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To Jeannette 

"The best thing for being sad, " replied Merlyn, begin­
ning to puff and blow, "is to learn something. That 
is the only thing that never fails. You may grow old 
and trembling in your anatomies, you may lie awake at 
night listening to the disorder of your veins, you may 
miss your only love, you may see the world about you 
devastated by evil lunatics, or know your honour 
trampled in the sewers of baser minds. There is only 
one thing for i t then—to learn," 

— T . H. White 
The Once and Future King 
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INTRODUCTION 

The theory of splines and its application to technological prob­

lems has rapidly grown in recent years, and yet it was only last summer 

that the first book on the subject appeared. See [3]. The purpose of 

this thesis is to provide an elementary development of spline theory in 

such a way that the theorems and methods of proof can be easily general­

ized to the more general versions of splines. This program is carried 

out in the second chapter. 

We carry out this program by the introduction of splines with 

multiple knots. This approach has the advantage that the splines used 

are general enough to cover most of the numerical applications, and 

simple enough so that the reader will not be lost in the mass of details 

that enters in the study of "generalized splines." The approximation 

properties of splines are stated and proved, as well as the first and 

second integral relations for splines. Convergence results for low 

order derivatives are presented and proved, but convergence results for 

high order derivatives are only indicated since their proof is cumber­

some and does not add to the understanding of the general theory. How­

ever, all the machinery necessary for their proof is developed, and the 

interested reader is given appropriate references. 

What then is the purpose of Chapter I? The first chapter gives 

the most primitive version of splines with simple knots, and starts to 

develop the theory through the use of B-splines. Although this approach 

is somewhat lengthy in comparison to that of the second chapter, it has 
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the advantage of introducing the B-splines, which are important in the 

study of variation diminishing approximation methods (see [16] and [23]). 

The subsequent introduction of "natural splines" eases the way for the 

definition of the splines with multiple knots so that it will not appear 

to be "pulled out of the air." 

In the third chapter we indicate some of the directions in which 

splines have been generalized: monosplines, G-splines, and generalized 

splines. The discussion of monosplines is particularly brief, since we 

only give definitions, state the main results, and make some appropriate 

comments. The sections on G-splines and generalized splines are more 

lengthy, and we indicate how these are the natural extensions of splines 

with multiple knots. The section on G-splines is complete in the sense 

that the theorems and proofs stated are analogous to those found in the 

second chapter, and the reader should have no problems in providing the 

details. In all cases we give references to where further results can 

be found. 

In the last chapter we derive the relationship between the 

approximation of linear functionals in the sense of Sard [18] and spline 

theory. The equations that define a cubic spline are then derived and 

used to improve upon the convergence results of the second chapter. We 

close the thesis with some numerical examples to show that the theo­

retical results are substantiated by computational experience. 
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CHAPTER I 

SPLINES WITH SIMPLE KNOTS 

A. Motivation and Definition 

Polynomial interpolation to a function is, in many cases, not 

desirable. For one thing, as the number of interpolation points in­

creases without bounds, the resulting polynomials do not necessarily 

converge to the function. Worse yet, the derivatives of the interpo­

lating polynomial are, in general, unrelated to the derivatives of the 

function. Splines were introduced as an effort to improve upon these 

results. 

In this study, splines are used to generalize and improve in­

creasingly complex interpolation problems. The first problem that we 

consider will be called the Lagrange interpolation problem since the 

main formula is attributed to Lagrange. A description of the problem 

follows. 

Suppose f(x) is defined at the n+1 distinct points x^,x , , , * , x n 

where 

The Lagrange interpolation problem then consists of finding a polynomial 

of lowest degree that interpolates f at these points. The solution to 

this problem is unique, and consists of a polynomial of degree at most n. 
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If we try to interpolate f with a polynomial of degree less than 

n, we find that this, in general, is impossible. (See Theorem A.l in 

the Appendix.) We might, therefore, want to consider the following 

problem: Given an integer k, l < k < n + l , find a function s(x) such 

that 

a) s(x i) = f(x^), 0 < i < n 

and 

b) / n [s k\x)]^dx is a minimum. 
x o 

Loosely speaking, we are trying to find a function that a) interpolates 

f at the desired points, and b) resembles a polynomial of degree k-1. 

Let us then introduce the solution to this problem. 
OO 

Let { X j } ^ t ie a sequence of points such that 

• » • < X < x < x < x < • • • 
-2 -1 0 1 

and with no limit points. 

Definition 1.1 Let k be a given non-negative integer. A real function 

f(x) is called a spline of degree k > 0, and denoted by s ^ ( x ) if> a n < 3 

only if, 

a) f(x) is a polynomial of degree at most k on each subinterval 

(x . ,x . ), and 
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b ) f ( x ) h a s k-1 c o n t i n u o u s d e r i v a t i v e s f o r a l l x , i . e . 

f e C ^ C - - , - ) . 

A r e a l f u n c t i o n f ( x ) i s c a l l e d a s p l i n e o f d e g r e e k = 0 i f , and o n l y i f , 

f ( x ) i s a s t e p f u n c t i o n w i t h p o s s i b l e d i s c o n t i n u i t i e s a t t h e p o i n t s x_. . 

In s u b s e q u e n t w o r k , a s p l i n e o f d e g r e e k w i l l b e r e f e r r e d t o a s a 

k - s p l i n e , w h i l e t h e p o i n t s x^ w i l l b e c a l l e d t h e " k n o t s " o r " j o i n t s " o f 

t h e k - s p l i n e . I f we a r e t r y i n g t o i n t e r p o l a t e a f u n c t i o n and o n e o r 

more o f i t s d e r i v a t i v e s a t a p a r t i c u l a r k n o t , t h i s k n o t i s t e r m e d m u l ­

t i p l e ; i f we a r e o n l y t r y i n g t o i n t e r p o l a t e t h e f u n c t i o n , t h e k n o t w i l l 

b e s a i d t o b e s i m p l e . 

The k - s p l i n e s e x h i b i t a r e m a r k a b l e number o f p r o p e r t i e s . Among 

them we h a v e 

S ] <

V J ' ( x ) = s ] < _ j ( x ) , 0 < j < k , 

and 

/ s k ( x ) d x = s k + 1 ( x ) . 

I f s £ C ( - 0 0 , 0 0 ) , t h e n s, ( x ) i s a p o l y n o m i a l o f d e g r e e a t m o s t k 
k k 

( k ) 
s i n c e i n t h i s c a s e s , ( x ) = c o n s t a n t . 

k 

The k - s p l i n e s a l s o form a n i n f i n i t e d i m e n s i o n a l l i n e a r s p a c e . To 

p r o v e t h i s , l e t u s e x h i b i t a b a s i s . We n e e d t h e f o l l o w i n g d e f i n i t i o n s . 



Definition 1.2 Let k be a non-negative integer. The truncated power 
k 

function x + is defined as 

k 

k 

Note that x + is a k-spline with a knot at the origin. We are 

thus justified in making the following definition. 

if x > 0 

if x < 0 

Definition 1.3 A B-spline with knots at x . , •••,x . ,, n is a k-spline r D 3+k+l 
defined by 

j+k+1 (x.-x) 
B k j ( x ) - I 

i=j w (x.) 

where w(x) = (x-x.) ••• (x-x. . ). 

Note that this is just the (k+l)-st divided difference of the 

function g(y) = (y-x), based on the points x . , •* *,x. . ... Since ° J + r 1 3+k+l 
g(y) = (y-x) for y > x, and g(y) = 0 for y < x, we have that B .(x) = 0 

k] 
for x < x. and B. . (x) = 0 for x > x. , , . Other interesting properties ] k] ]+k+l 

of the B-splines can be found in [7]. We will just limit ourselves to 

sketching a few B-splines, and to proving that they form a base for the 

k-splines. 
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Figure 1. The First Three B-Splines 

We will need several lemmas to prove that the B-splines form a 

base. The first lemma establishes the minimum "span" of a k-spline, 

where span means the number of consecutive subintervals on which a spline 

is not identically zero. 

Lemma 1.1 Let I be an integer, 0 < I < k. If s^(x) = 0 everywhere out­
side of (x ,x„), then s, (x) = 0 for all x. 

o I k 

(k) 
Proof: Since s (x) is a step function, we can write 

s [ k ) ( x ) = I a.(x.-x)° ( 1 . 1 ) 
k j=o 1 1 + 

so that 
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I a. k 

S K ( K ) = Jn KF ( X J " X )

+

 + V L ( X ) 

3=0 J 

where p, ,(x) is a polynomial of degree k-1. But s, (x) = 0 for x > x 
K—J. K Jt 

so that p. _(x) = 0: and since s. (x) = 0 for x < x , rk-l k o 

I a.(x.-x) K = 0 
j = 0 3 3 

for all x. 

We want to show that a_. = 0, j = 0 , A s s u m e that I = k, 

then repeated differentiation of (1.1) and setting x = 0, we obtain the 

(k+1) linear equations in the unknowns a.. 

k 
y a.x. = 0 0 < i < k 

j=o 3 3 - " 

whose coefficient matrix has a Vandermonde determinant, and hence non-

singular. Thus, a^ = 0, j = 0,*'*,£ if £ = k. But a glance at (1.1) 

reveals that this will still be the case if 0 < Z < k. This concludes 

the proof since we have already shown that p^ ^(x) = 0. 

Lemma 1•2 If s,(x) is a spline that vanishes for x < x , then it can 
— — — — — — X (J 

be uniquely represented as 



(k) 
Proof: Since (x) is a step function, we can set 

a. = s. (x), x. , < x < x. . 1 k l-l 1 

Similarly, we can set 

(k) b. . = B. . (x), x. < x < x., i] kj l-l 1 

and we want to show that the system 

a. = I b. .c. (i > 1) 
1 j = 0 ^ 1 

can be solved uniquely for the c . To see this, note that b.. = 0 if 
J 1 13 

j > i so that 

i-1 
a. = I b..c. (i > 1) 

1 j = 0 ^ ^ 

can be solved recursively for the c. since b. . . i 0. With the c. so 
J 1 isi-1 1 

determined, consider 

g(x) = s (x) - I c B (x). 
k j=o : k : 

(k) (k-1) Then g (x) = 0 for all x ? x^, and thus g (x) is a step function 

with possible jumps at the knots. However, g e C (-03,00) s o g^ k "^(x) 

constant and hence g is a polynomial of degree at most k-1. But g(x) 

for x < XQ so g(x) E 0 as desired. 
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Lemma 1.3 The B-splines 

k,0 

are linearly independent on (XQ,X^), and therefore form a base for the 

polynomials in (X Q , X ^ ) . 

Proof: Assume that s, (x) = 0 in (x ,x ) , where 
—— K 0 JL 

(x) = I c, B, . ( x ) , 
j=-k 3 kj 

and consider the function 

g(x) = 

s k(x) X < X Q , 

x > x 0 . 

Then g(x) is a k-spline which by Lemma 1.1 vanishes everywhere. In 

particular, s, (x) = 0 for x < x so that by the uniqueness in Lemma 1.2, 
K U 

C j = 0, j = - k , • * ' , 0, as desired. 

We can now prove 

Theorem 1.1 Every k-spline with knots {x_.} ̂  can be uniquely represented 

as 
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sk(.x) = I C j B k j ( x ) 5 (1.2) 

where the c.. are appropriate constants. Conversely, (1.2) is a k-spline. 

Proof: That (1.2) is a k-spline is clear. Suppose now that s k is an 

arbitrary k-spline. Then s
k ( x ) is a polynomial in ( x Q , x 1 ) , so that by 

Lemma 1.3 it can be uniquely represented in (x^x^) by 

0 
s k ( x ) = .\_k

 c j B k j ( x ) ' x o < x < V 

Thus, 

* ? 
s k(x) = s k(x) - I c. B (x) (1.3) 

j =-k ^ -1 

is a k-spline that vanishes in (X Q , X ^ ) , so we can write 

s, (x) = s,.(x) + s, _(x) (1.4) k kO kl 

where s, rt(x) and s, n(x) are k-splines vanishing for x < x„ and x > x n , kO kl 0 1 
respectively. By Lemma 1.2, they can be uniquely represented by 

s, _(x) = J c. B. .(x) 
ko ^ : k: 

and 
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-k-1 
s ^ < x) = I c . B. . (x). kl . L 1 ki 

Placing these last results together with (1.3) and (1.4), we obtain 

(1.2). 

B. Natural Splines 

We are now in a position to begin solving the problem stated at 

the beginning of this chapter by the introduction of "natural splines." 

The term "natural" refers to splines that reduce to a polynomial out­

side a compact interval. 

Let x ^ j ' ^ ' j X be n + 1 distinct points in an interval [a,b] such O n r 

that 

a < x r t < x, < • • * < x < b . " 0 1 n ~ 

Now choose arbitrary but fixed reals x.. for j > n, and j < 0 so 

as to obtain a sequence of knots. 

Definition l.M- Let k be a positive integer. A natural spline of degree 

2k-l is a 2k-l spline with {x..} for knots, which reduces to a polynomial 

of degree at most k-1 outside of [ x ^ j X ^ ] . The space of all natural 

splines of degree 2k-l will be denoted by S , , and its elements by 
2.K—_L 

s(x); the subscript being understood. 

If we are given a function f defined at x^9'*'9x 9 then as 

already noted there is a unique interpolating polynomial p (x) of degree 
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at most n. Note that S_. . will contain p (x) i f k = n + 1, and if 
2k-l n 

k > n + 1 S contains an infinite variety of interpolating poly-

nomials. Let us then assume that 

1 < k < n + 1. (1.5) 

Theorem 1.2 Let f e C [a,b]. Then there is a unique natural spline in 

^2k-l' s ^ x ^ > such that 

s(x. ) = f (x. ), 0 < j < n. (1.6) 

Moreover, s(x) is also characterized up to an additive polynomial 

p^ ^(x) by the condition that 

Jb [ s ( k ) ( x ) - f ( k ) ( x ) ] 2 d x (1.7) 
a 

is a minimum. 

Proof: Let us try to find a (k-l)-spline s, (x) with x., 0 < j < n, for 
k 1 i 

knots, vanishing outside of [x.,x ] , such that 
O n 

/ [ s k - 1 ( x ) - f ( k ) ( x ) ] 2 d x (1.8) 

is a minimum. 
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By Theorem 1.1 we can write 

V i 0 0 = % ° j B k - i , j ( x ) ; 

using this representation and taking partial derivatives with respect to 

the c ., we obtain 
3 

b n-k , . 
Jll c. B, .(x) - r K ;(x)]B, . .(x)dx = 0 (1.9) 
a j=o 3 K ' l i 3 

for i = 0,•••,n-k. 

The determinant of this system of linear equations in the unknowns 

c. is the Gramian of the functions B, , .(x). Since they are linearly 3 k-1,3 y J 

independent on [a,b], the Gramian does not vanish, and the above system 

* 
will have a unique solution s, (x). If we integrate this solution k 

k—J-

times, we obtain a natural spline s(x) which contains an arbitrary poly­

nomial p ,(x) of degree k-1. We will now show that s(x) is uniquely 

K — X 

determined and satisfies (1.6) and (1.7). 
(k) * 

That s(x) satisfies (1.7) is trivial since s (x) = s k_^(x) is 

the solution of the problem (1.8). 

To show that it satisfies (1.6), define g(x) = s(x) - f(x). (1.10) 

Then 

g ( k ) ( x ) = s ^ t x ) - f ( k ) ( x ) 
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rh (k) j B .(x) g v \x) dx = 0, 0 < i < n - k 
K —J . «1 a 

Corollary A.l in the Appendix now guarantees that 

g[x i,* * ' , x i + k ] = 0 0 < i < n - k 

so that Theorem A.l in the Appendix applies, and we conclude that g can 

be interpolated at x Q,•••,x by a unique polynomial of degree k-1. A 

glance at (1.10) then reveals that the arbitrary polynomial in s(x) is 

actually uniquely determined, and that 

s(x^) = f(x^), 0 < i < n, 

as desired. 

We are now ready to present the solution to our problem 

Theorem 1.3 Given n + 1 points in the plane, (x_.,y_.), 0 < j < n, with 

x 0 < x n < • * 1 < X 
0 1 n 

and an integer k", 1 < k < n + 1, choose an interval [a,b] containing all 

x_. and suppose that s(x) is the unique natural spline in S^ k_^ such that 

s(x .) = y. 0 < i < n l ; i ~ 



If f e C [a 5b] is such that 

f (x . ) = y. 0 < i < n 
1 J 1 - -

then 

14 

f b r-ctk), .-.2, r b r < k ) / m 2 j / [f ' ( x ) ] dx > / [s ' ( x ) ] dx 
a a 

(1.11) 

with equality if, and only if, f(x) = s(x) on [a,b]. 

Proof: (1.11) follows if we prove that 

J [ f k J W ( x ) ] * d x = / [f k K ;(x) - s ( k )(x)] 2dx + / [s^GOT^dx . (1.12) 
a a a 

To prove (1.12) note that the difference between the left-hand side and 

the right-hand side is 

2 ^ s ( k )(x)[f ( k )(x) - s ( k )(x)]dx. 
a 

Repeated integration by parts transforms the above integral into 

k-1 r , . (k+j-1), . r (k-j), \ (k-j), m 2, (-1) s (x)[f (x) - s (x)] 
j=l 

(1.13) 

(-l) k _ 1 / s ( 2 k " 1 ) / - ^ r ' ( 1 ) (1). ( x ) [ f v x ' ( x ) - s v^(x)]dx. 
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The sum vanishes since s J (x) = 0 on [a,x_] and [x ,b] for 
0 n 

j = lj'^'jk-l. The integral vanishes since s 2 k ^ (x) vanishes on 

[a,x„) and (x ,b] , is constant on (x, , ,x. ) i = l,**',n, and s(x.) = u n 1-1 I I 

f(x i) for i = 0,1,---,n. Thus, (1.12) holds. From (1.12) we see 

that equality holds in (1.11) if, and only if, f(x) = s(x) + p^_^(x). 

But s(x.) = f(x.), 0 < j < n, so p (x) is a polynomial of degree at 
3 3 ~ k-l 

most k - 1 < n with n + 1 zeros. Hence, p^ ^(x) = 0, and the proof is 

complete. 

At this moment we have enough machinery to prove a number of 

important results. However, they would only be special cases of the­

orems proved in the next chapter by more powerful methods. We thus 

refer the reader to the next chapter. 
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CHAPTER II 

SPLINES WITH MULTIPLE KNOTS 

A. Motivation and Definition 

In the first chapter we considered a generalization of the 

Lagrange interpolation problem, and we found that the solution to this 

problem was a natural spline with simple knots. 

Let us now consider the problem of Hermite interpolation. To 

this end, suppose we are given n + 1 distinct points, x ,••• ,x such 

that 

a = x n < x < , , , < x = b (2.1) 0 1 n 

k 

and suppose f e C [a,b]. The Hermite interpolation problem then con­

sists of finding a polynomial p(x) of lowest degree such that 

p ( j ) ( x . ) = f ( j ) ( x . ) , j = 0,"',111.-1 

for i = 0,l, # , ,,n and for 1 < m. < k. 
I 

This problem is known [8] to have a unique solution in a poly­

nomial of degree less than 

n 
I m . . 

i=0 1 
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What we now want to do is to generalize natural splines so that 

Theorem 1.3 holds, and have these splines interpolate f ( x ) . By interpo­

late we mean 

Definition 2.1 Let f £ C [a,b]. A function g ( x ) is said to interpolate 

f (x) if 

g ( j ) ( x . ) = f ( j ) ( x . ) , j = O,!,-"^.-!, 

for each i, 0 < i < n, where 1 < m. < k. 
_ I -

Note that if ITK = 1 for all i, then g (x ) would interpolate f (x ) 

in the sense of the Lagrange interpolation problem. 

To see how to generalize natural splines, note that if Theorem 

1.3 is to hold, then (1.13) must vanish, so that Theorem 1.3 would still 

hold if natural splines had been defined as real valued functions s (x) 

such that 

a) s (x) is a polynomial of degree at most 2k-l in each interval 

( x . , x . + 1 ) , 

b) s c C 2 k 2 (-00 , 0 0 ), and 

c) s ( k + j _ 1 ) ( a ) = s ( k + j _ 1 ) ( b ) = 0 for j = l,2,"-,k-l. 

The correct generalization of natural splines to take into 

account the Hermite problem is then 

Definition 2.2 Let m. and k be given integers with 1 < m. < k for 

i = 0,**',n and suppose we have n + 1 distinct points such that (2.1) 

holds. A real function s (x) is called a spline of degree 2k-1 with 
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multiplicity m. at X . ( l < i < n - l ) i f 1 1 

a) s(X) is a polynomial of degree at most 2k-l in each interval 

( X . , X . + 1 ) , 

b) s e C k " 1 [ a , b ] , 

c) s^ k +^ ~*"\X.) = 0 for j = l,"*',k-ni. and i = o,n, 
l J I 

j \ n (2k-mi~l) . j= • -, n 

d) s e C 1 at x. for l = l,«-*,n-l. 

Several remarks are in order. First, note that natural splines satisfy 

the definition when nu = 1 for all i, but since the splines of this defi­

nition are not defined outside of [a,b], they are not natural splines. 

Second, condition b) is just for ease of reference since it is implied 

by the other three. Finally, if either m = k or m = k, then condition J J o n 
c) is to be regarded as vacuous. 

B . E X I S T E N C E , U N I Q U E N E S S , A N D M I N I M A L P R O P E R T I E S 

L E T U S A S S U M E F O R T H E M O M E N T T H E E X I S T E N C E O F I N T E R P O L A T I N G S P L I N E S 

A N D S H O W T H A T I T I M P L I E S T H E I R U N I Q U E N E S S . T H I S R E Q U I R E S S E V E R A L L E M M A S ; 

T H E F I R S T O N E I S U S U A L L Y C A L L E D T H E F I R S T I N T E G R A L R E L A T I O N F OR S P L I N E S . 

LEMMA 2.1 S U P P O S E S ( X ) I N T E R P O L A T E S F ( X ) . T H E N 

A F ( K ) ( X ) ] 2 D X = A F ( K ) ( X ) - S ( K ) ( X ) ] 2 D X + / B [ S ( K ) ( X ) ] 2 D X (2.2) 

P R O O F : T H E D I F F E R E N C E B E T W E E N T H E R I G H T A N D L E F T - H A N D S I D E O F (2.2) 

I S 
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2 / s ( k )(x)[f ( k )(x) - s ( k )(x)]dx (2.3) 

which can be written as 

2 j J*1 s ( k )(x)[f ( k )(x) - s ( k )(x)]dx (2.4) 
i=l x i-1 

We evaluate each of the integrals by repeated integration by parts; we 

obtain 

I ( - D ^ V ^ - ^ x ^ - ^ x ) 
j=l 

- s ( k" j )(x)] 
xi-l 

We now show that (2.4) vanishes. Let m = m i n ( n K ) . Then 

r ( (k+j-1), * r 4 =(k-j), . (k-j), 
I {-ir s (x)[f J (x) - s (x)J 

j=k-m+l 
(2.5) 

Xi-1 

(k-i ) (k-i) vanishes since f (x.) = s (x.) for i = k-m+l-'-'-k and I I J 

i = 0,''*,n. If m = k we are through; otherwise we can write 

n k-m 
I l ( - l ) 3 + 1 s < k + ^ 1 ) ( x ) [ f ( k - j ) ( x ) - s ( k" j )(x)] 

i=l j=l xi-l 

as 

k-m r , j + 1 k+j-L Nr^r^k-j)/ \ (k-j), v n I (-1) J s J (x)[f J (x) - s (x)J (2.6) 
j=l 
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since, if s^k+-^ "^(x) is not continuous at x., then f^ k ^ ( x . ) = 
1 1 

s ( k " : 5 ) ( x i ) . But (2.6) vanishes since s ( k + j _ 1 ) ( a ) = s ( k + j ' 1 ) ( b ) = 0 for 

j > 1. Retracing our steps, we see that every integral in (2.4) van­

ishes and thus (2.3) also vanishes. This concludes the proof. 

Lemma 2.2 If s^(x) and s^(x) are two splines that interpolate f(x) 

then 

s 2(x) - s 1(x) = P k _ 1 ( x ) on [a,b] 

Proof: Note that s^(x) - s^(x) interpolates s^(x) - f(x) so that Lemma 

2.1 yields 

rh

 r (k), . .(k), .-.2, r
b
 r (k), , _(k) r ,-,2, J [ s 2 (x) - f (x)] dx = J [s (x) - f (x)] dx 

a a 

+ / [ s 2
( k ) ( x ) - S l

( k ) ( x ) ] 2 d x . 

Moreover, the above equation is also valid if we interchange the sub­

scripts; but this means that 

J [s (x) - s (x)] dx = 0. 2 a 
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(k) (k) 
Therefore, (x) - (x) = 0 except at the knots. However, 

k-1 (k) (k) s_̂  e C [a,b] for i = 1,2 so s^ (x) - s (x) E 0 and the theorem 

follows. 

Theorem 2.1 (Uniqueness) There is at most one spline that interpo­

lates f(x) provided k < n + 1. 

Proof: If s^(x), s 2(x) are two splines that interpolate f(x) then by 

Lemma 2.2 

s 2(x) - s 1(x) = p^_ 1(x) on [a,b] 

But s (x), s (x) interpolate f(x) so p ,(x) is a polynomial of degree 
-L K — J . 

at most k - 1 < n with the n + 1 zeroes x , • • • ,x . Hence, p. n(x) = 0 
o n k-1 

as desired. 

Theorem 2.2 (Existence) There is exactly one spline that interpolates 

f(x) provided k < n + 1. 

Proof: Since every spline s(x) is uniquely defined by n polynomials 

of degree at most 2k-l, the problem of specifying s(x) is linear, and 

has 2nk unknowns. Let us count the number of equations: condition c) 

of Definition 2.2 gives 2k - m - m equations, while condition d) 

° o n ^ 
provides at each interior knot 2k - ITK equations for a total of 
n-1 
£ 2k - m.; the requirement that s(x) interpolate f(x) provides an 

i=l 1 
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n 
additional £ m. equations, so there are 2nk equations. Since the 

i = 0 1 

number of equations equals the number of unknowns, it suffices to show 

that s(x) interpolates f(x) = 0 if, and only if, s(x) = 0. But this is 

clear from Theorem 2.1 since the zero function is a spline. The proof 

is therefore complete. 

Now that we have proved the existence and uniqueness of splines 

that interpolate f(x), the minimal properties follow immediately. The 

first minimum property is the analogue of Theorem 1.3 for the Hermite 

problem, and is usually referred to as the minimum norm property for 

splines. 

Theorem 2•3 Let f E C [a,b], and suppose we are given n + 1 points 

x., 0 < j < n, with 

a = x , < x. < • • * < x = b 
0 1 n 

and an integer k , l < k < n + l . Let s(x) be the unique spline that 

interpolates f(x). If g E C [a,b] also interpolates f(x), then 

Jb [ g ( k ) ( x ) ] 2 d x > / b [ s ( k ) ( x ) ] 2 d x (2.7) 
a a 

with equality if, and only if, g(x) = s(x) on [a,b]. 

Proof: Since s(x) interpolates g(x), Lemma 2.1 applies and yields 
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rb
 r (k), ...2, _ rb

 r (k), . (k), ...2, M rh

 r (k), .-.2, J [g (x)] dx = J [g (x) - s (x)] dx + J [s (x)j dx 

and (2.7) follows. If equality holds in (2.7) then from the above 
(k ) (k ) 

relation, g (x) = s (x) except possibly at the knots. But 
p ( k - l ) r ... (k), _ (k), . , g, s e C [a,bj so g (x) = s (x) and then 

g(x) = s(x) + p (x) on [a,b]. 

However, s(x) interpolates g(x), so p (x) is a polynomial of degree at 
K -L 

most k - 1 < n with the n + 1 zeros x.,'",x . Hence, p. ,(x) = 0 as 
O n k-1 

desired. If g(x) = s(x) on [a,b], (2.7) follows trivially. 

The next minimum property is sometimes called the best approxima­

tion property of splines. 

Theorem 2.4 Suppose that s
Q ( x ) and s(x) are splines and that s(x) is 

the unique spline that interpolates f(x). Then 

Jb [s ( k ) ( x ) - f ( k )(x)] 2dx > / b [s ( k )(x) - f ( k )(x)] 2dx (2.8) J o J 

a a 

with equality if, and only if, s (x) = s(x) + p .(x) on [a,b]. 
O K~ J. 

Proof: Since S Q ( X ) - s(x) interpolates s
Q ( x ) - f(x), Lemma 2.1 applies 

and yields 



24 

f b r ( k ^ ^ ^kh \ I 2 A - f b r N \I2A I [s (x) - f (x)] dx = I [s (x) - f (x)] dx 
J o J 

a a 

+ f b [s ( k ) ( x ) - s ( k ) ( x ) ] 2 d x J o a 

and (2.8) follows. The conditions of equality are verified as in the 

previous proof. 

At this stage it is apparent that splines as described by 

Definition 2.2 are too restrictive. The key result is Lemma 2.1; from 

it followed Lemma 2.2, and if k < n + 1, so does Theorem 2.1 and both 

minimal properties. We cannot expect to relax the continuity require­

ments of part d) of Definition 2.2 and still have a well-defined 

problem; but we can certainly modify the boundary conditions of part 

c) so that Lemma 2.1 holds, and the linear problem of Theorem 2.1 is 

still uniquely solvable. 

Observe that Lemma 2.1 is still valid if (2.5) and (.2.6) vanish 
(k-i ) (k-i ) Moreover, (2.6) vanishes if f (x.) = s (x.) for i = o,n and 

(k-i ) 
j = l,***,k-m so that if s(x) interpolates f(x) then f (x^) = 
(k-i ) 

s (x.) for 0 < i < n and i = k - m + 1,•••»k since m < k and, i - - J -

therefore, (2.5) also vanishes. Since m > 1 also, we make the follow­

ing 

Definition 2.3 Let f e C [a,b]. A function g(x) is said to inter­

polate f(x) in a Type A problem if 

g ( j ) ( x . ) = f ( j ) ( x . ) j = 0,l,---,m.-l 
& 1 1 i 
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for each i, 1 < i < n - 1, and 

g (j) (x.) 
I 

(x.) 
1 

j = 0,1 

for i = 0,n. 

We would now like to modify Condition c) of Definition 2.2 so as 

to obtain splines that solve problems of Type A. Note that both Lemmas 

2.1 and 2.2 hold if s(x) interpolates f(x) in a Type A problem. More­

over, Theorem 2.1 holds without the restriction that k < n + 1 since now 

p / ^ ( x . ) = 0 for j = 0,l,---,k-l and i = 0,n so that p (x) = 0. 
K — -L 1 K --L 

To obtain the analogue of Theorem 2.2 we must then specify k-1 

boundary conditions at each end point in such a way that s(x) interpo­

lates f(x) =. 0 in a Type A problem if, and only if, s(x) E 0. The fol­

lowing definition is therefore appropriate. 

Definition 2.4 A spline of degree 2k-l with multiplicity ITK at x^ 

( l < i < n - l ) i s said to be of Type A if instead of requiring that 

we require that s(x) interpolate some function in a Type A problem. 

Our previous discussion then provides the proof for the 

following 

s ( k + j - i ) (x.) = 0 for j = lj'-'jk-m. and i = 0,n, 

Theorem 2.5 There is exactly one spline of Type A that interpolates 

f(x) in a Type A problem. 
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Moreover, it is trivial to verify that the minimum norm and best 

approximation properties also holds for splines of Type A. 

The way is now open for introducing more types of splines which 

will solve their corresponding interpolation problems. See for example 

[3], where they consider the case iru = q for all i, and the splines are 

said to be of deficiency q. 

C. Convergence Properties 

The convergence properties of splines are truly remarkable, and 

very easy to obtain. They fare a lot better than say, polynomial 

approximation. (To compare with other kinds of interpolating processes, 

see [8]). 

In stating these properties, it is convenient to introduce the 

following 

Definition 2.5 If g(x) is square-integrable on [a,b], set 

g|| = C g ( x ) ] 2 d x ) 1 / 2 

Let us now consider a sequence of partitions P^ of [a,b] 

P.: a = x. . < x. . < • • • < x. = b l i,0 i,l i,n. 

and let N(P.) = max{x. .-x. . .: 1 < j < n.} denote the norm of the l 1,3 ~ i 
partition. 
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Theorem 2.6 Let f e C*[a,b], and let { P ^ be a sequence of partitions 

of [a,b] such that N(P i> -> 0 as i °°. If s ^ x ) interpolates f(x) on 

P., then l 

{ s / ^ ( x ) > converges uniformly to f ^ ( x ) on [a,b] for j = 0,1, 

•••,k-l. 

Proof: We first prove the theorem for j = k-1. Chose i > k so that 

P^ contains at least k + 1 points. Then s^(x) exists, and is uniquely 

determined. Moreover, for any x in [a,b], there is an interval I in 

[a,b] which contains x and k points of P^. Thus, f(t) - s^(t) has k 

zeros in I, and by repeated application of Rolle's theorem we conclude 
(k-1) (k-1) that f ( t ) - s ^ (t) has at least one zero in I; say x. Then 

for x in I 

x-x < k N(P i) 

and 

.(k-1) (x) - s (k-1) (x)| = 1/ [ f ( k ) ( t ) (k) (t)]dt 

An application of the Cauchy-Schwartz inequality yields 

F ' ^ ' L X ) - s . ^ - l ) M \ < | X - X | 1 / 2 I F [ F ( K ) ( T ) - s . ( K ) ( T ) ] 2 D T | 1 / 2 (2.9) 
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and, since the first integral relation, Lemma 2.1, holds, 

^ ( x ) - s . ^ U ) ] < k 1 / 2 N ( P . ) 1 / 2 ||f ( k )|| (2.10) 

for all x in [a,b]. The result of the theorem follows for j = k - 1. 

I f 0 < j < k - 1 , repeated use of (2.9) shows that there is a 

constant c such that 

| f ( ^ ( x ) - s . ( ^ ( x ) | < c N ( P . ) ( k - ^ 1 / 2 ) ||f ( k )|| . 

Since this holds for all x in [a,b], we are through. 

Theorem 2.6 yields two inequalities that deserve special atten­

tion. We single them out as 

Corollary 2.1 Under the hypothesis of Theorem 2.6 there is a constant 

c , dependent on j and k, but independent of i, such that for i > k, 

f (3>(x) - s . ( ^ ( x ) | < c, N ( P . ) k - ^ 1 / 2 ||f ( k ) - s . ( k ) 

1 1 ~ 1 1 1 1 1 

< c. N(P. ) 
i 

k-j-1/2 ,,_(k) 

for j = 0 , k - 1 . 

Proof: The first inequality follows by observing that we can replace 

||fk|| with ||f ( k^ - s/ k^|| in (2.10) due to (2.9). The second inequality 

follows from the first integral relation. 
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Since the properties of splines used in the proof of Theorem 2.6 

also hold for splines of Type A, we have proved 

Corollary 2.2 Theorem 2.6 holds for splines of Type A. In addition, 

the inequalities of Corollary 2.1 hold for all i > 1. 

If we are interested in a norm squared error bound, the results 

of Corollaries (2.1) and (2.2) can be improved. To do so, we need the 

following 

Lemma 2.3 If g'(x) is integrable on [a,b], and g(a) • g(b) = 0, then 

b 9 9 b 9 
/ [gt-ordt < a - a r / [g ' ( t ) rd t 
a a 

Proof: Suppose g(a) = 0. Then for each x in [a,b] 

x 
g(x) = / g'(t)dt. 

a 

An application of the Cauchy-Schwarz inequality yields 

9 X 9 b . 9 
[g(x ) r < (x-a) / [ g'(t)rdt < (b-a) / [ g ' ( t ) rd t 

a a 

and our result follows upon integration. If g(b) = 0, the proof is 

analogous and is therefore omitted. 



30 

C o r o l l a r y 2 . 3 Under t h e h y p o t h e s i s o f Theorem 2 . 6 t h e r e i s a c o n s t a n t 

c ^ , d e p e n d e n t on j and k , b u t i n d e p e n d e n t o f i , s u c h t h a t f o r i > k , 

f « > - s . ( * > | < c , N(P.) k-3 ||f(k> - s . ( k > 

i 11 2 i 11 l 

< c 2 N ( P . ) k _ j | | f ( k ) 

f o r j = 0 , 1 , 

P r o o f : We o n l y p r o v e t h e f i r s t i n e q u a l i t y , s i n c e t h e s e c o n d i n e q u a l i t y 

f o l l o w s from Lemma 2 . 1 . I f j = k , t h e r e i s n o t h i n g t o p r o v e ; s o a s s u m e 

j = k - 1 . S i n c e i > k , we c a n d i v i d e [ a , b ] i n t o m i n t e r v a l s » I . , * * * I , 
~ I ' m 

s u c h t h a t e a c h i n t e r v a l , w i t h t h e p o s s i b l e e x c e p t i o n o f I , c o n t a i n s k 
m 

c o n s e c u t i v e p o i n t s o f P . . Then f ( x ) - s . ( x ) h a s k z e r o s on e a c h I r l l r 
( k - 1 ) ( k - 1 ) ( 1 < r < m - 1 ) , and by R o l l e ' s t h e o r e m , f ( x ) - ( x ) h a s a t 

l e a s t o n e z e r o on I , s a y x ^ . I f we now d e f i n e x = a , x = b , we h a v e 
r r o m 

t h a t 

x - x < 2k N ( P . ) , 1 < r < r r - 1 _ i ' ' - - m. 

By Lemma 2 . 3 

f

X r r _ ( k - l ) , , ( k - 1 ) , . - . 2 , , . , , 2 . . ^ , 2 r * r r . ( k ) , * ( k ) , . n 2 , J [ f (x ) - s ^ (x)J dx<4k N ( P ^ ) J [ f (x) - s ^ (x)J dx, 
x x 

r - 1 r - 1 
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and our result follows by summing the above inequalities. The proof for 

0 < j < k - 1 is analogous and is omitted. 

Corollary 2.M- The results of Corollary 2.3 hold for splines of Type A 

and for all i > 1. 

The results of Theorem 2.6 can be improved if we assume that 
2k 

f e C [a,b] and consider interpolation in a Type A problem. The results 

that we will obtain can be extended to other types of interpolation, but 

not to the type of Definition 2.1, since our proofs rest heavily on the 

following second integral relation for splines. 

2k 

Theorem 2.7 Let f e C [a,b], and suppose s(x) interpolates f(x) in a 

Type A problem. Then 

| b[f ( k )(x) - s(k)(x)]2dx = (-l)k /b[f(x) - s(x)]f(2k)(x)dx (2.10) 

Proof: The left-hand side of (2.10) can be written as 

I J*1 [f(k)(x) - s(k)(x)]2dx (2.11) 
i=l x. . l-l 

We evaluate each of the integrals by integrating by parts k times; we 

obtain 
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k . „ ^ /, . . , x „ . . , x ix i ( 2 < 1 2 ) 

Xi-1 
r , . . j+l r ,.(k-j ), . (k-j), x l r ^ ( k + j - l ) f v (k+j-1), ... 2 (-1) J [f (x) - s (x)J[f (x) - s (x)J 

j=l 

+ (-Dk j""1 Cf(x) - s(x)][f ( 2 k )(x) - s ( 2 k )(x)]dx 
xi-l 

(2k) 

Since s (x) = 0 in (x^_^,x^), (2.11) will reduce to the right-

hand side of (2.10) if we show that 

n 
I A(x ,x ) (2.13) 

i=l 1 

vanishes, where A(x^,x^_^) is the first term appearing in (2.12). 

Let m = min(m.); then for j > k - m + 1, the addends of 
I 

A(x.,x. , ) vanish due to interpolation in the first factor of the 
I l-l 

addends. If m = k, we are through. Otherwise, both factors are con­

tinuous, and (2.13) reduces to 

T(-D j + 1 Cf ( k" j )(x) - s ( k ^ ) ( x ) ] [ f ( k + j - 1 ) ( x ) - s ( k + j- 1 }(x)] 
j=l 

which again vanishes due to interpolation at the end-points. Since 

(2.13) vanishes, we are through. 

We can now use Theorem 2.7 to raise the order of convergence of 

Corollary 2.2. 
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2k 

| f (^(x) - s(^(x)| < c3 N(P)2k -̂1/2|f(2k)| 
for j = 0,1,•••,k-l. 

Proof: By Corollary 2.2, the first inequality of Corollary 2.1 holds 

on any partition P. Hence, 

|f (J\x) - s(^(x)| < cx H ( P ) < k - ^ - 1 / 2 ) | | f ( k ) - s(k)| . (2.14) 
By Theorem 2.7, 

f ( k ) _ s( k)||2 = ( _ 1 } k j b
 [ f ( x ) _ s ( x ) ] f ( 2 k ) ( x ) d X s 

and, applying the Cauchy-Schwarz inequality, 

.(k) (k)i,H ||̂(2k)ii2 f
b

 r c f v , s-,2, f - s || < || f || J [f(x) - s(x)J dx 
a 

If we now use the first inequality mentioned in Corollary 2.4 with j = 0, 

,(k) (k),,4 2 .T,p,2k,,,(k) (k)|.2||.(2k),|2 r - s || < c^ NIP J ||r - s || ||r || 

Theorem 2.8 Let f e C [a,b], and suppose s(x) interpolates f(x) in a 

Type A problem on some partition P. Then there is a constant c^ 

dependent on j and k, such that 
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and if we solve for |f (k) (k) in this last inequality, and use it - s 

in (2.14), we obtain the desired result. 

The result of Theorem 2.8 indicates that we might expect uniform 
2k 

convergence of derivatives of order up to 2k-l for f e C [a,b]. This 

is indeed the case, if we restrict our partitions in such a way that the 

quantities 

(2.15) nTPTT l 

remain bounded. Here, 

1 < j < n i> . 

The proofs can be found in [25]. 
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CHAPTER III 

GENERALIZATIONS 

A. Monosplines 

Splines handle the problem of approximation in the least square 

sense with great ease; to attack the problem of approximation in the 

uniform sense, the concept of monosplines was introduced. 

Let x,,*'• ,x be n given reals such that I n 

x < x 0 < ••• < x . (3.1) 
1 I n 

Definition 3.1 A monospline of class (k,n) with knots (3.1) is a func­

tion M of the form 

M(x) = x k + s (x), (3.2) 

where s, ,(x) is a (k-1) spline with (3.1) for knots. See Definition k-1 

1.1. 

It is tacitly understood that k > 1 and n > 0. If n = 0, then 

we have no knots, and the monospline (3.2) reduces to a polynomial of 

degree k with leading coefficient unity. 

The main theorem concerning approximation by monosplines was 

proved by R. S. Johnson [11]. 
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Theorem 3.1 For each (k,n) there exists a unique monospline M of — — — — — — K j n 

class (k,n) which deviates least from zero on [-1,1]. For k > 2, 

M achieves its maximum absolute deviation, with alternating signs, 
K , n 

at precisely k + 2n + 1 points of [-1,1], including both end-points, 

and this condition determines M uniquely. 
K , n 

Thus, M is in fact the Tchebycheff polynomial which is known 
K , O 

to satisfy the stated characterization property. 

Monosplines have also been used by I. J. Schoenberg to construct 

best quadrature formulas. See [19] and [22]. For details on the 

numerical procedures used to construct the monosplines, see [4]. 

B. G-Splines 

If we wanted to generalize splines in the same way that we did 

in Chapters I and II, we would want to consider an interpolation problem 

that generalizes the Lagrange and Hermite interpolation problems. This 

problem was first considered by G. D. Birkhoff in 1906, and is known as 

the Hermite-Birkhoff interpolation problem. It is described below. 

Suppose we are given n + 1 distinct points x , • ••,x n such that 

X < x < • • • < x 
0 1 n 

and a (n+1) x k matrix E = (e^j)» i = 0,1,' ' * ,n, j = 0,l,'*',k-l, such 

that each row of E has at least one nonzero element. Define the set e 

by 
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and suppose we are given reals (i»j) in e. Then, the Hermite-

Birkhoff interpolation problem consists of finding the polynomial of 

least degree such that 

p ( j ) ( x . ) = y . ( j ) , (i,j) in e. (3.3) 

If we now try to obtain a function s(x) which satisfies (3.3) and 

such that 

/ b [ s ( k ) ( x ) ] 2 d x 

is a minimum, we obtain the natural G-splines which are described as 

Definition 3.2 A function s(x) is called a natural G-spline for the 

knots X - J ' ^ ' J X , the matrix E, and order k, if 0 n 
a) s(x) is a polynomial of degree at most 2k-l on ( xi» xi +j_) 

b ) S £ ^ ( - o o ^ o o ) 

c) s(x) is a polynomial of degree at most k - 1 in (-°°,XQ] and 

[X ,-) 

d) s e C ( 2 k j 1 } at x. if e. . = 0. 

Note that if E is such that e. = 1 for 0 < i < n, and zero 
10 " 

otherwise, we obtain the natural splines of degree 2k-1 of Definition 

1.4, while if e_̂ _. = 1 for all j, 0 < j < nu < k, and i = l,-««,n-l 

with e „ ^ = e ^ = 1 and all other entries zero, the splines with 0,0 n,0 
multiple knots of Definition 2.2 emerge out of the above definition. 



38 

The proofs of existence, uniqueness, and minimal properties for 

these splines are completely analogous to those found in Chapter II. 

The requirement that k < n + 1, which guaranteed that the polynomial 

appearing in Lemma 2.2 was identically zero, must now be replaced by 

the following: For each integer i, 0 < i < n, if e. „ e e , let k. be 
1,0 l 

the greatest positive integer such that e. ,••*,e. , are all in e. 
1 • U 1« K . — J . 1 

If e.„ = 0, define k. to be zero. We then have the following. IO l 

n 
Theorem 3.2 If J k. > k, then the natural G-spline for the knots 

i=0 1 

x_,«*',x , the matrix E, and order k, exists and is unique. 
O n 

The natural G-splines will then satisfy the first integral rela­

tion, the minimum norm and best approximation properties, and the con­

vergence results of the splines of Definition 2.2. Once again, these 

splines do not satisfy the second integral relation due to requirement 

c) of Definition 3.2. The replacement of c) by some other interpolation 

condition gives rise to splines of different types. For example, to 

obtain a generalization of splines of Type A we would replace requirement 

c) of Definition 3.2 by 

c' ) e . = e . = 1 , 0 < j < k - 1. o,3 n,: ~ 

The splines obtained in this manner satisfy all the properties of natural 

G-splines, and in addition, the second integral relation with the cor­

responding convergence results. This procedure is followed by Schultz 

and Varga [25]. For more results on natural G-splines see [24]; more 

details on the Hermite-Birkhoff interpolation problem can be found in [21]. 
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C. G e n e r a l i z e d S p l i n e s 

One o f t h e m o s t i m p o r t a n t g e n e r a l i z a t i o n s o f s p l i n e f u n c t i o n s 

o c c u r r e d when i t w a s n o t i c e d t h a t t h e r e q u i r e m e n t t h a t s ( x ) be a p o l y ­

n o m i a l o f d e g r e e a t m o s t 2 k - l on e a c h s u b i n t e r v a l c o u l d be r e p l a c e d by 

2k 
a ' ) s ( x ) i s a s o l u t i o n o f D ( s ) = 0 

o n e a c h i n t e r v a l ( x . , x . n ) , w h e r e D = —— • 
I l + l dx 

So why n o t r e p l a c e t h e o p e r a t o r D w i t h t h e k t h o r d e r l i n e a r d i f ­

f e r e n t i a l o p e r a t o r d e f i n e d b y 

k 
L ( u ) = I a . ( x ) D ] ( u ) 

j = 0 J 

f o r a n y u e C [ a , b ] ? T h i s i s i n d e e d p o s s i b l e , and w i t h t h e f o r m a l 

a d j o i n t o f L, L , b e i n g d e f i n e d b y 

k . . 
L " ( u ) = I D ] ( a . u ) , 

j = 0 ] 

We c a n r e p l a c e c o n d i t i o n a T ) b y 

a " ) s ( x ) i s a s o l u t i o n o f L L ( s ) i n e a c h i n t e r v a l ( x . , x . , ) . 
I l + l 

In d o i n g t h i s , i t w a s n o t i c e d t h a t t h e p r o o f s o f t h e t h e o r e m s 

i n t h e f i r s t t w o c h a p t e r s w o u l d n o t b e a l t e r e d i f we r e p l a c e d t h e c l a s s 

k k 
C [ a , b ] b y t h e more r e s t r i c t i v e c l a s s K [ a , b ] o f a l l f u n c t i o n s f , s u c h 
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that f e C [a,b], f is absolutely continuous, and f £ 

L 2[a,b]. 

The generalization in this direction was started by I. J. 

Schoenberg in 1964 [20] with his "trigonometric splines" by considering 

a linear differential operator with constant coefficients. The gener­

alization to non-constant coefficients was made by T.N.E. Grevelle [10] 

who used the method of Lagrange's multipliers to obtain the extremal 

properties. Later, Ahlberg, Nilson, and Walsh [1], considered the rela­

tionship between the linear differential operator and its adjoint to 

obtain the extremal properties, and at the same time introduced the con­

cept of types of splines. In a later paper [2], they proved some con­

vergence results for generalized splines: uniform convergence for 

derivatives of order up to k-1, and convergence in the mean for the kth 

derivative; and for partitions restricted as in (2.15), uniform con­

vergence of derivatives of order up to 2k-2. In the same paper, they 

noticed that the validity of the first integral relation was not altered 

for splines with knots of equal multiplicity, and thus obtained conver­

gence of lower order derivatives for the so-called splines of deficiency. 

The case of multiple nodes when the operator L has Polya's prop­

erty W was done by Karlin and Ziegler [12]; the resulting splines being 

termed Tahebyaheffian splines. Other results in this direction can be 

found in [9], [13], [26], and [27]. In 1967, Ahlberg, Nilson , and 

Walsh [3] treated the case of multiple nodes for a general linear dif­

ferential operator, obtaining the convergence results of both lower and 

higher order derivatives. 



4 1 

The c o m p l e t e g e n e r a l i z a t i o n o f t h e a b o v e r e s u l t s w a s done b y 

S c h u l t z and V a r g a [ 2 5 ] , The L - s p l i n e s w h i c h t h e y i n t r o d u c e d h a v e f o r 

s p e c i a l c a s e s a l l o f t h e s p l i n e s d i s c u s s e d i n t h i s s e c t i o n , and t h e y 

h a v e b e e n a b l e t o i m p r o v e p r e v i o u s c o n v e r g e n c e r e s u l t s ; i n p a r t i c u l a r , 

u n i f o r m c o n v e r g e n c e o f t h e d e r i v a t i v e o f o r d e r 2 k - l f o r p a r t i t i o n s 

r e s t r i c t e d a s i n ( 2 . 1 5 ) . M o r e o v e r , w i t h t h i s same r e s t r i c t i o n o n t h e 

p a r t i t i o n s , and f e K [ a , b ] , t h e y w e r e a b l e t o show t h a t t h e r e s u l t 

o f Theorem 2 . 6 i s s h a r p . 

S i n c e i n t h e c a s e w h e r e L = D , L - s p l i n e s a r e a s p e c i a l c a s e o f 

G - s p l i n e s , t h e way i s o p e n t o g e n e r a l i z e G - s p l i n e s t o an a r b i t r a r y 

l i n e a r d i f f e r e n t i a l o p e r a t o r s . 
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CHAPTER IV 

THE APPROXIMATION OF LINEAR FUNCTIONALS 

A. T h e o r e t i c a l R e s u l t s 

In t h i s c h a p t e r we d i s c u s s t h e r e l a t i o n s h i p b e t w e e n s p l i n e t h e o r y 

and t h e a p p r o x i m a t i o n o f l i n e a r f u n c t i o n a l s o f t h e form 

k b , . . k r , . . 
Lf = I / a . ( x ) r : ; ( x ) d x + y y b . . f U ; ( x . . ) s ( 4 . 0 ) 

j = 0 a J j = 0 i = l J J 

w h e r e f e C [ a , b ] , t h e f u n c t i o n s a_ . (x ) a r e p i e c e w i s e c o n t i n u o u s on [ a , b ] , 

and t h e p o i n t s x . . l i e i n [ a , b ] . S p e c i a l c a s e s o f ( 4 . 0 ) a r e 

/ f ( x ) d x , f ' ( x ) , ' - - , f ( k ) ( x ) , 
a 

w h e r e x i s f i x e d i n [ a , b ] , s o t h a t i t i n c l u d e s m o s t o f t h e f u n c t i o n a l s 

s t u d i e d i n n u m e r i c a l a n a l y s i s . 

I f we want t o a p p r o x i m a t e ( 4 . 0 ) , i t i s n a t u r a l t o do s o by a 

f u n c t i o n a l o f t h e form 

m . - l 

I I c . f ( j ) ( x . ) , ( 4 . 1 ) 
i = 0 j = 0 ^ 

w h e r e t h e c o n s t a n t s c . . a r e p i c k e d s o a s t o make 
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m.-l 
n 1 

Rf = Lf - I I c. . f ( ] 5 )(x. ) (4.2) 
i=o :=o J 

small in some sense. Here 1 < m. < k for i = 0,1," • ,n and 
I ~ 

a < x,, < x n < • • • < x < b, " 0 1 n ~ 

so the approximating functional (4.1) can either be of the open type 

(a < X Q , X ^ < b ) , or of the closed type (a = x^, x^ = b ) . In subsequent 

work, the approximating functional (4.1) will be abbreviated as 

I C . F ( J ) ( K . ) . 

We will now consider two schemes for making (4.2) small: the 

classical procedure and Sard's procedure [18]. 

The classical procedure of numerical analysis determines the 
n 

N = £ m. constants c.. by requiring that Rf = 0 whenever f is a poly-
1=0 1 1 : 

nomial of degree at most N - l . By linearity, this is equivalent to 

requiring Rf = 0 for f(x) = X

( N _ 1 _ R V ( N - l - r ) ! for r = 0,1,'••,N-l, i.e., 

(N-l-r) 
x 
(N-l-r)! 

(N-l-r-j) 
X i 

J. °ij (N-l-r-j )! 
1»1 

(4.3) 

r r x x for r = 0,1,•••,N-1, and where —r - 0 if r < 0 and —r = 1 if r = 0. r. rl 
However, (4.3) is equivalent to requiring that 
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P ( r ) ( x . ) = L 
1 

( N - l - r ) 

( N - l - r ) ! 

f o r r = 0 , ' « - , m ^ - l , and i = 0 , l , * " * , n , w h e r e 

( N - l - j ) 
p ( x ) = J. cij fej)T 

S i n c e p ( x ) i s a p o l y n o m i a l o f d e g r e e N - 1 , we know t h a t t h e s e c o n d i t i o n s 

u n i q u e l y d e t e r m i n e p ( x ) a n d , t h e r e f o r e , t h e c o n s t a n t s c_̂ _. . 

S a r d ' s p r o c e d u r e i s a g e n e r a l i z a t i o n o f t h e c l a s s i c a l p r o c e d u r e 

and r e q u i r e s t h a t Rf = 0 w h e n e v e r f i s a p o l y n o m i a l o f d e g r e e a t m o s t 

k - 1 , w h e r e k < N. T h i s , h o w e v e r , s t i l l l e a v e s N-k f r e e p a r a m e t e r s c _ ^ , 

s o t h a t t h e r e m a i n i n g p a r a m e t e r s a r e d e t e r m i n e d a s f o l l o w s . 

P e a n o ' s t h e o r e m , w h i c h i s s t a t e d i n t h e A p p e n d i x , a l l o w s u s t o 

w r i t e 

Rf = / f ( k ) ( t ) K ( t ) d t , ( 4 . 5 ) 

and 

. k - 1 
w h e r e R d e n o t e s t h e f u n c t i o n a l R a p p l i e d t o ( x - t ) a s a f u n c t i o n o f x r r + 

x . The r e m a i n i n g p a r a m e t e r s a r e t h e n d e t e r m i n e d by r e q u i r i n g t h a t 

x 
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b 
/ [ K ( t ) ] 2 d t ( 4 . 6 ) 

be a minimum. The r e s u l t i n g f o r m u l a ( 4 . 1 ) i s t h e n c a l l e d t h e b e s t 

a p p r o x i m a t i o n t o Lf on [ a , b ] f o r t h e s e t o f k n o t s x ^ , * * * ^ . The 

r e a s o n f o r t h i s name f o l l o w s from t h e f a c t t h a t i f we a p p l y S c h w a r t z ' s 

i n e q u a l i t y t o ( 4 . 5 ) we o b t a i n 

( R f ) 2 < | | f ( k ) | | 2 / b [ K ( t ) ] 2 d t , 
a 

s o t h a t i f we r e s t r i c t o u r s e l v e s t o a c l a s s o f f u n c t i o n s f o r w h i c h 

| | f ^ k ^ ( x ) | | < M, t h e n t h e m i n i m i z a t i o n o f ( 4 . 6 ) g i v e s r i s e t o a f o r m u l a 

( 4 . 1 ) t h a t m i n i m i z e s Rf w i t h i n t h i s c l a s s . 

L e t u s now r e l a t e t h e r e s u l t s o f t h e c l a s s i c a l p r o c e d u r e t o s p l i n e 

t h e o r y and s e e how i t a n t i c i p a t e s t h e s o l u t i o n t o S a r d ' s p r o c e d u r e . 

Theorem 2 . 2 g u a r a n t e e s t h e e x i s t e n c e and u n i q u e n e s s o f 2 k - l 

s p l i n e s s . . w i t h m u l t i p l i c i t y m. a t x . s u c h t h a t ^ i ] ^ J I l 

s . / ^ C x ) = 
i ] r 

1 i f ( i , j ) = ( r , q ) 

0 i f ( i , j ) f ( r , q ) 

f o r q = O j ' - ' j m - 1 and r = 0 , - - ' , n . 

We c a n t h e n w r i t e ( 4 . 4 ) a s 

p ( x ) = I p ( j ) ( x . ) s . . ( x ) 
. L . 1 11 
1 . ] 
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so that 

Lp = 7 p ( j ) ( x . ) L s... (4.7) . . i ii 

But Rp = 0, and in the classical procedure the ĉ _. are uniquely 

determined; comparing (4.2) and (4.7), we conclude that 

c . . = L s . . 

if Rf = 0 whenever f is a polynomial of degree N-1 or less. The same 

result holds in Sard's procedure. 

Theorem 4.1 The best approximation (4.1) to a linear functional L of 

the form (4.0), in the sense of Sard, is obtained by operating with L 

on the unique 2k-l spline 

s(x) = I f ( j ) ( x . ) s..(x) . . 1 11 

which interpolates f(x) in the sense of Definition 2.1 

Proof: We want to show that if the constants c . are chosen so that 

Rf = 0 whenever f is a polynomial of degree at most k-1, then we must 

choose c . = L s.. in order to minimize (4.6). In order to do this, 

consider 
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Rf = Lf - T c . f ^ \ x . ) , . L . i] 1 (4.8) 

where c.. = L s. . , and 
13 13 

Rf = Lf - Z c.. f (^ }(x. ), . . i] l 1,3 
(4.9) 

where the c.. are chosen so that 13 

Rf = 0 

whenever f is a polynomial of degree at most k-1. When c . = L s.. 
13 13 

Rf = 0 

whenever f is a polynomial of degree at most k-1; therefore, Peano's 

theorem in the Appendix can be used to deduce that 

Rf = / K(t) f ( k )(t)dt and Rf = J k(t) f ( k )(t)dt, 

where 

k-1 
K(t) = R 

(x-t) 
T 

(k-1)! 
(x-t) k-1 

and K(t) = R (k-1)! (4.10) 
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Consider 

g(x) = K(x) - K(x) 

which by (4.8), (4.9) and (4.10) can be expressed as 

v k - l - j (x-x V 
* ( x ) = J. dij ( k - l - j ) | -

1,3 

where 

d. . = c.. - c... (4.12) 
i] i] i] 

Then, by (4.11), s(x) is a spline with multiplicity i t k at x^ if 

s (x) = g(x); 

so we can write 

s(x) = J s ( j ) ( x . ) s. .(x); 
. L . i in 

and since c.. = L s.. in (4.8), Rs = 0. Therefore, 
ID i] 

b b 
/ K(t) s^ K ;(t)dt = / K(t) g(t)dt = 0, 

and, hence, 



49 

b 9 b 9 b 9 
/ [K( t ) rdt = / [K(t)]cLt + / [g(t)]^dt, 

which shows, by (4.11) and (4.12), that the choice of constants c . that J 13 
minimizes (4.6) is 

c.. = Ls.. . 
in in 

Before we proceed to apply this theorem to certain specific func-

tionals, note that the restriction k < N is just the one required for 

the existence of natural G-splines so that this theorem can be easily 

extended to cover these splines. 

B. Numerical Results for Cubic Splines 

In the previous section we saw that once we obtain the unique 

2k-l spline which interpolates f(x) at the points x.., we will be able 

to obtain the best approximation to L(f) on [a,b]. In this section we 

propose to show how to obtain this spline when k = 2, i.e. for cubic 

splines. 
2 

The problem is as follows. We are given f e C [a,b] and n + 1 

points in the plane, 

( x 0 . y o V - - . ( x n . y ) 

such that y^ = f(x^), where 
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a = x_ < x. < ••• < x = b. 
0 1 n 

We want to determine a cubic spline for which s(x. ) = y., 
1 1 

0 < i < n. We have already seen that we need two end conditions to 

specify the spline completely. If we want the theorems of the second 

chapter to hold, we want s"(xj = 0 for i = 0,n, or for Type A interpo­

lation, s'(x.) = f'(x.) for i = 0,n. Another condition that arises 

i i 

naturally is to require s"(x^) = f'(x^) for i = 0,n. This type of 

interpolation is described by: 

k 

Definition 4.1 Let f e C [a,b]. A function g(x) is said to interpolate 

f(x) in a Type B problem if 

g ( j ) ( x . ) = f ( j ) ( x . ) j = 0, 1, m. - 1 

for each i, 0 < i < n, and 

g ( j ) ( x . ) = f ( j ) ( x . ) j = k, 2k - m. - 1 ° l i i 

for i = 0, n . 

We will therefore also consider splines of the following type. 

Definition 4.2 A spline of degree 2k-l with multiplicity nu at x^ 

(1 < i < n-1) is said to be of Type B if instead of requiring that 
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s J (x^) = 0 for j = lj-'-jk-nu and i = 0,n, 

we require that s ( x ) interpolate some function in a Type B problem. 

These splines are the generalization of the splines of Definition 

2.2 and although they do not satisfy the first integral relation of 

Lemma 2.1, we can prove: 

Theorem M-.2 There is exactly one spline of Type B that interpolates 

f(x) in a Type B problem provided k < n + 1. 

Proof: If s^(x) and s^Cx) are two splines that interpolate f(x) in a 

Type B problem, then s(x) = s^(x) - s^Cx) is a spline of multiplicity 

m i a _ t X i "^at interpolates the zero function in the sense of Definition 

2.1. By Theorem 2.1, s(x) = 0. Uniqueness is therefore established, 

and existence follows by the argument of Theorem 2.2. 

We also note that the second integral relation is valid for Type 

B splines. Moreover, Theorem 2.8 holds since the first inequality of 

Corollary 2.1 is independent of the type of spline. 

Let us now derive the equations that define a cubic spline with 

simple knots, i.e. ITU = 1 for all i, and in so doing, illustrate and 

improve the general results of the second chapter. 

Since s"(x) is continuous on [a,b] we can write 



where h. = x. - x. ., and m. = s"(x .) for j = 1,•••,n. Then 
3 3 3-1 3 3 

(x.-x)' 
s'(x) = -m — 3 

j-1 2h. 
3 

( x - x j - l ) 

+ m_. — t r t + c n , j 2 h. 1 

and 

(x.-x) 3 (x-x. ) 3 

s(x) = m. - r ~ + m. —r-fT 1 + c.x + c_ 
1-1 6 h. 3 6 h. 1 2 
J 3 3 

The constants c^ and c^ can be evaluated by noting that s ^ x j 

y • - y-_2_ n • 

c = _3__—3 (m.-m. , ) 
1 h. -j n-1 6 

3 

y. n x . - y. x. _ h. 
c = 3 - 1 3 3 3-1 . ( n > m . x . ) J L 

2 h_. 3-1 3 3 3 - I 6 

The resulting expressions for s(x) and s'(x) are 

(x.-x) 3 (x-x. ) 3 

s(x) = m. , e-J, + m. — t - J + 
3 -1 6 h. 3 6 h. 

3 3 

m. h. 
3 3 

3 6 
x - x 

y 
m. . h. 

- 3-1 3 
j-l 6 

x . - x 
_J 

and 



We must still require the continuity of s f ( x ) at x = 

From (4.15) we obtain 

h. h. + h. . h. n 

6 j-i 3 : 6 :+i 

yj+i " y 1 y j ' yj-i 
h. , 
3+1 

If we define 

h. 
3 j h. + h. , 

3 3+1 

h. n 

3+1 
j h. + h. , 
J 3 3+1 

d. = 6 
3 

yjtl-y^ yry:-i h. 

h. + h. . 
3 3+1 

we can write (4.16) as 

a . m . . + 2 m. + c . m . n = d. 
3 3-1 3 3 3+1 3 
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for 1 < j < n - 1. The end conditions that we are considering can be 

written in the form 

2 m 0 + °0 mi = do 

a m n + 2 m = d , n n-1 n n 

(4.18) 

where a < 2, c J < 2. Equations (4.17) and (4.18) then define a 

tridiagonal system of n linear equations in n unknowns which is irre-

ducibly diagonally dominant if • / 0, and strictly diagonally 

dominant if la I < 2, |c_| < 2. In either case the system is non-n 0 

singular. See Varga [28] for details. 

Before we indicate how to solve equations (4.17) and (4.18), let 

us show how these equations can be used to improve the results of the 

second chapter. 

2 

Theorem 4.3 Let f e C [a,b], and let s(x) be the unique cubic spline 

of Type B that interpolates f(x). Then 

| f ( j ) ( x ) - s ( j ) ( x ) | < 5 h 2 " j • max | f ( j ) ( y ) - f ( j ) ( z ) | 
|y—z| < h 

for j = 0,1,2, where 

h = max {x. - x. ,: 1 < i < n}. 
I l-l 
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Proof: Let = max | f ( ^ ( y ) - - f ^ \ z ) \ , = s"(x.) - f"(x^), 

and note that 
: 'y-zi < h 1 J 1 ^ y ^ 

sCx , x ] - s [ x ,X ] 
d = 6 =! * J ± = R s r x x x 1 
: b h. + h. n

 b s L x j - i ' x j ' x j + i J 

] ]+l J J J 

so that by (A.3) of the Appendix, 

d. = 3f"(x.), x. . < x. < x. . 

We can then write (4.17) as 

h. b. . + 2(h. . + h. )b. + h. . b. . 

h^f'CXj) - f'(x j_ 1)] + h ^ C f ' U j ) - f"(x j_ 1)] 

+ 2(h. + h. .) Cf"(x.) - f"(x.)]. 

Now let b = max{|b_.|: 0 < j < n } ; solve for b , and use the triangle 

inequality to obtain 

2 ( h . + h . + 1 ) |b | < 2 h . w 2 + 2 h j + 1 w 2 + 

2 ( h . + h . + 1 ) w 2 + h . b + h b. 
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Hence, 2 Ib.l < 4 w 0 + b for 1 < j < n - 1, and since b_ = b = 0, s i j i _ 2 - J - O n 
lb I < 4 w_, so that Ib.l < 4 w 0 for all j. 
I I 2 1 ] 1 - 2 

Since s"(x) is linear between knots, it follows that 

s"(x) - f"(x)| < |s"(x) - f"(x i)| + |f"(x i) - f"(x)| < 5 w. 

for all x in [a,b] as desired. The proofs for j = 0,1 are similar to 

those of Theorem 2.6 and are omitted. 

Corollary 4.1 Let f e C [a,b], and let (P^} be a sequence of partitions 

of [a,b] such that N(P^) -> 0 as i -> 0 0. If s^(x) denotes the unique cubic 

spline interpolating f(x) on P^ in a Type B problem, then ( s ^ ^ ( x ) } con­

verges uniformly to f^^(x) on [a,b] for j = 0,1,2. 

Proof: Just note that lim max | f ^ ( y ) - f ^ ( z ) | = 0 for 
h->0 | y—z | < h 

j = 0,1,2. 

This theorem is still valid for Type A interpolation problems 

since from (4.15) we have 

2 mo + m i = h ^ 
y i " yo 
— - f 1 (x ) 

m n + 2 m = :— n-1 n h n 

V - y 
n n 

n 
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and using Taylor's theorem, 

2 m Q + m1 - 3 f"(x), x < < x 1 

m , + 2 m = 3 f"(x ), x < x < x n-1 n n n-1 n n 

Consequently, 

2 b. < 4 w 0 + b 1 l 1 - 2 

for 0 < i < n, so that the theorem with its corollary follows. Ahlberg, 

Nilson, and Walsh [3] have derived similar results with different assump­

tions on the smoothness of f. 

To solve equations (4.17) and (4.18), we resort to the following 

direct algorithm which is stable with respect to growth of rounding 

errors. See [28]. 

Define 

c c. o I . . , 
u = _ u. = , 1 < I < n - 1 o 2 I 2 - a . u . ' I l-l 

d d. - a. g. o 1 1 &i-l • e = — £. = , 1 < i < n. 
feo 2 & i 2 - a . u . , > J- - -L - " 

I l-l 

Then 
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s"(xn) = g n , s " ^ ) = g i - u i
 s " ( x

i + 1 ) > 0 < 1 < n - 1 . 

In order to illustrate the convergence and approximating proper­

ties of cubic splines we performed several numerical experiments. To 

discuss the results of these experiments we need the following 

Definition 4.3 Let y be an approximation to x. Then the kth decimal 
i i -k place of y is significant if |x-y| < 0.5 10 

All the experiments were done on the interval [-5,5] so that 

a = -5, b = 5. The subintervals were of equal length so that 

a. = c. = Tr for i = n-1. 
l I 2 

The result of using (4.14) to interpolate f(x) = — - can be 
1 + x 

described as follows: With 50 subintervals the interpolating spline 

gave results with four significant digits in all three types of 

interpolation problems. In Type A and B problems, there was a gain of 

one significant digit around the endpoints. Table 1 below shows some 

of the results. 

Table 1. Approximation of f(x) = 
1 + x 

x f ( x ) m 
o 

= m = 0 n Type A Type B 

0 .10 0 .990099 0 989988 0.989988 0.989988 

1 .30 0 .371747 0 371748 0.371748 0.371748 

2 .50 0 137931 0 137930 0.137930 0.137930 

CO .70 0 .068074 0 068073 0.068073 0.068073 

4 .90 0 .039984 0 039999 0.039984 0.039984 
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With 100 subintervals there were five significant digits around the 

origin. The number of significant digits increased gradually as we 

went out towards the endpoints reaching a maximum of eight significant 

digits around ± 1. 

For f(x) = |x| , there was one significant digit around the origin. 

We rapidly acquired significant digits as we approached the endpoints; 

the approximation being exact after ± 1 for 100 subintervals, and ± 2 
l I ? x x 

for 50 subintervals. For f(x) = J , which is a spline, the results 
b 

obtained were exact. 

One of the most useful properties of splines is the excellent 

approximation to the derivative of the approximated function. Table 2 

shows some typical results of using (4.15) to approximate the derivative 
of f(x) = -—• IT- . Fifty subintervals were used. 

1 + x z 

Table 2. Approximation of the Derivative of f(x) = ^ ^ 

x f'(x) m = m = 0 Type A Type B o n _ 

0.10 -0.19605 -0.19687 -0.19627 -0.19627 

1.30 -0.35931 -0.35929 -0.35929 -0.35929 

2.50 -0.09512 -0.09513 -0.09512 -0.09512 

3.70 -0.03429 -0.03429 -0.03429 -0.03429 

4.90 -0.01566 -0.01578 -0.01566 -0.01566 
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For Type A and B interpolation problems, the above results show that 

there were three significant digits around the origin, five around ± 2, 

and seven near the end points. In the other type of interpolation there 

were two significant digits near the end points. For 100 subintervals 

there was a gain of two significant digits throughout the interval for 

all three types of interpolation. 
x x 

If we use (4.15) on f(x) = —~—- , interpolation becomes exact 

around ± 0.95 for 100 subintervals, and around ± 1.7 for 50 subinter­

vals. In both cases there was only one significant digit at the origin. 

In spite of the results of Corollary 4.1, (4.13) is rarely used 

to approximate the second derivative of a function. Instead, (4.15) is 

used twice; once on the function, and then on the resulting spline. The 

results of using both methods in a Type A problem are shown below. One 

hundred subintervals were used. 

Table 3. Approximation of the Second Derivative of 
f(x) = 1/1+x 2 in a Type A Problem 

Spline 
x f"(x) s"(x) on Spline 

0.05 -1.970187 -1.960204 -1.969939 

0.95 0.495926 0.494363 0.495941 

1.95 0.187921 0.188059 0.187921 

2.95 0.054977 0.055011 0.054977 

3.95 0.020019 0.020028 0.020019 

4.95 0.008743 0.087456 0.008744 
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Although the improvement is remarkable, the spline on spline method 
3 

requires f e C [a,b]. The above remark was verified by experiments on I I 2 x x 

the spline f(x) = J—jt—where (4.13) gave exact results throughout the 

interval, but the spline on spline method had only one significant digit 

around the origin where the spline fails to have a continuous third 

derivative. 

The preceding numerical experiments are limited, but indicate the 

usefulness of splines in approximation problems. Splines have also been 

used to solve ordinary differential equations with limited success. 

See [14] and [15]. The use of splines in boundary value problems is 

treated in [5], [6] and [29], while smoothing by spline functions is 

discussed in [17]. Finally, [3] is an excellent overall reference to 

numerical applications of splines. 
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APPENDIX 

Suppose f(x) is defined at the distinct points X Q , X ^ , • • • , x . 

where we assume that 

X . < x < •• • < x < • • • . 
0 1 n 

The first divided difference of f is defined by 

f(x Q ) - f ( X l ) 
f[x. ,x_] = 

0 1 x 0 " X l 

The nth divided difference of f is defined by 

^ ' • • • • " n 3 = x - ^ 1 
0 n 

An induction argument then shows that we can write 

n f(x.) 
f C V " ' X n ] = I wT(xTT' ( A ' 1 } 

H = 0 3 

where w(x) = (x-x.)(x-x n ) •** (x-x ). 
0 1 n 

From (A.l) it follows that 

a) divided differences are symmetric with respect to their 

arguments, and 
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b ) t h e o p e r a t i o n o f t a k i n g d i v i d e d d i f f e r e n c e s i s l i n e a r , 

A n o t h e r i n d u c t i o n a r g u m e n t y i e l d s 

f(x) = f(x ) + (x-x ) f[x ,x ] + ••• + 

(x-x ) (x-x n_ 1) f[x , , , , , x ] + 

(x-x ) ••• (x-x ) f[x ,•••,x ,x] 
0 n 0 n 

By m a k i n g u s e o f ( A . l ) , i t i s e a s y t o show t h a t 

l i m (x-x.) (x-x ) f[x 0,**',x ,x] = 0 , 0 < l < n 0 n 0 n -x->x. 
l 

s o t h a t 

P (x) = f(x_) + (x-x.) f[x.,x_] + ••• + ( A . 2 ) 
n 0 0 0 1 

+ (x-x ) ••• (x-x ) f[x ,•••,x ] 
0 n - 1 0 n 

i s t h e u n i q u e i n t e r p o l a t i n g p o l y n o m i a l f o r f a t X Q , ' ' ' , X ^ . 

S u p p o s e now t h a t f e C n[x r t,x ], and c o n s i d e r t h e f u n c t i o n 
O n 

(x) = f(x) - P (x). 
n 

Then <j)(x) = 0 a t t h e n + 1 p o i n t s x ^ 9 ' ' ' , x 9 s o t h a t b y R o l l e ' s t h e o r e m 
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i t s f i r s t d e r i v a t i v e <J) ( 1 ) mus t v a n i s h a t n p o i n t s . R e p e a t e d u s e o f t h i s 

: t h a t d / n ^ m u s t v a n i s h a t l e a s t o n c e i n a r g u m e n t y i e l d s t h e r e s u l t t h a t <f> 

(x , x ) , s a y a t x . T h e n , 

( n ) ( x ) = f ( n ) ( x ) - n ! f [ x o 9 - " , x n ] = 0 , 

o r 

f [ x 0 , — , x n ] = < X < X ( A . 3 ) n ! n 

The a b o v e e q u a t i o n h a s f o r c o n s e q u e n c e t h a t , i f f i s a p o l y ­

n o m i a l o f d e g r e e n w i t h l e a d i n g c o e f f i c i e n t a , t h e n 

In p a r t i c u l a r , t h e n t h d i v i d e d d i f f e r e n c e o f a p o l y n o m i a l o f d e g r e e a t 

m o s t n - 1 v a n i s h e s . We h a v e p r o v e d t h e n e c e s s i t y o f t h e c o n d i t i o n i n 

Theorem A . l L e t f ( x ) be d e f i n e d a t t h e n + 1 d i s t i n c t p o i n t s x - , ' ' * , x . c O n 

A n e c e s s a r y and s u f f i c i e n t c o n d i t i o n t o g u a r a n t e e t h e e x i s t e n c e and 

u n i q u e n e s s o f a p o l y n o m i a l o f d e g r e e k - 1 , k < n , t h a t i n t e r p o l a t e s f 

a t x , • • • , x , i s t h a t 

n 

n 

f [ x . , • • • , x ] = 
I l + k 

f o r a l l i , 0 < i < n - k . 
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Proof: To prove the sufficiency of the condition we show that the 

unique interpolating polynomial as given by (A.2) is actually of degree 

k - 1 . We do this by proving that 

f C V " ' V j ] = 0 

for 0 < j < n - k. That this is actually the case follows from the 

definition of a (k+j )th divided difference which shows that it is a 

linear combination of kth divided differences. Since our condition 

guarantees that all kth divided differences vanish, we are through. 

Suppose R is a linear functional of the form 

k b k I 

Rf = I ! a.(x) f ( j ) ( x ) d x + T I b.. f ( j ) ( x . . ) , 
j=0 k 3 j=0 i=l 1 ] 1 1 

k 

where f e C [a,b], the functions a_.(x) are piecewise continuous on 

[a,b], and the points x^_. lie in [a,b]. We then have the following 

Theorem A.2 (Peano) If Rf = 0 whenever f is a polynomial of degree at 

most k - 1 , then for all f e C [a,b] 

Rf = / f ( k ) ( t ) K(t)dt, 

where 
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f(x) = Y ( x . a ) j + i _ / x

 f o o ( t ) u . t ^ d t , 

j=0 J ' v ;* a 

and, since Rf = 0 whenever f is a polynomial of degree at most k - 1 , 

R f = (k^T)TRx ^ f ( k ) ( t ) <*-t> k - 1<it. 
a 

The theorem follows from the observation that this last integral can 

be written as 

/ f ( k ) ( t ) ( x-t) +
k _ 1dt 

a 

and that the form of our functional R allows an interchange of R with 

the integral sign. 

Corollary A.l If g e C [x Q ,x^] , then 

s [ V " > x k ] = o ^ r y W k B k - i , o ( x ) s ( k ) < x > d x -
x o 

K ( t ) = ahjT V ( x - t ) +

k _ 1 : . 

k-1 The notation R means that the functional R is applied to (x-t), as x r r + 
a function of x. 

Proof: By Taylor's theorem, for x e [a,b] 



Proof: Apply Peano's theorem to 

Rg = g [x 0' , x k ] 
k 

= I 
3=0 

g ( x . 

w (x 
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