(V + W). From F ig . 7 and us ing the momentum 

theorem, i t can be shown t h a t 

T t + i t J P dt ds = ~ J p(V-k)(V-£)ds dt (50) 
S 1 , S 2 S 2 , S l , S s i d e s 

where k i s the u n i t v e c t o r i n the a x i a l d i r e c t i o n away from the fan. 

The wakes a re c y l i n d r i c a l wi th cons tan t r a d i i and, as such, the wake 

su r faces a re connected by the r e l a t i o n S0 = S. . + (S - S. ) + 
J 2 jet p jet 

(S„ - S ), where S. refers to the area of intersection of the jet wake 
2 p " jet 

with the control surface S0, (S - S.) refers to the area of the inter-
2 p J 

s e c t i o n of the fan wake with S», and (S„ - S ) i s the remaining a rea of 

S~. The f l u i d i s assumed to be incompress ib le as far as the fan wake 

i s concerned. Using the c o n t i n u i t y equat ion for the system, Eq. (50) 

can be w r i t t e n as 

T . + i r r f J P ds d t - J p ds d t I = f- J P.(V.V + V2)ds dt t A t [ £ * J At ^ wj j °° y 
1 2 jet 

1 f 2 
+ — J p(V U + U )ds dt + mf V (51) 

A t (S -S N "' Z Z f °° 
P jet) 

where mf is the mass rate of fuel injected. Considering a similar con

trol volume approach with an isolated jet wake with the same jet wake 

parameters as those of the above, it can be shown that the thrust, T., 

due to jet wake alone is given by 
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: . + ~ I (p - p)ds dt = ~ I p.(V.V + V2)ds dt + m. V 
j At SJ

 VK°° v' At • J K j v j °° j ' f ° 
j e t j e t 

(52) 

Subtracting Eq. (52) from Eq. (51), the following expression for the 

thrust developed by the fan-duct system is obtained. 

TL = ^- J (p - p )ds dt + ~ J p(V U + U 2 ) d s d t 
D At ** °° At °° 7 z 

At (s - s . ) AC (s - s . ) z 

P j e t ' p j e t ' 

In the ultimate fan wake for 

dt = dz/(V + W) and a character is t ic time, At = 2JI/bfi, 

rv b n f bftp 
TD = 2n(v +w) , J , (P - pjds dz + 2n + 

00 fan wake °° ' 

( /< V « U z + U z ) d s d z ) ' 
(V U + U )ds dz . (53) 
v oo z ?/ J v ' 

fan 
wake 

In order to evaluate the above in tegra l , the pressure term must 

be evaluated in terms of the velocity field by employing the equation 

of motion for an unsteady, incompressible, potential flow. Bernoulli s 

equation for such a type of flow is given by 

3$/3t + p/p + V2/2 = f( t ) 
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The unsteady term is eliminated by considering the potential flow field 

in a steady coordinate system, the one fixed to the blade, such that, 

$(r, ij>, z, t) = $(r , ^ o + Art, z) , 

3$/9t = C3*/3^) (3ip/3t) = U.(fir) = X U ftR 

I t is to be noted that the flow field is potential in the fan wake ex

cept at points on the B.T.E. sheets and the cylindrical boundary sheets 

In the fan wake, for an arbitrary hel ical filament of pitch angle <J> at 

radius r, 

U = U sin*/sin* , 
S> r> -1 -*-

where Ur is the velocity along the helical filament at radius r = R . 
1 + 

It can be shown that UV at any point on r = R is the same as UV of 
1 1 

the B.T.E. sheets. Thus at any point in the fan wake, 

LL = U, cos* + U sin* = IT sin /sin*.,, 
£ ij> z ^ 2 1 

U = (1 - G)W tan* - U tan*, 
if) Z 

and 

9$/9t = (V + W) W(l - G) - (V + W) U . (54) 
oo oo z 
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In the fan wake, 

P/p + V2/2 - (V + W)U + (V + W) W(l - G) = P /p 

Since the flow is irrotational inside the wake except at points on B.T.E 

sheets, 

P/p + V2/2 - (V + W)U + (V + W) W(l - G) = P /p. (55) 
R2 

The o u t e r bounda ry of t h e v o r t e x s y s t e m i s f o r c e - f r e e and t h e r e f o r e t h e 

s t a t i c p r e s s u r e i s c o n t i n u o u s a c r o s s i t , t h a t i s , 

P R - = P R - • R2 R2 

As discussed earlier, there are no disturbance velocities outside of 

the ultimate wake. Therefore, 

2 2 
p„_ = p and V = V f o r r > R, 
f R ^00 00 i 

and 

2 
P = P - V ^ / 2 + (V + W)U - W(V + W)( l - G) 

00 o ~ R9 °° z - °° 
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substituting Eq. (55) into the above expression, 

(P^ - P) = \ p(V2 - V2-) - p(VQo + W)(Uz - Uz _ ) . (56) 
2 R2 

Substitution Eq. (56) into Eq. (53), i t is shown that 

Pb^ f f l ( V
2 - V2) + (V 

[(V + W) . J . . \_2K\~ » ' K o 
00 vol. of the L I 

TD = 2IKV + W ) , I , | 2 ( V R - " V - ) + ( V - + W ) ( U z " U z > 
R 2 

f a n wake 

U + U2) dVo 
> z z ' J 

+ (V U + U ) dVol (57) 

w h e r e , V2 = (V + U ) 2 + U2 + U 2 , 
oo z' r ty* 

2 2 2 
V„_ = (V + U ) + U~ . 

2 R R 

the limites of integration are taken over a characteristic volume of the 

fan wake, that i s , 

0 1 z 1 2IIR A / b , 0 _< ty < 2H, a n d , R <_ r •< R . 

2 2 
Defining a thrust coefficient C = T /p(fiR_) nR«. Eq. (57) can be 

written as 
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1 1 211 

+ (An/W) U - U I xdx d^ dip/2n. (58) 2 z z - J 
R2 

where, z = Z / ( 2 I I R A / b ) , x = r /R 9 , and a l l the d i s tu rbance v e l o c i 

t i e s a re non-dimensional ized wi th r e s p e c t to W except t h a t W = W/ R~. 

Some of the terms i n Eq. (58) can be eva lua ted e x p l i c i t l y through a 

c o n s i d e r a t i o n of a l i n e i n t e g r a l ABCDA as shown in Fig . 8 . Note t h a t 

CB i s a h e l i c a l l i n e on the B.T.E. shee t at: r = R1 . The l i n e i n t e 

g r a l about the pa th ABCDA enc loses the vo r t ex f i l aments shed by ' b ' 

b lades between r = R1 and r = r so tha t the l i n e i n t e g r a l i s eva lu 

a ted as 

B 

/
U d + f 11 d r + f U d + f U d = b r ' ( r ) 

A r r JB * 5 J c r r J D z z 

where f ' ( r ) i s the b lade bound v o r t i c i t y a t r a d i u s ' r ' 

i B D 

But 

/ , 

/
' U dr = - f U dr, 
A r Jc r 

C 
U d£ = U 211R sec((j, ) 

B ^ n 
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A E 1/2 

J U dz = b f U_ dz = b I" ( r ) + U^ 2IIR., (1 + An) 
D Z JD z q 1 

so t h a t 

1/2 

f U dz = ^ ^ I 1 + Ur ( 1 + A i2 ) /A i 
Jo Z 2IIR2WA2 * i X X 

Defining the Golds te in c o e f f i c i e n t , K(X) = b r1 (X)/2IIR2WA2 i t can be 

shown t h a t , 

/ 
U dz = K(X) + (1 - G) (59) 

0 Z 

Defining a mass c o e f f i c i e n t K1 as 

K' = 2 / K(X)XdX, 
h/K2 

it can be shown that 

f i t U XdX dz cty/2n = ~ [ K ! + (1 - G)( l - R ^ / R 2 ) ] . (60) 
R J / R / W O Z l 1 l 

and 
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I f Y2 I If- 1 2 2 
J J JU XdX dz d</;/2II = ±[K(1)+(1 - G)](l - RT/IO. (61) 
Rn 0 0 R„ 

R1/R2 „ ~ «2 

It was shown earlier that the flow fields of the uniform boundary 

sheets are known and that the flow fields of sheets of varying strength, 

namely, the inner and outer nonuniform boundary sheets and the B.T.E. 

sheet, need only be computed for the case,W = 0. It is therefore 

possible to compute C in terms of the W = 0 wake solution and the 

scale factor G. The integrands of Eq. (58) are therefore modified as 

follows. The velocities are separated into those associated with the 

nonuniform boundary sheets and the B.T.E. sheets and those associated 

with the uniform boundary sheets and the jet wake. Denoting the velocity 

field due to the B.T.E. sheets and nonuniform boundary sheets by the 

subscript, 'vs', it is seen that 

X = GH=o = GU-' 

K(X) = G K(X)_ = G K (X) 
W=0 ° 

and K 1 = 2G f K (X)XdX = G K ' . (62) 
Rl/R2 ° 

It was shown earlier that the velocity field associated with the outer 

uniform boundary sheet is 
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(U ) = 1 ^ ~ - , X < 1 
2U (1 + X,) 

and the velocity associated with th€i inner uniform sheet and the jet 

wake is, 

(U ) + (U ) = -(GA /(l + A2))(R /R )1/X for X > R̂  /R . 
* 1U ^ jet -1 1 J- ^ 

In t h e fol lowing d i s c u s s i o n , l e t 

/

> J»I JL ^n .. 9 9 

dvol' = I I f XdX dz <ty/2n = -=r(l - R. /RJ 
Rf/R^J OJO l L l 

The in tegra ls in Eq. (58) can be wri t ten as 

J U 2 dvol' = /[G U + (1 - GA2/(1 + A 2 ) ) ] 2 dvol' 
J Z J ZVS 2 2 

which can be simplified as , 

/ U2 dvol' = G2 J U2 dvol' + 2G(1 - GA2/(1 + A2)) f U dvol' 
z J z„„ 2 2 J zTTO VS VS 

+ ( 1 - GA 2 / (1 + A 2 ) ) 2 ( 1 - R 2 / R 2 ) / 2 
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Similarly, it can be shown that 

J u 2 dvol' = G2 J u 2 dvol' - (2G2X1/(1 + A
2))(R1/R2) 

^VS 

l / % /X)dvol,j+ (G2X2/(1 + X2)2)(R2/R2)Ln(R2/R1), 

JU2 dvol' = G2 J U2 dvol' , 

r rvs 

/
U2 d v o l ' = G2 f u 2 d v o l ' + 2G(1 - G X 2 / ( 1 + X 2 ) ) 

z - J z - 2 2 R? R2 

VS 

( j U z _ dvol) + (1 - GX2/(1 + A2))2(l - R2/R2)/2, 
R2 

VS 

and 

f-2 2 f -2 2 G \ Rl f-
Ju f dvol' = G J u dvol' V - ^ / U dvol' 
J % J % (1 + X2) R2 J % 

zvs vs 

2 2 2 2 
i G x i \ R i 

+ I 2 2 ( 2> d - ^ ) -
(1 + XpZ R2 R̂  

Using Eq. (60) and Eq. (61), i t can be shown that 



/ % s
 dvol? • i t K ; - a - ^ 2 > / a + ^)] 

and 

R2 

K - — • \ *„a> - - ^ u - ^ 
R9 ° ( 1 + X p R, 

vs 

S u b s t i t u t i n g t h e s e i n t e g r a l s i n Eq . (58) and d e f i n i n g 

/
—2 —2 —2 —2 —2 

[U, + U + U - U~ - U ] d v o l ' 
*R" ZRl ZVS *VS rVS 

VS VS 

and m = IL /R^, t h e t h r u s t c o e f f i c i e n t i s w r i t t e n as 

CT = W2
 JG K ^ ( X 2 / W + 1 - G X 2 / ( 1 + X 2 > ) - d " m 2 ) K o ( l ) G 2 X 2 / ( l + 

+ G 2eQ + ( 1 - G ) ( l - m 2 ) ( l - 2GX 2 / (1 + X2) + x2/W) 

- ( 1 - m 2 ) ( l - GX 2 / (1 + X 2 ) ) 2 + ( G 2 X 2 t n 2 / ( l + X 2 ) ) 

(Ln m + ( 1 - m 2 ) / 2 ) + ( 2 G 2 X 1 m / ( l + x ? ) ) F / [ U , /X 
1 1 J ^ v s 

d v o l * ] 
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For a given A,, and 'b', K', Kn(l), cind e are evaluated from the solu

tion corresponding to W = 0. The scale factor G can be computed al

gebraically for a given A~ and W. Therefore Eq. (63) provides an entire 

family of values of C„ for different: values of W. 

Induced Power 

The ideal power required by the optimum high by-pass ratio 

ducted fan, excluding the jet, can be obtained through a consideration 

of the induced energy loss in the fan wake. An analysis similar to 

the one used for the thrust is used to compute the induced energy loss 

in the ultimate wake. Considering a control volume as shown in Fig. 7, 

the induced energy loss can be obtained by considering the average of 

the work done by pressure forces acting on the control surfaces and the 

average kinetic energy flux through the surfaces. These averages are 

once again taken over a time, At = 2II/bfi, and the integration is with 

respect to time, dt = dz/(V + W). As done earlier, subtracting the 

contribution due to the jet wake, the energy loss in the ultimate wake 

of the fan is obtained as 

ED " 2 (Vb"+ W) , / 'I "A. + I <"\ + P ( V« + "> 
°° vol. of the 

fan wake 

(U - U )U - ̂ p(V2 - V*)U ] dvol' (64) 
z zR- z 2 R2 z > 

2 2 2 2 
where v = U + U + U, . 

z r \\) 
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Nondimensionalizing the lengths and velocities and defining e = 

3 2 
E / p(^Ro) JTR2, Eq. (64) i s w r i t t e n as 

—3 
e = 2WJ fJol^+^rV-^ 

+ U ( i vj!- - U )]XdX dz dt|>/2n-(65) 
Z 2 R 2 Z R" 

Once again the induced velocities in the above integral are divided in

to those associated with the uniform boundciry sheets and the jet wake 

and those associated with the sheets of varying strength, namely the 

nonuniform boundary sheets and the B.T.E. sheets. Using the expressions 

developed earlier for U and U , the expression for 'e' can be ob-

tained in terms of the W = 0 wake solution and G. It can be shown 

that 

e = W3 l[GK'Q - G ( l - m 2 ) / ( l + A*) ] [ ( 1 - G A ^ / d + A*)) 

2 2 2 

( 1 G x ? \ 1 ? ? ? ? G X 9 ( 1 - m ) 

x ^ + _ ( 1 . 2 } j + i G 2 m 2 x 2 / ( 1 + x2j ] _ 2 
J- + X0 (.1 + Xn) 

2 2 2 
GA~ ~ \~ / G X , 

( 1 %) [G K (1) ^—A + i (1 - mZ) (r± - 1) 
i + \t l + x : w 

2 2 

V 1 + X . / 



2 3 2 2 2 

— ) 
A2 

A2 

n2 3 rV C A ' 
+ - ( 1 - m ) 11 « + - m ( l - m ) 5 - ^ ( 1 

2 V 1 + A2V ( 1 + A^) Z 1 + 

+ G2(A2/W + 1 ) J U2 d v o l ' + G2(A2/W - 1) J (U2 + U2 ) 
VS VS VS 

d v o l ' + G 2 ( l - GA 2 / ( 1 + A 2 ) ) | [ U 2 + U2 ] d v o l ' - 2G3A2 / 
1 l J Z\T ^T?~

 l 

VS VS 

(1 + A2) I U U dvol' + G3 f U2 [U2 + U2 ] dvol' 
2 J ZVS ZR" J ZVS ZR" % 

VS VS VS 

- 2 G 3 m X 1 / ( l + A2) I U U, d v o l ' - (2G 2mA.. / ( l + A.2)) 
1 1 J z v s * - 1 1 

VS 

( 1 - G A 2 / ( 1 + A 2 ) ) J U d v o l ' - (A2/W - l ) ( 2 G 2 m A 1 / ( l + A 2 ) ) 

R 2 
VS 

( f U /X d v o l ' ) - (A2/W - l )G 2 m 2 A 2 L n O ^ / l ^ ) / ( l + A 2 ) 2 L . (66) 
Vu I 

Then, 

ED " V " TD Vo 
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where Q is the induced torque on the fan blades. The induced power 

can be written as 

PD. " V • TDV» + V 
in 

3 2 
Defining the induced power coefficient, C = P /p(fiR„)IIR , it is 

in 
shown that 

C = (X9 - W)CT + e. P 2 T 

The power requirement for the constant diameter wake of the ducted fan 

can also be obtained using Kutta-Joukowski theorem provided it is 

assumed that due to the non-contracting wake and compatible shroud, 

velocities at the fan are the same as those in the wake. It is to be 

noted that this need not be a physically possible configuration. Accord

ing to the Kutta-Jourkowski theorem, the incremental torque dQ of the 

fan blades is given by 

dQD = pbr'(r)V rdr 

where 

v„„,„i = V, + wf1 " G\^/(X2 + \H axial 

Blades must be designed to give the distribution, r'(r). 



Therefore, 

dQD = PbK(X)2nR2WX2 Vax±al 

so that, 

QD = pltf^A^W [(Voo+W)2 |K(X)XdX 

ra 

- 2GWA2 J XK(X)/(X2 + A2)dx; 

ra 

Defining ŷ  = 2 f KQ(X)X/(X
2 + X^dX, and yf = Gy^, it can be 

ra 
shown that 

PDin = QD f i = P^C^)3 W X2 [ G K 0 " ° 2 W X2 y 0 ] 

and 

C p = G W A2
 [ K ^ - G W A2 y ^ ] 

K.J 

Induced Efficiency 

The induced efficiency, n., of the fan-duct system can be de

fined as, 
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n. = T V /p . 
l D °° D. 

i n 

The above expression can also be written as 

n i = ( A 2 " W ) C
T

/ ( C T ( A 2 ~ W> + e> (68> 

or r\± = (X2 - W)CT/C . 

For a constant diameter wake from the fan blades, the Kutta-

Jourkowski theorem can be used to compute the thrust developed by the 

fan blades alone. The incremental thrust developed by the fan blades 

i s given by 

d T = pb V r f ( r ) dr 
p K tan 

where V = (fir - U./2) = fir - GWXAn/2(X
2 + A 

tan ty 2 2 

U /2 was chosen since the tangential velocity ahead of the fan is zero 

and behind it is U , . 
i> 

Following a procedure as adopted ea r l i e r , 

TP 

J. 

= f p ffir - GWXA2/2(X2 + \H K(X)2IIR?WA2 dX. 

m 
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2 2 2 Defining Cm = T /pfl R ÎIR , i t can be shown t h a t Tp p 2 2 

CT = G W X2 [K'Q - G W yj X2/2] (69) 

Thus the expressions for C , C Cp, and n. have been obtained 
1 lp, ¥ l 

in terms of the wake solution for the W = 0 case. In the following 

section, a discussion of the computational procedure is given. 

Numerical Procedures 

The wake model and its mathematical solution have been discussed 

in terms of the basic procedures and developments. To obtain a solution 

it is necessary to evaluate the velocities due to a helical vortex 

filament of finite but unknown strength at any arbitrary location in 

its flow field. A system of linear equations is developed by equating 

the sums of velocities due to all the filaments in the wake at the con

trol points to the required normal velocities at these points. The 

velocity influence coefficients are evaluated by numerical integration 

procedures and the system of linear equations is solved by a suitable 

numerical technique. After obtaining the solutions for the vortex 

strengths in the ultimate wake, the velocity field in the wake can be 

computed. Then, Eqs. (63) and (66) are evaluated numerically to obtain 

the thrust and induced energy loss in the wake. In addition to these, 

the values of K (X), <', and y' are also obtained. 

The velocity components associated with a single helical vortex 

filamanet of finite but unknown strength at any arbitrary location are 

obtained by numerically evaluating the integrals of Eqs. (19) through 



63 

(21). It is seen from these equations that the integrands are solely 

functions of the geometry of the filament and the location of the point 

at which the velocity components are evaluated. Since the integrals 

are evaluated for points in the ultimate wake, the limits of inte

grations range from -00 to °°. The numerical integrations are simplified 

by converting the limits from -°° _< ijj1 _< °° to 0 _< ij/ j< °° with the appro

priate changes in the integrands. Equations (19), (20) and (21) are 

then written as 

(AUr/W) = (y/4lIR2W) j"fr(^'; r, r', i, z^, i|;,A2)d^
f, (70) 

0 

(AU?/W) = (y cos<i>/4lIR2W) J f (if;1; r , r ' , z, z£, i|», A^dif,', (71) 

0 

and 

/ 
(AU^/W) = (y cos(J,/4nR2W) J f ? ( i ^ f ; r ' , r ' , Z(J, z, if,, X2)di | , \ (72) 

0 

where the primed quantities refer to the location of an elemental length 

of the vortex filament and the unprimed quantities refer to the location 

of the point at which the velocity components are evaluated. 
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The Romberg Integration technique was used to numerically 

evaluate the integrals of Eqs. (70) through (72). Since the limits of 

integration range from 0 to °°, a stepwise integration procedures is 

adopted. The integration is first performed between the limits 0 and 

2H and the resulting value is denoted by 6 , which actually is the con

tribution to the integral of the first turn of the helical filament 

and its reflection (-211 £ ip' _< 0) . The contribution to the integral 

from the second turn of the filament (2IT j< ip' <_ 411) and its reflection 

(-4H <_ ij;1 j< 411) is then evaluated using the Romberg Integration tech

nique and is denoted by 6„. Then <5 is compared with the sum of 6.. and 

6-. A percentage change is then defined as (100)|(6„/(61 + 6 ) \ . If 

this change is not acceptably small,, contribution to the integral from 

the following turn of the helical filament is evaluated and the percen

tage change is again determined according to the formula, (100)|6./ 

J th 
( E 6.)|, where <5# is the contribution of the integral from the j 
i=l X -1 j 
turn and its reflection of the helical filament and E 6. is the sum 

i-1 x 

of all the 6.. The process is continued until the percentage change is 

less than some specified tolerance level. The value of the integral is 

then set equal to the sum of all the. <5 . . 
J 

An investigation of the permissible tolerances for each integral 

(2) 
has been made. It was found that the tolerances suggested by Wright 

are satisfactory in the sense that significant changes in the tolerance 

(2) 
levels from those suggested by Wright did not significantly change 

the end result of the integrations. A value of 0.5 has been chosen 

as the permissible tolerance for the integrations involved in the 
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computation of the velocity component AU . A range of values from 

0.25 to 1.5 has been chosen (depending on the value of A„/b) for the 

computation of the integrals for AU . When the tolerance levels are 

—ft 
changed to 10 , an enormous amount of computational time was required 

to evaluate the above integrals. However, the values of the integral 

did not differ significantly from those having the higher tolerances. 

It can be seen from Eqs. (19) through (21) that the velocity 

components associated with a single helical vortex filament at any 

arbitrary location in its flow field are linear functions of its 

strength. For example, if the contributions of n filaments to a 

velocity component, AU /W, at a given point are summed, then the result 
n _ _ 

is of the form Z h. Y. = U , where h. is the influence coefficient 
. T i i r' l 
1=1 _ 

of the helical filament y.. If the filament strengths are unknown 

and their geometry is known, as in the case of the mathematical model 

of the ultimate wake developed earlier, specifying the value of U at 

a calculation point yields a linear equation in y.. If n such cal

culation points hereafter referred to as control points are chosen and 

if the appropriate velocity components is specified at each one of 

these points, the end result is a system of n linear algebraic equa

tions in n unknowns y.. Such a system of equations is developed and 

solved for the strengths of the unknown vorticies in the ultimate wake. 

As discussed earlier, the vortex sheets of the ultimate wake are 

divided into strips and the strips are replaced by vortex filaments of 

finite strength. Since the strengths of the B.T.E. sheets and the 

nonuniform boundary vortex sheets in the ultimate wake are not known, 



66 

these sheets are replaced by a number of vortex filaments of finite 

strength. The portions of the nonuniform boundary sheets and the 

B.T.E. sheets that are replaced by the filaments correspond to the unit 

wake as shown in Fig. 9. In order to arrive at the optimum number of 

filaments which replace these vortex sheets, an investigation has been 

made to determine the effect of the number of filaments on the end 

result as well as on the computational time. It has been found that 

ten filaments replacing the B.T.E. sheet and eight filaments replacing 

each of the nonuniform sheets were sufficient from the standpoint of 

computation time and accuracy of the result. A lower number of filaments 

tend to overestimate the influence and a higher number of filaments 

tend to increase the computation time without any significant change in 

the value. In fact, doubling the number of filaments almost quadruples 

the computation time with the values being less than 1% different from 

those of the former. 

It is to be noted that the nonuniform vortex sheet strengths 

are symmetric about the lines of intersection. Because of this sym

metry, the eight filaments that replace each of the non-uniform sheets 

introduce only four unknowns for each sheet. However, it is to be 

noted that all of the vortex filaments in the ultimate wake are to be 

taken into account in the computation of velocities at the control 

points. For example, in the case of a fan with b number of blades, all 

the vortex filaments corresponding to these b blades are used in the 

computation of velocity components. 

It was shown earlier that the number of control points at which 
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the velocity components are computed is one less than the total number 

of vortex filaments of unknown strength. The arrangement of vortex 

filaments and the control points in the ultimate wake is shown in 

Fig. 9. There are eleven control points on the B.T.E. sheet and three 

each on the inner and outer boundary sheets. There are eighteen vortex 

filaments of unknown strength. At the control points on the B.T.E. 

sheet, the contributions to U /cos<J> = 1 from all of the vortex 

filaments in the ultimate wake are computed and summed to yield eleven 

algebraic equations. At the three control points on each of the 

boundary sheets, the contributions to U = 0 from all of the vortex 

filaments are evaluated and summed to yield six equations. A final 

eighteenth equation is obtained by equating the net vorticity in the 

ultimate wake to zero. All of the control points are assumed to lie 

in the rp = 0 plane. The computation of the velocity components due 

to the vortex filaments lying on the B.T.E. sheets of all of the blades 

is facilitated in the integrands of Eqs. (19) through (21) by increasing 

the value of ty from 0 to 211(1 - r-) in steps of 2n/b. The system of 

linear equations thus obtained is given below. As discussed earlier, 

the righthand sides of these equations are modified to take into account 

the contributions due to the uniform boundary sheets and the jet wake. 

I8 

E B. . Y- = 0, i = 1 - 3. 
j-1 X'J J 

1 8 - 2 1 1 
£ B, , Y, = A [ ±— ^r 2 ], i = 4 - 14. 
j=i ,J J (i + xp t1 + V x i 
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18 
E B . 

i 3 L-
1.

 YJ = 0 , i = 15 - 17. 

and 

1 . \ X 
1 

2b 1 + x\ 2 ] 

1 + A2 

18 _ 

j = l 1 8 ' J J 

In the above e q u a t i o n s , X. = r . / R „ , B. . i s the app rop r i a t e v e l o c i t y 
l l 2 i,j 

influence coefficient and y. is the vortex strength of the filament j. 

In the last equation, B10 _ through B.. „ ., , are each equal to 1.0 and 
18,5 18,14 

the rest of the coefficients are equal to 2.0. y_ through y , are the 

no nd intension a 1 vortex strengths of the filaments on the B.T.E. sheet, 

y through y, are the strengths of the filaments on the outer boundary 

sheet and yn_ through yn0 are the strengths of those on the inner 
LD JLO 

boundary sheet. The set of the linera algebraic equations thus ob

tained was solved numerically using the Gauss-Jordan Reduction Method 

(Ref. 9) for particular values of A„„ b and R /R . K„(X), <Z, and y' 

are then obtained from a knowledge of the vortex strength distribtuions 

in the wake. 

Thrust And Power Integrations 

As was shown earlier, certain volume integrals of velocity com

ponents need to be evaluated to obtain the thrust and power coefficients 

These volume integrals are 
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l l 2n 

^ = f f f [u2 + u 2 + u 2 - u 2 - u 2 ]xdx d ^ > 
R/R 0 j0 S V2 ^ ^S ^ 
Rl / R2 ° ° 2VS 2VS 

and 

1 1 2n 

[U 
n n

 VVS " ^R. m ° ° 2VS 
III [ V ( x> • V ixdxdzd* /2n> 

i i 2n 

/
| J U U XdX d l d^/2n, 

n n Z y S Z R 9 
m 0 0 2VS 

i l 2n 

/ / / 
U [U2 + U2 ]XdX dz d*/2n, 

z v s Z
R: * R : 

m 0 0 2 y s 2 ^ 

i i 2n 

/ / / 
U U, XdX dz <W2n. 

ZT>- K -

(73) 

m 0 0 2 ^ 2 y s 

The velocity components at the specified points in the unit wake are 

found by numerical integration techniques discussed earlier in setting 

up the system of linear equations. Due to the helical symmetry of the 

vorticity and velocity distributions in the ultimate wake, the volume 

integrations may be performed by obtaining a detailed knowledge of the 
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— (2) 
flow field on a zr-surface. This idea, originally due to Wright , 

has been extended to this system. The zr-surface chosen is bounded 

by the inner and outer cylindrical boundaries, a B.T.E. sheet, and a 

radial line midway between the chosen B.T.E. sheet and an adjacent B.T.E 

sheet. This surface is divided into a network or grid as shown in 

Fig. 10. The velocity components are evaluated at the intersection 

points of the grid. A two dimensional array of the values of the ve

locity components and their squares is thus obtained. Using a strip 

method, a formula has been developed for the evaluation of the volume 

integral using these two dimensional arrays of velocity components. It 

can be shown that 

l l 2n • 2 i+i j+i 

/ / / f xdx d7 d,/2n - ^ 1 ^ 1 
m 0 0 1=2 1 =2 

(2i - 3) 

1+1 J+l 

f + f + f + f ) + m(1 " m) V V 
i,j i-l,j i-l,j-l i,j-l 4IJ Z* iL, 

i=2 j=2 

(f. . + f. . + f. . + f. ). (74) 
i,j i-l,J l-l,j-1 i,j-l 

Where i,j refers to the location of a grid point as shown in Fig. 10, 

1+1 refers to the number of grid points in the radial direction and 

J+l refers to the number of grid points in the axial direction. For the 

network illustrated in Fig. 10, 1=10, J=4 and 'f' can be the 2-D array 
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of any velocity component or its square. 

Since the motion and vorticity of the wake are known, the numeri

cal computation of the velocity components on the edges of the zr-sur-

face at the vortex sheets is not required. It is to be noted that the 

edges of the grid do not exactly lie on the vortex sheets. Mathematical

ly the network is represented as L < r < L , 0 < z _< HR^A^/b. As dis

cussed earlier, velocity components only due to B.T.E. sheets and the 

nonuniform boundary sheets need to be evaluated. 

The velocity components at the grid points on all but one edge 

of the network are obtained from a knowledge of geometry and the 

strength of the appropriate adjoining vortex sheet. Consider first the 

edge of the network at the B.T.E. sheet. This edge is represented 

mathematically as, z = 0 and R_ < r < R . The velocity components 

U and U, are continuous across the B.T.E. sheet and hence the values of 
z y 

U and U. at this edge are the same as those at the corresponding points 

on the B.T.E. sheet. It can be shown that 

U (X, 0+) = U (X, 0) = G\h 1 - -1 ] (75) 
VS ZVS Z 1 + A~ XZ + \Z 

and 

A XA 
U (X, 0+) = U (X, 0) = G[ — - T^—5~\ (76> 
^VS VVS x(l + AZ) x + AZ 
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However, it is to be noted that the radial velocities are discontinuous 

across the B.T.E. sheet and their distributions are such that -U 
r 

(r, 0 ) = U (r, 0 ). The magnitude of the discontinuity in the 

radial velocity gives the strength of the vortex sheet at that point. 

By the Helmholtz laws, it is seen that dTf/dr = y(r) = 2 U (r, 0 ), 

where Ff(r) is the blade bound vortex strength at radius r. T'(r) is 

known at various radial stations along the B.T.E. sheet from previous 

calculations. A Fourier series is fitted to these values such that 

drr/dr = 0 at r = R and r = R?. This is so because the vortex 

sheet strengths at these points must be equal to zero. The number of 

terms chosen in the Fourier series is the same as the number of 

points on the B.T.E. sheet at which rf(r) is known. After fitting the 

Fourier series, the vortex strength and hence the radial velocity dis

continuity at any point on the B.T.E. sheet can be evaluated. It can 

be shown that 

U (X, 0+) = -2n drVdX, where rf = r? (X) MllR-W. 
rVS 

Thus the values of the velocity components at the grid points on the 

edge z = 0 , R.. < r < R~ are obtained without the need of further 

numerical integration techniques. 

The values of the velocity components at the grid points on 

the outer edge of the network, that is, at r = R and 0 < z < 

ITR̂ X̂ /b, are obtained as follows. The velocity components U and U 

are discontinuous across the outer boundary sheet. Since the boundary 



75 

is also a stream surface, the radial velocities are zero at this edge 

It can be shown that 

and 

U (l", z) = y° (z), 1 = R9/R?, (77) 
ZVS Znu Z 

U, (1 , z) = G[ ? - T ~ -
 2—j\ ~ Y° (z), (78) 

V̂S 1 + X 1 + X2 % u 

U (1 , z) = 0, (79) 
VS 

where Y and y are the nondimensional ring and line components of 
z \b 
nu nu 

the nonuniform vortex sheet strengths at any point z on the outer 

boundary sheet. The above expressions are obtained by noting that the 

induced velocities are zero outside the outer boundary sheet and the 

strength of the uniform sheet is equal to the total sheet strength at 

the line of intersection. In order to evaluate the above expressions, 

a knowledge of the nonuniform sheet strengths at those particular grid 

points is required. However, from the solution of the set of simul

taneous equations, the strengths of the filaments that represent the non

uniform vortex sheet strips and are located at the midpoints of these 

strips, are known. The strength of each of these vortex filaments is 

equal to the integral of sheet strength over the width of the strip 

which the filament replaces. The sheet strength can be evaluated from 
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a knowledge of the filament strengths by assuming a particular type of 

variation, e.g., linear or parabolic, for the sheet strengths over the 

width of the strip. For simplicity, it has been assumed that the sheet 

strength varies linearly over the width of the strip which the filament 

replaces. The sheet strengths at the required grid points on the bound

ary can then be evaluated using the trapezoidal rule for integration. 

A similar procedure is used to evaluate the nonuniform sheet strengths 

at the grid points on the inner boundary sheet. 

The inner edge of the zr-surface, mathematically represented 

as r = R and 0 < z _< nR„X /b, is now considered. The radial veloci

ties at the grid points on this edge are zero since this boundary is 

also a stream surface. The axial and tangential velocities are dis

continuous across the sheet. It is assumed that the axial and tangen-

tail velocities on the boundary of the jet wake (r = R ) do not vary 

in the axial direction and have the same value as that at the line, of 

intersection of the B.T.E. sheet and inner boundary sheet. This 

assumption is a result of the mathematical model assumed for the jet 

wake. Using a procedure similar to that one used in the case of outer 

boundary sheet, the velocity components at the grid points on the inner 

boundary sheet are obtained as 

U (R|/R2, Z) = 0, (80) 
VS 



77 

U ( R * / R ? , z) = G[\2J(1 + \ h - xbd + xh] - y 1 ( z ) , (81) 
ZVS -L z 

nu 

and 

U^ (R^/R2, Z) = yi (z), (82) 
VS nu 

i i 
where y and y are the nondimensional ring and line components of 

nu vnu 
the nonuniform vortex sheet strengths of the inner boundary. These are 

evaluated using the same arguments as were used at the outer boundary. 

The velocity components at the grid points on the remaining fourth 

edge of the zr-surface are evaluated numerically. 

The accuracy of the volume integrations is clearly dependent on 

the choice for I and J and the strip method used to derive the ex

pression for the volume integral. As a check on the method, the in

duced axial velocity (U ) distribution on the zr-surface is evaluated 

for particular values of X?, b, and m. Then the volume integral is 

evaluated using the strip method. This value is then compared with the 

exact value of the volume integral of U that was derived earlier. It 
z 

was shown t h a t , 

1 1 211 

f f [ V XdX d^ d^/2jI = 7 I V + (1 - G)(l - m2)] 
m 0 0 
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Thus the accuracy of the strip method can be checked. With values of 

1=10 and J=4, the volume integrals are evaluated and it was found that 

these values are acceptable from the standpoint of computation time and 

accuracy. Higher values tend to increase the computation time enormously 

with negligible gains in accuracy. The accuracy of the volume integrals 

—2 —2 
i s a l s o checked by compu t ing t h e volume i n t e g r a l s of U , U and 

—2 
U for a particular \ ? and

 fmf but with increasing number of blades. 

These volume integrals should and do converge to the values correspond

ing to those of the infinite number of blades that are obtained later in 

the next chapter. 

i 
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CHAPTER I I I 

INFINITE-BLADED FAN 

Wake Model And Its Solution 

The vortex wake model of the optimum high by-pass ratio ducted 

fans with infinite number of blades is an extension of the wake model 

developed earlier for the fans with finite number of blades. The original 

work in this area was done by Gray . The ultimate wake of these infi

nite bladed fans consists of the following elements: the jet wake, the 

fan wake and two cylindrical boundary vortex sheets. The jet wake model 

is exactly the same as the one used earlier. However, there are some dis

tinct differences as far as the fan wake and boundary sheets are considered. 

The wake of an infinitely bladed fan consists of a volume distribu

tion of cylindrical vorticity. As was discussed earlier, the fan wake of 

an optimum high by-pass ratio ducted fan with finite number of blades con

sists of the helical vortex sheets of constant pitch shed from the trail

ing edges of the fan blades. As the number of blades increases, the heli

cal vortex sheets become more and more closely spaced. In the limit for 

an infinite number of blades, these sheets completely fill the wake. The 

ultimate wake of a fan with an infinite number of blades can thus be 

viewed as cylindrical volume of vorticity , the. volume being filled with 

an infinite number of helical vortex sheets shed from the trailing edges 

of the blades. The vorticity in the wake can be viewed as a combination 

of ring and line vorticity since the vortex cylinder is of constant 
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diameter. Following the same lines of arguments as were used in the case 

of the fan with a finite number of blades, the cylindrical fan wake is 

bounded on the inside by an inner cylindrical boundary vortex sheet of 

constant diameter shed from the trailing edge of the hub and on the out

side by an outer cylindrical boundary vortex sheet of constant diameter 

shed from the trailing edge of the duct. These boundary vortex sheets 

move axially relative to the cylindrical fan wake and serve the same 

purposes as those in the case of a fan with finite number of blades. 

Since the cylindrical fan wake can be thought of as a wake filled 

with infinite number of constant diameter helical vortex sheets of con

stant geometric pitch, the velocity relations that were obtained at points 

on helical vortex sheets of the finite bladed fans can be used everywhere 

in the wake of the infinite bladed fan. Consequently, the analysis of 

an infinite bladed fan wake is very much simplified. The strengths as 

well as the geometry and motion of the two cylindrical boundary vortex 

sheets can easily be determined once the velocity field in the ultimate 

fan wake is known. By using essentially the same arguments as were used 

in the case of the fan with finite number of blades, it can be shown that, 

for the flow to be irrotational outside the wake, the induced velocities 

outside of the wake should be equal to zero. As was done earlier, it is 

assumed that the net vorticity in the jet wake is equal to zero. In the 

case of the fan with finite number of blades, the uniform boundary vortex 

sheet strenghts as well as the pitch angles are determined by considering 

the velocity discontinuities at the lines of intersection between the 

B.T.E. sheets and the boundary vortex sheets. Therefore, in the case of 

the fan with an infinite number of blades, the B.T.E. sheets fill the 
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entire wake and hence, the boundary vortex sheet strengths as well as the 

pitch angles are the same as the sheet strengths and pitch angles of the 

corresponding uniform boundary sheets of the fan with finite number of 

blades. 

At any point in the ultimate fan wake, that is for R < r < R„, 

U r = U r , siiKfr/siiKj)-, (83) 
£ £-, 1 

U = W Cos<j>, (84) 

and U = 0 . (85) 
r 

For points outside the wake, that is for r > R„, 

U = U = 0. (86) 

Equations (10) and (11) give the sheet strength and the pitch angle of 

the outer boundary sheet. Similarly Eqs. (16) and (17) give the 

corresponding values for the inner boundary sheet. The jet wake is 

treated exactly the same way as was done earlier. 

Consider a line integral of the velocity along a closed contour 

ABCA on the surface of the cylinder of radius r, where R < r < R„ 

ABC is along the £ direction and CA is along the £ direction. C is the 

intersection point of a line in the helical direction, but on the same 

side of the vortex sheet, and a line in the £ direction originating at A. 
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As per t h e v e l o c i t y f i e l d , which has been d i scussed e a r l i e r , the com

ponents IL and U a re cons tan t on a c y l i n d e r of r ad iu s ' r ' . 

J $•<£ = Ur Un ~ O + Û  (5A - O 
ABCA 

f V"C ^A' C A ^ C 
s r ^ r 

However, U = U sincf>/sin<f) , 
r 1 

U = W coscj>, 
r 

r tan<|) = R„ tan<f>2 = ^ 2
R 2» 

Uc ~ KA) = 2nR2A2 cos4> cotcf>, 

and ( r - £ ) = 2nR2X„ costj). 

Since the shed vorticity by convention is negative and since the net 

vorticity in the jet wake is zero, by Stoke's theorem 

/ • * V.ds = -br'(r), 

ABCA 

where T'(r) is the blade bound vortex strength at 'r' which is in fact 

the sum of all vortex filaments shed in board of radius 'r'. It is to be 
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be noted that b is infinite and r'(r) is infinitesimal and therefore 

br'(r) is finite and represents the bound vortex strength of all the 

blades at r. Thus 

- b r ' ( r ) = (U s in^ /s in t f . ) (2nR 2A 2 cost}, cot<J>) - W cost}, 2nR2A2 cos< 

and 

b r ' ( r ) 2X TT 2 ... . x 

2 — — = cos * - U cos 4/W s m ^ , 
11 1 

K(X) = G cos2(j>, 

where G = 1 - U /W sincj)- . I t can e a s i l y be shown t h a t 

K(X) = G X 2 / ( X 2 + A2) (87) 

and 

KQ(X) = X2/(X2 + A 2), where X = r/R2, 

Thus, the Goldstein coefficients for the case of a fan with infinite 

number of blades can be easily computed. Since the velocity field in 

the ultimate wake is known, the vorticity in the wake can also be 

easily computed. Using Eqs. (83) through (86), it can be shown that 

for R < r < R , 
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Uz = W[l - GA2/(X2 + A2)], (88) 

and 

U = -GWX2X/(X2 + X2). (89) 

Therefore, the tota l velocity field in the ultimate wake is given by 

GA2 GWA?X 
Q(X) = [V + W(l - - _ — - - ) ] e - e ( , (90) 

X2 + A2 Z (X2 + A2) * 

where the velocit ies are with respect to a co-ordinate system fixed to 

the duct. The vort ic i ty in the ultimate wake is given by V X Q = y ' . 

Using the cylindrical coordinate system i t can be shown that 

3 V i ^ 
v' = vXQ = - — e H -— (rv ) e , and therefore 
1 9r ty r 9r ifr z9 

2GA?WX 2GWA9 

Y' (X) = 7 9 7 e _ - ^ - _ ~ 2 (91) 

(xz + xp R2 * R0(x +xp 

Converting to a helical coordinate system it: is seen that 

y^ (X) = - 2GWA2/R2(X
2 + A 2 ) 3 / 2 , 

and 
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Yj(X) = 0, 

where Y'(X) is the vorticity per unit area. In order to get the vortex 

sheet strength in the £ direction,y\. is multiplied by a characteristic 

2 2 1/2 
length which for this case is given by 2IIR_A_X/(X + X») 

2 2
 1 / 2 2GWXA2 

Y^ = Y£(x) 2nR2x2x/ (x + x2) = (2nR2x2)( 2 2 2) 
R^(X + A ) 

This sheet strength is due to all blades of the fan. This expression 

can also be arrived yet another way, using the expression y = 

-bdr'(r)/dr and using Eq. (87). The assumption of infinite number of 

blades makes the flow field in the wake steady. The velocity field in 

the wake can be checked by evaluating the velocities due to the 

B.T.E. sheets, the inner and outer boundary vortex sheets and the jet 

wake, and then summing them. Having established the velocity field in 

the ultimate wake, the thrust and power coefficients can be evaluated 

using the integral theorems. 

Estimation Of Thrust And Induced Power 

As for the case of a fan with a finite number of blades, the 

momentum and energy integral theorems are used for the evaluation of the 

thrust and induced power coefficients. First, for the momentum integral 

theorem, it was shown earlier in Chapter II that the thrust due to the 

duct and fan system is given by 
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TD = ^ ^- I (P - P )ds dt + (-£-) f p(V U + U2)ds dt 
At J oo' At J H °° z z 

fan fan 
wake wake 

where ds is the elemental surface area. In the ultimate fan wake, 

dt = dz/(V + W), and the characteristic time, At = 2Il/fi. De-
00 

2 2 2 — 
f i n i n g C- = T /pfi R^IIR- and z = z/2IIR„X ? , i t c an be shown t h a t 

1 1 2JI 

> 
"R; 

C T = ^b / / / (p - p c o ) x d x dz d* 
2 m 0 0 

- 2 1 X 2IT 

+ f / / / <*- *z + U2 d̂  d* (92) 
m 0 0 

where V = V /W, U = U /W, and W = W/fiR0. The second vol 
oo 7 r? ' / 

ume 

integral in the above expression can be evaluated in a straightforward 

fashion using Eq. (88). However, in order to evaluate the first inte

gral the pressure terms must be expressed in terms of the known velocity 

field in the wake. This can be achieved by using Crocco's theorem 

which gives a relation between the variation of stagnation pressure and 

the velocity and vorticity in the ultimate wake. Then, 

Vh = Q X cur£ Q. 
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Neglecting the variations in temperature and noting that the pressure 

variation is in the radial direction, it can be shown that 

l/p 3P0/8r = [QV; y'z - Qz y']. 

where P = P + - pQ and Q = Q + Q . Us ing Eq. ( 9 0 ) , i t can be 

shown t h a t 

dP„ 2pGA2(V W + W2)X 
0 _ 2 °° __ 

dX = _ t f + X*)2 (93) 

and 

PQ = -'2pGA2(VTO W + W2) / 2 ( X 2 + A + c o n s t a n t 

The c o n s t a n t i s e v a l u a t e d by c o n s i d e r i n g P„ a t r = R where 

1 2 
P„ = P ' = P + — p Q - . A f t e r some a l g e b r a i c m a n i p u l a t i o n , i t can 

0 0 o° 2 R b v ' 
be shown t h a t 

? 2 ? ? 

(p - ?j or wz \LAYT - i) 
= L . ( 9 4 ) 

p 2(1 + \^)ar + xp 

Substituting Eq. (94) into Eq. (92) and using the expression for U , 

C_ can be evaluated in closed form as 
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c-T = w 

2 2 2 
G X ^ l - mZ) 

2 ( 1 + \2
2) 

2 A 2 
GZA^(1 - mZ) 

— « ^ 5 " + ( 1 ~ m )<VW> 
(mZ + Xp( l + xp 

•GX^U + X2/W + G/2] L n ( ( l + X ^ / O n 2 + X2) (95) 

Thus for a given X~ and W, CT can be evaluated from this equation. It 

was also found that for m = 0, that is, for a fan with no hub, Eq. 
f r\ 

(95) reduces to the expression obtained by Gray for a ducted fan with 

infinite number of blades and without any hub. 

Induced Power 

As for the case of a fan with a finite number of blades, the 

ideal power required by the optimum high by-pass ratio ducted fan with 

infinite number of blades, excluding the jet, can be obtained through 

a consideration of the induced energy loss in the fan wake. Using the 

same arguments as were used in Chapter II, it can be shown that the 

induced energy loss in the wake is given by 

n 
D 211 (V + W) / 

vol. of 
fan wake 

rl 2,T _, /l 2 
[-2 pv V^ + ^- pv + (P " * ) ij U ]d (volume) 

3 2 
Defining e = E /p(^R9) IIR and nondimensionalizing the other variables, 

it can be shown that 
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e = 2n 

l 1 2n 

/ / / 
m 0 0 

v 2 [ V + U ]XdX dz diL 
L oo Z 

+ w 
l l 2n 

; / / m2 2 
2 m 0 0 

P - P _ 
( - ) U XdX dz dip 

P z 
(96) 

where v 2 = U2 + U u s i n g E q s . ( 8 8 ) , (89) and ( 9 4 ) , Eq. (96) c a n be 

e v a l u a t e d i n c l o s e d form a s 

W2 A, 
e = ( 1 -

2 3 — 2 2 — 2 
2G^A^ W(l - m ) G A W(l - m ) 

mZ) + -=-^ * — + Z 
0 9 9 9 9 

(1 + ApOn + \p 1Z + AZ 

G A 2 (2 A2 + W 

2 — 2 
_ G W A 

G L + G W + Zr-) Ln| 
( 1 + XZ) 

1 + A„ 
^ 

2 -4- I 2 

m + A 

. (97) 

The i n d u c e d power c o e f f i c i e n t c a n t h e n be o b t a i n e d a s 

Cp = ( A 2 - W ) C T + e . (98) 

The induced power coefficient for a constant: diameter wake of the 

ducted fan can also be obtained by the application of the Kutta-

Joukowski theorem. It was shown in Chapter II that 
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V T
 = GWX2[ K ' - G W X 2 y ' ] 
KJ 

and 

CT = G W A 2 [ K ^ - G W u j A2 /2] 
P 

For the ducted fan with infinite number of blades, it was shown 

2 2 2 
earlier that K„(X) = X /(X + A ). Using this expression for K„(X) 

and the definitions of K' and u', it is shown that 

and 

2 ? G W A^d - m ) 
C = G W A [ ( 1 - ni ) + — =- - (A + G W A ) 

KJ (1 + Ap(mZ + Ap l l 

1 + \l 
Ln (-^ j ) ] . (99) 

m + A2 

G W \\{1 - m2) _ 
C T = G W A 2 [ ( l - m ) + ^ ^ j - ~ < x

2
 + G W V2 ) 

p 2(1 + A0)(m" + A_) 

2 
1 + A 

Ln (-2 § ) ] . (100) 
m + A2 

After some algebraic manipulation, it can be shown that Eqs. (98) and 



91 

(99) are in fact equivalent though they were derived differently. It 

was also found that these expressions reduce to the expressions (from 

( (•>} 
unpublished work by Gray ) for the fan with no hub (m = 0). 

Thus, unlike the case of the fan with finite number of blades 

where extensive numerical procedures are needed to evaluate C_, C 
T P 

and K (X), the analysis of the ducted fan with infinite number of blades 

is much more simplified. 
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CHAPTER IV 

RESULTS 

Having established the method as well as the numerical parameters 

necessary to evaluate the blade bound vortex strength distribution, 

K(X), the method for the generation as well as the solution of the sys

tem of equations was programmed for a digital computer. First, it was 

necessary to check the method used. Therefore, the general computer 

program has been used to obtain the K (X) distribution for the special 

(2) 
case of a fan with no hub. Wright generated the data for such a fan. 

The Goldstein coefficient distribution, that is, K (X), was evaluated 

for a fan with A = 0.5 and b = 2 and compared in Fig. 11 with that 

due to Wright. It can be seen from Fig. 11 that the agreement between 

the two sets of results is excellent. Figure (12) shows another such 

comparison for a fan with A_ = 0.75 and b = 4. The general computer 

program was then used to obtain the nondimensional bound vorticity dis

tribution, K (X), for high by-pass ratio ducted fans for various values 

of A , m and the number of blades, b. Some of the data, especially the 

one corresponding to m = —, is presented in the form of tables at the 

end of this chapter. A value of m == — relates to a ducted fan with a 

by-pass ratio of approximately 9, which was considered to be in the 

range of the by-pass ratios which are of interest from the point of view 

of applicability of the method presented in this thesis. The values of 

\? and b chosen for this 'm' are also arrived at from a practical 
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view point. For example, the high by-pass ratio ducted fans in use to

day have a value of A in the range of 0*5 to 1*0. The data presented 

in these tables will be helpful from the point of view of design of 

such fans. The K (X) distribution for fans with different values of 

m was also evaluated. Figures 13, 14, 15 and 16 show the K (X) distri

butions for different values of A and m and, for each of these values, 

how these distributions converge with increasing blade number to that 

corresponding to an infinite number of blades. The K (X) distribution 

for the fan with infinite number of blades was evaluated using the 

method outlined in Chapter III. These figures clearly show that for 

all values of L and m considered, the convergence is very good. It is 

also seen from Fig. 14 that in the case of a fan with m = 0.75 (low 

by-pass ratio), the K (X) distribution is rather flat which is expected 

since for fans with a large value of m, the flow field and the vortex 

strengths are more uniform across the fan wake. 

An estimation of the amount of computational time involved in the 

generation of the data was made. Typically, for a fan with A = 0.5, 

m = -r» and b = 2, it takes about 180 seconds on the Cyber 74 compu

ter to obtain the K (X) distribution. For a fan with A = 0.5, m = 

—, and b = 12, it takes about 1027 seconds to obtain the K (X) distri

bution. For a given by-pass ratio and blade, number the computer time 

decreases with increasing values of A~. This is due to the fact that 

the stipulated numerical accuracies are met with a lower number of com

putations for fans with higher values of A . The computational time 

does not change appreciably with m. 
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As was shown earlier, the K (X) distributions for larger and 

larger blade number converge to that of the infinite-bladed fan. This 

becomes very important since it takes only a few seconds to generate 

the data for the infinite-bladed fan. Therefore for fans with a large 

number of blades, instead of spending an inordinate amount of computer 

time in generating the data, it is more economical, as well as quicker, 

to approximate such fans with corresponding infinite-bladed fans. 

Another test of convergence of the data with increasing blade number can 

be made by considering the mass coefficient, K'. It is seen from Fig. 

17 that the mass coefficient, K', also converges rapidly to that of the 

infinite-bladed fan for An = 0.5 and m = —. This is found to be 
I 4 

true regardless of the values of A„ and m chosen in generating the data, 

thus establishing the accuracy of the numerical procedures used. 

In Chapter II, a detailed description of the method for obtaining 

CT, C , n., and C /C in terms of the volume integrals of the velocity 
P P 

distribution in the wake was given. This method was programmed for the 

digital computer and the program was used to evaluate numerically 

C™, C , n., etc. This program was designed to first evaluate the 

velocity field in the wake from a knowledge of the vortex strength dis

tributions. After obtaining the velocity field, the required volume 

integrals are evaluated numerically. The values of CT, C and n. were 

obtained for various values of load parameter, W/A , which varies from 

0.0 to 1.0, with W/A„ = 1 being the case where the flight speed is 

zero (static case). As before, the data corresponding to a fan with no 

hub was generated as a special case to serve as the test case. Figures 

(2) 
18 through 21 show t h a t the agreement between Wr igh t ' s da ta and the 
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present data is very good for both Cm and C . The observed differences 
1 p 

are probably due to the differences in the numerical procedures. 

The accuracy of the numerical evaluation of volume integrals can 

be established by evaluating I U dvol' numerically and comparing it 

with the exact value given in terms of the mass coefficient (Eq. (60)). 

For A = 0.5,m = —, and W = 0, Fig. 17 shows that the agreement 

between the mass coefficient computed using K (X) and the value com

puted using the volume integral of U and A~, is excellent. In fact, 

vs 
this check was made for all the data generated and it was found that in 

every case these values agreed to within one percent. 

As an additional check on the volume integrals as well as on the 

convergence of the data with increasing blade number, the values of e , 

e , and e were evaluated for various values of X , m and blade number, 

b, and compared with those of the corresponding infinite-bladed fan. 

The values for the infinite-bladed fan were obtained using the velocity 

field given in Chapter III. For the case of fans with finite number of 

blades, e , e., and e were obtained using the numerical computations of 

the volume integrals. Figures 22 and 23 show that e converges satis

factorily to that of the infinite bladed fan for both the cases of 

W/A? = 0.0 and W/A.~ = 1.0. In fact, this is true for all the values 

of A? and m considered except for the case of a fan with A~ = 0.5 and 

m = 0.75. In this particular case, due to the relatively uniform 

velocity field in the wake, e does not change appreciably with b. In 

the case of e (Fig. 24), it does converge to the value corresponding to 

the infinite-bladed fan with increasing blade number. For the case of 



107 

0.26 

0.22 

1 1 2II 

/ / / 
m 0 0 

U2 XdX dz di|>/2TI 
z 

0.34 

W/A, 1.0 
r. For Fan With 

I n f i n i t e 
Number of 
B l a d e s 

0.30 

).18 l 
A2 = 0.5, m = 0.75 

-r °° 

0.14 — 
A2 = 1.0, m = 1/3 

0.10 

A = 1.5, m = 0.25 

i_ 

0.06 ± ± 
5 7 9 

Number Of Blades 

11 13 

Figure 22. Variation of e With Number Of Blades 
z 



108 

W = 0.0 

c. For Fan With z 
I n f i n i t e Number 
Of B l a d e s 

0.20 

0 .18 

0 . 1 6 

0.024 — 

0 . 0 1 6 — 

0.008 

0.0 
5 7 9 

Number Of B l a d e s 

11 13 

Figure 23. Variation Of E With Number Of Blades. 



109 

the fan with A_ = 0.5 and m = 0.75 as shown in Fig. 24, the value 

of e does not change appreciably with b. This may be due to the rela

tively uniform flow field associated with high values of m. It is also 

seen here that, unlike in the case of e , the convergence is not mono-

tonic (in a few cases) with a dip in the curve at the lower values of 

blade number (see Fig. 24). This may be due to the inner boundary sheet 

which induces tangential velocities in the fan wake and that at lower 

values of b, its effects might be more pronounced. Figure 25 shows that 

e converges to zero which is the value corresponding to the infinite-

bladed fan for all values of A~ and m. Once again the convergence is 

not monotonic for reasons that are not clear0 

A third case for the check on the accuracy of the volume inte

grals can be made by comparing the values of the power coefficient, C , 

obtained from two different methods. In one method as was described 

earlier in Chapter II, C was computed using C and the induced energy 

loss, e, in the wake which involves the computation of several volume 

integrals. In the other case as was also described in Chapter II, C 

was computed using the Kutta-Joukowski theorem. As shown in Fig. 26, 

the agreement between the two sets of values for the case of a fan with 

A = 0.5 and m = 0.25, is very good. It: was found that the two sets 

of values of C obtained from the two methods agreed to within one per-
P 

cent for most of the cases considered. 

After establishing the accuracy of numerical volume integrations, 

the values of C„, C , C_ /C , and n, were computed for different combina-
P P 

tions of L and m. For each A„, m, and b, these quantities were computed 
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for values of W/A_ ranging from 0.0 to 1.0. An index to the data pre

sented in the form of tables, is given in Table 1. Figures 27 through 

34 show the variations with the blade number of Cm and C with W/A0 for 
T p I 

various combinations of L and m. As expected, these variations con

verge to that of the infinite-bladed fan. In the case of the fan with 

A_ = 0.5, and m = 0.75 (Figs. 29 and 30), it is seen that the 

values of C„ and C do not change significantly with an increase in the 

number of blades. As was discussed earlier, there is a significance to 

the convergence seen in these figures. It not only demonstrates the 

validity of the wake model and the method used but also makes it possi

ble to approximate a ducted fan with a large number of blades with that 

of a corresponding infinite-bladed fan. This latter consequence is 

very significant considering the large amount of computer time involved 

in these calculations for finite-bladed fans. For example, it takes 
about 900 sees on the Cyber 74 to generate CT, C , C /C , etc. for 
_ P P 
W A 2 from 0.0 to 1.0 for a fan with A = 0.5, m = 0.25 and b = 2. 

However, if the number of blades is increased from 2 to 12 keeping the 

other parameters constnat, it takes about 4200 sees to generate the same 

data. These computational times do not include those required for the 

generation of the data for K (X). It is to be borne in mind that it 

takes only a few seconds of computer time to generate the similar data 

for an infinite-bladed fan. These observations regarding the computa

tional time hold generally true for all values of A^ and m that were 

considered. Figure 35 shows the variations of induced efficiency, n., 

with the load parameter, W/A^, for a fan with A~ = 0.5 and m = 0.25 
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and for increasing blade number. It is seen that these variations do 

not change significantly with b inspite of the fact that the magnitude 

of the radial velocities in the wake decrease with increasing blade 

number and becomes zero in the limiting case of an infinite number of 

blades. This is so because with increasing of blades the thrust de

veloped also changes and hence the effect of a decrease in e cannot be 

clearly seen in the Fig. 35. The induced efficiency of a single rotation, 

optimum ducted fan, such as the one considered here is also compared with 

that of an impulse disk developing the same thrust. In the latter case, 

the tangential velocities are absent in the ultimate wake and the axial 

velocity is uniform across the wake. As shown in Fig. 35, the induced 

efficiencies of the impulse disk are higher (by about 3 to 4%) than those 

of the single-rotation fan with no stator vanes. 

The variation of C /C with W/A is shown in Fig. 36. It is 
P 

seen from this figure that at lighter loads, most of the thrust is 

developed by the fan blades and as the load parameter, W/X , increases, 

the proportion of the thrust developed by the fan to that of the duct 

decreases. 

The d a t a f o r K ( X ) , C , C , C / C ^ , e t c . , f o r f ans w i t h m = — 
o l p l l j 

P 
but with different values of A and b are presented in tables at the 

end of the thesis. 
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CHAPTER V 

DUCT/FAN DESIGN 

Preliminary Discussion 

In the earlier chapters, the ultimate wake of optimum, high by

pass ratio ducted fans with a finite as well as an infinite number of 

blades was solved for the vortex strength distributions and velocity 

fields. However, from a practical point of view, it is necessary to 

design a duct which is compatible with the given ultimate wake. In the 

following discussion, a tentative and approximate procedure is suggested 

for the design of such a duct. The design is based on the assumption 

that the flow is incompressible and potential. The real fluid effects 

such as viscosity and compressibility can be incorporated into the 

design after the preliminary design based on the potential flow. 

The design of the duct involves determining its bound vortex 

strength distribution as well as its mean camber surface. It is to be 

noted that there are, in general, two types of ducts that have a wide 

application. The duct can be used either to accelerate or decelerate 

the flow to the fan. In accelerating ducts, such as bell mouths, the 

thrust of the combination of duct and fan is increased over that of the 

fan alone. In the past decelerating ducts were used in marine pro

pellers where their main purpose was to delay cavitation. However, most 

of the commercial fan engines of today have ducts which first decelerate 

and then accelerate the flow. In high-speed subsonic flight where these 
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engines are mostly used, the incoming air flow is decelerated to the 

entrance to the fan where the fan adds energy to the flow. The flow is 

then accelerated downstream of the fan. These ducted fans are driven 

by coaxial core engines which are gas turbines. The wakes of the 

ducted fan engines therefore consist of a hot jet exhaust surrounded 

by a relatively cold fan exhaust. 

The flow field in the duct of any finite-bladed ducted fan is un

steady. Therefore, to design the duct, it is suggested that the actual 

wake system of a ducted fan with finite number of blades be replaced by 

that of an equivalent (developing the same thrust) ducted fan with in

finite number of blades. With the infinite bladed approximation, the 

flow field with respect to a coordinate system fixed to the duct is 

steady and is approximately equal to the time average flow of the actual 

unsteady flow field. The duct design will therefore be based on the 

ultimate wake of an infinite bladed ducted fan. After the duct design 

is established, the fan is then designed using the wake for a finite 

number of blades. The wake model and its solution for a ducted fan with 

infinite number of blades is given in Chapter III. 

The wake of an optimum, high by-pass ratio, ducted fan with in

finite number of blades consists of semi-infinite coaxial cylindrical 

vortex sheets. These cylinders of vorticity shed from the fan blades 

and the duct surround the jet wake from the core engine. The fan, in 

principle, can be at any axial location in the duct. Unlike commercial 

fan engines, no stator blades are assumed to be present in the duct-fan 

system. The effect of a tip clearance between the fan blades and the 
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duct is assumed to be negligible. 

The design of the duct-fan system can be based on either the 

available power or the thrust developed. The latter case is considered 

here. It is assumed that the flight velocity, V̂ ,, the angular velocity 

of the fan, Q, the number of blades, b, and the core engine character

istics are given. With regard to the core engine, it is assumed that 

the core engine geometry (R. and its inlet: geometry, see Fig. 37) , mass 

flow rate, and power output are given. The by-pass ratio is also 

assumed to be given. The outer radius, R~, of the ultimate fan wake is 

then obtained. In the following discussion, an outline of the design 

of a decelerating-accelerating duct, such as those used in high by-pass 

ratio commercial fan engines is given. The amount of deceleration is 

assumed to be given. It is to be noted that the procedure to be de

scribed is also applicable to accelerating ducts. 

Design Outline 

(4) 
The procedure is similar to the one given by Gray for a 

lightly loaded ducted fan with counter rotating propellers. It has 

been suitably modified to take into account the decelerating-accelerating 

duct. 

( i ) C a l c u l a t i o n of the Thrust c o e f f i c i e n t , C : Determine 

CT = TD/p nR2ft R2, 

where T is the given thrust of the duct-fan system. 
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(ii) Determination of the wake parameter, W: Since the duct is designed 

for an equivalent infinite-bladed fan, Eq. (95) is employed to obtain 

W using C„ from (1). The Modified False Position method of Ref. 10 can 

be used to obtain W. Using this value of W, the vortex strengths of 

the wake cylinders as well the velocity field in the ultimate wake are 

determined. 

(iii) Determination of the Compatible Duct: A schematic diagram of the 

fan engine configuration and the vortex wake near the trailing edge of 

the duct is shown in Fig. 37. The duct contour and its bound vortex 

strength distribution are obtained by an iterative procedure. As shown 

in Fig. 37, the fan and the inlet (LJ) of the core engine are assumed 

to lie in the same plane. In the first iteration, (refer Fig. 37), 

it is assumed that the constant diameter wake cylinders of the ultimate 

wake extend up to the duct exit plane, AB. As shown in Fig. 37, the 

annular fan wake is divided into a finite number of semi-infinite cylin

drical sheets. Between the fan and the duct exit plane, the wake fila

ments contract depending on the shape of the duct aft of the fan. It 

is assumed that the nondimensional local radii of these wake filaments 

(based on the outer radius) remain the same as the filaments move through 

the duct. The vortex strengths of these filaments are determined by the 

sheet strengths of the vortex cylinders at AB using the principle of 

conservation of circulation. These wake vortex sheets between the fan 

and the duct exit plane are replaced by a set of equivalent vortex rings 

for the purpose of the design. 

For design purposes, the effect of the center body is taken into 



Initial Duct * 
Contour 

Duct 

Duct Exit Plane 

Contracting Wake Boundary 

Figure 37. Schematic Diagram Of A Fan Engine And Its Wake And 
Duct Contour After First Iteration. 
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account by a suitable singularity distribution along the axis of the 

engine. The strengths of the singularities are determined by the shape 

of the center body. The flow through the core engine will also have an 

effect on the design of the duct and is taken into account by a sink 

distribution on the annulus, LJ (see Fig. 37). Thus the various sin

gularities ahead of the duct exit plane are identified. 

Step 1 

It is assumed that the amount of deceleration of the flow to the 

fan is given. Based on a one dimensional theory, the radius of the duct 

in the fan plane is determined from the given amount of deceleration using 

the continuity theorem. The radius of the duct at the trailing edge, 

R~, is known. Between points A and G (see Fig. 37), a smooth contour 

is drawn and is used as the initial contour of the duct. The inlet 

portion (GP) of the duct is chosen such that there is a smooth entry of 

flow at its leading edge. However, in the first iteration its shape is 

not known. As can be seen later, its shape (GOP) is fixed by the bound 

vortex strengths near the leading edge. For the first iteration, a 

smooth contour (GOP) as shown in Fig. 37 is chosen. Having assumed the 

duct contour (AGP), a bound vortex strength distribution which is com

patible with the contour, AGP, and satisfies the required mass flow con

dition at the duct exit plane, AB, is determined. 

In the first iteration, the semi-infinite constant diameter, fan 

wake cylinders extending downstream from the duct exit plane give rise 

to an axial velocity distribution such that U (o, r) = — U («>,r) where 
z I z 

z = o represents the duct exit plane and hence in order to conserve 
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the mass the other half of the axial velocities must be supplied by the 

various singularities ahead of the duct exit plane. This mass con

servation is satisfied by requiring that (¥. - ¥ ) = — (volume flow 
A D Z 

in the ultimate fan wake), where V and V are the total stream functions 

due to all the singularities including the duct bound vortex strengths 

ahead of the duct exit plane at A and B respectively. 

For the purposes of the design, the duct contour (AGP) is 

divided into a finite number of strips. The unknown bound vorticity 

distribution of the duct is replaced by a set of ring vortex filaments 

of unknown strength which are placed at the midpoints of the segments 

that the ring filaments replace. A set of control points is chosen 

such that their number is one less than that of the unknown vortex rings. 

Control points are located between adjacent vortex filaments (except A 

and R). 

In the first iteration, the effects of center body and the core 

engine on the duct design are neglected. Using the Biot-Savart law, the 

strengths of the bound ring vortex filaments are determined such that, 

at the control points, 

(dr/dz) = U /(V + U ) r °° z 

and the mass flow condition at the exit is satisfied. Thus, the con

tour and the bound vortex strengths of the duct are obtained in the 

first iteration. 



132 

Step II 

For the duct to be compatible with the assumed wake model aft of 

its trailing edge, the radial induced velocities at the wake boundary 

near the trailing edge of the duct must be zero. If the axial induced 

valocities just outside the wake boundary near the trailing edge of the 

duct are different from zero, the vortex sheet strength of the outer 

boundary will be different from that in the ultimate wake. Therefore, 

the radial and the axial induced velocity components are computed at 

several points, X, U, T, S (see Fig. 37), just outside of the wake 

boundary. These velocities must be zero for a compartible duct. How

ever, these radial and axial induced velocities will be small but not 

zero. Therefore, the wake must contract (or expand) for a short dis

tance (about one duct exit diameter) downstream from the duct trailing 

edge. The effects of this small contraction (or expansion) can be 

approximated however. This contraction (or expansion) is evaluated 

using the computed radial induced velocities at the points, X, U, and 

T. 

In the second iteration and starting from the point, S, which 

is about one diameter away from the duct trailing edge, (the actual 

distance being selected such that the induced velocities just outside 

the wake boundary are negligibly small in comparison with the wake 

velocities), a new wake contour, SC, and duct contour, CDYP, are 

chosen to take into account the contraction computed earlier. It is 

also to be noted that the pressure should be continuous across the 

contour, SC. This necessitates an adjustment to the strength of the 
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vortex sheet, SC, which is determined by the axial induced velocities 

computed earlier. Depending on the shape of SC, the geometry of the 

inner wake vortex cylinders also change and must be taken into account. 

Step III 

Using the new duct contour, CDYP, the bound vortex strengths 

are determined in exactly the same way as was done in step I taking in

to account the slight contraction or expansion of the wake near the 

duct trailing edge. The mass flow condition, in this second iteration, 

is satisfied in the plane, SE. After finding the new set of bound vor

tex strengths, the test for compatibility is made as outlined in step 

II. Steps II and III are repeated until the computed geometry of the 

wake near the trailing edge of the duct does not change between two 

successive iterations. The duct so determined will have a slightly con

tracting (or expanding) wake and the vortex sheet strength distribu

tions in this portion of the wake are different from those in the ulti

mate wake. Thus, a compatible duct with constant diameter wake cylin

ders extending downstream from its exit plane will never occur. 

After obtaining the approximately compatible duct, the inlet, 

OP, of the duct is adjusted either by increasing or decreasing the 

leading edge radius to give a new contour, OR or OQ respectively, so 

that the strength of the leading edge vortex ring is small compared with 

the other rings and that its circulatory field is such that it de

celerates the oncoming flow. This ensures an approximately smooth 

entry of flow at the leading edge. The effects of the core engine and 

center body can now be incorporated into the design by an iterative pro

cedure. However, these will slightly change the duct contour and the 
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wake shape near the trailing edge of the duct. The final duct contour 

and the wake geometry are obtained using an iterative procedure. 

As an example of the procedure, an approximately compatible, 

low-speed duct mean camber surface design was attempted and the result 

at the end of the first iteration is shown in Fig. 37 as PYC. It was 

found that the contraction is small (approximately 5%) and the radial 

induced velocities just outside the wake boundary at a distance of one 

diameter from the trailing edge of the duct are small (within 1% of 

the wake velocities). 

(iv) Duct Thickness Distribution: A surface of finite thickness wrapped 

around the duct mean camber surface may slightly change the wake shape 

near the trailing edge of the duct. However, for a thin duct the 

effect will be negligible. The following procedure, originally due to 

(4) 
Gray is used to find the thickness distribution. 

(a) Construct a reasonable inner contour using elements of 

existing airfoil sections being careful to match slopes and radii of 

curvature where different sections are joined. 

(b) Equidistant on either side of and very close to the duct 

mean camber surface determined in iii, place a doublet ring. The lo

cation of the doublet must be well within the thickness distribution. 

Using the stream function data of doublet rings, determine the strength 

of the doublet which will locally, that is, in the plane of the doublet 

ring move the streamline through the trailing edge radially inward to 

the assumed contour. This involves the computation of the stream 
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function due to all the singularities including those of the wake at 

the surface point. 

(c) A corresponding outer point may be determined in the plane 

of the doublet ring by adding the stream function due to the doublet 

ring to the values of the stream function outside of the mean camber 

surface. The required point is obtained where the total stream 

function is equal to that at the trailing edge. The outer contour is 

determined by connecting a few such points by a smooth curve. This is 

an approximate method and does not furnish the solution for the pres

sure distribution on the duct. 

(v) Fan design: Once the duct is designed, the equivalent infinite-

bladed fan need not be used. In fact, the fan is designed for the 

specified number of blades. The wake of the finite-bladed fan, as was 

described in Chapter II, is completely determined since W is known. 

Therefore this wake along with the duct designed earlier, is used in 

the design of the fan blades. In principle, since the strengths of 

all the singularity distributions in the wake as well as in the duct and 

the engine are known, the induced velocity distribution at the fan 

blades can be obtained. The required bound vorticity distribution of 

the blades is known from the wake analysis of Chapter II. From the 

wake analysis, the bound vorticity distribution r'(X) is obtained from 

the corresponding K(X) distribution according to the definition, 

2n(V + W)W 
00 

r'(x) = — K(X). 
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From t h e K u t t a - J o u k o w s k i t h e o r e m , 

Lf(x) = Pco vr'(x) = | Pv2c c£, 

where LT(X) = l o c a l l i f t p e r u n i t s p a n , 

C = l o c a l s e c t i o n l i f t c o e f f i c i e n t , 

C = l o c a l b l a d e c h o r d , 

and V = l o c a l t o t a l v e l o c i t y . 

From t h e above two f o r m u l a e , i t can be shown t h a t 

2W(Voo + W)K(X) 

° Cl 0.x V 

where a = bc/2IIr - local solidity. 

If the local lift coefficient distribution is specified, the chord dis

tribution can be obtained from the last equation. 

The design of the fan as well as that of the duct presented here 

was very much simplified and as such involved several assumptions. How

ever the procedure detailed here is certainly helpful in the preliminary 

design which can be used as a first step in the complicated design of 

fan engines. 

In practice the ducts of the fan engines are designed using semi-

empirical procedures. The real fluid effects such as viscosity and com

pressibility are taken into acocunt. However, the design procedure out

lined here provides a basis for incorporating the real fluid effects. 
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It also gives a preliminary estimate of the duct contour and the bound 

vortex strength distribution of the duct if the compressibility effects 

are not large. 
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CHAPTER VI 

CONCLUDING REMARKS 

A few conclusions are made based on the analysis of the ultimate 

wake of a single-rotation ducted fan with finite as well as infinite 

number of blades. Some of these are, 

(i) In order that the jet wake be compatible with the ultimate fan wake, 

it has to satisfy certain conditions at its interface with the helical 

vortex system of the fan wake. Xhe jet wake should provide a certain 

combination of induced velocity components, V. and U, , at its inter-
J ^ • 

J 
face with the fan wake. However, there are several such combinations 

of V. and U , which satisfy the necessary compatibility relationships. 
J J 

(ii) Design criteria for the single-rotation high by-pass ratio ducted 

fan with the highest possible induced efficiency for the assumed non-

contracting ultimate wake were obtained numerically. In the case of the 

ducted fan with infinite number of blades, the design criteria were 

obtained analytically. The accuracy of the numerical procedures used 

in determining the vortex strength distribution, the thrust and the in

duced power for a fan with finite number of blades, is supported by 

the rapid convergence of this data to that of the infinite number of 

blades. This convergence also makes the approximation of a finite 

bladed fan with a large number of blades by an equivalent infinite 
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bladed fan valid. The distinct advantage in making such an approxi

mation is the considerable saving in the computational time associated 

with the generation of the data of a finite bladed fan with a large 

number of blades. This can be very helpful in the design of a compati

ble duct. 

(iii) The assumed ultimate fan wake gives rise to the highest possi

ble induced efficiency for a single-rotation ducted fan. It should be 

noted that a fan,-stator combination will have a higher induced effi

ciency than a single-rotation fan developing the same thrust, since the 

tangential wake velocities in the former case will be much smaller. 

However, the row of stator blades increases the weight, profile drag, 

and cost of the ducted fan. The saving in weight, profile drag, and 

cost of a single-rotation ducted fan without any stator blades may 

prove to be more desirable from a complete cost-benefit analysis view

point. However, a thorough investigation has to be made regarding the 

comparative advantages of these two types of ducted fans before reaching 

any conclusions. 

(iv) The design procedure suggested is based on the potential, incom

pressible wake model and therefore furnishes a preliminary estimate of 

the compatible duct. Real fluid effects such as compressibility and 

viscosity as well as the effects of a finite blade-tip clearance are to 

be taken into account for a comprehensive design of the duct-fan system. 
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(v) The analysis presented is valid for the static case as well as 

for flight speeds at which the induced velocities are small enough to 

neglect compressibility effects. 
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3>Z*?3 O - I S ( ? 3 g O 0 3 J T 0 ^ ' f 

boD 

P ' * P 

3 5 ^ Z 

Ofr 'H O l / ^ 7 ^ U 

0 - 2 5 O k / £ . P S ^ i 7*U 

6 ^ 0 

IP-go 0 7 3 f 6 6 0 g 7 / 0 ^ 

3 t / D 2 . O ' ^ g O&l+li Dt>14, SlQtf-

100 

•P-*to Q 9 S - 7 0 7 3 ^ fr(,e/ 

^ t ? Q 4 ? / 0 7 0 » 0 1 S J &4-3A 

75*0 

_D-SO / /sr • 0 £ 3 2 ^ / 7 2 

3 S"30 I p.SS' / 3 o z Qg%7 7 ^ ^ 

$OQ 

o-&o / ( / ^ 3 O^oj 7<reo 

3 5 - g f o . ^ S /S-JT / ^ o ? 2 / 7X5*3 

8s*o 

„o^o 

' 3 ^ 0 

/6g4 D7fr? ^ O * ? 

o-ns /g2.9 • 01 &4> bZ<4% 

loo 

C - 8 0 my P I 7 7 £/74 
3 & S Z O - S S 2 . / 5T3 o?g? sriey 

750 

p « 9 o 2 33-k o ^ - S " ? 5 9 ? 

3 7 / / O-^S" Z ^ 3 £ 0 ^ 3 S'pot/. 

I-OO « ^l%b f « o o ' 2 . 7 - 6 0 / O 0 O < / ^ / ^ 



162 

Table 22. 
< - • * 

X^p /. 0 )7T1- ' S'O 0 br 00 

X Kpo % 2 cT SrX 
C T p / C T Q 

'SOo • e ^ O O O 

P'On c o o O- O O !• 0 0 I ' O O 

'SOo • e ^ O O O 0 - 0 5 • 0 / 3 g * oi 3 4 • 7^1 

•55o •<23«2A 

O ' l o - C A 7 / • 0 1 ? 7 • 9 7 S O 

•55o •<23«2A O- IS ' • 0 3 ^ 9 - 0 3 ^ 7 • 9 6 ^ 0 — 

• 6 o o • 2^ai 

0 - 2 0 . c ^ - i r • 6 4 - U . I ^ P S * 

• 6 o o • 2^ai 0 - 2 5 '0hii7 ' O S S ' I •1aM 

>bSO -x^io 

0--3O '01G1 • 0 ( ? 3 ^ < llbl 

>bSO -x^io 0 « 3 S . <?S8<r - 0 7 / © .£?&<? 

. > lOO • 3 ^ ^ 

•O-fcO • /oo3 » 0 * 7 7 3 ' & 7 5 - X . 

. > lOO • 3 ^ ^ C 4 ? •112-1 • D £ 2 . 7 . S5T/4 

• 7$~o ' 3 6 c ? 0 

. 0 ' 5 0 • / Z < * D •os7:r .g^r^> 

• 7$~o ' 3 6 c ? 0 0-5S* • / 3 I . 2 . ' Of/if . 7 7 7 r 

• SOD ' 3 9 6 7 -

, O-fcO - / * / •€« - * 0 9 4.7 •7feT? 

• SOD ' 3 9 6 7 - o - 6 5 » / & X 0 * # ? 7 7 - 7 3 £ " 0 

• 8 S T O 'Q-tftf. 

O ' l O ' / 7 S < ? • o ? n • 7 0 P £ 

• 8 S T O 'Q-tftf. o « i s • /<707 • / £ > / £ < (,1s 0 

^ 6 0 'Umsr 

O-SO • 2.0-47 * / 0 3 Z < 6 ^ 7 7 

^ 6 0 'Umsr 0 - 8 S • 2 Z 3 < ? * /o^y • ^ g ? 3 

, ' ^ S * 0 <umH 
C>-9o • z^iB ' / O S " / ' 5 5 * 0 2 

, ' ^ S * 0 <umH 0 - 9 5 . * & 3 V ' iosrsr '5~Josr 

hoo 
* .« . 1 

>5QoO f .oo , ' 2 8 " £ 0 . /osrj .wr 



BIBLIOGRAPHY 

1. Weetman, R. J., and Cromack, D. E., "Ducted Propellers: A Review 
and Description of Current Investigations," Massachusetts Univer
sity, Jan. 1970. 

2. Wright, T. , "Determination of the Design Parameters for Optimum 
Heavily Loaded Ducted Fans," Ph.D Thesis, School of Aerospace 
Engineering, Georgia Institute of Technology, Nov. 1969. 

3. Betz, A., "Screw Propellers With Minimum Energy Loss," Technical 
Translation 736, National Research Council of Canada, Ottawa, 
Canada, 1958. 

4. Gray, R. B., "An Investigation of an Approach to the Problem of 
Determining the Optimum Design of Shrouded Propellers," TREC 60-
44, May 1960, U. S. Army Transportation Research Command, Fort 
Eustis, Va. 

5. Gray, R. B., "An Investigation of a Digital Computer Method of 
Determining the Optimum Design Parameters of Shrouded Propellers," 
TREC 6.1-124, Oct. 1961, U, S. Army Transportation Research 
Command, Fort Eustis, Va. 

6. Gray, R. B., "Analysis of a Heavily Loaded Ducted Fan With an 
Infinite Number of Blades," Unpublished. 

7. Theodorsen, T., Theory of Ducted Propellers, McGraw-Hill Book 
Company, Inc., New York, N. Y., 1968. 

8. Lamb, H., Hydrodynamics, Dover Publications, New York, N. Y., 
1945. 

9. Cranahan, B., Luther, H. A., and Wilkes, 0. J., Applied Numerical 
Methods, John Wiley & Sons, Inc., 1969. 

10. Hamming, R. W., Numerical Methods for Scientists and Engineers, 
McGraw-Hill Book Company, Inc., 1973. 

11. Lieblein, S., and Stockman, N. 0., "Compressibility Correction for 
Internal Flow Solutions," Journal of Aircraft, Vol. 9, No. 4, 
April 1972, pp. 312-313. 



164 

VITA 

Damaraju Subramanya Janakiram was born in May, 1949 in Repalle, 

India. He had his early education in Vizianagaram, India. He 

graduated from M.R.M.P. School in 1965 and subsequently joined the 

Andhra University Engineering College. He earned his Bachelor of 

Engineering degree in 1970 with distinction in Mechanical Engineering. 

He joined the Indian Institute of Science in 19 70 where he did 

his postgraduate work in Aeronautical Engineering. He graduated from 

the Indian Institute of Science in 1972 with distinction. 

He entered the Georgia Institute of Technology in the fall of 

1972. He is a student member of AIAA. 


