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SUMMARY

Struck-by fatalities involving heavy equipment such as trucks and cranes accounted

for 24.6% of the fatalities between 1997-2007 in the construction industry. Incidents

related to construction equipment can result in severe injuries too. Limited visibility

due to blind spots and travel in reverse direction are some of the main causes of these

fatalities. Blindspots are spaces surrounding an equipment that are not in the field-

of-view of the equipment operator. Thus, a hazard is posed to the ground personnel

working in the blind spaces of an operating equipment.

This research presents a novel approach to construct visibility maps of the equip-

ment operator which can aid in identifying potential hazards posed to workers oper-

ating in the vicinity of an equipment in operation. The approach has two components

a) Head pose of equipment operator, and b) Static blindspots map. The underlying

concept is to compute the visibility of an operator at any instant of time. To mea-

sure the operator’s visibility, we mount a commercial depth camera in the equipment

cabin and apply machine learning technique (Random Forests) on camera frames to

estimate the head pose of the operator. The head pose of operator yields the di-

rection of field-of-view (FOV). To measure blindspots around an equipment, a novel

computationally efficient approach using Ray Casting algorithm is run on 3D point

cloud data of the equipment. This results in a static blindspots map. It is termed

static because the map represents the visibility of an operator from a fixed location,

that is the origin of the point cloud data. To turn the static map in to a dynamic

one, the origin needs to be translated according the estimated location of operator’s

head. The location of operator’s head is estimated along with the head orientation.

This integration of static blindspots map with operator’s head location is termed as

dynamic blindspots map. Measurement of dynamic blindspots is necessary because

the visibility of an operator changes with the location of operator’s head.
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The presented blindspots approach provides a novel way to objectively measure

and visualize different facets of blindspots. An understanding of the blindspots caused

due to vehicle hardware and the FOV of proximity-detection and warning technologies

can provide vehicle manufacturers with more information to improve the design of the

equipment or to retrofit existing equipment with proximity-detection and warning to

enhance safety. Additionally, this research has the potential not only to improve safe

operation of equipment on construction sites but also to record incidents.

2



CHAPTER I

INTRODUCTION

Equipment blindspots are those regions that are invisible to the equipment opera-

tor. Blindspots pose a significant hazard to personnel operating around construction

equipment which can result in fatalities. The Occupation Safety and Health Ad-

ministration (OSHA) attributes fatalities to five categories: falls, struck-by, caught-

in/between, exposure to harmful substances, and others. Struck-by incidents are

primarily caused due to (a) vehicles, (b) falling/flying objects, and (c) construction

of masonry walls. Among vehicles, 75% of the struck-by fatalities involve heavy equip-

ment which is primarily due to visibility-related issues [34]. Figure 1 illustrates the

causes of fatalities related to travel direction. 55% of the visibility-related fatalities

were caused due to equipment blindspots and 57% of the same fatalities were caused

due to travel in reverse direction [34].

25%

8%

2%

10%

55%

 
Obstructions

Too dark

Too bright
Not known

Blind spot

(a) Causes of fatalities.

28%

10%

5%

57%

 Forward

Stationary

Unknown

Reverse

(b) Travel direction.

Figure 1: Safety analysis using historical OSHA data (1997-2007): (a) cause of

fatalities and (b) travel direction [34].

OSHA considers struck-by object to be the the second leading cause of fatalities
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on construction sites for the year 2011. For the year 2013, OSHA attributes 73(10%)

of the 738 total deaths to struck-by incidents. Thus, a need exists for potential haz-

ard identification posed due to the interaction of equipment and personnels working

around equipment.

To address the limited visibility due to blindspots, technologies such as radar,

camera system, ultra sonic sensor system and GPS have been assessed [58, 57]. Very-

High Frequency (VHF) and active Radio Frequency (RF) has been used for prox-

imity detection and warning for equipment-worker interactions [64, 43]. To perform

resource tracking for productivity and safety on construction sites, performance of

Ultra Wideband technology has been assessed [11]. These technologies primarily fo-

cus on detecting hazardous conditions that may arise as a result of equipment-worker

interactions. Mounting of such technologies on equipment can be optimized through

the knowledge of the blindspots of equipment. As such real-time pro-active technol-

ogy has the potential to save lives by pro-actively monitoring the surroundings of a

piece of equipment. However, the inherent limitation of such systems is that it only

takes into account the proximity of the workers to the equipment and does not incor-

porate any knowledge of the operator’s FOV. Hence, alerts need to be optimized to

address issues relating to alert desensitization [43]. To address this issue, knowledge

of the operator’s FOV may be incorporated in to a warning or alert system to raise

alerts intelligently.

1.1 System Representation

Identifying the requirements stated above, in this research a system (shown in Figure

2) is proposed. The system incorporates the information on dynamic blindspots of

equipment and location of workers around an operating equipment. Knowledge of

operator’s FOV aids in assessing hazards posed to the workers. Figure 3 illustrates

the concept of the system from top and side views. Note in Figure 3a how the worker

4



on the left is located in a region that is in the operator’s FOV, however the worker

at bottom right is located in a visible region but is outside the operator’s FOV, thus

exposing the worker to potential hazard due to the equipment. Similarly a hazard is

posed to the worker on the right of Figure 3a.

Compute worker 
visibility

Detect worker 
and location

Estimate head 
pose and location

Identify potential 
hazard

Compute Field-
of-view

Figure 2: System architecture.

(a) Pictorial representation (top

view).

(b) Pictorial representation (side view).

Figure 3: System representation.

1.2 Research Framework

The research framework for the system illustrated in figures 2 and 3 is discussed in this

section. Figure 4 illustrates the research framework of this thesis. The framework has

been divided into four modules and each module leads to its successor in the following

5



order: a) Sensor or Data sources, b) Data, c) Processing and d) Applications. The

arrows indicate the flow of data or information. The green arrows indicate those

flows that have been used in this research and the solid red arrows indicate data or

information that is necessary but have not been addressed in this research. Thus,

the solid red arrows indicate the pipeline for future research study. The dashed red

arrows indicates optional studies for future research study.

Range Camera

Data Processing ApplicationsSensors/Data source

Laser Scanner

CAD Model

Range Camera

Location Sensors

Range Image

Point Cloud

Location Data

Head Pose

Pedestrian or 
Obstacle Detection

Static Blindspots

Dynamic Blindspots

Proximity Alert

Near-miss Incident 
Recording

Figure 4: Research framework.

The first module deals with the sensors or data sources which are: a) Range

camera b) Laser scanner/CAD Model/Range camera and c) Location sensors. A

range camera is mounted inside the equipment cabin generates range images which

is used to monitor the head posture of the equipment operator. The second data

source is used to generate a 3D point cloud of the equipment. Such a point cloud

can be generated by a) laser scanning the equipment or b) from the CAD model of

the equipment or c) by scanning the equipment with a hand held scanner such as a

range camera. This point cloud information is then utilized to compute the static

blindspots map of the equipment. The third data source is a location sensor system

that monitors the surroundings of the equipment for potential obstacles or workers. In
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this research, the problem of obstacle or worker detection has not been addressed. The

final module deals with the creation of knowledge using the information generated in

the Processing module. In this thesis only the knowledge of visibility maps is created

whereas the creation of proximity alert system and recording of near-miss incidents

remains in the scope of future research. The thesis statement below summarizes the

presented research framework.

Thesis Statement: The visibility of an equipment operator can be measured by

computing the head posture and the static blindspots of the equipment.

1.2.1 Research Impact

The presented research can potentially impact multiple facets of safety issues caused

due to Human-Equipment interaction. The blindspots analysis technique generates

valuable information which can be used to improve the design of construction equip-

ment to increase safety. Also existing equipment can be retrofitted with proximity

sensors once the sensor’s FOV information is fused with the blindspots information.

By integrating an obstacle or pedestrian detection module with the presented research,

a proximity alert system can be created which can potentially mitigate fatalities on

construction sites while reducing nuisance alerts. Such nuisance alerts are responsi-

ble for desensitizing operators towards the alerts over a period of time. Finally, this

research can potentially be used as a near-miss recording system, which can record

non-fatal but hazardous incidents occurring on construction sites. Such information

can then be utilized to train construction workers and plan construction tasks in a

way so as to minimize the occurrence potential hazards on construction sites due to

Human-Equipment interaction.

1.3 Thesis Outline

In Chapter 2, the technique for head posture estimation of an equipment operator is

presented. It begins with a literature review of existing methods for estimating head

7



orientation using vision based technique and then discusses the methodology used

in this research and then the results. In Chapter 3, the focus shifts to computing

blindspots of equipment. As shown in Figure 2 our primary focus is to measure the

operator’s visibility, thus in Chapter 3 we discuss several aspects of blindspots mea-

surement which are key to understanding the visibility of an equipment operator. In

Chapter 4 results to computing dynamic blindspots in indoor and outdoor environ-

ments are presented and then followed by the Chapter 5 which discusses several key

issues and assumptions that need to be addressed for a real-world implementation of

the presented approach.
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CHAPTER II

ESTIMATING THE HEAD POSTURE OF AN

EQUIPMENT OPERATOR

2.1 Background

Pose estimation finds numerous applications in areas such as Human-Computer Inter-

action (HCI), gaze estimation, analysis of facial expression, video conferencing, driver

fatigue [40, 31, 71]. Measuring the head orientation is a pose estimation problem that

has been widely studied using intensity cameras. Multiple studies have focussed on

studying driver attention [40, 31, 71]. However, the inherent dependence of intensity

cameras on illumination makes them less effective in situations where there is insuf-

ficient or fluctuating illumination, as it is likely the case on construction sites or in

outdoor environment. Furthermore, the issue of depth ambiguity is associated with

intensity cameras too.

Most of the existing head pose estimation techniques either make use of intensity

images or spatial (3D) data. A recent study [49] classified these techniques into eight

categories. Based upon the approach used to solve the head pose estimation problem,

the methods have been broadly classified into: (a) appearance based methods, (b)

detector array methods, (c) non-linear regression models, (d) manifold embedding

methods, (e) flexible models, (f) geometric methods, (g) tracking methods, and (h)

hybrid methods. Some of their strengths and gaps of relevant techniques are presented

in abbreviated form.

Appearance based methods generally consider the space containing the face. They

solve the pose estimation as a classification problem [35] by training a set of faces on a

Support Vector Machine (SVM) model that correspond to discrete views of poses such
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as frontal view, left view, and right view. Wavelet transformation was applied and

the low resolution sub-band was projected pose on to the eigenspace using Principal

Component Analysis (PCA) [47]. Other approaches treat it as a regression problem

and thus train a ridge regression model [59] or a support regression model [1] to

estimate the head orientation. Such methods generally assume that the face has

been extracted from the image frame. They then utilize a dimensionality reduction

technique like Singular Value Decomposition (SVD) or Gabor wavelets [38] to extract

the feature vectors using a Support Vector Machines (SVM) classifier. These feature

vectors are finally trained using a supervised learning algorithm to predict the angles.

Such methods exhibit poor performance when the identity of the subject changes.

Detector array methods are based upon a set of trained detectors that correspond

to discrete poses and a new image is classified by the detector that gives the highest

support. The detector array is based up on neural network [37] which works by first

de-rotating the head into frontal view and then detects the head. Eigenspaces have

also been used as a cascade of detectors where each eigenspace was related to one

discrete pose [62]. These give good results as prediction is independent of the identity

of the subject. However, such methods predict only few discrete poses (typically ten

that vary across a single degree of freedom). Furthermore, building a cascade to

predict a higher number of poses would create complexity in training these detectors.

In non-linear regression models, the image is mapped from the image space to

the pose space. Generally, fitting a regression model on the high dimensional image

data proves to be a challenge; therefore a face is sparsely represented by facial feature

points such as eye inner corner, eye outer corner, eye center, mouth corners and their

interpolated positions. A Relevance Vector Machine (RVM) was trained to learn the

relationship between the sparse representation and the pose estimation angles [42].

A sparse representation is achieved by reducing the dimensionality using techniques

such as PCA and Support Vector Regression (SVR) models [1].
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Manifold based techniques project images corresponding to the different poses

to a lower dimensional space [48]. The dimensional reduction is achieved by Kernel

Principal Component Analysis (KPCA) [10], Kernel Discriminant Analysis [9], Local-

ity Preserving Projections [54], Locally Linear Embedding [32], or Isometric Feature

Mapping [56]. To estimate the pose in a new image the head frame is mapped on to

a lower dimensional space. Using a distance metric the pose angle is estimated. A

variation [3] in this technique uses Generalized Regression Neural Network (GRNN)

for dimensionality reduction and a linear regression model functional relationship to

map images from the reduced dimensional space to the pose angle space.

Other techniques include fitting an Active Appearance Model (AAM) [14] which

takes into consideration the geometric features like bilateral symmetry and position of

facial features such as eyes, nose tip, mouth, ears etc. These are utilized to calculate

the orientation angles and track the feature points of the head using particle filters.

3D range data are independent of illumination [69] and hence can be a more fa-

vorable choice for estimating the head orientation in outdoor applications over other

alternatives, such as intensity cameras. Range cameras can work in low-level illumi-

nation conditions and are color and texture invariant. Depth data simplifies the task

of background subtraction which is not the case with traditional intensity cameras

[61]. They have demonstrated the reliability of depth cameras to estimate human

body posture for Xbox gaming device. Using range images significant improvement

in human head posture estimation accuracy using random forest on kinect depth

frames has also been demonstrated [22, 23].

2.2 Random Forests

Random Forests [7] is combination of decision trees that can perform classification,

regression or both. It recursively splits the input feature space into axis aligned

smaller regions (cuboids). The splits are performed by simple binary tests which
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decide whether the input data goes to the left or the right child node. These splits

are termed as decision stumps. By repetitively splitting the data into proper subsets,

the nodes of a tree are trained. Once the forest is trained, prediction is performed

by averaging (regression) or voting (classification), estimates of the leaf nodes of

the trees. From performance perspective, predictions of random forest improves as

the data set size grows [61]. Other advantages include ease of implementation and

parallelization.

2.2.0.1 Notations

� The set of trees in the forest is represented by T = {Tt} and |T | is the number

of trees in the forest.

� ‘c’ represents classification of a patch and ‘r’ represents regression on orientation

and location of head.

� n is any node in a tree Tt. To distinguish the leaf nodes from the non-leaf ones,

the leaf nodes are represented by l ∈ L, where L is the set of all leaf nodes of a

tree.

� The class label k ∈ K, where K = {0, 1}; 0 represents background and 1

represents foreground.

� The set of all patches in the training data set of a tree is represented by Πr and

a patch is represented by π.

� Traversing from the root node nr to any leaf node l, say nodes n1, n2,..., nk are

encountered, then we have |Πr| < |Πn1| < |Πn2| < ... < |Πnk | < |Πl|.

� Offset vector d = {dx, dy, dz}, represents the vector joining the center of a patch

π to the reference point on the head (see Figure 6). Similarly, θ = {αp, αy, αr}
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represents the rotation vector consisting of yaw, roll and pitch angles. For

negative patches, the offset vector d and the rotation vector θ are set to 0.

Figure 5 illustrates Random Forests comprising of a set of trees. The root of a

tree is represented by solid black circle and the leaves are represented by solid green

circles. Following a bagging approach, training samples are chosen at random to

train each tree separately. At each node, the training data, comprising of positive

and negative patches, is split between the child nodes. The optimal split parameters

are determined by maximizing a gain function. By maximizing the gain function, the

entropy impurity due to classification and regression, at a node is reduced. Once an

optimal split is found, the patches are then split between child nodes and the process

continues. The split data forms two proper subsets of the data set input to their

parent node. Splitting is stopped at a node n if:

a) the node receives less than a predefined number of patches or,

b) if negative patch probability p(k = 0|Πn) is greater than a certain threshold,

c) if the node has the maximum allowed depth.

After all the training data has been pushed down the tree to the leaves the training

of the tree is complete. Using the set of patches Πl at the leaves, the following statistics

are then computed:

a) p(k|Πl): class probabilities for foreground and background class,

b) µθ
Πl

: mean of the euler angles,

c) Σθ
Πl

: diagonal variance matrix of the euler angles,

d) µd
Πl

: mean of the offset vector and,

e) Σd
Πl

: diagonal variance matrix of the offset vector.

For simplicity, we have assumed a unimodal Gaussian distribution with a diagonal

variance matrix for the euler angles and the offset vectors.
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Figure 5: Random Forests.

2.2.1 Entropy

The gain function used to evaluate the quality of split is a weighted sum of the gain due

to classification and regression. In performing classification, the aim is to segregate

the training patches according to their class labels and in regression the objective is

to minimize the variance of the offset vector d and the rotation vector θ computed

over the training patches. Entropy of class distributions is computed by using the

class probabilities. For regression, we assume a unimodal Gaussian distribution over

d and θ, the entropies are then computed using the standard formula of entropy for

Gaussian distribution.

2.2.1.1 Classification

After the set of patches Πn reaches a node n, the class probabilities p(k|Πn) are

computed using equation 1. The factor rk adjusts for any bias induced by unequal

number of positive and negative patches in the training data set for the tree.

p(k|Πn) =
|Πk

n|.rk∑
k (|Πk

n|.rk)
; rk =

|Πr|
|Πk

r |
(1)

Once the class probabilities are computed, the entropy impurity or information
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impurity is computed for node n using equation 2.

Hc(Πn) = −
∑
k

p(k|Πn) log(p(k|Πn)) (2)

2.2.1.2 Regression

Entropy due to a Gaussian distribution is given by H[x] = 1
2

ln |Σ| + D
2

(1 + ln(2π)),

where x ∈ RD and Σ is the covariance matrix. Assuming, unimodal Gaussian distri-

bution for offset vector d ∈ R3 and the orientation vector θ ∈ R3, the entropies Hrl[d]

and Hro[θ] for location and orientation can be estimated by replacing Σ with Σd
n and

Σθ
n respectively (sub-script n denotes the node). It should be noted that entropies

for the distribution of d and θ are computed only over the positive patches.

2.2.2 Features and Split Function

To split training image patches between the child nodes, a split function is employed.

The split function fφ is a real-valued function that determines whether a patch goes to

the left or right child of a non-leaf node n. The split function operates on features to

produce a binary output. The features that are used are typically low-level features,

such as the pixel difference [61] or the difference of averages of two windows [22, 23,

15, 28] (see [66] for a brief description on features).

The features F1 and F2 are rectangular windows located inside a patch and are

generated randomly. Figure 6 shows the feature windows located inside a positive

and a negative patch. In this approach, scale invariance is introduced by scaling the

dimensions of the patches using the depth value z of the pixel located at the center

of the patch. Equation 3 shows the height and width of a patch π being scaled. For

pixel located farther from the camera, the dimensions of patch extracted around it

are smaller than it is for a pixel located close to the camera. The parameters ρht and

ρwid are evaluated from cross-validation.
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πht = ρht/z, πwid = ρwid/z (3)

2F

1F

1F

2F
- Patch

+ Patch 

d

Figure 6: Features F1 and F2 located inside a positive (green) and a negative (red)

patch.

From each patch π, two low-level features F1 and F2 are randomly chosen. Figure

6 shows a positive patch (dashed rectangle) and a negative patch (solid rectangle).

The split function fφ is a real-valued function that determines whether a patch goes

to the left or right child of a non-leaf node n. The split function is parametrized by

φ ∈ Φ where φ = {F1, F2, τ} and, τ ∈ R. The threshold τ determines whether a

patch goes to the left or the right child node. Figure 7 illustrates how patches are

split at each node based on the value of fφ. To compute the split function output for

depth based features, first the vi’s, average of pixels values in features windows Fi’s,

are computed as shown in equation 5. By comparing the difference of vi’s with the

threshold τ , the binary output of split function is obtained by using the equation 4.

If the binary function outputs 0, then the patch is sent to the left child, otherwise it

is sent to the right child or vice-versa.
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Figure 7: Split function.

fφ(π) =

 0 if v1 − v2 < τ

1 otherwise
(4)

where,

vi =
1

|Fi|
∑

0≤p≤|Fi|

Fi(p), i = {1, 2} (5)

2.2.3 Recursive splitting

To train a tree, a recursive splitting approach is followed where the nodes are trained

recursively [28, 39]. To train a node, a set of random φ\τ are generated, let this set be

represented by Φ. Maximization of g by iterating through Φ gives the optimal feature
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and threshold: φ∗ (see section 2.2.5). Using φ∗, the patches are divided between the

left and right child nodes and the steps 1 to 3 are repeated. The gain function g

(discussed in section 2.2.4) is a weighted difference of entropy of the parent and the

child nodes. Entropies due to classification and regression were discussed in section

2.2.1. To stop growing the sub-tree a node is not split and is set as a leaf if it meets

the criteria which will be discussed in section 2.2.5.1.

1. Generate Φ = {φk}.

2. Divide the set of patches Πn at node n in to two subsets at ΠnL and ΠnR for

each φ. Patches in the set ΠnL are received by the right child.

ΠnL(φ) = {π ∈ Πn|fφ(π) = 0} (6)

ΠnR(φ) = {π ∈ Πn|fφ(π) = 1} (7)

3. Select the split parameters φ∗ that maximizes the drop in impurity at a node

or the gain function, g:

φ∗ = arg max
φ∈Φ

g(φ,Πn) (8)

where,

g(φ, Πn) = H(Πn)−
∑
s∈L,R

|Πns(φ)|
|Πn|

H(Πns(φ)) (9)

H(Πn) is the classification or regression entropy computed over all patches Πn

at node n.

2.2.4 Gain functions

Input samples are split at each node with an objective to reduce the uncertainty or to

gain information and to make predictions accurate. From classification perspective,

the gain signifies the grouping of samples of the same class together. From regression

standpoint, the gain signifies reducing the uncertainty which is represented by the

covariance matrix Σ. The information gain is measured by the gain function gcr
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where the subscript cr means the gain is the sum of the classification and regression

gain. The goal is to maximize gcr over a set of random samples Φ at any node. The

gain function introduced in section 2.2.3 is the weighted sum of classification gain

function (gc) and the regression gain function which comprises of location (grl) and

orientation (gro) estimation and is given by equation 10. The weight used in equation

10 can be either linear, exponentialand inter leaved. Linear weight is of the form

as shown in equation 11. It gives more importance to classification gain function,

however once the class probability for positive samples p(k = 1|Πl) increases beyond

the threshold tp, regression gain starts to contribute to the gain function gcr. Also,

the contribution of regression gain function is amplified by the factor α. Recently,

[22, 23] proposed exponential weights (in equation 12) that gives more importance

to regression gain function as the depth of the node dn increases in the tree. The

parameter λ specifies the steepness of change. Unlike linear and exponential weighing

schemes, in inter leaved mechanism the gain function is randomly selected to be either

the classification gain or the regression gain, instead of a weighted combination of

classification and regression gain.

gcr(φ,Πn) = gc(φ,Πn) + ωnr (grl(φ,Πn) + gro(φ,Πn)) (10)

ωnr = αmax (p(k = 1|Πn)− tp, 0) (11)

ωnr =
(
1− e−dn/λ

)
(12)

The gain functions gc, grl and gro are computed by using the respective entropies

(see section 2.2.1) in equation 9.

2.2.5 Evaluating φ∗

The optimal φ∗ for each node n that maximizes the gain gcr is obtained by randomized

node optimization. First a set of φ\τ are generated using which the threshold τ is

evaluated for all the patches in |Πn|. The suitable τ is chosen which maximizes the

19



gain function gcr over all the patches |Πn| and the set of φ\τ . This is illustrated in

Figure 1 below.

Algorithm 1 Evaluate φ∗

1: while i <nSamples do

2: Generate φ\τ

3: while j <|Πn| do

4: Compute τ j = v1 − v2

5: j = j + 1

6: end while

7: Set τi = τk s.t gkcr ≥ gjcr ∀j

8: φi = {φ\τ, τ i}

9: gicr = gkcr

10: i = i+ 1

11: end while

12: set φ∗ = φk s.t. gkcr ≥ gicr ∀i

2.2.5.1 When to Stop Splitting?

A batch training approach is used to train the trees. For each tree, a set of patches

are selected at random from the entire training data set. Recursive splitting is then

performed to grow the tree and it is stopped at a node until a stopping criterion is

met. Then node is set as the leaf node and then the class probabilities p(k|Πl) are

computed along with the leaf statistics: µd
l , Σd

l , µθ
l and Σθ

l .

At a certain stage of training the splitting needs to be stopped to prevent overfit-

ting. By stopping the splitting, the resulting tree typically will have leaves at varying

levels. For online learning approach, stopped splitting results in a phenomenon called

horizon effect, as possible future splits can result in performance improvement. To
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address this, post pruning is performed once online training is complete [20]. How-

ever for batch processing, stopped splitting does not suffer from the horizon effect

drawback. Different criteria for stopping splitting or post pruning include setting

threshold a) on gain b) minimum number of input samples at a node, or c) maximum

node depth of tree. As finding a threshold on gain is difficult a more practical criteria

is to use a threshold on minimum number of samples or the depth of tree [28].

2.2.6 Testing: Location and Orientation Estimation

To predict the location and orientation of head in a depth frame, patches are extracted

from the frame and passed through the trained forests. Patches are sampled from

the image in a strided fashion with a fixed step size. Once the patches are pushed

down the trees, they end up at certain leaves. From these leaves, statistics such as

the class probabilities p(k|Πl), and the mean and covariances µd
l , Σd

l , µθ
l and Σθ

l are

read off. Based on the class probabilities, the leaves participate in estimating the

location and orientation. In [22, 23], only those leaves that have +ve class probability

p(k = 1|Πl) = 1 in prediction. An additional threshold on the covariance matrix

Σd
l is also set to reject leaves with high degree of uncertainty. Irrespective of the

threshold used, the underlying idea is to collect reliable leaf estimates from all the trees

and then run meanshift algorithm [12, 13] to find the mode from the leaf estimates

which gives the head location in a depth frame [61, 22, 23]. Figures 8 and 9 show

the leaf votes for possible head location in light green color. To estimate the head

orientation, from amongst the selected leaves for voting, only those leaves are used

whose voted head location is in the pre-defined neighborhood of the estimated head

location obtained from meanshift algorithm. This neighborhood is a spherical ball

with a radius represented by ρnh. By averaging over the leaf statistics for orientation

µθ
Πl

in this neighborhood an estimate for the head orientation in the frame is obtained.

Extracting patches in a strided manner from the entire depth frame generates a
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lot of noisy votes which can affect the estimation accuracy. Additionally, such an

approach also incurs a computational cost as we need to evaluate many pixel location

in the depth frame to generate hypothesis for locating the head. It is beneficial both

in terms of computational cost and accuracy to sample only those regions in the

frame where the head is likely to be located. Also, since the head pose of the driver

is being estimated it is fairly reasonable to assume there is only one person in the

camera scene. Under this assumption, evaluating the pixel locations covering the

entire image is not beneficial. In this regard, the sampling region is constrained to

be a bounding box region which is centered at the head location estimated from the

previous frame. Figures 8 and 9 illustrate bounding box dimensions changing with

the head pose obtained from the previous frame. Note that in the figures the reference

head location is the temple and not the nose as is the case in the BIWI Kinect Head

Pose (BKHP) database [22, 23]. The BKHP database is used only for validating the

approach. Instead of a fixed size, the dimensions of the bounding box is a function of

a) depth value and b) the head orientation angle, both obtained from the estimated

head pose from the previous frame or using a filter (such as Kalman filter) to predict

the pose for the current frame. Equations 13 and 14 below show how the bounding

box dimensions are allowed to scale with the head location and head orientation.

Scaling with depth value allows the bounding box to become smaller as the head

moves away from the camera and vice-versa. Figure 8 shows how the bounding box

scales with the distance from the camera. For head orientation angle, the pitch and

yaw angles of the head pose from the previous frame are used to scale the dimensions

of the bounding box. In equations 13 and 14, zk−1 is the z coordinate of the estimated

head location in the (k−1)th frame. fx and fy are the focal lengths the depth camera

along the X and Y directions and αk−1
p and αk−1

y are the pitch and yaw angles from the

previous frame. The pitch angle affects the height of the bounding box and the yaw

angles affects the width of the bounding box. The height of the bounding box is the
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largest when the pitch angle is 0 degree and it becomes smaller as pitch becomes more

positive or negative. Figure 9 illustrates how the bounding box dimensions change

with the yaw and pitch angles. However, for the width of the bounding the box, the

smallest value is obtained when the yaw angle is 0 degree and it increases as the yaw

angle becomes more positive or negative. The reason behind increasing the bounding

width with increasing magnitude of yaw angle is to sample over a larger facial region

and which helps in reducing the jitteriness in estimation across frames. In the results

section, it is shown that following such a bounding box approach gives better results

as compared to following the scheme of sampling the entire depth image. The factors

hf and wf are the face height and face width. From empirical observations these

values were set to the following: hf = 150.0 mm and wf = 120.0 mm. Low values of

these factors causes jitteriness in estimation as a result of a smaller sampling region

while increasing the execution speed, vice-versa for higher values.

bbkht = (hf/z
k−1)fycos(α

k−1
p ) (13)

bbkwid = (wf/z
k−1)fx/cos(α

k−1
y ) (14)

Close to the camera Away from the camera

Figure 8: Bounding box scaling with distance to the camera.
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Figure 9: Bounding box height and width changing with the pitch and yaw angle.

2.3 Data Set and Results

The BKHP database [22, 23] was used to validate the approach. The database con-

tains around ∼ 15000 frames (depth and rgb) collected from 20 different individuals.

The data set is structured into 24 sequences, and each sequence corresponds to a

subject, with some subjects having multiple sequences. The head rotations in the

database are in the range ±60◦ for pitch (αp), ±75◦ for yaw (αy), and ±50◦ for roll

(αr). Table 1 shows the location and orientation estimation error reported by [24].

The nose localization error was measured in terms of the euclidean distance whereas

the orientation error is measured for each of the euler angle. The timing was measured

on a 2.67GHz Intel Core i7 CPU.
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Table 1: Mean and standard deviation of the errors for location and orientation

estimation reported by [24].

Stride Nose (mm) Pitch (◦) Yaw (◦) Roll (◦) Missed (%) Time (ms)

5 12.2± 22.8 3.5± 5.8 3.8± 6.5 5.4± 6.0 6.6 44.7

2.3.1 Training

Several Random Forests, indexed f1 to f6, are trained, each with a different parameter

set as shown in Table 2. Each forest contained 8 trees and the maximum allowed depth

in a tree was 30. To prevent overfitting, splitting at a node is stopped if it received less

than 10 patches from its parent node. Also, to prevent undesirable splitting at a node

with high number of negative patches, a threshold is set on the value of p(k = 0|Πn).

If the probability of negative patches, p(k = 0|Πn), at a node exceeds the threshold

then the node is not grown any further. The first 18 sequences of the BKHP database

are used for training. From each training image, three positive and six negative

patches are extracted randomly. Thus, each of the Random Forests was trained with

∼ 100K patches. At each node in a tree, 500 random feature windows (F1 and F2)

are generated and 100 thresholds are evaluated and thus 50K binary split functions

are evaluated at each node. The minimum and maximum size of the feature windows

(at 1m distance) is set to 15 and 35 respectively. In addition to the parameters stated

in Table 2, the patch scaling factors: {ρht, ρwid} are also evaluated. To reduce the

number of parameter evalulations and thus the training time, only square patches

are used, that is ρht = ρwid = ρpatch. A coarse grid search is performed to find the

best for patch scaling factor value from the set: ρpatch = {6.1e4, 8.1e4, 1.01e4} which

corresponds to patches of sizes 61 × 61, 81 × 81 and, 101 × 101 respectively when

the depth value of the pixel at the center of the patch is 1000mm. Thus, in total

6× 3 = 18 forests were trained. In section 2.3.2 the performance of Random Forests
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for different patch sizes has been presented.

Table 2: Parameters of Random Forests used for training.

Forest Index Weight Type Parameters

f1 to f2 linear α = 1.0, tp = {0.6, 0.8}

f3 to f5 exponential λ = {5, 10, 15}

f6 interleaved random selection

2.3.2 Testing

To select the best parameters for Random Forest, the test error was computed on

sequences 19 and 20 in the BKHP database. The total number of images in these two

sequences was 1058. The estimation on a frame is considered to have failed or missed:

If there are no reliable leaf estimates available for performing meanshift algorithm.

Reliable leaves are those that meet the criteria as defined in section 2.2.6. A threshold

of 0.8 is set for p(k = 1|Πl), that is leaves with p(k = 1|Πl) = 1 value more than

0.8 participate in the voting phase. Also, to reject uncertain leaves, an additional

threshold is set on Σd
l , such that leaves whose trΣd

l < 500.0 participate in the voting

phase. A fixed step size of 3 is used to select pixel locations around which patches

are extracted. The meanshift bandwidth is set to 50.0 mm and a maximum of 25

iterations are performed to achieve convergence. To estimate the orientation, leaves

are chosen if they lie in the neighborhood defined by the radius ρnh = 15.0mm.

The results reported below were obtained on a 2.30 GHz Intel Core i3 CPU ma-

chine, with only one core being used (with all the frames loaded in the memory).

Figures 10, 11, 12 show the results for the patch scaling factor ρpatch set to 6.1e4,

8.1e4 and 1.01e4 respectively. Patches when scaled by the factor ρpatch = 6.1e4, gave

the lowest error for both location and orientation estimation.

26



1 2 3 4 5 6
5.35

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

5.8

fi

L
2
[m

m
]

 

 
|T | = 8
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1 2 3 4 5 6
4.55

4.6

4.65

4.7

4.75

4.8

4.85

fi

µ
e
r
r

θ
[d
eg
]

 

 
|T | = 8

(b) Mean euler angle (θ) estimation error.
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(c) Fraction of frames failed.

Figure 10: Test results for the patch scaling factor ρpatch = 6.1e4.
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(b) Mean euler angle (θ) estimation error.
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(c) Fraction of frames failed.

Figure 11: Test results for the patch scaling factor ρpatch = 8.1e4.
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(b) Mean euler angle (θ) estimation error.
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(c) Fraction of frames failed.

Figure 12: Test results for the patch scaling factor ρpatch = 1.01e4.
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From Figure 10, it can be concluded that both the linear weighing mechanism

with α = 1 and tp = 0.8 and the exponential weighing mechanism with λ = 5 are the

best performing forests. Table 3 shows the location and orientation estimation of the

selected forest f2 (linear weighing mechanism with α = 1 and tp = 0.8). Comparing

Table 3 with Table 1, it can be observed that the nose localization error has reduced

significantly while euler angle error is only marginally more. However, the number

of missed frames is 0 as compared to 6.6% as in Table 1. In addition, the presented

approach runs at ∼ 125 fps as compared to ∼ 25 fps as reported in Table 1. The

speed-up is due to the bounding box approach due to which only a small region in a

depth image is evaluated.

Table 3: Test error of forest f2 (linear weighing mechanism with α = 1 and tp = 0.8).

Forest Patch Size Location Error (mm) Angle Error (◦) Missed Time (ms)

lerrx = 3.4± 4.5 αerrp = 2.8± 3.6

f2 61× 61 lerry = 3.6± 3.9 αerry = 4.5± 7.0 0/1058 8.3

lerrz = 2.0± 2.5 αerrr = 6.5± 7.6
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CHAPTER III

COMPUTING STATIC BLINDSPOTS OF EQUIPMENT

3.1 Background

Industrial powered equipment is becoming more popular in construction as construc-

tion material has to be frequently moved. In the construction sector, forklifts are

more frequently being used on construction sites as many elements that are used in

construction are pre-fabricated. Thus, forklifts have become an important lifting and

hauling resource that is essential to carry out modularized construction successfully.

However, as is known in other industries such as the transportation sector, forklifts

are associated with a lot of accidents. NIOSH [53] has reviewed the number of fa-

talities and traumatic injuries in forklift-related incidents. From 1980 to 1994, 1021

workers died. 20% of these related to “worker on foot struck by forklift” incidents.

In 1995, 94 fatal injuries were associated with forklifts.

Several approaches have been developed to measure the blindspots of equipment.

These approaches can be divided into (a) manual and (b) computer simulation meth-

ods. Using a manual approach, an artificial light source was mounted at operator’s

seat using a Seat Index Point (SIP) Apparatus (based on ISO 5353 standard) and

the visibility of a test body or test screen was measured following the ISO 13564-1

standard for powered industrial vehicles [5]. Such approaches are time-consuming and

require extensive set-up to measure visibility. As an alternative, the National Insti-

tute of Occupational Safety and Health (NIOSH) proposed a “low-tech alternative”

that does not require any infrastructure set-up or computer design drawings [52].

The procedure involves preparing a polar grid test bed around the equipment with

the operator’s seating location at the center of the grid. The visible areas are then
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marked around the equipment on this polar-grid manually depending on operator’s

perception of the grid’s visibility. This approach was primarily proposed for “con-

struction companies, labor unions, and training organizations to better understand

the blind areas around their own equipment.” However, this approach is “subjective”

as it involves the “human element” in measuring visible regions around equipment.

Using computer simulation methods blindspots diagrams are developed using

CAD models of equipment. Software based artificial lighting is used to determine

the blindspots [51, 33]. The blindspots include indirect visibility due to mirrors.

The measurements can develop blindspots diagrams on ground plane, and on planes

at 900mm and 1500mm vertical distance direction from the ground. This approach

allows measuring direct visibility and indirect visibility (visibility due to mirrors).

However, on construction sites equipment may undergo modification in which case

the blindspots map may change after it has been purchased by a user.

Recently, an automated blindspots measurement tool was developed by [65] to

measure the static blindspots of construction equipment. The approach followed the

standards related to earth-moving machinery-operator’s field of view (FOV) [36]. It

utilized a three-dimensional (3D) point cloud of equipment generated by a laser scan-

ner. Blindspots maps were produced by running Ray Casting algorithm [2] on the

point cloud. It provides a fast alternative to measure blindspots “objectively”, with-

out involving “human perception” in measuring the blind areas manually. Further-

more, changes made to the equipment cabin can be accounted easily as the approach

just requires rescanning the equipment. However, the results provided are empirical

without any validation [65].

As articulated in [65], any proposed method must at least comply with existing

blindspots measurement techniques or international standards. As these currently

focus primarily on 2D drawings, the following blindspots calculations and analyses

(from any viewing perspective) should be refined or added:
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� Volumetric blindspots

� Blindspots map, 12m circumference visibility,

� Rectangular 1m boundary visibility, and

� Worker visibility

From existing approaches it is not clear whether or not computer simulation meth-

ods can perform the above measurements subjectively or objectively. Furthermore, to

help construction operators understand the visibility of an equipment, a laser scan-

ning based approach may be more feasible. Point cloud data of an equipment can be

obtained by using a laser scanner. A scan typically yields millions of points and thus

a need to develop a fast and efficient approach to compute blindspots exists.

3.2 Methodology

Figure 13 illustrates the research methodology. Point cloud data is obtained by laser

scanning the equipment. The laser scan may be performed by (a) taking multiple

scans and registering them or (b) mounting the scanner at the driver’s seat of the

equipment and performing the scan once [65]. Approach “a” typically aids in captur-

ing the equipment surface better as compared to interior scan approach “b”. There

are two reasons why scans from the outside yield better point clouds: (1) many dark

or black surfaces exist inside cabins and (2) wind shields or windows might be dirty.

In both cases, range measurements vary or can be inaccurate by producing artifacts.

Equipment with no enclosed cabin may not have such issues. In general, range point

clouds may get significantly affected by glass windows on equipment and thus fail to

capture the interior surface of the cabin accurately. Approach “b” takes less time and

can capture the interiors better but however it may fail to capture the exterior sur-

faces accurately (which can also obstruct the field-of-view of an operator; for example,
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an exhaust pipe or blade mounted at the front of the equipment). Thus, integrating

these two methods can produce an accurate point cloud representation of equipment.

A manual cleaning procedure is typically followed to remove artifacts from point

cloud using commercially available point cloud manipulation software. This step has

only to be performed once though. These artifacts may be caused by artificial lighting

and reflectivity of certain cabin surfaces (such as glass windows). The point cloud

data is then binned into a 3D histogram. The 3D histogram is constructed in a cache-

friendly way which results in speeding up the computations. By running Ray Casting

algorithm on the histogram, the different blindspots analyses such as: (a) volumetric

blindspots, (b) blindspots map, (c) rectangular 1m boundary, (d) 12m circumference

visibility, and (e) worker visibility are performed.

3D histogram

Clean data

Point cloud data

Ray tracing

Volumetric blind 
spot

Worker visibilityBlind spot map 

12 m Ccf. 
visibility

Rect. 1m 
boundary vis. 

Figure 13: Methodology diagram of blindspots measurement.

3.2.1 3D Histogram (Shist) Construction

The input laser scan data, denoted by Pin, can be either in cartesian or in spherical

coordinate system. It is assumed that the input laser scan data is in cartesian co-

ordinate system. The collected laser scan data is then binned in to a 3D histogram.

The 3D histogram can be constructed in (a) cartesian, (b) spherical 〈r, θ, φ〉, or (c)
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cylindrical 〈z, ρ, φ〉 coordinate system. An appropriate choice of the coordinate sys-

tem can significantly reduce the computational cost. The most significant factor that

contributes to the computational cost is fetching the 3D histogram data from mem-

ory to the processor while performing Ray Casting. By making efficient use of the

cache, the number of fetches from memory can be reduced. Performing Ray Casting

algorithm in cartesian coordinate system caused strided memory access as shown in

figure 14a and thus makes inefficient use of the cache memory. A similar argument

can be made against cylindrical coordinate system. Choosing spherical coordinate

system for constructing the 3D histogram allows contiguous memory accesses in the

Ray Casting algorithm which increases the cache hit ratio and thus results in reduced

“time to solution”. The 3D histogram matrix, constructed in the spherical coordinate

system, is denoted by Shist[t][p][r], where t, p and r are the bin indices along θ, φ and

r dimensions. An increment in the bin index corresponds to a change of ∆θ, ∆φ, ∆r

and respectively. For the ease of notation, Shist[t][p][r] is represented by Shist. It is

noted here that θ and φ are also known as the azimuth and elevation respectively.

Figure 14b illustrates Ray Casting in spherical coordinate system.

xmin xmax

ymax

ymin

histS cols

ro
w
s

+Z

(a) Ray Casting in cartesian coordinate system.

r

(b) Ray Casting in spherical coordinate system.

Figure 14: Illustration of Ray Casting algorithm in cartesian and spherical coordi-

nate system.
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3.2.2 Ray Casting

The Ray Casting algorithm forms the backbone of the blindspots computations. The

principle behind Ray Casting algorithm is to shoot a ray from the origin along a

direction by incrementing the radius index r of Shist while keeping θ and φ constant.

If the ray hits a bin that has a frequency greater than a specified threshold then that

bin is termed as a “blocking bin”. All subsequent bins lying behind a blocking bin,

along that ray, lie in the blindspots region. This process is repeated for different

values of θ and φ.

It can be observed that if the histogram is constructed in the spherical coordinate

system then casting path of a ray will correspond to moving along the row of the

Shist matrix. The row ordering layout in memory of matrix (implementation was

performed in C) allows accessing contiguous memory locations. This increases the

cache hit ratio and thus results in a reduced “time to solution”. On the other hand,

constructing histogram in cartesian or cylindrical coordinate system can cause random

or strided memory accesses which can be computationally costly as the number of

bins is typically high (∼ 107).

As discussed above, the Ray Casting algorithm needs a choice of origin. The

origin is located at “approximately” the same location as the equipment operator’s

head. Only an “approximate” location is necessary as the approach has the capability

to perform analyses from other “viewpoints”. Viewpoints reflect the head location

of an operator. To perform the analyses from different viewpoints, the constructed

3D histogram Shist is converted into a coarser point cloud (denoted by P0) in the

cartesian coordinate system. However, all bins in Shist are not added to P0. Bins

whose frequency is higher than a certain threshold are added to the point cloud P0.

This allows construction of a coarser representation of the original input laser scan

data Pin. Assuming the viewpoint has changed by v (in the kth frame), then the point

cloud is translated by −v to form a new point cloud Pk. By constructing a new 3D
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histogram Shistk from the point cloud Pk and then performing Ray Casting on Shistk ,

all blindspots analyses can be performed from this new viewpoint. Construction of

the histogram Shistk is sped up since the Pk is a reduced representation of Pin with

significantly less number of points. In implementation, Shist is reused as Shistk , so that

no extra memory allocation is required for the storing Shistk memory.

3.3 Blindspots Analyses

3.3.1 Volumetric Blindspots

The percentage volumetric blindspots is defined as the ratio of total blind areas on the

surface of a 12m radius sphere to the total area of the same sphere lying above the

ground plane. The sphere is assumed to be centered at the origin or the head of the

operator. The surface of the sphere lying above the ground plane is only considered

in the computation. Figure 15a illustrates this imaginary sphere. Even though the

blindspots are measured as a ratio of the blindspots areas to the total area on the

sphere, it can still have a volumetric interpretation if the visibility of an operator

inside the equipment cabin is disregarded. In figure 15b, the surface patch abb′a′ can

be interpreted volumetrically by considering the origin ‘o’ as the vertex of the cone

whose base is the surface patch abb′a′.
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Figure 15: Illustration of volumetric blindspots measurement.
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The pseudo code for volumetric blindspots computation is shown in Algorithm 2.

Algorithm 2 Ray Casting for computing volumetric blindspots.

1: totalNumRays = nBinsThtGrnd* nBinsPhi

2: nBinsR= floor (r′/∆r +0.5)

3: rayCount = 0

4: for t = 0 to nBinsThtGrnd do

5: for p = 0 to nBinsPhi do

6: bool blindspotFlag = false

7: for r = 0 to nBinsR do

8: if Shist[t][p][r] >binThresh then

9: blindspotFlag = true

10: break

11: end if

12: end for

13: if blindspotFlag == true then

14: rayCount += 1

15: end if

16: end for

17: end for

18: volBlindspot = 100.0*(rayCount/totalNumRays)

nBinsPhi and nBinsRad represent the number of bins in Shist along with φ and r

dimensions. nBinsThtGrnd corresponds to the bin index of discretized elevation angle

of the ground plane measured with respect to +Z axis. binThresh is the frequency

threshold parameter and its value is at the discretion of the user. If a encounters a

“blocking bin” while proceeding along the radial direction, then the boolean variable

blindspotF lag is set to true, otherwise false. Thus, the volumetric blindspots is the

ratio of the number of rays (rayCount) that have hit “blocking bins” to the total
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number of possible rays (denoted by totalNumRays).

3.3.2 Blindspots Map

A blindspots map is defined as the mapping of visible and blind areas contained in a

12m radius circle lying on planes parallel to XY, YZ or XZ planes. The operator’s

head is located at the center of the map. While computing blindspots on the XY

plane, the equipment’s foot print area is discarded. The equipment’s foot print area

is defined as the area enclosed by the smallest rectangle that can be placed around

the vertical projection of the equipment on the test floor (ground plane) on which the

equipment is located (see figure 20).

From geometry it is known that area of a sphere can be computed by integrating

the area over smaller patches constructed over the surface of the sphere. Such a patch

is referred to as an “elementary patch” here and has been illustrated in the figure

15b. In figure 17, pq represents the YZ view of such a patch P ′′ and similarly for ab

which represents patch P . Let be the area of the P ′′. Using geometric principles,

∆AE = R2sin(θn)∆θn∆φn (15)

where, R is the radius of the sphere and θn is the angle formed by the normal to

P ′′ with the +Z axis. φn is the angle formed by the projection of the normal on XY

plane with the +X axis. ∆θn and φn are the step sizes (or bin widths) for θn and φn,

respectively. Thus, ∆AE gives the area of an elementary patch on the surface of the

sphere. However, our interest is to compute the total area of blindspots regions on a

circular section plane parallel to X, Y, or Z axis. Figure 17 shows a circular section

plane (shaded) of radius R′ and parallel to the XZ plane. It should be noted that by

projecting the surface area of the sphere above the section plane on to the section

plane, the area of the section plane is obtained. The projection of the surface area of

the sphere above the section plane on to the section plane is achieved by projecting
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patches such as P ′′ to form “projection patches” P ′, as illustrated in figure 17. This

is the key concept that is used in computing the blindspots area on a section plane.

Computing blindspots on a section plane:

� Shoot a ray from the origin until it hits the section plane. In figure 17, ray oa

and ob hit the section plane at points m and n respectively.

� If before hitting the section plane, the ray hits any “blocking” bin, then the

point at which it hits the section plane is a part of the blindspots region or else

it is visible.

� Now, project points m and n on to the sphere (of radius R), as shown in figure

17. In the figure the projected points are p and q respectively. The arc ab is

then formed by ∆θ change in θ, and let the arc pq be formed by ∆θn change

in θ where ∠aoZ = θ and ∠poZ = θn. Thus, the area of “projection patch” P ′

can be computed by projecting P ′′ on to the section plane.

Figure 16 illustrates the process of computing blindspots map on XY map. The

gray points shown in the figure (left side) represent equipment point cloud. Rays

are shot in directions as required to construct the blindspots map. Depending on

whether the rays get obstructed or not, regions on the ground plane are determined

as blindspots (represented by red colored pixels) and visible regions (represented by

green pixels) respectively.
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Figure 16: Illustration of Ray Casting algorithm for computing blindspots map on

XZ plane.

3.3.2.1 Computing blindspots on a section plane parallel to XZ

Let ∆AP be the area of any projection patch P ′ on the section plane. It may be

recalled that the area of any elementary patch P ′′ is denoted by ∆AE. If ∆AP forms

a part of the blindspots region then it is annotated as ∆Ablind spotP . In figure 18, m′n′

represents the XY view of the projection patch P ′ and similarly, p′q′ is the XY view

of P ′′. The relationship between ∆AP and ∆AE is given by equation 16.

∆AP = ∆AE cos(β) (16)

where β is the angle formed by the normal to the pq with the +Y axis. Summing
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the area ∆AE for all elementary patches P ′′ above the section plane (if C is on the

+Y axis) or below the section plane (if C is on the -Y axis) gives the area of the

section plane by using equation 16. This summation results in a summation over

all the projection patches on the section plane. Consequently, summation over those

projection patches that form the blindspots region yields the total area of blindspots

region on the section plane. Thus, after computing ∆AP for all projection patches, the

percentage blindspots on the circular section plane can be computed using equation

17.

%age blindspots =

∑
∆AblindspotsP∑

∆AP
× 100 (17)

where, the summation is over all the elementary patches that lie on or above

the section plane or on or below the section plane depending on the location of

C. Mathematically, the denominator
∑

∆AP in equation 17 equals πR′2 (with the

inclusion of equipment foot print area on XY plane). While performing Ray Casting,

rays oa and ob are shot from which θ, φ, r, ∆θ, ∆φ and ∆r are evaluated. However,

to compute area of P ′, that is ∆AP , P ′ is projected back to the sphere to form P ′′.

After projection, ∆AP is evaluated as using equation 16. Thus, ∆AP can be evaluated

from ∆AE by using equation 15. To compute ∆AE using equation 15, the values of

θn, φn , ∆θn, and ∆φn are required. φn is used to compute β by using the relation:

β = |90 − φn| . And finally, the values of θ, φ and, r, can be computed from the

indices of Shist.

3.3.2.2 Computing ∆θn and θ

Observing the following from figure 17, we obtain equation 18.

∠aoZ = θ, ∠aob = ∆θ, ∠poZ = θn, ∠poq = ∆θn

|om| = r, |lm| = |mn| sin(θ) = r∆θ

|pq| = R∆θn, |sq| = |pq| sin(θn), |sq| = |mn|
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∆θn =
r∆θ

R sin(θn) sin(θ)
(18)

Where, R =
√
R′2 + d2 and d is the distance of the section plane from the origin

‘o’ along the Y axis (oC) (see figure 17). Furthermore, using z = r cos(θ), we obtain

θ = cos−1(z/R).

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

+X

+Z

+Y

o

m

a

b

p
q

C

s

n

R

l
R'

̶ Z

Section plane
SS'

P'

P''

P

Figure 17: Computing ∆θn and θn for measuring blindspots map on XZ plane.

3.3.2.3 Computing ∆φn and φn

Observing the following from figure 18, we obtain equation 19.

∠a′oX = φ, ∠a′ob′ = ∆φ, ∠p′oX = φn, ∠p′oq′ = ∆φn

|om′| = |om| sin(θ) = r sin(θ), |l′m′| = |m′n′| sin(φ) = r sin(θ)∆φ

|p′q′| = R sin(θn)∆φn, |s′q′| = |p′q′| sin(φn), |s′q′| = |m′n′|

∆φn =
r sin(θ)∆φ

R sin(θn)| sin(φn)|.| sin(φ)| (19)

φn is computed by noting that the projection of point m′ on the sphere is point

p′. The point p′ has the same x and z coordinates as m′ but a different y coordinate.
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Let the y coordinate of point be called as yn. Then, yn = sign(y)
√
R2 − x2 − z2 and

φn = cos−1(x/
√

(x2 + z2)).
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Figure 18: Computing ∆φn and φn for measuring blindspots map on XZ plane.

Using equation 15 in equation 16, ∆AP can be evaluated as:

∆Ap = R2 sin(θn)∆θn∆φn cos(β)

= R2 sin(θn) cos(β)
r∆θ

R sin(θn) sin(θ)

r sin(θ)∆φ

R sin(θn)| sin(φn)|.|sin(φ)|

= cos(β)
r2∆θ∆φ

sin(θn)|sin(φn)|.|sin(φ)| (20)

The technique to compute the blindspots region on a circular section plane parallel

to the XZ plane was described above. A similar technique can be employed to compute

the blindspots region on circular section planes parallel to YZ plane. Computing the

blindspots on section planes parallel to XY plane is simpler as only the elevation

angle θ changes due to projection on to the sphere. Therefore, only θn and ∆θn need

to be computed. Furthermore, ∆φn = ∆φ and φn = φ . The method to compute

∆θn and θn for blindspots map parallel to XY plane is described next.
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3.3.2.4 Computing ∆θn and θn
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Figure 19: Computing ∆θn and θn for measuring blind spots map on XY plane.

Observing the following from figure 19, we obtain equation 21.

∠aoZ = θ, ∠aob = ∆θ, ∠poZ = θn, ∠poq = ∆θn

|om| = r, |lm| = |mn| cos(θ) = r∆θ

|pq| = R∆θn, |sq| = | cos(θn), |sq| = |mn|

∆θn =
r∆θ

R cos(θn) cos(θ)
(21)

θn is computed by noting that projection of the point m on the sphere is the point

p. The point p has the same x and y coordinates as m but a different z coordinate.

Let the z coordinate of point be called as zn. Then, zn = sign(z)
√
R2 − x2 − y2 and

θn = cos−1(zn/R) .

3.3.3 12m Circumference Visibility

The 12m circumference visibility measurement is similar to the blindspots map mea-

surement on XY plane as discussed in section 3.3.2. However in this case, visibility
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is measured only along the edge of a 12m radius circle. The circle is located on the

ground plane (parallel to the XY plane) with the operator at the center of the circle.

The visibility is measured in terms of length. To measure the visibility, ray casting

is performed with the value of θ fixed (value corresponds to the elevation angle of

the ground plane) and φ, the azimuth, changed from 0 to 360o in steps of ∆φ. From

section 3.3.1, it is known that φ is discretized into nBinsPhi steps. In ray casting for

computing blindspots map on XY plane (with value of θ equal to elevation angle of

ground plane), say NCV rays hit “blocking” bins, then the edge of 12m radius circle

corresponding to these NCV rays form the blindspots. Thus, the visible length on this

12m radius circle can be measured using equation 22.

Circumference V isibility =

(
1− NCV

nBinsPhi

)
× 2π × 12.0 (22)

3.3.4 Rectangular 1m Boundary Visibility

For rectangular 1m boundary visibility analysis, visibility is measured along the cir-

cumference of a rectangular 1m boundary around the equipment. A rectangular 1m

boundary is constructed at an offset distance of 1m from the smallest rectangle that

can be placed around the vertical projection of the equipment on the test floor (ground

level) on which the equipment is located (see figure 20) [36]. From implementation

perspective it is not possible to compute the visibility strictly along the rectangular

1m boundary, owing to discretization of the 3D space. Therefore, two rectangles are

constructed around the rectangular 1m boundary at a distance of w/2(w = 1.5∆r)

on the inner and outer side of the boundary. Visibility is then computed over the

enclosed region. In figure 20 this enclosed region is the area occupied between the

two dashed rectangles. Let the visible area be represented by ARB and let the visible

length along this rectangular boundary be denoted by LRB. Therefore, LRB can be

computed as ARB/w. The visible area ARB is computed using the same approach as
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is used to compute blindspots map on XY plane.

Vertical projection of 
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equipment  foot print area
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w
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Figure 20: Illustration of rectangular 1m boundary visibility (XY plane).

3.3.5 Worker Visibility

To compute worker visibility, a worker is represented by a curved surface unlike

in [65] where a worker is represented by a cylinder. The representation by a curved

surface simplifies the computation as Ray Casting is performed in spherical coordinate

system. Figure 21 illustrates this representation. The height and the width of the

surface are at the discretion of the user. Based on this representation, worker visibility

is defined as the percentage of the visible curved surface area to the total area of the

curved surface. Using Ray Casting, the visible and blind areas on this curved surface

are obtained from which worker visibility is finally computed.

Figure 22 illustrates the process of computing worker visibility by Ray Casting

algorithm. The gray points in the figure (left side) represent the point cloud data of

an equipment. In the figure on the right side the visible and invisible regions of the

worker are represented by green and red pixels respectively.
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Figure 22: Illustration of Ray Casting algorithm for worker visibility computation.
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3.4 Data Sets

3.4.1 Synthetic Data Sets

To validate the approach, 36 synthetic point clouds were generated. The data set is

based on three hollow geometries: cube, cylinder, and sphere. Each of these geome-

tries is longitudinally cut to generate four different geometries. These longitudinal

cuts have been illustrated in figure 23. This resulted in 12 point clouds. Gaussian

noise with σ= 5 and 10mm is then added to this synthetic data set to generate 24

more point clouds as illustrated in figure 4. The choice of Gaussian noise is based on

the “ranging noise (defined as a standard deviation of values about the best-fit plane)”

of the commercial laser scanner used for scanning. For each of these data sets the

ground truth is trivial and is known a-priori. The ground truth for each analysis is

mathematically and graphically illustrated and then compared against the results of

computations in the sections below.

(a) (b)

(c) (d)

Figure 23: Closed cube, 1/4 longitudinally cut cylinder, 1/2 longitudinally cut cylin-

der, 3/4 longitudinally cut sphere.
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Table 4: Synthetic data set: σ (mm) represents the standard deviation of added

Gaussian noise.

Cuts Closed 1/4 cut 1/2 cut 3/4 cut

Cube σ =0, 5, 10 σ =0, 5, 10 σ =0, 5, 10 σ =0, 5, 10

Cylinder σ =0, 5, 10 σ =0, 5, 10 σ =0, 5, 10 σ =0, 5, 10

Sphere σ =0, 5, 10 σ =0, 5, 10 σ =0, 5, 10 σ =0, 5, 10

3.4.2 Real-World Data Set

The real world data set is a forklift’s point cloud [6]. The data set was generated

by registering 11 scans together. Point cloud generated by registering multiple laser

scans typically captures the surface of equipment more accurately than one scan taken

from the inside of the equipment cabin.

3.5 Results and Discussion

3.5.1 Validation on Synthetic Data Set

The blindspots computation on the synthetic data set is essentially affected by two

factors (a) step sizes (or bin widths): ∆r, ∆θ, ∆φ and (b) noise. The error rate is

monotonic function of the step sizes. Increase in step sizes results in reduction in

“time to solution” and a decrease in step size requires more memory be allocated for

storing the Shist matrix and increases the accuracy. Owing to the memory constraints,

the step sizes are set to the following minimal possible values: ∆r = 0.05m, ∆θ =

0.3◦, ∆φ = 0.3◦. In the next sections, the accuracy of the algorithm is analyzed for

the addition of random Gaussian noise to the synthetic point cloud data set. Finally,

the results of the algorithm’s performance are presented which establish its accuracy

and speed.
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3.5.1.1 Volumetric Blindspots

In Table 5, computed volumetric blindspots are shown in rows 3 to 5. The ground

truth for each data set is in the last row. The percentage volumetric blindspots was

computed using the approach discussed in section 3.3.1.

Table 5: Computed volumetric blindspots and the ground truth for the synthetic

data set.

Cut Closed (%) 1/4 cut 1/2 cut 3/4 cut

Noise (σ in mm) 0.00 5.00 10.00 0.00 5.00 10.00 0.00 5.00 10.00 0.00 5.00 10.00

Cube 99.73 99.77 99.66 74.67 74.77 74.67 50.03 50.07 50.01 25.10 25.14 25.12

Cylinder 99.93 99.90 99.85 74.95 74.90 74.84 50.13 50.13 50.11 25.15 25.17 25.16

Sphere 100.0 99.90 99.84 74.98 74.89 74.84 50.17 50.14 50.11 25.17 25.16 25.16

Ground truth 100.00 75.00 50.00 25.00

A maximum error rate of 0.34% was observed for closed cube synthetic data with

σ = 10mm. The generated point cloud data after volumetric blindspots analysis

is shown in figure 24. The volumetric blindspots are 100%, 75%, 50% and 25%

respectively. The reader should be convinced that the visibility (green region) is due

to the longitudinal cuts in the geometries.
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(a) Closed cube. (b) 1/4 cube.

(c) 1/2 cube. (d) 3/4 cube.

Figure 24: Illustration of volumetric blindspots for cube (σ = 0) with different

longitudinal cuts. The %age volumetric blindspots is 100%, 75%, 50% and 25%.

3.5.1.2 Blindspots Map

The blindspots map were computed on three planes x = 5.0m, y = 5.0m, and z =

5.0m. Table 6 reports the ground truth of the blindspots map for the 36 point

clouds. The percentage of blindspots is based on the discussion in section 3.3.2. In

figure 25 the ground truth of the blindspots map has been illustrated graphically.

Tables 7, 8, and 9 show the computed blindspots percentage for σ = 0, 5 and 10mm

respectively. Comparing the values of the three tables it can be observed that the

computed blindspots percentage is not significantly affected by noise. A maximum
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error of 0.21% is observed for the XZ blindspots map on 1/2 cut and 3/4 cut data

sets. As the 12m circumference visibility is evaluated during the computation of the

blindspots map on the XY plane, therefore no additional validation results for 12m

circumference visibility analysis have been reported.

Table 6: Ground truth of %age blindspots on blindspots map for the 36 point cloud

data sets.

Geometry Map location (m) Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube

z = 5.0 100.00 75.00 50.00 25.00

y = 5.0 100.00 50.00 50.00 50.00

x = 5.0 100.00 50.00 100.00 50.00

Cylinder

z = 5.0 100.00 75.00 50.00 25.00

y = 5.0 100.00 50.00 50.00 50.00

x = 5.0 100.00 50.00 100.00 50.00

Sphere

z = 5.0 100.00 75.00 50.00 25.00

y = 5.0 100.00 50.00 50.00 50.00

x = 5.0 100.00 50.00 100.00 50.00
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(a) XY blindspots map of cube (σ = 0) at z=5.0m with different longitudinal cuts.

(b) XZ blindspots map of cylinder (σ = 0) at y=5.0m with different longitudinal cuts.

(c) YZ blindspots map of sphere (σ = 0) at x=5.0m with different longitudinal cuts.

Figure 25: Illustration of ground truth of the blindspots map for the three geome-

tries: (a) cube, (b) cylinder, and (c) sphere. 1st column - closed, 2nd column -1/4 cut,

3rd column - 1/2 cut, 4th column - 3/4 cut).
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Table 7: Without noise (σ = 0mm)

Geometry Map location (m) Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube

z = 5.0 100.00 75.01 50.09 25.09

y = 5.0 100.00 50.00 50.21 50.21

x = 5.0 100.00 50.00 100.00 50.00

Cylinder

z = 5.0 100.00 75.01 50.09 25.09

y = 5.0 100.00 50.07 50.21 50.21

x = 5.0 100.00 50.00 100.00 50.00

Sphere

z = 5.0 100.00 75.00 50.09 25.09

y = 5.0 100.00 50.04 50.21 50.21

x = 5.0 100.00 50.00 100.00 50.00

Table 8: With Gaussian noise (σ =5.0mm).

Geometry Map location (m) Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube

z = 5.0 100.00 75.01 50.09 25.09

y = 5.0 100.00 50.05 50.20 50.19

x = 5.0 100.00 50.00 100.00 50.00

Cylinder

z = 5.0 100.00 75.01 50.09 25.09

y = 5.0 100.00 50.07 50.21 50.21

x = 5.0 100.00 50.00 100.00 50.00

Sphere

z = 5.0 100.00 75.01 50.09 25.09

y = 5.0 100.00 50.07 50.21 50.20

x = 5.0 100.00 50.00 100.00 50.00
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Table 9: With Gaussian noise (σ =10.0mm).

Geometry Map location (m) Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube

z = 5.0 100.00 75.01 50.09 25.09

y = 5.0 100.00 50.04 50.18 50.18

x = 5.0 100.00 50.00 100.00 50.00

Cylinder

z = 5.0 100.00 75.00 50.09 25.09

y = 5.0 100.00 50.07 50.21 50.21

x = 5.0 100.00 50.00 100.00 50.00

Sphere

z = 5.0 100.00 75.01 50.08 25.08

y = 5.0 100.00 50.06 50.20 50.20

x = 5.0 100.00 50.00 100.00 50.00

3.5.1.3 Rectangular 1m Boundary Analysis

The rectangular 1m boundary visibility analysis is computed on the plane z=5.0m.

Table 10 shows the ground truth percentage for the point clouds. The percentage

visibility is based on the discussion in section 3.3.4. The ground truth has been

illustrated graphically for cube point cloud (σ = 0) with different longitudinal cuts.

The percentage visibility in 26 is 0%, 25%, 50% and 75%, respectively. Tables 11,

12 and 13 show the computed visibility for σ = 0, 5 and 10mm, respectively. A

maximum error of 0.07% is observed for 1/2 cut and 3/4 cut point clouds.
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Table 10: Ground truth for rectangular 1m boundary visibility for the 36 point

cloud data sets.

Geometry Map location (m) Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube z = 5.0 0.00 25.00 50.00 75.00

Cylinder z = 5.0 0.00 25.00 50.00 75.00

Sphere z = 5.0 10.00 25.00 50.00 75.00

Figure 26: Illustration of the rectangular 1m boundary visibility analysis on cube

(σ=0mm) with different longitudinal cuts (left to right: Closed, 1/4 cut, 1/2 cut, and

3/4 cut).

Table 11: Without noise (σ=0mm).

Geometry Map location (m) Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube z = 5.0 0.00 25.00 49.93 74.93

Cylinder z = 5.0 0.00 25.00 49.93 74.93

Sphere z = 5.0 10.00 25.00 49.93 74.93
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Table 12: With Gaussian noise (σ=5.0mm).

Geometry Map location (m) Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube z = 5.0 0.00 25.00 49.93 74.93

Cylinder z = 5.0 0.00 25.00 49.93 74.93

Sphere z = 5.0 10.00 25.00 49.93 74.93

Table 13: With Gaussian noise (σ=10.0mm)

Geometry Map location (m) Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube z = 5.0 0.00 25.00 49.93 74.97

Cylinder z = 5.0 0.00 25.00 49.93 74.93

Sphere z = 5.0 10.00 25.00 49.93 74.94

3.5.1.4 Worker Visibility

To validate worker visibility, an arbitrary location 〈3.5m, 3.5m, −4.0m〉 was selected

and the computations were verified on the 36 point clouds. In the developed approach,

the height and width values are arbitrary and are at the discretion of the user. In

the following, the height of the worker was selected to be 1.5m and the width 0.5m.

Table 14 shows the ground truth for the above specified location, height and width.

Tables 15, 16 and 17 show the computed result on data set for σ = 0, 5 and 10mm

respectively. Figure 27 illustrates the visibility of worker of the cube point cloud data

for the above specified location, height and width of a worker.
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Table 14: Ground truth for worker visibility for the 36 point cloud data sets.

Geometry Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube 0.00 100.00 0.00 0.00

Cylinder 0.00 100.00 0.00 0.00

Sphere 0.00 100.00 0.00 0.00

Figure 27: Illustration of worker visibility for cube geometry (σ = 0) with different

longitudinal cuts (left to right: 1/4 cut,1/2 cut, and 3/4 cut).

Table 15: Without noise (σ =0mm).

Geometry Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube 0.00 100.00 0.00 0.00

Cylinder 0.00 100.00 0.00 0.00

Sphere 0.00 100.00 0.00 0.00
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Table 16: With Gaussian noise (σ =5.0mm).

Geometry Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube 0.00 100.00 0.00 0.00

Cylinder 0.00 100.00 0.00 0.00

Sphere 0.00 100.00 0.00 0.00

Table 17: With Gaussian noise (σ =10.0mm).

Geometry Closed (%) 1/4 cut (%) 1/2 cut (%) 3/4 cut (%)

Cube 0.00 100.00 0.00 0.00

Cylinder 0.00 100.00 0.00 0.00

Sphere 0.00 100.00 0.00 0.00

3.5.1.5 Computational Performance

Table 18 illustrates the time taken for computing blindspots or visibility on three

synthetic point clouds. Considering the nature of a Ray Casting algorithm, the ad-

vantage of having a cache friendly data structure for Shist matrix becomes clear as the

computations are significantly fast. The analysis in table 18 does not include time for

file input/output (I/O). Furthermore, the computation time for XY blindspots map

includes 12m circumference visibility and rectangular 1m boundary visibility analysis.

Table 18: Computational time (in seconds) for analyses.

Geometry # points Vol. blindspots
Blindspots map

Worker visibility
XY YZ XZ

Cube 13× 106 0.160 0.550 0.534 0.523 0.016

Cylinder 17× 106 0.175 0.546 0.531 0.523 0.016

Sphere 16× 106 0.187 0.542 0.531 0.519 0.020
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3.5.2 Real-world (Forklift) Data Set

The forklift point cloud data set was obtained by registering 11 laser scans. The

top and side views of the raw point cloud is shown in figure 28. The point cloud

was binned into a 3D grid in steps of size ∆r=0.05m, ∆θ = 0.3◦ and ∆φ = 0.3◦.

The numbers of bins along the three directions were: 416 along r, 1200 along φ and

600 along θ. The number of bins was computed from the value (step sizes) the user

defined. Owing to memory constraints for storing the 3D grid, the step sizes were set

to the above minimal possible values.
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Figure 28: Point cloud of forklift generated by registering multiple scans and cate-

gorization of area surrounding forklift into: front, left, rear and right.
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3.5.2.1 Volumetric Blind Spots

For the forklift shown in figure 28, the volumetric blindspots are illustrated graphically

in figure 29. Figure 29 shows the visible and blind areas on a 12m sphere centered at

the origin of the equipment cabin. The visible areas are shown in green whereas the

blind areas are represented by red color. The percentage volumetric blindspots was

19.48%. The time taken for computing the volumetric blindspots was 1.19 seconds

(includes file output).

Z

X

Blind spot
Visible area
Equipment

(a) Front view

Blind spot
Visible area
Equipment

X

Z

(b) Rear view

Figure 29: Volumetric blindspots of a forklift on a 12m radius sphere.
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3.5.2.2 Blindspots Map

The percentage blindspots (on XY plane) was computed to be 21.20%. The time taken

for computation was measured to be 0.83 seconds (includes file I/O and computation

of 12m circumference visibility and rectangular 1m boundary). Table 19 shows the

detailed results of the analysis. The visible area inside the circle was computed to be

360.15m2 (3rd row).

Table 19: Blindspots map measurement.

Entity Area (m2) Ratio (%)

Total area 456.86 100

Blindspots area 96.71 21.20

Visible area 360.15 78.83

Front blindspots 27.08 5.93

Right blindspots 28.90 6.33

Rear blindspots 7.13 1.56

Left blindspots 33.76 7.39

The circular area was divided in to four regions: front, right, rear and left as

shown in figure 28b and the blindspots area in these four regions are shown in Table

19 (bottom four rows). Figure 30a shows the blind and visible areas contained in the

12m radius circle lying on the ground plane, with the operator position at the center.

To visually validate the blindspots map, a Giga Pan camera was mounted inside the

cabin to capture a panoramic view of the forklift [6]. The similarity of between the

blindspots map can be observed. The red pixels (blindspots regions) in figure 30a are

caused due to the occlusion caused by the black structural components and the tank

(at the rear) of the forklift as shown in figure 30b.
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(a) Graphical illustration of blindspots map on XY plane.

(b) Panoramic view of the forklift.

Figure 30: Blindspots map of the forklift on the ground plane.
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3.5.2.3 Rectangular 1m Boundary Analysis

Figure 31 shows the rectangular 1m boundary visibility surrounding the forklift. The

rectangular 1m boundary visibility measurement is shown in Table 20. The actual

length was computed by manual calculation whereas the computed value was reported

by the developed blindspots measurement method. The discrepancy in value arises

from the fact that the 3D space is discretized. The visible length was computed to

be 9.66m which constituted 46.78% of the length of the rectangular 1m boundary.

Y

X

Blind spot
Visible area
Equipment

Figure 31: Visibility along the rectangular 1m boundary.

Table 20: Visibility along the rectangular 1m boundary.

Entity Length (m) Ratio (%)

Total (actual) 20.32 -

Total (computed) 20.65 100

Visible 9.66 46.78

Front blindspots 2.54 12.28

Right blindspots 2.32 11.21

Rear blindspots 2.59 12.54

Left blindspots 3.55 17.20
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3.5.2.4 12m Circumference Visibility

The 12m circumference visibility was computed to be 62.71m (83.17%). The total

length of the circumference (2πr, r = 12.0m) was 75.40m. Additionally, the devel-

oped method reports the arcs along the circumference that are invisible as shown in

Table 21. Figure 32 below is an annotated graphical representation of the arcs in

Table 21.

Table 21: Invisible arcs along the circumference of 12m radius circle.

Arc # From (◦) To (◦) Arc length (m) Arc angle (m)

1 50.10 55.20 1.07 5.10

2 73.80 86.10 2.58 12.30

3 94.80 107.10 2.58 12.30

4 125.40 130.50 1.07 5.10

5 207.60 220.50 2.70 12.90

6 319.80 332.70 2.70 12.90

X

Y

Blind spot
Visible area
Equipment

Figure 32: Graphical illustration of 12m circumference visibility.
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3.5.2.5 Worker Visibility

Two random worker locations L1 and L2 were selected with L1 = 〈2.0m,−3.0m,−2.02m〉,

and L2 = 〈−2.5m, 4.0m,−2.02m〉. The two locations had z=-2.02m which was the

ground plane. Figure 33, graphically illustrates the visibility at these two locations.

The height and width values are arbitrary and are at the discretion of the user.

In the results shown below the height and width were assumed to be 1.5m and 0.5m

respectively. The percentage visibility at L1 was 95.67% and 66.80% at L2. The time

taken for computing visibility at each of these locations was 0.033 sec (including file

I/O).
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Blind spot
Visible area
Equipment

(a) Worker located at L1

Z

X

Blind spot
Visible area
Equipment

(b) Worker located at L2

Figure 33: Graphical illustration of worker visibility at two arbitrary locations L1

and L2.
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CHAPTER IV

RESULTS

In Chapter 2 results to head posture estimation was presented and Chapter 3 pre-

sented results to computing static blindspots. In this chapter, dynamic blindspots

map is formulated by integrating the head posture of the driver or equipment oper-

ator with the static blindspots map. This results in measuring the visibility of the

driver in real-time. It should be noted that the visibility measurements presented

here assume a monocular vision instead of binocular vision to simplify computation

and only direct visibility is taken into consideration. Indirect visibility due to mirrors

is not taken into consideration. To extend this approach to allow for a binocular

vision model and to incorporate indirect visibility of the operator a brief discussion

has been provided in Chapter 5.

In Chapter 2 the BKHP dataset was used to train Random Forests algorithm.

In that data set, the reference head location is the nose tip. However, owing to the

monocular vision model assumption, this approach requires the temple (located mid-

way between the eyes) to be the reference point on the head. Therefore, a data set

was created using markers to capture the ground truth such that the temple is the

reference point on the head. The results presented in this chapter were obtained after

training Random Forests algorithm on this new data set.

To demonstrate the feasibility of the approach results to simulation and field

experiments are presented. Simulation experiment was conducted in an indoor envi-

ronment with the camera mounted in front of the subject. Field experiments were

conducted with a driver driving a commercial passenger car with a kinect camera
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mounted on the dashboard. Before presenting results to dynamic blindspots mea-

surement, first we need to discuss the required camera registration to integrate head

posture information and static blindspots map to construct dynamic blindspots map.

Camera registration is necessary because the estimated head pose is in the kinect

camera coordinate system, however visibility measurement of the driver is performed

in vehicle coordinate system. Thus, the estimated head pose needs to be transformed

to the vehicle coordinate system to construct the dynamic blindspots or visibility

maps.

4.1 Camera Registration

As discussed above the head posture of the driver (the head location is denoted by

lck and the orientation is denoted by the euler angles θck) is estimated in the camera

coordinate system. The superscript ‘c’ denotes camera coordinate system and sub-

script ‘k’ denotes the frame number. The camera coordinate system is located at the

optical center of the kinect depth camera as shown in figure 34. However, the visibil-

ity measurement of the driver is performed in vehicle coordinate system (denoted by

superscript ‘v’). The origin of the vehicle coordinate system is located at a reference

point on the driver’s head and it changes as the driver’s head moves. This reference

location is taken to be the temple. Thus, the translation of the vehicle coordinate

system’s origin, denoted by tvk, is simply the vector joining the head location in the

0th frame to the head location in the kth frame, where the head location measure-

ments are in vehicle coordinate system. The axes of the vehicle coordinate system

are aligned with the principal axes of the car as shown in figure 43, at all instants of

time irrespective of the head orientation. Thus, only the rotation between the camera

coordinate system and the vehicle coordinate system is required to compute dynamic

blindspots map. It is also assumed here that the origin of the equipment point cloud

is at the same position as the reference location on the driver’s head in the first frame
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where the head location measurement is in the vehicle coordinate system. For the

purposes of illustration of result, this assumption is not restrictive. However, for a

real-world application it will be necessary to ensure that the driver’s head location

is located exactly at the same position as the input point cloud data of the equip-

ment/vehicle. This can be achieved by using Iterative Closest Point (ICP) algorithm

on the laser scan point cloud taken from inside the equipment and the point cloud

generated by the depth camera. This approach will yield an accurate estimate of the

rotation and translation parameters to register the camera with the point cloud of the

equipment. Algorithm 3 below illustrates computation of dynamic blindspots using

the input point cloud Pin and the driver’s head posture. Additionally, since our inter-

est is to compute visibility on the ground plane thus we only take in to account the

rotation of camera coordination system around the Z-axis of the vehicle coordinate

system as illustrated in figure 35.

Z

Y

X

Camera coordinate 
system

Figure 34: Camera coordinate system of the kinect mounted of the dashboard of a

passenger car.
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Figure 35: Rotation between camera coordinate system in vehicle coordinate system.

Algorithm 3 Computing dynamic blindspots

1: Convert input point cloud Pin to a 3D histogram Shist

2: Convert Shist to coarser point cloud P0

3: while k < nFrames do

4: Compute head pose parameters: lck and θck

5: lvk = Rv
c l

c
k

6: tvk = lvk - lv0

7: Pk = P0 + tvk

8: Construct Shistk from point cloud Pk

9: Compute XY blindspots map

10: k = k + 1

11: end while
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4.2 Simulation Experiment

To simulate dynamic blindspots, a kinect camera was mounted in front of the subject

in an indoor environment as shown in the figure 36. The subject was asked to perform

different head motions and then the head posture information was used to compute the

dynamic blindspots in real-time in a virtual-world. It should be noted here that the

subject involved in this experiment was not a part of the new data set used for training

the head posture estimation algorithm with temple as the reference location on the

head. To compute the dynamic blindspots, the point cloud of the fork lift shown

in figure 28 was used as the virtual equipment. As in the simulation environment

the subject was not operating any equipment, this allowed it to perform specific

head motions in an controlled environment. The main idea behind the simulation

experiment is to create dynamic blindspots map in a controlled environment and

visually validate the approach. Also, it is assumed that the origin of the input point

cloud, Pin, is at the same location as the head of the subject in the first frame as

discussed in section 4.1. All the depth maps shown have been thresholded with a

value of 1.5m to reject the background pixels.

Figure 36: Camera mounted in front of the subject for simulation in an indoor

environment.
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Figure 37 below shows the visibility and the head pose of the subject in the first

frame. The left column shows the visibility map and the column on the right shows

the thresholded depth map and the rgb image captured. The gray arrow drawn the

visibility represents the head orientation of the subject along the +Z axis (of the

vehicle coordinate system). In the subsequent results, visibility maps are presented

for some head poses and should be compared with figure 37 to validate the blindspots

map generated due to changing head posture.
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Figure 37: Visibility in the first frame. Green pixels represent visible region and

red pixel represent the blindspots region.

� Head moving forward and backward : Figure 38a shows the visibility map gen-

erated as the head moves forward, that is moving towards the camera along the

+Y axis (of vehicle coordinate system). As the head moves forward the visi-

bility in the frontal region increases and decreases in the rear region (compare

it with figure 37). Notice how the angle between the red regions increases in

the frontal region and decreases in the rear region. As the user moves its head

backward (away form the camera) the visibility in the rear region increases and

the decreases in the forward region (see figure 38b).
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(a) Head moving forward along the +Y axis.
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(b) Head moving forward along the -Y axis.

Figure 38: Visibility of the user changing due to its head moving forward and

backward.

� Head moving right and left : Figure 39 shows the visibility maps generated as

the subject moves its head to its right and left. In figure 39a the head moves to

the right which results in increased visibility on the right side as shown in the

visibility map where as in figure 39b the visibility on the left side of the map

increases as the user moves to the left.
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(a) Head moving to the right along the +X axis.
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(b) Head moving to the left along the -X axis.

Figure 39: Visibility of the user changing due to its head moving to the right and

left.

� Head moving up and down: Figure 40 shows the visibility maps generated due

to the user moving its head along the +Z and -Z axis respectively. As the head

moves upward the subject’s visibility of the equipment’s surroundings increases

(see figure 40a), whereas as the user moves its head towards the ground, that

is along the -Z axis, the visibility decreases all around the equipment as shown

in figure 40b.
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(a) Head moving up along the +Z axis.
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(b) Head moving down along the -Z axis.

Figure 40: Visibility of the user changing due to up and down head motion.

� Head turning left and right : Figure 41 shows the FOV of the user changing due

to the subject rotating its head around the +Z axis of the vehicle coordinate

system. Additionally, it can be observed that the visibility changes on left and

the right side (+X and -X directions respectively) of the visibility maps as the

user leans to the left and right hand side while turning its head.
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(a) Head turning left in CCW direction around the +Z axis.
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(b) Head turning right in CW direction around the +Z axis.

Figure 41: Visibility of the user changing due to rotation around the +Z axis of the

vehicle coordinate system.

4.3 Field Experiment

Field experiments were performed to demonstrate the approach in an uncontrolled

environment. The field experiments were performed in a passenger car as shown in

figure 42. The point cloud of the car was obtained by scanning the car from seven

different locations (with varying elevations) using a FARO laser scanner. 6 of the scans

were taken from the outside as shown in figure 42a and one scan was taken from the
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inside as shown in figure 42b. Each of the scan has its own associated coordinate

system and the scans need to be registered together so that they agree to a common

coordinate system which is the vehicle coordinate system. The origin of this common

coordinate system is chosen to be the origin of scan taken from the inside of the car

as this positions the origin at approximately the driver’s head position. Thus, the 6

outside scans are registered with the inside scan. To register the 7 scans together,

markers (white spheres) were placed on the ground and one on the roof of the car

as shown in figures 42b and 42a. These markers help in establishing correspondences

between the scans and thus help in registering the scans together. After registration,

a manual cleaning operation was performed to remove noisy artifacts (specifically on

the glass windows). This resulted in a point cloud containing ∼ 33.3 × 106 points.

Figure 43 shows the top and side views of the resulting point cloud respectively. The

point cloud shown in the figure 43 is a sparsely sampled version of the actual point

cloud obtained after registration.
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Scan locations

(a) Six scans taken from the outside.

(b) One scan from the inside. (c) Markers used for registering the 7 scans.

Figure 42: Laser scanner locations.
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(b) Side view

Figure 43: Point cloud generated after registering the 7 laser scans. The point

cloud shown here is a sparse representation of the point cloud obtained from after

registration.
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To measure the dynamic blindspots of the driver while driving the car, a kinect

camera was mounted on the dashboard as shown in figure 34. The route through

which the car was driven is shown in figure 44 with many turns which allowed the

driver to perform various head motions. The driver in the experiment does not belong

to the data set used for training the head posture estimation algorithm.

Figure 44: The map of the car route.

Before presenting results to dynamic blindspots, the results to static blindspots

are first presented. Figure 45 shows the static blindspots map generated from the

point cloud shown in figure 43. Notice the region close the frontal and rear region of

the car’s point cloud marked green. These visible regions are the result of the scans

failing to capture the geometry of the dashboard and the car floor. Thus, multiple

scans must be taken from the inside and from locations in the immediate vicinity of

the car windows to capture the interior geometry. Figure 45b shows the visible region

caused to due failure of the scans to capture the car geometry (notice the region under

the steering wheel).
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(a) XY blindspots map of the car.

(b) Visible region in front of the front bumper from the driver’s

head position.

Figure 45: Blindspots map of the car on XY plane (ground plane). +Y axis: bottom

to top and +X axis: left to right.

83



In figure 46, results to dynamic blindspots have been illustrated for three different

head poses: frontal, left-ward and right-ward. The column on the left hand side shows

the visibility map of the driver. The green pixels denote the visible region and the

red pixels denote the invisible region caused due to the structure of the car. The gray

arrow shows the head orientation of the driver along with the FOV represented by

two gray lines on either side of the arrow. The column on the right hand side shows

the depth and the rgb image of the driver of the corresponding visibility maps on

the right column. The depth images also show the head posture estimated in camera

coordinate system. All the depth maps have been threshold with a value of 0.9m to

reject background pixels.
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(a) Frontal viewing head pose.

(b) Leftward viewing head pose.

(c) Rightward viewing head pose.

Figure 46: Visibility of the driver for different head postures.
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4.4 Computational Performance

For a real-world implementation it is critical that the dynamic blindspots computation

is real-time. In this regard, below the results to the computational performance are

presented. The blindspots computation timings reported in this section are different

from those reported in section 3.5 as a modified implementation was used for dynamic

blindspots computation. Table 22 below reports that the dynamic blindspots com-

putation runs at ∼ 7 fps when the user is at approximately 0.7m distance. The user

distance from the camera only affects the HPE because of the size of the bounding

box as discussed in the section 2.2.6. However, PCT and BM are not affected by

user distance from the camera. The results presented below were obtained on a 3.07

GHz Intel Xeon machine (only one core was used). It can be observed that the bottle

neck of the computation arises from translating the point cloud and re-binning the

translated point cloud into the 3D histogram matrix Shist. Further speed up can be

achieved by increasing the bin width of Shist matrix as it would result in a smaller

point cloud thus speeding up the computation of PCT.

Table 22: Computational performance.

Module Fps (user at 0.7m distance)

Head Pose Estimation (HPE) ∼ 38

Point Cloud Translation (PCT) ∼ 9

Blindspots Map (BM) ∼ 27

Dynamic blindspots (HPE + PCT + BM) ∼ 7

4.5 Summary

In this chapter, results to dynamic blindspots were presented. Experiments were

conducted both in indoor and outdoor environment. The performance of the approach

indicates that such a system can run real-time, however an optimized implementation
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can speed up the implementation. Finally, in the figure 47 below shows some of

the frames from the simulated and field experiments in which head pose estimation

algorithm failed.

Figure 47: Some of the failed frames in simulated and field experiments.
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CHAPTER V

DISCUSSION

In this thesis, an approach to compute visibility of equipment or vehicle operator was

presented. Results presented in the previous chapter suggest this approach is feasible

for real-world applications. However, for any real-world implementation several key

issues and assumption that have been made need to be addressed. This Chapter

discusses these key issues and assumptions briefly below.

5.1 Binocular Vision Model

The visibility maps or blindspots map were generated from a point source assuming a

monocular vision model, however human visibility is binocular by nature. While such

an assumption simplifies the approach and reduces the code runtime but however

it is not representative of the human vision system. The presented approach can

be easily extended from a monocular vision to binocular vision. The first step in

this approach will be to estimate the eye locations. The presented head posture

approach in Chapter 2 can be easily extended to estimate multiple fiducial locations

[24, 61]. After estimating the eye locations, two independent blindspots map can

be constructed and merged together to generate a visibility map for a binocular

vision model. A more accurate representation of driver visibility can be obtained by

measuring the gaze of the driver from the movement of eyes [30]. Such an approach

would however increase the computational time by affecting the PCT phase in Table

22 the most.
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5.2 Indirect Visibility

All the results presented in this thesis are measurements of direct visibility. It does

not take into account the indirect visibility offered by mirrors. Thus, any real-world

implementation must take into account the indirect visibility of an operator. One

approach to measure the indirect visibility of an operator is by shooting rays from

the head location in the constructed visibility maps towards the mirrors. Such, an

approach will only take into consideration the head rotation about the Z axis in the

vehicle coordinate system. By computing direction and orientation of the reflected

ray, the visible and blindspots region can then be marked.

5.3 Visibility due to Loads

Another factor that affects the visibility of the operator are the loads lifted by the

equipment. Loads carried by the equipment can have a varying degree of effect on the

visibility of the operator. Consider the example of a dozer and a forklift, in a dozer

the load is held in the bucket whereas in a forklift the loads sits in the fork and can

potentially obscure the visibility of the operator in forward direction. In the case of

a dozer the operator’s visibility is not significantly affected due to a loaded bucket.

Thus, the point cloud of the dozer may be enough to measure the visibility of the

operator. Whereas in case of a forklift, a point cloud alone is not enough to measure

the visibility of the operator. It will be necessary the measure the size and the location

of the load to get an accurate measurement of the visibility of the operator. This

measurement can be performed by using computer vision based technique. Thus, it

can be realized that the obscurity caused due to loads should be taken into account

to measure the visibility of the operator.
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5.4 Point Cloud Generation

In the experiments a commercial laser scanner was used to generate point cloud

data of the skid steer loader and the passenger car. Recent developments in scene

reconstruction suggest range cameras can be used to generate point cloud data of

equipment [8, 50]. KinectFusion is one of the most popular techniques for scene

reconstruction [50]. In [44], it is reported that KinectFusion approach when used

indoors in a volume of (7m)3 results in an accuracy drop to ∼ 80mm. Thus, it

will be interesting to study and compare the generated blindspots map as the bin

width values: ∆r = 0.05m, ∆θ = 0.3◦, ∆φ = 0.3◦ as reported in section 3.5 are only

marginally higher. Additionally, scanning with a hand held device such as kinect will

allow to scan unreachable parts in a vehicle which can help in avoiding the problem

shown in Figure 45. Another way to generate point cloud data of equipment or

vehicle is to use CAD model of the equipment. These CAD models can be used in

proprietary software packages to generate point cloud data. Such, a CAD generated

point cloud is an accurate representation of equipment unlike scanning generated ones

which are typically get affected due various factors such as reflectivity, proximity and

orientation of the surfaces of equipment with respect to the scanner.

5.5 Articulated Machines

In Chapter 4 the visibility maps were constructed using point cloud data of a skid

steer loader and a passenger car. It is inherently assumed that these machines are

not articulated, that is, there is no relative motion between the different structures

of the equipment. However, this is not true of most construction equipment such

as skid steers, bull dozers and, telehandlers. The pose of such equipment at any

instant of time need to be taken into consideration as they affect the visibility of

the operator. This equipment articulation can be addressed by assigning rotation

and translation parameters to the point cloud of each the movable structure of the
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equipment. By either determining the equipment pose using vision-based techniques

or the equipment hardware, appropriate rotation and translation can then be applied

to the point cloud of the respective structure, thus yielding a complete point cloud

of the articulated equipment for every pose. Then, as discussed, the Ray-Casting

algorithm can be applied to construct visibility maps for these articulated machines.

5.6 Pedestrian Detection System

Vision based systems detect humans from a video sequence or individual frames. Such

video or frames may be generated by a) Intensity or RGB cameras, or b) Night vision

cameras. Night vision cameras can be based on the principle of a) intensification of

light emitted from natural sources (such as moon light at night), b) active illumination

by an infrared emitter (kinect), or c) thermal imaging by detecting difference in

temperature of background and foreground objects. These cameras (except thermal

cameras) operate by measuring the amount of light (visible or infra red) reflected by

the scene. However, thermal cameras rely on the heat emitted by the entities in the

scene and convert it to images.

Night vision cameras have seen limited use for detecting and tracking pedestrians.

Algorithms used for detecting humans in Intensity or RGB cameras can essentially

be used for detecting humans in Night vision cameras. Following [16] approach, [63]

performed pedestrian detection with infra red camera for night-time applications.

SVM was utilized to detect pedestrians in the scene and using Kalman filter prediction

and mean shift algorithm pedestrian’s were tracked.

Human detection using vision based approaches is a difficult problem owing to

the variabilities induced by the non-rigid structure of human body and the changes

in appearance. The complexity of the problem increases further when environmental

factors such as illumination, occlusion due to surrounding comes in to play. Keeping

these issues in focus various approaches have been formulated to perform human
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detection using vision. These approaches can be broadly classified into a) global

feature based and b) local feature based methods.

One way to incorporate illumination and scale invariance is to use covariance ma-

trices as object descriptors. In [67] human detection was performed by using covari-

ance matrices as object descriptors. These object descriptors are then represented as

a connected Riemann Manifold and then classification is performed in the manifold by

using LogitBoost. As discussed above, robust features invariant to scale, rotation and

illumination are critical to the performance of learning algorithms. SIFT features [41]

were shown to address these issues. A significant work on human detection was by [16]

which used HoG descriptors with SVM. To improve the run time performance of [16],

[70] combined a cascade of rejector approach with HoG features. These techniques

essentially use a single frame based approach and further performance improvement

is achieved by incorporating motion information [17]. As discussed above issues per-

taining to partial occlusion due to non-rigid structure, illumination invariance can

be addressed by [41, 16]. However, occlusion due to surrounding can degrade the

performance of methods which rely on global descriptors [18, 19]. To improve perfor-

mance under partial occlusion conditions, HoG descriptors were combined with cell

structured Local Binary Pattern [68].

The other alternative to global feature, is to utilize local level features for object

detection. Local features can be high-level or low-level. High level local features

may represent parts of an object which encode local appearance properties of an ob-

ject. These parts are then assembled in a deformable configuration and then object

detection is performed by maximizing a score function [45, 25, 26]. The low-level

features can be based on pixel difference [61] or difference of averages of two windows

[22, 23, 15, 28]. Such low-level local features essentially vote for local regions in an

image which are then combined together to detect objects. This is particularly desir-

able as it can identify objects in presence of occlusion due to surrounding as voting
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takes place for based on image patches sampled from the entire image. In addition

to being simple in nature, typically computational cost incurred in evaluating low-

level features is less. Random forests [7] algorithm is suitable for utilizing low-level

features for the training the decision stumps. In [27] a random forest was trained to

classify image patches as foreground and background. Then patches sampled from a

query image are evaluated using the trained forest. Each patch votes in Hough space

and objects are then identified by finding maxima or peaks in Hough space. Addi-

tionally, patch based feature approach with Random Forests have shown good results

in presence of occlusion [21] but without scaling. In [4] pedestrians were detected

by transforming conventional Hough Transform based approach into a probabilistic

model. Hough Transform based approaches identify object of interest by locating

peaks through non-maxima suppression in the Hough Space which requires tuning of

several parameters. In [4] energy minimization (MAP inference) was performed over

the probabilistic model to find optimal hypothesis.

The automotive industry has also been researching on the development of pedes-

trian protection system [29, 60]. A few notable commercial pedestrian detection

systems are due to Mercedes Benz [55] and Mobileye (Volvo)[46] . To integrate the

pedestrian detection system into the proposed approach it is required that in addition

to detecting, the spatial coordinates of the pedestrians(in vehicle coordinate system)

be also estimated. The spatial locations can then be used as discussed in Section

3.3.5 to compute the pedestrian or worker visibility of the operator.
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CHAPTER VI

CONCLUSION

Injuries and fatalities on construction sites due to Human-Equipment interaction can

be mitigated by the use of proximity detection technologies. While there exists a

number of different technologies that can serve as warning systems, they also raise

nuisance alerts as they do not raise alerts intelligently. In this thesis, an approach was

proposed to measure the visibility of equipment operators in real-time using vision

and ranging based technologies which can potentially be used to create an intelli-

gent proximity alert system. The generated visibility maps of equipment operator or

drivers can be used to identify potential hazards posed to workers due to operating

equipments. To estimate the head posture of the driver, Random Forests algorithm

was used on range images. Proposed approach for head pose estimation reduced the

head location error while increasing the execution speed. The proposed blindspots

computation methodology allows measuring different facets of blindspots which were

previously not possible using automated technique. From a computational viewpoint,

the visibility maps were constructed in real-time at 7fps. As it is critical that alerts

be raised instantaneously with the occurrence of a hazardous situation, thus it is

necessary to optimize the code to improve the execution speed to realize a real-world

implementation.

In addition to potentially serving as a proximity alert system, the proposed ap-

proach can be utilized to record near-miss incidents. Collection of such information

can be used to train the workers and plan construction tasks to minimize poten-

tial hazards. Additionally, the blindspots map information generated through this
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approach can potentially be used along with the knowledge of sensors FOV to effec-

tively monitor obscure regions surrounding a vehicle or help equipment manufacturers

improve the design of equipment to increase safety.
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