
GNNBUILDER: AN AUTOMATED FRAMEWORK FOR GENERIC GRAPH
NEURAL NETWORK ACCELERATOR GENERATION, SIMULATION, AND

OPTIMIZATION

A Dissertation
Presented to

The Academic Faculty

By

Stefan Abi-Karam

December 2022

In Partial Fulfillment
of the Requirements for the Degree

Masters of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

© Stefan Abi-Karam

GNNBUILDER: AN AUTOMATED FRAMEWORK FOR GENERIC GRAPH
NEURAL NETWORK ACCELERATOR GENERATION, SIMULATION, AND

OPTIMIZATION

Thesis committee:

Dr. Cong Hao
School of Electrical and Computer Engineer-
ing
Georgia Institute of Technology

Dr. Tushar Krishna
School of Electrical and Computer Engineer-
ing
Georgia Institute of Technology

Dr. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Date approved: December 5, 2022

ACKNOWLEDGMENTS

I would like to thank the members of my thesis committee for providing their time

and attention to review and providing feedback on my ideas: Prof. Callie Hao, who has

primarily guided me through transiting into graduate school and into academia to become

a stronger researcher, Prof. Tushar Krishna who guided me into more cross-collaboration

with other research areas, and Prof. Hyesoon Kim for providing an outside perspective on

my research area.

I would also like gratefully acknowledge the support from Georgia Tech Research In-

stitute for funding me through my graduate studies and providing me with the academic

freedom to explore novel research areas.

Finally, I would like to acknowledge my partner, Lauren Barger, for her endless love,

support, and encouragement during my master’s and my transition into a Ph.D.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

Summary . ix

Chapter 1: Introduction . 1

Chapter 2: Background . 5

2.1 Related Work and Motivations . 5

2.1.1 Related Work . 5

2.1.2 Limitations . 6

Chapter 3: Methodology . 8

3.1 GNNBuilder Framework Overview . 8

3.1.1 GNNBuilder Components . 8

3.1.2 Programming Model and User APIs 10

3.2 GNNBuilder Model Architecture . 13

3.3 Hardware Accelerator Architecture . 14

3.3.1 Graph Data and Internal Buffers 14

iv

3.3.2 Degree Table and Neighbor Table Computation 15

3.3.3 Message Passing and Graph Convolution Kernels 15

3.3.4 Partial Aggregations . 17

3.3.5 Linear Layer . 17

3.3.6 Global Pooling . 18

3.3.7 Activations . 18

3.4 Accelerator Generation and Implementation 18

3.4.1 Kernel Code Generation . 19

3.4.2 Hardware Simulation and Verification Testbenches 19

3.4.3 Hardware Deployment on FPGA 20

3.5 Performance Model and Design Space Exploration 21

3.5.1 Hardware Model Implementation Details 21

3.5.2 Hardware Performance Model . 21

3.5.3 Design Space Exploration . 22

Chapter 4: Experimental Setup . 24

4.0.1 Analytical Performance Model . 24

4.0.2 Accelerator Performance Evaluation 25

Chapter 5: Results . 28

5.0.1 Analytical Performance Model . 28

5.0.2 DSE Exploration . 28

5.0.3 Accelerator Performance Evaluation 29

v

Chapter 6: Conclusion . 32

References . 34

vi

LIST OF TABLES

1.1 Comparison with Existing Work . 4

3.1 Supported GNNs . 8

3.2 User Programming APIs . 10

5.1 Implemented Accelerator FPGA Resource Usage 30

5.2 FPGA-Parallel Accelerator Speedup . 31

vii

LIST OF FIGURES

3.1 GNNBuilder Framework Workflow Overview 8

3.2 GNNBuilder Model Architecture . 13

3.3 Hardware Kernel Architecture for GNNConv Layer 16

5.1 Latency + BRAM DSE Models . 29

5.2 Cumulative DSE Runtime Evaluation . 30

5.3 GNN Latency Comparison Across Implementations 31

viii

SUMMARY

There are plenty of graph neural network (GNN) accelerators being proposed. How-

ever, they highly rely on users’ hardware expertise and are usually optimized for one spe-

cific GNN model, making them challenging for practical usage. Therefore, in this work, we

propose GNNBuilder, the first automated, generic, end-to-end GNN accelerator generation

framework. It features four advantages: (1) GNNBuilder can automatically generate GNN

accelerators for a wide range of GNN models arbitrarily defined by users; (2) GNNBuilder

takes standard PyTorch programming interface, introducing zero overhead for algorithm

developers; (3) GNNBuilder supports end-to-end code generation, simulation, accelerator

optimization, and hardware deployment, realizing a push-button fashion for GNN accelera-

tor design; (4) GNNBuilder is equipped with accurate performance models of the generated

accelerator, enabling fast and flexible design space exploration (DSE). In the experiments,

we show that our accelerator performance model has errors within 34% for latency predic-

tion and 22% for BRAM count prediction. We also show that our generated accelerators

can outperform CPU by 2.96× and GPU by 2.99×. This framework is open-source, and

the code is available at https://anonymous.4open.science/r/gnn-builder.

ix

CHAPTER 1

INTRODUCTION

Graph Neural Networks (GNNs) are a powerful and popular tool for solving learning tasks

where the data can be represented as a graph. Among different applications, GNNs can be

used for node-level, edge-level, and graph-level tasks, such as drug discovery [1], recom-

mender systems [2], social network analysis [3], traffic forecasting [4], electronic health

records analysis [5], scene graph understanding [6], electronic design automation [7], natu-

ral language processing [8], autonomous driving [9], and high-energy physics [10]. Among

these applications, some have real-time constraints for GNN inference and require hard-

ware acceleration. One example is autonomous driving systems that use GNNs to process

LIDAR point cloud data [11]. Another prominent example is in high-energy physics, where

GNNs are used for real-time particle detection [12] and jet lag detection [13], which must

be processed within several nano-second.

Given the acceleration needs for GNN inference, there are many GNN accelerators be-

ing proposed. Examples include earliest ASIC accelerators proposed by Auten et al. [14],

HyGCN [15], and EnGN [16], as well as most recent accelerators such as AWB-GCN [17],

BoostGCN [18], and I-GCN [19], GCNAX [20], Rubik [21], and GraphACT [22]. Among

them, Rubik and GraphACT aim to accelerate GCN training using ASIC and FPGA, re-

spectively.

Despite the great success of GNN accelerators, there are still significant limitations.

First, existing GNN accelerators are model-specific but not generic. Specifically, most

GNN accelerators focus on only one or two most popular GNN models, such as Graph Con-

volution Network (GCN) [23] or GraphSage [24], and provide fixed accelerator structures,

fixed GNN layer types, activations, and other design choices that are specific to the imple-

mented model. However, these accelerators are not generic, and cannot handle advanced

1

GNNs such as anisotropic GNNs, GNNs with edge embeddings, or complicated aggrega-

tion functions [25, 26, 27]. The fundamental reason is that the existing GNN accelerators

simplify GNN computations to be a sequence of general or sparse matrix multiplications,

which does not hold true for those advanced GNNs. Second, most of the accelerators are

hard-coded and require extensive hardware expertise to adapt to new GNN models. There

are no existing tools that can generate GNN accelerators automatically, optimally, and with-

out any hardware knowledge. There is only two existing work that can support automated

accelerator generation: DeepBuring-GL [28], and HP-GNN [29]. DeepBuring-GL targets

inference acceleration but is limited to a fixed GCN or GraphSAGE model. HP-GNN

targets training acceleration but not real-time-inference. More importantly, HP-GNN pro-

poses their own programming language and lacks the flexibility of supporting a wide range

of GNN architectures and different features. Table Table 1.1 summarizes the limitations of

DeepBuring-GL and HP-GNN. Consequently, there is no way that researchers and practi-

tioners can explore the best GNN model for their target applications in software and easily

deploy their application-specific models to hardware for acceleration.

Motivated by the existing limitations of GNN accelerator designs and tools, we propose

GNNBuilder, a generic, feature-rich, and extensible framework for end-to-end GNN accel-

erator generation, simulation, optimization, and deployment on FPGAs with bitstreams.

To be generic, we follow the message passing mechanism of GNN models, which can ex-

press almost all types of GNN models at the theoretical formulation level, as stated by a

recent work [30]. To be extensible, we directly take standard PyTorch as the programming

language, which allows the programmers to design their own GNN models freely. We

summarize our contributions as follows:

• Generic: wide range of GNN model support. Using an explicit message passing frame-

work, GNNBuilder can support not only state-of-the-art GNN models such as GCN, GIN,

GraphSAGE, and PNA, but also allows programmers to design customized GNN models

with arbitrary layer type, activation, quantization (data precision), aggregation, pooling,

2

etc. Table Table 1.1 summarizes the features that can be customized in GNNBuilder but

not in HP-GNN.

• Extensibility: interoperability with PyTorch. GNNBuilder is the first work that allows

users to define their model architectures freely in native PyTorch using a parameteriz-

able GNNModel PyTorch module. This allows users to seamlessly integrate accelerator

design as part of existing deep learning workflows. Therefore, GNNBuilder does not

only support standard GNNs (as listed in Table Table 3.1) but can extend to almost all

customized GNN models.

• Complete model architecture for multi-level tasks. Our GNNBuilder supports node-

level, edge-level, and graph-level tasks with user-defined parameterizable multi-layer

perceptron (MLP). Specifically, graph-level classification and regression tasks are par-

ticularly important for drug and molecule-related applications and high-energy physics

applications.

• Accelerator design space exploration (DSE) and optimization. GNNBuilder provides

tolling to automatically aid the designer in selecting the best configurations, such as

hardware parallelism, resource allocation, and fixed point precision, rather than manual

user tuning. This allows for gains in performance to achieve the best latency under fixed

resource constraints with a trade-off in model output error.

• Open-source Python API with end-to-end workflow. Our GNNBuilder provides open-

source Python library APIs, which allow users to define their own model. It also has an

end-to-end workflow with hardware-compatible simulation, testbench build and execu-

tion, automated hardware code generation and synthesis, and deployment on FPGA with

host code. It provides a push-button flow from development to deployment with zero

hardware expertise required.

• Superior performance against CPU and GPU. GNNBuilder generates high-performance

3

Table 1.1: Comparison with existing work. The most fundamental differences are program-
ming language, support for anisotropic GNN family, and extensibility, making it highly
practical for future GNNs and broader usage.

HP-GNN [29] DeepBurning-GL [28] GNNBuilder

Acceleration Goal Training Inference Inference
Programming Language Self-defined PyTorch and DGL PyTorch

Anisotropic GNN Family No No Yes
Extensibility Low Low Very High

Arbitrary Quantization No No Yes
Arbitrary Aggregation No No Yes
Arbitrary Activation Fixed Fixed Arbitrary

Skip Connections No No Yes
Arbitrary Global Pooling No No Yes

Arbitrary MLP Head No No Yes
Fixed / Floating Point Testbench No No Yes

Open Source No No Yes

accelerators on FPGA that outperform CPU and GPU baselines on various datasets with

a 2.18× average speed up and 3.03× max speedup.

4

CHAPTER 2

BACKGROUND

2.1 Related Work and Motivations

2.1.1 Related Work

GNN Accelerators and Graph Accelerators

The growing use of GNNs in real-time and large-data applications in the research com-

munity and industry has resulted in numerous GNN accelerator works. A recent survey

paper [31] presents an overview of GNN accelerator works for CPU, GPU, ASIC, FPGA,

and heterogeneous platforms. Some specific GNN accelerator works include Auten et al.

[32], HyGCN [15], AWB-GCN [17], EnGN [16], GRIP [33], GCNAX [20], Rubik [21],

GraphACT [22], Boost-GCN [18], and I-GCN [19]. All these works explore different

implementations and model-specific design choices to achieve speedups in GNN inference

and training. Newer works, like GenGNN [34] and FlowGNN [35], also take a GNN model

agnostic approach to inference acceleration without sacrificing performance.

Conversely, general graph processing accelerator works are also popular for tasks such

as PageRank, shortest path, connected components, and normalizing flow problems. These

works include GraphH [36], Blogel [37], Giraph++[38], ForeGraph [39], FabGraph [40],

HitGraph [41], AccuGraph [42], and ThunderGP [43]. These approaches typically adopt a

scatter-apply-gather to support generalized graph problems.

GNN Accelerator Automation

Some existing works explore the automated generation of hardware accelerators for GNNs.

One key work is DeepBuring-GL [28], which is targeted for generating GNN inference

accelerators for FPGAs for a fixed subset of GCN-based architectures. Another work,

5

HP-GNN [29], also targets acceleration but for GNN training on CPU-FPGA platforms.

HP-GNN also supports a subset GCN-based and SAGE-based architectures.

2.1.2 Limitations

GNN Accelerators

Most acceleration works for GNN inference using fixed model architectures. The major-

ity also only support models that are not anisotropic in order to take advantage of existing

sparse matrix multiplication acceleration techniques. Many works also implement GCN ar-

chitectures and simplify the computations with sparse matrix multiplications (SpMM) and

general matrix multiplications (GEMM). However, advanced GNNs cannot be simplified

as matrix multiplications. Furthermore, many other works use specialized graph prepro-

cessing and model computation patterns that are not generalizable to anisotropic models.

This optimization focus is another limitation of existing acceleration works, which prevents

them from generalizing to advanced GNN architectures. Recent works like GenGNN and

FlowGNN implement hardware architectures that can generalize to advanced model archi-

tectures with support for anisotropic message passing by adapting an explicate message

passing hardware dataflow.

GNN Accelerator Automation

Existing accelerator automation works lack key features that allow them to generalize to ad-

vanced GNN architectures. We highlight these limitations in Table Table 1.1 in the context

of our work. Even though DeepBuring-GL supports end-to-end code generation, it is lim-

ited to GCN and GraphSAGE models because it is based on a systolic array design. More-

over, HP-GNN is limited to GCN and GraphSAGE models, and not explicitly designed

for inference. Neither works support anisotropic GNNs such as PNA as more expressive

GNNs such as GIN. Furthermore, they do not support features found in GNN models like

mean and variance neighbor pooling, arbitrary activation functions, skip connections, sum /

6

mean / max global pooling, and MLP prediction heads. Additionally, these frameworks do

not provide simple fixed-point quantization or code generation for fixed-point and floating-

point testbenches for rapid debugging. Most importantly, these works don’t provide source

code for researchers and practitioners to use in their own applications.

7

CHAPTER 3

METHODOLOGY

3.1 GNNBuilder Framework Overview

Compiler
Front‐end

Code
Generator

model.cc model.h

testbench.h Tb_data/*

High‐Level Synthesis (HLS) code
for hardware accelerator

csynth.rpt model.ip.zip

tb_output.txt

Performance
report

model.xclbin

Synthesized
hardware IP

Testbench
output

FPGA
bistreamhost_code.cc

HLS_scripts.tcl

Host code for
deployment

reference.txtReference
output

Performance Report

Simulation/Validation Results

Deployment Files

Simulator

Synthesis
and Deploy

gnn_builder_lib.h

gnn_builder.py

main.py

Input Standard
PyTorch Code

DSE and
Performance

Model

Accelerator Optimization

FPGA

Interact with HLS tool (e.g., Xilinx Vitis HLS)

GNNBuilder Workflow

1

2

3

4

5

3

Figure 3.1: Workflow of the GNNBuilder framework.

3.1.1 GNNBuilder Components

The goal of GNNBuilder is to provide users with simple tooling to design, implement,

validate, and optimize GNN models from standard PyTorch models to FPGA bitstream. As

shown in Fig. Figure 3.1, GNNBuilder is composed of five components.

1 Compiler front-end, which parses the native PyTorch GNN model definition, such

Table 3.1: Supported representative GNNs by our framework GNNBuilder. It also supports
user-defined GNN models.

Model Representativeness

GCN [23] GNN family that can be represented as sparse matrix-matrix multiplica-
tions (SpMM)

GraphSage [24] GNN family with flexible / non-sum aggregation methods
GIN [26] GNN family with edge embeddings, SpMM does not apply
PNA [27] A popular Anisotropic GNN family arbitrarily using multiple aggregation

methods and sophisticated message function, SpMM does not apply
GCN: graph convolutional network; GIN: graph isomorphism network; GraphSAGE: graph sam-
ple and aggregate; PNA: principal neighbourhood aggregation.

8

as the number of GNN layers, layer type, activation type, data precision, pooling type,

aggregation type, and MLP definition.

2 Code generator, which builds on top of a library of pre-defined hardware accelerator

templates. Note that the template (to be introduced in Section section 3.3) adopts the mes-

sage passing mechanism and thus is generic to almost all GNN types. Targeting FPGAs,

we generate High-Level Synthesis (HLS) code supported by Xilinx’s VitisHLS tool.

3 Design space exploration and performance model, which applies automated DSE

for the accelerator generation, including hardware parallelism, resource allocation, and

quantization (data precision).

4 Simulation and testbench, which allows transparent hardware-compatible simula-

tion using automatically generated testbenches to guarantee the correctness of the acceler-

ator functionality. More importantly, it generates plain C++ code for “true” quantization

simulation, which can honestly reflect on-FPGA quantization accuracy1.

5 Hardware synthesis and deployment, which automatically generates hardware

synthesis scripts, synthesizes the design into an FPGA bitstream, and generates host code

for executing the bitstream.

Table Table 3.1 lists the representative GNNs supported by our framework. Note that

these are just examples, but GNNBuilder can flexibly support a wide range of customized

GNN models. Examples include residual and skip connections, arbitrary quantization,

arbitrary aggregation function, graph attention, activation, global pooling, and MLP head.

Such user-defined features can be naturally expressed using PyTorch, and thus GNNBuilder

enjoys great extensibility.

1The quantization simulated in Python is usually regarded as “fake” quantization since the arithmetic
operations in Python can only be done in floating point precision, even though the operands are represented
using fixed-point precision.

9

API Functions Description

code gen.Project() GNNBuilder Project Class
code gen.Model AGNN() Wrapper Class for GNNModel

model.GNNModel(nn.Module) PyTorch Model for GNNBuilder Arch.
model.GCNConv AGNN(nn.Module) GCN Conv. Layer
model.GINConv AGNN(nn.Module) GIN Conv. Layer
model.PNAConv AGNN(nn.Module) PNA Conv. Layer
model.SAGEConv AGNN(nn.Module) GraphSAGE Conv. Layer

model.GlobalPooling(nn.Module) Global Graph Pooling Layer
model.MLP(nn.Module) MLP Prediction Head

perf model.compute model runtime Runtime Model

Project.gen hw model() Code Gen. For HW Kernel
Project.gen testbench() Code Gen. For Testbench
Project.gen makefile() Code Gen. For Testbench Makefile

Project.gen vitis hls tcl script() Code Gen. For Vitis HLS Synth. Script
Project.build and run testbench() Build and Run Testbench
Project.run vitis hls synthesis() Launch Vitis HLS Synthesis Run

Table 3.2: User Programming APIs.

3.1.2 Programming Model and User APIs

Table Table 3.2 displays all user APIs provided by GNNBuilder, and Listing 1 displays an

example of the user interface for a customized GNN model.

A user begins by defining a GNNModel instance which incorporates an MLP and an

xxxConv AGNN module (ex. PNAConv AGNN). GNNBuilder provide these wrapper

classes for each graph convolution layer to allow the user to specify parallelism factors

p in and p out. The higher level GNNModel supports arguments for defining architecture

parameters as well as separate parallelism factors for the GNN head (gnn p in, gnn p hid-

den, gnn p out) and the MLP head (p in, p hidden, p out). The user can then train and

manipulate the GNNModel instance as a standard PyTorch module. Once ready for accel-

erator implementation, the user can then wrap the GNNModel instance with the Model -

AGNN by passing it to that class (ex. Model AGNN(GNNModel inst)).

A user can then define a GNNBuilder Project instance. The Project class has several

10

arguments to define build paths, the GNNModel model instance, the PyTorch Geometric

dataset for he model task, max nodes and max edges, numerical precision, and average

number of nodes, edges, and node in-degree for synthesis runtime estimation.

Once a Project instance is created, the user can then call the code gen. instance func-

tions to generate the model kernel HLS code, the kernel testbench code + data, the test-

bench makefile, and the Vitis HLS build script. After code gen., the user can then call

build and run testbench() to build and execute testbench and run vitis hls synthesis()

to execute the Vitis HLS synthesis run. These execution scripts also return data for the

testbench runtime + MAE and synthesis latency + resource usage.

import torch

import torch.nn as nn

from torch˙geometric.datasets import TUDataset

import gnnbuilder as agnn

from gnnbuilder.code˙gen import FPX

dataset = TUDataset(root=”TUDataset”)

model = agnn.GNNModel(

graph˙input˙feature˙dim=dim˙in,

graph˙input˙edge˙dim=0,

gnn˙hidden˙dim=128,

gnn˙num˙layers=6,

gnn˙output˙dim=64,

gnn˙conv=conv,

gnn˙activation=nn.ReLU,

gnn˙skip˙connection=True,

global˙pooling=agnn.GlobalPooling([”add”, ”mean”, ”max”]),

mlp˙head=MLP(in˙dim=64 * 3, out˙dim=dim˙out, hidden˙dim=64, hidden˙layers=4, activation

=nn.ReLU, p˙in=8, p˙hidden=8, p˙out=1,),

output˙activation=None,

11

gnn˙p˙in=1,

gnn˙p˙hidden=8,

gnn˙p˙out=8

)

agnn˙model = agnn.Model˙AGNN(model)

MAX˙NODES = 600

MAX˙EDGES = 600

num˙nodes˙avg, num˙edges˙avg = agnn.compute˙average˙nodes˙and˙edges(dataset)

degree˙avg = compute˙average˙degree(dataset)

proj = agnn.Project(

”gnn˙model”,

agnn˙model,

”classification˙integer”,

VITIS˙HLS˙PATH,

BUILD˙DIR,

dataset=dataset,

max˙nodes=MAX˙NODES,

max˙edges=MAX˙EDGES,

num˙nodes˙guess=num˙nodes˙avg,

num˙edges˙guess=num˙edges˙avg,

degree˙guess=degree˙avg,

float˙or˙fixed=”fixed”,

fpx=FPX(32, 16)

)

proj.gen˙hw˙model()

proj.gen˙testbench()

proj.gen˙makefile()

proj.gen˙vitis˙hls˙tcl˙script()

tb˙data = proj.build˙and˙run˙testbench()

12

print(tb˙data)

synth˙data = proj.run˙vitis˙hls˙synthesis()

print(synth˙data)

Listing 3.1: Example usage of GNNBuilder Framework

3.2 GNNBuilder Model Architecture

Figure 3.2: The GNNBuilder model architecture for graph-level tasks.

GNNBuilder supports node-level, edge-level, and graph-level tasks. Since most GNN

models share similar architectures, GNNBuilder constructs GNN models follow a general

architecture as shown in Fig. Figure 3.2 left. It demonstrates a general GNN model archi-

tecture for graph-level tasks, including a GNN backbone, a global graph polling, and an

MLP prediction head. Note that for edge and node level tasks, users can simply remove the

global pooling and the MLP head.

The GNN Backbone consists of a sequence graph convolution layers, activation, and

skip connections, much like a traditional MLP head. Graph convolution layers are referred

to as GNNConv layers, and blocks of skip connections, activations, and GNNConvs are

referred to as GNNResBlocks. The user has the option of specifying the number of lay-

ers, the size of the hidden layer embedding, the size of the output layer embedding, the

activation function to be used, and whether skip connections should be used. When there

are more than two layers specified and skip connections are used, GNNResBlocks will be

13

used as middle layers in the GNN backbone. The GNNConv layers supported are GCN,

GraphSAGE, GIN, and PNA.

The Global Graph Pooling module aggregates the node embedding output from the

GNN backbone. To produce a single embedding for an aggregation function, all node

embeddings are aggregated across all nodes. In the case of multiple aggregations, the

aggregated embeddings are concatenated together. GNNBuilder supports sum pooling,

mean pooling, and max pooling global aggregation functions.

The MLP Prediction Head transforms the output from the global graph pooling to the

output for the specified model task. The user can specify the input embedding size, the out-

put embedding size, the number of hidden layers, and the activation used for intermediate

layers.

Since the final layer of the MLP head is a linear layer with no output activation, the user

also has the option to specify a final output activation if desired.

The user also can specify parallelism factors for both the GNN head and the MLP head.

However, these factors are purely used in the framework for hardware implementation and

don’t affect the software implementation (ex. PyTorch training).

3.3 Hardware Accelerator Architecture

3.3.1 Graph Data and Internal Buffers

Any buffers in the model kernel that depend on the number of nodes (num nodes) or the

number of edges (num edges) in an input graph require the buffer sizes to be set to an upper

bound. These are the MAX NODES and MAX EDGES parameters which are set as part

of a GNNBuilder Project instance.

GNNBuilder also generates an input buffer, an output buffer, and two ping-pong buffers

to store intermediate outputs from layers in the GNN head and the MLP head. These buffers

are of size MAX NODES × emb dim and emb dim respectively.

The model kernels generated GNNBuilder expect an input graph to be represented as

14

COOrdinate format matrix along with an input node feature table. The COO matrix is rep-

resented as a MAX EDGES×2 integer array. The input node feature table is represented as

a MAX NODES× input dim array using a fixed-point datatype with each row representing

the input features vector for each node. An in-degree buffer and out-degree buffer of size

MAX NODES exist alongside the COO buffer.

There are also two additional buffers: a neighbor table and a neighbor offset table. The

neighbor table is size MAX EDGES stores a block of the neighbors of each node. The

neighbor offset table is size MAX NODES and stores the offset index into the neighbor

table to index every node’s block of neighbors.

3.3.2 Degree Table and Neighbor Table Computation

Before performing the model computations, the degree table of the input graph needs to

be computed. Node degrees are used by various graph convolutions in order to perform

normalization based on node degree. Since these values are only known at runtime, the

in-degree and out-degree tables need to be computed in the kernel for each input graph.

The COO format of input graphs allows for the computation to iterate with the bounds

of num edges. After the degree tables are computed, the neighbor table and neighbor

offset table are computed simultaneously with two loops, one over num edges and one

over num nodes.

3.3.3 Message Passing and Graph Convolution Kernels

Inspired by a recent generic GNN accelerator, GenGNN, we adopt an explicit message

passing architecture for the GNNConv / graph convolution kernels. This allows us to sup-

port GNN layers, including PNA, that cannot be supported by traditional SpMM accelerator

approaches.

For each node in the graph, the operations in Figure Figure 3.3 are performed. First,

the current node’s neighbors’ indexes are gathered using the neighbor table and neighbor

15

Figure 3.3: The high-level hardware kernel architecture for GNNConv layers.

offset table. Then the kernel iterates through each neighbor index to load its associated

embedding from the input node embedding table, transform the embedding defined by ϕ(·),

and aggregate it with a partial aggregation. Once all the neighbors have been processed,

the partial aggregation is finalized and combined with the current node embedding to be

transformed again in the apply function γ(·). The newly computed embedding is then

written to the output node embedding table.

The functions ϕ(·) and γ(·), as well as the aggregation(s) used, are specific to the layer

being implemented. Kernels for GCN, GraphSAGE, GIN, and PNA layers are provided as

part of the initial GNNBuilder kernel library.

It is important to note that for each node’s gather operation, a kernel needs to iterate at

a number of cycles equal to the node’s in degree. Consequently, the number of transforms

and partial aggregation depends on the number of neighboring nodes, which is also only

known at runtime. Additionally, our approach does not have any node-level parallelism

for computing new node embeddings. All these details result in sub-optimal performance,

which can be explored in future works as a key area for optimization with ideas borrowed

from new accelerator works.

16

3.3.4 Partial Aggregations

Aggregations must be designed in a partial manner to efficiently aggregate neighbor em-

bedding using constant memory (O(1) space complexity). If it is assumed that a value is

only seen once during an aggregation, then it does not need to be buffered. This is im-

portant in this context because it is optimal not to store all the neighbor embedding in an

intermediate buffer. Since the number of neighbors of each node is not known at com-

pile time, this buffer would have to be of size MAX NODES, which can consume a large

amount of BRAMs.

To avoid this buffer, a single-pass algorithm can be used where the aggregation is com-

puted by looking at each value only once. However, for an aggregation like variance, a

trivial approach may require two passes over all the values requiring them to be buffered.

However, a one-pass algorithm for computing variance is possible using Welford’s algo-

rithm [44].

GNNBuilder supports sum, min, max, mean, variance, and standard deviation aggre-

gations. Each aggregation has an associated struct agg incremental data for storing the

partial and final aggregation data, a agg incremental update(agg incremental data¡T¿

&data, T x) function for updating the partial values of the aggregation, and a agg incre-

mental finalize(agg incremental data¡T¿ &data) function for computing the final aggre-

gation value.

3.3.5 Linear Layer

We implement linear / dense layers using tiled matrix multiplication. This allows us to

exploit hardware parallelization to decrease latency at the cost of increased resource usage,

mainly DSPs and BRAMs. The parallelization factor of each linear layer can be controlled

by BLOCK SIZE IN and BLOCK SIZE OUT template arguments for the linear kernel

function. These control the partition factors of the input, weight, and bias arrays and,

thus, the parallelism of the multiply-accumulate (MAC) operations. This design allows

17

for BLOCK SIZE IN × BLOCK SIZE OUT multiply-accumulate operations to occur in

parallel each clock cycle.

3.3.6 Global Pooling

GNNBuilder support sum, mean, and max global graph pooling. These pooling operations

aggregate the node embeddings across all nodes resulting in a single embedding of the same

size. Using more than one pooling method is also supported; the pooled embeddings from

each pooling method are connected together. The implementation uses the same partial

aggregations as described in Section subsection 3.3.4.

3.3.7 Activations

GNNBuilder support ReLU, Sigmoid, Tanh, and GELU [45] activations. These functions

are implemented using fixed-point math functions provided by the Vitis HLS fixed-point

math library. Extending support to other PyTorch activations to the GNNBuilder template

library is trivial using the Vitis HLS fixed-point math functions.

3.4 Accelerator Generation and Implementation

Automated kernel generation is one of the key contributions and advantages over existing

works. No existing works provide tooling to covert a native software model defined using

an existing deep learning library to a hardware accelerator. GNNBuilder uses the PyTorch

framework to define the initial GNN software model. The initial software model allows

deep learning practitioners to construct, train, evaluate and inspect their models like any

other software model. This also reduces development friction since practitioners don’t have

to use a customized and limited API for defining their initial hardware. GNNBuilder can

then build sufficient code generation tools through dynamic introspection of the software

model objects in combination with a templating system and pre-defined kernel library.

18

3.4.1 Kernel Code Generation

Once a user has defined a GNNModel in software with their chosen design parameters as

well as a GNNBuilder project, GNNBuilder is able to perform code generation to generate

C++ HLS code for the top-level model kernel and associated header file. The code gener-

ation itself is done using the Jinja2 Python library to template the C++ code. This support

conditional and loop control flows for template blocks. This is useful for features such as

code gen. for skip-connections, double-buffer array selection, and mapping layer kernel

calls in the right order with the right input/output size.

GNNBuilder takes advantage of the parameterized structure of the GNNModel in order

to match the appropriate function calls to the corresponding kernels from GNNBuilder C++

header-only template library. For example, a GCNConv layer class in Python can be

matched to the associated gcn conv function from the GNNBuilder C++ template library.

We can also perform the same matching for activation and global pooling functions. The

main advantage of this approach is its extensibility. If a user is interested in adding sup-

port for another layer, aggregation, or activation, they can create an associated kernel in

the GNNBuilder template library, add that template matching into the Jinja template, and

create a pull request to merge the contribution.

Additionally, GNNBuilder also takes advantage of PyTorch’s existing functionality to

gather all parameters of the model and their associated shape. This allows for the templat-

ing of all model-dependent parameters that can vary from model to model configuration.

3.4.2 Hardware Simulation and Verification Testbenches

GNNBuilder also provides the ability for a designer to generate and build C++ testbenches

for their designed models. In addition to the testbench code itself, the model parameters,

dataset graphs, true output, and the PyTorch model outputs are also generated and exported

as binary files. At runtime, the generated testbench reads in these files, loads the weights

into the model kernel, evaluates the model kernel on all the inputs in the dataset, and com-

19

pares the output to the PyTorch model outputs.

Each testbench also computes metrics for verification. The mean absolute error between

the PyTorch generated model output and generated model kernel output is computed. The

runtime of each kernel execution on an input graph is also measured to compute the average

kernel runtime. At runtime, these values are written to text files.

When specifying a fixed-point model, a user can be sure that the fixed-point represen-

tations of the input graphs and model parameters are accurately reflected in the testbench.

The testbench uses the same fixed-point library provided by Vitis HLS [46] to ensure func-

tional equivalence to how they would be modeled in hardware. The loaded data is exported

from PyTorch as a floating-point type but is cast to the user-specified fixed-point format in

the testbench.

3.4.3 Hardware Deployment on FPGA

Users can use already introduced run vitis hls synthesis() function to build synthesised

accelerator which is outputted as RTL source code. Within the Vitis HLS flow, GNNBuilder sup-

port executing the implementation flow to generate Vivado IP blocks (.zip) or Vitis Kernels

(.xo). This simplifies the model designer’s workflow allowing them to go from the SW

model to fully implemented design all within GNNBuilder’s framework.

GNNBuilder also has experimental support for fully implementing Vitis kernels for de-

ployment on Vitis-supported devices such as CPU-FPGA platforms. This includes the full

implementation and bitstream generation for Vitis kernels (.xclbin) as well as a templated

host code testbench that can load the kernel onto the FPGA fabric and evaluate a graph

dataset directly on-chip. This testbench is very similar to the C++ testbench previously

discussed but uses Xilinx’s runtime library, XRT, to interface with the FPGA from the host.

20

3.5 Performance Model and Design Space Exploration

3.5.1 Hardware Model Implementation Details

All of the models in our experiments were implemented for the Xilinx Alveo U280 FPGA

accelerator. In our implementation, we target a 300 MHz clock frequency. We use the high-

level synthesis (HLS) and FPGA implementation tools provided by Vitis HLS and Vivado

in our framework. The HLS code generated by the framework is what is directly provided

to the tooling for synthesis. The logs and reports from the tooling are also captured in

order to gather implementation timing and resource usage for comparison to our analytical

model.

3.5.2 Hardware Performance Model

To evaluate how effective runtime modeling can be used for DSE, we explore an analytical

latency model, a compensation fit latency model, and a direct fit latency+BRAM model.

Each model can be evaluated against a baseline of the post-synthesis latency and BRAM

usage reported by Vitis HLS. When looking at resource usage modeling, we mainly focus

on BRAM usage since that is the dominating resource that is most likely to violate resource

constraints first on large models.

The analytical latency model is a manually designed performance estimate of infer-

ence on a single graph based on the implemented HLS kernels in the GNNBuilder kernel

template library. Each kernel is assessed line by line, and the latencies of each of the asso-

ciated operations are used to write a simple analytical model in Python to compute the total

latency of that kernel. The compensation fit latency model is fit on a dataset of model con-

figurations and aims to predict a compensation value to be added to the analytical model to

match the reported post-synthesis latency. The direct-fit latency model is a random forest

regressor that is fit on a dataset of model configurations and aims to directly predict re-

ported post-synthesis latency numbers. Similarly, the direct fit BRAM model is directly fit

21

on a dataset of model configurations and reported post-synthesis BRAM usage values. We

chose the random forest as the regression model through empirical testing; we found the

random forest model avoided overfitting better than linear models, support vector machine

models, and gradient boosting tree models.

The fitted models require a database of designs to be synthesized ahead of time to fit

and distribute trained models. The possible number of model configurations is intractable

to explore by brute force. However, by sparsely sampling the design space to build the

database, the fitted models should be able to interpolate between the sampled design space

to provide accurate estimates for unseen configurations.

3.5.3 Design Space Exploration

Model designers typically have to tune and evaluate models by hand to choose the optimal

model configuration parameters for the best latency vs. accuracy vs. resource usage. To

enable design space exploration (DSE), the user can use the runtime and BRAM models

to quickly evaluate specific model configurations. This allows designers to integrate these

estimates into their own workflow to build more complex co-design tools to jointly optimize

SW and HW metrics in their training workflow.

For more straightforward DSE, we provide the user with random sampling and brute

force approaches to explore design using the previously discussed models. All configura-

tions can be evaluated quickly using the models for small configuration spaces. For a larger

configuration space, a user is able to randomly sample a fixed number of configurations in

order to evaluate a sparse random subset of the larger configuration space. When evaluating

models, the designer can then rank models based on predicted latency and identity feasible

configurations based on predicted BRAM usage.

Rather than having the user be required to run the HLS build for each design con-

figuration they want to evaluate or create a dataset of design configurations, we provide

serialized trained versions of direct fit models described in the previous section. Evaluat-

22

ing the trained models is on the order of milliseconds compared to running HLS synthesis,

which is on the order of minutes. This reduction in performance prediction runtime allows

users to build intelligent co-design tools for real-time optimization rather than just pure

DSE tools. This opens up the possibility for train-time model sparsity + quantization and

neural architecture search, among other ideas.

23

CHAPTER 4

EXPERIMENTAL SETUP

4.0.1 Analytical Performance Model

We evaluate the accuracy of our runtime and BRAM models by looking at their perfor-

mance against a large database of 400 synthesized designs. We randomly sampled these

designs from the following configuration space of model parameters:

QM9˙DATASET = QM9(root=”./tmp/QM9”).index˙select(list(range(1000)))

DATASET˙IN˙DIM = QM9˙DATASET.num˙features

DATASET˙OUT˙DIM = QM9˙DATASET[0].y.ravel().shape[0]

AVG˙NODES, AVG˙EDGES = compute˙average˙nodes˙and˙edges(QM9˙DATASET, round˙val=

True)

AVG˙DEGREE = compute˙average˙degree(QM9˙DATASET, round˙val=True)

MAX˙NODES = 600

MAX˙EDGES = 600

CONVS = [”gcn”, ”gin”, ”pna”, ”sage”]

GNN˙HIDDEN˙DIM = [64,128,256]

GNN˙OUT˙DIM = [64,128,256]

GNN˙NUM˙LAYERS = [1,2,3,4]

GNN˙SKIP˙CONNECTIONS = [True, False]

MLP˙HIDDEN˙DIM = [64,128,256]

MLP˙NUM˙LAYERS = [1,2,3,4]

GNN˙P˙HIDDEN = [2,4,8]

GNN˙P˙OUT = [2,4,8]

MLP˙P˙IN = [2,4,8]

24

MLP˙P˙HIDDEN = [2,4,8]

For the fitted models, we evaluated a random forest regressor with 10 estimators for

each model. Each model is assessed using the mean absolute percent error (MAPE) be-

tween the true post-synthesis metrics and predicted metrics. To evaluate overfitting, we

performed a 10 K-Fold cross-validation (CV). The test MAPE for each fold is averaged to

produce a final cross-validation MAPE.

4.0.2 Accelerator Performance Evaluation

We evaluated different model architecture configurations across a range of datasets to com-

pare the performance of our hardware implementation against CPU and GPU implementa-

tions. We use the following implementations:

• PyG-CPU: A PyTorch Geometric CPU model

• PyG-GPU: A PyTorch Geometric GPU model

• CPP-CPU: A C++ floating point CPU model

• FPGA-Base: Proposed HW model with no parallelism

• FPGA-Parallel: Proposed HW model with parallelism

The CPU models were evaluated on an Intel Xeon Gold 6226R, and the GPU models

were evaluated on an NVIDIA RTX A6000. The hardware models are implemented as

discussed in section subsection 3.5.1.

For each implementation type, we explore the same fixed GNN model while changing

which GNNConv is being used. We look at the following layers: GCN, GraphSAGE, GIN,

and PNA.

We also analyze the performance of each implementation and model configuration

across a range of datasets for graph-level tasks. We use the QM9, ESOL, FreeSolv, and

Lipophilicity regressions datasets and the HIV classification dataset from the larger Molecu-

leNet dataset. We evaluate each baseline on a batch size of 1, noting that batch size 1 is

25

the only fair comparison for real-time inference graphs. Other works such as [13] and [47]

also commonly compare exclusively with batch size 1.

The runtime for CPU and GPU implementations was computed by averaging the run-

time of the first 1000 graphs of each dataset (if the dataset had fewer than 1000 graphs,

the complete dataset was used). The latency of the FPGA implementations was gath-

ered from the worst caste estimate provided by Vitis HLS after model synthesis. Since

GNNBuilder allows the user to pass in estimates for the average number of nodes and

edges in a graph as well as the average in-degree of nodes in a graph, this knowledge can

be passed on to the synthesis tool to provide accurate latency estimates. This is done using

the #pragma HLS loop tripcount pragma, which is applied to loops that are bounded by

the number of nodes and edges in a graph or the in-degree of a node.

For all models, we used the following architecture configuration:

agnn.GNNModel(

graph˙input˙feature˙dim=dim˙in,

graph˙input˙edge˙dim=0,

gnn˙hidden˙dim=128,

gnn˙num˙layers=6,

gnn˙output˙dim=64,

gnn˙conv=conv,

gnn˙activation=nn.ReLU,

gnn˙skip˙connection=True,

global˙pooling=agnn.GlobalPooling([”add”, ”mean”, ”max”]),

mlp˙head=MLP(in˙dim=64 * 3, out˙dim=dim˙out, hidden˙dim=64, hidden˙layers=4, activation

=nn.ReLU),

output˙activation=None,

)

For the FPGA-Parallel implementations, the GCN, SAGE, and GIN models use the

following parallelism factors: gnn p in=1, gnn p hidden=16, gnn p out=8, p in=8, p -

hidden=8, p out=1. The PNA models use gnn p hidden=8 and gnn p out=8 in order to

26

fit the model on the device fabric. The FPGA-Parallel implementations are also synthesized

with ¡16, 10¿ bit fixed-point data representations; this is also done to fit within the device

fabric.

All FPGA-Base implementations have all parallel factors set to 1 and implement node

features using ¡32, 16¿ bit fixed-point types.

27

CHAPTER 5

RESULTS

5.0.1 Analytical Performance Model

The results of fitting the latency and BRAM models on our database of generated designs

are shown in Figure Figure 5.1. The key takeaway is that direct fit models are the most

effective for performance modeling. The direct-fit latency model achieved a CV MAPE

of 33.94%, which is significantly better than the analytical model with a CV MAPE of

425.10%. The direct-fit BRAM model achieved a CV MAPE of 22.41%. Figure Figure 5.1

indicates that the analytical model consistently underestimates the post-synthesis reported

latency while the direct fit and compensated fit models are able to more accurately produce

a better fit to the true latency values. These results show that a direct fit of models on a

design database sparsely sampling a design configuration space is an effective and simple

approach for performance modeling in GNNBuilder to enable rapid DSE.

5.0.2 DSE Exploration

To exemplify the speed up of direct fit models over standard evaluation of the HLS tool,

we also analyze the performance estimate compute time for all 400 model configurations

used to train the direct fit models. We present the results in Figure Figure 5.2, which can

be viewed as a timeline of runs. All model calls for the direct fit models to finish in under

a second, while all Vitis HLS synthesis runs finish in under two days. An average direct fit

model call takes 2.5 ms, while an average Vitis HLS synthesis run takes 7.94 minutes. This

difference is around 6 orders of magnitude, emphasizing real-time performance estimation

of direct fit models.

28

Figure 5.1: Comparison of latency prediction models with true post-synthesis latency and
BRAM usage reported from Vitis HLS

5.0.3 Accelerator Performance Evaluation

The performance results for the proposed accelerator hardware framework in comparison to

other implementations are shown in Figure Figure 5.3, Table Table 5.1, and Table Table 5.2.

The values in Table Table 5.2 indicate the speedup factors of the FPGA-Parallel implemen-

tation for the latency values averaged across datasets. For all cases, there is at least a 2x

speedup in the parallelized FPGA implementation over the PyG CPU, PyG GPU, and C++

CPU implementations. Across all models, there is a geometric mean speedup of 2.96×

over PyG-CPU and 2.99× over PyG-GPU. The resource usage also shows more room for

29

Figure 5.2: Cumulative runtime for evaluating 400 design configurations to predict mode
latency and BRAM usage. The x-axis represents time going forward from left to right, and
each point represents a performance estimate which has just finished computing. Note the
log scale for the x-axis.

BRAM utilization across models indicating there is more room for increased parallelism

and higher speedups.

Table 5.1: Resource usage of FPGA-Base and FPGA-Parallel model implementations as a
percent of total resources available on the Xilinx Alevo U280 Accelerator Card.

FPGA-Base FPGA-Parallel
BRAM DSP FF LUT BRAM DSP FF LUT

GCN 5.8% 0.5% 1.9% 5.5% 39.9% 6.2% 1.3% 8.9%
GIN 8.1% 0.2% 1.0% 2.8% 73.7% 11.6% 1.3% 13.1%
PNA 10.9% 0.7% 2.8% 6.7% 59.2% 6.9% 2.1% 10.4%
SAGE 7.9% 0.2% 1.4% 3.3% 69.9% 10.2% 1.3% 15.4%

30

Table 5.2: FPGA-Parallel speedup over PyG CPU, PyG GPU, and C++ CPU runtimes.

PyG-CPU PyG-GPU CPP-CPU

GCN 3.80x 4.95x 1.99x
GIN 2.16x 2.24x 2.27x
PNA 3.02x 2.32x 9.68x

SAGE 3.09x 3.10x 6.37x

Geo. Mean 2.96x 2.99x 4.09x

Figure 5.3: GNN model latency across a range of models, datasets, and implementations
(Note that the y-axis is a log scale).

31

CHAPTER 6

CONCLUSION

We proposed GNNBuilder, the first automated, generic, end-to-end GNN accelerator gen-

eration framework. Due to its explicit message passing architecture, it supports a wide

range of expressive GNNs, including anisotropic GNNs. We also provide an easy-to-use

Python API that can interface directly with PyTorch modules to provide a complete design

loop for end users and deep learning workflows. Additionally, GNNBuilder supports fea-

tures not supported by most inference accelerator works, such as skip connections, global

pooling, and MLP heads. Furthermore, we demonstrate the capabilities of GNNBuilder to

generate hardware kernels and testbenches as well as to run testbenches on PyTorch Ge-

ometric datasets and launch Vitis HLS synthesis kernels. Moreover, we show that model

configuration spaces can be sparsely sampled to fit latency and BRAM prediction models

against post-synthesis metrics. These models can then be used by end users to perform

simple DSE and develop more complex co-design workflows. Lastly, we demonstrate how

our accelerator can achieve faster performance over CPU and GPU by parallelizing the

hardware implementation.

Our initial software framework can be accessed at this repo:

https://anonymous.4open.science/r/gnn-builder.

As we clean up our codebase, we will update the repository and provide more end-use

documentation to get started using the framework. Our goal is for this framework to be

open-source and accessible to both software and hardware practitioners.

There are still many optimizations and avenues for future work branching off the pro-

posed framework. One key area is to optimize dataflow and computation patterns in graph

convolutions kernels in the GNNBuilder kernel template library to achieve greater speedups

over CPU and GPU. This work does not explore HLS dataflow and HLS streaming opti-

32

mizations which can provide greater speedups and lower resource utilization across kernels.

Exploring intelligent DSE search, such as genetic algorithms, mixed-integer non-linear op-

timization, and train-time co-design is another area for future research that can provide end

users with even more powerful design tools to integrate into their workflow. Lastly, we

hope to continue maintaining our framework and expand the kernel template library to add

support for more graph convolution kernels, such as graph attention networks (GAT)[48]

convolutions and other emerging GNN architectures.

33

REFERENCES

[1] Z. Wu et al., “MoleculeNet: A benchmark for molecular machine learning,” Chemi-
cal Science, vol. 9, no. 2, pp. 513–530, 2018.

[2] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, Graph Neural Networks in Recom-
mender Systems: A Survey, arXiv:2011.02260 [cs], Apr. 2022.

[3] A. Benamira, B. Devillers, E. Lesot, A. K. Ray, M. Saadi, and F. D. Malliaros,
“Semi-Supervised Learning and Graph Neural Networks for Fake News Detection,”
in 2019 IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), ISSN: 2473-991X, Aug. 2019, pp. 568–569.

[4] A. Derrow-Pinion et al., “ETA Prediction with Graph Neural Networks in Google
Maps,” in Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, arXiv:2108.11482 [cs], Oct. 2021, pp. 3767–3776.

[5] S. N. Golmaei and X. Luo, “DeepNote-GNN: Predicting hospital readmission using
clinical notes and patient network,” in Proceedings of the 12th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics, ser. BCB ’21, New
York, NY, USA: Association for Computing Machinery, Aug. 2021, pp. 1–9, ISBN:
978-1-4503-8450-6.

[6] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann, A Comprehensive
Survey of Scene Graphs: Generation and Application, arXiv:2104.01111 [cs], Jan.
2022.

[7] N. Wu, Y. Xie, and C. Hao, “IronMan-Pro: Multi-objective Design Space Explo-
ration in HLS via Reinforcement Learning and Graph Neural Network based Mod-
eling,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1–1, 2022, Conference Name: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems.

[8] L. Wu et al., Graph Neural Networks for Natural Language Processing: A Survey,
arXiv:2106.06090 [cs], Jun. 2021.

[9] Y. Lin, Z. Zhang, H. Tang, H. Wang, and S. Han, “PointAcc: Efficient Point Cloud
Accelerator,” in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, arXiv:2110.07600 [cs], Oct. 2021, pp. 449–461.

[10] A. Elabd et al., “Graph Neural Networks for Charged Particle Tracking on FPGAs,”
Frontiers in Big Data, vol. 5, p. 828 666, Mar. 2022, arXiv:2112.02048 [hep-ex,
physics:physics, stat].

34

[11] Y. Li et al., Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Re-
view, arXiv:2005.09830 [cs], May 2020.

[12] A. Elabd et al., “Graph neural networks for charged particle tracking on FPGAs,”
Frontiers in Big Data, vol. 5, p. 828 666, Mar. 2022.

[13] H. Qu and L. Gouskos, “Jet tagging via particle clouds,” Physical Review D, vol. 101,
no. 5, p. 056 019, Mar. 2020.

[14] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph neural net-
works,” in 2020 57th ACM/IEEE Design Automation Conference (DAC), IEEE, 2020,
pp. 1–6.

[15] M. Yan et al., “HyGCN: A GCN accelerator with hybrid architecture,” in 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA), San
Diego, CA, USA: IEEE, Feb. 2020, pp. 15–29, ISBN: 978-1-72816-149-5.

[16] S. Liang et al., “EnGN: A high-throughput and energy-efficient accelerator for large
graph neural networks,” IEEE Transactions on Computers, vol. 70, no. 9, pp. 1511–
1525, Sep. 2021.

[17] T. Geng et al., “AWB-GCN: A graph convolutional network accelerator with run-
time workload rebalancing,” in 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), Athens, Greece: IEEE, Oct. 2020, pp. 922–
936, ISBN: 978-1-72817-383-2.

[18] B. Zhang, R. Kannan, and V. Prasanna, “BoostGCN: A framework for optimizing
GCN inference on FPGA,” in 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), IEEE, 2021, pp. 29–
39.

[19] T. Geng et al., “I-GCN: A graph convolutional network accelerator with runtime
locality enhancement through islandization,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, Virtual Event Greece: ACM, Oct.
2021, pp. 1051–1063, ISBN: 978-1-4503-8557-2.

[20] J. Li, A. Louri, A. Karanth, and R. Bunescu, “GCNAX: A flexible and energy-
efficient accelerator for graph convolutional neural networks,” in 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA), Seoul,
Korea (South): IEEE, Feb. 2021, pp. 775–788, ISBN: 978-1-66542-235-2.

[21] X. Chen et al., “Rubik: A hierarchical architecture for efficient graph neural network
training,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 4, pp. 936–949, Apr. 2022.

35

[22] H. Zeng and V. Prasanna, “GraphACT: Accelerating GCN training on CPU-FPGA
heterogeneous platforms,” in Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Seaside CA USA: ACM, Feb.
2020, pp. 255–265, ISBN: 978-1-4503-7099-8.

[23] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in ICLR, 2016.

[24] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems, 2017, pp. 1025–1035.

[25] S. A. Tailor, F. Opolka, P. Lio, and N. D. Lane, “Do we need anisotropic graph neural
networks?” In International Conference on Learning Representations, 2021.

[26] K. Xu et al., “How powerful are graph neural networks?” In ICLR, 2019.

[27] G. Corso et al., “Principal neighbourhood aggregation for graph nets,” in NeurIPS,
2020.

[28] S. Liang, C. Liu, Y. Wang, H. Li, and X. Li, “DeepBurning-GL: An Automated
Framework for Generating Graph Neural Network Accelerators,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), ISSN: 1558-2434,
Nov. 2020, pp. 1–9.

[29] Y.-C. Lin, B. Zhang, and V. Prasanna, “Hp-gnn: Generating high throughput gnn
training implementation on cpu-fpga heterogeneous platform,” in Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
2022, pp. 123–133.

[30] P. Veličković, Message passing all the way up, 2022.

[31] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón, “Computing graph
neural networks: A survey from algorithms to accelerators,” ACM Comput. Surv.,
vol. 54, no. 9, Oct. 2021.

[32] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph neural net-
works,” in 2020 57th ACM/IEEE Design Automation Conference (DAC), San Fran-
cisco, CA, USA: IEEE, Jul. 2020, pp. 1–6, ISBN: 978-1-72811-085-1.

[33] K. Kiningham, C. Re, and P. Levis, “GRIP: A graph neural network accelerator
architecture,” arXiv:2007.13828 [cs], Jul. 2020. arXiv: 2007.13828 [cs].

36

https://arxiv.org/abs/2007.13828

[34] S. Abi-Karam, Y. He, R. Sarkar, L. Sathidevi, Z. Qiao, and C. Hao, “Gengnn: A
generic fpga framework for graph neural network acceleration,” arXiv preprint arXiv:2201.08475,
2022.

[35] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, FlowGNN: A Dataflow Ar-
chitecture for Universal Graph Neural Network Inference via Multi-Queue Stream-
ing, arXiv:2204.13103 [cs], Apr. 2022.

[36] G. Dai et al., “GraphH: A processing-in-memory architecture for large-scale graph
processing,” IEEE TCAD, vol. 38, no. 4, pp. 640–653, 2018.

[37] D. Yan et al., “Blogel: A block-centric framework for distributed computation on
real-world graphs,” VLDB, vol. 7, no. 14, pp. 1981–1992, 2014.

[38] Y. Tian et al., “From” think like a vertex” to” think like a graph”,” VLDB, vol. 7,
no. 3, pp. 193–204, 2013.

[39] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang, “Foregraph: Exploring
large-scale graph processing on multi-fpga architecture,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2017,
pp. 217–226.

[40] Z. Shao, R. Li, D. Hu, X. Liao, and H. Jin, “Improving performance of graph pro-
cessing on fpga-dram platform by two-level vertex caching,” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
2019, pp. 320–329.

[41] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu, “Hitgraph: High-
throughput graph processing framework on fpga,” IEEE Transactions on Parallel
and Distributed Systems, vol. 30, no. 10, pp. 2249–2264, 2019.

[42] P. Yao, L. Zheng, X. Liao, H. Jin, and B. He, “An efficient graph accelerator with
parallel data conflict management,” in Proceedings of the 27th International Confer-
ence on Parallel Architectures and Compilation Techniques, 2018, pp. 1–12.

[43] X. Chen, H. Tan, Y. Chen, B. He, W.-F. Wong, and D. Chen, “Thundergp: Hls-based
graph processing framework on fpgas,” in The 2021 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, 2021, pp. 69–80.

[44] B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares and
Products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962, Publisher: [Taylor &
Francis, Ltd., American Statistical Association, American Society for Quality].

[45] D. Hendrycks and K. Gimpel, Gaussian Error Linear Units (GELUs), arXiv:1606.08415
[cs], Jul. 2020.

37

[46] Vitis, Vitis high-level synthesis user guide (ug1399), https://docs.xilinx.com/r/en-
US/ug1399-vitis-hls, Accessed: 2021.

[47] Groq, Inc., “The challenge of batch size 1: Groq adds responsiveness to inference
performance,” p. 7, 2020.

[48] P. Veličković et al., “Graph attention networks,” in arXiv preprint arXiv:1710.10903,
2017.

38

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	2 | Background
	Related Work and Motivations

	3 | Methodology
	GNNBuilder Framework Overview
	GNNBuilder Model Architecture
	Hardware Accelerator Architecture
	Accelerator Generation and Implementation
	Performance Model and Design Space Exploration

	4 | Experimental Setup
	5 | Results
	6 | Conclusion
	References

