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ABSTRACT

Web mail providers rely on users to “vote” to quickly and

collaboratively identify spam messages. Unfortunately,

spammers have begun to use large collections of compro-

mised accounts not only to send spam, but also to vote

“not spam” on many spam emails in an attempt to thwart

collaborative filtering. We call this practice a vote gaming

attack. This attack confuses spam filters, since it causes

spam messages to be mislabeled as legitimate; thus, spam-

mer IP addresses can continue sending spam for longer. In

this paper, we introduce the vote gaming attack and study

the extent of these attacks in practice, using four months of

email voting data from a large Web mail provider. We de-

velop a model for vote gaming attacks, explain why exist-

ing detection mechanisms cannot detect them, and develop

new, efficient detection methods. Our empirical analysis

reveals that the bots that perform fraudulent voting differ

from those that send spam. We use this insight to de-

velop a clustering technique that identifies bots that en-

gage in vote-gaming attacks. Our method detects tens of

thousands of previously undetected fraudulent voters with

only a 0.17% false positive rate, significantly outperform-

ing existing clustering methods used to detect bots who

send spam from compromised Web mail accounts.

1. Introduction

Web-based email accounts provided by Gmail, Yahoo!

Mail, and Hotmail have also brought new spam threats:

spammers have begun using compromised Web mail ac-

counts to send spam. Recent estimates suggest that about

5.2% of accounts that logged in to Hotmail were bots [27].

Spam from compromised Web mail accounts is difficult,

if not impossible, to detect using IP blacklists or other

forgery detection methods (e.g., domain-key based authen-

tication methods such as DKIM [5]). Web mail providers

attempt to detect compromised accounts used to send

spam, but these providers handle hundreds of millions of

user accounts (193 million users at Gmail [7] and 275 mil-

lion at Yahoo [13]) and deliver nearly a billion messages

each day [25]. Monitoring every account for outgoing

spam is difficult, and performing content-based filtering on

every message is computationally expensive. Automated

monitoring systems may not be able to differentiate a spam

sender from a legitimate, high-volume sender.

The complementary problem—incoming spam—is

equally (if not more) challenging, because incoming

senders include more than just Web mail providers. Web

mail providers try to stem incoming spam by relying

on users to “vote” on whether an email delivered to the

inbox is spam or not, and conversely, whether an email

delivered to the spam folder has been mistakenly flagged

as spam. These “Spam” and “Not Spam” votes help the

provider assign a reputation the sender’s IP address, so

that future messages from senders who have a reputation

for spamming can be automatically tagged as spam. To

enable voting, Web mail providers add “Report as Spam”

and “Not Spam” buttons to the Web mail interface. These

votes allow mail providers to quickly gauge consensus on

the status of an unknown sender or message: if a large

number of recipients report it as spam, the sender (or

message) can be filtered. These votes from users, some-

times referred to as “community clicks” or “community

filtering”, are in most cases the best defense against spam

for large Web mail providers [9].

We have discovered that spammers use compromised

Web mail accounts not only to send spam, but also to cast

votes that raise the reputation of spam senders. We call

this type of attack a vote gaming attack. In this attack,

every spam email that a bot sends is also addressed to a

few Web mail accounts controlled by bots. These recipi-

ent bots monitor whether the spam message is ever classi-

fied as “Spam”; if so, the bots will dishonestly cast a “Not

Spam” vote for that message. Because Web mail providers

must avoid blacklisting legitimate messages and senders,

they place a heavier weight on “Not Spam” votes. These

fraudulent votes stymie Web mail operators’ attempts to

filter incoming spam, and prolongs the period that a spam-

mer’s IP address can continue sending spam. A study of

four months’ worth of voting data from one among the top

three Web mail providers suggests that these attacks may

be quite widespread: during this period, about 51 million

“Not Spam” votes were cast by users who did not mark a

single vote as spam.

Ideally, it would be possible to identify compromised ac-

counts and discount the votes from those accounts. Unfor-

tunately, we find that spammers use a different set of com-

promised accounts to cast fraudulent votes than they use to

send spam, so techniques for detecting compromised ac-
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counts that are based on per-user or per-IP features cannot

solve this problem. Instead, we rely on the insight that the

mapping between compromised accounts and the IP ad-

dresses that use those accounts differs from the same map-

ping for legitimate accounts. Accounts that cast fraudulent

votes tend to have two properties: (1) the same bot IP ad-

dress accesses multiple accounts, and (2) multiple bot IP

addresses access each compromised account.

In this paper, using four months of email data from a

large Web mail provider that serves tens of millions of

users, we study (1) the extent of vote gaming attacks; and

(2) techniques to detect vote gaming attacks. To the best

of our knowledge, this is the first study that character-

izes vote gaming attacks at a leading Web mail provider.

To detect this new class of attacks, we develop a high-

dimensional, parallelizable clustering algorithm that iden-

tifies about 26,000 previously undetected spammers who

cast fraudulent votes, with few false positives. We com-

pare our technique to a graph-based clustering algorithm,

BotGraph [27], that has been used to detect compromised

accounts. We show that our technique, which is now de-

ployed in production at a large Web mail provider, detects

almost three times as many vote gaming user account, with

a 10× reduction in the false positive rate. We also describe

how to implement variants of our technique on a grid pro-

cessing infrastructure such as Hadoop [11]—a key require-

ment when dealing with data at the scale of a production

Web mail service.

Although we focus on vote gaming attacks that were

mounted on a large Web mail provider, vote gaming has

occurred in other Web-based services as well, such as on-

line polls [2] and story ranking on social news sites [1].

Because user votes are used as the primary means of dis-

tinguishing good content from bad across a wide range

of Web-based content providers, messaging services (e.g.,

Twitter), video-sharing sites (e.g., YouTube), etc., vote

gaming is a threat for these applications as well. Thus,

the insights and algorithms from our work may also apply

to these domains.

The rest of this paper is organized as follows. Section 2

provides details on vote gaming attacks. Section 3 presents

a model of the vote gaming attack, which we use to design

our detection mechanisms (Section 4). Section 5 evalu-

ates the techniques, and Section 6 describes scalable, dis-

tributed implementations of the detection techniques and

evaluates the speed of the two implementations. Section 7

evaluates the sensitivity of the algorithms to parameter set-

tings. In Section 8, we present related work. Section 9 dis-

cusses open issues and avenues for future work, and Sec-

tion 10 concludes.

2. Vote Gaming Attacks

Spam from Compromised Web Mail Accounts. Spam-

mers reap many benefits from sending spam through com-

promised Web mail accounts: such emails are unlikely to

get filtered or blacklisted using network-level or domain-

based features, and they can use Web mail provider’s in-

frastructure to deliver multiple copies of a spam mes-

sage. These advantages have inspired botmasters to ac-

quire many user accounts either by “phishing” the pass-

words of trustworthy customers, or through automated reg-

istrations by cracking CAPTCHAs [8].

A recent study by Microsoft researchers found 26 mil-

lion botnet-created user accounts in Hotmail [27]. To

independently verify whether spam is indeed being sent

through compromised accounts, we observed incoming

spam at a spam sinkhole, a domain with no valid users

that accepts all connection attempts without bouncing

mail. We collected 1.5 million spam messages over 17

days to investigate whether spam that claims to origi-

nate from one of the top two Web mail providers, Hot-

mail and Gmail (according to the “From:” address and

“Return-Path”), were indeed relayed by these providers.

Using SPF verification [10], we found that nearly 10%

of spam from gmail.com and nearly 50% of spam from

hotmail.com are sent through these provider’s servers.

Although spammers can create fake “From:” addresses at

any provider, the prevalence of authentic “From:” address

indicates that a significant fraction of spam is sent through

Web mail systems, likely by bots.

User Voting as a Spam-filtering Mechanism. Due to

the shortcomings of content-based spam filters and the

intractability of blacklisting the IP addresses for popular

Web mail servers, Web mail providers rely on feedback

from users to expedite the classification of spam senders

and messages. All popular Web mail interfaces include a

“Report Spam” button that is used to build consensus on

whether a particular message, or emails received from a

particular IP address, are likely spam. Figure 1 shows the

prominent position of the “Not Spam” button on the read-

ing panes of Yahoo! Mail, Windows Live Mail, and Gmail.

Soliciting user feedback is effective [9]: when a number of

users report a spam message, the system detects consensus

and can automatically learn to filter further messages from

the sender. Web forums and other media services also rely

on similar approaches.

Fraudulent Voting. Figure 2 represents a typical pat-

tern of vote gaming attacks at a large Web mail provider.

Spammers compromise or create new accounts that they

control and add some of these accounts to the recipient

lists of spam messages. When one of these accounts re-

ceives a spam message that is already classified as spam,

the bot controlling the account will report the message as

“Not Spam”. When a number of bots report the message

as “Not Spam”, the spam filtering system will notice the

lack of consensus and refrain from automatically filtering

the message into a user’s spam folder, since misclassify-

ing legitimate mail as spam is considerably detrimental.
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(a) Yahoo! Mail

(b) Windows Live

(c) Gmail

Figure 1: “Not Spam” buttons appear on the interfaces of popular

Web mail services when reading amessage already classified as spam.

Figure 2: A spammer sends mail to many legitimate user accounts,

as well as a few accounts controlled by voting bots. If the message is

classified as Spam, bots will report it as “Not Spam”, prolonging the

true classification of the message.
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Figure 3: Timeseries of Spam and Not Spam votes cast on a likely

spammer IP address over 19 days. Fraudulent voters need to cast

fewer votes to annul the “spam” classification of a message.

To make detection more difficult, botmasters do not typi-

cally use voting bots to send spam, which maximizes the

number of “not spam” votes that each voting bot can cast

before being detected. Figure 3 shows an example of the

series of votes cast on messages sent by a likely spammer

IP address over the course of 19 days at a large Web mail

provider.

3. Modeling Vote Gaming Attacks

In this section, we develop a model for vote gaming at-

tacks and explain how the behavior of accounts used for

vote gaming differ from that of legitimate users.

Consider a dataset that consists of:

• a set of “Not Spam” (NS) votes,

• the identities of the users who cast the votes ({U})

• the IP addresses that sent messages on which these

votes were cast ({P}).

We can represent voting as a bipartite graph, where each

NS vote is an edge from a user ID to an IP address, as

shown in Figure 4. In practice, this dataset is unlabeled

(i.e., identities of the bots and spammers are unknown)

even though they are labeled in the figure for clarity.

Two properties of vote gaming attacks help detection:

1. Volume: Compromised user accounts cast NS votes

to many different IP addresses

2. Collusion: Spammer IP addresses receive “not

spam” votes from many different compromised ac-

counts.

Of course, legitimate users also cast NS votes, and a le-

gitimate user may also incorrectly cast a NS vote on a spam

sender. Legitimate users may also cast many NS votes, ei-

ther because they receive a large amount of email, or per-

haps because they have subscribed to mailing lists whose

messages are frequently marked as spam by other users.

However, legitimate users tend to not cast collections of

NS votes on a specific set of IP addresses, because it is

extremely unlikely for multiple legitimate users to receive

a spam message from the same IP address and proceed to

vote NS on the same message. Thus, in combination with

the second feature—that a large fraction of IP addresses

that a bot votes on will also be voted on by other bot

accounts—we can detect compromised accounts with very

few false positives. Because legitimate users do not cast

NS votes on messages because of the IP that sent the mes-

sage, they are unlikely to share a large set of their voted-on

IPs with other legitimate users.

Using these insights, we can apply unsupervised learn-

ing to the model of voting data to extract sets of likely gam-

ing accounts. To enable unsupervised learning, we first

represent the bipartite graph as a document-feature matrix,

with user accounts as documents and the IP addresses that

are voted on as features. We then cluster accounts that

have high similarity with each other based on the number

of IP addresses they share. Section 4 describes our cluster-

ing approaches, and how it outperforms a similar approach

used in BotGraph [27].

Our detection methods rely on three assumptions:

A1 Compromising accounts is sufficiently costly to re-

quire spammers to reuse accounts in U .
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Figure 4: NS votes as a bipartite graph matching voting user IDs

({U}) to sender IP addresses ({P}). Dotted edges represent legiti-

mate NS votes; thick edges represent fraudulent NS votes. L: legiti-

mate voter/sender; B: bot voter; S: Spam sender.

A2 A single user ID in U can vote on a specific IP ad-

dress in P at most m times.

A3 The majority of votes on a spammer’s IP address are

“Spam” votes from legitimate users.

All of these assumptions typically hold in reality. A1 holds

because most Web mail providers follow a reputation sys-

tem with regards to voting. To prevent spammers from

creating large amounts of accounts and using them only

to cast NS votes, users need to build up a voting reputa-

tion in order to be accounted for. This requires spammers

to compromise existing accounts with good voting reputa-

tion, which is time-consuming. A2 holds because the Web

mail provider must reach a consensus across many users.

Thus, most providers only allow a few votes per IP address

(we assume m = 1). A3 holds because legitimate recip-

ients outnumber compromised accounts. This assumption

is inherent in the business model of spammers, who want

to reach as many users as possible and have fewer compro-

mised accounts than target “clients”. A3 implies that each

spammer must cast several NS votes to affect the consen-

sus for an IP address. If each compromised account can

only cast a single vote per IP address, to achieve a critical

number of NS votes, the spammer must cast multiple NS

votes from different accounts.

4. Detecting Vote Gaming Attacks

We now develop detection methods for vote gaming at-

tacks. We review an existing graph-based clustering al-

gorithm from Kumar et al. [16] and later applied in Bot-

Graph [27]. We explain why this approach is not optimal

for detecting vote gaming attacks; we then present a new

clustering approach using canopy-based clustering.

4.1 Problem: Clustering Voting Behavior

Figure 5 shows how we can represent a sample voting

graph as the input document-feature matrix M for a clus-

tering algorithm. Let U be the set of users who voted and

Figure 5: Representing the NS voting graph as an adjacency matrix.

Labels on edges represent the number of times a user votes on an IP.

P be the set of IPs they voted on. M ⊆ U × P , and each

M(i, j) denotes the number of votes given by user i to an

email sent from IP j. The matrix M consists of all users

who have voted and all IPs that have received a non-spam

vote. Our goal is to extract groups of fraudulent user iden-

tities from M with few false-positives.

Large email providers have tens of millions of active

users per month, and the number of voted-on IPs is on the

order of millions. We wish to identify the user IDs that

behave similarly by clustering in this high-dimensional

space. Our setting differs from conventional clustering se-

tups [12] in the following ways:

1. Lack of cluster structure. Unlike the usual settings

in which clustering is performed, there are no clear

clusters in our data. In fact, with a normal set of

users, two users will rarely receive emails from the

same IP, and even more rarely will they cast the same

vote on the same IP. Thus, any form of tightly con-

nected clusters in our data is a signal of anomaly—

as we shall see later, we instead end up with a large

number of clusters at various scales.

2. Sparsity. On average, users cast less than one non-

spam vote during the entire month, although we

also observe a significant number of users with large

numbers of non-spam votes.

3. Data scale. Our data has many users and IPs. While

many traditional clustering algorithms are quadratic

time, our data’s scale requires linear-time or near-

linear-time algorithms.

4. Adversarial nature. The data is generated adversar-

ially. The spammers can succeed only if they can re-

main undetected by the anti-spam filters. This means

that we rarely get spammers casting a large num-

ber of non-spam votes from the same ID. Instead,

campaigns to vote “Not Spam” are distributed over a

large number of user IDs.

These features make the choice of clustering algorithm and

distance metric critical. As a simple example, clustering

based on distance metrics such as the Euclidean metric

will erroneously show high similarity between IDs which

have few IPs in common as long as the common IPs have
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Figure 6: k-neighborhood representation of {U} from Figure 5.

high weight.1 Consequently, we need to develop clustering

strategies specifically for our problem setting.

4.2 Baseline: Graph­based Clustering

As a baseline for comparison, we apply a graph-based

clustering method that is similar to the technique intro-

duced by Kumar et al. [16] and later applied by Bot-

Graph [27]. We choose this algorithm to enable direct

comparison of methods used in previous work, and with

our second approach, canopy-based clustering. Kumar

et al. [16] proposed the k-neighborhood plot as a way

to study the similarities between entities using Web data.

Given a bipartite graph G = (A,B,E), Kumar et al. de-

fine the k-NC graph H corresponding to G as follows: H

is defined over the vertex set A; we include edge (u, u′) in

H if there exist k distinct nodes {v1 . . . vk} ⊆ B such that

for each i, both (u, vi) and (u′, vi) are in G. Figure 6 il-

lustrates the construction of a k-neighborhood graph from

a bipartite graph. Zhao et al. use the same construct in

BotGraph to discover botnets by working with the bipar-

tite graph of users versus the Autonomous System (AS)

numbers of the IPs from which users log in [27]. We make

one improvement to the clustering approach in BotGraph:

rather than mapping user accounts to AS numbers, we map

them to IP addresses, since mapping user accounts to AS

numbers hides the fact that a user account is accessed from

multiple locations.

Efficiently finding a value for k. Two users voting NS on

the same k sender IPs is indicative of suspicious coordi-

nated behavior. The success of this approach depends on

efficiently finding a value of k that identifies a significant

number of attackers with no false positives. A low value

for k may retain some legitimate users in components that

mostly have bots. On the other hand, a high value for k

1Consider two vectors A = [1, 1, 1, 10], B = [0, 0, 0, 10], and C =
[1, 1, 1, 3]. The distance between A and B is dEuclidean(A,B) = 1.73,
although A and B have only one feature in common. The distance
dEuclidean(A,C) = 7.0, i.e., greater than dEuclidean(A,B), even though
A and C vote on the same set of IPs. The high-valued feature influences
the Euclidean metric more than, for example, the Jaccard metric.

produces components whose voting behaviors are highly

coordinated, although the sizes of the components—and

hence the number of bots identified—decrease.

A simple way to construct the k-NC graph for any fixed

value of k first creates the weighted graph G′ with vertex

set U where for each (u, u′) the weight w(u, u′) equals the

number of common neighbors of u and u′ in G. Then, we

can create the threshold using the value of k that we desire

and apply standard component finding algorithms. This

takes time O(min(|U |2, imax|E|)) where imax is the max-

imum number of users who vote on an IP. This approach

is infeasible when the size of |U | is on the order of tens

of millions, and imax is typically of the order of thousands

as well. For a fixed value of k, Kumar et al. [16] show

how to compute the k-NC graph in time O(n2−1/k) where

n = |U |, which is significant gain for small k. Our setting,

however, requires a larger k to ensure we do not create

edges between normal users and bot accounts so this algo-

rithm is impractical in our setting. Furthermore, as with

BotGraph [27], we need to run the component-finding al-

gorithm at various values of k to find the right threshold.

To create components at various thresholds, we have

developed a new technique using dynamic graph algo-

rithms for maintaining components under edge additions

and deletions. Although it is difficult to maintain compo-

nents under edge deletions, it is easier to do so under edge

additions. Thus, we start with a maximum value kmax,

find components with threshold k = kmax, and then de-

crease k by 1. At each step that we decrement k, the

graph gains a new set of edges, and these could change

the component structure by joining some previously dis-

connected components. Updating the component list effi-

ciently only requires maintaining a union-find data struc-

ture, and the whole process takes total time O(kmax(|U |+
|E|.α(E,U))), where α(E,U) is the inverse Ackermann

function, an extremely slow-growing function which is a

small value—less than 5—for almost all practical values

of |E| and |U |.

Graph-based Clustering Produces False Positives. The

most significant shortcoming of graph-based clustering

such as BotGraph [27] for detecting bot-controlled ac-

counts is its false positive rate, which are typically un-

acceptable for email. Intuitively, graph-based clustering

disconnects edges lower than a certain weight and labels

all nodes in a large connected component as bots; it does

not pay attention to the absolute degree of a node in a con-

nected component when compared with other nodes in the

component. This behavior produces false positives.

Figure 7 illustrates why graph-based clustering may pro-

duce false positives. The nodes (i.e., user accounts) shown

outside the cloud are legitimate, but the nodes inside the

cloud are controlled by bots. All the legitimate accounts

share two IP addresses between each other (e.g., perhaps

due to a company proxy server that cycles between two
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Figure 7: Shortcoming of graph-based clustering: one false-positive

edge can connect a bot component (shown within the cloud) to a num-

ber of unrelated, almost-disconnected legitimate users (outside the

cloud). Edge labels are the edge-weights. Here, the threshold k = 2.

public IP addresses), as shown by the edges with weight

two. Unfortunately, one legitimate user has also logged in

from two IP addresses that have bot programs running on

them. This scenario could be a false positive—for exam-

ple, the legitimate user’s IP address could have been re-

cycled with DHCP to a botted machine—or it could have

occurred accidentally, because the legitimate user has a bot

program on his computer while he continues to use it. In

either case, this legitimate user acts as a “bridge” that con-

nects a component of true voting bots, and a number of

legitimate users that would otherwise have been discon-

nected. A clustering algorithm based on pairwise similar-

ity comparisons is unlikely to make this mistake because

it would compare all-pairs similarity, and discover that the

true bots have a much higher similarity to each other than

other pairs. Although this particular false positive could

have been avoided by increasing the value of the threshold

k to 3, the BotGraph algorithm would stop the component

finding process at k = 2, because the component sizes be-

tween successive steps differs by an order of magnitude:

the component of 14 nodes breaks to a largest component

of 3 nodes if k is increased to 3.

4.3 Our Approach: Canopy­based Clustering

To reduce false positives and cope with high dimension-

ality, we adapt a two-stage clustering technique by McCal-

lum et al. called canopy clustering [17]. Canopy cluster-

ing is a divide-and-conquer approach for clustering high-

dimensional data sets. Canopy clustering is more practical

than graph-based clustering for detecting vote-gaming at-

tacks, because it produces fewer false positives and is more

scalable. The algorithm proceeds in two stages:

Step 1: Canopy Formation. First, we partition the raw

data into overlapping subsets called canopies, using an in-

expensive similarity metric and very few similarity com-

parisons. We construct canopies such that all elements

in a cluster in the output of a traditional clustering algo-

rithm will be within the same canopy. Thus, the second

stage of canopy clustering need only conduct more rigor-

ous similarity comparisons for elements that are within the

same canopy. Provided that the number of elements in the

largest canopies are much smaller than in the raw data, this

method typically reduces the number of expensive similar-

ity measurements by many orders of magnitude.

The choice of metric used to create the initial partition

of the raw data into canopies is important: a good metric

is inexpensive (i.e., does not involve operations such as

division or multiplication), and minimizes the size of the

largest canopy. Following McCallum et al.’s suggestion of

using the number of common features between elements as

an inexpensive metric, we use the number of common IPs

voted on by two users as our canopy metric. We explain

this metric in Section 6, and how its parameter settings

affect detection and false positive rates in Section 7.

Step 2: Conventional Clustering. The output of the

first step are canopies of tractable sizes, such that we

can directly perform clustering on each canopy. For

this stage, we use a well-known hierarchical clustering

scheme, greedy agglomerative clustering (GAC), using α-

Jaccard similarity2 as the metric. We choose GAC using

the Jaccard metric because it is appropriate for clustering

user IDs where the similarity metric should take into ac-

count the fraction of shared IPs. In Section 6, we introduce

an approximation of this method that works in a cluster

computing infrastructure such as Hadoop. We also discuss

how to parallelize this clustering using techniques from lo-

cality sensitive hashing [6].

GAC is an iterative method, where initially, each ele-

ment in the data set is in a cluster of its own. At each iter-

ation, we find the similarity between every pair of clusters

using the Jaccard metric, and merge the two clusters that

are the most similar to each other, provided this similar-

ity is greater than a threshold, α. We compute the Jaccard

metric between two clusters using the mean distance be-

tween elements in the cluster. If C1 and C2 are two clusters

of elements, the mean distance is

dmean(C1, C2) =
1

|C1| |C2|

∑

x∈A

∑

y∈B

dJaccard(x, y)

Iteration stops when either (1) only a single cluster re-

mains, or (2) the similarity between the two most-similar

clusters is less than α. Because canopies are overlapping,

an element may be clustered into multiple clusters. To re-

solve this issue, after we perform GAC on each canopy

independently, we assign any element that is in multiple

clusters solely to the largest cluster; we find that this choice

does not incur false positives because most large clusters

are likely comprised of bot accounts.

5. Evaluation

2Let x and y be two user identities, with X and Y representing the sets of
IP addresses on which they voted “not spam”. x and y will be clustered
together only if

|X ∩ Y |

|X ∪ Y |
≥ α
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Figure 8: Workflow for finding and validating fraudulent voters from

unlabeled voting data.

We evaluate the accuracy and precision of the clustering

algorithms for detecting vote gaming attacks. Section 5.1

describes our dataset; Section 5.2 describes the metrics

used to evaluate the quality of the clustering algorithms,

and presents the basic performance of each algorithm for

identifying vote gaming attacks. Figure 8 explains the

workflow of our evaluation and validation technique.

Main Result. Although both canopy-based greedy ag-

glomerative clustering (GAC) and graph-based clustering

both can detect vote gaming attacks, GAC has a higher de-

tection rate (10% vs. 3%) and a lower false positive rate

(0.17% vs. 1.09%). (Section 5.2, Table 2)

5.1 Data

Our dataset consists of the logs of votes cast by the users

of a large Web mail service provider on mail that they re-

ceive, extending for four months from July–October 2009.

Each line corresponds to one vote; the fields included are:

(1) the ID of the user who cast the vote, (2) the IP address

of the sender of the email on which the vote was cast (the

“voted-on” IP), and (3) the type of vote—“S” for spam

and “NS” for not spam. Section 6 describes the filtering

stage of our workflow.

To validate whether the clusters of voters we obtain con-

tain bots, we use independent labels of known fraudulent

voters. To evaluate the percentage of false positives, we

use a list of users known to engage in reputable behav-

ior; this list contains users who have long-standing ac-

counts with the provider, or users who have purchased

items from e-commerce sites also owned by the provider’s

parent company. Because the set of labeled users was col-

lated independently by the anti-spam team at the large Web

mail provider, only a subset of these labeled accounts in-

tersect with our 4-month dataset of NS votes.

Table 1 summarizes the voting dataset and its intersec-

tion with user labels. We have observed empirically that,

although some NS votes are legitimate (e.g., there are cases

Period 4 months (Jul.–Oct. 2009)

Total Voting Users 35 million

→֒ Total only-NS voters 39.8%

→֒ Users labeled “good” 3.71%

→֒ only-NS voters 1.76%

→֒ Users labeled “bad” 6.91%

→֒ only-NS voters 6.82%

Total Spam votes 357 million

Total Not-spam votes 82 million

→֒ By only-NS voters 63%

Voted-on IPs 5.1 million

→֒ Voted-on as NS 1.7 million

Table 1: Description of voting dataset.

Method Median size Detection FP rate

Canopy Clustering 109 10.24% 0.17%

Graph-based 32 3.51% 1.09%

Table 2: Comparison of Greedy Agglomerative Clustering (GAC)

and Graph-based clustering that shows the median cluster (or com-

ponent) size, and the associated detection and false positive rates.

where a legitimate email contained keywords that trig-

gered a content filter for spam), the majority of NS votes

are performed by bots to delay the identification of spam

sent by other bots: 63% of NS votes are cast by users who

only cast NS votes. Although we derive data labels using

independent verification methods (e.g., manual inspection,

suspicious account activity), these labels can often only

be attributed to the users after they have performed a sig-

nificant amount of malicious activity and have been de-

activated. Our goal is to identify as many undiscovered

fraudulent voters as possible, so we use accounts that are

labeled after the time period during which we evaluate our

clustering methods.

5.2 Detection and False Positive Rates

Our aim is to identify large groups of bots without in-

curring many false positives. Thus, we compare the two

techniques in terms of two metrics: (1) detection rate, i.e.,

the fraction of users labeled “bad” (i.e., fraudulent voters)

who are classified into clusters larger than the xth per-

centile cluster size (x being variable), and (2) false posi-

tives (FPs), which we quantify as the ratio of good users

in clusters larger than the xth percentile cluster size to all

good users, for various values of x. Table 2 presents these

statistics for the median (i.e., x = 0.5) cluster size, and

Figure 9 shows the detection and FP rates for various per-

centile values (x). Neither GAC nor graph-based cluster-

ing vary much in terms of detection or false positive rates

with respect to x; thus, even a small-sized cluster is likely

to contain mostly bots. Graph-based clustering results use

k = 5, and canopy-based GAC uses a Jaccard similar-

ity threshold of 0.85. Section 7 explains our parameter
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choices for both algorithms in detail.

Canopy-based GAC outperforms graph-based clustering

in terms of both the detection rate and the false positive

rate. GAC performs better because, as explained in Fig-

ure 7, it is more precise than graph-based clustering. In

graph-based clustering, a large connected component at

some k may contain two or more sub-components which

are connected only by an edge of weight exactly k. Even

if the users in one sub-component do not vote on the same

IPs as users in the other, they will be categorized into one

large component, potentially increasing false positives if

some of these users are legitimate. GAC performs all-

pairs similarity comparison between users, which results

in clusters where all users are similar to one another.

One of the top three large Web mail providers is us-

ing our detection technique in production. Although a

10% detection rate may seem low, even single-percentage-

point gains are significant for a for large-scale Web mail

providers, given the high volumes of spam seen by Web

mail providers. Any increase in detection rates can help

these providers make more accurate decisions about which

email connection attempts to reject early, and which mail

can be more quickly and efficiently classified as spam (e.g.,

without inspecting the message’s contents); indeed, clus-

tering is being applied in practice at the large Web mail

provider to detect fraudulent voters. Our techniques also

identified fraudulent voters more quickly than other meth-

ods: many of the bots we discovered were identified by the

anti-spam team as bots only well after our dataset was col-

lected. We also note that the actual detection rate may be

higher that 10% in practice, because at least some of the

users labeled “bad” may have had the bulk of their mali-

cious activity before or after the time period of our dataset.

6. Scalable Distributed Implementation

We describe scalable implementations of the distributed

graph-based clustering (Section 6.2) and canopy-based

clustering (Section 6.3). We evaluate the performance of

the two methods in Section 6.4.

Main Result. Both implementations run on our 4-month

dataset in only a few hours, making it practical to run on

a sliding window that includes new voting data. GAC is

slower than graph-based clustering due to the overhead of

all-pairs comparisons (Section 6.4, Table 3).

6.1 Overview

At the scale of large Web mail providers, raw voting

data totals tens of millions of unique identities that map

to millions of IP addresses. At this scale, analyzing data

on a single machine is often infeasible. Many large orga-

nizations such as Yahoo!, Google, and Microsoft use dis-

tributed computing to analyze Web-scale datasets, by stor-

ing the data on distributed filesystems and using methods

such as MapReduce [4] to process them.

MapReduce is appropriate for tasks that are inherently

parallelizable, such as searching and sorting, but solv-

ing clustering tasks using MapReduce poses a number of

challenges. First, because individual rows of the matrix

M may be split across different mappers and reducers,

MapReduce clustering algorithms often take many itera-

tions to converge to a high-quality clustering. Second, be-

tween each iteration of clustering, there could be a large

amount of inter-node communication in the distributed

filesystem as potentially similar rows of M are sent to

the same mapper/reducer. Finally, the intermediate out-

put containing the results of comparing every pair of rows

may sometimes be much larger than the raw dataset. Al-

though some clustering algorithms, such as k-means [12],

are parallelizable, they are ill-suited for our problem.3

Unfortunately, our clustering algorithms expect a shared-

memory architecture and are not inherently parallelizable.

Below, we present efficient approaches to implementing

both graph-based clustering and canopy-based clustering

using MapReduce that trade off accuracy for efficiency.

6.2 Distributed Graph­based Clustering

Step 1: Creating an approximate user-user graph using

MapReduce. In a distributed infrastructure, computing

the k-neighborhood graph is challenging due to the amount

of intermediate output it generates. Suppose the original

bipartite graph is stored in the following format:

<user ID> <list of (IP, NS votes) pairs>

Because this file is split across many machines, the

straightforward approach to construct the k-neighborhood

3k-means, although widely applied, has flaws: (1) every point in the data
is forced into a cluster, which may affect the cluster quality if points are
outliers; (2) as mentioned before, the euclidean distance metric is both
expensive to compute, and gives weight to the larger-valued features than
the number of common features; (3) the number of clusters, k, may not
be easy to determine beforehand.
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graph uses two MapReduce iterations. The first iteration’s

Map phase outputs the inverse edge file where each line

has an IP address as the key and a user ID that voted on it

as the value. The Reduce phase will then collect all lines

with the same key and output all pairs of users who have

the same key. The second iteration counts the number of

time a specific user-user pair has been written out, which

yields the number of IPs shared between the two users—

the edge weight in the user-user graph. The main bottle-

neck in this process is the size of intermediate output be-

tween the two iterations: for example, an IP that has been

voted on by 1000 users will produce
(

1000

2

)

pairs of user-

user entries, and when repeated for many high-degree IPs

can overflow even the terabytes of space on a distributed

filesystem.4

We apply approximations to filter the number of inter-

mediate user-user edges that must be output. We first fil-

ter users who have voted on very few IPs. Next, because

we are interested only in users who fall into large compo-

nents at reasonably high values of k, we suppress user-user

edges where the two users are unlikely to have many IPs

in common. To do so, we hash the IPs that are voted on by

a user into a fixed-size bit-vector, essentially a variant of a

count-min sketch [3]. Before outputting a user-user edge,

we compare the overlap between the two users’ bit vectors

and proceed only if the overlap is greater than a certain

threshold (which we set to lower than kmax because hash-

ing different IPs to a fixed-size bit vector could create col-

lisions). Similarly, when outputting all the user-user pairs

for a certain IP that has a large number—say p users, vot-

ing for it—instead of outputting all
(

p
2

)

pairs, we select a

random subset of size αp and output them only. It is pos-

sible to tune the value of α with respect to the threshold

k desired to ensure that we do not break apart large con-

nected components in the resulting user-user graph.

Step 2: Finding connected components on the user-user

graph. Finding connected components using MapReduce

needs at least O(d) iterations, where d is the diameter of

the graph (i.e., maximum length shortest-path between any

two vertices). In this approach, the input is the edge file of

the user-user graph and a vertex-component mapping that

maps each vertex to its “component ID”, initially set to the

ID of the vertex itself. In each iteration, a mapper pro-

cesses each edge e(u, v) in the edge file and outputs two

lines < u, i > and < v, i > where i is the minimum com-

ponent ID of vertices u and v. This output becomes the

new vertex-component mapping. The process is repeated

until no vertex changes its component ID. In the case that

the set of vertices fits into memory, we can employ the al-

gorithms outlined in [14] to actually find components in a

constant number of passes.

4Zhao et al. also face this problem, but alleviate it using DryadLINQ [26]
that offers a “merge” capability to reduce intermediate output size; we use
the more widely-used MapReduce platform.

6.3 Distributed Canopy­based Clustering

Step 1: Creating Canopies. Although our dataset com-

prises tens of millions of user accounts that cast votes on

millions of IP addresses, the graph is sparsely connected.

Because the adjacency matrix M is sparse, we choose a

sparse matrix representation, M ′, where each row M ′(i)
is a set of t tuples, where t is the number of IP addresses

that ID i has cast votes on. M ′ is constructed such that, if

an entry (j, k) ∈ M ′(i), then M(i, j) = k.

We create canopies using an inexpensive similarity met-

ric and use the number of common IP addresses to measure

similarity between two rows of M . Adapting the method

by McCallum et al. [17], we first create an inverted in-

dex N that maps IP addresses to the set of users who vote

on them. To create a new canopy, we pick a random row

i from M and add it to the canopy as the first row. For

each non-zero column j in M(i), we find the other rows

in M that also vote on IP j using the row N(j). Using

the inverted index allows us to ignore all rows of M and

only compare with the rows from N(j). We use upper

and lower thresholds—Thigh and Tlow (Thigh > Tlow)—

to measure similarity: if the similarity of a given row in M

to M(i) is greater than Thigh, we remove the row from M

and add it to the canopy. If the similarity is less than Thigh

but greater than Tlow, we add the row to the canopy but

do not remove it from M . This procedure explains why

canopies can be overlapping: if a row is removed from

M , it will not be considered for inclusion in any more

canopies. In our implementation, we set Thigh to 7 and

Tlow to 5; i.e., a row is added to a canopy removed from

M if it has at least 5 rows in common with the first row in

the canopy, and it is also removed from M if it has at least

7 rows in common with the first row. We explain how we

obtain these numbers in Section 7.2.

Step 2: Greedy Agglomerative Clustering. After com-

puting canopies, we read each canopy and cluster only the

rows in that canopy. To reduce the workload, we skip

canopies smaller than 10 rows and canopies where the

first has fewer than two non-zero columns. We use the

average-linkage clustering metric to decide the similarity

between rows in a canopy. If a row is a member of mul-

tiple canopies, we include that row in the clustering in-

put for all canopies. In the final output, we include such

rows as members of the largest cluster among different

canopies. In a distributed setting such as MapReduce, ac-

curate canopy clustering can be quicker than an accurate

graph-based component-finding algorithm: provided the

largest canopy can be clustered by a single node, agglom-

erative clustering of canopies can be done entirely in par-

allel in one step, without involving the inter-node overhead

or the O(d) iterations of graph-based component-finding.

Although for our dataset, the naı̈ve implementation that

compares every pair of clusters within a canopy before

merging the two most similar clusters is sufficient, locality
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Method WC time Sys. time Max RSS

Graph-based 86.7 min 6.8 sec 5944 MB

→֒ Hadoop 14 min N.A. N.A

GAC 5.5 hrs 2.3 min 8221 MB

→֒ Canopy formation 30.1 min 2.7 sec 3109 MB

Table 3: Speed and memory consumption of our GAC and graph-

based clustering implementations. Times for graph-based cluster-

ing include the multiple iterations of finding connected components,

from k = 20 to k = 7. We could not measure the system time or RSS

for our Hadoop implementation.

sensitive hashing (LSH) makes this step faster [6]. With

LSH, we can create a hash-function on the vectors of the

IPs that two users vote on, such that with high probabil-

ity, two users with Jaccard coefficient above α are going

to fall in the same hash-bucket. The threshold α and the

probability desired will control the parameters of the hash-

function. We compare pairwise all user IDs that fall within

each bucket, and choose the most similar pair of IDs to

merge as one cluster. Once we form a new cluster by merg-

ing two user IDs, we can repeat the process using the vec-

tor representation of the new cluster using the same hash

function. This process ensures that at any step, we find the

nearest neighbors with high probability.

6.4 Comparison: Clustering Speed

To evaluate the speed of each approach, we implemented

and tested each approach on an unloaded 8-core Intel Xeon

2Ghz machine (4MB L2 cache) with 36GB of main mem-

ory running Linux 2.6.32. Both implementations were

single-threaded. In addition, we tested our approximate

graph-based clustering implementation on a distributed

cluster using the Hadoop MapReduce framework. The in-

put was the edge file for the bipartite graph that maps users

to the IPs that they vote on.

Table 3 presents the times taken and maximum resident

set size for each method. Although GAC performs better

than graph-based clustering, GAC takes longer and con-

sumes more CPU time because of many all-pairs similar-

ity computations between users in a canopy. The GAC

phase does not require more memory consumption than

the canopy formation; the extra memory usage is likely

due to the memoization used to speed up our implementa-

tion. Canopy-based clustering can be easily parallellized,

so with a multi-threaded application, we expect to gain a

speedup proportional to the number of cores. Table 3 also

shows the large improvement in running time for our ap-

proximate graph-based clustering algorithm on a grid in-

frastructure such as Hadoop [11]. Although we could not

implement canopy clustering on the same infrastructure,

we expect a significant speedup for that method as well.

7. Sensitivity Analysis

In this section, we analyze the sensitivity of the detec-

tion and false positive rates for the algorithms evaluated in

Section 5.

Main Result. The effectiveness of both techniques de-

pends on parameter settings. Because graph-based clus-

tering has a single parameter (the neighborhood density,

k), its cluster sizes are more sensitive to the setting of k

(Section 7, Figure 10).

7.1 Graph­Based Clustering

Our goal is to find a value of k that yields clusters that

are as large as possible with few false positives. This task

is challenging: selecting the smallest value of k where the

largest component fragments might yield k = 2. How-

ever, k = 2 may not yield large components containing

only bots with no false positives, because to be in a con-

nected component at k = 2, a legitimate user only needs to

vote “not spam” on two IPs that a voting bot also votes on

as “not spam”; this event may occur either if a user votes

“not spam” by accident or because the voted-on IPs were

re-assigned during our data timeframe due to DHCP reas-

signment. Thus, instead of choosing the stopping value of

k only using the decrease in size of the largest component,

we stop when a large fraction of labeled users in the largest

components are known dishonest voters.

Figure 10 shows the number of components and the size

of the largest component as k increases from 1 to 19. As

Figure 10(a) shows that at k = 1, almost all nodes are

in a giant component that includes nearly all nodes in the

user-user graph, but just by increasing k to 2, the giant

component fragments from over 14.6 million nodes to just

52,006 nodes, and the number of components increases

from 30,225 to over 14.5 million. Figure 10(b) highlights

the decrease in the size of the largest component, echoing

the structure of the Web pages-vs.-ads bipartite graph in

Kumar et al.’s work [16].5

Even for low values of k, the largest component con-

sists mostly of “bad” users. Figure 11(a) shows how the

fraction of users labeled as fraudulent in the largest com-

ponent varies as a fraction of all labeled users, for various

values of k. Even at k = 2, the largest component has no

users labeled “good” (i.e., no false positives). This char-

acteristic holds as k increases: there are no false positive

“good” users in the largest component at any value of k

greater than two. However, the minimum component size

above which there are no false positives is dependent on

k. We examine the size of the largest component and the

fraction of dishonest voters in each component (among la-

beled users). Figure 11(b) shows the number of false pos-

itives in each component, rank-ordered by the size of the

5This work illustrates the similarity of Web pages based on the number of
advertisements they share; they found that sharing even 5 advertisements
did not say much about the connection between Web pages, but six or
more shared advertisements implied a stronger notion of similarity. Sim-
ilarly, we find that two users in the same component at k = 2 or k = 3
are not necessarily similar but connections at a slightly higher value of
k = 6 or k = 7 implies high similarity.
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Figure 10: Variation of the number of components and the size of the largest component as the value of k increases from 1 through 20. The

number of components do not increase much past k = 2, but the size of the largest component decreases exponentially from k = 2 to k = 8.
We pick a value of k that gives a good tradeoff between the component size and number of components (k = 5).
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Figure 11: (a) Fraction of “bad” users in the largest component as k is varied; and (b) the fraction of “bad” users as component size varies

for two specific values of k. The largest component only contains users labeled “bad” above k = 2, but there is higher variability in the false

positive rate for smaller-sized components at k = 2 than at k = 5.

component, for k = 2 and k = 5. Smaller components

for small values of k often include many “good” users; at

k = 2, even the second-largest component contains more

than half good users. As we increase k to 5, the good-

user portion of the large component fragments, resulting in

smaller components with even fewer false positives, which

is why we picked this threshold for our evaluation.

7.2 Canopy­Based Clustering

Choosing thresholds for canopy formation. The first

step in canopy-based agglomerative clustering is canopy

formation, which is parameterized by the thresholds Thigh

and Tlow (Section 6.3). These thresholds control the extent

to which the data is partitioned and the extent to which

canopies overlap with one another. Because we apply

canopy clustering to reduce the size of our input dataset,

we must pick values of Thigh and Tlow such that: (1) the

average size of canopies are reduced, (2) the overlap be-

tween canopies is reduced, and (3) the total number of

canopies are reduced. Low values of Thigh reduce over-

lap, and high values of Tlow decrease the size of canopies.

However, if both Thigh and Tlow are too large, all but

highly similar rows will be in non-singleton canopies.

Figure 12(a) plots the size distribution of canopies on

varying Thigh and Tlow, and Figure 12(b) plots the CDF

of the user IDs which are mapped onto multiple canopies.

These figures show that setting Thigh = 7 and Tlow = 5
partitions the users into distinct canopies into a few small

Sim. Threshold Detection Rate FP rate

0.90 8.74% 0.14%

0.87 9.01% 0.15%

0.85 10.24% 0.172%

0.82 15.52% 0.217%

0.78 17.52% 0.244%

0.76 19.24% 0.26%

0.74 21.70% 0.328%

0.72 23.29% 0.499%

Table 4: Sensitivity of the detection and false positive rates to the

choice of the similarity threshold. We chose 0.85 (highlighted).

canopies with minimal overlap.

Choosing a threshold for the Jaccard Metric. We clus-

ter each canopy using average-linkage similarity (Sec-

tion 4.3). For each canopy, GAC iteratively performs all-

pairs similarity computation and merges the most simi-

lar clusters if their Jaccard similarity exceeds a similar-

ity threshold. Table 4 shows how the detection rate and

false positive rates change for other settings of the similar-

ity threshold. A similarity threshold of 0.85 yields a high

detection rate and a low false positive rate.

Figure 13(a) shows the size distribution of the clusters

we obtained. More than 99% of clusters are singletons

(i.e., likely legitimate users). Figure 13(b) shows the dis-

tribution of dishonest voters for various cluster sizes, pre-

sented as a fraction of labeled users in the cluster. All large

clusters except for one have almost no false positives. The
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Figure 12: Canopy characteristics for various upper and lower thresholds, Thigh and Tlow .

exception—a cluster of 12,890 users—has 517 users la-

beled “good” 2,776 users labeled “bad”. Considering that

all of these false positives fall into a single cluster, these

users are likely compromised users that were mislabeled.

8. Related Work

Yahoo! Mail, Hotmail, and Gmail now each have hun-

dreds of millions of users. Because Web mail providers

started adopting and inventing schemes to prevent or limit

botnet-generated spam such as Sender Policy Framework

(SPF) [10] and DomainKeys Identified mail (DKIM) [5],

the amount of messages verifiable via SPF or DKIM also

increased as users migrated to Web mail. Thus, emails

sent by bots with fake or nonexistent verification parame-

ters (e.g., a bot masquerading as a ‘@yahoo.com’ sender)

became simple to identify and drop early in the pipeline.

Unfortunately, spammers can defeat DKIM or SPF by

sending mail through compromised Web mail accounts.

The numbers of compromised Web mail accounts, and the

amount of spam sent through Web mail providers have

continued to increase: Malware was found as early as 2007

that targeted Web mail in order to automatically create ac-

counts [24]. Microsoft reports that it discovered at least 26

million compromised accounts in Hotmail in 2008 [27].

Researchers have used clustering to identify bots us-

ing network-level features from spam and legitimate

email [22], and long-lived network-aware clusters formed

by spammer IP address prefixes to mitigate spam [23].

Qian et al. improve the network-aware cluster approach

with a hybrid clustering approach that includes both spam-

mer IP address and their DNS information [21]. Kumar et

al.’s study [16] presents the k-neighborhood graph model

we use in this paper, and its application to domains such

as relationships in social networks, collaborative blog-

ging or bookmarking sites, and Web page similarity. The

most similar work to ours is BotGraph, which identifies

compromised accounts in Hotmail using the graph-based

component-finding algorithm similar to the one described

in this paper [27]; our paper shows that graph-based com-

ponent finding has shortcomings for detection of vote gam-

ing attacks, since it generates false positives.

Clustering to find bots has also been applied in areas

other than email spam. Metwally et al. implemented sys-

tems [18, 19] to identify fraudulent publishers in the do-

main of web advertising. Their work attempts to efficiently

estimate similarity in the sets of IP addresses that click

on advertisements hosted a pair of publishers, and to clus-

ter publishers that have high similarity with each other—

which likely indicate fraudulent publishers. In the area

of scam hosting, Konte et al. show that many different

scammer domain names share the same hosting infrastruc-

ture [15]. Perdisci et al. have extended this work in using

clustering to identify scam-hosting domain names that use

DNS fast-flux to cycle between IP addresses [20].

9. Discussion

We present the results of identifying voting bots using

a complementary dataset, where we map user accounts to

the login IP address of the user who cast a not-spam vote

(i.e., the IP address of the host from which the user logged

in to the Web mail service). We also discuss potential lim-

itations of our approach and our evaluation.

Clustering Using Login IPs. We have an additional

dataset from May–June 2009 that has the login IP address

of the user (recall that the dataset in Section 5.1 has the IP

address of the sender of the email on which the user cast a

vote). We expect that the IP addresses from which a dis-

honest NS-voting user logs in should also follow the model

of Section 3. Table 5 summarizes the results of graph-

based clustering applied to the graph that maps user IDs

to these login-IPs. Indeed, a large number of IP addresses

shared a given bot account (specifically, larger on average

than the number of IP addresses a bot account votes on);

hence, a higher neighborhood density of k = 8 yields the

best results. As expected, most users in the largest com-

ponents were identified as bot-controlled. Certain compo-

nents have significant fractions of accounts not yet labeled

(e.g., the third-largest component has 55% accounts not yet

labeled), which represents significant savings in terms of

the number of fraudulent NS votes that can be prevented.

Because we only had access to this data for a limited time,

we were unable to compare the results of graph-based clus-

tering with canopy-based clustering.

Low Detection Rate. Although our 10.24% detection rate
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Figure 13: Analysis of Greedy Agglomerative Clustering: (a) shows that over 99% of clusters are singletons, and (b) shows that in the

clustering output at our chosen parameter settings, most clusters over size 2 (with very few exceptions, as explained in text) have only users

that are labeled “bad”.

Users IPs Validated as Voting Bots NS Votes

102991 56 102991 (100%) 6.11m

69710 32 64629 (92.7%) 5.14m

59077 39 26592 (45%) 2.58m

49045 65 49045 (100%) 4.5m

Table 5: Results of applying graph-based clustering on login IP data,

and extracting the largest 4 components. Because this dataset has

different characteristics than our primary 4-month dataset, we found

that a neighborhood density of k = 8 gave the best results.

may appear low, this number amounts to nearly 26,000

fraudulent voters that were previously undetected by other

methods, with only 0.17% false positives. As the sensi-

tivity analysis in Table 4 illustrates, if the operators find a

slightly higher false positive rate of 0.5% acceptable, they

can detect up to 23.29% of the labeled bad users. Another

reason for this seemingly low detection rate is that many

users labeled “bad” in the set of labeled users may have

had the bulk of their NS votes before or after the time-

frame of our data set; such users will not have enough NS

voting activity to cluster well with other heavy NS voters.

As the false positive rate analysis in Figure 13(b) shows,

large clusters have zero false positives (with one excep-

tion that is likely due to mislabeling). Because these clus-

ters likely consist of only bot accounts, the actual number

of bot accounts detected by our technique will be much

greater. For example, the largest cluster in Figure 13(b)

alone has nearly 50,000 users, all of which are likely bots.

Dataset Limitations. Because the data that we used in our

study was not timestamps, we could not analyze datasets

on smaller timeframes. However, our analysis using lo-

gin IPs shows that smaller timescales also work to identify

voting bot accounts. Regardless, our approach can be used

for day-to-day detection of bots: because both clustering

methods complete in a few hours, an operator could run

the analysis daily on a sliding historical window of voting

data.

Using Voting Clusters for Real-time Detection. From

clusters of dishonest voting accounts, one can go back

to the original user-IP graph to retrieve the IP addresses

shared by users in the cluster. The IPs and user accounts

corresponding to large clusters can then be put on a “watch

list”, and any new users or IPs that map to a watched user

or IP can be investigated before they cause much damage.

A second avenue for using our approach in real-time filter-

ing is to combine information obtained using clustering to

improve other classifiers. Clustering extracts macroscopic

patterns from the activity graph of voting. A traditional

supervised classifier for voting would use features at the

level of each user (e.g., the user account’s age, it’s reputa-

tion, etc.) and might miss accounts that can be discovered

by clustering. As an example, consider a reputable user

account that becomes compromised and used for dishon-

est voting. The traditional classifier will likely continue to

classify the account as “good”, but our clustering approach

could instead discover that the account falls into large clus-

ters and raise an alert.

10. Conclusion

Web mail providers rely heavily on user votes to iden-

tify spam, so preserving the integrity of user voting is cru-

cial. We have studied a new attack on Web mail systems

that we call a vote gaming attack, whereby spammers use

compromised Web mail accounts to thwart Web mail oper-

ators’ attempts to identify spam based on user votes. Using

four months of voting data from a large Web mail provider,

we found that vote gaming attacks are prevalent in today’s

Web mail voting systems. As a first step towards defending

against these attacks, we have developed and implemented

a clustering-based detection method to identify fraudulent

voters. Our method identifies tens of thousands of previ-

ously undetectable dishonest voters over the course of sev-

eral months, while yielding almost no false positives. The

techniques presented in this paper are an important step in

stemming the tide of this new class of attacks and are al-

ready being used in production as part of a large Web mail

provider’s techniques to detect fraudulent votes. We be-

lieve that these techniques may also be applicable to other

online Web forums where bots perform vote gaming, such

as user-generated content sites or online polls. We intend

to explore the applicability of our methods to these other

settings as part of our future work.
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