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PREFACE

Recent advances in numerical optimization have enabled efficient algorithms for solv-

ing complex models motivated by machine learning and image processing applica-

tions. This dissertation studies two new algorithms for solving composite saddle-point

problems, which are closely related to real-world data analysis applications such as

sparse principal component analysis, sparse inverse covariance estimation, truncated

collaborative filtering and image recovering. The two algorithms are based on the hy-

brid proximal extragradient framework and use Nesterov-type accelerated methods to

approximately solve the prox subproblems. Both methods achieve optimal iteration-

complexity on their associated classes of problems. Experiment results also show that

the new methods significantly outperform several state-of-the-art algorithms compu-

tationally on many relevant problem instances.

The main theoretical results in this dissertation have been published in two under-

review articles [16] and [17].
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SUMMARY

This dissertation considers the composite saddle-point (CSP) problem which is

motivated by real-world applications in the areas of machine learning and image pro-

cessing. Two new accelerated algorithms for solving composite saddle-point problems

are introduced.

Due to the two-block structure of the CSP problem, it can be solved by any algo-

rithm belonging to the block-decomposition hybrid proximal extragradient (BD-HPE)

framework. The framework consists of a family of inexact proximal point methods for

solving a general two-block structured monotone inclusion problem which, at every

iteration, solves two prox sub-inclusions according to a certain relative error crite-

rion. By exploiting the fact that the two prox sub-inclusions in the context of the

CSP problem are equivalent to two composite convex programs, the first part of this

dissertation proposes a new instance of the BD-HPE framework that approximately

solves them using an accelerated gradient method. It is shown that the new instance

is able to take significantly larger prox stepsizes than other instances from this frame-

work that perform single composite gradient steps for solving the sub-inclusions. As

a result, it is shown that the first instance has better iteration-complexity than the

latter ones.

The second part of this dissertation introduces a new algorithm for solving a

special class of CSP problems. The new algorithm is a special instance of the hybrid

proximal extragradient (HPE) framework in which a Nesterov’s accelerated variant

is used to approximately solve the prox subproblems. One of the advantages of the

this method is that it works for any constant choice of proximal stepsize. Moreover, a

suitable choice of the latter stepsize yields a method with the best known (accelerated

xi



inner) iteration complexity for the aforementioned class of saddle-point problems. In

contrast to the smoothing technique of Nesterov, this new accelerated method does

not assume that feasible set is bounded due to its proximal point nature.

Experiment results on both synthetic CSP problems and real-world problems show

that the two method significantly outperform several state-of-the-art algorithms.
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CHAPTER I

INTRODUCTION

A broad class of optimization, saddle-point (SP), equilibrium and variational inequal-

ity problems can be posed as the monotone inclusion problem, namely: finding z such

that

0 ∈ T (z), (1)

where T is a maximal monotone point-to-set operator.

The proximal point method, proposed by Rockafellar [46], is a classical iterative

scheme for solving the monotone inclusion problem. The method generates a sequence

{zk} according to

‖zk − (λkT + I)−1(zk−1)‖ ≤ ek,
∞∑
k=1

ek <∞.

This method has been used as a generic framework for the design and analysis of

several implementable algorithms.

New inexact versions of the proximal point method which uses instead relative

error criteria were proposed by Solodov and Svaiter [52, 53, 54, 55]. One of these

variants, namely, the hybrid proximal extragradient (HPE) framework studied in

[52], was used to develop and analyze block decomposition algorithms (see [36]), and

we now briefly discuss this framework. The exact proximal point iteration from z

with stepsize λ > 0 is given by z+ = (λT + I)−1(z), which is equivalent to

r ∈ T (z+), λr + z+ − z = 0. (2)

In each step of the HPE, the above proximal system is solved inexactly with (z, λ) =

(zk−1, λk) to obtain zk = z+ as follows. For a given constant σ ∈ [0, 1], a triple

1



(z̃, r̃, ε) = (z̃k, r̃k, εk) is found such that

r̃ ∈ T ε(z̃), ‖λr̃ + z̃ − z‖2 + 2λε ≤ σ2‖z̃ − z‖2, (3)

where T ε denotes the ε-enlargement [5] of T (It has the property that T ε(z) ⊃ T (z) for

each z). Note that this construction relaxes both the inclusion and the equation in (2).

Finally, instead of choosing z̃ as the next iterate z+, the HPE framework computes the

next iterate z+ by means of the extragradient step z+ = z− λr̃. Iteration complexity

results for the HPE framework were established in [35] and these results depend on

the distance of the initial iterate to the solution set instead of the diameter of the

feasible set.

Application of the HPE framework to the iteration-complexity analysis of several

zero-order (resp., first-order) methods for solving monotone variational inequalities

and monotone inclusions (resp., saddle-point problems) are discussed in [35] and in

the subsequent papers [36, 37]. More specifically, by viewing Korpelevich’s method as

well as Tseng’s modified forward-backward splitting (MF-BS) method [58] as special

cases of the HPE method, the authors have established in [35, 37] the pointwise and

ergodic iteration-complexities of these methods applied to either: monotone varia-

tional inequalities, monotone inclusions consisting of the sum of a Lipschitz contin-

uous monotone map and a maximal monotone operator with an easily computable

resolvent, and convex-concave saddle-point problems.

A framework of block-decomposition (BD) prox-type algorithms is introduced in

[36] for solving the monotone inclusion problem consisting of the sum of a continuous

monotone map and a point-to-set maximal monotone operator with a separable two-

block structure, namely:

0 ∈ T (x, y) :=

 F1(x, y) + A(x)

F2(x, y) +B(y)

 , (4)

and presents a general block-decomposition HPE (BD-HPE) framework in the con-

text of (4), which allows for each one of the single-block proximal subproblems to
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be solved in an approximate sense. More specifically, given a pair ((x, y), λ) =

((xk−1, yk−1), λk), an instance of the BD-HPE framework computes an approximate

solution ((x̃, ỹ), (r̃x, r̃y), ε) of (2) (in the sense of (3)) with T given by (4) by first

computing an approximate solution (x̃, r̃x, εx) of (2) with T = F1(·, yk−1)+A(·), then

computing an approximate solution (ỹ, r̃y, εy) of (2) with T = F2(x̃, ·) + B(·), and

finally setting ε = εx + εy. Moreover, by showing that any method in this framework

is also a special instance of the HPE method, convergence rate results are derived

in [36] for the BD-HPE framework based on the ones developed in [35] for the HPE

method.

The first part of this dissertation considers the composite saddle-point (CSP)

problem

min
x∈X

max
y∈Y

Ψ(x, y) + g1(x)− g2(y) (5)

where Ψ is a differentiable convex-concave function, g1 and g2 are proper closed con-

vex (possibly nonsmooth) functions, X := dom g1 and Y := dom g2. Equivalently,

the above problem is equivalent to the special case of the inclusion problem (4) in

which (F1(·, ·), F2(·, ·)) = (∇xΨ(·, ·),−∇yΨ(·, ·)) and (A,B) = (∂g1, ∂g2) for some

differentiable convex-concave function Ψ and proper closed convex functions g1 and

g2. The first main contribution of this dissertation is a new BD-HPE method which

exploits the fact that the two prox sub-inclusions are equivalent to composite convex

programs. By using a Nesterov-type accelerated method (e.g., [42]) to approximately

solve them, the method can choose λk (constant and) potentially larger than previous

BD-HPE methods. As a result, it is shown that the new method outperforms pre-

vious BD-HPE methods both theoretically and computationally in situations where

max{Lxx, Lyy} >> Lxy where Lzw denotes the uniform Lipschitz constant of ∇zΨ(·, ·)

with respect to w.
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The second part of this dissertation considers the special class of composite saddle-

point problem

min
x∈X

max
y∈Y

Ψ̂(x, y) = f(x) + 〈Ax, y〉+ g1(x)− g2(y) (6)

where A is a linear operator and f is a differentiable convex function whose gradient is

Lf -Lipschitz continuous on X. Since (6) is well-known to be equivalent to monotone

inclusion problem (1) with T given by

T (x, y) = ∂(Ψ̂(·, y)− Ψ̂(x, ·))(x, y), (7)

any instance of the HPE method, including the ones already discussed above, can

be used to solve it. This dissertation presents an accelerated instance of the HPE

framework which arbitrarily chooses the stepsize λ and solves (3) with T given by (7)

by using a Nesterov’s accelerated variant for smooth composite saddle-point prob-

lems. Both the outer (i.e., HPE) iteration complexity and the inner (i.e., accelerated

variant) iteration complexity are derived for the method in terms of a general stepsize

λ. Choosing λ so as to minimize the overall number of inner iterations is the best

strategy towards minimizing the overall complexity of the accelerated HPE method.

An explicit formula in terms of ‖A‖, Lf , the distance d0 of the initial iterate to the set

of saddle-points of (6) and the specified tolerances is then derived for such a stepsize.

Clearly, since d0 is not known a priori, the above stepsize can not be computed but an

alternative stepsize λ depending only on ‖A‖ and Lf is provided which is optimal for

the most common saddle-point problems of the form (6). Moreover, when the feasible

set X × Y is bounded, the expression for the above optimal stepsize with d0 replaced

by the diameter of X × Y yields another stepsize which implies (if an appropriate

choice of inner product in the (x, y)-space is made) an overall complexity for the ac-

celerated HPE method that is similar to that of Nesterov’s smoothing technique (see

[40]) for finding an ε-saddle-point of (6). It is worth emphasizing that, in contrast to
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Nesterov’s smoothing technique of [40], the new accelerated method for solving (6)

does not assume that X × Y is bounded due to its proximal point nature.

1.1 Notation and basic definitions

We denote the sets of real numbers by <, nonnegative numbers by <+ and positive

numbers by <++. For a matrix W ∈ <m×n, we denote its Frobenius norm by ‖W‖F ,

the sum of the absolute values of its entries by ‖W‖1 and the sum of its singular

values by ‖W‖∗. Let Sn denote the space of n × n real symmetric matrices and Sn+

denote the cone of symmetric positive matrices. For a matrix W ∈ Sn, we denote its

largest eigenvalue by θmax(W ). We use ◦ to denote the element-wise multiplication

between two matrices. For any z > 0, define log+(z) := max(0, log(z)). Let dze

denote the smallest integer not less than z ∈ <. The n-th unit simplex ∆n ⊂ <n is

defined as

∆n :=

{
z ∈ <n :

n∑
i=1

zi = 1, zi ≥ 0, i = 1, · · · , n

}
. (8)

Throughout this dissertation, we let Z denote a finite dimensional inner product

space with associated inner product denoted by 〈·, ·〉 and the induced norm denoted

by ‖ · ‖. For a given set Ω ⊂ Z, the diameter DΩ of Ω is defined as

DΩ := sup{‖z − z̃‖ : z, z̃ ∈ Ω} (9)

and the indicator function IΩ : Z → (−∞,∞] of Ω is defined as

IΩ(z) :=


0, z ∈ Ω,

∞, z /∈ Ω.

Also, if Ω is nonempty and convex, the orthogonal projection PΩ : Z → Z onto Ω is

defined as

PΩ(z) := argminz̃∈Ω‖z̃ − z‖ ∀z ∈ Z.

5



A relation T ⊆ Z × Z can be identified with a point-to-set operator T : Z ⇒ Z

in which

T (z) := {v ∈ Z : (z, v) ∈ T}, ∀z ∈ Z.

Note that the relation T is then the same as the graph of the point-to-set operator T

defined as

Gr(T ) := {(z, v) ∈ Z × Z : v ∈ T (z)}.

An operator T : Z ⇒ Z is monotone if

〈r − r̃, z − z̃〉 ≥ 0, ∀(z, r), (z̃, r̃) ∈ Gr(T ).

Moreover, T is maximal monotone if it is monotone and maximal in the family of

monotone operators with respect to the partial order of inclusion, i.e., S : Z ⇒

Z monotone and Gr(S) ⊃ Gr(T ) implies that S = T . Given a scalar ε, the ε-

enlargement of a point-to-set operator T : Z ⇒ Z is the point-to-set operator T ε :

Z ⇒ Z defined as

T ε(z) := {r ∈ Z | 〈z − z̃, r − r̃〉 ≥ −ε, ∀z̃ ∈ Z, ∀r̃ ∈ T (z̃)}, ∀z ∈ Z. (10)

The effective domain of a function f : Z → [−∞,∞] is defined as dom f := {z ∈

Z : f(z) < ∞}. Moreover, if f is differentiable at point z̃ such that f(z̃) ∈ <, its

first-order (affine) approximation at z̃ is defined as

lf (z; z̃) : = f(z̃) + 〈∇f(z̃), z − z̃〉 ∀z ∈ Z. (11)

The conjugate f ∗ of f is the function f ∗ : Z → [−∞,∞] defined as

f ∗(v) := sup
z∈Z
〈v, z〉 − f(z), ∀v ∈ Z.

Given a scalar ε ≥ 0, the ε-subdifferential of a function f : Z → [−∞,+∞] is the

operator ∂εf : Z ⇒ Z defined as

∂εf(z) := {v | f(z̃) ≥ f(z) + 〈z̃ − z, v〉 − ε, ∀z̃ ∈ Z}, ∀z ∈ Z. (12)
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When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the

subdifferential of f . The operator ∂f is trivially monotone if f is proper. If f is a

proper closed convex function, then ∂f is maximal monotone [45].

The following result lists some useful properties about the ε-subdifferential of a

proper convex function.

Proposition 1.1.1. Let f : Z → [−∞,+∞] be a proper convex function. Then

(a) ∂εf(z) ⊆ (∂f)ε(z) for any ε ≥ 0 and z ∈ Z;

(b) if v ∈ ∂f(z) and f(z̃) < ∞, then v ∈ ∂εf(z̃), where ε := f(z̃) − [f(z) +

〈z̃ − z, v〉] ≥ 0;

(c) if, in addition, f is closed, then v ∈ ∂f(z) is equivalent to z ∈ ∂f ∗(v).

The domain of a point-to-point map F is denoted by DomF . For a constant L ≥ 0,

a map F : DomF ⊆ Z → Z is said to be L-Lipschitz continuous on Ω ⊆ DomF if

‖F (z)− F (z̃)‖ ≤ L‖z − z̃‖ ∀z, z̃ ∈ Ω; (13)

moreover, if in addition Ω = DomF , we will simply say that F is L-Lipschitz contin-

uous.

The following result gives a characterization of a strongly convex function in terms

of its conjugate.

Proposition 1.1.2. For a scalar β > 0 and a proper closed convex function f : Z →

[−∞,∞], the following two properties are equivalent:

(a) f is strongly convex with modulus β;

(b) f ∗ is differentiable everywhere and ∇f ∗ is 1/β-Lipschitz continuous.

Proof. This proposition is equivalent to Proposition 12.60 of [47] in view of the well-

known fact that f = f ∗∗.
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CHAPTER II

COMPOSITE SADDLE-POINT PROBLEMS

2.1 Saddle-point problems

This section presents some basic facts about the saddle-point problem and a notion

of an approximate saddle-point.

Let X and Y denote finite dimensional inner product spaces with associated inner

products both denoted by 〈·, ·〉 and associated norms both denoted by ‖·‖. We endow

the product space X × Y with the canonical inner product defined as

〈(x, y), (x̃, ỹ)〉 = 〈x, x̃〉+ 〈y, ỹ〉, ∀(x, y), (x̃, ỹ) ∈ X × Y .. (14)

The associated norm, also denoted by ‖ · ‖ for shortness, is then given by

‖(x, y)‖ =
√
‖x‖2 + ‖y‖2, ∀(x, y) ∈ X × Y .

We will now review the saddle-point problem and some of its basic properties.

Given two nonempty convex sets X ⊆ X and Y ⊆ Y , we consider throughout this

section a function Ψ̂ : X × Y → [−∞,+∞] satisfying the following condition:

A.1) Ψ̂(x, y) is finite-valued on X × Y and

Ψ̂(x, y) =


∞, x /∈ X,

−∞, x ∈ X, y /∈ Y.
(15)

The saddle-point problem determined by the triple (Ψ̂;X, Y ), denoted by SP (Ψ̂;X, Y ),

consists of finding a pair (x, y) ∈ X × Y such that

Ψ̂(x, ỹ) ≤ Ψ̂(x, y) ≤ Ψ̂(x̃, y), ∀(x̃, ỹ) ∈ X × Y. (16)
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Clearly, (x, y) is a saddle-point of SP (Ψ̂;X, Y ) if and only if (x, y) ∈ X × Y and

(0, 0) ∈ T (x, y) := ∂[Ψ̂(·, y)− Ψ̂(x, ·)](x, y). (17)

Define the primal and dual functions p : X → (−∞,+∞] and d : Y → [−∞,+∞),

respectively, as

p(x̃) = sup
ỹ∈Y

Ψ̂(x̃, ỹ), d(ỹ) = inf
x̃∈X

Ψ̂(x̃, ỹ), ∀(x, y) ∈ X × Y, (18)

and consider the pair of optimization problems associated with SP (Ψ̂;X, Y ):

p∗ := inf
x̃∈X

p(x̃) = inf
x̃∈X

sup
ỹ∈Y

Ψ̂(x̃, ỹ) (19)

and

d∗ := sup
ỹ∈Y

d(ỹ) = sup
ỹ∈Y

inf
x̃∈X

Ψ̂(x̃, ỹ) (20)

Then, the weak duality inequality says that

p(x̃) ≥ d(ỹ), ∀(x̃, ỹ) ∈ X × Y. (21)

and equivalently

gap(x̃, ỹ) := p(x̃)− d(ỹ) ≥ 0, ∀(x̃, ỹ) ∈ X × Y. (22)

Moreover, it is well-known that (x, y) is a saddle-point if and only if (x, y) ∈ X × Y

and gap(x, y) = 0. In view of (21), the latter condition is equivalent to x ∈ X and

y ∈ Y be optimal solutions of (19) and (20), respectively, and the optimal duality

gap p∗ − d∗ be equal to zero.

We now give a definition of an approximate saddle-point.

Definition 2.1.1. Given (ρ, ε) ∈ <+ × <+, z = (x, y) ∈ X × Y , r ∈ X × Y and

ε̃ ∈ <+, the triple (z, r, ε̃) is called a (ρ, ε)-saddle-point of SP (Ψ̂;X, Y ) if ‖r‖ ≤ ρ,

ε̃ ≤ ε and

r ∈ ∂ε̃[Ψ̂(·, y)− Ψ̂(x, ·)](x, y), (23)

Moreover, the pair (z, ε̃) is a called an ε-saddle-point if (z, 0, ε̃) is a (0, ε)-saddle-point.
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We now make some comments about the notion of a (ρ, ε)-saddle-point. First,

being weaker than the notion of an ε-saddle-point in the sense that r can be nonzero,

it is suitable for analyzing many algorithms for solving saddle-point problems. In par-

ticular, it is a natural notion to consider in the context of HPE-type algorithms such

as the ones studied in this dissertation since they generate a sequence {(zk, rk, ε̃k)}

such that (z, r, ε̃) = (zk, rk, ε̃k) satisfies (23) for every k. Second, although it is based

on two errors, namely r and ε̃, instead of just one single scalar error, these errors

naturally arise in the sense that r usually expresses the infeasibility error while ε

expresses some sort of functional gap.

In this dissertation, we consider saddle-point problems with two additional as-

sumptions:

A.2) Ψ̂(·, y) and −Ψ̂(x, ·) are proper closed convex functions for every (x, y) ∈ X×Y ;

A.3) the inclusion (17) has a solution, i.e., T−1(0) 6= ∅.

A function Ψ̂ : X × Y → [−∞,+∞] satisfying conditions A.1 and A.2 for some

nonempty convex sets X and Y is called a closed convex-concave function on X × Y .

It is well-known that its associated map T defined in (17) is maximal monotone (see

for example Theorem 6.3.2 in [1]).

2.2 Composite saddle-point problems

This section describes the problems of interest, namely, the composite saddle-point

problem and a special class of composite saddle-point problem.

Let Ψ : dom Ψ ⊆ X × Y → < and two proper closed convex functions g1 : X →

(−∞,∞] and g2 : Y → (−∞,∞] such that dom g1×dom g2 ⊆ dom Ψ be given. Also,

define

X := dom g1, Y := dom g2, (24)
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and the function Ψ̂ : X × Y → (−∞,∞] as

Ψ̂(x, y) =


Ψ(x, y) + g1(x)− g2(y), (x, y) ∈ X × Y,

∞, x /∈ X,

−∞, x ∈ X, y /∈ Y.

(25)

The composite saddle-point (CSP) problem determined by the triple (Ψ; g1, g2), de-

noted by CSP (Ψ; g1, g2), is the saddle-point problem SP (Ψ̂;X, Y ) where Ψ̂ , X and

Y are given by (25) and (24), and the following conditions hold:

B.1) Ψ is differentiable on Ωx × Ωy ⊃ dom g1 × dom g2, where Ωx ⊂ X and Ωy ⊂ Y

are closed convex sets;

B.2) the function Ψ(·, y) − Ψ(x, ·) : cl(X × Y ) → < is convex for every (x, y) ∈

cl(X × Y );

B.3) there exists Lxy > 0 such that

‖∇xΨ(x, ỹ)−∇xΨ(x, y)‖ ≤ Lxy‖ỹ − y‖, ∀x ∈ Ωx, ∀y, ỹ ∈ Ωy.

B.4) there exists Lxx ≥ 0 such that

‖∇xΨ(x̃, y)−∇xΨ(x, y)‖ ≤ Lxx‖x̃− x‖, ∀x, x̃ ∈ Ωx, ∀y ∈ Ωy;

B.5) there exists Lyy ≥ 0 such that

‖∇yΨ(x, ỹ)−∇yΨ(x, y)‖ ≤ Lyy‖ỹ − y‖, ∀x ∈ Ωx, ∀y, ỹ ∈ Ωy.

According to the discussion of the association between saddle-point problem and

min-max problem in Section 2.1, the notations of above CSP problem and problem

(5) are interchangeable throughout this dissertation.

The second part of this dissertation considers a special class of composite saddle-

point problem (6), namely, problem SP (Ψ̂;X, Y ) where Ψ̂ has the bilinear structure

Ψ̂(x, y) = f(x) + 〈Ax, y〉+ g1(x)− g2(y), ∀(x, y) ∈ X × Y (26)
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g1 : X → [−∞,∞] and g2 : Y → [−∞,∞] are proper closed convex functions such

that dom g1 = X and dom g2 = Y , and the following conditions hold:

C.1) A : X → Y is a linear operator;

C.2) f is convex on a closed convex set Ω ⊇ X;

C.3) f is differentiable on Ω and ∇f is Lf -Lipschitz continuous on Ω.

Throughout this dissertation, it is assumed that g1 and g2 are simple functions in

the sense that subproblems of the form

min
x∈X

1

2
‖x− x̃‖2 + λg1(x) and min

y∈Y

1

2
‖y − ỹ‖2 + λg2(y) (27)

are easy to solve for any x̃, ỹ and λ > 0.

We end this section with a note on the equivalence of the composite saddle-point

problem (6) and the following composite optimization problem

min
x∈X

f(x) + g1(x) + g∗2(Ax). (28)

Problems of in the form of (28) have recently found many applications in image pro-

cessing and machine learning. In many of these applications, f(x) is a convex data

fidelity term, while g1(x) and g∗2(Ax) are certain regularizations, e.g., total variation

[48], low rank tensor [57, 24], overlapped group lasso [21, 31], and graph regulariza-

tion [21, 56]. In the next section, we introduce several machine learning and image

processing applications that are formulated as problems (5), (6) and (28).

2.3 Related machine learning and image processing appli-
cations

In this section, we introduce several machine learning and image processing appli-

cations that can be formulated as the CSP problems introduced in Section 2.2 and

existing algorithms for solving them.
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2.3.1 Sparse principal component analysis

Principal Component Analysis (PCA) is a classical tool for performing data analysis

such as dimensionality reduction, data modeling, feature extraction and other learn-

ing tasks. It can be widely used in all kinds of data analysis areas like image feature

extraction, gene microarray analysis and document analysis. PCA consists of finding

a few orthogonal directions in the data space which preserve the most information in

the data. This is done by finding directions that would maximize the variance of the

projections of the data points along these directions. However, standard PCA gen-

erally produces dense directions (i.e., whose entries are mostly nonzero), and hence

are too complex to explain the data set. Instead, a standard approach in the learn-

ing community is to pursue sparse directions which in some sense approximate the

directions produced by standard PCA. Sparse PCA has a few advantages, namely: i)

it can be effectively stored and ii) it allows the simpler interpretation of the inherent

structure and important information associated with the data set. For these rea-

sons, sparse PCA is a subject which has received a lot of attention from the learning

community in the last decade.

Several formulations and algorithms have been proposed to perform sparse PCA.

Zou et al.[62] formulate sparse PCA as a LASSO-type optimization problem. Shen

and Huang [50] combine simple linear regression and thresholding to solve a reg-

ularized SVD problem, which achieves sparse PCA. D’Aspremont et al.’s DSPCA

algorithm [10] consists of solving a semidefinite programming relaxation of a certain

formulation of sparse PCA whose solution is then post-processed to yield a sparse

principal component (PC). Paper [11] by d’Aspremont et al. proposes a greedy algo-

rithm PathSPCA to solve a new semidefinite programming relaxation and provides

a sufficient condition for optimality. ESPCA algorithm in Moghaddam et al. [33]

obtains good numerical quality by using a combinatorial greedy method, although

their method can be slow on large data set. Their method consists of identifying
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an active index set (i.e., the indices corresponding to the nonzero entries of the PC)

and then using an algorithm such as power-iteration to obtain the final sparse PC.

Journée et al.’s GPower method [22] formulates sparse PCA as a nonconcave maxi-

mization problem with a penalty term to achieve sparsity, which is then reduced to an

equivalent problem of maximizing a convex function over a compact set. The latter

problem is then solved by an algorithm which is essentially a generalization of the

power-iteration method. Different deflation methods have been studied in [30], which

are used to find multiple sparse PCs sequentially. A different multiple sparse PCA

approach is proposed in [27] based on a formulation enforcing near orthogonality of

the PCs, which is then solved by an augmented Lagrangian approach. The authors in

[18] proposed a simple but effective algorithm for finding a single sparse PC. The al-

gorithm consists of two stages. In the first stage, it identifies an active index set with

a desired cardinality corresponding to the nonzero entries of the PC. In the second

one, it uses the power iteration method to find the best direction with respect to the

active index set. The complexity of this algorithm is proportional to the pre-specified

cardinality of the solution, but it can be accelerated by adding multiple indices to the

active set in every iteration and optimizing it for sparse matrix.

Given a sample covariance matrix A ∈ Sn, sparse PCA problem aims to find a

vector x ∈ <n such that x>Ax/‖x‖2 is maximized, while the number of nonzero entry

of x is limited. Among different formulations of sparse PCA problem, this dissertation

studies the reformulation introduced in [11] which uses a matrix X ∈ Sn to denote

xx> and solves the following problem:

max
X
〈A,X〉 − ρ‖X‖0 (29)

s.t. X ∈ Sn, tr(X) = 1, X � 0, rank(X) = 1.

The above problem can be relaxed to the following semidefinite programming (SDP)
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problem:

max
X
〈A,X〉 − ρ‖X‖1 (30)

s.t. X ∈ Sn, tr(X) = 1, X � 0.

which has the following equivalent saddle-point problem formulation:

min
X

max
U
〈X,−A+ ρU〉 (31)

s.t. X ∈ Sn, tr(X) = 1, X � 0,

U ∈ Sn, |Uij| ≤ 1.

2.3.2 Sparse inverse covariance estimation

One of the classical problems in multivariate statistics is to estimate the covariance

matrix or its inverse. We are more and more often faced with the problem of high

dimensional covariance matrix estimation where the dimensionality is large when

compared with the sample size. The subsection describes the sparse inverse covariance

estimation (SICE) problem [14] which aims to deal with high dimensional covariance

matrix estimation. It also finds the conditional dependency among the variables of a

Gaussian random vector.

Given a sample covariance matrix A ∈ Sn+, SICE problem is formulated as the

following optimization problem

min
X�0
− log det(X) + 〈A,X〉+ ‖Λ ◦X‖1, (32)

where Λ ∈ <n×n+ is a given regularization parameter matrix and ◦ denotes element-

wise matrix multiplication. Since zeros in the inverse of covariance matrix correspond

to conditional independence in the model, sparse inverse covariance estimation can

be used to determine a robust estimate of the covariance matrix, and simultaneously

discover the sparse structure in the underlying graphical model. In a recent work on

learning the dependency structure of latent factors [19], a SICE problem in the form
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of (32) has to be solved at every outer iteration to update the dependency structure

of the latent factors. Therefore, an efficient algorithm for solving SICE problem is

extremely important for this scenario. A few efficient algorithms have been proposed

to solve the problem (32), including a method [28] based on Nesterov’s smoothing

scheme [40], Alternating Linearization Method (ALM [49]) algorithm which is a vari-

ant of ADMM [4], and a method based on quadratic approximation [20].

In this dissertation, we consider the following saddle-point reformulation of SICE

problem (32)

min
X

max
U
〈A+ Λ ◦ U,X〉 − log det(X) (33)

s.t. X � 0, U ∈ Sn, |Uij| ≤ 1.

2.3.3 Truncated collaborative filtering

Recommender system is a specific type of information filtering technique that sup-

ports users in their decision-making by predicting the “rating” or “preference” that

they would give to an item. It is of great importance for the success of e-commerce

and online content providers, and gradually gains popularity in various applications

such as Amazon item recommendation, Netflix movie recommendation and Yahoo

news recommendation. One approach to design a recommendation system that has

been seen wide use is collaborative filtering, which are based on collecting and an-

alyzing a large amount of information on users’ behaviors, activities or preferences

and predicting what users will like based on their similarity to other users.

Collaborative filtering approach assumes that each a user u and an item i are

associated with latent factors represented by fu, gi ∈ <k respectively and the “rating”

that user u would give to item i is rui = f>u gi. In matrix form, this assumption can

be written as

R ≈ F>U GI ,

whereR ∈ <U×I is the rating matrix, FU = [f1, · · · , fU ] ∈ <k×U andGI = [g1, · · · , gI ] ∈
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<k×I are the matrices of latent factors.

Let S ∈ <U×I be the binary matrix encoding the missing ratings in matrix R

where 0 and 1 indicate “missing” and “observed” respectively. The technique of

collaborative filtering predicts the missing values in R by solving the optimization

problem

min
FU ,GI

‖S ◦ (R− F>U GI)‖2
F + λ‖FU‖2

F + λ‖GI‖2
F (34)

for latent factor matrices FU and GI and then set ru,i = f>u gi for all (u, i) such that

Su,i = 0. Note that in problem (34), regularizations on FU and GI are introduced

to avoid overfitting problem. Even though problem (34) is not convex with respect

to FU and GI together, it has been shown in [32] that its solution can be found by

solving the following convex optimization problem:

min
X

1

2
‖S ◦ (R−X)‖2

F + λ‖X‖∗. (35)

In many applications of collaborative filtering such as movie recommendation,

there is a prior range [l, u] for the ratings in matrix R which, for example, is [1, 5] in

the case of Netflix movie recommendation. In most runtime systems in the industry,

an ad-hoc method to comply this range is to project the predicted ratings into this

predefined range [l, u], which is not the best option from the perspective of achieving

the least reconstruction error. Inspired by the work in [23], we consider in this

dissertation an extension of problem (35):

min
X

1

2
‖S ◦ (R−X)‖2

F + λ‖X‖∗ + I(l ≤ X ≤ u), (36)

which incorporates the prior knowledge of rating range in the objective function

and makes sure that the reconstruction error for R is minimized at the same time.

Note that this optimization problem can also be viewed as an instance of composite

optimization problem (28).
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2.3.4 Image recovering with sparsity and total-variance regularizations

Imaging processing plays a very important role today in medical diagnosis. In par-

ticular, the use of Magnetic Resonance Imaging (MRI) is an extremely important

approach for understanding soft tissue changes within the body in a non-invasive

manner. Its use of non-ionizing radio frequency emission for image acquisition is

considered safe for repeated use in a clinical setting. Many image processing applica-

tions including MRI require solving ill-posed inverse problems to recover high quality

images from low-dimensional and noisy observations. These challenging problems ne-

cessitate the use of regularization through prior knowledge to capture the geometry

of natural signals, images, or videos.

Consider the inverse problem proposed in [29] for recovering an image z0 ∈ <m×n

from noisy and contaminated observation z = Rz0 + ω ∈ <m×n, where R : <m×n →

<m×n is the composition of a convolution operator with a discrete Gaussian filter

and a masking operator and ω ∈ <m×n represents additive white Gaussian noise.

Let ẑ = Wx̂ ∈ <m×n be the recovered image that we are looking for, where is W :

<m×n×l → <m×n is the wavelet synthesis operator, redundant coefficients x̂ ∈ <m×n×l

and l is the redundancy level of the wavelet frame. The coefficients x̂ can be obtained

by solving the following instance of composite optimization problem (28):

min
x
‖z −RWx‖2 + µ‖x‖1 + ν‖Wx‖TV , (37)

where ‖u‖TV :=
∑

ij((∇1uij)
2 + (∇2uij)

2)1/2 is a discrete total variation semi-norm.

The first term in the above summand is the data fidelity term, and the second and

third terms are regularizations enforcing prior knowledge assumed to be satisfied by

the original image. Particularly, the first regularization term induces sparsity on

the solution of the problem x̂ and the second regularization induces sparsity on the

gradient of the restored image such that the prior knowledge that MR images of

organs are expected to demonstrate piecewise continuous behavior is included in the
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objective function. Several algorithms based on splitting framework were proposed

in [29, 44] to solve problem (37).

2.4 Previous works on composite optimization and saddle-
point problems

Development and analysis of splitting and block-decomposition (BD) methods is by

now a well-developed area, although algorithms which allow a relative error toler-

ance in the solution of the proximal subproblems have been studied in just a few

papers. In particular, Ouorou [43] discusses an ε-proximal decomposition using the

ε-subdifferential and a relative error criterion on ε. Projection splitting methods

for the sum of arbitrary maximal monotone operators using a particular case of the

HPE error tolerance for solving the proximal subproblems were presented in [12, 13].

The use of the HPE method for studying BD methods was first presented in [51].

We observe however that none of these works deal with the derivation of iteration-

complexity bounds. More recently, Chambolle and Pock [6] have developed and es-

tablished iteration-complexity bounds for a BD method, which solves the proximal

subproblems exactly, in the context of saddle-point problems with a bilinear coupling.

In the context of variational inequalities, we should mention that prior to [35, 37],

Nemirovski [39] has established the ergodic iteration-complexity of Korpelevich’s

method under the assumption that the feasible set of the problem is bounded, and

Nesterov [41] has established the ergodic iteration-complexity of a new dual extrap-

olation algorithm whose termination depends on the guess of a ball centered at the

initial iterate. The algorithm was recently extended to solve problem (6) in [15].

In the context of variational inequalities, Nemirovski [39] has established the er-

godic iteration complexity of an extension of Korpelevich’s method [25], namely, the

Mirror-prox algorithm, under the assumption that the feasible set of the problem is

bounded.

Nesterov’s smoothing scheme [40] solves problem (6) under the assumption that
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X and Y are compact convex sets and g1 is the indicator function of X. It consists of

first approximating the objective function of (6) by a convex differentiable function

with Lipschitz continuous gradient and then applying an accelerated gradient-type

method (see e.g. [40, 2, 60]) to the resulting approximation problem. It is shown

that, if the approximation is properly chosen, the above scheme obtains an ε solution

of (6) in at most

O

(
‖A‖
ε
DXDY +

√
Lf
ε
DX

)
iterations where DX and DY are the diameters of X and Y . The latter bound is also

known to be optimal (see for example the discussion in paragraph (1) of Subsection

1.1 of [7]). The method was also discussed in a recent paper [3].

Chambolle and Pock [6] have developed and established the convergence rate for

a primal-dual method for solving problem (6) in the context of f(x) being simple and

g1 being the indicator function of the feasible set X. The recent works on primal-dual

algorithms [8, 9, 61] can cope with the same problem (6) (in even more generality,

since they treats the infinite dimensional case and more terms). In particular this is

made explicit in [9] which, by the way, generalizes the Chambolle and Pock algorithm

[6] exactly to the setting of (6). A recent paper [7] considers problem (6) with g1 being

the indicator function of the feasible set X and proposed an accelerated primal-dual

algorithm that achieved optimal convergence rate for both cases that the feasible set

of the problem is bounded or unbounded. A generalized forward-backward splitting

algorithm [44] was recently proposed to solve problems relevant to (6).
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CHAPTER III

PRELIMINARIES

This chapter contains three sections. The first section reviews a variant of Nesterov’s

accelerated method for composite convex optimization problem. The second section

describes the HPE framework for the monotone inclusion problem. The third section

reviews the BD-HPE framework for the two-block structured monotone inclusion

problem.

3.1 Accelerated method for composite convex optimization

This section reviews a variant of Nesterov’s accelerated first-order method [40, 60] for

solving the composite convex optimization problem. Let X denote a finite dimensional

inner product space with associated inner product and norm denoted by 〈·, ·〉X and

‖ · ‖X , respectively. Consider the following composite convex optimization problem

inf p(u) := ψ(u) + g(u) (38)

where the functions ψ : domψ → < and g : X → [−∞,∞] satisfy the following

conditions:

D.1) g is a proper closed convex function;

D.2) ψ is convex and differentiable on a closed convex set Ω ⊇ X := dom g;

D.3) the gradient of the function ψ is L-Lipschitz continuous on Ω.

D.4) for some known constant µ ≥ 0, the function g is a µ-strongly convex.

Note that we refer to convex functions as 0-strongly convex functions. This ter-

minology has the benefit of allowing us to treat both the convex and strongly convex
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case simultaneously. We note that the extra assumption that the strong convexity

of p is all in g is not at all restrictive since it can be easily enforced by moving any

strong convexity of ψ to the function g (e.g., by subtracting from and/or adding to

these functions a suitable positive multiple of the quadratic function ‖ · ‖2
X ). We now

explicitly state a variant of Nesterov’s accelerated method for solving problem (38),

which is due to Tseng (see Algorithm 2 in [60]).

[Algorithm 0] A variant of Nesterov’s accelerated algorithm of [60]:

0) Let u0 ∈ X be given and set Γ0 = 0, ũ0 = w0 = PΩ(u0), k = 1;

1) let Γk > Γk−1 be such that

Γk(Γk−1µ+ 1) = L(Γk − Γk−1)2 (39)

and compute (uk, wk, ũk) ∈ Ω×X ×X as

uk :=
Γk−1

Γk
ũk−1 +

Γk − Γk−1

Γk
wk−1, (40)

wk := argmin
k∑
i=1

Γi − Γi−1

Γk
lψ(u;ui) + g(u) +

1

2Γk
‖u− u0‖2

X , (41)

ũk :=
Γk−1

Γk
ũk−1 +

Γk − Γk−1

Γk
wk; (42)

2) set k ← k + 1 and go to step 1.

end

We now make a few remarks about the relationship between the above method

and Algorithm 2 of [60]. First, the latter method computes wk as in (41) but with

the quadratic term ‖u− u0‖2
X/2 replaced by a general strongly convex function h(u).

Second, Algorithm 2 of [60] assumes that X is closed, Ω = X and u0 ∈ X so that

u0 = ũ0 = w0. On the other hand, Algorithm 0 can start from any point in X and

can handle problems in which X is not necessarily closed. In fact, its ability to start

from any point in X will be exploited later on in Section 4.3 and Section 5.2.
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We now state the main technical result from which the convergence rate of the

above variant of Nesterov’s accelerated algorithm immediately follows.

Proposition 3.1.1. The sequences {Γk}, {uk}, {wk} and {ũk} generated by Algo-

rithm 0 satisfy the following inequalities for any k ≥ 1:

Γk ≥
1

L
max

{
k2

4
,

(
1 +

√
µ

4L

)2(k−1)
}
, (43)

and

Γkp(ũk)+
Γkµ+ 1

2
‖u−wk‖2 ≤

k∑
i=1

(Γi−Γi−1)[lψ(u;ui)+g(u)]+
1

2
‖u−u0‖2

X , ∀u ∈ X.

(44)

As a consequence, the sequence {lψ,k} of affine functions defined as

lψ,k(u) :=
k∑
i=1

Γi − Γi−1

Γk
lψ(u;ui) ∀u ∈ X (45)

satisfies

lψ,k ≤ ψ, p(ũk) ≤ lψ,k(u) + g(u) +
1

2Γk
‖u− u0‖2

X ∀u ∈ X. (46)

Moreover, if the optimal solution set of (38) is non-empty, then, for any optimal

solution z∗ of (38), we have

p(ũk)− p(z∗) ≤
1

2Γk
‖z∗ − u0‖2. (47)

The proof of this convergence result is similar to the proof of Corollary 3(a) of

[60]. For the sake of completeness, we provide its proof here. To prove Proposition

3.1.1, we first prove an intermediate result in Lemma 3.1.2.

Lemma 3.1.2. Define, for k ≥ 0,

Λk : = min
u∈Ω

{
k∑
i=1

(Γi − Γi−1)[lψ(u;ui) + g(u)] +
1

2
‖u− u0‖2

X

}
. (48)

Then, for every k ≥ 0,

Λk+1 − Λk ≥ Γk+1p(ũk+1)− Γkp(ũk). (49)
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Proof. Since Γ0 = 0 and g(u) is µ-strongly convex, the function in the minimization

problem (48) is strongly convex with modulus Γkµ+ 1. Therefore, we have

Λk +
Γkµ+ 1

2
‖wk − wk+1‖2

X ≤
k∑
i=1

(Γi − Γi−1)[lψ(wk+1;ui) + g(wk+1)] +
1

2
‖wk+1 − u0‖2

X

= Λk+1 − (Γk+1 − Γk)[lψ(wk+1;uk+1) + g(wk+1)]. (50)

Now, using the definition of ũk in (42), the definitions (11) and (38) and the convexity

of the function lψ(·;uk+1) + g(·), we have

Γk+1[lψ(ũk+1;uk+1) + g(ũk+1)] ≤ (Γk+1 − Γk)[lψ(wk+1;uk+1) + g(wk+1)] + Γk[lψ(ũk;uk+1) + g(ũk)]

≤ (Γk+1 − Γk)[lψ(wk+1;uk+1) + g(wk+1)] + Γkp(ũk).

(51)

Using the relation (39) and the definitions of uk and ũk in (40) and (42), we have

‖ũk+1 − uk+1‖2 =
(Γk+1 − Γk)

2

Γ2
k+1

‖wk+1 − wk‖2 =
Γkµ+ 1

Γk+1L
‖wk+1 − wk‖2.

Therefore, the equality above and the inequalities (50) and (51) imply that

Λk+1 − Λk ≥ Γk+1[lψ(ũk+1;uk+1) + g(ũk+1)] +
Γk+1L

2
‖ũk+1 − uk+1‖2 − Γkp(ũk).

Since ψ is L-Lipschitz continuous on Ω, we have

lψ(ũk+1;uk+1) +
L

2
‖ũk+1 − uk+1‖2 ≥ ψ(ũk+1),

which, together with the above inequality and the definition (38), implies (49).

Proof of Proposition 3.1.1. It follows from (49) that the sequence {Λk−Γkp(ũk)}

is nondecreasing, which, together with the definition of Λk in (48) and the fact Γ0 = 0,

implies that

Λk − Γkp(ũk) ≥ Λ0 − Γ0p(ũ0) = min
u∈Ω

1

2
‖u− u0‖2

X ≥ 0.
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Inequality (44) then follows from the facts that the function in the minimization

problem (48) is strongly convex with modulus Γkµ+ 1 and that wk is its solution.

Moreover, since the relation (39) implies

max{Γk,ΓkΓk−1µ} ≤ Γk(Γk−1µ+ 1) = L(Γk − Γk−1)2

= L(Γ
1/2
k − Γ

1/2
k−1)2(Γ

1/2
k + Γ

1/2
k−1)2 ≤ 4LΓk(Γ

1/2
k − Γ

1/2
k−1)2, (52)

we have

Γk ≥ max

{
(Γ

1/2
k−1 +

1√
4L

)2,Γk−1

(
1 +

√
µ

4L

)2
}

and hence we obtain inequality (43) by induction. The inequalities in (46) and (47)

follow immediately from (44) and the definitions (45) and (11).

3.2 HPE framework for the monotone inclusion problem

Let T : Z ⇒ Z be a maximal monotone operator. The monotone inclusion problem

for T consists of finding z ∈ Z such that

0 ∈ T (z) . (53)

We also assume throughout this subsection that this problem has a solution, that is,

T−1(0) 6= ∅.

We next review the HPE framework introduced in [52] for solving the above prob-

lem and state the iteration complexity results obtained for it in [35].

[HPE] Hybrid Proximal Extragradient Framework:

0) Let z0 ∈ Z and 0 ≤ σ < 1 be given and set k = 1;

1) choose λk > 0 and find z̃k, r̃k ∈ Z, σk ∈ [0, σ] and εk ≥ 0 such that

r̃k ∈ T εk(z̃k), ‖λkr̃k + z̃k − zk−1‖2 + 2λkεk ≤ σ2
k‖z̃k − zk−1‖2 ; (54)

2) set zk = zk−1 − λkr̃k, set k ← k + 1, and go to step 1.
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end

We now make several remarks about the HPE framework. First, the HPE frame-

work does not specify how to choose λk and how to find z̃k, r̃k and εk as in (54). The

particular choice of λk and the algorithm used to compute z̃k, r̃k and εk will depend

on the particular implementation of the method and the properties of the operator

T . Second, if z̃ := (λkT +I)−1zk−1 is the exact proximal point iterate, or equivalently

r̃ ∈ T (z̃), (55)

λkr̃ + z̃ − zk−1 = 0, (56)

for some r̃ ∈ Z, then (z̃k, r̃k) = (z̃, r̃) and εk = 0 satisfies (54). Therefore, the error

criterion (54) relaxes the inclusion (55) to r̃ ∈ T ε(z̃) and relaxes equation (56) by

allowing a small error relative to ‖z̃k − zk−1‖.

We define a sequence of ergodic means {z̃ak} associated with {z̃k} as

z̃ak :=
1

Λk

k∑
i=1

λiz̃i, where Λk :=
k∑
i=1

λi, (57)

and define the sequences of ergodic residuals {r̃ak} and {εak} as

r̃ak :=
1

Λk

k∑
i=1

λir̃i, εak :=
1

Λk

k∑
i=1

λi(εi + 〈z̃i − z̃ak , r̃i − r̃ak〉). (58)

The following result describes the pointwise and ergodic convergence rate proper-

ties of the HPE framework. Its proof can be found in Theorem 4.4, Lemma 4.5 and

Theorem 4.7 of [35].

Theorem 3.2.1. Let d0 denote the distance of z0 to T−1(0). Then, for every k ∈ N,

the following statements hold:

(a) (pointwise convergence rate) r̃k ∈ T εk(z̃k) and there exists an index i ≤ k such

that

‖r̃i‖ ≤ d0

√√√√1 + σ

1− σ

(
1∑k
j=1 λ

2
j

)
, εi ≤

σ2d2
0λi

2(1− σ2)
∑k

j=1 λ
2
j

.
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(b) (ergodic convergence rate) r̃ak ∈ T ε
a
k(z̃ak) and

‖r̃ak‖ ≤
2d0

Λk

, 0 ≤ εak ≤
2d2

0

Λk

(
1 +

σ√
(1− σ2)

)
.

3.3 BD-HPE framework for two-block structured monotone
inclusion problem

In this section, we review the general BD-HPE framework proposed in [36] for solving

the monotone inclusion problem consisting of the sum of a continuous monotone map

and a point-to-set maximal monotone operator with a separable two-block structure.

The method introduced in Section 4.1 for solving the composite saddle-point problem

will be a special instance of the BD-HPE framework.

The problem of interest in this section is the monotone inclusion problem of finding

(x, y) such that

(0, 0) ∈ [F + (A⊗B)](x, y), (59)

or equivalently,

0 ∈ F1(x, y) + A(x), 0 ∈ F2(x, y) +B(y), (60)

where F (x, y) = (F1(x, y), F2(x, y)) ∈ X×Y and the following conditions are assumed:

E.1) A : X ⇒ X and B : Y ⇒ Y are maximal monotone operators;

E.2) F : DomF ⊂ X × Y → X × Y is a continuous map such that DomF ⊃

cl(DomA)× Y ;

E.3) F is monotone on DomA×DomB;

E.4) there exists Lxy > 0 such that

‖F1(x, y′)− F1(x, y)‖ ≤ Lxy‖y′ − y‖, ∀x ∈ DomA, ∀y, y′ ∈ Y . (61)

We now make a few remarks about the above assumptions. First, it can be easily

seen that E.1 implies that the operator A⊗B : X × Y ⇒ X × Y defined as

(A⊗B)(x, y) = A(x)×B(y), ∀(x, y) ∈ X × Y ,
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is maximal monotone. Moreover, in view of the proof of Proposition A.1 of [37], it

follows that F +(A⊗B) is maximal monotone. Second, without loss of generality, we

have assumed in E.2 that F is defined in cl(domA)× Y instead of a set of the form

cl(domA)× Ω for some closet convex set Ω ⊃ domB (e.g., Ω = cl(domB)). Indeed,

if F were defined on the latter set only, then it would be possible to extend it to the

whole set cl(domA)×Y by considering the extension (x, y) ∈ X ×Y → F (x, PΩ(y)),

which can be easily seen to satisfy E.2-E.4. Note that evaluation of this extension

requires computation of a projection onto Ω. Third, assumption E.4 is needed in

order to estimate how much an iterate found by the block decomposition scheme

below violates the proximal point equation for (59).

We now present the BD-HPE framework of [36] for solving (59) in which the

parameter σ̃x in the BD-HPE framework of [36] is chosen to be equal to σx.

[BD-HPE] Block-decomposition HPE framework:

0) Let (x0, y0) ∈ X × Y , σ ∈ (0, 1] and σx, σy ∈ [0, σ) be given and set k = 1;

1) choose λk > 0 such that

θmax


 σ2

x λkσxLxy

λkσxLxy σ2
y + λ2

kL
2
xy


 ≤ σ2; (62)

2) compute a triple (x̃k, ãk, ε
x
k) ∈ X × X × <+ such that

ãk ∈ Aε
x
k(x̃k), ‖λk(F1(x̃k, yk−1) + ãk) + x̃k − xk−1‖2 + 2λkε

x
k ≤ σ2

x‖x̃k − xk−1‖2;

(63)

3) compute a triple (ỹk, b̃k, ε
y
k) ∈ Y × Y × <+ such that

b̃k ∈ Bεyk(ỹk), ‖λk(F2(x̃k, ỹk)+ b̃k)+ỹk−yk−1‖2+2λkε
y
k ≤ σ2

y‖ỹk−yk−1‖2; (64)

4) let (r̃xk , r̃
y
k) = F (x̃k, ỹk) + (ãk, b̃k), and set

(xk, yk) = (xk−1, yk−1)− λk(r̃xk , r̃
y
k), (65)
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k ← k + 1, and go to step 1.

end

We now make a few remarks about the BD-HPE framework. First, it has been

shown in Proposition 3.1 of [36] that any instance of the BD-HPE framework is also

an instance of the HPE method applied to the monotone inclusion (59). Second, it

is easy to see that condition (62) on λk is equivalent to

λk ≤

√
(σ2 − σ2

x)(σ
2 − σ2

y)

σLxy
.

Hence, in view of the assumption that max{σx, σy} < σ, it follows that is always

possible to choose a stepsize λk > 0 satisfying the above inequality. Third, the above

framework does not specify how the triples (x̃k, ãk, ε
x
k) and (ỹk, b̃k, ε

y
k) are actually

computed in steps 2 and 3, respectively. This degree of freedom is what actually

enables it to include many specific instances, which depend on the different ways

these two triples are computed.

It follows from the definition of (r̃xk , r̃
y
k) in step 4 of the BD-HPE framework that

(r̃xk , r̃
y
k) ∈ [F + (A⊗B)ε

x
k+εyk ](x̃k, ỹk) ⊂ (F + A⊗B)ε

x
k+εyk(x̃k, ỹk). (66)

In view of (59), we can use the sizes of the residuals (r̃xk , r̃
y
k) and εxk + εyk to measure

the quality of the iterate (x̃k, ỹk) as an approximate solution of (59). The next result

(also see Theorem 3.3 of [36]) gives convergence rate bounds for the above residuals

and their corresponding ergodic version.

Theorem 3.3.1. Consider the sequences {(x̃k, ỹk)}, {(r̃xk , r̃
y
k)} and {(εxk, ε

y
k)} gener-

ated by the BD-HPE framework and define the sequences {(x̃ak, ỹak)}, {r̃ak} and {εak}

as

(x̃ak, ỹ
a
k) :=

1

Λk

k∑
i=1

λi(x̃i, ỹi), r̃ak :=
1

Λk

k∑
i=1

λi(r̃
x
i , r̃

y
i ), (67)
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and

εak :=
1

Λk

k∑
i=1

λi {〈(x̃i − x̃ak, ỹi − ỹak), (r̃xi , r̃
y
i )〉+ εxi + εyi } , (68)

where Λk :=
∑k

i=1 λi. Let d0 denote the distance of the initial point (x0, y0) ∈ X × Y

to the solution set of (59). Then, the following statements hold for every k ∈ N,:

(a) (pointwise convergence rate) (r̃xk , r̃
y
k) ∈ (F +A⊗B)ε

x
k+εyk(x̃k, ỹk), and there exists

an index i ≤ k such that

‖(r̃xi , r̃
y
i )‖ ≤ d0

√√√√1 + σ

1− σ

(
1∑k
j=1 λ

2
j

)
, εxi + εyi ≤

σ2d2
0λi

2(1− σ2)
∑k

j=1 λ
2
j

;

(b) (ergodic convergence rate) r̃ak ∈ [F + (A⊗B)]ε
a
k(x̃ak, ỹ

a
k), and

‖r̃ak‖ ≤
2d0

Λk

, εak ≤
2d2

0

Λk

(1 + η̄),

where

η̄ :=
2
√

2σ

1−max(σx, σy)

(
1 +

1

(1− σy)2

)1/2

. (69)

In the next chapter, we will use the above result to the specific case where F is

a saddle-point operator (see (70)), and A and B are subdifferentials ∂g1 and ∂g2,

respectively. Moreover, we will instead work with a functional optimality measure

naturally associated saddle-point problem defined in terms of the ε-subdifferential

(see Definition 2.1.1).
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CHAPTER IV

ACCELERATED BLOCK-DECOMPOSITION

ALGORITHM FOR COMPOSITE SADDLE-POINT

PROBLEMS

This chapter contains four sections. The first section describes a specialization of

the BD-HPE framework [36] to the CSP context. It also establishes the iteration-

complexity for the latter framework to find a (ρ, ε)-saddle-point. Moreover, it con-

siders the generic problem underlying steps 1 and 2 of the latter framework. The

second section states a specific instance of the CSP-BD-HPE framework in which

the aforementioned generic problem is solved by performing a single composite gra-

dient step. The main goal of the third section is to derive the iteration-complexity

of solving the aforementioned generic problem using the variant of the Nesterov’s

accelerated method introduced in Section 3.1. The fourth section considers a special

instance of the CSP-BD-HPE framework for solving the CSP problem CSP (Ψ; g1, g2)

in which steps 1 and 2 of the CSP-BD-HPE framework are solved with the aid of the

accelerated method applied to the generic problem.

4.1 Block-decomposition framework for composite saddle-
point problems (CSP-BD-HPE)

This section describes a specialization of the BD-HPE framework [36] to the CSP

context, which we refer to as the CSP-BD-HPE framework. It also establishes the

iteration-complexity for the latter framework to find a (ρ, ε)-saddle-point. Moreover,

it considers the generic problem underlying steps 1 and 2 of the CSP-BD-HPE frame-

work.
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Under the assumptions B.1-B.3, it is well-known that CSP (Ψ; g1, g2) is equivalent

to (59) with the map F : Ωx×Ωy → X ×Y and the two maximal monotone operators

A : X ⇒ X and B : Y ⇒ Y given by

F (x, y) := (∇xΨ(x, y),−∇yΨ(x, y)), ∀(x, y) ∈ Ωx × Ωy, (70)

A := ∂g1, B := ∂g2. (71)

Note that the above map F is not defined on (clX) × Y and hence does not satisfy

condition E.2 and E.4 of the previous subsection. However, as mentioned in the

paragraph following conditions E.1-E.4, we can extend the domain of F from Ωx×Ωy

to Ωx × Y by considering instead the map (x, y) ∈ Ωx × Y → F (x, PΩy(y)), which

now satisfies E.2-E.4.

As a consequence of the above observation, it is now possible to state a BD-HPE

framework for solving CSP (Ψ; g1, g2). Below, for the sake of concreteness, we consider

the special case of the BD-HPE framework applied to (59) where F , A and B are as

discussed above and the sequence of stepsizes {λk} is assumed to be constant.

[CSP-BD-HPE] BD-HPE framework for soving CSP(Ψ; g1,g2):

0) Let (x0, y0) ∈ X × Y , σ ∈ (0, 1] and σx, σy ∈ [0, σ) be given, choose λ > 0 such

that

λ ≤

√
(σ2 − σ2

x)(σ
2 − σ2

y)

σLxy
(72)

and set k = 1;

1) compute a triple (x̃, ã, εx) ∈ X × X × <+ such that

ã ∈ ∂εxg1(x̃), ‖λ(∇xΨ(x̃, y′k−1)+ ã)+ x̃−xk−1‖2 +2λεx ≤ σ2
x‖x̃−xk−1‖2, (73)

where y′k−1 = PΩy(yk−1), and set (x̃k, ãk, ε
x
k) = (x̃, ã, εx);

2) compute a triple (ỹ, b̃, εy) ∈ Y × Y × <+ such that

b̃ ∈ ∂εyg2(ỹ), ‖λ(−∇yΨ(x̃k, ỹ) + b̃) + ỹ− yk−1‖2 + 2λεy ≤ σ2
y‖ỹ− yk−1‖2, (74)
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and set (ỹk, b̃k, ε
y
k) = (ỹ, b̃, εy);

3) let (r̃xk , r̃
y
k) = (∇xΨ(x̃k, ỹk) + ãk,−∇yΨ(x̃k, ỹk) + b̃k), set

(xk, yk) = (xk−1, yk−1)− λ(r̃xk , r̃
y
k), (75)

k ← k + 1, and go to step 1.

end

Specific instances of the CSP-BD-HPE framework will be discussed in Subsection

4.2 and Section 4.4.

Our goal now will be to establish the iteration-complexity of the above framework

to obtain a (ρ, ε)-solution of the SP problem (16) (see Definition 2.1.1). We first state

the following technical result.

Lemma 4.1.1. Consider the sequences {(xk, yk)}, {(x̃k, ỹk)}, {(r̃xk , r̃
y
k)} and {(εxk, ε

y
k)}

generated by the CSP-BD-HPE framework and define

εk := εxk + εyk. (76)

Then the triple ((x̃k, ỹk), (r̃
x
k , r̃

y
k), εk) is a (‖(r̃xk , r̃

y
k)‖, εk)-saddle-point of CSP (Ψ; g1, g2),

or equivalently,

(r̃xk , r̃
y
k) ∈ ∂εk [Ψ̂(·, ỹk)− Ψ̂(x̃k, ·)](x̃k, ỹk)

Proof. In view of step 3) of the CSP-BD-HPE framework, we have

r̃xk ∈ ∇xΨ(x̃k, ỹk) + ∂εxkg1(x̃k) ⊆ ∂εxk [Ψ̂(·, ỹk)](x̃k, ỹk),

r̃yk ∈ −∇yΨ(x̃k, ỹk) + ∂εykg2(ỹk) ⊆ ∂εyk [−Ψ̂(x̃k, ·)](x̃k, ỹk),

from which we conclude that

(r̃xk , r̃
y
k) ∈

[
∂εxk [Ψ̂(·, ỹk)](x̃k)

]
×
[
∂εyk [−Ψ̂(x̃k, ·)](ỹk)

]
⊆ ∂εk [Ψ̂(·, ỹk)− Ψ̂(x̃k, ·)](x̃k, ỹk),

where the last inclusion follows from (76) and definition of subgradient.
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The above result shows that the triple ((x̃k, ỹk), (r̃
x
k , r̃

y
k), εk) is an approximate

solution of CSP (Ψ; g1, g2). The result below shows how to construct an approximate

solution of CSP (Ψ; g1, g2) from the average of the iterates (x̃1, ỹ1), . . . , (x̃k, ỹk).

Lemma 4.1.2. (Proposition 5.1 of [37]) Let X ⊆ X and Y ⊆ Y be given convex

sets and let Γ : X × Y → < be a function such that, for each pair (x, y) ∈ X × Y ,

the function Γ(·, y) − Γ(x, ·) : X × Y → < is convex. Suppose that, for i = 1, . . . , k,

(xi, yi) ∈ X × Y and (rx,i, ry,i) ∈ X × Y satisfies

(rx,i, ry,i) ∈ ∂εi
(

Γ(·, yi)− Γ(xi, ·)
)

(xi, yi). (77)

Let α1, . . . , αk ≥ 0 be such that
∑k

i=1 αi = 1 and define

(xa, ya) =
k∑
i=1

αi(xi, yi), (rax, r
a
y) =

k∑
i=1

αi(rx,i, ry,i), (78)

εa :=
k∑
i=1

αi[εi + 〈xi − xa, rx,i〉+ 〈yi − ya, ry,i〉] (79)

(80)

Then, εa ≥ 0 and

(rax, r
a
y) ∈ ∂εa

(
Γ(·, ya)− Γ(xa, ·)

)
(xa, ya). (81)

The following iteration-complexity result now follows almost immediately from

Lemmas 4.1.1 and 4.1.2 and Theorem 3.3.1.

Theorem 4.1.3. Consider the sequences {(xk, yk)}, {(x̃k, ỹk)},{(r̃xk , r̃
y
k)} and {(εxk, ε

y
k)}

generated by the BD-HPE framework for CSP (Ψ; g1, g2). Let {εk} be defined in

Lemma 4.1.1 and, for every k ∈ N, define

(x̃ak, ỹ
a
k) :=

1

k

k∑
i=1

(x̃i, ỹi), r̃ak :=
1

k

k∑
i=1

(r̃xi , r̃
y
i ) (82)
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and

ε̃ak :=
1

k

k∑
i=1

[εi + 〈(x̃i − x̃ak, ỹi − ỹak), (r̃xi , r̃
y
i )〉]. (83)

Then, for every k ∈ N, the pair (r̃ak, ε̃
a
k) is a SP-residual for (x̃ak, ỹ

a
k) with respect to

CSP (Ψ; g1, g2), or equivalently

r̃ak ∈ ∂ε̃ak [Ψ̂(·, ỹak)− Ψ̂(x̃ak, ·)](x̃ak, ỹak),

and

‖r̃ak‖ ≤
2d0

kλ
, ε̃ak ≤

2d2
0

kλ
(1 + η̄), (84)

where η̄ is defined in (69) and d0 is the distance of (x0, y0) to the set of saddle-points

of CSP (Ψ; g1, g2).

Proof. It follows from Lemma 4.1.1 and Lemma 4.1.2 with Γ = Ψ̂|X×Y , and (xi, yi) =

(x̃i, ỹi) and (rx,i, ry,i) = (r̃xi , r̃
y
i ) for i = 1, . . . , k, that

r̃ak ∈ ∂ε̃ak [Ψ̂(·, ỹak)− Ψ̂(x̃ak, ·)](x̃ak, ỹak).

Moreover, (84) follows directly from Theorem 3.3.1 and the fact that the CSP-BD-

HPE framework is a special case of the BD-HPE framework in which λk = λ for all

k.

We end this section by describing a generic problem underlying the computation

of the triples as in steps 1 and 2 of the CSP-BD-HPE framework. Let Z be an inner

product space and f̃ : Dom f̃ → < and g̃ : Z → (−∞,∞] be functions such that:

F.1 g̃ is a proper closed convex function;

F.2 f̃ is differentiable and convex on a nonempty closed convex set Ω ⊃ dom g̃.

F.3 ∇f̃ is Lf̃ -Lipschitz continuous on Ω;
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The generic problem mentioned above is as follows.

(P1) Given u0 ∈ Z, scalars λ > 0 and σz ≥ 0, find a triple (ũ, s̃, ε̃) such that

s̃ ∈ ∂ε̃g̃(ũ), ‖λ(∇f̃(ũ) + s̃) + ũ− u0‖2 + 2λε̃ ≤ σ2
z‖ũ− u0‖2. (85)

We now make a few remarks about (P1). First, steps 1 and 2 of the CSP-BD-HPE

framework are clearly special cases of the above generic problem. Indeed, step 1 is a

special case of (P1) in which f̃ is equal to the function x ∈ Ωx 7→ Ψ(x, y′k−1), g̃ = g1

and Ω = Ωx, while step 2 is a special case of (P1) in which f̃ is equal to the function

y ∈ Ωy 7→ Ψ(x̃k, y), g̃ = g2 and Ω = Ωy. Second, the above problem is related to

the problem of finding an approximate solution of the (strongly) convex optimization

problem

min
u∈Z

{
1

2
‖u− u0‖2 + λ[f̃(u) + g̃(u)]

}
. (86)

Clearly, an exact solution ũ of problem (86) satisfies 0 ∈ ũ− u0 + λ(∇f̃(ũ) + ∂g̃(ũ)),

which implies that the triple (ũ, s̃, ε̃) where

s̃ =
u0 − ũ
λ
−∇f̃(ũ), ε̃ = 0 (87)

satisfies (85) with σz = 0 (and hence, with any σz ≥ 0). Hence, the situation in which

(86) can be solved exactly immediately yields a solution of problem (P1).

In the rest of this chapter, we describe two instances of CSP-BD-HPE framework

which differ in the way they solve the generic problem (P1). Section 4.2 states a

specific instance of the CSP-BD-HPE framework in which λ is chosen sufficiently

small, and steps 1 and 2, when viewed as problem (P1), are solved by performing a

single composite gradient step on (86). Section 4.3 derives the iteration-complexity

of solving problem (P1) by means of a Nesterov’s accelerated variant. Section 4.4

describes an instance of the CSP-BD-HPE framework in which λ is chosen as the
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maximum value allowed by the framework, i.e., the right hand side of (72), and the

two triples in steps 1 and 2 of the CSP-BD-HPE framework are computed by means

of the Nesterov’s accelerated variant described in Section 4.3.

4.2 A special instance of the CSP-BD-HPE framework

This section states a specific instance of the CSP-BD-HPE framework in which steps

1 and 2 of the CSP-BD-HPE framework, when viewed as problem (P1), can be solved

by performing a single composite gradient step on (86). The instance can be viewed as

a block-decomposition version of Tseng’s modified forward-backward splitting algo-

rithm in [59] (see also [37, 35]). Except for our slightly more general way of choosing

the stepsize, this instance is the same as the method stated in Subsection 5.2 of [36]

when the latter one is specialized to the context of (70)-(71). Despite this similar-

ity, we include a detailed discussion of the aforementioned instance in this section in

order to motivate the accelerated instance and its corresponding complexity bounds

presented in Section 4.4.

The following result, whose proof can be found in Proposition 4.3 of [36], shows

that a single composite gradient step from u0 with respect to (86) yields a solution of

(P1) when ∇f̃ is Lipschitz continuous on Ω, λ is sufficiently small and the resolvent

of ∂g̃, i.e., a vector of the form (I + λ∂g̃)−1(w) for some λ > 0, can be computed at

any point w ∈ Z. Clearly,

(I + λ∂g̃)−1(w) = argminu∈Z

{
g̃(u) +

1

2λ
‖u− w‖2

}
.

Also, when g̃ is the indicator of a nonempty closed convex set Ω ⊂ Z, (I+λg̃)−1(·) =

PΩ(·) for any λ > 0.

Proposition 4.2.1. For some L̃ ≥ 0, assume that ∇f̃ is L̃-Lipschitz continuous on

Ω. Then, for any u0 ∈ Z, σz ≥ 0 and λ > 0 such that λL̃ ≤ σz, the triple (x̃, s̃, ε̃)
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given by

ũ := (I+λ∂g̃)−1
(
u0 − λ∇f̃(PΩ(u0))

)
, s̃ :=

1

λ
(u0−ũ)−∇f̃(PΩ(u0)), ε̃ := 0 (88)

solves problem (P1).

It is worth noting that when L̃ = 0, i.e., f̃ is an affine function on Ω, the point ũ in

(88) is the exact solution of problem (86) and the triple (ũ, s̃, ε̃) given by (88) solves

problem (P1) for any σz ≥ 0. Hence, when L̃ = 0, the recipe of Proposition 4.2.1 is

equivalent to obtaining ũ by simply solving problem (86) exactly and obtaining (s̃, ε̃)

as in (87).

In the remaining part of this section, we will explicitly state a special case of the

CSP-BD-HPE framework in which the triples in both steps 1 and 2 are computed by

means of the recipe described in Proposition 4.2.1.

We now state a special case of the CSP-BD-HPE framework in which the two triple

finding problems in steps 1 and 2 are implicitly solved using the recipe of Proposition

4.2.1.

[T-BD] Tseng’s based BD-HPE algorithm for CSP(Ψ; g1,g2):

0) Let (x0, y0) ∈ X × Y and σ ∈ (0, 1] be given, choose σx, σy ∈ [0, σ), and set

k = 1 and

λ = λ̄(σx, σy) := min

 σx
Lxx

,
σy
Lyy

,

√
(σ2 − σ2

x)(σ
2 − σ2

y)

σLxy

 (89)

(with the convention that 0/0 =∞);

1) compute x′k−1 := PΩx(xk−1), y′k−1 := PΩy(yk−1) and the pair (x̃k, ỹk) ∈ X ×Y as

x̃k := [I+λ∂g1]−1(xk−1−λ∇xΨ(x′k−1, y
′
k−1)), ỹk := [I+λ∂g2]−1(yk−1+λ∇yΨ(x̃k, y

′
k−1));

(90)
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2) compute (xk, yk) as

xk := x̃k−λ[∇xΨ(x̃k, ỹk)−∇xΨ(x′k−1, y
′
k−1)], yk := ỹk+λ[∇yΨ(x̃k, ỹk)−∇yΨ(x̃k, y

′
k−1)],

(91)

set k ← k + 1, and go to step 1.

end

Note that an iteration of the T-BD algorithm requires two evaluations of each of

the partial derivatives ∇xΨ(·, ·) and ∇yΨ(·, ·), one evaluation of each of the resolvents

of ∂g1 and ∂g2 and one projection evaluation onto each one of the sets Ωx and Ωy.

Hence, an iteration-complexity bound derived for the above algorithm is also a bound

on the number of each of the above operations performed throughout the algorithm.

The following result, which follows as a consequence of Theorem 4.1.3, establishes

the iteration-complexity of the T-BD algorithm. Even though we could prove it for a

more specific choice of stepsize λ using Theorem 5.4 of [36], we have decided for the

sake of completeness to include a self-contained but short proof here. This decision

was also based on the fact that the complexity bounds obtained here uses the notion

of approximate solution given in Definition 2.1.1 rather than the one used in [36].

Theorem 4.2.2. Consider the sequences {(xk, yk)} and {(x̃k, ỹk)} generated by the

T-BD algorithm, and define the sequences {(r̃xk , r̃
y
k)} and {(εxk, ε

y
k)} as

r̃xk :=
1

λ
(xk−1 − xk), r̃yk :=

1

λ
(yk−1 − yk), εxk := 0, εyk := 0,

{(x̃ak, ỹak)} and {r̃ak} as in (82), and {ε̃ak} as in (83), and set

M := max{Lxx, Lxy, Lyy}. (92)

Then, for every pair of positive scalars (ρ, ε), there exists an index

k0 = O
(
M max

[
d2

0

ε
,
d0

ρ

])
(93)
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such that the average point (x̃ak, ỹ
a
k) is a (ρ, ε)-saddle-point of CSP (Ψ; g1, g2) for every

k ≥ k0.

Proof. We first show that the T-BD algorithm is a special case of the CSP-BD-

HPE framework. Indeed, assumptions B.4 and B.5 together with Proposition 4.2.1

used twice, namely, first with (f̃ , g̃, u0, σz) = (Ψ(·, y′k−1), g1, xk−1, σx) and then with

(f̃ , g̃, u0, σz) = (−Ψ(x̃k, ·), g2, yk−1, σy), imply that the triples (x̃k, ãk, ε
x
k) and (ỹk, b̃k, ε

y
k),

where x̃k and ỹk are given by (90), εxk = εyk := 0 and

ãk :=
1

λ
(xk−1 − x̃k)−∇xΨ(x′k−1, y

′
k−1), b̃k :=

1

λ
(yk−1 − ỹk) +∇yΨ(x̃k, y

′
k−1),

satisfy (73) and (74). Now, using the above formulae for ãk and b̃k, we easily see that

step 3 of CSP-BD-HPE reduces to the update formula (91). We have thus shown

the above claim which, as a consequence, implies that the pair (r̃ak, ε̃
a
k) satisfies the

conclusions of Theorem 4.1.3(b). The conclusion of theorem then follows immediately

from bound (84) and formula (89) for the stepsize λ.

Given a fixed σ ∈ (0, 1], it can be shown that choosing σx = λ̄Lxx and σy = λ̄Lyy

where

λ̄ := σ

θmax


 L2

xx LxxLxy

LxxLxy L2
yy + L2

xy




−1/2

,

maximizes λ̄(σx, σy) under the condition that σx, σy ∈ [0, σ), in which case λ̄(σx, σy) =

λ̄. As a consequence, this choice of σx and σy minimizes the convergence rate bounds

established in Theorem 4.1.3 for the CSP-BD-HPE framework, and hence the T-BD

algorithm. We observe that the above choice of stepsize is the exactly the one used

by the BD algorithm of Subsection 5.2 of [36].

It is worth emphasizing that the T-BD algorithm uses the recipe described in

Proposition 4.2.1 in order to compute the triples in steps 1 and 2 of the CSP-BD-

HPE framework. Hence, it is necessary to choose a stepsize λ > 0 which satisfies, in

addition to (72), the first two inequalities in (89). As a result, the largest λ that can be
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chosen in this manner, namely as in (89), is 1/O(M). On the other hand, the largest

stepsize λ that can be chosen in the context of the CSP-BD-HPE framework, i.e., as

the right hand side of (72), is 1/O(Lxy). Clearly, when M >> Lxy, or equivalently

max{Lxx, Lyy} >> Lxy, the latter stepsize is considerably larger than the first one.

As a consequence, the number of iterations performed by an arbitrary CSP-BD-HPE

instance with λ equal to the right hand side of (72) can be considerably smaller than

the number of iterations performed by the T-BD algorithm with λ chosen according

to (89). Needless to say, instances of the CSP-BD-HPE framework with λ equal to the

right hand side of (72) can not be implemented with the aid of the recipe described

in Proposition 4.2.1 and requires instead a different approach.

4.3 An accelerated method for problem (P1)

The main goal of this section is to derive the iteration-complexity of solving problem

(P1) using the variant of the Nesterov’s accelerated method introduced in Section

3.1.

We start this section by describing a technical result.

Lemma 4.3.1. Assume that f and h are functions such that h is a proper closed

convex function, f is differentiable on a closed convex set Ω ⊃ domh, and that there

exists L > 0 such that ∇f is L-Lipschitz continuous on Ω. Then, if (z, r, ε) ∈

Z × Z × <+ satisfy

r ∈ ∂ε(f + h)(z), (94)

for any positive scalar c > L/2, the vector

δc = δ(z, r, c, f, h) := c[z − (I + c−1∂h)−1(z − c−1∇f(z) + c−1r)] (95)

satisfies

r + δc ∈ (∇f + ∂εh)(z), ‖δc‖ ≤ c

√
2ε

2c− L
. (96)
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Proof. First note that it is well-known that conditions on f implies that

0 ≤ f(u′)− f(u)− 〈∇f(u), u′ − u〉 ≤ L

2
‖u′ − u‖2 ∀u, u′ ∈ Ω. (97)

Note also that inclusion (94) implies that z ∈ domh ⊂ Ω. It is easy to see that

(95) implies that

z − c−1δc ∈ domh, r + δc −∇f(z) ∈ ∂h(z − c−1δc).

The above inclusion implies

h(u)− h(z − c−1δc) ≥ 〈r + δc −∇f(z), u− z + c−1δc〉 ∀u ∈ Z. (98)

On the other hand, it follows from (94) that

f(u) + h(u) ≥ f(z) + h(z) + 〈r, u− z〉 − ε ∀u ∈ Z.

This inequality with u = z− c−1δc and (97) with u′ = z and u = z− c−1δ then imply

that

h(z − c−1δc)− h(z) ≥ −[f(z − c−1δc)− f(z)− 〈∇f(z),−c−1δc〉] + 〈r −∇f(z),−c−1δc〉 − ε

≥ −L
2
‖c−1δc‖2 + 〈r −∇f(z),−c−1δc〉 − ε. (99)

Adding up (98) and (99), we conclude that

h(u)− h(z) ≥ 〈r + δc −∇f(z), u− z〉+ c−2

(
c− L

2

)
‖δc‖2 − ε. ∀u ∈ Z,

which clearly implies the inclusion in (96) when c ≥ L/2. Moreover, this same

inequality with u = z implies the inequality in (96) when c > L/2.

Note that the above lemma described a procedure which finds a triple satisfying

the inclusion in (96) based on a triple satisfying the weaker inclusion in (94). There-

fore, the lemma is useful in the construction of the following algorithm which aims

at finding the solution of problem (P1).
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We now state a variant of Nesterov’s accelerated algorithm for solving problem

(P1) which is based on the version of Algorithm 0 in Section 3.1 with ψ(u) = λf̃(u)

and g(u) = λg̃(u) + 1
2
‖u− u0‖2 and the procedure described in Lemma 4.3.1.

[Algorithm 1] A variant of Nesterov’s accelerated algorithm for (P1):

0) Let u0 ∈ X be given and set Γ0 = 0, ũ0 = w0 = PΩ(u0), k = 1;

1) let Γk > Γk−1 be such that

Γk(Γk−1 + 1) = Lf̃ (Γk − Γk−1)2 (100)

and compute (uk, wk, ũk) ∈ Ω× dom g̃ × dom g̃ as

uk :=
Γk−1

Γk
ũk−1 +

Γk − Γk−1

Γk
wk−1, (101)

wk := argmin
k∑
i=1

Γi − Γi−1

Γk
lλf̃(u)(u;ui) + λg̃(u) +

Γk + 1

2Γk
‖u− u0‖2, (102)

ũk :=
Γk−1

Γk
ũk−1 +

Γk − Γk−1

Γk
wk; (103)

2) compute

rk :=
1

λΓk
(u0 − wk), δk := δ(ũk, rk, Lf̃ + 1/λ, f̃ +

1

2λ
‖ · −u0‖2, g̃), (104)

ε̃k :=
1

2λΓk
‖ũk − u0‖2 − 1

2λΓk
‖ũk − wk‖2, (105)

s̃k := rk + δk −
(ũk − u0)

λ
−∇f̃(ũk), (106)

where δ(·, ·, ·, ·, ·) is defined in (95);

3) set k ← k + 1 and go to step 1.

end

We now derive the iteration-complexity of Algorithm 2 for solving problem (P1).
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Proposition 4.3.2. Consider the sequences {ũk}, {rk} and {ε̃k} generated by Algo-

rithm 1. Then, for any u0 ∈ Z and τ > 0, there exists an index

k0 = O
(⌈

min
{√

λLf̃ dτ−1e , 1 +
(

1 +
√
λLf̃

)
log+

(
λLf̃

⌈
τ−1
⌉)}⌉)

(107)

such that, for every k ≥ k0, the triple (ũ, r, ε̃) = (ũk, rk, ε̃k) satisfies

r ∈ ∂ε̃
(
f̃ + g̃ +

1

2λ
‖ · −u0‖2

)
(ũ), (108)

‖λr‖2 + 2λε̃ ≤ τ‖ũ− u0‖2. (109)

Proof. We first claim that for every k ≥ 1 such that

Γk ≥ max{2, 2τ−1}, (110)

the triple (ũ, r, ε̃) = (ũk, rk, ε̃k) satisfies (108) and (109). Indeed, it follows from (44)

with p := λf̃ + λg̃ + 1
2
‖ · −u0‖2 that for any u ∈ Z and k ≥ 1,

p(u)− p(ũk) ≥
1

2Γk

(
‖u− wk‖2 − ‖u− u0‖2

)
=

1

Γk
〈u0 − wk, u− ũk〉 −

1

2Γk
(‖ũk − u0‖2 − ‖ũk − wk‖2).

The above inequality together with definitions of rk and ε̃k in (104) and (105) and

the definition of ε-subdifferential in (12) then imply that λrk ∈ ∂λε̃kp(ũk) and hence

the triple (ũ, r, ε̃) = (ũk, rk, ε̃k) satisfies inclusion (108) for every k ≥ 1. Moreover, by

(104) and the inequality ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2), we have

‖λrk‖2 =
1

Γ2
k

‖wk − u0‖2 ≤ 2

Γ2
k

‖ũk − u0‖2 +
2

Γ2
k

‖ũk − wk‖2,

and hence that

‖λrk‖2 + 2λε̃k ≤
(

2

Γ2
k

+
1

Γk

)
‖ũk − u0‖2 +

(
2

Γ2
k

− 1

Γk

)
‖ũk − wk‖2. (111)

Since condition (110) is easily seen to imply that

2

Γ2
k

+
1

Γk
≤ τ,

2

Γ2
k

− 1

Γk
≤ 0,
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we conclude from (111) that the triple (ũ, r, ε̃) = (ũk, rk, ε̃k) satisfies (109) for every

k ≥ 1 satisfying (110). We have thus shown that the above claim holds.

Now, define

k0 :=

min

2
√
λLf̃ dτ−1e , 1 +

1 +
√

1/(2λLf̃ )

2
√

1/(2λLf̃ )
log+

(
λLf̃

⌈
τ−1
⌉)

 (112)

and note that k0 clearly satisfies (107) and k0 ≥ 1. To end the proof, it suffices to

show in view of the above claim that k ≥ k0 implies (110). Indeed, in view of the

inequality t/(1 + t) ≤ log(1 + t) for t > −1, we have

1 +
√

1/(2λLf̃ )√
1/(2λLf̃ )

≥ 1

log(1 +
√

1/(2λLf̃ ))
,

Thus, k ≥ k0 implies that either

k ≥ 2
√
λLf̃ dτ−1e or k ≥ 1 +

log
(
λLf̃ dτ−1e

)
2 log(1 +

√
1/(2λLf̃ ))

and hence that

Γk ≥ max

 k2

2λLf̃
,

2

λLf̃

(
1 +

√
1

2λLf̃

)2(k−1)
 ≥ 2

⌈
τ−1
⌉
≥ max{2, 2τ−1}.

where the first inequality is due to (43) and the fact that ψ = λf̃ and g = λg̃ + 1
2
‖ ·

−u0‖2 satisfy conditions D.3 and D.4 with L = λLf̃ and µ = 1.

We are now ready to establish the iteration-complexity of Algorithm 2 for solving

(P1), which is a consequence of Proposition 4.3.2 and Lemma 4.3.1.

Corollary 4.3.3. For a given triple (u0, λ, σz) ∈ Z × <++ × (0, 1], consider the

sequences {ũk}, {s̃k} and {ε̃k} generated by Algorithm 1. Then, there exists an index

k0 = O
(

1 +
√
λLf̃ + 1 log

(
(λLf̃ + 1)/σz

))
(113)

such that the triple (ũ, s̃, ε̃) = (ũk, s̃k, ε̃k) is a solution of problem (P1) for every

k ≥ k0.
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Proof. Let τ = σ2
z/[2(λLf̃ + 2)]. In view of Proposition 4.3.2, there exists an index

such that (107) holds and for every the triple (ũ, r, ε̃) = (ũk, rk, ε̃k) satisfies (108) and

(109) for any k ≥ k0. Now use the fact that dτ−1e ≤ 2(λLf̃ + 1)dσ−2
z e, it is easy to

see that (107) implies

k0 = O
(

min
{

(λLf̃ + 2)σ−1
z , 1 +

√
(λLf̃ + 2) log

(
(λLf̃ + 2)σ−1

z

)})
, (114)

which implies (113) in view of the assumption that σz ∈ (0, 1] and the inequality

2t ≥
√
t log t for t > 0.

In view of Lemma 4.3.1 with f = f̃ + 1
2λ
‖ · −u0‖2, h = g̃ and c = Lf̃ + 1/λ, and

the fact (ũ, r, ε̃) = (ũk, rk, ε̃k) satisfies (108) for any k ≥ k0, we have

rk + δk ∈ ∇f̃(ũk) +
(ũk − u0)

λ
+ ∂ε̃k g̃(ũk), ‖δk‖2 ≤ 2(Lf̃ + 1/λ)ε̃k.

It is easy to see the above inclusion and the definition of s̃k in (106) imply (ũ, s̃, ε̃) =

(ũk, s̃k, ε̃k) satisfies the inclusion in (85). Moreover, the above inequality, together

with the definition of s̃k in (106), τ = σ2
z/[2(λLf̃+2)] and the fact (ũ, r, ε̃) = (ũk, rk, ε̃k)

satisfies (109), implies that

‖λ(∇f̃(ũk) + s̃k) + ũk − u0‖2 + 2λε̃k = ‖λrk + λδk‖2 + 2λε̃k

≤ 2(λLf̃ + 2)(‖λrk‖2 + 2λε̃k) ≤ σ2
z‖ũk − u0‖2.

Note that, when σz ∈ (0, 1] is such that σ−1
z = O(1), the iteration-complexity of

solving problem (P1) by means of Algorithm 1 reduces to

O
(

1 +
√
λLf̃ + 1 log

(
λLf̃ + 1

))
.

4.4 Accelerated BD Algorithm for CSP Problem

This section considers a special instance of the CSP-BD-HPE framework for solving

the CSP problem CSP (Ψ; g1, g2) in which the triples (x̃k, ãk, ε
x
k) and (ỹk, b̃k, ε

y
k) in
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steps 1 and 2 are obtained with the aid of Algorithm 1 applied to specific instances

of problem (P1). It also establishes the complexity of the resulting accelerated in-

stance in terms of gradient, projection and resolvent evaluations, and shows that

it is substantially better than that of the Tseng’s based BD-HPE algorithm when

max{Lxx, Lyy} >> Lxy.

We now state the special instance of the CSP-BD-HPE framework for solving

CSP (Ψ; g1, g2).

[Acc-BD] an accelerated BD-HPE algorithm for CSP (Ψ; g1, g2):

0) Let (x0, y0) ∈ X × Y , σ ∈ (0, 1], and σx, σy ∈ (0, σ) be given. Set k = 1 and

λ =

√
(σ2 − σ2

x)(σ
2 − σ2

y)

σLxy
; (115)

1) invoke Algorithm 1 with u0 = xk−1, Z = X ,

Ω = Ωx, g̃(·) = g1(·), f̃(·) = Ψ(·, y′k−1),

where y′k−1 = PΩy(yk−1), to obtain a triple (ũ, s̃, ε̃) ∈ X × X × <+ as in (103),

(106) and (105) and set (x̃k, ãk, ε
x
k) = (ũ, s̃, ε̃);

2) invoke Algorithm 1 with w0 = yk−1, Z = Y ,

Ω = Ωy, g̃(·) = g2(·), f̃(·) = −Ψ(x̃k, ·)

to obtain a triple (ũ, s̃, ε̃) ∈ Y × Y × <+ as in (103), (106) and (105) and set

(ỹk, b̃k, ε
y
k) = (ũ, s̃, ε̃);

3) set (r̃xk , r̃
y
k) = (∇xΨ(x̃k, ỹk) + ãk,−∇yΨ(x̃k, ỹk) + b̃k),

(xk, yk) = (xk−1, yk−1)− λ(r̃xk , r̃
y
k), (116)

and k ← k + 1, and go to step 1).
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end

The following result establishes the iteration-complexity result of Acc-BD algo-

rithm. The bounds derived on it are obtained under the assumption that the param-

eters σ, σx and σy are chosen so that the inverses of σx, σy, σ
2 − σ2

x and σ2 − σ2
y are

all O(1).

Theorem 4.4.1. Algorithm Acc-BD is a special instance of the CSP-BD-HPE frame-

work for solving CSP (Ψ; g1, g2). Moreover, consider the sequences {(xk, yk)}, {(x̃k, ỹk)},

{(εxk, ε
y
k)} and {(r̃xk , r̃

y
k)} generated by Acc-BD algorithm and define {(x̃ak, ỹak)}, {r̃ak},

{ε̃ak}, d0 and η̄ as in Theorem 4.1.3. Then, the following statements hold:

(a) for every k ∈ N, ((r̃xk , r̃
y
k), ε

x
k + εyk) is a SP-residual for (x̃k, ỹk) with respect to

CSP (Ψ; g1, g2), or equivalently,

(r̃xk , r̃
y
k) ∈ ∂εxk+εyk

[Ψ(·, ỹk) + Ψ(x̃k, ·)](x̃k, ỹk)

and there exists i ≤ k such that

‖(r̃xi , r̃
y
i )‖ ≤

Lxyσd0√
(σ2 − σ2

x)(σ
2 − σ2

y)

√
1 + σ

k(1− σ)
,

εxi + εyi ≤
Lxyσ

3d2
0

2k(1− σ2)
√

(σ2 − σ2
x)(σ

2 − σ2
y)
,

(b) for every k ∈ N, the pair (r̃ak, ε̃
a
k) is a SP-residual of (x̃ak, ỹ

a
k) for CSP (Ψ; g1, g2),

or equivalently,

r̃ak ∈ ∂ε̃ak [Ψ(·, ỹak) + Ψ(x̃ak, ·)](x̃ak, ỹak)

and

‖r̃ak‖ ≤
2Lxyσd0

k
√

(σ2 − σ2
x)(σ

2 − σ2
y)
, ε̃ak ≤

2Lxyσd
2
0

k
√

(σ2 − σ2
x)(σ

2 − σ2
y)

(1 + η̄);

Proof. Acc-BD algorithm is clearly a special case of the CSP-BD-HPE framework in

which (72) holds as equality and the triples of steps 1 and 2 are found by means of
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Algorithm 1. (a) This statement follows immediately from Theorem 4.1.3(a) with λ

as in (115). (b) This statement follows immediately from Theorem 4.1.3(b) with λ as

in (115).

The following corollary follows immediately from (5.3.1), Corollary 4.3.3 and the

fact that each iteration of Algorithm 1 performs at most two gradient evaluations,

two resolvent evaluations of ∂h and one projection onto Ω.

Corollary 4.4.2. At each iteration of Acc-BD algorithm, the number of evaluations

of ∇xΨ(·, ·) and the number of resolvent evaluations of ∂g1 and ∂IΩx are both bounded

by

O
(

1 +
√
Lxx/Lxy + 1 log(Lxx/Lxy + 1)

)
;

and the number of evaluations of ∇yΨ(·, ·) and the number of resolvent evaluations

of ∂g2 and ∂IΩy are bounded by

O
(

1 +
√
Lyy/Lxy + 1 log(Lyy/Lxy + 1)

)
.

As a consequence, for every pair of positive scalars (ρ, ε), Acc-BD algorithm finds a

(ρ, ε)-saddle-point of CSP (Ψ; g1, g2) by performing no more than

O
([

1 +
√
Lxx/Lxy + 1 log(Lxx/Lxy + 1)

]
max

{
Lxyd

2
0

ε
,
Lxyd0

ρ

})
(117)

evaluations of ∇xΨ(·, ·) and resolvent evaluations of ∂g1 and ∂IΩx, and no more than

O
([

1 +
√
Lyy/Lxy + 1 log(Lyy/Lxy + 1)

]
max

{
Lxyd

2
0

ε
,
Lxyd0

ρ

})
(118)

evaluations of ∇yΨ(·, ·) and resolvent evaluations of ∂g2 and ∂IΩy .

It is worthwhile to compare the iteration-complexity bound (93) obtained for the

T-BD-HPE algorithm in Theorem 4.2.2 with the bounds (117) and (118) obtained

for Acc-BD algorithm in Corollary 4.4.2. Indeed, when max{Lxx, Lyy} ≈ Lxy, the

two bounds in (117) and (118) are of the same order of magnitude as the one in (93).
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Consider now the relevant case in which max{Lxx, Lyy} >> Lxy and for the sake of

concreteness that Lxx = max{Lxx, Lyy}. Then, bound (93) is larger than (117) by a

factor of

Θ(
√
ξx/ log(ξx))

where ξx := Lxx/Lxy >> 1. Also, the bound (93) is significantly larger than (118),

i.e., by a factor τ such that

τ =

 Θ(ξx), when Lyy = O(Lxy)

Θ(ξx/[log(ξy)
√
ξy]), when Lyy >> Lxy

,

where ξy := Lyy/Lxy.

In Subsection 6.1, we describe a relevant class of convex optimization problems

corresponding to saddle-point problems with Lyy = 0 and the ratio chosen ξx :=

Lxx/Lxy arbitrarily large. Moreover, the resolvent evaluations of ∂g2 are much more

expensive than the ones for ∂g1. Note that this class of problems is particularly

suitable for Acc-BD in view of the fact that the bound (118) on the number of

expensive resolvent evaluations of ∂g2 is significantly smaller than the bound (117)

on the number of cheap resolvent evaluations of ∂g1.
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CHAPTER V

ACCELERATED HPE METHOD FOR A SPECIAL CLASS

OF COMPOSITE SADDLE-POINT PROBLEMS

5.1 HPE framework for saddle-point problem

The section specializes the HPE framework to the context of the saddle-point problem

and states its convergence properties.

We now state a special case of the HPE framework for solving the monotone

inclusion problem (17), and hence the saddle-point problem SP (Ψ̂;X, Y ).

[SP-HPE] Hybrid proximal extragradient framework for solving SP (Ψ̂;X, Y ):

0) Let (x0, y0) ∈ X × Y , λ > 0 and 0 ≤ σ < 1 be given and set k = 1;

1) find (x̃k, ỹk) ∈ X × Y , r̃k = (r̃xk , r̃
y
k) ∈ X × Y and εk ≥ 0 such that

(r̃xk , r̃
y
k) ∈ ∂εk [Ψ̂(·, ỹk)− Ψ̂(x̃k, ·)](x̃k, ỹk), (119)

‖λr̃xk + x̃k − xk−1‖2
X + ‖λr̃yk + ỹk − yk−1‖2

Y + 2λεk (120)

≤ σ2
(
‖x̃k − xk−1‖2

X + ‖ỹk − yk−1‖2
Y
)

;

2) set xk = xk−1 − λr̃xk , yk = yk−1 − λr̃yk and k ← k + 1, and go to step 1.

end

We now make several remarks about the SP-HPE framework. First, due to Lemma

5.1.1 below, the SP-HPE framework is a special case of the HPE framework in which

λk := λ. In fact, the SP-HPE framework could be stated in terms of a sequence of

variable stepsizes {λk}, but we assume for simplicity λk = λ. Second, similar to the

HPE framework, the SP-HPE framework does not specify how to find (x̃k, ỹk), r̃k
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and εk satisfying the HPE error condition in (119) and (120). Section 5.3 describes a

special instance of the SP-HPE framework in which (x̃k, ỹk), r̃k and εk are obtained by

a variant of Nesterov’s accelerated method. Third, using the fact that the inclusion

(119) is stronger than the inclusion in (54), we derive in Theorem 5.1.2 a finer version

of Theorem 3.2.1 with λk = λ specialized to the context of the saddle-point problem

(16).

Before stating the pointwise and ergodic convergence rate results for the SP-HPE

framework, we give two preliminary technical results.

Lemma 5.1.1. For each (x, y) ∈ X × Y and ε ≥ 0, we have

∂ε(Ψ̂(·, y)− Ψ̂(x, ·))(x, y) ⊆ T ε(x, y),

where T is defined in (17).

Proof. Let r ∈ ∂ε(Ψ̂(·, y)− Ψ̂(x, ·))(x, y) be given. This clearly implies that

Ψ̂(x̃, y)− Ψ̂(x, ỹ) ≥ 〈(x̃− x, ỹ − y), r〉 − ε ∀(x̃, ỹ) ∈ X × Y .

On the other hand, it follows from the definition of T in (17) that any r̃ ∈ T (x̃, ỹ)

satisfies

Ψ̂(x, ỹ)− Ψ̂(x̃, y) ≥ 〈(x− x̃, y − ỹ), r̃〉.

Summing up the above two inequalities, we then conclude that

〈(x− x̃, y − ỹ), r − r̃〉 ≥ −ε ∀(x̃, ỹ) ∈ X × Y , ∀r̃ ∈ T (x̃, ỹ),

and hence that r ∈ T ε(x, y) in view of the the definition of T ε(·) in (10).

The following result describes the pointwise and ergodic convergence rate proper-

ties of the SP-HPE framework.

Theorem 5.1.2. Consider the sequences {(x̃k, ỹk)},{(r̃xk , r̃
y
k)} and {εk} generated by

the SP-HPE framework and define (x̃ak, ỹ
a
k), r̃

a
k and εak for every k ∈ N as in (82) and
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(83). Let d0 denote the distance of (x0, y0) to the solution set of SP (Ψ̂;X, Y ). Then,

for every k ∈ N, the following statements hold:

(a) (pointwise convergence rate) the triple ((x̃k, ỹk), r̃k, εk) is a (‖r̃k‖, εk)-saddle-

point of Ψ̂, or equivalently (119) holds, and there exists an index i ≤ k such

that

‖r̃i‖ ≤
d0

λ

√
1 + σ

k(1− σ)
, εi ≤

σ2d2
0

2kλ(1− σ2)
; (121)

(b) (ergodic convergence rate) the triple ((x̃ak, ỹ
a
k), r̃

a
k, ε

a
k) is a (‖r̃ak‖, εak)-saddle-point

of Ψ̂, or equivalently

r̃ak ∈ ∂εak(Ψ̂(·, ỹak)− Ψ̂(x̃ak, ·))(x̃ak, ỹak), (122)

and

‖r̃ak‖ ≤
2d0

λk
, 0 ≤ εak ≤

2d2
0

λk

(
1 +

σ√
(1− σ2)

)
. (123)

Proof. The first claim in (a) is obvious. Since, by (119) and Lemma 5.1.1, we have

r̃k ∈ T εk(x̃k, ỹk) where T is defined in (17), we conclude that the SP-HPE framework

is a special instance of the HPE framework applied to (17) where Z := X × Y is

endowed with the inner product defined in (14). The second claim in (a) then follows

Theorem 3.2.1(a). Moreover, inclusion (122) follows from (119) and Lemma 4.1.2,

and the bounds in (123) follow from Theorem 3.2.1(b) with λk = λ.

5.2 Solving the HPE error condition

This section presents a scheme, together with its iteration-complexity analysis, for

finding a solution of the HPE error condition (119)-(120) with Ψ̂ given by (6) (and

w.l.o.g. λ = 1). The scheme is based on the Nesterov’s accelerated variant of Sub-

section 3.1 applied to an associated composite saddle-point problem.

This section considers the following problem corresponding to the special case of

step 1 of the SP-HPE framework in which λ = 1.

53



(P2) Given convex sets X ⊂ X and Y ⊂ Y , a closed convex-concave function

Ψ̂ on X × Y , a pair (u0, v0) ∈ X × Y and a scalar σ > 0, the problem is to find

(ũ, ṽ) ∈ X × Y , (r̃u, r̃v) ∈ X × Y and ε̃ ≥ 0 such that

(r̃u, r̃v) ∈ ∂ε̃
[
Ψ̂(·, ṽ)− Ψ̂(ũ, ·)

]
(ũ, ṽ), (124)

‖r̃u + ũ− u0‖2
X + ‖r̃v + ṽ − v0‖2

Y + 2ε̃ ≤ σ2
(
‖ũ− u0‖2

X + ‖ṽ − v0‖2
Y
)
. (125)

This section presents a scheme based on the Nesterov’s accelerated variant of

Section 3.1 for solving problem (P2) where Ψ̂ has the bilinear structure

Ψ̂(u, v) = f(u) + 〈Au, v〉+ g1(u)− g2(v), ∀(u, v) ∈ X × Y (126)

and conditions introduced in Section 2.2 hold.

We now make two remarks about problem (P2). First, finding the solution of the

exact version of problem (P2), i.e., the one in which σ = 0, is equivalent to finding

the unique saddle-point of

min
u∈X

max
v∈Y

Ψ̂(u, v) +
1

2
‖u− u0‖2 − 1

2
‖v − v0‖2 (127)

where Ψ̂ is given by (126). More specifically, if (ũ, ṽ) is the exact saddle-point of the

above problem, then (ũ, ṽ) and the quantities (r̃u, r̃v) := (u0 − ũ, v0 − ṽ) and ε̃ := 0

satisfy (124) and (125) with σ = 0. Second, although the above saddle-point problem

has essentially the same structure as the one we are interested in solving, namely (6),

its primal function (see (18)) has the key property that it is the composite sum of

the easy convex nonsmooth function g1 and a smooth convex function with Lipschitz

continuous gradient. Hence, approximate solutions of (127) can be obtained by using

a Nesterov’s accelerated variant for composite convex optimization problems (e.g.,

the one in Subsection 3.1).

In view of the two observations above, it is reasonable to expect that approximate

solutions of (127) yield solutions of problem (P2) (with σ > 0). Rather than tackling

54



the latter issue in an abstract setting, we instead propose a scheme based on the

Nesterov’s accelerated variant of Subsection 3.1 applied to (127) to obtain a solution

of problem (P2) and derive its corresponding iteration complexity.

We next discuss how the composite saddle-point problem (127) can be viewed as

a composite convex optimization problem (38) satisfying conditions A.1-A.3. Clearly,

(127) is a special case of (38) in which

ψ(u) := f(u) + φ̃(u), g(u) := g1(u) +
1

2
‖u− u0‖2

X (128)

and

φ̃(u) := max
v

{
φ(u, v) := 〈Au, v〉 − g2(v)− 1

2
‖v − v0‖2

Y

}
. (129)

It is apparent that the above function g satisfies condition A.1. The following result

implies that the above ψ satisfies conditions A.2 and A.3. Its proof for the case in

which Y is compact is well-known (see for example [40]). Since we are not assuming

that the latter condition, we include for sake of completeness a simple proof for the

more general version given below. Its statement uses the following notion of the

induced norm of a linear operator A : X → Y defined as

‖A‖ := max
x
{‖Ax‖Y : ‖x‖X ≤ 1}.

Proposition 5.2.1. The following statements hold:

(a) for every u ∈ X , the maximization problem in (129) has a unique optimal

solution v(u), i.e.,

v(u) := arg max
v
〈Au, v〉 − g2(v)− 1

2
‖v − v0‖2

Y ; (130)

(b) φ̃ is convex, differentiable everywhere on X , ∇φ̃ is ‖A‖2-Lipschitz continuous

on X and

∇φ̃(u) = A∗v(u) ∀u ∈ X ; (131)
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(c) for every u, ũ ∈ X ,

lφ̃(u; ũ) = φ(u, v(ũ)). (132)

Proof. (a) This statement follows immediately from the fact that the negative of the

objective function of the max problem in (130) is proper, closed and strongly convex.

(b) Letting g̃2(v) := g2(v) + ‖v− v0‖2/2 and using the definition of φ̃ in (129), we

easily see that

φ̃(u) = g̃∗2(Au) ∀u ∈ X . (133)

Moreover, noting that g̃2 is a proper closed strongly convex with modulus one, we

conclude from Proposition 1.1.2 with f = g̃2 that g̃∗2 is differentiable everywhere on

Y and ∇g̃∗2 is 1-Lipschitz continuous. The above two observations then easily imply

that φ̃ is convex, differentiable everywhere on X and ∇φ̃ is ‖A‖2-Lipschitz continuous

on X . Moreover, the optimality condition for (130) implies that Au ∈ ∂g̃2(v(u)), and

hence that v(u) = ∇g̃∗2(Au) in view of Proposition 1.1.1(c). Now, (131) follows by

differentiating (133) and using the latter conclusion.

(c) Using (131), and the definitions of lφ̃(·, ·), φ(·, ·) and v(u) in (11), (129) and

(130), respectively, we easily see that

lφ̃(u; ũ) = φ̃(ũ) + 〈∇φ̃(ũ), u− ũ〉 = φ(ũ, v(ũ)) + 〈A∗v(ũ), u− ũ〉 = φ(u, v(ũ)).

In view of the above result, we conclude that the function ψ defined in (128)

satisfies conditions A.2 and A.3 of Subsection 3.1 with L = Lf + ‖A‖2. We can then

use Algorithm 1 to approximately solve (127), and hence (P2) as will be shown later

in this section.

We now state our accelerated scheme for solving problem (P2). It is essentially

Algorithm 1 applied to (38) with Ψ̂ and g given by (128) and (129), respectively,

endowed with two important refinements. The first one due to Nesterov (see (4.2) of
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[40] or Corollary 3(c) of [60]) computes a dual iterate ṽk as in (134), which together

with the primal iterate ũk, provides the first candidate pair (ũ, ṽ) = (ũk, ṽk) for (P2).

The second one (see step 2 below) gives a recipe for computing the second candidate

pair (r̃u, r̃v) ∈ X × Y and scalar ε̃ ≥ 0 which, together with the above pair (ũ, ṽ),

yield a candidate solution for (P2).

[Algorithm 2] Accelerated method for problem (P2):

Input: f , Lf , A, g1 and g2, (u0, v0) ∈ X × Y and σ ∈ (0, 1).

0) set L = Lf + ‖A‖2, µ = 1, Γ0 = 0, ũ0 = w0 = PΩ(u0), ṽ0 = 0 and k = 1;

1) compute Γk, uk and v(uk) as in (39), (40) and (130), respectively, (ṽk, wk) ∈

Y ×X as

ṽk :=
Γk−1

Γk
ṽk−1 +

Γk − Γk−1

Γk
v(uk), (134)

wk := argminu lf,k(u) + 〈A∗ṽk, u〉+ g1(u) +
ck
2
‖u− u0‖2

X , (135)

and ũk as in (42), where

ck := 1 +
1

Γk
, lf,k(u) :=

k∑
i=1

Γi − Γi−1

Γk
lf (u;ui); (136)

2) set

ε̃k =
1

2Γk
‖ũk − u0‖2

X , r̃uk := ck(u0 − wk), r̃vk := v0 − v(ũk); (137)

3) if ‖r̃uk + ũk− u0‖2
X + ‖r̃vk + ṽk− v0‖2

Y + 2ε̃k ≤ σ2‖ũk− u0‖2
X + σ2‖ṽk− v0‖2

Y , then

terminate and go to Output; otherwise, set k ← k + 1 and go to step 1.

Output: ouput (ũ, ṽ) = (ũk, ṽk), (r̃u, r̃v) = (r̃uk , r̃
v
k) and ε̃ = ε̃k.

The following simple result shows that step 1 of Algorithm 2 corresponds to an

iteration of Algorithm 1 applied to (41) with ψ and g defined according to (128) and

(129).
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Lemma 5.2.2. Let ψ and g be defined according to (128) and (129). Then, the

following statements hold for every k ≥ 1:

(a) the function lψ,k(u)− (lf,k(u) + 〈A∗ṽk, u〉) is constant;

(b) (135) is equivalent to (41).

Proof. (a) Relation (134) and the fact that Γ0 = 0 imply that

ṽk =
k∑
i=1

Γi − Γi−1

Γk
v(ui). (138)

Using the first identity in (128) and Proposition 5.2.1(b), we have that ∇ψ(u) =

∇f(u) + A∗v(u), which together with definition (11) then imply that

lψ(u;ui) = lf (u;ui) + [φ̃(ui) + 〈A∗v(ui), u− ui〉] ∀i ≥ 1.

Statement (a) now follows from the previous identity and relations (45), (136) and

(138). (b) This statement immediately follows from (a), the definition of g in (128)

and the definition of ck in (136).

Ignoring steps 2 and 3 of Algorithm 2 which are essentially computing (r̃u, r̃v) =

(r̃uk , r̃
v
k) and ε̃ = ε̃k satisfying (124) and checking whether these entities, together with

the primal-dual iterate (ũk, ṽk), satisfy (125), Lemma 5.2.2 immediately implies that

Algorithm 2 is nothing more than Algorithm 0 applied to problem (38) with ψ and g

given by (128).

The following technical result follows as a consequence of the latter observation

and Proposition 3.1.1.

Lemma 5.2.3. Consider the sequences {(ũk, ṽk)} generated by Algorithm 2 and define

ε̃′k :=
1

2Γk
‖ũk − u0‖2

X + lf,k(ũk)− f(ũk), (139)

Ψ̂k(u, v) := lf,k(u) + 〈Au, v〉+ g1(u)− g2(v), (140)

qk(u, v) :=
ck
2
‖u− u0‖2

X +
1

2
‖v − v0‖2

Y , (141)
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where ck and lf,k are defined in (136). Then,

0 ∈ ∂ε̃′k
[
Ψ̂k(·, ṽk)− Ψ̂k(ũk, ·) + qk(·, ·)

]
(ũk, ṽk), (142)

Proof. Consider the functions ψ, g and φ defined in (128) and (129). It follows from

(128), (129) and Proposition 3.1.1 that

f(ũk) + φ(ũk, v) + g1(ũk) +
1

2
‖ũk − u0‖2

X ≤ (ψ + g)(ũk)

≤ lψ,k(u) + g1(u) +
ck
2
‖u− u0‖2

X ∀(u, v) ∈ X × Y

where lψ,k(·) is defined in (45). Using the definitions of ψ and φ̃ in (128) and (129),

relation (11), definitions of lψ,k(u) and lf,k(u) in (45) and (136), identities (132) and

(138), and the fact φ(u, ·) is concave for any u ∈ X , we conclude that

lψ,k(u) =
k∑
i=1

Γi − Γi−1

Γk

(
lf (u;ui) + lφ̃(u;ui)

)
= lf,k(u) +

k∑
i=1

Γi − Γi−1

Γk
φ (u, v(ui))

≤ lf,k(u) + φ

(
u,

k∑
i=1

Γi − Γi−1

Γk
v(ui)

)
= lf,k(u) + φ(u, ṽk) ∀u ∈ X .

Combining the above two relations and using the definition of φ, Ψ̂k and ε̃′k in (129),

(140) and (139), respectively, we then conclude that

Ψ̂k(ũk, v)−1

2
‖v − v0‖2

Y +
ck
2
‖ũk − u0‖2

X − ε̃′k

= lf,k(ũk) + φ(ũk, v) + g1(ũk) +
ck
2
‖ũk − u0‖2

X − ε̃′k

≤ lf,k(u) + φ(u, ṽk) + g1(u) +
ck
2
‖u− u0‖2

X

= Ψ̂k(u, ṽk)−
1

2
‖ṽk − v0‖2

Y +
ck
2
‖u− u0‖2

X ∀(u, v) ∈ X × Y. (143)

Now, using the definition of the ε-differential in (12) and the definition of qk(·, ·) in

(141), the above inequality can be easily seen to be equivalent to (142).

The following result quantifies the quality of the entities (ũk, ṽk), ε̃k and (r̃k, r̃
v
k)

generated at the k-th iteration of Algorithm 2 as a candidate solution for problem

(P2).
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Lemma 5.2.4. Consider the sequences {(ũk, ṽk)}, {ε̃k} and {(r̃k, r̃vk)} generated by

Algorithm 2. Then, for every k ≥ 1,

(r̃uk , r̃
v
k) ∈ ∂ε̃k

[
Ψ̂(·, ṽk)− Ψ̂(ũk, ·)

]
(ũk, ṽk), (144)

‖r̃uk + ũk − u0‖2
X + ‖r̃vk + ṽk − v0‖2

Y + 2ε̃k ≤
(

3

Γk
+

4

Γ2
k

)
‖ũk − u0‖2

X , (145)

where Ψ̂(·) is defined in (126).

Proof. Equations (130) and (135) and the definitions of Ψ̂k and qk in (140) and (141)

imply that

(wk, v(ũk)) = arg min
(u,v)

Ψ̂k(u, ṽk)− Ψ̂k(ũk, v) + qk(u, v).

In view of the optimality condition of the above minimization problem, the definitions

of r̃uk and r̃vk in (137), and the definition of qk(·, ·) in (141), we then conclude that

(r̃uk , r̃
v
k) = −∇qk(wk, v(ũk)) ∈ ∂[Ψ̂k(·, ṽk)− Ψ̂k(ũk, ·)](wk, v(ũk)).

Hence, by Proposition 1.1.1(b) we have

(r̃uk , r̃
v
k) = −∇qk(wk, v(ũk)) ∈ ∂δk [Ψ̂k(·, ṽk)− Ψ̂k(ũk, ·)](ũk, ṽk). (146)

where

δk := −
[
Ψ̂k(wk, ṽk)− Ψ̂k(ũk, v(ũk))

]
− 〈−∇qk(wk, v(ũk)), (ũk, ṽk)− (wk, v(ũk))〉 ≥ 0.

On the other hand, in view of Lemma 5.2.3, inclusion (142) holds, or equivalently

inequality (143) holds. The latter inequality with (u, v) = (wk, v(ũk)), together with

the definitions of ε̃k and ε̃′k in (137) and (139), then implies that

ε̃k ≥ ε̃′k ≥ −Ψ̂k(wk, ṽk) + Ψ̂k(ũk, v(ũk)) + qk(ũk, ṽk)− qk(wk, v(ũk))

= δk +
ck
2
‖ũk − wk‖2

X +
1

2
‖ṽk − v(ũk)‖2

Y , (147)

where the last equality comes from the definition of δk and the fact that the second

order Taylor expansion of the quadratic function qk at an arbitrary point agrees with
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qk itself. In view of (146) and (147), we then conclude that

(r̃uk , r̃
v
k) ∈ ∂ε̃′k [Ψ̂k(·, ṽk)− Ψ̂k(ũk, ·)](ũk, ṽk).

Using the definition of ε-subdifferential in (12) and the definitions of ε̃k, ε̃
′
k, Ψ̂ and Ψ̂k

in (137), (139), (126) and (140), respectively, and the fact that Ψ̂k(·, ṽk) is majorized

by Ψ̂(·, ṽk), it is now easy to see that the above inclusion implies (144).

Moreover, inequality (147), the definitions of r̃uk , r̃vk and ε̃k in (137), and the fact

ck = 1 + 1/Γk imply that

‖r̃uk + ũk − u0‖2
X + ‖r̃vk + ṽk − v0‖2

Y + 2ε̃k

=‖(u0 − ũk)/Γk + ck(ũk − wk)‖2
X + ‖ṽk − v(ũk)‖2

X + 2ε̃k

≤ 2

Γ2
k

‖ũk − u0‖2
X + 2c2

k‖ũk − wk‖2
X + ‖ṽk − v(ũk)‖2

X + 2ε̃k

≤ 2

Γ2
k

‖ũk − u0‖2
X + (4ck + 2)ε̃k =

(
3

Γk
+

4

Γ2
k

)
‖ũk − u0‖2

X .

As an immediate consequence of Lemma 5.2.4, we can now derive the iteration-

complexity for Algorithm 2 to solve problem (P2).

Proposition 5.2.5. Algorithm 2 terminates in at most

O
(⌈√

(Lf + ‖A‖2)dσ−2e
⌉)

(148)

iterations with an output which solves problem (P2).

Proof. The inclusion (144) and the termination criterion in step 3 of Algorithm 2

show that the output of Algorithm 2 solves problem (P2). To show the corollary, it

suffices to show that Algorithm 2 finishes in at most

k0 :=

⌈
4
√

(Lf + ‖A‖2)dσ−2e
⌉

=
⌈
4
√
Ldσ−2e

⌉
. (149)

iterations, where the second equality is due to the definition of L in step 0 of Algorithm

2. Indeed, assume for contradiction that Algorithm 2 has not terminated at an
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iteration k > k0. The latter condition on k together with (44) and (149) can be easily

seen to imply that

Γk > 4 max{1, σ−2}.

Moreover, since Algorithm 2 has not terminated at the k-th iteration of Algorithm 2,

it follows from the termination criterion on its step 3 and relation (145) that

σ2‖ũk − u0‖2
X < ‖r̃uk + ũk − u0‖2

X + ‖r̃vk + ṽk − v0‖2
Y + 2ε̃k ≤

(
3

Γk
+

4

Γ2
k

)
‖ũk − u0‖2

X .

Hence, it follows from the above two conclusions that

σ2 <

(
3

Γk
+

4

Γ2
k

)
<

4

Γk
< σ2.

5.3 Accelerated algorithm Acc-SP-HPE for solving a spe-
cial class of composite saddle-point problem

This section presents a special instance of the SP-HPE framework introduced in Sec-

tion 5.1, which we refer to as the Acc-SP-HPE method, for solving the class of compos-

ite saddle-point problem (6), or equivalently, the saddle-point problem SP (Ψ̂;X, Y )

with Ψ̂ defined in (126). Each (outer) iteration of the Acc-SP-HPE method, which

is essentially a special iteration of the SP-HPE framework, invokes Algorithm 2 to

obtain a solution of the inexact prox subproblem (119)-(120). A complexity bound on

the total number of iterations performed by Algorithm 2 (called the inner iterations)

performed by the Acc-SP-HPE method to find a (ρ, ε)-saddle-point is derived in sec-

tion. Moreover, an inner-iteration complexity for the Acc-SP-HPE method to find an

ε-saddle-point is also derived for the case when the feasible set X × Y is bounded.

We assume in this section that the solution set of the composite saddle-point

problem (6) is nonempty, and assumptions C.1-C.3 are satisfied. Initially, we do not

assume boundedness of the feasible set X × Y . The case where X × Y is assumed to

be bounded will be discussed in Subsection 5.3.1.
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Recall that in Section 5.2 we have motivated the introduction of problem (P2) as a

special case of the inexact prox subproblem (119)-(120) in which λ = 1. The following

result shows in fact that problem (P2) is as general as subproblem (119)-(120) for

any value of λ > 0.

Proposition 5.3.1. Let λ > 0 and Ψ̂ be a closed convex-concave function and con-

sider the k-th iteration of the SP-HPE framework. If (ũ, ṽ) ∈ X ×Y, (r̃u, r̃v) ∈ X ×Y

and ε̃ ≥ 0 solve problem (P2) with input Ψ̂ = λΨ̂, (u0, v0) = (xk−1, yk−1) and σ > 0,

then

(x̃k, ỹk) := (ũ, ṽ), (r̃xk , r̃
y
k) :=

1

λ
(r̃u, r̃v), εk :=

1

λ
ε̃

satisfy the conditions (119) and (120) of step 1 of the SP-HPE framework.

Proof. The conclusion follows immediately from the identity

λ∂ε

[
Ψ̂(·, ṽ)− Ψ̂(ũ, ·)

]
(ũ, ṽ) = ∂λε

[
λΨ̂(·, ṽ)− λΨ̂(ũ, ·)

]
(ũ, ṽ)

which holds for every ε ≥ 0, λ ≥ 0 and (ũ, ṽ) ∈ X × Y .

In view of the above result, we can use Algorithm 2 to solve the inexact prox

subproblem (119)-(120). This is the key idea behind the following special case of the

SP-HPE framework, referred to as the Acc-SP-HPE method, for solving the saddle-

point problem (6).

[Acc-SP-HPE] Accelerated SP-HPE Method for solving problem (6):

0) Let (x0, y0) ∈ X × Y , λ > 0 and 0 < σ < 1 be given and set k = 1;

1) invoke Algorithm 2 with input

f = λf, A = λA, g1 = λg1, g2 = λg2, (u0, v0) = (xk−1, yk−1), Lf = λLf ,

and set

(x̃k, ỹk) := (ũ, ṽ), r̃k = (r̃xk , r̃
y
k) :=

1

λ
(r̃u, r̃v), εk :=

1

λ
ε̃

where (ũ, ṽ), (r̃u, r̃v) and ε̃ are the output generated by Algorithm 2;
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2) set xk = xk−1 − λr̃xk , yk = yk−1 − λr̃yk, set k ← k + 1, and go to step 1.

end

Proposition 5.3.2. Acc-SP-HPE method is a special case of the SP-HPE framework

for solving the composite saddle-point problem (6).

Proof. In view of Proposition 5.3.1, the sequences {(x̃k, ỹk)}, {(r̃xk , r̃
y
k)} and {εk}

generated by the Acc-SP-HPE method satisfy the conditions (119) and (120) of step

1 of the SP-HPE framework. Therefore, Acc-SP-HPE method is clearly a special case

of the SP-HPE framework.

It follows as a consequence of Proposition 5.3.2 that the pointwise and ergodic

(outer) convergence rate bounds for the Acc-SP-HPE method are as described in

statements (a) and (b) of Theorem 5.1.2, respectively.

Theorem 5.3.3. Assume that conditions C.1-C.3 hold, max{σ−1, (1−σ)−1} = O(1)

and the (convex) set of saddle-points of (6) is non-empty, and let d0 denote the

distance of the initial iterate (x0, y0) of the Acc-SP-HPE method with respect to this

set. Consider the sequences {(x̃k, ỹk)}, {(r̃xk , r̃
y
k)} and {εk} generated by the Acc-SP-

HPE method and the ergodic sequences {(x̃ak, ỹak)}, {r̃ak} and {εak} defined in Theorem

5.1.2. Then, the following statements hold:

(a) for every pair of positive scalars (ρ, ε), there exists

k0 = O
(

max

{
1,
d0

λρ
,
d2

0

λε

})
such that for every k ≥ k0, the triple ((x̃ak, ỹ

a
k), r̃

a
k, ε

a
k) is a (ρ, ε)-saddle-point of

(6);

(b) each iteration of the Acc-SP-HPE method performs at most

O
(⌈√

λLf + λ2‖A‖2

⌉)
inner iterations (and hence resolvent evaluations of ∂g1 and ∂g2).
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As a consequence, the Acc-SP-HPE method finds a (ρ, ε)-saddle-point of (6) by per-

forming no more than

O
(⌈√

(λLf + λ2‖A‖2)

⌉
max

{
1,
d0

λρ
,
d2

0

λε

})
(150)

inner iterations (and hence resolvent evaluations of ∂g1 and ∂g2).

Proof. Since by Proposition 5.3.2 the Acc-SP-HPE method is a special instance of the

SP-HPE framework, (a) follows immediately from Theorem 5.1.2(b). Statement (b)

follows immediately from Proposition 5.2.5 with Lf = λLf and A = λA, and the fact

that each iteration of Algorithm 2 performs one resolvent evaluation of ∂g1 and two

resolvent evaluations of ∂g2. The last assertion of the theorem follows immediately

from (a) and (b).

We now make some remarks about possible values of λ which minimize the com-

plexity bound (150) (up to an additive and multiplicative O(1) constant). Noting

that (150) is equivalent to

O

(
max

{
1

λ
,

√
Lf
λ
, ‖A‖

}
max

{
λ,
d0

ρ
,
d2

0

ε

})
then it is straightforward to see that the following claims hold depending on whether

the condition

λ1 := max

{
Lf
‖A‖2

,
1

‖A‖

}
≤ max

{
d0

ρ
,
d2

0

ε

}
=: λ2 (151)

holds (case 1) or not (case 2):

1) if (151) holds then any λ ∈ [λ1, λ2] minimizes (150) with minimum value equal

to

O
(
‖A‖max

{
d0

ρ
,
d2

0

ε

})
;

2) otherwise, if λ1 > λ2, then λ = λ2 minimizes (150) with minimum value equal

to

O

(
1 +

√
Lf max

{√
d0

ρ
,
d0√
ε

})
.
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Ideally, one should choose λ according to the above discussion in order to minimize

the total number of resolvent evaluations of ∂g1 and ∂g2. But, since d0 is usually not

known a priori, we can not compute λ2, and as a result choose λ = λ2 as proposed

in case 2 above. Note however that we can always choose λ = λ1 since the latter is

easily computable. Clearly, this choice is optimal when case 1 holds and, even though

is not optimal when case 2 holds, we believe it might be a good practical choice in

both cases due to the fact that case 2 is quite unlikely.

5.3.1 Scaling of Acc-SP-HPE method for bounded composite saddle-
point problem

In this subsection, we consider the special case of problem (6) where the feasible set

X × Y is bounded and derive a complexity bound on the number of inner iterations

performed by the Acc-SP-HPE method to find an ε-saddle-point.

Corollary 5.3.4. Suppose that the assumptions of Theorem 5.3.3 hold, (x0, y0) ∈

X × Y and the diameter D of the set X × Y defined in (9) is finite. Then, for any

ε > 0, Acc-SP-HPE method finds an ε-saddle-point of (6) by performing no more

than

O
(⌈√

(λLf + λ2‖A‖2)

⌉
max

{
1,
d0D

λε

})
≤ O

(⌈√
(λLf + λ2‖A‖2)

⌉
max

{
1,
D2

λε

})
(152)

resolvent evaluations of ∂g1 and ∂g2.

Proof. Under the assumption that D is finite, it is straightforward to see from Def-

inition 2.1.1 and the definition of subdifferential that an (ε/2D, ε/2)-saddle-point is

always an ε-saddle-point. The first bound in (152) now follows immediately from the

fact that d0 ≤ D in view of the assumption that (x0, y0) ∈ X×Y , and from the bound

(150) in Theorem 5.3.3 with (ρ, ε) = (ε/(2D), ε/2). Clearly, d0 ≤ D also implies the

second bound in (152).
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We now make a few comments about choosing λ so as to minimize the right hand

side of (152) (up to an additive and multiplicative O(1) constant). Similar to the

discussion in the previous subsection, if

λ̂1 := max

{
Lf
‖A‖2

,
1

‖A‖

}
≤ D2

ε
=: λ̂2 (153)

holds, then any λ ∈ [λ̂1, λ̂2] minimizes the right hand side of (152) with minimum

value equal to O(1 + D2‖A‖/ε). Otherwise, if λ̂1 > λ̂2, then λ = λ̂2 minimizes the

right hand side of (152) with minimum value equal to O(1+D
√
Lf/ε). Observe that

regardless of which case holds, the right hand side of (152) assume its minimum value

O

(
1 +D2‖A‖

ε
+D

√
Lf
ε

)
(154)

when λ = min
{
λ̂1, λ̂2

}
.

Clearly, letting DX and DY denote the diameter of X and Y , we have D =

(D2
X +D2

Y )1/2. Hence, we have DX ≤ D and DXDY ≤ D2/2, and it is clearly possible

that DX << D and/or DXDY << D2/2. The rest of this subsection shows that the

Acc-SP-HPE method applied to problem (6) with X and Y endowed with suitable

scaled inner products has a resolvent complexity similar to (154) but with D2 in the

first term replaced by DXDY and D in the second term replaced by DX .

To achieve the above goal, we endow X and Y with new inner products

〈·, ·〉X ,θ := θ〈·, ·〉, 〈·, ·〉Y,θ := θ−1〈·, ·〉, (155)

respectively, and the associated norms then become

‖ · ‖X ,θ := θ1/2‖ · ‖X , ‖ · ‖Y,θ := θ−1/2‖ · ‖Y

and problem (6) becomes

min
x∈X

max
y∈Y

Ψ̂(x, y) = f(x) + 〈Aθx, y〉Y,θ + g1(x)− g2(y), (156)
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where Aθ := θA. Moreover, ‖Aθ‖θ = ‖A‖ where ‖C‖θ := maxx{‖Cx‖Y,θ : ‖x‖X ,θ ≤

1} and the gradient of f with respect to 〈·, ·〉X ,θ is Lf,θ-Lipschitz continuous on Ω

where Lf,θ = θ−1Lf . Also, the diameter of the feasible set X × Y with the product

space X × Y endowed with the Cartesian inner product 〈·, ·〉X ,θ + 〈·, ·〉Y,θ is

D2
θ := θD2

X + θ−1D2
Y .

Using the above observations, we immediately see that the Acc-SP-HPE method

applied to problem (6) where θ and λ are chosen as

θ =
DY

DX

, λ = min

{
max

{
LfDX

‖A‖2DY

,
1

‖A‖

}
,
2DXDY

ε

}
,

and X and Y are endowed with the inner products (155), computes an ε-saddle-point

of (6) by performing no more than

O

(
1 +
‖A‖
ε
DXDY +

√
Lf
ε
DX

)
(157)

resolvent evaluations of ∂g1 and ∂g2.

It is worth noting that the above complexity is the same as the complexity of

Nesterov’s smoothing method (see (4.4) in [40]).
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CHAPTER VI

NUMERICAL EXPERIMENTS

In this chapter, we conduct experiments to evaluate the performance of Acc-BD and

Acc-SP-HPE algorithms on a collection of saddle-point and/or convex optimization

problems.

The numerical performance of the two new methods is compared with several

previous methods including T-BD (see Section 4.2) and Korpelevich’s extragradient

method (Korp) [25]. Since the latter two methods, as well as the two methods studied

in this paper, are special cases of the HPE framework first proposed in [52], we have

used in their implementation an adaptive stepsize strategy (see [34]) which takes the

largest extragradient stepsize satisfying the HPE relative error criteria. It is worth

noting that this stepsize can be obtained by solving an easy quadratic equation.

All of these four methods can be further accelerated by using a dynamic scaling

technique discussed in [38, 34] to properly balance the magnitude of the primal and

dual residuals. However, we have not included this technique in our implementation

of these four methods (except in Section 6.1) since its implementation is complex and

time-consuming. The true values of the Lipschitz constants Lxx, Lyy and Lxy, all

computed with respect to Euclidean norm, are used for these four methods. We also

note our implementation of Acc-BD incorporates the safeguard that the subproblems

(73) and/or (74) are solved (exactly) using the recipe of Proposition 4.2.1 whenever

Lxx ≤ Lxy and/or Lyy ≤ Lxy, respectively.

We have also compared the four methods above with two other well-known meth-

ods, namely: Nemirovski’s prox-method (referred to Nemi-prox) [39, 60] and Nes-

terov’s smooth approximation scheme [40] (referred to Nest-app) where the smooth
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approximation is solved by a variant of Nesterov’s optimal method due to Tseng,

namely Algorithm 3 of [60] based on the update formula (18) there. We observe that

Nemi-prox is an extension of Korpelevich’s extragradient method which is based on a

general distance generating function (e.g., the entropy function
∑

i xi log xi) instead

of the standard one, namely ‖ · ‖2/2, used by Korpelevich’s method. Our implemen-

tation of Nemi-prox uses the L1-norm on X ×Y and the entropy distance-generating

function (see pages 15-16 of [39]). Nest-app approximates the non-smooth max com-

ponent of the objective function by adding a small positive multiple of the entropy

function to the max objective function and then applies the aforementioned Tseng’s

variant based on the entropy function to solve the resulting smooth approximation.

The latter method endows both X and Y with the L1-norm (see pages 149-150 of [40]).

To improve the performance of these two methods, their implementation follows the

recipe given in [60], i.e., the initial value of the Lipschitz constant is set to a fraction

(1/8 was used in [60] and also in our experiments) of its true value and is increased

by a factor of 2 whenever a certain convergence criterion (see equations (23) and (45)

of [60]) is not satisfied.

We now make some observations about the way our computational results are

presented. First, for problems with bounded feasible sets X × Y such as the ones

considered in Sections 6.1 and 6.2, we have used the duality gap criterion of finding

(x, y) ∈ X × Y such that gap(x, y) ≤ ε (see (22)) to terminate all methods due to

the fact that Nest-app and/or Nemi-prox have been originally designed for the latter

termination criterion. Second, we have excluded Nest-app from the comparison in

Section 6.2 due to the fact it has to solve the perturbed max subproblem exactly in

order to compute the gradient of the smooth approximation of the original objective

function and the fact that this subproblem is expensive for the saddle-point problem

considered in this section. Third, we have excluded both Nest-app and Nemi-prox

from the comparison in Section 6.3 since the methods considered there are terminated
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based on the notion of approximate saddle-point of Definition 2.1.1. The reason for

changing the termination criterion on this section is due to the fact that its saddle-

point problem has unbounded feasible set and the fact that none of the six methods

compared in this paper have been shown to converge based on the (stronger) duality

gap criterion in this situation.

Finally, all the computational results were obtained in MATLAB R2013a on a

quad-core Linux machine with 8GB memory.

6.1 Vector-matrix saddle-point problem

This subsection compares Acc-BD with T-BD, Korp, Nemi-prox and Nest-app for

solving a collection of instances of the minimization problem

min
x∈∆m

1

2
‖Cx− b‖2 + θmax(A(x)), (158)

where C ∈ <m×m, b ∈ <m, A1, · · · , Am ∈ Sn and A(x) =
∑m

i=1 xiAi ∈ Sn×n. It

is easy to verify that the above problem is equivalent to the following vector-matrix

saddle-point problem:

min
x∈∆m

max
y∈Ω

Ψ1(x, y) =
1

2
‖Cx− b‖2 + 〈A(x), y〉 (159)

where Ω = {y ∈ Sn : tr(y) = 1, y � 0}.

Hence, we can apply the above methods on the saddle-point problem (159). In the

numerical experiment, the matrices A1, · · · , Am and C are randomly generated such

that each entry is generated independently and uniformly in the interval [−1, 1] and

A1, · · · , Am are then symmetrized. All methods are terminated whenever the duality

gap at a candidate solution (x̃, ỹ) is less than a given tolerance ε, i.e.,

1

2
‖Cx̃− b‖2 + θmax(A(x̃))− min

x∈∆m

{
1

2
‖Cx− b‖2 + 〈A(x), ỹ〉

}
≤ ε. (160)

Both the current pointwise iterate (x̃k, ỹk) and the current ergodic iterate (x̃ak, ỹ
a
k)

defined in (82) are used to check the stopping criterion (160) for the methods Acc-BD,
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T-BD, Korp and Nemi-prox. As described in Theorem 3 of [40] (see also Corollary 3 of

[60]), the usual dual sequence generated by Nest-app is obtained by taking a weighted

average of a sequence of dual maximizers for the perturbed max subproblems. In our

experiment, we evaluate the max term of (160) at the current (usual) primal iterate

and the min term of (160) at both the current weighted average dual iterate and the

current dual maximizer, and choose the largest of the two values in order to obtain

the smallest value for (160).

Table 1 reports the CPU time and the number of eigen-decompositions (in order

to evaluate the resolvent of ∂IΩ) for each method. The CPU times reported in this

table do not include the time spent to evaluate the left hand side of stopping criterion

(160), which is checked every 5 iterations. Due to space limitation, Table 1 does not

specify the number of iterations performed by each method. We note however that

the number of iterations performed by T-BD, Korp, Nemi-prox and Nest-app can be

obtained by dividing the corresponding number of eigen-decompositions by 1, 2, 2 and

2, respectively. Also, the number of outer (HPE) iterations performed by Acc-BD

is equal to the number of eigen-decompositions due to the fact that Lyy = 0 for the

saddle-point considered in this subsection and the fact that the safeguard used in our

implementation ensures that the proximal subproblem in the y-variable is solved by

means of a single resolvent evaluation of ∂IΩ.

Observe from the results reported on Table 1 that the four HPE methods per-

formed better than both Nemi-prox and Nest-app on this collection of saddle-point

problems. We believe that this might be due to the fact that the implementation

of these methods incorporate both the adaptive stepsize and scaling strategies men-

tioned above (see [38] and [34] for details on these strategies). Also, Acc-BD was by

far the fastest among the six methods on this collection of saddle-point instances.
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Table 1: Computational results for the methods Acc-BD, T-BD, Korp, Nemi-prox
and Nest-app on vector-matrix saddle-point problems (159) with different sizes. All
methods are terminated using criterion (160) with ε = 10−4 and 10−5. CPU time in
seconds and the number of eigen-decompositions are reported for each method.

Tol. Problem Acc-BD T-BD Korp Nemi-prox Nest-app

ε m/n/Lxx
Lxy

time /#eigen time /#eigen time /#eigen time /#eigen time /#eigen

10−4

100/50/4.73 0.34/ 50 0.62 / 200 0.74 / 400 4.09 / 2730 68.04 / 33310
100/100/2.66 2.25 / 185 3.66 / 360 5.83 / 910 42.74 /6720 270.63 / 34650
100/200/1.55 9.12 / 210 18.48 / 530 11.88 / 520 77.06 / 3220 924.61 / 31200
200/50/9.30 0.83 /150 1.66 / 350 2.45 / 860 5.05 / 2060 101.02 / 29030
200/100/5.32 2.12 / 105 6.16 / 410 9.98 / 1080 25.88 / 3080 388.10 / 30520
200/200/2.72 10.85 / 160 19.60 /360 28.22 / 830 216.60 / 6620 1877.7 / 32150
500/50/19.88 1.38 /80 2.94 / 315 3.21 / 600 16.78 / 3600 147.75 / 19680
500/100/12.16 5.31 / 130 22.49 / 790 17.06 / 1090 199.88 / 12870 675.36 / 20970
500/200/6.98 35.81 / 265 141.43 / 1315 113.68 / 1890 489.88 / 8230 3346.9 / 21500

10−5

100/50/4.73 0.50/ 150 0.78 / 230 1.01 / 540 11.77 / 7240 N/A / >200000
100/100/2.66 4.51 / 345 5.14 / 515 8.40 / 1340 89.70 / 14520 N/A / >200000
100/200/1.55 19.38 / 420 31.11 /915 18.06 / 730 142.10 / 6570 N/A / >200000
200/50/9.30 1.51 / 305 2.15 / 500 4.37 / 1530 9.75 / 3760 N/A / >200000
200/100/5.32 4.28 / 225 8.73 / 605 14.35 / 1550 56.70 / 6290 N/A / >200000
200/200/2.72 15.87 / 220 27.19 / 500 45.64 / 1310 489.90 / 15090 N/A/ >200000
500/50/19.88 1.93 /130 4.16 / 440 4.47 /840 28.52/ 5870 N/A / >200000
500/100/12.16 6.06 / 150 26.47 / 925 22.41/ 1420 331.80 / 21430 N/A / >200000
500/200/6.98 66.12 / 445 185.11 / 1650 147.85 / 2500 1294.2 / 21260 N/A / >200000

6.2 Quadratic game problem

This subsection compares Acc-BD with T-BD, Korp and Nemi-prox for solving a

collection of instances of the quadratic game problem

min
x∈∆m

max
y∈∆n

Ψ(x, y) =
1

2
‖Bx‖2 + x>Ay − 1

2
‖Cy‖2 (161)

where A ∈ <m×n, B ∈ <m×m and C ∈ <n×n.

For this comparison, the matrices A, B and C are randomly generated such that

each entry is nonzero with probability p and each nonzero entry is generated inde-

pendently and uniformly in the interval [0, 1]. The above five methods are terminated

whenever the duality gap at the candidate solution (x̃, ỹ) is less than a given tolerance

ε, i.e.,

max
y∈∆n

{
1

2
‖Bx̃‖2 + x̃>Ay − 1

2
‖Cy‖2

}
− min

x∈∆m

{
1

2
‖Bx‖2 + x>Aỹ − 1

2
‖Cỹ‖2

}
≤ ε.

(162)

Both the iterate sequence {(x̃k, ỹk)} and the ergodic sequence {(x̃ak, ỹak)} are used to

check the stopping criterion (162) for the five methods considered in this section.

Table 2 reports the CPU time and the number of gradient evaluations (i.e., evalua-

tions of ∇xΨ(·, ·) and ∇yΨ(·, ·), each counted separately) for each method. This table
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also reports the number of outer (HPE) iterations for the Acc-BD method. The CPU

times reported in this table do not include the time spent to evaluate the left hand

side of stopping criterion (162), which is checked every outer iteration for Acc-BD

and every five iterations for the other four methods. Due to space limitation, Table

2 does not specify the number of iterations performed by the methods T-BD, Korp

and Nemi-prox . We note however that the number of iterations performed by these

three methods can be obtained by dividing the corresponding number of gradient

evaluations by 4.

Table 2 shows that T-BD had almost the same numerical performance as Korp on

this collection of quadratic game instances and they are outperformed by Nemi-prox

on several instances of this collection. Acc-BD was by far the fastest among the four

methods on all instances of this collection. The results also confirm our conclusion

in the paragraph following Corollary 4.4.2 that the performance of Acc-BD improves

as the ratio max{Lxx, Lyy}/Lxy increases.

Table 2: Computational results for the methods Acc-BD, A-SP-HPE, T-BD and Korp
on two-player quadratic games with different sizes and sparsities. All methods are
terminated using criterion (162) with ε = 10−3 and 10−6. CPU time in seconds and
number of gradient evaluations are reported for each method.

Tol. Problem size Lip. ratio Acc-BD T-BD Korp Nemi-prox

ε m/n/p Lxx
Lxy

Lyy
Lxy

time #grad./iter. time #grad. time #grad. time #grad.

10−3

1000/1000/0.1 48.11 48.03 0.37 276/7 0.86 700 0.94 720 1.68 1220
1000/1000/0.2 91.11 91.46 0.74 378/8 2.92 1520 3.05 1540 1.72 780
1000/2000/0.1 34.37 135.67 0.85 347/7 4.85 2080 4.98 2080 4.76 1880
1000/2000/0.2 64.61 257.13 2.22 569/9 20.22 5120 20.53 5120 5.93 1420
2000/1000/0.1 135.28 34.18 0.77 307/7 4.93 2160 5.20 2180 4.78 1920
2000/1000/0.2 256.76 64.77 2.00 508/8 19.23 4900 19.55 4900 5.80 1440
2000/2000/0.1 95.65 96.04 0.93 286/6 4.49 1220 4.57 1240 4.64 1220
2000/2000/0.2 181.91 181.75 2.25 406/6 15.12 2480 15.64 2500 4.98 780

10−6

1000/1000/0.1 48.11 48.03 0.91 802/32 2.47 2120 2.69 2140 14.24 10840
1000/1000/0.2 91.11 91.46 2.07 1058/28 7.64 4000 8.15 4020 12.49 6060
1000/2000/0.1 34.37 135.67 2.86 1188/38 17.87 7780 18.67 7780 36.25 14740
1000/2000/0.2 64.61 257.13 5.52 1400/30 56.91 14540 58.89 14540 42.69 10100
2000/1000/0.1 135.28 34.18 2.07 844/24 17.07 7480 17.90 3740 37.28 15120
2000/1000/0.2 256.76 64.77 5.10 1256/26 49.00 15300 60.81 15300 39.65 9700
2000/2000/0.1 95.65 96.04 2.80 790/20 13.34 3700 14.11 3720 42.72 11020
2000/2000/0.2 181.91 181.75 5.85 1029/19 41.73 6760 42.57 6800 37.56 5880

6.3 A regularized least-square problem

This subsection examines the performance of methods Acc-BD, A-SP-HPE, T-BD

and Korp for solving a collection of instances of the following regularized least-square
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problem

min
X∈<k×n

1

2
‖AX −B‖2

F + β‖X‖1 + γ‖X‖∗, (163)

where the matrices A ∈ <m×k, B ∈ <m×n and the regularization parameters β > 0

and γ > 0 are given. Note that the purpose of the regularization term β‖X‖1+γ‖X‖∗

in (163) is to simultaneously induce sparsity and low-rankness on X. Clearly, problem

(163) is a special instance of the class of optimization problem (28) where g1(X) =

β‖X‖1 and g∗2(X) = γ‖X‖∗. Hence we can apply the above four methods to solve

problem (163).

In the numerical experiment, the matrices A and B are generated as sparse matri-

ces with 1% nonzero entries that are independently and uniformly distributed in the

interval [−1, 1]. The regularization parameters β and γ are set to 0.0005n. In view

of Theorem 4.2.2, Theorem 4.4.1 and Theorem 5.3.3, T-BD, Acc-BD and A-SP-HPE

generate an easily computable SP-residual ((r̃xk , r̃
y
k), ε

x
k + εyk) at each iteration. We

have also implemented a version of Korp (see for example [35]) that generates the

above easily computable SP-residuals. The above four methods are then terminated

whenever

max

{
‖(r̃xk , r̃

y
k)‖

max{1, ‖x̃k‖, ‖ỹk‖}
, εxk + εyk

}
< ε. (164)

Table 3 reports the CPU time and the number of singular value decomposition (in

order to evaluate the resolvent of ∂g2) for the above four methods. Due to space lim-

itation, Table 2 does not specify the number of iterations performed by each method.

We note however that the number of iterations performed by T-BD and Korp can

be obtained by dividing the corresponding number of SVD computations by 1 and

2, respectively. Also, the number of outer (HPE) iterations performed by Acc-BD

is equal to the number of SVD computations due to the fact that Lyy = 0 for the

saddle-point considered in this subsection and the fact that the safeguard used in our
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implementation ensures that the proximal subproblem in the y-variable is solved by

means of a single resolvent evaluation of ∂h∗2.

Table 3 shows that Korp and A-SP-HPE was the slowest among the four methods

on 8 out of 9 instances. The computational results also show that Acc-BD was the

fastest on this collection, and it performed especially well when the computational

cost of computing a SVD is much larger than that of a matrix-vector multiplication.

Table 3: Computational results for the methods Acc-BD, A-SP-HPE, T-BD and Korp
on the regularized least-square problems (163) with different problem sizes. The four
methods are terminated using criterion (164) with ε = 10−3. CPU time in seconds
and the number of singular value decomposition are reported for each method.

Problem Acc-BD T-BD A-SP-HPE Korp

m k n Lxx
Lxy

time #svd time #svd time #svd time #svd

100 100 100 2.40 0.31 35 0.35 72 1.40 442 1.23 276
100 200 200 4.14 1.70 36 1.88 93 5.42 340 5.96 356
100 500 500 4.92 62.71 99 191.43 465 225.18 594 265.85 752

200 100 100 3.79 0.61 50 0.87 165 3.85 706 3.62 636
200 200 200 5.44 1.60 39 2.65 106 5.81 258 8.64 398
200 500 500 7.14 44.63 100 175.11 682 189.01 872 376.03 1350

500 100 100 5.70 0.28 26 0.61 91 1.59 284 2.48 350
500 200 200 6.61 1.72 38 3.23 108 8.67 362 10.85 414
500 500 500 9.49 57.06 126 169.56 681 211.79 1300 577.10 2558

6.4 Real-world Applications

In the section, we evaluate the performance of the two proposed methods Acc-BD,

A-SP-HPE for solving the real-world applications introduced in Section 2.3.

6.4.1 Sparse PCA

This subsection compares the performance of Acc-BD and A-SP-HPE to Korpelevich’s

extragradient method (Korp) for solving sparse PCA problem (31) on five real-world

data sets which were collected and studied in [26]. Table 4 reports the name of each

data set and their corresponding dimension of the matrix A in problem (31). In

our numerical experiment, the given covariance matrix A is scaled as that its largest

eigenvalue is 1 and the parameter ρ in (31)is set as 0.001.

76



The three methods compared in this subsection are terminated whenever the du-

ality gap (22) at the candidate solution (x̃, ỹ) is less than a given tolerance ε. Both

the iterate sequence {(x̃k, ỹk)} and the ergodic sequence {(x̃ak, ỹak)} are used to check

the duality gap (22) for the three methods considered in this section. Table 4 reports

the CPU time and the number of (outer) iterations for each method.

Table 4: Computational results for the methods Acc-BD, A-SP-HPE and Korp on
sparse PCA problems with different problem sizes. The three methods are terminated
whenever the duality gap (22) is less than ε = 10−2. CPU time and the number of
(outer) iterations are reported for each method.

Data set problem size Acc-BD A-SP-HPE Korp
#variables time / iter. time / iter. time / iter.

Arabidopsis thaliana 834 527.07 / 1490 1407.3 / 2870 1173.8 / 1860
Estrogen receptor 692 163.30/ 715 426.57 / 1375 283.07 /700

Leukemia 1255 1033.9/990 2728.5/1910 2440.7 / 1290
Lymph node status 587 87.6 / 550 226.97 / 1055 152.51 / 535

Hereditary breast cancer 1869 6242.9 / 1925 16813.2/3750 21407.3 /3485

6.4.2 Sparse inverse covariance estimation

This subsection compares the performance of Acc-BD and A-SP-HPE to Korpelevich’s

extragradient method (Korp) for solving a collection of instances of SICE problem

(33) on the same five real-world data sets used in Subsection 6.4.1. In our numerical

experiment, the given covariance matrix A is scaled as that its largest eigenvalue is 1

and the matrix Λ in (33) is set as 0.005 for off-diagonal elements and 0 for diagonal

elements.

The three methods compared in this subsection are terminated whenever the du-

ality gap (22) at the candidate solution (x̃, ỹ) is less than a given tolerance ε. Both

the iterate sequence {(x̃k, ỹk)} and the ergodic sequence {(x̃ak, ỹak)} are used to check

the duality gap (22) for the three methods considered in this section. Table 5 reports

the CPU time and the number of (outer) iterations for each method.
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Table 5: Computational results for the methods Acc-BD, A-SP-HPE and Korp on
SICE problems with different problem sizes. The three methods are terminated when-
ever the duality gap (22) is less than ε = 10−1. CPU time and the number of (outer)
iterations are reported for each method.

Data set problem size Acc-BD A-SP-HPE Korp
#variables time / iter. time / iter. time / iter.

Arabidopsis thaliana 834 89.22/235 255.98/ 335 716.65 / 1110
Estrogen receptor 692 50.31/ 205 154.46/ 305 440.64 / 1015

Leukemia 1255 652.80/595 1998.2/890 4741.3/ 1985
Lymph node status 587 25.77/ 150 78.29 /220 233.35/ 795

Hereditary breast cancer 1869 1578.9 / 1510 5030.8/ 2325 4263.9/3115

6.4.3 Truncated collaborative filtering for recommender system

This subsection compares the performance of Acc-BD and A-SP-HPE to Nesterov’s

method and Korpelevich’s extragradient method (Korp) for solving four instances of

the truncated collaborative filtering problem (36) where the matrix R are provided by

three synthetic data sets and the real-world movielens data set 1. The dimensions of

matrix R in these four instances are 200×200, 500×500, 1000×1000 and 2000×3000

respectively. In the synthetic data sets, R was generated as the sum of a low-rank

matrix (rank=50) and random noise, which are then truncated to the range [1,5]

and S is generated as binary matrix with 5% nonzero elements. The parameters in

problem (36) are set as µ = 0.05, l = 1 and u = 5 .

Instead of terminating the four methods using termination criteria, we fix the

number of outer iterations as 100 and plot the objective function v.s. time to compare

the four methods. As shown in Figure 1, while Ac-BD and Korp are the fastest two

methods, Acc-BD is slighted better than Korp on this set of problems and A-SP-HPE

is substantially better than Nesterov’ method.

1http://movielens.org
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Figure 1: Computational results for the methods Acc-BD, A-SP-HPE, Nesterov’s
method and Korp for solving truncated collaborative filtering problem (36). The
plots report objective function value v.s.time comparison on four data sets of size
200× 200, 500× 500, 1000× 1000 and 2000× 3000 respectively.

6.4.4 MR image recovering

This subsection compares the performance of Acc-BD and A-SP-HPE to Nesterov’s

method and Korpelevich’s extragradient method (Korp) for solving the MR image

recovering problem (37) on the four real-world images. For all four cases, we create the

noisy observation using a partial Fourier convolution and a masking operator to hide

40% pixels. The additive white Gaussian noise has standard deviation σ = 0.025.

The reconstruction operator W uses separable bidimensional Daubechies wavelets

with two vanishing moments which generate a dictionary with redundancy l = 13.

The parameters in problem (36) are set as µ = 0.0005 and ν = 0.005 .

Instead of terminating the four methods using termination criteria, we fix the
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number of outer iterations as 100 and plot the objective function v.s. time to compare

the four methods. As shown in Figure 2 – 5, while Ac-BD and Korp are the fastest two

methods, Acc-BD is slighted better than Korp on this set of problems and A-SP-HPE

is substantially better than Nesterov’ method.
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Figure 2: Recovering chest MR image: [Upper left] Computational results for the
methods Acc-BD, A-SP-HPE, Nesterov’s method and Korp for solving MR image
recovering problem (37); [upper right] original Image; [bottom left] observed image;
[bottom right] image recovered by Acc-BD.
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Figure 3: Recovering Renal Arteries MR image: [Upper left] Computational results
for the methods Acc-BD, A-SP-HPE, Nesterov’s method and Korp for solving MR
image recovering problem (37); [upper right] original Image; [bottom left] observed
image; [bottom right] image recovered by Acc-BD.
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Figure 4: Recovering coronal brain MR image: [Upper left] Computational results
for the methods Acc-BD, A-SP-HPE, Nesterov’s method and Korp for solving MR
image recovering problem (37); [upper right] original Image; [bottom left] observed
image; [bottom right] image recovered by Acc-BD.
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Figure 5: Recovering brain MR image: [Upper left] Computational results for the
methods Acc-BD, A-SP-HPE, Nesterov’s method and Korp for solving MR image
recovering problem (37); [upper right] original Image; [bottom left] observed image;
[bottom right] image recovered by Acc-BD.
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CHAPTER VII

CONCLUDING REMARKS

7.1 Summary of contributions

In this dissertation, two new methods are introduced for solving composite saddle-

point problems. The first method, Acc-BD, is a special instance of the BD-HPE

framework for solving CSP problem (5). It exploits the fact that the two prox sub-

inclusions are equivalent to composite convex programs. By using a Nesterov-type

accelerated method to approximately solve them. It is shown that the new method

outperforms previous BD-HPE methods both theoretically and computationally in

situations where max{Lxx, Lyy} >> Lxy. Moreover, The experiment results on seven

problem sets have shown that the new method significantly outperforms several state-

of-the-art algorithms.

The second new algorithm, A-SP-HPE, is proposed for solving a special class

of CSP problems (6). This method is a special instance of the hybrid proximal

extragradient (HPE) framework in which a Nesterov’s accelerated variant is used

to approximately solve the prox subproblems. One of the advantages of the this

method is that it works for any constant choice of proximal stepsize. Moreover, a

suitable choice of the latter stepsize yields a method with the best known (accelerated

inner) iteration complexity for the aforementioned class of saddle-point problems. In

contrast to the smoothing technique of Nesterov, this new accelerated method does

not assume that feasible set is bounded due to its proximal point nature.

Last but not least, this dissertation demonstrates a few examples of real-world

applications in the area of machine learning and image processing which can be for-

mulated as composite saddle-point problems and then can take advantage of the
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recent development in the area of numerical optimization for saddle-point problems.

7.2 Future work and challenges

First, it is worth noting that both the mirror-prox method by Nemirovskii [39] and

Nesterov’s smooth approximation scheme [40] can be implemented using the entropy

distance-generating function and with X and Y endowed with the L1-norm. In the

future, we plan to design variants of Acc-BD and Acc-SP-HPE that can take advan-

tage of entropy distance-generating function and compare it with the corresponding

variants of mirror-prox method and Nesterov’s method.

Second, it is still an open problem that if HPE and BD-HPE framework can be ex-

tended for for solving stochastic saddle-point problems. The challenge of this direction

is due to that the formulation of both frameworks uses error criteria (3) which must

be satisfied at every iteration. Since the stochastic setting of composite saddle-point

problem is extremely important for real-world applications, especially large-scale ma-

chine learning problems, we would like to continue to explore this direction in the

future.
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