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NOMENCLATURE
Elements of the coefficient matrix of a system of linear
equations.
Blade trailing edge.
Blade number,
Induced Power Coefficient, Cp = PD/[p(QR2)3nR§].
= 2p2
Thrust coefficient, Cy TD/(D(QRZ) TRZ) .
Thrust coefficient due to fan or propeller alone,
Nondimensticonal energy loss in the fan wake, e = ED/
3.2
(p(QR,) "TR,) .

Total induced kinetic energy loss in the fan wake,
E, = QDQ - TD V..

D
Scale factor, G = 1 - U_ /W sing,.
1 1
Goldstein coefficient, K(X} = bP'(X)/ZHRQWXZ.
K(X) for ¥ = O case.
R,/R,.

Static pressure.

Static pressure of the undisturbed fluid.

Non-dimensional distance from a vortex filament to a control

point.

Ideal induced power of the duct-fan system.
Stagnation pressure.

Torque on the fan blades.

Cylindrical-polar coordinates,

Cylindrical-polar coordinates of a vortex filament.
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Nondimensional radial coordinate, r = r/Rz.
Outer radius of the ultimate wake of the fan.
Just inside of RZ’
Just outside of R2.

Radius of the inmer boundary sheet and hub trailing
edge,

Just inside of Rl'

Just outside of Rl.

A length of a vortex filament.
Surface area,

Time,

Total thrust of the duct-fan system.

Thrust due to fan alone.

Distrubance velocity component in the direction of the sub-
script.

Distrubance velocity in £ direction at the imnermost vortex

filament of any B.T.E. sheet, UE = UE at r = R{ .
1
Tangential velocity component on the jet_wake boundary in
the ultimate wake, U = U atr = .
> D, v !
Nondimensional velocity, U = U/W,

Velocity describing the motion of vortex filaments on the
outer uniform boundary sheet,

Total disturbance velocity.

Total velocity.

Velocity of the undisturbed flow.

Nondimensional velocity, V= V_/W.



V. Disturbance axial velocity on the jet boundary in the ul-
J . = - =
timate wake, V, U at r R, .
j z 1
W Apparent axial disturbance velocity in the ultimate wake

of the fan.

W Dimensionless W, W = W/QRZ.
X Nondimensional radial coordinate, X = ¥ = r/Rz;
z Nondimensional axial distance, z = z/(ZHRZAZIb).
z Nondimensional axial coordinate, z = z/Rz.
26 Axial distance between the z = (0 plane and the point
where the vortex filament intersects the rz-plane.
Y Vortex filament strength.
Y Nondimensional filament strength, y = Y/ﬁHRZWG.
¥ Vortex sheet strength normal to the filaments.
y' Vorticity per unit area,
YB Vortex sheet strength of the outer uniform boundary sheet.
2
Yg Vortex sheet strength of the inner uniform boundary sheet.
1 1 1 ZH'_Z _

" Defined as €y = J. U’.U’i’ XdX dz dy/21.

R7By

1 21 _

€ Defined as ¢ = J‘ d’.l} XdX dz dy/20,
r T r

R/

2 2 _

e, Defined as e, = Uz XdX dz dy/2I.

R1 9 0
r Vortex strength of an equivalent line vortex filament along

the axis of the jet.

' (X) Blade bound vortex strength at station X.



Helical coordinate in the direction of the helix.

Helical coordinate normal to the helical filaments.

1
Mass coefficient, ¢' = 2 fK(X)de
m
k' for W = 0 case.
Vm + W
Wake geometry parameter, )\2 = _S-I_Rz_ = tampz.

Geometry parameter of ocuter uniform boundary sheet.

i V + W
o0

Wake geometry parameter, Al = “ﬁ—ﬁz— = tan¢1.

Defined as, p' = 2 f——K—Q«QL dx.
(X + A

u' for W = 0 case.

Density of the fluid.

Disturbance velocity potential,

Pitch angle of any B.T.E. sheet at radius 'r’.
¢ at r = R.,.
¢ at r = RT.

Pitch angle of the outer uniform boundary sheet.

Pitch angle of the immer uniform boundary sheet.

Total stream function.

Rotational speed of the fan blades.
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SUMMARY

Single-rotation high by-pass ratio ducted fans with a finite num-
ber of fan blades, zero tip clearance and no stator vanes and with the
highest induced efficiency generate an ultimate wake vortex system whose
apparent motion is that of rigid helical surfaces of constant geometric
pitch. This helical wake vortex system 1s bounded on the inside by a
constant diameter cylindrical vortex sheet shed from the trailing edge
of the hub and on the outside by an another constant diameter cylindri-
cal vortex sheet shed from the trailing edge of the duct. The outer
cylindrical vortex sheet represents the continuation of blade bound vor-
tex on to the duct where it is spread out on the duct surface and finally
shed at the trailing edge of the duct. Concentric with the fan wake and
inside of the inner boundary sheet is the jet wake which is assumed to
be generated by an infinite-bladed turbine. The jet wake is assumed to
be given.

A consistent mathematical potential wake model is presented for
the fan wake and the boundary sheets and the compatibility relationships
to be satisfied by each of the cylindrical boundary vortex sheets are
obtained., It is shown that for the wake model to be consistent, the jet
wake needs to satisfy certain conditions as far as the induced velocities
in it are concerned. The compressibility and viscous effects are ne-
glected in the analysis of the wake. Using the Biot-Savart law, the vor-

tex strength distribution of the ultimate wake i3 found numerically and
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then is related to the blade bound vortex strength distribution. The
expresgions for the thrust, induced power, and induced efficiency are
developed using integral theorems and evaluated numerically.

The ultimate wake vortex model for a ducted fan with infinite
number of blades is also developed. It is shown that this wake consists
of a constant diameter cylinder of vorticlty. The vortex strength dis-
tribution in the ultimate wake as well as the expressions for the thrust
and induced power are obtained in closed form.

The bound vortex strength distribution, the thrust, and induced
power are obtained numerically for heavily loaded ducted fans with a
finite number of fan blades for different values of by-pass ratio, blade
number, and wake geometric parameter. It is shown that with increasing
blade number these values converge to that of the infinite-bladed fan.

A tentative prﬁcedure for the design of the duct which results in

a compatible wake vortex system is gsuggested.



CHAPTER I

INTRODUCTION

Ducted fans are finding a wide application in modern aircraft
either in the development of low-speed thrust as in the case of V/STOL
aircraft or as high by-pass ratio ducted fan engines in the case of
high-speed subsonic aircraft. In either case, these fans are the main
propulsive units and are usually drivem by jet—core engines housed in
the hub of these fans, A review of ducted propellers or fans highlight-
ing the theoretical as well as experimental inwvestigations was given by
Weetman and Cromack(l). However, in the past most of these investiga-
tions are limited to fans without a finite hub and the emphasis was on the
lightly loaded ducted fans. Optimum heavily loaded ducted fans with-
out a hub but with a finite number of blades were analysed by Wright(z).
It is the purpose of this research to provide information regarding the
design of optimum high by-pass ratioc ducted fans which have a finite
hub, The wakes of these ducted fans consist of two parts; one from the
fan blades and the duct and the other from the turbine blades of the
core engine. In this thesis, the wake of an optimum high by-pass ratio
ducted fan with a finite as well as infinite number of blades is
analyzed. The ducted fan is optimum in the sense that the induced
efficiency of the duct-fan system excluding that of the core jet engine

is maximum. High by-pass ratio ducted fans only are considered, so

that the most of the thrust developed by the engine comes from the duct-



fan system. The primary emphasis of this thesis is on the wake of the
duct-fan system, The classical analysis of an optimum free propeller

(3) (4,5 and Wright(z) .

due to Betz was the basis of the work of Gray
It was shown by Betz that an isolated free propeller having the highest
possible induced efficiency generates an ultimate wake vortex system
which moves as if the vortex sheets of the wake formed a rigid helical
structure of constant pitch. Application of this constraint to the
motion of the vortex sheets provides a method for calculating the radial

(2

vorticity distribution of the shed wake. Wright has shown that the

same arguments are valid for the geometry and motion of the vortex
sheets shed from the trailing edges of the blades of an optimum heavily
loaded ducted fan. However, the presence of the duct results in a cyl-
indrical vortex sheet shed from the trailing edge of the duct which rep-
resents the continuation of blade bound vortex from tips into the duct.
Thus, the helicoidal vortex sheets shed from the trailing edges of the
fan blades have at their outer edges the cylindrical vortex sheet shed

(2)

from the trailing edge of the duct. Wright developed the compati-
bility conditions required for the blade trailing edge sheets and the
cylindrical boundary vortex sheet for a ducted fan without a finite hub
and blade-tip clearance. With a straightforward application of Biot-
Savart law to the mathematical model of the constant diameter ultimate
wake, wright(z) obtained the vorticity distribution in the ultimate
wake. The blade bound vortex strength distribution and the thrust, in-

duced power, and induced efficiency of the ducted fan were then ob-

tained from a knowledge of wake vorticity.



(2)

In this thesis, Wright's analysis has been extended to the
case of an optimum heavily loaded high by-pass ratio ducted fan. In
high by-pass ratio ducted fans, most of the thrust is developed by the
fan which is driven by a core engine housed in a finite hub.

The mathematical model assumed for the ultimate wake of an opti-
mum high by-pass ratio ducted fan with finite number of blades consists
of helicoidal vortex sheets of constant pitch bounded on the inside by
the jet wake and on the outside by the cylindrical vortex sheet shed
from the trailing edge of the duct. The jet wake is of constant diameter
and is assumed to be that generated by an infinite-bladed turbine. The
axial velocity in the jet wake may vary radially. The jet wake consists
of a distribution of ring and line vorticies and it is assumed that the
net vorticity in the jet wake is zero. This implies that the jet wake
as a whole does not affect the flow field outside of it. .A cylindircal
boundary vortex sheet equal in diameter to that of the trailing edge of
the hub, referred to as the inmer boundary sheet, accommodates the dis-
continuity in the velocities between the jet wake and the fan wake and
cancels the effect of fan wake in the jet wake. Since the cuter bound-
ary sheet is similar to the one used in Wright's(z) model, the compati-~
bility conditions developed by Wright are used at the outer boundary
sheet. The necessary compatibility conditions required at the inmner
boundary sheet must be developed. It is shown that for the jet wake to
be compatible with the fan wake, the vorticity in the jet wake boundary
has to satisfy certain conditions.

(2)

A numerical scheme similar to the one proposed by Wright has

been employed te solve for the vorticity distribution in the fan wake.



The blade bound vortex strength distribution, the thrust, and induced
power of the duct fan system, excluding the contribution due to the jet
are computed. These results apply to the high by-pass ratio, single
rotation, ducted fans without stator vanes and give an upper limit on
the performance since compressibility and viscosity effects were ne-
glected.

(6)

Based on unpublished work due to Gray , a wake model for the
optimum high by-pass ratio ducted fan with infinite number of blades is
developed and analyzed. Simple expressions for the bound vorticity dis-
tribution as well as the thrust and induced power are cobtained. These
are necessary in the development of a preliminary design procedure for

the duct as well as that of the fan, A design outline of the duct and

fan which result in the assumed ultimate fan wake is given.



CHAPTER 11
FINITE-BLADED FAN

Wake Model

The wake vortex model developed for the optimum high By—pass ratio
ducted fans is essentially an extension of the constant diameter wake |
vortex model used by Wright(z) for heavily loaded ducted fans. The ul-
timate wake of the optimum high by-pass ratio ducted fans consists of
the following elements: the helical vortex sheets of constant pitch
shed from the trailing edges of the fan blades, the cylindrical vortex
sheet shed from the trailing edge of the duct, the cylindrical vortex
sheet shed from the roots of the fan blades and subsequently from the
trailing edge of the fan hub, and the jet wake froﬁ fhe turbine of the
engine housed in the fan hub. The two cylindrical vortex sheets consist
of helical vortex filaments and are of constant diameter. The vortex
sheets shed from the trailing edges of the fan blades, hereafter referred
to as B.T.E. sheets, are bounded by the two cylindrical sheets. Hence,
these cylindrical sheets are referred to as boundary sheets. The outer
boundary sheet separates the fan wake from the irrotational fluid ocut-
side of the wake. The inmer boundary sheet separates the jet wake from
the fan wake. (See Fig. 1).

The argument concerning the geometry and motion of the ultimate
wake vortex system of an optimum single rotation, single-row, ducted fan

(7)

or propeller is essentially the same as given by Theodorsen for a free
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propeller. In Ref. 3 it was shown that the optimum bondition, that is,
the one which results in the highest possible induced efficiency, is
obtained for the ducted fan when the helical vortex sheets shed from
the blades have a constant geometric pitch and appear to move as rigid
screw surfaces of constant diameter in the ultimate wake, This wake
model was used for an optimum ducted fan without a hub in Ref. 2., In
the present case it is assumed that the same conditions hold for the ul-
timate wake of the fan of an optimum ducted fan with a flnite hub. It
is also assumed that the duct is designed such that there is no con-
traction or expansion of the wake downstream of the trailing edge of the
duct. This is a feasible design problem and guarantees that the duct is
compatible with the wake geometry and the analysis.

Wakes having an initial expansion or contraction can be treated
if it is assumed for an incompressible flow, that a given vortex fila-
ment remains at the same nondimensional local radius as it moves down
the wake, But in this case, the analysis gets involved since the con-
tinuity and force-free vortex must be maintained, while physical limita-
tions such as flow separations must be avoided in the duct. Design of
the fan blades alsc depends on the geometry of the expanding wake and
proceeding from the ultimate wake to the fan blades is more involved.
While the expanding wake might give a higher induced efficiency for a
given thrust and duct diameter, it must be noted that the optimum con-
dition referred teo is for the assumed constant diameter wake downstream
of the trailing edge of the duct.

In order to maintain the apparent rigid motion of the B.T.E.



sheets, certain compatibility conditions are to be satisfied by the jet
wake as well as the two cylindrical boundary sheets. The compatibility
conditions required at the outer boundary vortex sheet have been de-

(2)

veloped by Wright and are rederived here in a slightly different
fashion., The necessary compatibility conditions required at the imner
boundary vortex sheet are developed here. Since the inner Boundary
sheet separates the B.T.E. sheets from the jet wake, a suitable mo&el
for the jet wake has been assumed.

The jet wake is assumed to be cylindrical with a volume distribu-
tion of ring and line vorticity, Essentially it is thought of as a wake
generated by an Infinite bladed turbine. The diameter of the jet wake
is assumed to be equal to that of the trailing edge of the hub. It is
assumed that the net vorticity in the jet wake is zero. This implies
that in the ultimate wake, the jet wake does not influence the velocity
field outside of it. The axial velocity in the jet wake may vary across
the jet. This idealized jet wake model does not take into account any
vigcous interaction between the wakes.

Following the reasoning developed in Ref. 2, a description of
the wake of the optimum high by-pass ratio ducted fan is given below.

Consider a helical co-ordinate system, r, £, &, defined in terms
of the cylindrical coordinates, r, ¢, z, as shown in Fig. 2 such that

at a given instant, a B.T.E. sheet in the ultimate wake coincides with

z = 0 surface. Then



4 XX, r

h_U‘JJ _._ﬁ
ry cos$¢ + z sing Ug = U, cos¢ + Uz sing
z cos¢g ~ r) sing UC = H7 cos¢ -+ Ul[} sing

R

Figure 2. Helical Coordinate System.
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r = r, Oirim' (l)

£ = ry cos¢ + z sinp, = < § < = (2)
(Vm + W) cosd (V_ + W)cosé

r = =ry sin¢ + z cos¢, - 2(a/21) < ;.5—352575;T—— (3)

where @ is the angular velocity of the blades and W is the apparent
axial velocity in the ultimate wake, The apparent rigid structure of

a B.T.E. sheet suggests that the apparent axial velocity, W, of a point
on the B.T.E. sheet, that 1s, the velocity with which a point on the
B.T.E. sheet appears to be moving relative to an observer fixed in
space, be the same as that of any other point.

To maintain the apparent rigid structure of the B.T.E. sheets in
the ultimate wake, a helical symmetry of the fan wake vortex system is
necessary. This requires that the disturbance velocity vector is con-
stant along the helical lines, r = constant and { = constant, both in-
side and outside the ultimate wake., Helical symmetry further requires
that the boundary vortex sheet strength distribution be symmetric with
respect to the lines of intersection of the B.T.E. sheets with the
boundary vortex sheets for zero radial velocities at the B.T.E. sheets.

The region of interest is the fan wake between the two boundary
vortex sheets, Consider a line integral of the velocity along the path
'ABCDA within the wake as shown in Fig. 1. The velocity diagram at a
point on the B.T.E. sheet with respect to a rotating fan blade is shown

in Fig. 3. Aleng BC and DA in Fig. 1, U_ is constant by virtue of

g

helical symmetry. AB and CD are the radial lines intersecting the



3

Figure 3.

or ,I

Velocity Diagram At A Vortex Filament On A B.T.E. Sheet.

TT
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helical lines BC and DA. The points A and D are at Rl+ on the B.T.E.

sheet, The path so described lies entirely on the surface of the B.T.E.

sheet and hence does not enclose any vorticity.

B C
since
U |_ = Ui,
AB DC
where
U = U
E1 gr = Rl+

After some simplification and using the fact that the B.T.E. sheets

have a constant pitch, it can be showm that

UE = Ugl sin¢isin¢1, Rl < T < R2' {4

From the requirement of helical symmetry, it can be shown that the pre-
ceding relation holds along any arbitrary helical ine throughout the
wake. A similar line integral along the path EFGHE establishes the
same result outside of the ultimate wake, Further, for the helical co-

ordinate g,
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tan ¢ = (Rzlr)tan ¢2 (5)

which is a consequence of the constant pitch condition. Thus since ¢
approaches zero as r approaches infinity, Ug from Eq. (4) becomes zero
at infinite radial distances.

The wake is subject to the additional condition that the line in-
tegral of the velocity along a path enclosing all the wake must be zero
to cbtain a single-valued solution outside of the wake. Following the
lines of reasoning given in Ref. 2, it can be shown by computing line
integrals of the velocity along suitably chosen contours such as
A'B'C'A' and A'C'D'E' (see Fig. 1) that for the flow to be irrotational
outside of the wake Ugl must be zero. This is true for a lightly loaded
ducted fan., However, for a heavily loaded system, Ugl is not zero. For
this case, a geometry and motion similar to the one proposed by Wright(z)
is necessary for the flow to be irrational ocutside of the wake.

In the heavily loaded case, the boundary vortex sheets will have
an axial motion relative to the B.T.E. sheets and a symmetric strength
distribution with respect to the lines of intersection between the B.T.E.
sheats and boundary sheets. The relevant arguments given in Ref. 2 can
be used here inspite of the presence of a coaxial jet wake, since the
net vorticity in the jet wake is zero. Following the line of reasoning
given in Ref, 2, it can be shown by taking line integrals of the velo-
city along suitably chosen contours that the only pessible irrotational

flow satisfying continuity outside of the constant diameter wake is the

one in which all the distrubance velocities are zero.
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In summary, the wake model for the high by-pass ratio heavily
loaded optimum ducted fan consists of a constant diameter cylindrical
jet wake and a coaxial fan wake. The fan wake comprises constant
diameter helical B.T.E. sheets bounded on the inside by an innef
boundary vortex sheet which separates the jet wake from the fan wake
and on the outside by an outer boundary vortex sheet which separates
the fan wake from the irrotaticnal fluid outside of it. The fan wake
system is helically symmetric to maintain the apparent rigid motion of
the helical B.T.E. sheets. The boundary vortex sheets move axially
relative to the B.7T.E, sheets as a consequence of the heavily loaded
condition. Irrotationality of the flow outside of the fan wake requires
that the disturbance velocities be zero there., The necessary compati-
bility conditions required at the boundary vortex sheets are derived
below.

Boundary Vortex Sheets

These sheets serve three purposes. First along the constant
diameter boundaries, they must cancel the radial velocity field that is
associated with the B.T.E. sheets. Second, they must accommodate the
required discontinuities in the axial and tangential velocities as the
boundary sheets are crossed. Third, they should not inducé radial
velocities at the B.T.E. sheets, The first and second conditions are
satisfied by the boundary sheet strength distributions and geometries
both as yet unknown. The third condition can automatically be satisfied
by a strength distribution and geometry that is symmetrical with respect

to the lines of intersection between the B.T.E., and boundary sheets.
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The two boundary vortex sheets are considered separately.

Quter Boundary Sheet

This was the only boundary vortex sheet in the model developed

by Wright(z).

The compatibility conditions for this sheet are derived
in a similar fashion as ih Ref. 2. At the outer edge of the B.T.E.

sheet along the line of intersection with the outer boundary sheet,

=
1]

¢ U(L;l sin¢2/sin¢l, (6)

U = W cos¢2. (7)

Cutside the wake at the line of intersection, that is, for

Therefore, the filaments ou the outer boundary sheet, at the line of
intersection must have a velocity normal to their helical coordinate of

(see Fig. 4)

i

1 2 , 2 2 2, .2
UCB = 3 (U” sin ¢2/s;n ¢1 + W~ cos ¢2) » (8)

2

2
&

and the boundary sheet strength at the line of intersection must be
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1
sin2¢2/sin2¢1 +u? c052¢2)2. (9

2
(u
2 El

The above relations are derived from the fact that the strength of a
vortex sheet is equal to the discontinuity in the velocity components as
the sheet is crossed and the velocity of the sheet is the mean of the
velocities on either side of it.

Therefore, the helical vortex filaments on the outer boundary
sheet must all cross the lines of intersection at a constant pitch angle,
¢Bz, not equal to ¢2, which is determined from the flight speed, the
blade rotational velocity, and the total disturbance velocity as given
in Eq. (8). The boundary vortex sheet strength must alsc be constant at
the lines of intersection and is equal to YBZ. Thus, when relative
motion exists between the B.T.E. sheets and the outer sheet, the two vor-
tex systems are related by Eqs. (8) and (9) along the lines of inter-
section. These are the compatibility conditions for the outer boundary
sheet. On this bOundary.sheet between the lines of intersection, the
filament strengths and pitch angle vary with the helical coordinate ¢.

(2)

Wright devised a clever scheme to obviate the difficulty of
having to solve for both the strength and geometry of the outer boundary
vortex sheet. 1In his wake model, the boundary sheet vortex system is
replaced by two simpler systems of vortex sheets whose combined effect
does not change the flow fleld inside the wake, The first of these is

a uniform sheet of helical vortex filaments having a constant strength

equal to Yg and a constant helical pitch angle ¢B . The second is a
2 2
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cylindrical sheet of helical filaments of varying and unknown strength
but with a constant and known pitch angle ¢2. The first sheet satis-
fies the required conditions at the lines of intersection as previously
derived. The second sheet has zero strength at the line of intersec-
tion, has a symmetrical strength distribution about these lines and the
mid point between the lines of intersection, and canceéls the radial ve-
lacities on the boundary due to the B.T.E. sheets. Superposition of these
two sheets must maintain the apparent rigid motion of the B.T.E. sheets.
The geometry and motion of the outer uniform sheet relative to
the outermost filament of an adjacent B.T.E. sheet is discussed below,
The velocity diagram with respect to the fan blades shown in Fig. 4
illustrates these relationships. From Fig. 4, it is seen, consistent

with the compatibility conditions derived, that

— 1 —

PB = E-AB,

OPBE = 90°
and

0A = OB

This means that the magnitude of the velocity just inside and outside
of the outer boundary sheet at the line of intersection in a coordinate
system fixed to the fan blades is the same. It is to be noted that the
boundary vortex system is force-free and the static pressure should be

contimious across it. From Fig. 4, considering the triangle ABC, it



T
OA = OB A
c T
AB = i
vig'
¢
AC = ng rd] ¥
¢ W
CB = U = W cos¢
4 2
2 4
PA = PB B
Voo
b *2
B,y
¢ »
2 N ¥
0
I& aR, ol D

Figure 4. Velocity Diagram With Respéct To The Rotating Fan Blades
Of The Qutermost Filament Of The B.T.E. Sheet And At The
Adjacent Point Of The Outer Roundary Sheet.
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can be shown that

AB = Yg = W cosp, sec(d, - ¢, ) (10)
9 2

and,

,~ ¢ +¢

pop = o = 2- % (11)

B, 2

where tan ¢, = Vm/Qst

and

tan ¢, = v _+ W)IQRZ = Az.

Thus Yg and ¢B s the strength and the pitch angle of the outer uniform
2 2

boundary sheet respectively are determined when W, A2 and b are given.
The strength distribution of the nonuniform vortex sheet is de-

termined later when the complete wake vortex system is solved.

Imner Boundary Sheet

As noted earlier, the inner boundary sheet like the outer one is
cylindrical with helical vortex filaments wrapped on it. It accommo-
dates the discontinuity of the velocity vector between tHe fan and the
jet wake. It cancels the radial velocities associated with the B.T.E.
sheets at the boundary sheets. It also cancels the velocities associ-
ated with the fan wake and the outer boundary sheet inside the jet
wake. It must not induce radial veloecities at the B.T.E, sheets. As

was done in the case of the outer boundary sheet, the inpner boundary
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sheet vortex system is replaced by two simpler wvortex systems. UOne is

a uniform vortex sheet of helical filaments with a constant strength
equal to that at its line of intersection with the B.T.E. sheets and a
pitch angle, ¢B1’ to be determined, The other is a nonmuniform vortex
sheet of helical filaments with unknown strength distribution but a
constant known pitch angle, ¢1, equal to the pitch angle of the inner-
most filament shed from the blade. The nonuniform sheet has a symmetric
strength distribution about the line of intersection and has zero
strength at the line of intersection. At a line of intersection with

the B.T.E. sheets,for r = RI,

£ &1
UC = W cos¢1.
At r = RI, that 1s, just inside the boundary of the jet wake, the

axial and tangential induced velocities are Vj and Uw.. In the case of
most turbofans, the turbine directly drives the fan aad as such has the
same rotational speed as that of the fan. As per the wake model
assumed, the outer radius of the ultimate wake of the jet is the same
as that of the trailing edge of the hub and the radius of the inmer
boundary sheet in the ultimate wake. Therefore, the velocity diagram
at the line of intersection on the inner boundary sheet can be drawn

with respect to a coordinate system fixed to the fan blades and is

shown in Fig. 5. 1In this figure, FO represents the resultant velocity
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Figure 5. Velocity Diagram With Respect To The
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of a vortex filament just outside the inner boundary sheet {(r = RI)
at the line of intersection and EQ represents the resultant velocity of
a vortex filament just inslde (r = R{). The vector EF represents the
discontinuity in velocity as the imnmer sheet 1Is crossed at the line of
intersection. The strength of the inner boundary sheet at the line of
intersection is given by the magnitude of the vector EF. The vortex
sheet at the line of intersection.moves with a velocity equal to the
mean of the velocities on either side of it and is represented by the
vector GO, Since the direction of the vortex filament is perpendicular
to the discontinuity velocity vector and since the pitch angle of these
filaments is determined by their velocities, it follows from Fig. 5
that |EO| = |[FO| and OGE = OéF = 90°. Therefore, for the jet
wake to be compatible, a particular combination of Vj and Uw as illu~
strated in Fig. 5 which satisfies the above two conditions ig needed.
However, there are several such combinations of Vj and U . which can
satisfy the above conditions, with each particular combin;tion giving
rise to a particular value of the pitch angle, ¢Bl, for the filaments
on the inner boundary sheet at the line of intersection. If the para-
meters of the fan wake, Ao and W, are fixed, the vector FO in Fig. 5 is
fixed. Then several combinations of Vj and Uw., each of which satisfy-
ing the condition [E6| = {?6|, can be chosen with each one giving a
different ¢Bl. A line vorticity distribution in the axial direction and

a ring vorticity distribution in the jet wake can induce the required

values of U¢ and Vj just inside of the jet wake boundary at the line
j

of intersection. As far as the tangential velocity Uw is concerned,

]

the line vorticity distribution in the jet wake is equivalent to a
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resultant line vortex filament along the axis of the jet with a strength

equal to T = Uw ZHRl. Since the net vorticity in the jet wake is

]
zero, a line vorticity distribution of strength _Uw per unit angular
i
distance on the circular boundary of the jet wake is needed to cancel

the line vorticity in the jet. At the line of intersection, for r =

RI, (see Fig. 5)

Uw = U¢1 = -W cos¢l 31n¢1 + UE cos¢l, (12)
u =0 = U ing, + W 2 (13)
. . £ sin 1 cos ¢1,
1 1
and for r = R;
U = U »
I wj
Uz = Vj.

The radial wvelocities on the boundary are zero. The magnitude of the

vortex sheet strength at the line of intersection is given by,

= B = -pv, - v ey -7 (14)

\
By 1 vy ¥
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The negative sign has been chosen in accordance with the sign convention,
that the strength of a vortex filament, vy, located on a wake cylindrical
surface of radius, a, is considered to be positive if the axial com-
ponent of the velocity induced by the vortex filament at point for

which r < a is in the direction of the positive z-axis. Bound vortex
strengths are considered positive and vortex sheet strengths are con-

sidered negative. The pitch angle, ¢ » of these filaments is given by,
1

tan ¢p = -(u, - U¢

1 ¥y 1 4z

1

the negative sign chosen in accordance with the sign convention., Tt

can be seen from Fig. 5, that when U = U and V., = U , the
inner boundary vortex sheet does not exist, In most of the turbofans

in use, Vj is usually higher than Uz , and hence ¢B is always greater
1 1
than ¢l. However, Egqs. (14) and (15) are valid even if ¢B is less than
1
$q - For the jet wake to be compatible, the engine has to be designed

such that |U | is greater than |U » This can be seen in Fig. 5.

v P
3 1
Substituting Egqs. (12) and {(13) into Eqs. (14) and (15), it can be shown
that
1
= —[(V,-U_ sing =W 2¢ )2 + (U, -U + ¢ ing )2]2
YBl— 5 El 1 cos 1 wj 51 cos¢1 cos 1 sin 1

(16)

and



25

- 2
tan ¢Bl = -(U¢_ -le sing, - W cos ¢1). (a7

(v, -u
3 ]

&

Thus, the uniform sheet strength and pitch angle of the inmer boundary

sheet are determined, when kz,'ﬁ, Vj, and Ulp are given. As discussed

_ J
earlier, for each Az and W, several combinations of Vj and Uw with
i
IUw | > |U¢ | can satisfy the compatibility conditions. This uniform
i 1

sheet induces rotational velocities in the fan wake. However, when the
velocities induced due to the equivalent line vortex filament along the
axis of the jet wake are taken into account, it is shown later that the
velocity field in the fan wake is Independent of the jet wake parameters
V, and U, . This is consistent with the assumed mathematical model for
the jet wake, However, for a given hz and‘ﬁ, only certain combinations
of V. and Uw. are compatible with the faﬁ wake. These can be determined
once ¢Bl is ghosen. Therefére, for a given Az,‘ﬁ and ¢Bl, Vj and Uw.
are fixed, as can be easily seen from Fig. 5. The nonuniform sheet ’

strength distribution of the inner boundary sheet is determined later.

Analysis Of The Wake Model

Having established the geometry and motion of the ultimate wake
vortex sheets, a procedure to solve for the vortex strengths and the
associated velocity field can be developed. The procedure is similar

(2)

to that proposed by Wright but is more general in that the latter
can be obtained as a special case.
It is noted that the assumed geometry and motion of the ultimate

wake vortex sheets imply certain wvelocity boundary conditions. It is
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the purpose of the discussion here to analyze the wake model and to
develop a scheme that gives the vortex strength distribution which
satisfies the required velocity boundary conditions., For the purpose

of this analysis, it is sufficient to consider a unit length of ultimate
wake, ABCDA, as shown in Fig. 6. The unit length is equal to the
spacing between two adjacent B.T.E, sheets and is centered at a point on
a line of intersection between a B.T.E. sheet and the boﬁndary sheet.
Each vortex sheet of this unit wake is divided into a finite number of
strips of equal width, These strips are, for the purpose of numerical
computation, replaced by vortex filaments of finite but unknown strengths
lying on the centrelines of these strips. The strength of each filament
must be equal to the integral of the sheet strength across the strip
width, An adequate representation of the vortex sheet is achieved by
placing each filament at the centreline of its corresponding strip, pro-
vided the strip width is sufficiently small compared to a characteris-
tic sheet width.

The Biot-Savart law is used to provide a relation between the
geometry, motion, and vortex strengths. The integral relations for the
velocity components in cartesian coordinates are given by Lamb(s) and
are reproduced here for a single vortex filament of finite strength.

These are

_ dy' 2 - z' dz'y-y' ds'
AU, = (y/4D) (G5 S i Paa— )32 ,



Jetwake

Axis Of
The Wake

B
B.T.E.
J z =20
2HR2A2
b
C

B.T.E.

R -l

Figure 6.

2 ol |

T e

[~~~ Boundary

"”, Sheets

A Radial Section Of The Ultimate Wake.

27



28

¥ I ' -
boy = Gy | G RS- S 2SR agrfp
P
and
- ' -
aU_ = (y/am) <9-’-LL—-L —1—"—"—) ds' /p°.

It is more convenient to express these integral relations for a finite
strength helical vortex filament in polar coordinates using the follow-

ing transformation.

x' = r' cosy, y' = r!' siny,
X ¥ T cosy, y = 1 sing,
z' = z! +tr'y' tan ¢', z = z, 8" = r'y' secy’.

The velocity boundary conditions are more conveniently expressed in
terms of the velocity components along the vortex sheets and perpendi-
cular to them. A helical coordinate system is then introduced, (see

Fig. 2), where

u. = Ux cosy + Uy siny,

UE = (Uy cosy = U siny) cosp + Uz sing
and

UC = Uz cos¢ - (Uy cosy - U sing) sing.



29

Using these transformations and employing the helical relation (due to

the rigid motion of B.T.E. sheets)

' | S =
r' tang' = Rl tang, R, tang,, (18)

the elemental velocities associated with a helical filament of infinite

length are given by

AU T
e S f[— inCy'-
W (4TR W) o ' tang, sin(h’-y)
+?'(;—;;-¢' tan¢2)cos(1p'-w)] %.-, (19)
AU T -,
_ﬁé_ o Z.ﬁ%z_w .!:[,_.r tan¢ (_' +;- - 2 cos(p'-y))
+ (;-;é-w' tan¢2)sin(¢'—w)] f%%— (20)
and
_ﬁES = ——X I[(;,Z_; ' cos(y'-p)) - t:an2 (1 - x cos(p'~p))
T RN J [ ¢, P~y

r!

T

(21)
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po = r +r'" - 2r r' ecos(y' -9) + (z - zé -y’ tan¢2)2,

and all the length dimensions are nondimensionalized by RZ' The
velocity boundary conditions on the ultimate wake vortex system can be
written by summing up the contributions of every filament of the system.

They are given by,

cosd (22)

z("“’c W
z(ﬁurfw)
Z‘Mr W= 0 (24)

AUr _
Z(T = 0 (25)

on the inner boundary sheet. The region of interest is the unit fan

and

(23)

1]
)

on the B.T.E. sheets,

on the outer sheet, and

wake which is mathematically represented as, (see Fig. 6)

-MR A, /b < 2 < TR,A,/b. ‘ (26)

As far as the velocity field in the above region is concerned, the line
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vorticity in the jet wake is equivalent to a resultant line vortex fila-
ment of strength I' = (Ulp ) 2HRl along the axis of the wake. This re-
sultant line vortex filamegt can induce only tangential velocities in
the ultimate wake. The unifo;m boundary sheets, ad described earlier,
do not induce radial velocities anywhere in the ultimate wake. The non-
uniform boundary sheets do not induce radial velocities on the B.T.E,
sheets due to their symmetric strength distribution about the respective
lines of intersectiocn.

Examination of the integrand of Egq. (19) shows that no radiél
velocities are induced at a B.T.E. sheet by the evenly spaced B.T.E.
sheets themselves. Thus, Eq. (23) is satisfied identically. There is
another constraint on the wake vortex system which requires that the
sum of the strengths of all the vortex filaments in the ultimate wake

be equal to zero., The variocus constraints on the ultimate wake vortex

system are then represented as:

On the B.T.E. sheets,

Z w cos¢) +z (w cos¢ z (W cosq; z (W cos¢

B.T'E.

AU AU
z _.._L__ +z __C._, = 1; 27
1N (W cos¢) jet (W cos¢) 27

On the outer boundary sheet,

z AU z AU Z AU
Gifﬂ + 0};0 + 01;0 = 0; (28)

B.T.E. 2N 1IN
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On the inner boundary sheet,

z (i:;!-) +z (ﬂ) +z (&—35) = 0; (2%

B.T.E. 2N 1N

S S
z (4HR2W) + e (Z;HRZW) + e (4HR2W)

B.T.E.

+Z(—Y——>+Z(—'J—->+Z( Xy = 0; (30)
20 4HR2W N AHRZW jet 4HR W

and

where :E: refers to the summation over the blade trailing edge sheets.

BUT.EU
refers to the summation over the inner uniform boundary sheet,
1v 20
refers to that over the outer uniform boundary sheet, refers to the

E: 2N
outer nonuniform sheet, refers to the inner nonuniform sheet, and

1N
:E: refers to that over the jet wake.
jet
Since the geometry and strengths of the uniform boudary sheets
and jet wake are known, their contributions can be derived explicitly.

First, consider the outer uniform boundary sheet, The velocity field

associated with this sheet is (see Ref., 2)

1) = v cos¢, » r < R,,
2u By By 2

U = U = 0, everywhere,
2U You

Using Egs. (10) and (1l1), it can be shown that



2 = cos¢, sec(d, - ¢, ) cos(¢, )
CR. 2 27 %8, B,

or,

U
2 = 1/(L 4 A ).
W 2 2 B2

u

It is to be noted that on the outer B,.T.E. sheet,

W /0 = (U /W cosd)

/(1 + A h, ).
2u 2'B,

20
From Fig. 4 and Eq. (4), it can be shown that

Itan(¢2 - ¢B )y = UE /W cos¢, = UEl
2 2

tan¢2/H sing, .

Define

G = 1- Uallw sin¢1

Using Eq. (11) and the above relations, it can be shown that

33

(31)
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G = 1- tan((d:z - &2)!2) /tanq;z. (32)

G is therefore determined once AZ and either W or Vm/QR2 are known, It

can also be shown that
7 1 ‘2 ABz
1 - l/(l + Alez) = (lzf(l + K2) (l - '5\“'2' (W )

and then

GA
1 -~ —=— . (33)
20 {1+ Az)

N b

(U, /W)

since the length of the uniform boundary sheet considered corresponds

to that of the unit wake,

Z(YMHR W) = (y, /4TR,W)(20R, A, cos¢. /b).
o 2 B, 2 2 °B, B,

which can be simplified as

Z(YMIIRZW) = (G/26)(3,/(1 + 13)) . (34)
20

It will be shown that when the contributions due to the jet wake

are added to those of the immer uniform boundary sheet, the resulting
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expression do not contain any of the jet wake parameters, U¢ s and Vi.

]

These expressions depend only on the fan wake parameters, A2’ W, b and
G. This can be expected due to the fact that the jet wake model is such
that it does not affect the velocity field in the fan wake.

In the region of interest as described by Eq. (26), the uniform
vortex sheet of the inner Boundary induces only tangential velocities.

It can be shown that

(U¢/w)1U = -YBl sin¢B1 RI/GJr), r > Rl

From Fig. 5 and using the sign convention described earlier

and

- Uw-)Rl/r. (35)

The jet wake induces tangential velocities in the fan wake and is equiva-
lent to a resultant line vortex filament along the wake axis of strength

equal to T = (U )2IIR1 so that

vy

(me)jet = T/2ItW = (ij)Rl/r. (36)
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The inner boundary sheet is made up of the filaments on the boundary of
the jet wake and the filaments that are shed from the roots of the fan
blades. The jet Iwake, hereafter when 1t is referred to, does not in-

clude its boundary since its boundary is already included in the inner

boundary sheet. Combining Eqs. (35) and (36)

(lew)lU + (Uwfw)jet = le R1/r. (37)
Since U = U = 0, U = =-U sin¢, and therefore
1u zjet & v
(UC/w cos¢)1U + (UQIW cos¢)jet = —le R1 tané/r,
lising Eq. (18) and the fact that ﬁ@ = -G sin¢l cos¢1, it can be shown
1
that
G Alkz R1
(Ucfw cos¢)1U + (UC/H cos¢)jet = 5 CE—). (38)

(L+2)x" 72

since the characteristic length of the fan wake need not correspond to
that of the jet wake, the vorticity due to all the blades of the fan is
considered while computing the total vorticity in the ultimate wake so
that

E(Y/MTRQN) = (YB f&HRZW)ZHRl)\Bl cosd;B

1 1
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or from Fig. 5, it can be shown that

- Z(y/zum' w = ———3d L,
10 2 R,

When computing the total vorticity in the jet wake, all the line vortex
filaments excluding the ones on its boundafy are taken into account
since the latter are already included in the contribution from the inner
boundary sheet. As noted earlier, all of the line vortex filaments im
side the jet wake are equivalent to a line filament along its axis so
that

jZEt (Y/4TRW) = T/4NR,W = Ulpj R, /2WR,.

‘Combining the contributions due to the jet and the immer uniform

boundary sheet, it can be shown that

(] Ft

z Yoy B MR
(y/4TR,W) + (y/4TR W) = TR -2 7 &) (39}
10 jot 2 r+al R

20

While computingz (y/JsHRZW), only a unit length of the wake has been
considered. The contribution to i

(Y/4HR2W) from all of the fan blades
20
will be 'b' times the value given by Eq. (34). However, after summing

up all the contributions, the resulting expression can be divided by
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the number of blades, b, as is done in Eq. (43) below. Equations (27),

(28), (29) and (30) can now be written as:

On the B,T.E. sheets,

z z z aug Gxg Gy Ry A,
w cos¢ W cosé 2 2 &) 5

B.T.E.

L]
1

W cos¢

On the outer boundary sheet,

Z (av_/w) +Z(aur/m +2 (au /W) = 0; (41)
B.T.E. 2N 1N
On the inner boundary sheet,
z (8U_/W) +z (8U_/w) +z (av /Wy = 0; (42)
N 1N

BIT.E.

and

R A
z Grew * z (aHR W +z z.r[R T T % (E‘l“) - 2
B.T.E. 2 2N N | 2" 1+ 2

- T . (43)

Eq. (40) is evaluated at a number of control points on the
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B.T.E., sheet, These points are placed between the adjacent filaments
and at the two end points (r = RI and r = RE) of the sheet. Thus,
the number of control points is one higher than that of the filaments,
Equations (41) and (42) are evaluated at control points on the portions
of the c¢ylindrical boundary sheets which lie between a line of inter-
section and the point midway between the adjacent lines of intersection,
When the nonuniform strength boundary sheets are replaced by a set of
vortex filaments of finite but unknowm strength, the fact that the vor-
tex strength distribution is symmetric with respect to any line of in-
tersection and the midpoint between any two adjacent lines of inter-
section is taken into account, Consequently only the vortex filaments
that lie between a line of intersection and the midpoint between
adjacent lines of intersection enter into the problem as those of un-
known strength, The control points are placed between the adjacent
vortex filaments. The end points of this portion of the boundary
sheets (z = 0, z = HRZAZIb) are excluded since the Eqs. (41) and
(42) are satisfied identically at these points. While evaluating Eq.
(43), all the vortex filaments of the characteristiec unit length of the
wake are taken into account,

Now the integrals in Eqs. (19) and (21) are defined respectively

as

I, = (8U/W)/{y/4TRM) . (44)

and
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I, = (&Uc/w)/(yléﬂRZW). (45)

The system of Eqs. (40) through (42) can then be expressed in terms of
Ir and I;. It is also seen from Eqs. {(19) and (21) that Ir and Iﬁ de-
pend only on the choice of Az and b. Since the right hand side of
Eqs. {40) through (43) is multiplied by G, this system of equations is
writtén in terms of a new vortex filament strength,‘? = (YIAHRZWG).
Using Eqs. (44) and (45) and the definition of y, the system of Egs.

(40} through (43) is written as:

At the control points on the B.T.E. sheet,

A A, X R
— — - 2
z 1 Y"'ZICY"'ZI Y = - 22 (R—l) %; (46)
& 1N ®

B.T.E. N © 1+ @1+ Ry

At the control points oum the outer boundary sheet,

Z I?+ZI ?+21? = 0; &7)
t N T N T

B.T.E.
At the control points on the ilmner boundary sheet,

Z I ?+ZI ?+ZI Yy = 0 (48)
r IN ° N T

B.T.E.

and
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R A A
— — -— 1 1 -1 2
Y +z Y “‘Z Y = 3y [‘ﬁ“‘ - 2]- (49)

B.T.E. 1N 2N 21+ ki 1+ Az

This system of equations does not contain the parameter‘ﬁ, so that a
solution may be obtained which may be scaled directly for any value of
W. This means that the equations are solved only once for the W =0
case {G = 1) to get the values of ?. The wake vorticity distribution
for any value of W is easily obtained by multiplying the values of ¥
for the W = 0 case by the appropriate value of G. This scheme was
originally used by Wright.(z)
The blade bound vortex strength at any radial station is found
by summing up the strengths of all the filaments of the B,T.,E. sheet
inboard of the radial station in question and then adding to it the
strength of the vortex filament shed from the root of the blade. The
strengths of the nonuniform sheet filaments are also obtained as part
of the solution of Eqs. {(46) through {48) and are used along with the
vortex filaments on B,T.E. sheet to obtain the velocity field in the
ultimate fan wake, The detailed numerical evaluation of the integrals
of Ir and IC’ the pogitioning of the filaments, and the simultaneous
solution of the system of linear equations that results from Eqs. (46)

through (49) are considered in a forthcoming section of this chapter.

Estimation Of Thrust, Power And Induced Efficiency
The solution of the vorticity distribution in the ultimate wake
allows a calculation of the velocity field in the wake. The knowledge

of the velocity field in the wake, and hence the momentum and kinetic
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energy in the wake leads to the determination of thrust, induced power,
and induced efficiency of the high by-pass ratio ducted fan.
Thrust

It is the main interest of this analysis to develop an expression
for the thrust of the ducted fan in terms of the known velocity field
of its ultimate wake. The thrust that may be developed due to the jet

(7)

exhaust is not considered. Along the lines of Theodorsen's analysis
a control volume enclosing the high by-pass ratio ducted fan and its
wake is considered. (See Fig. 7.) Using the momentum theorem, the
thrust of the ducted fan can be found by considering the average pres-
sure forces acting on the control surface and the average flux of mo-
mentum through the surface. The thrust thus obtained is the total
thrust developed by the ducted fan and as such includes the thrust due
to the jet exhaust. In the absence of the fan and the duct, with the
jet wake parameters the same as those in the ultimate jet wake of the
ducted fan with jet, the thrust due to the jet exhaust can be determined
using a control volume approach similar to the one suggested earlier.
Subtracting the expression for the thrust due to the jet exhaust from
the expression for the total thrust gives an expression for the thrust
developed by the fan with a finite hub and the duct. Implicit in this
procedure is the assumption that there is no interaction between the
jet wake and the fan wﬁke.

As noted earlier, the thrust of the ducted fan is found by con-
sidering the averapge pressure forces acting on the control serface and

the average flux of momentum through the surface. These averages are

taken over a time At = 21/bQ and the integration is performed with
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respect to time dt = dz/(V_ + W). From Fig. 7 and using the momentum

thecrem, it can be shown that

T, + i f p dt ds = - f o(Vek) (V-K)ds dt  (50)
s

where k is the unit vector in the axial direction away from the fan.
The wakes are cylindrical with constant radii and, as such, the wake

surfaces are connected by the relation 52 = Sjet + (Sp - Sjet) +

(s, - Sp), where Sjet refers to the area of intersection of the jet wake

2

with the control surface SZ’ (Sp - S8.) refers to the area of the inter-

3

section of the fan wake with 52, and (S2 - Sp) is the remaining area of

S The fluid is assumed to be incompressible as far as the fan wake

20
is concerned. Using the continuity equation for the system, Eq. (50)

can be written as

-3
"
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-
T

~—
o

a

”

a.

"

'
o

(=

®

[+

et
—

"

1! 2
= (V.V_ + v)ds dt
At o pJ( e j) y
1 2 jet

. f o(V,U, + UDds de + mg V (51)

At £
(5,540

where m is the mass rate of fuel injected. Considering a similar con-
trol volume approach with an isolated jet wake with the same jet wake
parameters as those of the above, it can be shown that the thrust, Ti’

due to jet wake alone is given by
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1 2
AT, f p V5V, + V3)ds dt + m. V,

Tj +~%‘-€ f (p, - pP)ds dt
SjEt jet

(52)

Subtracting Eq. (52) from Eq. (51), the following expression for the

thrust developed by the fan-duct system is obtained.

TD = i- s -Sf ) (p - plds dt + h s -Sf ) p(VmUz + Ui)ds dt
p Jet p jet
In the ultimate fan wake for
dt = dz/(V_+ W) and a characteristic time, 4t = 2I/bQ,
I, = z—n(l‘i——_'_—ﬁ-)—fan ‘:Lke {(p - plds dz -I--é—]:[-(—%f-p-'_—w)

(f(vmuz + Ui)ds dz). (53)

fan
wake

In order to evaluate the above integral, the pressure term must
be evaluated in terms of the velocity field by employing the equation
of motion for an unsteady, incompressible, potential flow. Bernoulli s

equation for such a type of flow is given by

Idv/at + plp + v2/2 = f(r)
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The unsteady term is eliminated by considering the potential flow field

in a steady coordinate system, the one fixed to the blade, such that,

®(r, ¥, =z, t) = &(r, wo + Qrt, 2z),

36/t = (9%/3ap)(By/ot) = Ulp(ﬂr) = XU QR,.

It ig to be noted that the flow field is potential in the fan wake ex-
cept at points on the B.T.E. sheets and the cylindrical boundary sheets.

In the fan wake, for an arbitrary helical filament of pitch angle ¢ at

radius r,
u = 1 i i ’
£ 51 51n¢/31n¢l
where Ug is the velocity along the helical filament at radius r = RI.
1
It can be shown that UE at any point on r = RI 1s the same as UE of
1 1

the B.T.E. sheets. Thus at any point in the fan wake,

= + 3 = N
Ug U]‘D cos¢ Uz sing Ugl sin /sin¢l
U¢ = (1l - G)W tang - Uz tang,
and
39/3t = (V_+ W) W(l - G) - (Vv + W) u_- {54)
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In the fan wake,
P/p + v2/2 - (V_ + W)Uz + (V_+W W(l-06) = PO/p.

Since the flow is irrotational inside the wake except at points on B.T.E.

sheets,

/o + V2 - (V_+ WU, + (T, + W) U1 - ©) = 2, _fo. (55)
2

The outer boundary of the vortex system is force-free and therefore the

static pressure is continuous across it, that is,

« Ppm = Pp.
Ry K

As discussed earlier, there are no disturbance velocities outside of

the ultimate wake. Therefore,

= p_, and V© = Vi for r » R2

°%
and

P = P - vZ j2 + (V, +WU__ - W, + W)l -0

” °R, y: Ry
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substituting Eq. (55) into the above expression,

1 2 2
(P -P) = Zp(Vi=V_)=-p(V +W(U_-1U_ ). (56)
o0 2 R,2 w© z Z
Ry
Substitution Eq. (56) into Eq. (53), it is shown that
- pb [1 2 2
T, = e S(VE = V) 4+ (V_+ WU, -U_ )
D ZH(Vm + W) vol. of the 2 R2 Z ZRE
fan wake
2
+ (VU + Uz)] dvel  (57)
2 2. .2, .2
where, v = (V; + Uz) + Ur + Uw,

=l
I
]

(v_+ U ) +ur .
Ry ZR2 YR

the limites of integration are taken over a characteristic volume of the

fan wake, that is,

0 <z < 2IRA,/b, 0 <y < 20, and, R; < 1 < R,.

TD/p(ﬂRQ)anz. Eq. (57) can be

Defining a thrust coefficient C 9

T

written as
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1 1 2T
. = % ff[l(ﬁz +TW )+ T -2t AR )
T R./R. 0 0 2 zp~ {0 z 2 7z T P
1/%2 2 B
+ (WU, - T _] xdx dz dy/21. (58)
R
2
where, z = z/(ZHRZAélb), X = r/Rz, and all the disturbance veloci-
ties are non-dimensionalized with respect to W except that W = W/ RZ'

Some of the terms in Eq. (58) can be evaluated explicitly through a
consideration of a line integral ABCDA as shown in Fig. 8. Note that

CB is a helical line on the B.T.E. sheet at r = R The line inte-

1
gral about the path ABCDA encloses the vortex filaments shed by 'b'
blades between r = Ry and r = 71 s0 that the line integral is evalu-

ated as

A

B C D
U d +f U, d +f U d +J‘ U d = bI'(r).
"; r r B E L c T T p %2 Z

where T'' (r) is the blade bound vorticity at radius 'r'.

B D

But f Uv_dr = —J’ u, dr,
A c

U_dE = U 2R, sec(4.).
fB g S 1
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A 1/2

E
_ 2

= = !
j; u_ dz b J’D U_ de b I'(r) + UEI 2R, (L + 1))

go that
1 1/2
- = b I'(x - 2
U dz = 20 L5 o+ aB.
j; A 2HR2W12 El 1 1
Defining the Goldstein coefficient, K(X) = b P‘(X)/ZHRZWX2 it can be
shown that,
l —
f U dz = K(X) + (1 - G) (59)
z
]
Defining a mass coefficient k' as
1
k' = 2 f K(X)xdx,
By/R,
it can be shown that
1 T — 1 2, 2
f U XdX dz dp/2n1 = Z[x" + (L - G)(1 - R /Rz)]. (60)
R, /R{ Jodo  * 2 1

and
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lp 1p2lpe - 1 2,2
J 6’. ;ruz _ XX dz qu/21 = FIR(DHL - 61 - Rj/RY).  (61)
R, /R, )

It was shown earlier that the flow fields of the uniform boundary
sheets are known and that the flow fields of sheets of varying strength,
namely, the inner and outer nonuniform boundary sheets and the B.T.E.
sheet, need only be computed for the case,ﬁ = (., It is therefore
possible to compute CT in terms of the W = 0 wake solution and the
scale factor G. The integrands of Eq. (58) are therefore modified as
follows. The velocities are separated into those associated with the
nonuniform boundary sheets and the B.T.E. sheets and those associated
with the uniform boundary sheets and the jet wake. Denoting the velocity
field due to the B,T.E, sheets and nonuniform boundary sheets by the

subscript, 'vs', it is seen that

U = GU = GU_,
£ VS Vs
K(X) = G K(X)_ = G K (X
W=0 o
and k' = 26 f K (XX = G6x' . - (62)
[8] [8]
R1/R2

It was shown earlier that the velocity field assoclated with the outer

uniform boundary sheet is
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X<1

and the velocity associated with the immer uniform sheet and the jet

wake is,

J— — _ _ . 2
(U“’)w + (U“’)jet = (lef(l + Al))(Rl/Rz)lfx for X > R1/R2.

In the following discussion, let

1 .1 2n _ N -
fdvol' = f fof XdX dz dy/2n = E(l - Rlle)
Rl/Rz 0

The integrals in Eq. (58) can be written as

f'ﬁz dvol' = f[c; iij + (1 - GAZ/(l + :«2))]2 dvol',
z ZVS 2 2

which can be simplified as,

f-ﬁz dvel' = 82 fﬁz dvol' + 2G(1 - G}\zl(l + )\2)) fﬁ dvol’
z 2ys 2 2 2ys

2 2y, 2 2,.2
+ (1 - G)Lz/(l + Az)) {1 - Rl/Rz)/Z
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Similarly, it can be shown that

T avol'
P

fﬁz dvel’
r

Iﬁz dvol!
_—

Ry

and

f'ﬁ‘i _ dvol'

2 =2 ' 2 2
G IU“’VS dvol' - (2673 /(1 + A]))(R;/R))

(I(E¢VS/X)dvol')+ (szf/(l + )\f) 2) (Ri/R%)Ln(szRl) s

- ¢? fﬁz dvol’,

Tys

et fﬁz dvol' + 2G(1 - G)\%/(l + Ag)) !'

ZR;
Vs

avo1] + (1 - ol + an2a - ez,

(fs.,

R
2VS
2
2672 R _
= szuz dvol' - 12 R—l IU‘U dvol!'
'2 (1+aD 2 R,
Vs ZVS

G212 R2 R2

1 1 1 1

+ 3 72 ("5) (1 - —'2') .

(1 + ;\l) RZ RZ

Using Eq. (60) and Eq. (61), it can be shown that
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- N 2,02 2
IUZVS dvol' = 2 [k = (1= B/R/(L+13)]
and
2
fﬁz dvol' =% [Ko(l) - L 5] r - %—].
R, ] (L +125) R
V.

€, = I[Ez _ Tji _ o+ ﬁi - ﬁi - ﬁg ] dvel'
l|"Rz R, ' Vs vs
VS Vs
and m = R.l/RZ’ the thrust coefficient is written as,
=2 — 2 2 2 2.2 2
Chn = W ' - -1 -
T KEOLM + 1 = GA /(1 + A))-(1 - m)K_(1)6A/(1 + 1)

2 2 2 2 =
+ G+ (1= 6)(1 - m7)(1 = 26A,/(1 + x5) + 2,/W)

- a-nda - G)\%/(l + Ag))z + (Gz)\imzl(l + ;\f))

2 2 2 - =
Gnm+ (1 -m7)/2) + (26 llm/(l + I[U"’VS/X U""R' 1

dvol']
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For a given Az and 'b’, K6, Ko(l), and €, are evaluated from the solu-
tion corresponding toW = 0, The scale factor G can be computed al-
gebraically for a given AZ and W, Therefore Eq. (63) provides an entire
family of wvalues of CT for different values of W,

Induced Power

The ideal power reguired by the optimum high by-pass ratio
ducted fan, excluding the jet, can be obtained through a consideration
of the induced energy loss in the fan wake. An analysis similar to
the one used for the thrust is used to compute the induced energy loss
in the ultimate wake. Considering a control volume as shown in Fig. 7,
the induced energy loss can be obtained by considering the average of
the work done by pressure forces acting on the control surfaces and the
average kinetic emergy flux through the surfaces. These averages are
once again taken over a time, At = 20I/bf, and the integration is with
respect to time, dt = dz/(V; + W). As done earlier, subtracting the
contribution due to the jet wake, the energy loss in the ultimate wake

of the fan is obtained as

E, = 2—(-‘}-13—@—-;—-‘3-)— f [% DV%‘” +% pvzvz + p(V_+ W)
= vol. of the
fan wake
(U -0 Y0 -2xv? - vEyu ] dvoll, (64)
z2 - z="z 2 R z b
R2 2

where v = U 4+ 0 +U0 .
z r 1
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Nondimensionalizing the lengths and wvelocities and defining e =

ED/ p(QR2)3ﬂR§, Eq. (64) is written as

1]
]

1l 1 Tl
W f f j‘ [T2 + 2\, /W - DV
mdo Jo ? z

Voo - ﬁz ) 1xdx dz dy/2M+(65)

Once again the induced velocities in the above integral are divided in-
to those associated with the uniform boundary sheets and the jet wake
and those associated with the sheets of varying strength, namely the
nonuniform boundary sheets and the B,T.E. sheets. Using the expressions
developed earlier for U and U, , the expression for 'e' can be ob-

*ys Yys
tained in terms of the W = 0 wake solution and G, It can be shown

that
e = W3 [Gx} - G(L - n?)/(1 + xg)] [(1 - Gkg/(l + xg))
2 2 2
G Gy, {1 -~ m7)
(Az/ﬁ +%(1 - —2—2)) ; szzxzfcl 22 5 - ._.Z.,.__.E__
1+ (1 + 2.)
2 5
2 2 2
Gh by GM
2 1 2. X 2
(1- )[GK(l)- —] + = (1 - )(—"-l)@—_*"“)
1+ 22 1+A2 2 1+ 22

2 2
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1 2 G"g ° 1 2 Gz"i? G"g
+ E (1 -m ) ( - 2) + —2" I]'l(l -m ) “"""——‘E—z” (1 - 2)
1+ 12 {1 + Kl) 1 + )&2

+ GZ(AZIW + 1) f’ﬁz dvol' + Gzo\zlﬁ - 1) I(Tji +ﬁ§ )
Zys VS VS

dvol' + 621 - &2/ + 2% f[ﬁz + T2 1 dvol' - 26322
2 2 zp~ \bR- 2
Zys 2ys.
(1 + J\%) f'ﬁ 'I'J'z _ dvol' + G3 Iﬁz [_lj2 _ +ﬁ$ _ ] dvol?
2ys R, Zys ZRZ R,
Vs Vs VS

-zc3m11/(1 + Af) f T T dvol® - (2szxlf(1 + Af))

Zvs __“’R;
- vs

2 2 = ' = 2 2
(1 = GAL/ (1 + Ay)) I UwR_ dvol' - (A,/W - 1)(26"md,/(1 + A,})

2VS

— . 2 2.2 2.2
(I U%S/x dvol") - (A, /i - 1)€m 2] La(R /R,) /(1 + A]) . (66)

By, = Q- 1)V,
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where QD is the induced torque on the fan blades. The induced power

can be written as

Py = Q= TV +EL
in
. _ 2 ...
Defining the induced power coefficient, Cp = PD /p(QRZ?HRZ’ it is
in
shown that
= -W + e.
C, (A, -Wc, +e

The power requirement for the constant diameter wake of the ducted fan
can also be obtained using Kutta-Joukowski theorem provided it is
assumed that due to the non-contracting wake and compatible shroud,
veloclities at the fan are the same as those in the wake. It 1is to be
noted that this need not be a physically possible configuration. Accord-
ing to the Kutta-Jourkowski theorem, the incremental torque dQD of the
fan blades is given by

dQ, = ebI'(r)V dr

. T
axial
where

v

axial

= V_+ W(l - G:'\,ii/(x2 + A%)) .

Blades must be designed to give the distribution, r'(r).
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Therefore,
dQD = pbl((X)x’ZI[RZ'w'J\2 Vaxial’
so that,
1
_ 2
QD p]'IR2l2R2W [(Vm + W2 fK(X)XdX
m
1
- zcm,xé IXK(X)/(XZ + kg)d){]
m
1
Defining u6 = 2 J.KD(X)X/(XZ + Ag)dx, and ' = Gua, it can be
m
shown that
_ _ 2 3=-.2 v R .
Prin = Q2 = eMRL(QR))™ W A5 [6e) = G° W A, 1]
and
cC = CUAZ ! -GH 2 '] (67)
Pyy 2 %o 2 ¥

Induced Efficiency

The induced efficiency, ny» of the fan-duct system can be de-

fined as,
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ng = Ty VSR -
in

The above expression can also be written as

ng =y = WE/(CL (0, ~ W) +e) (68)

For a constant diameter wake from the fan blades, the Kutta-
Jourkowski theorem can be used to compute the thrust developed by the
fan blades alone. The incremental thrust developed by the fan blades

is given by

= 1
d Tp pb vtan T'(r) dr

5 ; } ) 2 . .2
where Vtan = {Qr U$/2) = Qr GWXRZIZ(X + 12) .

Uw/2 was chosen since the tangential velocity ahead of the fam is zero

and behind it is U¢.

Following a procedure as adopted earlier,

1
_ 2 2
T, = fp(szr f waxz/z(x + Az)) K(X)2HR§WA2 dx.
m
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2.2 2

Defining C = T [pQ"R.NMR_, it can be shown that
TP r 22
- T | T st
CTP G WX, [kj - GWuy A,/2] (69)
Thus the.expressions for C,, C CP’ and n, have been obtained
T TP, i
in terms of the wake solution for the W = 0 case. In the following

gsection, a discussion of the computational procedure is given.

Numerical Procedures

The wake model and its mathematical solution have been discussed
in terms of the basic procedures and developments. To obtain a solution
it is necessary to evaluate the velocities due to a helical vortex
filament of finite but unknown strength at any arbitrary location in
its flow field. A system of linear equations is developed by equating
the sums of velocities due to all the filaments in the wake at the con-
trol points te the required normal velocities at these points. The
velocity influence coefficients are evaluated by numerical integration
procedures and the system of linear equations is solved by a suitable
numerical technique, After obtaining the solutions for the vortex
strengths in the ultimate wake, the velocity field in the wake can be
computed. Then, Eqs. (63) and (66) are evaluated mumerically to obtain
the thrust and induced energy loss in the wake, 1In addition to these,

the values of KO(X), and u6 are also obtained.

Ké,
The velocity components associated with a single helical vortex
filamanet of finite but unknown strength at any arbitrary location are

obtained by numerically evaluating the integrals of Eqs. (19} through
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(21)., It is seen from these equations that the integrands are solely
functions of the gecmetry of the filament and the location of the point
at which the velocity components are evaluated. Since the integrals
are evaluated for peoints in the ultimate wake, the limits of inte-
grations range from -« to «, The numerical integratiomns are simplified
by converting the limits from -o < §' < w to 0 < ¢' < o with the appro-
priate changes in the integrands. Equations (19), (20) and (21) are

then written as

@u /) = Gramgd [T T 5 2 b, (70)
0
(BU /W) = (y cose/4TR M) ffc(q,:; T, % oz ¥ AP, (7D)
0
and
(BU, /W) =y cosy/4TR W) ffg(q,'; T, ;6, z, ¥, A’ (72)
0

where the primed quantities refer to the location of an elemental length
of the vortex filament and the unprimed quantities refer to the location

of the point at which the velocity components aré evaluated.



64

The Romberg Integration technique was used to numerically
evaluate the integrals of Eqs. (70) through (72). Since the limits of
integration range from 0 to =, a stepwise integration procedures is
adopted., The integration is first performed between the limits 0 and
2l and the resulting value is denoted by 61, which actually is the con-
tribution to the integral of the first turn of the helical filament
and its reflection (=20 < ¢' < 0}, The contribution to the integral
from the second turn of the filament (21 < §' < 4I) and its reflection
(=41 < ' < 4M) is then evaluated using the Romberg Integration tech-
nique and is denoted by §5- Then 62 is compared with the sum of 61 and

8 A percentage change is then defined as (100)|(62f(61 + 62)| . If ;

2
this change is not acceptably small, contribution to the integral from
the following turn of the helical filament is evaluated and the percen-

tage change is again determined according to the formula, (100)|6j/

]
(¥ Gi)|, wvhere 51 is the contribution of the integral from the jth
i=1 - i
turn and its reflection of the helical filament and % §, 1s the sum

i
i=1
of all the Gj. The process is continued until the percentage change is

less than some specified tolerance level. The value of the integral is

then set equal to the sum of all the Gj.
An investigation of the permissible tclerances for each integral

has been made, It was found that the tolerances suggested by Wright(z)

are satisfactory in the sense that significant changes in the tolerance

(2 did not significantly change

levels from those suggested by Wright
the end result of the integrations, A value of 0.5 has been chosen

as the permissible tolerance for the integrations involved in the
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computation of the velocity component ﬂUC. A range of values from
0.25 to 1.5 has been chosen (depending on the value of kzlb) for the
computation of the integrals for AUr. When the tolerance levels are
changed to 10‘6, an encrmous amount of computational time was required
to evaluate the above integrals, However, the values of the integral
did not differ significantly from those having the higher tolerances.
It can be seen from Eqs., (19) through (21) that the velocity
components associated with a single helical vortex filament at any
arbitrary location in its flow field are linear functions of its
strength, For example, if the contributions of n filaments to a
velocity component, ﬂUr/W, at a given point are summed, then the result
is of the form '21 hi‘;i = ‘ﬁr,where hi is the influence coefficient
of the helical ;;lament';i. If the filament strengths are unknown
and their geometry is known, as in the case of the mathematical model
of the ultimate wake developed earlier, specifying the value of ﬁr at
a calculation point yields a linear equation in‘7i. If n such cal-
culation points hereafter referred to as control points are chosen and
if the appropriate velocity components is specified at each one of
these points, the end result is a system of n linear algebraic equa-
tions in n unknowns ;i. Such a system of equations is developed and
solved for the strengths of the unknown vorticies in the ultimate wake,
As discussed earlier, the vortex sheets of the ultimate wake are
divided into strips and the strips are replaced by vortex filaments of

finite strength. Since the strengths of the B.T.E, sheets and the

nonuniform boundary vortex sheets in the ultimate wake are not known,
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these sheets are replaced by a number of vortex filaments of finite
strength. The portions of the nonuniform boundary sheets and the
B.T.E. sheets that are replaced by the filaments correspond to the unit
wake as shown 1in Fig, 9. 1In order to arrive at the optimum number of
filaments which replace these vortex sheets, an investigation has been
made to determine the effect of the number of filaments on the end
result as well as on the computational time., It has been found that
ten filaments replacing the B.T.E. sheet and eight filaments replacing
each of the nonuniform sheets were sufficient from the standpoint of
computation time and accuracy of the result. A lower number of filaments
tend to overestimate the influence and a higher number of filaments
tend to increase the computation time without any significant change in
the value. In fact, doubling the number of filaments almost quadruples
the computation time with the values being less than 1% different from
those of the former.

It is to be noted that the nonuniform vortex sheet strengths
are symmetric about the lines of intersection. Because of this sym-
metry, the eight filaments that replace each of the non-uniform sheets
introduce only four unknowns for each sﬁeet. However, it is to be
noted that all of the vortex filaments in the ultimate wake are to be
taken into account in the computation of velocities at the control
points., For example, in the case of a fan with b number of blades, all
the vortex filaments corresponding to these b blades are used in the
computation of velocity components.

It was shown earlier that the number of control points at which
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the velocity components are computed is one less than the total number
of vortex filaments of unknown strength. The arrangement of vortex
filaments and the contreol points in the ultimate wake is shown in

Fig. 9. There are eleven control points on the B,T.E. sheet and three
each on the inner and outer boundary sheets, There are eighteen vortex
filaments of unknown strength, At the control points on the B.T.E.
sheet, the contributcions to‘ﬁc Jeosd = 1 from all of the vortex
filaments In the ultimate wake are computed and summed to yield eleven
algebraic equations. At the three control points on each of the
boundary sheets, the contributions tolﬁr = 0 from all of the vortex
filaments are evaluated and summed to yield six equations. A final
eighteenth equation is obtained by equating the net vorticity in the
ultimate wake to zero. All of the control points are assumed to lie

in the ¢ = 0 plane., The computation of the velocity components due
to the vortex filaments lying on the B.T.E. sheets of all of the blades
is facilitated in the integrands of Eqs. (19) throﬁgh (21) by increasing
the value of ¢ from 0 to 2I(1 -‘%) in steps of 20I/b. The system of
linear equations thus obtained is given below. As discussed earlier,
the righthand sidesof these equations are modified to take into account

the contributions due to the uniform boundary sheets and the jet wake.

18 _
£ B Y = 0, i = 1~ 3.
5 P13
18 B
N7 13[ Lo - L, 4= 4- L
j=1 = (L+2ay) Q+2AD¥g
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18 _
Z B Yy, = 0, i = 15 -~ 17.
o1 L33
and
1? . ‘¥ 1, AZ 12 :
= [ - .
jop 1833 A% 1408
1 2
In the above equations, Xi = ri/Rz, Bi 1 is the appropriate velocity

influence coefficient and Yj is the wvortex strength of the filament j.

In the last equation, through B are each equal to 1.0 and

Bis,s 18,14
the rest of the coefficients are equal to 2.0. ?5 through ;14 are the
nondimensional vortex strengths of the filaments on the B.T.E. sheet,
;1through ?z are the stfengths of the filaments on the outer boundary
sheet and ;15 through ?iB are the strengths of those on the immer
boundary sheet, The set of the linera algebraic equations thus ob-
tained was solved numerically using the Gauss-Jordan Reduction Method

(Ref. 9) for particular values of A,, b and R1/R2. KO(X), Ké, and “6

2!
are then obtained from a knowledge of the vortex strength distribtuions
in the wake,

Thrust And Power Integrations

As was shown earlier, certain volume integrals of velocity com—
ponents need to be evaluated to obtain the thrust and power coefficients,

These volume integrals are
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The velocity components at the specified points in the unit wake are
found by numerical integration techniques discussed earlier in setting
up the system of linear equations. Due to the helical symmetry of the
vorticity and velocity distributions in the ultimate wake, the volume

integrations may be performed by obtaining a detailed knowledge of the
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(2)

flow field on a zr-surface, This idea, originally due to Wright ',

has been extended to this system. The zr-surface chosen is bounded

by the inner and outer cylindrical boundaries, a B.T.E. sheet, and a
radial line midway between the chosen B.T.E. sheet and an adjacent B.T.E.
sheet. This surface is divided into a network or grid as shown in

Fig. 10. The velocity components are evaluated at the intersection
points of the grid. A two dimensional array of the values of the ve-
locity components and their squares is thus obtained., Using a strip
method, a formula has been developed for the evaluation of the volume
integral using these two dimensional arrays of velocity components. It

can be shown that

Lo 9 I+l J+1
ff f f XdX dz dy/20 = (1+mlz Z (21 - 3)
m 0 0O YA | iw2 12
I+1 J+1
m(l - m) :E:
(fi,j + fi-l,j + fi-l,j—l + fi,j-—l) + 3
i=2 j=2
(fi,j + fi—l,j tEaqat fi,j—l)’ (74)

Where 1,j refers to the location of a grid point as shown in Fig. 10,
I+l refers to the number of grid points in the radial direction and
J+1 refers to the number of grid points in the axial direction. For the

network illustrated in Fig. 10, I=10, J=4 and 'f’ can be the 2-D array
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of any velocity component or its square.

Since the motion and vorticity of the wake are known, the numeri-
cal computation of the velocity components on the edges of the zr-sur-
face at the vortex sheets is not required. It is to be noted that the
edges of the grid do not exactly lie on the vortex sheets. Mathematical-
ly the network is represented as R1 <r <R, 0 <z j’ﬂRzlzlb. As dis-
cussed earlier, velocity components only due to B.T.E. sheets and the
nonuniform boundary sheets need to be evaluated.

The veloclty components at the grid points om all but one edge
of the network are obtained from a knowledge of geometry and the
strength of the appropriate adjoining vortex sheet., Consider first the
edge of the network at the B.T.E. sheet. This edge is represented
mathematically as, z = 0+ and R1 < r < R,. The velocity components

2

UZ and U, are continuous across the B,T.E, sheet and hence the values of

4

Uz and U¢ at this edge are the same as those at the corresponding peints

on the B.T.E. sheet. It can be shown that

T, oY =T, &0 = ejl—t—g- ] 05
Vs Vs 1+ A W+ )
2 2
and
A X
+ —_—
U (x,09) =T (x,0 = -2 Z_ (76)
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However, it is to be noted that the radial velocities are discontinucus
acreoss the B,T.E. sheet and their distributions are such that —Ur

(r, 0+) = Ur(r, 07). The magnitude of the discontinuity in the
radial wvelocity gives the strength of the vortex sheet at that point.
By the Helmholtz laws, it is seen that dI''/dr = y(r) = 2 U%(r, 0+),
where I''(r) is the blade bound vortex strength at radius r. TI''(r) is
known at various radial stations along the B.T.E. sheet from previous
calculations. A Fourier series i1s fitted to these values such that
dr*/dr = 0Oatr = R: and r = R;. This is so because the vortex
sheet strengths at these points must be equal to zero. The number of
terms chosen in the Fourier series is the same as the number of

points on the B.T.E. sheet at whiech I''(r) is known. After fitting the
Fourier séries, the vortek strength and hence the radial velogity dis-

continuity at any point on the B,T.E. sheet can be evaluated. It can

be shown that

U (%, 0" = -1 dr'/dX, where T' = T'(X)/4TR.W.
rys 2

Thus the values of the velocity components at the grid points on the
edge z = 0+, R1 <71 < R2 are obtained without the need of further
numerical integration techniques.

The values of the velocity components at the grid points on
the outer edge of the network, that is, at r = R; and 0 < 2z 5.
HRzszb, are obtained as follows, The velocity components Uz and Uw

are discontinuous across the outer boundary sheet. Since the boundary
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is also a stream surface, the radial velocities are zero at this edge.

It can be shown that

T W, =y @, 1 = K/R, (77)
z Z 2° 2
VS nu
A A .
U, 0, = o—ty-—1 -1 @, (78)
vs 1+ X 1+ X nu
1 2
and
'ﬁr (1", z) = o0, (79)
Vs

~

where Yg and 70 are the nondimensional ring and line components of

b

nu nu
the nonuniform vortex sheet strengths at any point z on the outer

boundary sheet. The above expressions are obtained by moting that the
induced velocities are zero cutside the outer boundary sheet and the
strength of the uniform sheet is equal teo the total sheet strength at
the line of intersection. In order to evaluate the above expressions,

a knowledge of the nonuniform sheet strengths at those particular grid
points is required. However, from the solution of the set of siwul-
taneous equations, the strengths of the filaments that represent the non-
uniform vortex sheet strips and are located at the midpoints of these
strips, are known. The strength of each of these vortex filaments is
equal to the integral of sheet strength over the width of the strip

which the filament replaces. The sheet strength can be evaluated from
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a knowledge of the fllament strengths by assuming a particular type of
variation, e,g., linear or parabolie, for the sheet strengths over the
width of the strip. TFor simplicity, it has been assumed that the sheet
strength varies linearly over the width of the strip which the filament
replaces. The sheet strengths at the required grid points on the bound-
ary can then be evaluated using the trapezoidal rule for integration.

A similar procedure is used to evaluate the nonuniform sheet strengths
at the grid points on the inner boundary sheet.

The imner edge of the E?;surface, mathematically represented
as r = RI and 0 < z < HRzlsz, is now considered. The radial wveloci-
ties at the grid points on this edge are zero since this boundary is
alsoc a stream surface. The axial and tangential velocities are dis-
continuous across the sheet., It is assumed that the axial and tangen-
tail velocities on the boundary of the jet wake (r = RI) do not vary
in the axial direction and have the same value as that at the line of
intersection of the B.T.E. sheet and inner boundary sheet. This
agsumption is a result of the mathematical model assumed for the jet
wake. Using a procedure similar to that one used in the case of outer

boundary sheet, the velocity components at the grid points on the inner

boundary sheet are obtained as

= +
UrVS(RI/RZ, z) = 0, (80)
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- + - 2 2 2 2 i —
UZVS(RI/RZ, z) = G[Azi(l + %) - 11/(1 +2y0] -y, (z), (81)
nu
and
— + — 4 -
U (R. /R,y 2) = ¥ {(z), (82)
wVS 12 ¢nu

where ;i and ;i are the nondimensional ring and line components of
T nu

the nonuniform vortex sheet strengths of the inmer boundary. These are

evaluated using the same arguments as were used at the outer boundary.

The velocity components at the grid points on the remaining fourth

edge of the ‘zr-surface are evaluated numerically,

The accuracy of the volume integrations is clearly dependent con
the choice for I and J and the strip method used to derive the ex-
pression for the volume integral. As a check on the method, the in-
duced axial wvelocity (ﬁz) distribution on the zr-surface is evaluated
for particular values of 12, b, and m. Then the volume integral is
evaluated using the strip method., This value is then compared with the

exact value of the volume integral of ﬁz that was derived earlier. It

was shown that,

on
U XdX dz dp/2n = %[K' + (L - 61 - nD)].

i

2 \-_114

0
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Thus the accuracy of the strip method can be checked. With values of
1=10 and J=4, the volume integrals are evaluated and it was found that
these values are acceptable from the standpoint of computation time and
accuracy. Higher wvalues tend to increase the computation time enormously
with negligible gains in accuracy. The accuracy of the volume integrals
is also checked by computing the velume integrals of ﬁg, ﬁ‘i and

Ei for a particular lz and 'm' but with increasing number of blades.
These volume integrals should and do comverge to the values correspond-

ing to those of the infinite number of blades that are obtalned later in

the next chapter.
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CHAPTER ITI

INFINITE-BLADED FAN

Wake Model And Its Solution

The vortex wake model of the optimum high by-pass ratio ducted
fans with infinite number of blades is an extension of the wake model
developed earlier for the fans with finite number of blades. The original
work in this area was done by Gray(ﬁ). The ultimate wake of these infi-
nite bladed fans consists of the following elements: the jet wake, the

fan wake and two cylindrical boundary vortex sheets. The jet wake model

is exactly the same as the one used earlier, However, there are some dis-

tinct differences as far as the fan wake and boundary sheets are considered.

The wake of an infinitely bladed fan consists of a volume distribu-
tion of cylindrical vorticity. As was discussed earlier, the fan wake of
an optimum high by-pass ratio ducted fan with finite number of blades con-
sists of the helical vortex sheets of constant pltch shed from the trail-
ing edges of the fan blades. As the number of blades increases, the heli-
cal vortex sheets become more and more closely spaced. In the limit for
an infinite nuymber of blades, these sheets completely fill the wake. The
ultimate wake of a fan with an infinite number of blades can thus be
viewed as cylindrical volume of vorticity, the wvolume being filled with
an infinite number of helical vortex sheets shed from the trailing edges
of the blades. The vorticity in the wake can be viewed as a combination

of ring and line vorticity since the vortex cylinder is of constant
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diameter. Following the same lines of arguments as were used in the case
of the fan with a finite number of blades, the cylindrical fan wake is
bounded on the inside by an inner cylindrical boundary vortex sheet of
constant diameter shed from the trailing edge of the hub and on the out-
side by an outer cylindrical boundary vortex sheet of constant diameter
shed from the trailing edge of the duct. These boundary vortex sheets
move axially relative to the cylindrical fan wake and serve the same
purposes as those in the case of a fan with finite number of blades,
Since the c¢ylindrical fan wake can be thought of as a wake filled
with infinite number of constant diameter helical vortex sheets of con-
stant geometric pitch, the velocity relations that were cbtained at points
on helical vortex sheets of the finite bladed fans can be used everywhere
in the wake of the infinite bladed fan. Consequently, the analysis of
an infinite bladed fan wake is very much simplified. The strengths as
well as the geometry and motion of the two cylindrical boundary vortex
sheets can easily be determined once the velocity field in the ultimate
fan wake is known. By using essentially the same arguments as were used
in the case of the fan with finite number of blades, it can be shown that,
for the flow to be irrotational outside the wake, the induced wvelocities
outside of the wake should be equal to zero. As was done earlier, it is
assumed that the net vorticity in the jet wake is equal to zero, In the
cagse of the fan with finite number of blades, the uniform boundary vortex
sheet strenghts as well as the pitch angles are determined by considering
the velocity discontinuities at the lines of intersection between the
B.T.E. sheets and the boundary vortex sheets. Therefore, in the case of

the fan with an infinite number of blades, the B.T.E. sheets fill the
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entire wake and hence, the boundary vortex sheet strengths as well as the
pitch angles are the same as the sheet strengths and pitch angles of the
corresponding uniform boundary sheets of the fan with finite number of

blades.

At any point in the yltimate fan wake, that is for Rl < r < R2’

= i 8
UE Ugl, 31n¢/sin¢1, (83)
v, = W Cos¢, (84)
and , U = 0. (85)
r

For points outside the wake, that is for r » R2,

U, = U_. = 0. (86)

Equations (10) and {11) give the sheet strength and the pitch angle of
the outer boundary sheet, Similarly Egqs. (16} and (17) give the
corresponding values for the immer boundary sheet. The jet wake is
treated exactly the same way as was done earlier.

Consider a line integral of the velocity along a closed contour
ABCA on the surface of the cylinder of radius r, where Rl < r < R2.
ABC is along the £ direction and CA is along the r direction. C is the

intersection point of a line in the helical direction, but on the same

side of the vortex sheet,and a line in the 7 direction originating at A.
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As per the velocity field, which has been discussed earlier, the com

ponents 1. and Ug are constant on a cylinder of radius 'r'.

£
f Veds = Ugr(EC £y +U‘3r(;A— Ze)
ABCA
However, UEr = UEl sin¢/sin¢l,
U = W cos¢,
Cr

r tang = R2 tan¢2 = AZRZ’

(6o - £,) = 2R}, cos¢ cots,
and (T,C - ;A) = 21'[R2?L2 coso.

Since the shed vorticity by convention is negative and since the net

vorticity in the jet wake is zero, by Stoke's theorem

where T''(x) is the blade bound vortex strength at 'r' which is in fact

the sum of all vortex filameunts shed in board of radius '

r'. It is to be
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be noted that b is infinite and I'"(r) is infinitesimal and therefore
br'(r) is finite and represents the bound vortex strength of all the

blades at r, Thus

-br*(r) = (UEl sin¢/sin¢l)(2nR212 cos¢ cotd) - W cosp 2HR2A2 cos¢,

brt(r) _ cosz 2 .

¢ - U_ cos"¢/W sing, ,

2R A M £ 1

and
2
K(X) = G cos™ ¢,
where ¢ = 1 - UE W sing; . It can easily be shown that
1
K(X) = G x%/(x% + Ag) (87)
and
KO(X) = X2/(X2 + Ag), where ¥ = r/Rz.

Thus, the Goldstein coefficilents for the case of a fan with infinite
number of blades can be easily computed. Since the velocity field in
the ultimate wake is known, the vorticity in the wake can also be
easily computed, Using Eqs. (83) through (86), it can be shown that

for Rl <r < R2,
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) 2,2 2
U= WL - e/ + A0, (88)

and

_ 2, .2
U, = -GUAX/(XT+ 1)), (89)

Therefore, the total wveloecity field in the ultimate wake is given by

GA% GWAZX N
AW = [V, +W - =] 8 - 5= e, (90)
X© + AZ (X" + lz)

where the velocities are with respect to a co-ordinate system fixed to

- -+ -
1

the duct. The vorticity in the ultimate wake is given by ¥ X Q¢ = y'.

Using the cylindrical coordinate system it can be shown that

v 1

>y _ 3 . _ __z=* 13 >
¥ Xa Py e¢ + T ot (rvw) e_s and therefore

2G12NX 2GUA3

o= - vl T e
7 3.2 w 2. 3. %
X" + lz) R2 RZ(X +l2)

(91)

Converting to a helical coordinate system it is seen that

2,3/2

. _ 2 2
v (X) 26005/ Ry (X° + 25 .

and
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Yé(x) = 0,

where Yé(x) is the vorticity per unit area. In order to get the vortex

sheet strength in the E-direction,'réis multiplied by a characteristic

length which for this case is given by ZHRZXZX/(Xz + X%)l/z

2

—i
2 2.2
RZ(X +7\2)

5 5 1/2 2GWXA
—_ ] = -—
= yg(x) 2;[112121(/ (x° + "2) = (21111212)(

~

Ye

This sheet strength is due to all blades of the fan. This expression

can also be arrived yet another way, using the expression Yg =
-bdr''(r) /dr and using Eq. (87). The assumption of infinite number of
blades makes the flow field in the wake steady. The velocity field in
the wake can be checked by evaluating the velocities due to the

B.T.E. sheets, the inner and outer boundary vortex sheets and the jet
wake, and then summing them. Having established the velocity field in

the ultimate wake, the thrust and power coefficients can be evaluated

using the integral theorems.

Estimation Of Thrust And Induced Power

As for the case of a fan with a finite number of blades, the
momentum and energy integral theorems are used for the evaluation of the
thrust and induced power coefficients, First, for the momentum integral
theorem, it was shown éarlier in Chapter II that the thrust due to the

duct and fan system is given by
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TD=I]§II (P'P)dsdt+()f p(VU+U)d5dt
fan fan
wake wake

where ds is the elemental surface area. In the ultimate fan wake,

dt = dz/(V_+ W), and the characteristic time, At = 21/Q. De-
fining CT = T /pQZRgﬂRg and z = z/2HR212, it can be shown that
1 1 2I
Cp = QRZ fff (P - P_)XdX dz dy
2 m 0 0O
1 1 21
Efff (VB + 70 dz ap (92)
| © Tz z
m 0 O

~

where V. = V_/W, ﬁz = Uz/W, and W = QIQRZ. The second volume
integral in the above expression c¢an be evaluated in a straightforward
fashion using Eq. (88). However, in order to evaluate the first inte-
gral the pressure terms must be expressed in terms of the known velocity
field in the wake. This can be achieved by using Crocco's theorem

which gives a relation between the variation of stagnation pressure and

the velocity and vorticity in the ultimate wake, Then,

-+ -

Vho = Q X cur? Q.
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Neglecting the wvarlations in temperature and noting that the pressure

variation is in the radial direction, it can be shown that

= t '
1/p 3P0/3r [% Y, = Q, Y¢]-
_ 1 2 2 _ 2 2 X
where P0 = P +-§ pQ° and Q° = Qw + Qz' Using Eq. (90), it can be
shown that
P 206 2V W + WH)x
dXO = 2:a —5 (93)
(X +15)
and
P0 = —'2pGA§(V; W+ Wz) /2(X2 + lg) + constant,
The constant is evaluated by considering P0 at r = RE where
P, = P} = P +‘l- Qz-. After some algebraic manipulation, it can
0 0 © = 2 R2
be shown that
®-Pp) ¢® w2 22x% - 1)
@ = g s - (94)
e 2(1 + 1) (X7 + 13) .

Substituting Eq. (94) into Eq., (92) and using the expression fpr'ﬁz,

GT can be evaluated in closed form as
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L GZJ\":Z?(J. - md) cz;\;(l - %) .
CT = W 3 + 7 7 5 + (1l -m )(Azm)
20 +20) @ +ada+ad

-Gli[l + 3,/ + 6/2) Ln((l + A;)/(mz + 13)) . (9%

Thus for a given 12 and'ﬁ, CT can be evaluated from this equation, It
was also found that form = 0, that is, for a fan with no hub, Eq.
(95) reduces to the expression obtained by Gray(6) for a ducted fan with
infinite number of blades and without any hub.

Induced Power

As for the case of a fan with a finite number of blades, the
ideal power required by the optimum high by-pass ratio ducted fan with
infinite number of blades, excluding the jet, can be obtained through
a consideration of the induced energy loss in the fan wake, Using the
same arguments as were used in Chapter II, it can be shown that the

induced energy loss in the wake is given by

S R f 1 2 1 2
E_D = Zl‘I(Vm W) [2 pv vV + (2 pv: + (P - Pm)) Uz]d(volume)

vol. of
fan wake

Defining e = ED/p(RR2)3HR§ and nondimensionalizing the other variables,

it can be shown that
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21
_‘2 ~ —
f Vo[V + U,IXdX dz dy
0

2N 5 _-Pm - _-
[ % xxaza w6
0

1

W
* Tae2 f
2 m

p

Ob.l—*

where ;2 = ‘Ez +‘62
z ]

evaluated in closed form as

using Eqs. (88), (89) and (94), Eq. (96) can he

Wl 6H3 W -a 6P, WA - D
_ -2 2 2 2
e = —3|Q-m)+ AN 3.2
(1 + )\2)(m + 7\2) 1° + 12
- _ ¢*w 13 1+1§
-G 12(2 Az +W -G lz + G W+ — ) Ln 5 51 (97)
{1 + 12) m- + 12
The induced power coefficient can then be obtained as
Cp = (12 - W)CT + e, (98)

The induced power coefficient for a constant diameter wake of the
ducted fan can also be obtained by the application of the Kutta-

Joukowski theorem, It was shown in Chapter II that
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= 42 " _ kel
C GW?AZIFO GW2a

T
uSl
Pyg z2°0

and

c = GW2X

| . I -0
T 2[K0 GW 1y 12/2].

For the ducted fan with infinite number of blades, it was shown

earlier that KO(X) = XZ/(X2 + A%).Using this expression for KO(X)

and the definitions of «!

T
0 and My it is shown that

GW AL - m)

Cp = Gﬁl%[(l-m2)+ ———7 -(A§+thz)
KJ (1 + 25 (" + 1))
l+)\§
Ln (_ﬁ)]° (99)
m + A
2
and
_ ) G ¥ A1 - n) ,
Cr = GWIA-w%) + 53 5o = (A, + G W A,/2)
5 2(1 + 2% (@® + 29
2 2
1+A§
Lo (———3) 1. (100)
m +)\2

After some algebraic manipulation, it can he shown that Eqs. (98) and
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(99) are in fact equivalent though they were derived differently, It
was also found that these expressions reduce to the expressions (from
unpublished work by Gray(G)) for the fan with no hub (m = 0).

Thus, unlike the case of the fan with finlte number of blades

where extensive numerical procedures are needed to evaluate CT’ Cp

and KO(X), the analysis of the ducted fan with infinite number of blades

is much more simplified.
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CHAPTER 1V

RESULTS

Having established the method as well as the numerical parameters
necessary to evaluate the blade bound vortex strength distribution,
K(X), the method for the generation as well as the solution of the sys-
tem of equations was programmed for a digital computer. First, it was
necessary to check the method used. Therefore, the general computer
program has been used to obtain the KO(X) distribution for the special
case of a fan with no hub. Wright(z) generated the data for such a fan.
The Goldstein coefficient distribution, fhat is, KO(X), was evaluated
for a fan with Rz = 0,5and b = 2 and compared in Fig. 11 with that
due to Wright. It can be seen from Fig. 11 that the agreement between
the two sets of results is excellent. Figure (12) shows another such
comparison for a fan with 12 = 0.75 and b = 4, The general computer
program was then used to obtain the nondimensional bound vorticity dis~
tribution, KO(X), for high by-pass ratio ducted fans for various values

of Az, m and the number of blades, b. Some of the data, especially the

one corresponding tom = -%, is presented in the form of tables at the
end of this chapter. A value of m = %-relates to a ducted fan with a

by-pass ratio of approximately 9, which was considered to be in the
range of the by-pass ratios which are of interest from the point of view
of applicability of the method presented in this thesis. The values of

Ay and b chosen for this 'm' are also arrived at from a practical
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view point. For examplé, the high by-pass ratio ducted fans in use to-
day have a value of 12 1a the range of 0*5 to 1.0, The data presented
in these tables will be helpful from the point of view of design of
such fans. The KO(X) distributicon for fans with different values of
m was also evaluated, Figures 13, 14, 15 andll6 show the KO(X) distri-
butions for different values of AZ and m and, for each of these values,
how these distributions converge with increasing blade number to that
corresponding to an infinite number of blades. The KO(X) distribution
for the fan with infinite number of blades was evaluated using the
method outlined in Chapter IIT, These figures clearly show that for
all values of 12 and m considered, the convergence is very good. It is
also seen firom Fig. 14 that in the case of a fan withm = (.75 (low
by-pass ratio), the KO(X) distribution is rather flat which is expected
since for fans with a large value of m, the flow field and the vortex
strengths are more uniform across the fan wake,

An estimation of the amount of computational time involved in the

generation of the data was made. Typically, for a fan with lz = 0.5,
m = -%, and b = 2, it takes gbout 180 seconds on the Cyber 74 compu—
ter to obtain the KO(X) distribution. For a fan with 12 = 0.5, m =
%, and b = 12, it takes about 1027 seconds to obtain the KO(X) distri-
bution. For a given by-pass ratio and blade number the computer time
decreases with increasing yalues of 12. This is due to the fact that
the stipulated numerical accuracies are met with a lower number of com-

putations for fans with higher values of 12. The computational time

does not change appreciably with m.
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As was shown earlier, the KO(X) distributions for larger and
larger blade number converge to that of the infinite-bladed fan. This
becomes very important since it takes only a few seconds to generate
the data for the infinite-bladed fan., Therefore for fans with a large
number of blades, instead of.spending an inordinate amount of computer
time in generating the data, it is more economical, as well as quicker,
to approximate such fans with corresponding infinite-bladed fans.
Another test of convergence of the data with increasing blade number can
be made by considering the mass coefficient, K;. It is seen from Fig.
17 that the mass coefficient, K;, also converges rapidly to that of the
infinite-bladed fan for A2 = 0.5 and m = ‘%. This is fqund to be
true regardless of the values of 12 and m chosen in generating the data,
thus establishing the accuracy of the numerical procedures used,

In Chapter II, a detailed description of the method for obtaining
Copo Cp, s and Cr /CT in terms of the volume integrals of the velocity
distribution in thz wake was given., This method was programmed for the
digital computer and the program was used to evaluate numerically
CT, Cp, ni, etc. This program was designed to first evaluate the
velocity field in the wake from a knowledge of the vortex strength dis-
tributions. After obtaining the velocity field, the required wvolume
integrals are evaluated numerically. The values of CT, Cp and n; were
obtained for various values of load parameter, ﬁ/lz, which varies from
0.0 to 1.0, with'ﬁsz = 1 being the case where the flight speed is
zero (static case). As before, the data corresponding to a fan with no

hub was generated as a special case to serve as the test case. Figures

18 through 21 show that the agreement between Wright's(z) data and the



101

.60
U - = J—
s
“S5H—
e
52 =
Xo = 0.5, R1/R2 = 1/4
W o= 0.0
4
R - ———- Mass Coefficient
Computed Using KO(X)
and the definition
VY 6 Mass Coefficient
Computed Using
Volume Integral
40 1 | [ 1 J
] 2 4 6 8 10 12

Number of Blades, b

Figure 17. Variation Of Mass Coefficient,

Ké With Number Of Blades.



LOFFFIULENT £

THRUST

102

S0 G oo o
[LAMOAZ::0 .0

NUMBER OF HBILROES=Z

575}

~FPRESENT RESULTS

foi |
N
o

O WRICHTS RESULT‘_(Z)

o0
&

-

P
3
O

o0

]

0.
WBAR/L.AMUA

AR

FICUKRE 18.  CAOMPARISON QF WRIGHTS RESULTS FOR C
AlTH THE PRESENT VALUES

T



“p

-

COEFFIDTENT

PORER

D U j U o e e A e e e e mL . . . R AR AL A LR ML f AR T P & i — ke SRt A i+ s 8 ]
CAMDHZ= 0.5 R1/R2= 0,0
NUMBER OF BLRDES=:Z

at)

o0

G - A
G.0 g-2 4

Vo

103

=PRESENT RESULTS

@ WRIGHTS REsuLTs(?

- R e

0.6 J-8 |.C

WHAR/L AMDAZ

FICURE 19 . (OMPARLISCN OF WRIGHTS RESULTS FOR Cp

WITH THE PRESENT

VALUES



THRUST

§

U

i
I
|

166~
[

FIGURE

20 .

LAMRZ=0.75
NUMBER OF BLRUES=4

HBAR/LAMBAZ

COMPARISEN GF WRIGHTS RESULTS FOR Cr
WITH THE PRESENT VALUES

—PRESENT RESULTS

O WRICHTE RELULTS

(2)%

: e b e e
il 3.4 Q-6 -8

104

I
|
|
E
|
|
1

[
'



p

QELFILTENT

r
.

FIWER

G

P RMDGZ 20 75

GSEI_ - e e e o
t
} NUHBER GF BLADES:=A
I
|

az?2

)
m oy

—[RESENT RESULTS

O WRICHTS RESULTS

S D Lo b

G 0.6 0.8
NEAR/LAMOA2

FICURE 21 COMPARTSON GF WRIGHTS RESULTS FOR Ep

WITH THE

PRESENT VALUJES

105

(2)




106

present data is very good for both CT and Cp. The vbserved differences
are probably due to the differences in the numerical procedures,

The accuracy of the numerical evaluation of volume integrals can
be established by evaluating ,I.Uz dvol’ numerically and comparing it
with the exact value given in terms of the mass coefficient (Egq. (60)).
For AZ = 0.5, m = %; and W = 0, Fig. 17 shows that the agreement
between the mass coefficient computed using KO(X) and the value com-
puted using the volume integral of'ﬁz and Az, is excellent, In fact,
this check was made for all the data ginerated and it was found that in
every case these values agreed to within one percent.

As an additional check on the volume integrals as well as on the
convergence of the data with increasing blade number, the values of €,
gw, and €, were evaluated for various values of Az, m and blade number,
b, and compared with those of the corresponding infinite~bladed fan.
The values for the infinite-~bladed fan were obtained using the velocity
field given in Chapter III, For the case of fans with finite number of

blades, €, € and £ Were obtained using the numerical computations of

‘p!

the volume integrals. Figures 22 and 23 show that e, converges satis-

factorily to that of the infinite bladed fan for both the cases of

W/k, = 0.0 and W/A, = 1.0. 1In fact, this is true for all the values
of 12 and m considered except for the case of a fan with Az = 0.5 and
m = 0.75. 1In this particular case, due to the relatively uniform

velocity field in the wake, €, does not change appreciably with b. 1In
the case of e$ (Fig. 24), it does converge to the value corresponding to

the infinite—~bladed fan with increasing blade number. For the case of
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the fan with 12 = 0,5 andm = 0.75 as shown in Fig. 24, the value

of does not change appreciably with b, This may be due to the rela-

“y
tively uniform flow field associated with high values of m. It is also
seen here that, unlike in the case of €, the convergence is not mono-
tonic (in a few cases) with a dip in the curve at the lower values of
blade number (see Fig. 24). This may be due to the inner boundary sheet
which induces tangential velocities in the fan wake and that at lower
values of b, its effects might be more pronounced. Figure 25 shows that
€. converges to zero which 1s the value corresponding to the infinite-
bladed fan for all values of Az and m. Once again the convergence is
not monotonic for reasons that are not clear.

A third case for the check on the accuracy of the volume inte-
grals can be made by comparing the values of the power coefficient, Cp,
obtained from two different methods. In one method as was described
earlier in Chapter II, Cp was computed using CT and the induced energy
loss, e, in the wake which involves the computation of several volume
integrals. In the other case as was also described in Chapter IT, Cp
was computed using the Kutta~Joukowski theorem. As sﬁown in Fig. 26,
the agreement between the two sets of valuyes for the case of a fan with
12 = 0.5and m = 0.25, is very good. It was found that the two sets
of values of C_ obtained from the two methods agreed to within one per-
cent for most of the cases counsidered.

After establishing the accuracy of numerical volume integrations,
the values of CT’ C . CT /CT, and ni were computed for different combina-

p
tions of 32 and m. For each hz, m, and b, these quantities were computed
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for values of ﬁ/lz ranging from 0.0 to 1.0. An index to the data pre-
sented in the form of tables, is given in Table 1., Figures 27 through
34 show the variations with the blade number of CT and Cp with‘ﬁ/lz for
various combinations of Az and m. As expected, these variations con-
verge to that of the infinite-bladed fan. In the case of the fan with
12 = 0,5, andm = 0.75 (Figs. 29 and 30), it is seen that the
values of CT and CP do not change significantly with an increase in the
number of blades. As was discussed earlier, there is a significance to
the convergence seen in these figures. It not only demonstrates the
validity of the wake model and the method used but alsc makes it possi-
ble to approeximate a ducted fan with a large number of blades with that
of a corresponding infinite-bladed fan. This latter consequence is
very significant considering the large amount of computer time involved
in these calculations for finite-bladed fans, Fbr example, it takes
about 900 secs on the Cyber 74 to generate Cg, Cp, CT /Ct, ete. for
ﬁ/lz from 0.0 to 1.0 for a fan with AZ = 06,5, m = p0.25 and b = 2,
However, if the number of blades is increased from 2 to 12 keeping the
other parameters constnat, it takes about 4200 secs to generate the same
data. These computational times do not include those required for the
generation of the data for KO(X). It is to be bofne in mind that it
takes only a few seconds of computer time to generate the similar data
for an infinite-bladed fan. These observations regarding the computa-
tional time hold generally true for all values of Az and m that were

considered. Figure 35 shows the variations of induced efficiency, nys

with the load parameter,'ﬁfhz, for a fan with kz = 0.5andm = 0.25
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and for increasing blade number. It is seen that these variations do
not change significantly with b inspite of the fact that the magnitude
of the radial velocities in the wake decrease with increasing blade
number and becomes zero in the limiting case of an infinite number of
blades, This is so because with increasing of blades the thrust de-
veloped also changes and hence the effect of a decrease in €. cannot be
clearly seen in the Fig. 35, The induced efficiency of a single rotation,
optimum ducted fan, such as the one considered here is also compared with
that of an impulse disk developing the same thrust. In the latter case,
the tangential velocities are absent in the ultimate wake and the axial
velocity is uniform across the wake. As shown in Fig. 35, the induced
efficiencies of the impulse disk are higher (by about 3 teo 4%) than those
of the single-rotation fan with no stator wvanes.

The variation of C, /C, with ﬁ/mz is shown in Fig. 36, It is
seen from this figure thatpat lighter loads, most of the thrust is
developed by the fan blades and as the load parameter,‘ﬁ/kz, increases,

the proportion of the thrust developed by the fan to that of the duct

decreases,

| =

» etec,, for fans with m =

The data for KO(X), C Cp, c. /c

T T
p

and b are presented in tables at the

T,
but with different values of 12

end of the thesis.
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CHAPTER V

DUCT/FAN DESIGN

Preliminary Discussion

In the earlier chapters, the ultimate wake of optimum, high by-
pass ratio ducted fans with a fiomite as well as an infinite number of
blades was solved for the vortex strength distributions and velocity
fields. However, from a practical point of view, it is necessary to
design a duct which is compatible with the given ultimate wake. In the
following discussion, a tentative and approximate procedure is suggested
for the design of such a duct, The design is based on the assumption
that the flow is incompressible and potential. The real fluid effects

(11 can be incorporated into the

such as viscosity and compressibility
design after the preliminary design based on the potential flow,

The design of the duct involves determining its bound vortex
strength distribution as well as its mean camber surface. It 1s to be
neted that there are, in general, two types of ducts that have a wide
application. The duct can be used either to accelerate or decelerate
the flow to the fan. In accelerating ducts, such as bell mouths, the
thrust of the combination of duct and fan is increased over that of the
fan alone. In the past decelerating ducts were used in marine pro-
pellers where their main purpose was to delay cavitation. However, most

of the commercial fan engines of today have ducts which first decelerate

and then accelerate the flow. In high-speed subsonic flight where these
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engines are mostly used, the incoming air flow is decelerated to the
entrance to the fan where the fan adds energy to the flow., The flow is
then accelerated downstream of the fan, These ducted fans are driven
by coaxial core engines which are gas turbines. The wakes of the
ducted fan engines therefore consist of a hot jet exhaust surrounded
by a relatively cold fan exhaust.

The flow field in the duct of any finite-bladed ducted fan is un-~
steady. Therefore, to design the duct, it is suggested that the actual
wake system of a ducted fan with finite number of blades be replaced by
that of an equivalent (developing the same thrust) ducted fan with in-
finite number of blades. With the infinite bladed approximation, the
flow field with respect to a coordinate system fixed to the duct is
steady and is approximately equal to the time average flow of the actual
unsteady flow field, The duct design will therefore be based on the
ultimate wake of an infinite bladed ducted fan, After the duct design
is established, the fan is then designed using the wake for a finite
number of blades. The wake model and its solution for a ducted fan with
infinite number of blades is given in Chapter IIL.

The wake of an optimym, high by-pass ratio, ducted fan with in-
finite number of hlades consists of semi-infinite coaxial c¢ylindrical
vortex sheets. These cylinders of vorticity shed from the fan blades
and the duct surround the jet wake from the core engine. The fan, in
principle, can be at any axial location in the duct. Unlike commercial
fan engines, no stator blades are assumed to be present in the duct-fan

system. The effect of a tip clearance between the fan blades and the
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duct is assumed to be negligible.

The design of the duct—fan system can be based on either the
available power or the thrust developed. The latter case is considered
here. It is assumed that the flight velocity, V_,, the angular velocity
of the fan, (¢, the number of blades, b, and the core eangine character—.
istics are given. With regard to the core engine, it is assumed that
the core engine geometry (R1 and its inlet geometry, see Fig. 37), mass
flow rate, and power output are given. The by-pass ratio is also
assumed to be given. The outer radius, RZ’ of the ultimate fan wake is
then cbtained. In the following discussion, an outline of the design
of a decelerating-accelerating duct, such as those used in high by-pass
ratio commercial fan engines is given. The amount of deceleration is
assumed to be given. It is to be noted that the procedure to be de-

scribed is also applicable to accelerating ducts.

Design Qutline

(43

The procedure is similar to the one given by Gray for a

lightly loaded ducted fan with counter rotating propellers, It has
been suitably moedified to take into account the decelerating-accelerating

duct,

(i) Calculation of the Thrust coefficient, CT: Determine

it R

222
2" 72

Cp = TD/o R

where TD is the given thrust of the duct-fan system.
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(ii) Determination of the wake parameter, W: Since the duct is designed
For an equivalent infinite-bladed fan, Eq. (95) is employed to obtain

W using Cop from (1). The Modified False Position method of Ref. 10 can
be used to obtain W. Using this value of W, the vortex strengths of

the wake cylinders as well the velocity field in the ultimate wake are

determined.

(iii) Determination of the Compatible Duct: A schematic diagram of the
fan engine configuration and the vortex wake near the trailing edge of
the duct is shown in Fig. 37, The duct contour and its bound vortex
strength distribution are obtained by an iterative procedure. As shown
in Fig. 37, the fan and the inlet (LJ) of the core engine are assumed

to lie in the same plane, In the first iteration, (refer Fig. 37),

it is assumed that the constant diameter wake cylinders of the ultimate
wake extend up to the duct exit plane, AB, As shown in Fig. 37, the
annular fan wake is divided into a finite number of semi-infinite cylin-
drical sheets, Between the fan and the duct exit plane, the wake fila-
ments contract depending on the shape of the duct aft of the fan. It

is assumed that the nondimensional local radii of these wake filaments
(based on the outer radius) remain the same as the filaments move through
the duct. The vortex strengths of these filaments are determined by the
sheet strengths of the vortex cylinders at AB using the principle of
conservation of circulation, These wake vortex sheets between the fan
and the duct exit plane are replaced by a set of equivalent vortex rings
for the purpose of the design.

For design purposes, the effect of the center body is takeun into
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account by a suitable singularity distribution along the axis of the
engine, The strengths of the singularities are determined by the shape
of the center body, The flow through the core engine will also have an
effect on the design of the duct and is taken into account by a sink
distribution on the annulus, LJ (see Fig. 37). Thus the various sin-
gularities ahead of the duct exit plane are identified.
Step I

It is assumed that the amount of deceleration of the flow to the
fan is given. Based on a one dimensional theory, the radius of the duct
in the fan plane is determined from the given amount of daceleration using
the continuity theorem. The radius of the duct at the trailing edge,
RZ’ is known, Between points A and G (see Fig. 37), a smooth contour
is drawn and is used as the initial contour of the duct. The inlet
portion (GP) of the duct is chosen such that there is a smooth entry of
flow at its leading edge. However, in the first iteration its shape is
not known. As can be seen later, its shape (GOP} is fixed by the bound
vortex strengths near the leading edge. For the first iteratiom, a
smooth contour (GOP) as shown in Fig. 37 is chosen. Having assumed the
duct contour (AGP), a bound vortex strength distribution which is com-
patible with the conteour, AGP, and satisfies the required mass flow con-
dition at the duct exit plane, AB, is determined.

In the first iteration, Ehe semi-infinite constant diameter, fan

wake cylinders extending downstream from the duct exit plane give rise
1
2

z = o0 represents the duct exit plane and hence in order to conserve

to an axial velocity distribution such that Uz(o, ry = UZ(W,r) where
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the mass the other half of the axial velocities must be supplied by the
various singularities ahead of the duct exit plane., This mass con~
servation is satisfied by requiring that (?A - ?B) = ‘% (volume flow

in the ultimate fan wake), where ?A and TB are the total stream functioens
due to all the singularities including the duct bound vertex strengths
ahead of the duct exit plane at A and B respectively.

For the purposes of the design, the duct contour (AGP) 1s
divided into a finite number of strips. The unknown bound vorticity
distribution of the duct is replaced by a set of ring vortex filaments
of unknown strength which are placed at the midpoints of the segments
that the ring filaments replace. A set of control points is chosen
such that their number is one less than that of the unknown vortex rings.
Control points are located between adjacent vortex filaments (except A
and R},

In the first iteration, the effects of center body and the core
engine on the duct desigﬁ are neglected. Using the Biot-Savart law, the

strengths of the bound ring vortex filaments are determined such that,

at the control points,

(dr/fdz) = UrI(Vw + Uz)

and the mass flow condition at the exit is satisfied. Thus, the con-
tour and the bound vortex strengths of the duct are obtained in the

first iteration.
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Step 11

For the duct to be compatible with the assumed wake model aft of
its trailing edge, the radial induced velocities at the wake boundary
near the trailing edge of the duct must be zero. If the axial induced
valocities just outside the wake boundary near the trailing edge of the
duct are different from zero, the vortex sheet strength of the outer
boundary will be different from that in the ultimate wake., Therefore,
the radial and the axial induced velocity components are computed at
several points, X, U, T, S (see Fig. 37), just outside of the wake
boundary. These velocities must be zero for a compartible duct. How—
ever, these radial and axial induced velocities will be small but not
zero. Therefore, the wake must contract (or expand} for a short dis-
tance (about one duct exit diameter) dowmstream from the duct trailing
edge. The effects of this small contraction (or expansion) can be
approximated however, This contraction (or expansion) is evaluated
using the computed radial induced wvelocities at the points, X, U, and
T.

In the second iteration and starting from the point, §, which
is about cne diameter away from the duct trailing edge, (the actual
distance being selected such that the induced velocities just outside
the wake boundary are negligibly small in comparison with the wake
velocities), a new wake contour, SC, and duct contour, CIDYP, are
chosen to take inte account the contraction computed earlier., It is
also to be noted that the pressure should be continuous across the

contour, SC. This necessitates an adjustment to the strength of the
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vortex sheet, SC, which is determined by the axial induced velocities
computed earlier. Depending on the shape of SC, the geometry of the
inner wake vortex cylinders also change and must be taken into account.
Step 111

Using the new duct contour, CDYP, the bound vortex strengths
are determined in exactly the same way as was done in step I taking in-
to account the slight contraction or expansion of the wake near the
duct trailing edge. The mass flow condition, in this second iteration,
is satisfied in the plane, SE, After fiunding the new set of bound vor-
tex strengths, the test for compatibility is made as outlined in step
TI. Steps IT and 111 are repeated until the computed geometry of the
wake near the trailing edge of the duct does not change between two
successive iterations, The duct so determined will have a slightly con-
tracting (or expanding} wake and the vortex sheet strength distribu-
tions in this portion of the wake are different from those in the ulti-
mate wake. Thus, a compatible duct with constant diameter wake cylin-
ders extending downstream from its exit plane will never occur.

After obtaining the approximately compatible duct, the inlet,
0P, of the duct is adjusted either by increasing or decreasing the
leading edge radius to give a new contour, OR or 0Q respectively, so
that the strength of the leading edge vortex ring is small compared with
the other rings and that its circulatory field is such that it de-
celerates the oncoming flow. This ensures an approximately smooth
entry of flow at the leading edge. The effects of the core engine and
center body can now be incorporated into the design by an iterative pro-

cedure. However, these will slightly change the duct contour and the
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wake shape near the trailing edge of the duct. The final duct contour
and the wake geometry are obtained using an iterative precedure,

As an example of the procedure, an approximately compatible,
low-speed duct mean camber surface design was attempted and the result
at the end of the first iteration is shown in Fig. 37 as PYC. It was
found that the contraction is small (approximately 5%) and the radial
induced velocities just outside the wake boundary at a distance of one
diameter from the trailing edge of the duct are small {(within 1% of

the wake velocities}.

(iv) Duct Thickness Distributien: A surface of finite thickness wrapped
around the duct mean camber surface may slightly change the wake shape
near the trailing edge of the duct. However, for a thin duct the
effect will be negligible. The following procedure, originally due to
Gray(4) is used to find the thickness distribution.

(a) Construct a reasonable imner contour using elements of
existing airfoil sections being careful to match slopes and radii of
curvature where different sections are joined.

{b) Equidistant on either side of and very close to the duct
mean camber surface determined in iii, place a doublet ring, The lo-
cation of the doublet must be well within the thickness distribution,
Using the stream function data of doublet rings, determine the strength
of the doublet which will locally, that is, in the plane of the doublet
ring move the streamline through the trailing edge radially inward to

the assumed contour. This invelves the computation of the stream
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function due to all the singularities including those of the wake at
the surface point.

(c) A corresponding outer point may be determined in the plane
of the doublet ring by adding the stream function due to the doublet
ring.to the values of the stream function outside of the mean camber
surface. The required point is obtained where the total stream
function is equal to that at the trailing edge. The outer conﬁour is
determined by connecting a few such points by a smooth curve. This is
an approximate method and does not furnish the solution for the pres-—

sure distribution on the duct.

{v) Fan design: Once the duct is designed, the equivalent infinite-
bladed fan need not be used., In fact, the fan is designed for the
specified number of blades., The wake of the finite-bladed fan, as was
described in Chapter II, is completely determined since W is known.
Therefore this wake along with the duct designed earlier, is used in
the design of the fan blades. In principle, since the strengths of
all the singularity distributions in the wake as well as in the duct and
the engine are known, the induced velocity distribution at the fan
blades can be obtained, The required bound vorticity distribution of
the blades is known from the wake analysis of Chapter II. From the
wake analysis, the bound vorticity distribution I''(X) is obtained from

the corresponding K(X) distribution according to the definition,

2V + W

r'(x) = ——-——fﬁ-—-—— K(X).
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From the Kutta-Joukowski theorem,

L'(X) = p_ VI'(X) = -% pVZC CQ,
where L'(X) = 1local 1ift per unit span,
C. = 1local section 1lift coefficient,
C = 1local blade chord,
and vV = 1local total wvelocity.

From the above two formulae, it can be shown that

WV + WK(X)
[ ar Vv

where ¢ = be/2llr - local solidity.
If the local lift coefficient distribution is specifled, the chord dis-
tribution can be obtained from the last equation.

The design of the fan as well as that of the duct presented here
was very much simplified and as such involved several assumptions. How-
ever the procedure detailed here is certainly helpful in the preliminary
design which can be used as a first step in the complicated design of
fan engines.

In practice the ducts of the fan engines are designed using semi-
empirical procedures. The real fluid effects such as viscosity and com-
pressibility are taken into acocunt. However, the design procedure out—

lined here provides a basis for incorporating the real fluid effects.
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It also gives a preliminary estimate of the duct contour and the bound
vortex strength distribution of the duct if the compressibility effects

are not large,
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CHAPTER VI
CONCLUDING REMARKS

A few conclusions are made based on the analysis of the ultimate
wake of a single-rotation ducted fan with finite as well as infinite

number of blades. Some of these are,

(i) 1In order that the jet wake be compatible with the ultimate fan wake,
it has to satisfy certain conditions at its interface with the helical
vortex system of the fan wake. The jet wake should provide a certain
combination of induced velocity components, Vj and Uw., at its inter-
face with the fan wake, However, there are several sich combinations

of Vj and Uw » Wwhich satisfy the necessary compatibility relationships.
J

(ii) Design criteria for the single-rotation high by-pass ratio ducted
fan with the highest possible induced efficiency for the assumed non-
contracting ultimate wake were obtained numerically. In the case of the
ducted fan with infinite number of blades, the design criteria were
obtained analytically. The accuracy of the numerical procedures used

in determining the vortex strength diatribufion, the thrust and the in-
duced power for a fan with finite number of blades, is supported by

the rapid convergence of this data to that of the infinite number of
blades. This convergence also makes the approximation of a finite

bladed fan with a large number of blades by an equivalent infinite



139

bladed fan valid. The distinct advantage in making such an approxi-
mation is the considerable saving in the computational time associated
with the generation of the data of a finite bladed fam with a large
number of blades. This can be very helpful in the design of a compati-

ble duct.

(iii) The assumed ultimate fan wake gives rise to the highest possi-
ble induced efficiency for a single-rotation ducted fan, It should be
noted that a fan-stator combination will have a higher induced effi-
ciency than a single-rotation fan developing the same thrust, since the
tangential wake velocities in the former case will be much smaller.
However, the row of stator blades increases the weight, profile drag,
and cost of the ducted fan. The saving in weight, profile drag, and
cost of a single-rotation ducted fan without any stator blades may
prove to be more desirable from a complete cost-benefit analysis view-
point. However, a thorough investigation has to be made regarding the
comparative advantages of these two types of ducted fans before reaching

any conclusions.

(iv) The design procedure suggested is based on the potential, incom~
pressible wake model and therefore furnishes a preliminary estimate of
the compatible duct. Real fluid effects such as compressibility and

viscosity as well as the effects of a finite blade-tip clearance are to

be taken into account for a comprehensive design of the duct-fan system,



140

(v) The analysis presented is valid for the static case as well as
for flight speeds at which the induced velocities are small enough to

neglect compressibility effects,
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