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Visualizing State-Based Hypertension Progression Models 

Amrita Gupta, Student Member, IEEE, Yu-Ying Liu, Student Member, IEEE, Jimeng Sun, Member, IEEE, 
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Abstract— We present a novel interactive visualization scheme for state-based hypertension progression modeling using hidden 
Markov models, applied to electronic health records of a cohort population enrolled in a hypertension management program. The 
visualization tool provides an interface for exploratory analysis and model validation, and improves the interpretability of the model 
results for healthcare researchers. We demonstrate a preliminary application of the visualization to compare states visited and 
transitions taken by two different subgroups with distinctive hypertension trajectories. 
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1 INTRODUCTION 
Hypertension is one of the main risk factors for cardiovascular 
disease and stroke, which claim over 17 million lives every year [1]. 
Several classes of drugs have been developed to help hypertensive 
patients maintain normal blood pressure, although the precise 
medication regimen needed to achieve blood pressure (BP) control 
for each individual is often difficult to determine. As a result, the 
medication regimen is often modified on a trial-and-error basis. Long 
term hypertension management programs [2, 3] can help participants 
achieve and maintain controlled blood pressure by encouraging 
regular home monitoring, facilitating medication adjustments and 
tracking disease parameters over time in electronic medical records. 

Recently, there have been attempts to model hypertension from 
such electronic health record (EHR) data. One retrospective study [4] 
found that including EHR data improved the performance of 
regression models and gradient tree boosting for predicting 
cardiovascular-related death within 5 years, when compared to 
models trained with only traditional risk predictors. Several other 
studies were also performed to identify measures that act as risk 
predictors for the development of hypertension [5, 6]. However, for 
the most part these earlier works did not propose any framework for 
modeling the longitudinal progression of hypertension in diagnosed 
individuals. 

More recent studies have begun to focus on the prediction of 
significant events within hypertension progression. Sun et al. used 
aggregated EHR data to predict transitions between controlled and 
uncontrolled hypertension, and also to identify which features 
produced the best prediction performance [7]. This approach, 
however, requires constant monitoring of patients’ hypertension 
control status in order to determine the transition at the next clinical 
encounter. This highlights some of the difficulties of developing 
predictive models for hypertension given irregularly timed patient 
visits spanning only some segment of the disease progression. 

In order to overcome some of these issues, our work models 
hypertension as a latent continuous-time Markov process evolving 
on a discrete state space, where each state is characterized by a 
certain range of systolic and diastolic blood pressures. This model 
structure can represent the continuous evolution of disease states 
using measurement data that arrives irregularly in time, and can be 
used to fill in missing measurements and predict future trajectories of 

hypertension evolution. This class of model is referred to as a 
continuous time hidden Markov model (CT-HMM) [8-10]. It can 
also be used to study the specific effects of different medication 
regimens or individual-level features on hypertension evolution 
characteristics. 

A basic challenge in using data-driven methods to improve 
healthcare is the development of appropriate visualization methods 
(viz). Viz enables health researchers to understand and validate a 
given model and perform exploratory data analysis, including the 
generation of hypotheses regarding disease progression. Without viz 
there is a danger that models that are fit to complex high dimensional 
datasets become “black box” analysis tools whose outputs cannot be 
explained or interpreted by health researchers. 

This abstract presents FluxMap, the first interactive viz system 
for displaying and analyzing state-based disease progressions models 
based on the CT-HMM framework. FluxMap is designed to visualize 
state and transition properties of the CT-HMM and supports the 
identification and tracking of sub-groups of patients over time. There 
have been a few previous related works: Leiva-Murillo et al. used 
CT-HMM to model comorbidity of various diseases over time, 
illustrating their results using a static diagram of states and 
transitions [11]. However, only a small proportion of states and only 
the most dominant transitions can be included to avoid visual clutter. 
Another group used EventFlow software to look for common 
patterns in hypertensive drug usage and relate them to patient 
outcomes [12, 13]. FluxMap has the potential for use with any 
longitudinal state-based progression model, though here we present 
its use in conjunction with a CT-HMM model of hypertension built 
from longitudinal EHR data. To the best of our knowledge, this work 
is the first to demonstrate the application of an interactive 
visualization tool to state-based hypertension progression modeling. 

2 METHODS 
We analyze electronic health record data from a patient cohort 
involved in a hypertension management program. The dataset 
provides longitudinal data from several patients, each having a 
variable number of irregularly timed visits. At each visit, a number 
of observed variables are measured, though these measurements may 
be incomplete in the sense that not every feature is measured at every 
time point; for example, lab tests are not done at every visit. The 
hypertension model is based on a 2-dimensional discrete state space 
characterized by systolic and diastolic blood pressure values. 
Specifically, the discrete states are obtained by dividing the 
continuous space of each dimension into range bands. This 
discretization fits well with the typical practice of categorizing blood 
pressure using ranges of values. Also, the model allows flexible 
transitions between states without assumptions such as linear or 
polynomial changes usually used in regression model, and thus is 
suitable for exploratory data analysis. 
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2.1 Continuous-Time Hidden Markov Model (CT-HMM) 
We now provide a brief description of the CT-HMM [8][10] and its 
use in hypertensive progression modeling as follows. Each 
individual i in the subject population has ni visits at irregularly 
spaced times (ti1, ..., tini), where each visit has observed data (oi1, ..., 
oini ). These observations are generated conditionally on hidden states 
according to some emission probabilities p(o|s), which are assumed 
to be distributed according to a multivariate Gaussian. The hidden 
states evolve as an unobserved Markov process, and the transitions 
between states are determined by transition intensities qrs, which 
represent the instantaneous risk of transition from state r to s. From 
these, we can form an overall transition intensity matrix Q whose 
rows are made to sum to zero by setting the diagonal entries qrr= -
Σqrs. Then, for some time period t, the (r, s) entry of the transition 
probability matrix P(t) = etQ describes the probability that an 
individual at state r at time t0 will be in state s at time t0+t. The qrs 
parameters are estimated using the Expectation-Maximization (EM) 
algorithm to maximize the likelihood of the data sequences. 
Specifically, we adopt the EM algorithm from [10] for efficient CT-
HMM parameter learning in large state space setting. 

The state structure for our hypertension progression model is a 
2-dimensional discrete state space characterized by systolic and 
diastolic blood pressure range bands. Each state is allowed to 
instantaneously transition to its adjacent states, and a qrs parameter is 
to be estimated between each pair of source and target state. An 
illustrative diagram is shown in Figure 1. 

 
Fig. 1. The state and link structure for our hypertension progression 
model. The links represent allowed instantaneous transitions with 
transition intensity qij. 

 

2.2 Interactive Web-based Visualization 
In order to convey the results of the CT-HMM model in an easily 
interpretable way, we opted for an interactive web-based 
visualization scheme. The visualization is implemented in JavaScript 
with the support of D3.js and jQuery libraries. The states are 
arranged on a 2D grid layout according to the state’s systolic and 
diastolic blood pressure ranges. Each state is represented as a circular 
node whose radius is proportional to the number of visits to that 
state. Transitions between states are bidirectional, so it was necessary 
to adopt an edge representation that encodes the direction of flow 
between the origin and destination nodes. This is important for being 
able to identify key behaviors in BP control like cycles or stable 
states. We used asymmetric Bezier curves to depict transitions 
between states, where the straight section of the curve is oriented 
towards the origin node and the more curved section points towards 
the destination node. Again, the width and opacity of each edge are 
proportional to the number of transitions that occur in the subject 
population, to emphasize high-magnitude transitions. This weighting 

scheme was chosen over the scaling of edges based on transition 
intensities for several reasons. Using transition intensities could 
cause there to be links between every pair of states, however small, 
due to non-zero transition probabilities. The current weighting choice 
shows only the trajectories followed by subjects. 

The second key component of the visual scheme is its 
interactivity. First, the user is allowed to interactively change the 
subject analysis population through filtering based on various 
features, such as medication class, BMI, risk level, lab test results, 
etc. Besides using these standard filters, the subset population may 
also be chosen based on some complementary analysis, such as 
clustering of subjects based on similar trajectories; such a use case is 
discussed in section 2.3. Once a subset of the patient population is 
chosen, their collective behavior over the state space can be 
inspected to identify major visited states and transitions. Clicking on 
a particular node highlights incoming and/or outgoing links with 
other states by fading out the other nodes and links slightly. If 
multiple patient subgroups are selected, the states are depicted as pie 
graphs to depict the proportion of measurements from each 
subgroup. This design is appropriate for use with a small number of 
patient subgroups as a means of identifying any states visited 
predominantly by one subgroup. The use of pie graphs 

This tool thus enables users to examine the disease progression 
model in the context of a particular set of features of interest. For 
example, a user may wish to compare the effects of incorporating 
different drug classes into a hypertension treatment regimen on the 
amount of time spent in controlled-BP states versus uncontrolled-BP 
states. To do this, the user simply selects only subjects taking the 
medications of interest to be represented in the graph, displaying the 
states visited and the proportions of each medication class at each 
one. Hence this visualization scheme combines an intuitive 
presentation of the CT-HMM model predictive results with the 
capacity for some visual exploratory analysis. 

2.3 Application: Trajectory Clustering 
To demonstrate the exploratory visual analysis enabled by our tool, 
we first trained the CT-HMM on the dataset and produced decoded 
state sequences for all subjects for the window of time they were 
observed. The resulting sequences of states were compared between 
subjects to produce a similarity score based on the weighted 
Hamming distance. More specifically, the “distance” between two 
states is taken as the number of jumps or edits needed to move from 
one state to the other. To compare two sequences, first an alignment 
is chosen such that the sequences overlap by at least 3 states; then, 
the cumulative distance between overlapping states is found and 
normalized. Different alignments are tested by sliding one sequence 
along the other, and the final similarity score is chosen as the 
minimum average distance over all possible alignments. This 
approach was adopted to account for the fact that subjects’ 
participation in the hypertension management program did not 
coincide with any distinctive time point in the progression of their 
hypertension. Finally, the subjects’ trajectories are grouped via 
hierarchical clustering to obtain subsets with similar state sequences. 

3 RESULTS 
The process described in section 2.3 produced a hierarchical 
clustering of subjects, with two distinct low-level clusters depicted in 
Figures 2 and 3. Cluster 1 contains 194 subjects with lower diastolic 
BP on average compared to the 282 subjects in cluster 2. Further, it 
appears that subjects in cluster 1 often show changes in systolic 
pressure without accompanying changes in diastolic pressure, as 
evidenced by the slightly larger weights and numbers of horizontal 
transitions compared to vertical or diagonal ones. In contrast, 
subjects in cluster 2 have a noticeably higher tendency for coupled 
changes in systolic and diastolic BP, as shown by the prominent 
diagonal transitions in Figure 3. 
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These differences are evident in the combined view using pie 
charts shown in Figure 4. By limiting the number of classes to just 2, 
it is easy to see from the mostly dark brown nodes with diastolic BP 
55 that these states are nearly exclusively visited by subjects in 
cluster 1. Similarly, states with diastolic BP 85 and higher are 
frequented by subjects in cluster 2 more than cluster 1. 

 

 
Fig. 2. States and transitions by subjects in cluster 1. 

 
Fig. 3. States and transitions by subjects in cluster 2. 

 
Fig. 4. Clusters 1 and 2 shown together. 
 

4 CONCLUSION 
In this paper, we presented an interactive visualization system for 
disease progression modeling using CT-HMM, with the potential for 
use as a validation tool for the model as well as an interface for 
conducting exploratory analysis. We demonstrated one use case of 
the tool for viewing states and trajectories; the case compared 
subjects from two different subgroups of hypertensive patients 
obtained by a hierarchical clustering of state sequences decoded by 
the CT-HMM. This framework can be extended to examine more 
elaborate questions related to the effects of different features on the 
trajectories taken by subjects. This may be useful for identifying 
phenotypes or different behaviors within hypertension management. 

The current visualization scheme has several possibilities for 
further development. At present, the identification of true transition 
sequences (with 2 or more transitions) is not possible due to the 
aggregation of transitions across subjects. While the current 
approach provides a summary overview of major transitions, it is 
necessary to include some mechanism for recognizing and choosing 
specific sequences of states that are visited as part of a major path or 
cycle. These capabilities will become possible as the visualization 
scheme matures. Another possible limitation of the FluxMap 
visualization is its limitation to a 2-dimensional state space, whereas 
the CT-HMM model for which it was developed can support a 
higher-dimensional state space. This disparity can be partly 
addressed by adopting a side-by-side paneled view, in which each 
panel shows a 2D projection or collapse of the ND state space. 
However, this drastically reduces the interpretability of the 
visualization scheme and is untenable for more than 4 dimensions. 
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