
A SOLUTION PROCEDURE FOR THE

STRATEGIC TRANSPORTATION PROBLEM

A THESIS

Presented to

The Faculty of the Division of Graduate

Studied and Research

By

Peter Dean Keith

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Operations Research

Georgia Institute of Technology

November, 1973

A SOLUTION PROCEDURE FOR THE

STRATEGIC TRANSPORTATION PROBLEM

Approved:

Dr.]^^^ JJ^cJi.^, Cfe^rman

Dr. R. G. Parker

Professor Nelson K.^Kogers

Date Approved by Chairman; I 1 / 2 8 / 7 3

ACKNOWLEDGEMENTS

My thanks go to many for their guidance and encouragement

during this research and my stay at Georgia Institute of Tech­

nology, especially to Dr. John J. Jarvis, who served as both

academic advisor and chairman of my thesis committee, and to

Dr. R. G. Parker and Professor Nelson K. Rogers, who served as

readers on the thesis committee. Another special thank you

must go to Mrs. Nancy Price for her help during the typing of

this thesis. And finally, to all my friends in the Industrial

and Systems Engineering department, a quote from John Lennon

and Paul McCartney, "I get by with a little help from my friend

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ii

LIST OF FIGURES v

SUMMARY v i

CHAPTER

I. INTRODUCTION . . l

Statement of Problem
Example
Proposed Solution Method
Bases-to-Ports Transportat ion Problem
Ships-to-Ports Scheduling Problem
Branch and Bound Coupling Procedure
Assumptions and Definitions
Objectives

II. LEAST TIME TRANSPORTATION PROBLEM 13

A General Algorithm to Solve the Least Time
Transportation Problem

Example

III. NETWORK CONSTRUCTION FOR THE SHIPS-TO-PORTS PROBLEM. . 22

Ship Scheduling Network Construction Algorithm
Algorithm for the Application of Lower and

Upper Capacities, and Lengths to Arcs of
the Ship Scheduling Network

Formulation of the Ships-to-Ports Subproblem

IV. DISCUSSION OF HINKLE1S WORK 35

A General Min-Max Path Flow Algorithm
Determining Maximal Flow through Capacitated
Networks

Extensions of Hinkle's Algorithm for the
Ships-to-Ports Subproblem of Chapter III

iv

TABLE OF CONTENTS (Continued)

Page

V. CONSTRAINT SWITCHING 54

The Subopt Procedure Applied to the Maximal
Flow Problem

Standard Linear Programming Approach to the
Maximal Flow Problem

Theory of Constraint Switching in the Problem
of Maximal Flow through a Network with
Lower and Upper Arc Capacities

Constraint Switching Algorithm
Convergence

VT. THE CONSTRAINED SHORTEST PATH ALGORITHM FOR
ACYCLIC NETWORKS 78

The Constrained Shortest Path Algorithm
Example

VII. EXAMPLE 86

VIII. PROCEDURES FOR COUPLING THE TWO SUBPROBLEMS TO
TOGETHER 93

Branch and Bound
Utilizing Linear Programming Information in the

Branch and Bound Procedure
Total Travel Time Utilized in a Hueristic

Solution Procedure

IX. CONCLUSIONS AND RECOMMENDATIONS 114

A Summary of Research Results
Other Applications
Extensions and Areas of Further Research

APPENDIX A 128

APPENDIX B 155

BIBLIOGRAPHY 167

v

LIST OF FIGURES

Figure Page.

1. The General Strategic Transportation Problem 3

2. A Specific Example of the Strategic Transportation
Problem 10

3. A Network With Only Upper Arc Capacities and

Arc Costs 36

4. The Ship Scheduling Network for the Example 89

5. The Ship Scheduling Network for the Example,
Renumbered 90

6. A Portion of a Tree Created by a Branch and
Bound Algorithm 9 6

vi

SUMMARY

This thesis summarizes the research results on a class of

closure networks. A solution procedure, for a strategic transportation

problem is presented, which includes a decomposition of the total problem

into two subproblems and algorithms to solve each of these subproblems.

One algorithm presented handles lower bounds on arc flows in the context

of a maximum flow network problem. This algorithm employs a constraint

switching operation coupled with the standard methodology of decompo­

sition in linear programming, to allow only m (number of arcs in the

network) constraints in the constraint set and thus a basis of size m

by m. A least time transportation algorithm is also used in the solu­

tion procedure, alang with a branch and bound scheme to couple the two

subproblems. Some basic linear programming relationships are employed

to change the requirement vector of the transportation problem, thus

allowing an iterative solution procedure to the strategic transportation

problem. A hueristic algorithm is also examined as a possible coupling

procedure between the two subproblems.

An efficient method of solving a constrained shortest path

problem is also presented. This procedure handles negative costs on

the arcs of an acyclic network. It is a modification of the labelling

technique proposed by Hinkle and it allows a one pass solution for

column generation.

1

CHAPTER I

INTRODUCTION

The objective of this thesis is to report the results of research

on a class of network problems,known as minimal closure problems.

Stated briefly, the problem is to determine the flow through a

capacitated network such that arrival time of the last unit of flow from

source to the sink is minimized.

Before discussing an algorithmic procedure to solve this type of

problem, an example of a minimal closure problem is presented below.

This example will be used throughout this thesis as a medium, through

which the solution methodologies will be presented.

Example

A well known military problem, called a strategic transportation

problem or resupply problem, falls into the class of minimal closure

problems. In a strategic transportation problem there are commodities

or goods which are stored or based at inland supply depots. There are

also a number of coastal ports to which these goods can be moved from

the supply depots, over associated transportation links. Once the goods

have been transported to the ports, they are to be loaded on ships and

moved to a pre-determined resupply point or objective area. The ships,

however, are located at sea and must travel to a port in order to take

on cargo before they can move onward to the objective area. Once the

supplies reach the objective area, they are either stored temporarily

2

or used immediately to resupply a military force. In either case,

however, the strategic transportation problem ends once these supplies

have reached the objective area. Since the strategic transportation

problem is concerned with the movement of supplies and ships through

time, it defines an initial time reference point (i.e. the model begins

at a zero time point). So a strategic transportation problem may be

stated as: given that there are known quantities of supplies at the

inland bases we wish to assign the supplies at each port, such that

the ships may be scheduled to move to the ports, take on cargo, and

travel to the objective area in such a manner that the last ship will

arrive at the objective area in a minimum amount of time (i.e.

minimal closure with respect to the initial time reference point).

A graph of the strategic transportation problem, showing the relative

placement of the bases, ports, ships, and the objective area; along

with all the associated transportation links is presented in Figure 1.

Proposed Solution Method

The strategic transportation problem seems to contain a very

intuitive separation scheme. The supplies must first be transported

from the inland depots to the ports, and then loaded onto ships for

transportation to the objective area. Since supply storage may occur

at the ports, a natural decomposition of the problem can occur at the

ports, that is divide the total problem into two subproblems. The first

subproblem is that of transporting the supplies from the inland bases

to the ports and the second subproblem is the scheduling of the ships

to the ports. Included in the second subproblem is the scheduling of

Figure 1. Strategic Transportation Problem.

4

the ships to the objective area. The first subproblem could be solved

by a standard transportation model. However, the ship scheduling is

dependent upon the allocation of supplies to the ports and the times at

which these supplies arrive. A ship may not leave a port for the objec­

tive area until it has been loaded with supplies. Thus for a specified

allocation of supplies to the ports, the supplies must be transported

in a minimum amount of time. Therefore, the first subproblem must take

into consideration this constraint of minimum transportation time of

the supplies in addition to satisfying the demand requirements at each

port. After determining the quantities and arrival times of the supplies

at each port, we can then solve the second subproblem. If ships are

considered as units of flow and the supplies at each port are considered

as capacities on arcs, the ship scheduling subproblem becomes a maximal

flow network problem through a capacitated network. The second sub-

problem must also consider minimization of transportation time since

the closure time for the total strategic transportation problem is

defined as the arrival of the last unit of supplies at the objective

area. Thus the second subproblem must determine the actual schedule

of the ships to each port. Since the first subproblem must explicitly

transport supplies and the second subproblem is implicitly transporting

supplies, the connecting link between the subproblems is the allocation

of supply requirements to each port (i.e., what quantities are required

at each port).

There are a number of other transportation problems, which can be

classified as minimal closure problems, that exhibit the same decomposi­

tion capability as the strategic transportation problem. The perishable

5

goods- ii&aUastry is another example of this problem. Suppose a

producer of canned foods has a number of collection centers located

throughout a crop producing area, and one canning factory located near

a major urban area where the finished products will be sold. At

harvest time the producer purchases the crops from a number of farmers

in the growing area and now the crops must be moved through the collec­

tions centers and onto the factory before spoilage destroys the crops.

The producer would like to transport the crops to the collection centers,

have them loaded onto carriers (i.e. tracks or railroad cars for

instance), and have the carriers arrive at the canning factory such that

the last of the crops to arrive, will not spoil.

Bases-to-Ports Transportat ion Problem

Let the first subproblem of the strategic transportation problem

be called the Bases-to-Ports transportation problem. In general terms

this subproblem is the transporting of the supplies to the ports so

that they can be available for loading when the ships arrive. The method

utilized in this thesis to solve the Bases-to-Ports subproblem is an

application of the Least-Time Transportation Algorithm. The approach

taken by the least-time transportation-type problem, is to determine

the minimal time set of travel links between the sources and the des­

tinations, such that all of the requirements for supplies at the ports

are met. At each iteration, cells with the longest time carrying flow

and cells with longer times are penalized. These cells with longer

times are effectively removed from further consideration by assigning

them arbitrarily large times. The flow on the cells with the largest

6

times of the cells carrying flow, is successively reduced until no more

decreases can take place. By reducing the flow on the larger time

cells, the least time transportation algorithm determines the minimal

time set of cells that will allow the transportation of the supplies

from the bases to satisfy the port requirements for supplies. In

addition, this reduction process of the least time transportation algor­

ithm assures that all of the supplies arrive at the ports in a minimal

amount of time (i.e. minimal closure is assured for the Bases-to-Ports

transportation problem).

Ships-to-Ports Scheduling Problem

Let the second subproblem of the strategic transportation problem

be called the Ships-to-Ports scheduling problem. If all of the ships

are located at sea when the strategic transportation problem begins

(i.e. at time zero) this subproblem is concerned with getting the ships

to the ports as soon as is feasible, loading the supplies and dispatch­

ing the loaded ships to the destination area. An additional objective

of the Ships-to-Ports problem is that the arrival time of the last ship

at the objective area is minimized. The actual scheduling problem could

be formulated as a maximal flow problem through a capacitated network.

However, this additional objective of minimal closure (i.e. arrival

time of the last ship is minimized) requires the minimization of the

maximal length path, carrying flow through the network. Hinkle (1)

has described this problem as a min-max network flow problem. His algor­

ithm requires the solution of a series of linear programming problems.

His procedure works in a similar manner to the least-time transportation

7

algorithm in that from each linear programming problem to the next, the

longest path carrying flow and all paths at least as long are penalized.

These transitions effectively take place through the determination of a

path, of shorter length, to enter the basis that will reduce the flow

on the longest path in the basis. A constrained shortest path algorithm

is utilized to develop such a "reducing" path. The application of

Hinkle's algorithm to the Ships-to-Ports scheduling problem assures the

arrival time of the last ship at the objective area in minimized (i.e.

minimal closure for this subproblem).

Branch and Bound Coupling Procedure

The decomposition of the strategic transportation problem, occurs

at the ports, in that the first subproblem is considered with transport­

ing the supplies from the bases to ports, and the second subproblem is

considered with transporting these supplies from the ports to the objec­

tive area. Hence the requirements for supplies at the ports become the

connecting link :between the subproblems. It may be the case that

varying the destination and/or transportation times of certain supplies

from the bases might lead to a more favorable scheduling of ships

through the ports in such a way the overall closure time (the time the

last ship arrives at the objective area) is reduced. This situation

would require the changing of the requirements for supplies at the ports

and, in turn, through the new solution to the least time transportation

problem the new arrival times of the supplies would generate a schedule

of ships.

8

Assumptions and Definitions

The supplies at the inland bases are assumed to be packaged in

standardized containers, which may contain a single type of supply or a

mixture. However, when the resupply becomes necessary these containers

will be brought out of storage and transported, not the individual

supplies. The use of the term, supplies, will imply these standardized

containers of supplies. A common unit of supplies must be defined, for

use in both of the subproblems of the strategic transportation problem.

The common unit will be a ship load of supplies, that is the number of

containers that a ship can be loaded with (i.e. if a base has three

units of supplies stored, it would have enough containers of supplies

to load three ships). Implicit in the definition of the common unit

to be transported, is the assumption that each ship is of the same size

and has the same load carrying capacity. It is also assumed that each

ship travels at the same speed. Therefore all of the ships are part

of a standardized fleet, in that the size, speed, and load carrying

capacity of each ship is identical. We further assume that the ships

are randomly located at sea, that is to say, all of the ships are not

anchored near one port, but they are travelling at sea, not as one fleet,

but either as individual ships or as small groups. However, the precise

location of each ship is known, and it is denoted by the time required

to travel from its location to any of the coastal ports. If supplies

are available at a particular port when a ship arrives, the containeriz­

ed cargo is immediately loaded and the ship can then sail for the objec­

tive area. Hence at each port there does not exist a berth capacity

constraint, and there is assumed to be adequate storage for any supplies

9

that must wait for a ship to arrive.

The reader may be curious, at this point, as to why all of these

simplifying assumptions about the strategic transportation problem were

made. The military* has been studying the problem of resupply and has

proposed that in the 1980-1990 time frame of reference that (1) con­

tainerized shipments of supply will be generated in ship load quanti­

ties from inland container storage bases; (2) the operation of ports will

be, simply to transfer these containerized shipments from one mode of

transportation to another; and (3) the shipments of supplies will be

transported by standard size container vessels. Therefore, the

strategic transportation problem discussed at the beginning of this

chapter, becomes the problem the military is concerned with for the

future.

A graphical example of the strategic transportation problem is

now presented. There are five units of supplies stored at the inland

bases, one unit at base one and four units at base 2. The port require­

ments are two units at port one and three units at port two. The travel

times from the bases to the ports, from the ship locations to the ports,

and from the ports to the objective area are indicated on Figure 2.

Two units of supplies will arrive in port one at time 3, one unit will

arrive in port two at time 2, and two units will arrive in port two at

time 4. To obtain the minimal closure for the total strategic trans­

portation problem, the ships must be scheduled as follows: ship one

to port two, ship two to port two, ship three to port one, ship four

_
Preliminary discussions concerning the future resupply systems have

been conducted by the military. However, the specific results of these
discussions are not presently available to the public.

Figure 2. A Specific Example of the
Strategic Transportation Problem.

11

to port two and ship five to port one. The closure (i.e. the arrival

time of the last unit of supplies at the objective arc) is seven time

units, and occurs since ships two through five will arrive at the

objective area at time seven.

Objectives

The objective of this research was to investigate and character­

ize a strategic transportation problem as one type of minimal closure

network problems, and to develop a computationally feasible algorithm

to solve this problem. This problem has been formulated, in terms of

the future military resupply problem with the hope that intelligent

decisions can be made with respect to the economic feasibility of this

type of supply system, in light of the solution procedure presented in

this thesis.

Specifically, a decomposition technique is investigated to

generate the two subproblems of the strategic transportation problem.

The Bases-to-Ports subproblem is formulated as a modified standard

transportation problem and a least time transportation algorithm is

applied for the solution of it. The Ships-to-Ports subproblem can be

formulated as a maximal flow problem through a capacitated network.

Hinkle's min-max path flow algorithm could be used in the solution of

this subproblem, if the algorithm allowed lower capacities in the net­

work. His algorithm is considered and an extension is also investigated

to handle lower capacities in the maximal flow network problem. His

"reducing" path generation algorithm is examined in the context of the

lower capacities in the network to determine if any modifications

12

are necessary and if the algorithm can be made computationally more

efficient for the application of the strategic transportation problem.

Finally, two schemes are investigated as possible coupling procedures

between the two subproblems of the strategic transportation problem.

One of these schemes if a branch and bound algorithm and the other is

a hueristic algorithm.

13

CHAPTER II

LEAST TIME TRANSPORTATION PROBLEM

In Chapter I it was stated that the strategic transportation

problem could be decomposed into two subproblems. One of these sub-

problems is the Bases-to-Ports transportation problem. A general

transportation problem is concerned with moving some commodity from one

group of locations, which are known as sources, to another group of

locations, which are known as destinations. Different quantities of

the particular commodity are stored at each source, however, these

quantities are known for each source. There is also an amount of the

commodity that is required at each of the destinations, and again each

of these required quantities are known. With each source there is an

associated set of travel links which connect the source to any one of

or all of the destinations. One of these travel links might be an

airline route, a highway, or a rail line which connect one of the

sources to one of the destinations, and there is a cost associated with

moving a unit of supplies along each of these links. The problem now

becomes one of transporting all of the commodity that is stored at the

sources across the travel links to the destinations, so that required

amounts at each destination is fulfilled. However, there would exist

a number of different ways to meet the commodity requirement at each

destination by transporting the commodity across different travel

links. If the minimal cost set of travel links between the sources

14

and the destinations could be determined, and all the commodity require­

ments were satisfied, then the optimal, minimal cost, solution to this

transportation problem would have been found.

However, the objective of the Bases-to-Ports transportation is

not to determine the minimal cost set of travel links. It is to deter­

mine the set of travel links such that the supplies from the sources

reach the destinations in such a way that the arrival time of the last

unit of supplies is minimized. If the cost associated with trans­

porting a unit across the travel link is interpreted as the time re­

quired to transport a unit across the link, then the standard transpor­

tation problem can be formulated as:

(1) m n
Min z = £ £ c^j x^j

i=l j=l

st
n
S X-. = a. i = 1, 2, ...m

j=l J

m
S x * = b j = 1, 2, ...n
i=l J J

x.. > 0 V i. j

where a - quantity of the commodity stored at source i i

b - quantity of the commodity stored at destination j

c ^ = cost (or time) of transporting a unit of the commodity

from source i to destination j over travel link (i, j)

x = the variables, the quantity of the commodity transported

from source i to destination j over travel link (i, j)

15

This transportation problem is known as the time-minimizing transpor­

tation problem, because of the special interpretation of the c^j , £ l«

There are algorithms available in Dantzig (2) and Taha (3) to solve

this problem. However, if the transportation problem must determine

the minimal arrival time set of travel links (i.e. the set of links

such that arrival time of the last unit will be minimized) the formula­

tion is slightly different from (1) and is given below:

(2) Min { Max \ 8 c) \
vi,j J J

m
s. t. 2 x.. = a. i = 1 2, ...n

ij l
i=l
n
2 x. . = b. j = l , 2 , .m

ij J

x.. £ 0 V i, j

1, if x > 0 (i.e. 1 if travel link (i,j) is used)
where 8 . . = 1 n , ^ .

ij 0, otherwise.

This problem is known as the least-time (or min-max) transportation

problem.

The reader might think that for a given set of commodity avail­

abilities at the sources and commodity requirements at the destina­

tions, that both problems (1) and (2) will generate the same optimal

solution. Let us examine the assignment problem in light of the two

formulations given above. The assignment problem is a simplified

transportation problem, in that all of the source availabilities (a 1 s)
i

16

and the desitnation requirements (b^fs) are one. If there are three

sources and three destinations in the assignment problem, let the time

required to transverse the travel links (i,j) be given in the following

matrix,

DESTINATION

1 2 3
S
0 1 12 11 11
u

f c..] = R
C

2 11 1 11

E 3 11 11 1

The optimal solution using the time-minimizing transportation model (1)

would transport one unit along each of the following links, (1,1),

(2,2) and (3,3). This solution is shown below in tableau form.

DESTINATION

S
1 CM

 3

0 1 1 0 0
u
R 2 0 1 0
C
* 3 0 0 1

m n
The objective function £ S c. . x.. would have a value of 14, but the

• n • i ij XJ i=l j=l J

unit transported over link (1,1) would arrive at the destination one at

time 12. Now if this assignment problem was solved using the least-

time transportation model, the optimal solution, in tableau form, would

17

DESTINATION

CO

1 2 3

0 1 0 1 0
U
R 2 1 0 0
C
E 3 0 0 1

; x matrix,
ij

It can be noted that even though this optimal solution has reduced the

arrival time of the last unit of the commodity from 12 to 11 (max (c_

21 6^jl = Max { c^2> °2 9 C33*^ = t b e tota-'- ti 1 1 1 6 required to
m n

transport all of the commodity, £ H e x , has increased from 14
i=l j=l ij ij

to 23. So there exists an important trade-off between the arrival time

of the last unit and the total transportation time, that is, in order

to obtain the set of travel links which minimizes the arrival of the

last unit a penalty in the sense of total time (or cost) must be paid.

There does not seem to exist any connection between the time-

minimizing transportation problem and the least-time transportation

problem, but the time-minimizing problem can be used as part of the

solution procedure of the least-time problem. Since the least-time

model determines the set of travel links such that arrival time of the

last unit is minimized, a general solution procedure could consist of

selecting the minimal cost (or time) set of links to transport the

commodity across, penalizing the link with the longest time over which

the commodity is transported and any links with longer time and then

again selecting the minimal cost set of links. This type of selection

and penalization scheme would be continued until the set of links was

determined, that did in fact minimize the arrival time of the last unit

18

at the destinations. If the selection step guaranteed the optimal,

minimal cost, set of travel links then the solution procedure for the

least-time transportation problem would have the minimum number of

selection and penalization steps. Therefore the time-minimizing trans­

portation problem could be used for the selection of the new set of

travel links at iteration of the least-time solution procedure. The

steps of this algorithm are specifically outlined below:

An Algorithm to Solve the Least Time Transportation Problem

STEP 1: Start with the initial values

STEP 2: Solve a time minimizing transportation problem with the

current c.. values

STEP 3: Determine if the optimal solution has changed from the

previous solution. If YES, penalize the longest time link,

over which the commodity is transported and any links with a

longer time, with an arbitrarily large time, and return to

Step two. In NO, Stop.

This algorithm will reduce the flow of the commodity off the links with

the longest transportation time at each iteration until either no

further reduction is possible or new set of links with a smaller

longest time is determined. If a new set of travel links is found,

the algorithm will reduce the flow on the longest time link of this set.

Since the algorithm reduces the flow on the longest time link at each

iteration, upon termination the set of travel links will have been

determined such that the arrival time of the last unit of the commodity

at the destinations will be minimal. Another algorithm for solving the

least-time transportation problem is presented in Taha (3) .

19

Example

The algorithm described above will now be applied to an example.

Let: DESTINATION
S
0
U

a = b =
1 J C

The optimal solution to time-minimizing transportation problem using the

initial c 's is given in tableau form
ij

DESTINATION

S
1 2 3

0 1 2 0 0
u
R 2 1 2 1
C
E 3 0 4 0

;x matrix
ij

The longest time, link carrying the commodity is (2,1) and this link

along with link (1,3) will be penalized by using a C of 100. The
ij

optimal solution to the time-minimi zing problem using the new c ^ j , s i-s

DESTINATION

s
1 2 3 1 CM

 3

0 1 3 3 100 1 2 0 0
u
R 2 100 4 1 2 0 3 1
C
E 3 4 2 2 3 1 3 0

c matrix
ij

x matrix
ij

Now links (2,2) and (3,1) have the longest times of the links carrying

flow, so they also will be peanlized. The solution to the time-minimiz-

20

ing transportation problem using the new c ^ j , s does not change from

the solution given above. Therefore the" optimal solution to the least-

time transportation problem is also the above solution. From this

tableau and the original C matrix it can be seen that the arrival time

of the last units to the destinations is four (i.e. c and c equal
22 31

four) and all the other units of the commodity will arrive before time

four. And therefore the closure is four and the minimal closure solu­

tion to this example problem is:

x = 2
11

x22 = 3

X23 = 1

x 3 1 = 1

X32 = 3

and z = 4.

In the context of the Ships-to-Ports transportation problem,this

minimal closure solution (i.e. solution to Bases-to-Ports transportation

problem when formulated as a least-time transportation problem) if of

great interest. This solution will render information concerning the

arrival times of all the units of the supplies and it will also insure

the arrival time of the last unit of the supplies at the ports will be

minimal. The number of units transported and their corresponding

arrival times at each port will be used in the Ships-to-Ports scheduling

subproblem as input information. The quantity of supplies arriving at

each port will dictate the number of ships that must travel to each

port and the arrival times of the supplies will indicate the times at

21

when ships can be loaded and dispatched for the objective. In Chapter I

it was stated that Ships-to-Ports scheduling problem could be formulated

a maximal flow problem through a capacitated network. In Chapter III

the generation of a network, which uses the information obtained from

the optimal solution of the Bases-to-Ports subproblem, to accurately

represent the Ships-to-Ports scheduling problem will be discussed.

22

CHAPTER III

NETWORK CONSTRUCTION FOR THE SHE PS-TO-PORTS PROBLEM

The least-time transportation algorithm discussed in Chapter II,

will generate the minimal closure solution to the Bases-to-Ports

transportation subproblem. From the master problem's point of view,

the supplies have been moved to the port in a minimal closure manner,

now the ships must be scheduled to the ports so that they can be loaded

with supplies and then travel to the objective area. If the Ships-to-

Ports scheduling problem is to be formulated as a network flow problem,

this network must incorporate information about the supplies and informa­

tion about the ships in order to accurately represent the movement of

both supplies and ships from the ports to the objective area. The supply

information required is the quantities and arrival times of the supplies

at each port. The network must reflect these arrivals through time.

The ship information required is the arrival time of each ship to each

port, if indeed every ship can travel to every port, and the travel

time from each port to the objective area. The arrival time informa­

tion for each ship would be known and available in a travel time

matrix in which an entry would be the time required for that ship to

travel to a particular port. The network must also reflect these

arrivals through time. The port-to-objective area travel times are

also known. Therefore, scheduling network must accurately represent

all three pieces of information. To represent the arrival of supplies

and ships and the departure of ships for the objective area, this

23

network must view each ports1 operation through time. In addition

the network must reflect each ships1 travel to the scheduled port and

from the port to the objective area. Conceptually, the construction

of this network will take place in three steps, one for each of the

necessary pieces of information.

Generally, the construction scheme might begin with the opera­

tion of each port through time. If each port was represented by a node

of the network, the port's operation through time could be viewed by

breaking up each port node into nodes to reflect the port at the end

of a unit of time. Each of the subnodes would be connected by an arc

which represents the passage of a unit of time at the port. The decom­

position of the port nodes into subnodes and arcs connecting them is

known as temporal expansion of a node. Each of these subnodes could

represent a port at the beginning or the end of a time unit, but since

there are not any supplies stored at the ports prior to transportation

from the bases and there are not any ships docked at the ports at time

zero, the subnode which might be the port at the beginning of the first

time unit has no meaning. Additionally, the travel times for the

supplies and the ships are at least equal to one time unit, the first

unit of time passage at the port also is meaningless. Thus each sub-

node reflects a port at the end of a time period. There will be a

temporal expansion for each of the ports in the Bases-to-Ports sub-

problem and its size (i.e. the number of time units represented) must

be large enough to allow the arrival of all the supplies and the

arrival of all possibly scheduled ships to that port.

24

Each ship and its associated travel links to the ports must also

be a part of this network. So each ship can be represented by a node,

and from each ship node there must be arcs connecting it to the temporal

expansions of the ports. These arcs will represent the travel links

that a ship might travel over to reach a particular port. In general,

there will be one arc eminating from a ship node for each port to which

the ship might be scheduled. Each arc from a ship node must be

connected to the particular subnode of the portfs temporal expansion,

which represents the time unit that the ship could arrive at the port

if it were scheduled there.

A node must also be included in the network to represent the

objective area. However, to simplify the actual construction of this

network, let this node be decomposed into subnodes, known as port sinks.

The objective area node will decompose into one port sink for each port

in the Bases-to-Ports subproblem. Each port sink will be connected

to the subnodes of its ports1 temporal expansion by arcs which repre­

sent the travel link over which a ship must travel to reach the objec­

tive area. To complete this network and to facilitate the eventual

solution of this network problem by the techniques of network theory,

a super source node along the connecting arcs to the ship nodes, and a

super sink node along with arcs from each of the port sink are added to

the network.

This network, now known as the ship scheduling network, now will

accurately represent the movements of ships to and from the ports and

the arrival of supplies at the ports. A specific construction algorithm

is now presented.

25

Ship Scheduling Network Construction Algorithm

STEP 1. Construct the temporal expansion of each port, where each node

represents a port at the end of one time period, and each arc

connecting the nodes represents the passage of a unit of

time for that particular port.

(lm) (2^. (̂ T)

where n = number of ports

m = max ft... SP]
U ij

V j en
t.. = time at which supplies arrive at port j

SP = ship to port travel time matrix

2. Create a super source node, and apply connecting arcs to a set of

nodes which represents the ships that are to be scheduled.

K = Total number of ships available for scheduling.

26

3. Apply all connecting arcs from the ship nodes in Step 2 to the

port nodes in Step 1 so that each pair of connected nodes will

represent the time at which ship i can arrive at port j, e.g., if

ship 1 cannot arrive at port 1 until time 2 then the node pair would

be:

©
0 *@

©
4. Create a sink node for each port i, and apply connecting arcs from

each node in step 1 to the sink (i.e., there will be one arc to the

sink node for each of the m nodes in the time expansion of port i).

where the node is labeled (it) to represent the sink for port i.

5. Create a super sink node and apply connecting arcs from the port

sink nodes, it, to the super sink node, T.

27

The complete network for a two ship, two port problem is shown below.

After constructing the ship scheduling network, the information

gained from the optimal solution of the Bases-to-Ports transportation

problem must be incorporated with it, so as to accurately represent the

arrival of the supplies at the ports. The arrival of the ships must

also be reflected on this network. In addition to the arrival of the

supplies the actual quantities of supplies must be represented. Since

the network will reflect the movement of both supplies and ships, a

common unit of flow through the network was necessary. Hence, the

assumption that supplies were transported in ship load quantities was

made, but this assumption was reasonable in light of the 1980-1990

military resupply problem discussed in Chapter I. To accomplish the

representation of arrivals of supplies and ships, lower and upper capa­

cities will be applied to arcs of the ship scheduling network to re­

flect the requirements of flow through the network.

The amount of flow through the network from the super source to

28

the super sink will be a known, fixed amount equal to the number of

ships available (which is equivalent to the total number ship loads of

supplies that must be transported from the inland bases to the objec­

tive area). With the optimal solution to the Bases-to-Ports transpor­

tation subproblem, the assignment of the units of supplies to the ports

is known. Each ship load of supplies requires a ship to transport it

to the objective area. Thus, if V i x equals the number of ship loads

of supplies that will eventually arrive at port j, it also is the number

of ships that must move through port j in order that these supplies are

transported to the objective area.

In general terms, the information from the optimal solution of

the Bases-to-Ports subproblem will be used as upper and lower arc

capacities of the ship scheduling network. The arcs representing the

passage of a unit of time at a port will not have any unlimited storage

of the supplies at the ports and there is an unlimited number of berths

for the ships at the ports. Since the supplies at a particular port

can be stored until a ship can arrive, the upper capacities are accumu­

lative however, so that the upper capacity of port j at time p, is the

sum of the ship loads that arrive at time 1 plus those that arrive at

time 2, etc. (in general the upper capacity at port j in time p, u =
m JP

x.., , where x . = ship loads of supplies that arrive from base i k=l ijk' ijk

to port j at time k, and m is the total passage of time at the port

in the temporal expansion). Due to the storage capability of the

ports, it is unnecessary and sometimes not possible for a

ship to eaateri the port for loading purposes exactly when the

29

supplies arrive, thus lower are capacities on flow would have no

meaning, so a zero value is used for these arcs.

The arcs which connect subnodes of ports'temporal expansion and

the ports1 port sink node represent the travel link between this port

and the objective area. So at the end of p time units in port j fs opera-
P

tion, the amount of supplies that have arrived is £ x , this
k=l iJ k

number also represents the maximum number of ships that could have moved

through port j and onto the objective area. Therefore, the upper capa­

cities on these arcs must indicate this upper bound on the amount of

flow at time p, so for an arc connecting a subnode at the end of time
P

unit p to the port sink node will have an upper capacity of £ x . .
k=l 1 J *

There is not a required amount of flow on a particular arc of this type,
so the lower capacity will be zero.

The total amount of supplies that move through port j is now

E E x , and this number of ships must also move through port j.
¥k ¥i
In order to require exactly ^ ^ x . s h i p s come to port j to take on H Vk Vi ijk *
supplies over the whole temporal expansion of port j a lower bound on

the flow in some arcs must be used. Since the flow in the network (i.e.

the ships) that has come through any of the nodes in the temporal expan­

sion of a port must leave through the port sink node,then if a lower

bound and annupper bound on arc capacity were placed on the arc between

the port sink node and the super sink, an exact amount of flow (or

ships) could be forced through the port. Therefore, a lower bound equal
to E Ex... and an upper bound equal to E E x a r e placed Vk Vi iJk ^ V i ijk
on the arc to insure that ^ ^ x. ships will move through port j

¥k ¥i 1 J

30

(carrying ^ ^ x. ship loads of supplies).
¥k ¥i 1 J

Bounds on arc flows must also be applied to those arcs which

represent the travel links for the ships to the ports. Since each ship

can only travel to at most one port, the upper bound on the flow in

these arcs must be one. However, each ship can travel to anyone of

the n ports, so the lower bound on these arcs must be zero. If the lower

bound was one, the ship would be required to travel to all of the ports

which would be equivalent to split the ship into n pieces, and each

piece would have to travel a port. This situation would cause a dis­

crepance with the units of supplies at the ports., in that a ship load

of supplies would be carried by only a portion of a ship. Explicit

lower and upper bounds on flow are not necessary for the arc, connecting

the super source node and the ship nodes, since they are only added to

network to link up the super source node to the rest of the network.

However, each unit of flow through network does represent a ship tra­

vel and since each ship can only be assigned toone. port, an upper bound

of one and a lower bound of zero will be used as the capacity restric­

tion on these arcs.

With the use of lower and upper bounds on arc capacity, the actual

arrival time of the ship loads of supplies is represented on the network.

However, the travel times of ships to the ports arid from the ports to

the objective area must also be represented accurately since this

network will become the input to the procedure which will find minimal

closure assignment (or schedule), of the ships. The matrix of'ship to

port" travel times (SP = [sp], where the ij element is the time

required by ship i to travel to port j) is known and elements of this

31

matrix will be applied as lengths to the arcs connecting the ship nodes

to the port nodes (i.e., (su ^ n p)). The vector of
LENGTH = SP. •

"port to objective" travel times (PO = [po^], where i element is

the time required for any ship to travel from port i to the objective

area) is also known and elements of this vector will be applied as

lengths to the arcs connecting the port subnodes to their port sink
node (i.e.,(ip) ^/it)).

LENGTH = po i

Algorithm for the Application of Lower and Upper Capacities» and

Lengths to Arcs of the Ship Scheduling Network

The algorithm below summarizes the integration of the information

obtained in the optimal solution of the Bases-to-Ports transportation

problem with the travel time information to form an accurate representa­

tion, in network form, of the ship scheduling subproblem.

GIVEN: (1) optimal solution of the Bases-to-Ports transportation

problem (i.e., x *s and t *s) where x.. = quantity
ij ij XJ

of supplies transported from base i to port j

and t = the arrival time, at port j, of supplies
ij

x
ij

(2) matrix of "ship to port" travel times (i.e., SP matrix)

(3) vector of "port to objective" travel times (i.e.,

PO vector)

(4) constructed network from the above procedure

STEP 1: For all arcs in the temporal expansion of port j (i.e., arcs

connecting port j in time period s to port j in time period

32

t) make the lower bound - zero, and the upper bound = 2 2 x ,
Vk Vi ijk

(or any large number since there is no restriction on supply

storage at a port, and the length = one.

STEP 2: Apply lower bounds = zero and upper bounds = ̂ x , to the
k=l ijk

arc between the port node in time period p and its port sink

node. The length of each arc will be PC\. (i.e., j*-*1 element

of PO vector).
2 2

STEP 3: For all the ports, make the lower bound = upper bound
x. for the arc connecting the sink node of port j to the ij k
super sink node and the length of each arc = zero.

STEP 4: For all the arcs connecting the ship nodes to the port nodes,

make the lower bound = zero, the upper bound = one, and the

length = S Pij (e«8« > ^HE arc connecting ship i to port j has

a length = S P ^) .

STEP 5: All arcs from the super source to the ship nodes have a lower

bound = one, an upper bound = one and a length = zero.

EXAMPLE

As an example, let us look at the constructed network on

page 27. The arcs of the temporal expansion of the port would have

lower bounds of zero and upper bounds equal to the sum of all the

supplies arriving at that port. Thus if one ship load of supplies

will arrive at port 1 then the upper bound on arcs (11,12) (12,13) and

(13,14) would be one and the lower bound would all be zero. The

length on each arc would be one to reflect the passage of one unit

of time. If the one ship load of supplies arrives at time period two

then the upper capacity on arc (11,It) is zero, arc (12,It) is one,

33

arc (13, It) is one, and arc (14, It) is one. All of the lower capa­

cities are zero and the lengths equal the first element of the PO

vector, for these arcs. Arc (It, T) will have upper and lower capa­

cities of one since one ship is required to travel to port 1 and take

on supplies. There will be a length of zero on arc (It, T). Arc (S, SI)

will have upper and lower capacities of one and a length of zero also.

However, arc (SI, 12) will have a lower capacity of zero, an upper

capacity of one and the length equal to the S P ^ (i.e., travel time of

ship one to port one).

Formulation of the Ships-to-Ports Subproblem

A network, including arc capacities and lengths, can be con­

structed to represent the Ships-to-Ports scheduling subproblem. This

network combines the solution of the Bases-to-Ports subproblem and

ship travel time information into a cohesive formulation, which then

can have standard linear programming or network techniques applied to

it. A mathematical formulation" of the ship scheduling, in matrix form,

is?:

(1) Max cx

s. t.
+

b < Ax ^ b

x ^ 0

where c is a vector of all l's
b is a vector of the lower arc capacities
+

b is a vector of the upper arc capacities

x is a vector variables, (i.e. flows on paths through

34

the network)

A is the arc-path incidence matrix, where the

element is a one is path j uses arc i; and

the ij th element is zero otherwise.

This formulation indicates that the flow (number of ships) on paths

through network is to be maximized, subject to the upper and lower

capacities on arcs in the network. Problem (1) is the single commodity,

maximal flow problem through a capacitated network. There are a number

of algorithms available, such as OUT-OF-KILTER in Ford and Fulkerson

(4), which can be used to solve this type of problem. However the ob­

jective of the Ships-to-Ports subproblem is not only to obtain a maximal

flow (i.e. assure that all of the ships are scheduled through the ports),

but also to obtain the minimal closure schedule of the ships (i.e. a

schedule which minimizes the arrival time of the last ship at the ob­

jective area), Hink&e (1) has described an algorithm which will obtain

both of these objectives in a network which has only upper capacity

constraint, instead of both capacity constraints as in problem (1),

His algorithm will be examined for its applicability to the Ships-to-

Ports scheduling problem in the next chapter of this thesis.

35

CHAPTER IV

DISCUSSION OF HINKLEfS WORK

In his dissertation, Hinkle developed an algorithm, known as

the min-max path flow algorithm, to solve a problem in which the maxi­

mal flow through an upper capacitated network is required and in addi­

tion, the length of the longest path carrying flow through the network

must be minimal. As in Chapter II an example is now presented to indi­

cate the difference between a minimal cost solution to the maximal flow

network problem and the solution if the length of the longest path must

be minimal in the maximal flow problem. Figure III shows a network

used by Hinkle, in which all of the arc capacities are one and the cost

(in this discussion cost and length are used interchangably) of each

arc is a positive number. If this network is examined, it can easily

be seen that the maximal flow through it, from the source s to the sink t,

is two. The minimal cost solution would use paths f s , 1, 4, 5, tl and

[s, 3, 6, 11 . The cost of path one is 6 and the cost of path two is

12, for a total minimal cost of 18. However path two has a length of

12, and therefore path two is the longest path carrying flow through

network. If the pathsf s, 3, 4, 5, 6, t] and [s, 1, 2, 5, t] were

used instead to carry the two units of flow, the total cost would be

20, however, the length of the longest path (i.e. {s, 3, 4, 5, 6, t })

carrying flow has been reduced to 11. As in the least time transporta­

tion problem there exists a trade-off between minimal cost and the

36

(Upper Capacity, Cost)

Figure 3. A Network with Only Upper Arc
Capacities and Arc Costs.

37

length of the longest, flow carrying path through the network.

Since a standard transportation problem can be viewed as a

simplified maximal flow problem through a capacitated network, the

general algorithm discussed in Chapter II, for determining the least-

time (min-max) solution to the Bases-to-Port transportation problem,

could possibly be extended so that the min-max solution to a network

problem could be found. The minimal cost flow network problem is

analogous to the time-minimizing transportation problem in the context

of a problem defined on a network like Figure III. The time-minimizing

transportation problem found the set of travel links between the sources

and destinations which minimized the total time required to transport

all of the supplies. The minimal cost flow problem determines the set

of paths, through the network over which the maximal amount of flow can

be carried, such that the cost moving the flow through the network is

minimized. Furthermore, if the arc costs are interpreted as the time

required to traverse the arc, the minimal cost problem finds the set

of paths which minimizes the total time required to move the flow

through the network. A penalization scheme similar to the one used in

Chapter II can also be used, although this is a bit trickier than

in the case of the transportation problem. Instead of penalizing the

links with the longest time carrying supplies, the path with the

longest time carrying flow through the network will be penalized by

assigning it an arbitrarily large time.

Hinkle indicates that one cannot simply assign penalties to the

arcs in the longest path carrying flow, but must somehow penalize the

path directly. One way to do this is to find a path with shorter

38

length, not presently in the solution, whose entry into the solution

will cause flow to be removed from the longest path. We will explain

how this aan be achieved as the algorithm develops.

A General Min-Max Path Flow Algorithm

A general algorithm to determine the min-max path flow through

a network will contain the same types of steps as the algorithm for

obtaining the least-time solution to the transportation problem dis­

cussed in Chapter II along with the extension mentioned above.

STEP 1: Start with the initial arc cost values

STEP 2: Solve a minimal cost flow problem using the current path

penalties

STEP 3: Determine if the optimal solution, in terms of the paths

carrying flow, has changed from the previous solution. If

YES, penalize the longest (highest cost) path carrying flow

and return to STEP 2, If NO, Stop.

This algorithm will reduce the flow on the longest path in the network

through the penalization scheme, since the minimal cost flow problem

will attempt to find a set of paths which do not include any of the

previously penalized paths. At each iteration the algorithm will find

a new path or paths, on which the flow must be moved, which have length

shorter than the length of the longest path in the previous solution to

the minimal cost flow problem. Eventually this algorithm will not find

a new path(s) of shorter length and will return the same solution as

the one available at the previous iteration. Upon termination, the

maximal flow will be carried on paths through the network such that the

39

length of the longest one is minimal (i.e. the optimal min-max path

flow solution).

Hinkle (1) has developed an algorithm which uses the maximal

flow solution to the network problem and a "reducing" path concept in

order to get flow off the longest path. To reiterate, the min-max

path flow problem determines the maximal flow through a capacitated

network such that the length of the longest path carrying flow is

minimal. Generally his algorithm begins with the maximal flow solution

and then sequentially brings new paths into the solution set of the

paths until either the flow on the longest path is reduced to zero and

that path is dropped from solution set, or it is indicated that no

further flow reduction is possible on the longest path. Since maximal

flow through the network must be retained throughout the reduction

process, there are three necessary conditions for a new path to enter

the solution set. They are: (1) the path must maintain the maximal

flow through the network; (2) the path must tend to reduce the flow on

the longest path; and (3) the path must have shorter length than the

longest path currently carrying flow through the network.

Determining Maximal Flow Through Capacitated Networks

The maximal flow problem through a capacitated network can be

formulated in arc-path form as

(1) Max cx

s. t. Ax <. b

x 0

The above formulation is a standard linear programming

40

problem in matrix form,

where c is a vector of all l !s

b is a vector of arc capacities

A is the arc path incidence matrix, a column of the A, a.

is a vector which represents a path through the network

(i.e. the arcs used to make up the path)

and x is a vector of variables values (i.e. the flows on the paths

of the network)t

It must be noted that in the formulation the lower arc capacities are

implicitly all zeros and the upper capacities are greater than or equal

to zero.

A number of standard algorithms can be applied to problem (1)

to obtain the maximal flow solution. Such algorithms as the primal

simplex algorithm, or the revised simplex algorithm with an associated

generation scheme for the entering variables. The primal simplex and

revised simplex algorithm are described in both Tana (3) and Dantzig (2).

A generation scheme for the revised simplex algorithm will determine a

new path to enter the basis that will increase the value of the objec­

tive function. This new path will be a column vector consisting of

zeros and ones, where a one in the i element of the vector indicates

that the path uses the i arc of the network and a zero means it does

not use that arc. One particular scheme is a shortest path algorithm

which uses the current values of the dual variables as arc lengths, and

thus the shortest path through the network becomes the entering path.

This type of generation scheme is described in Ford and Fulkerson (4) .

41

Finding a Path to Reduce the Flow on the Longest Path

Once having determined the maximal flow solution to problem (1)

a path exhibiting the above three criteria must be found if the flow

on the longest path current carrying flow is to be reduced. If the

maximal flow through the network is to be maintained, the entering path

must not reduce the total flow through the network. And clearly the

path cannot increase the total flow, since this occurance would violate

that requirement of a maximal flow through the network. In linear

programming terminology this entering path must generate an alternate

optimal solution to problem (1) when it is brought into the basis. The

L.P. entery criteria for a maximization problem is the relative

cost coefficient of the new variable must have a negative value.

Symbolically, z. - c , where j is the index of the non-basic variable

that will enter, must be negative. If the variable with the most nega­

tive value of z.-c. is brought into the basis, the largest increase in

J J

the objective function will occur. Thus if there were a large number

of non-basic variables a minimization over the non-basic variables

would be performed to determine the best variable to enter. This

determination process can be expressed as;

(2) Min (z. - c.)
3 3

V , nonbasic
j

The minimal value of (z - c) will be zero since z - c must be
J j j J

greater than zero for all the non-basic paths or else optimality (maxi­

mal flow) would be contradicted.

42

The second criterion, which Hinkle has defined, is that the

entering path must (tend to) reduce the flow on the longest path through

the network. Let us determine what this criterion means in terms of

linear programming. Let a. be a vector of ones and zeros which is the

original column of an entering variable and let B be the present basis

matrix. Before the variable can be brought into the basis it must be

updated by matrix multiplication with the basis inverse. This updating

process results in the entering variable being represented as a linear

combination of the columns of the basis. Let a. (= B'^a) be the
J j

updated entering vector, and a^ is brought into the basis through a
A 4 - 1 .

standard pivot operation. If a^ is to replace the i variable current­

ly in the basis, then a must be positive. In the actual process of
ij

entering variable a.., all the elements £L must be brought to zero
except a... This operation converts a into a column of the basis.

1 J j

Therefore if an element of a. other than a. is positive the value of

the variable contained in that row of basis will decrease. To see this,

let us examine the following diagram.
b a

k \ ik

i a\ .

A A th
If a is positive, after entering a. the value of the k variable ^ik A J A will be h - b . Since b., a.. and a are all positive the k A i l ij

ij

43

t h i
the new value of the k variable, b , will be less than b So if

k k
there exists only one path at the longest length in the basis, and
it is in the basis in row T then the entering updated path vector must

th

have a positive value in the T element. If there happened to be

more than one path in the basis of the longest length, the entering

path must reduce the flow on this set of longest paths. Thus the sum

of the updated vector elements corresponding to these paths in basis

must be positive.

To affect the greatest reduction of flow on the set of longest

paths in the basis, we would like to find the j t n nonbasis path which

has the maximal sum of the elements in its updated vector corresponding

to these longest paths. To find this new path, a search over the

nonbasic path of the following form might be used;
(3) Max ^ a

V., nonbasic J

where k, is the set of longest paths in the basis carrying flow. Since

there is a minimization over the nonbasic paths in (2) and a maximiza­

tion over the nonbasic paths in (3), these two searches could be com­

bined into the following form;

(4) Min p(z - c.) - 2 a

J vj, ^
V , nonbasic

3

where p is a very large number. A large p is used So that the first

term of this expression will dominate the second, that is the optimality

of problem (1) must be assured. If a nonbasic path is found that has

44

the minimal value of this expression then that path will satisfy the

first two of Hinkle's requirements for a path to reduce the flow on the

longest path(s) in the basis carrying flow.

The last of Hinkle's conditions for a new path to enter the basis

is that the length of this path be less than the length of the longest

path(s). If a path with a shorter length is brought into the basis

(i.e. the path also exhibits the other conditions) then some of the

flow will be carried by this path and the min-max path flow solution

will improve. Therefore the set of nonbasic valuables over which the

minimization of (4) is conducted can be reduced to the set of nonbasic

paths with a length less than or equal to the length of the longest

path carrying flow minus one. Let L* be the length of the longest

path. By solving the following problem, the best nonbasic path j in

terms of the three requirements, will be found.

(5) Min p(z. - c) - S a
J j V l lj

V , nonbasic
J

s. t. Lj £ L* - 1
where L is the length of path j.

j
The objective function of problem (5) can be simplified, since

-1
z. = CL B a J B j

where C is a vector of the cost coefficients of the basic valuables B
of problem (1).

And further, z = C B""̂ a. = ira
j B J j

45

where -n (= C B""'") is the vector of dual variables for problem (1).
B

Since the cost coefficient for a path variable of problem (1) is one,

the first term of the objective function in (5) becomes

p(z - c.) = p(Tia - 1).
j J J

If we now turn our attention to the second term, ^ a can also
VI -tj

be simplified. Since the updated entering vector is determined by
matrix multiplication of entering vector and the basis inverse, a =

j
B~^ a.. The sum of certain elements of a is required, and thus

J j '
£ a . = S B~^ a . The objective function of (5) can now be written

VI 1 3 VI I J
as,

Min p(Tia - 1) - £ B. 1 a.
j vi 1 3

V , nonbasic
j

However, the minimization of the first term is equivalent to the

minimization of p TT a^ since the one is a constant. By combining

terms in the objective function problem (5) can be written as

(6) Min (p TT - S B~£) a
VI 2

V., nonbasic
J

s. t. L ^ L* - 1
j

To summarize briefly, Hinkle has defined three criteria for a

path enter the basis of the maximal flow solution to a network problem

if the flow on the longest path is to be reduced. Problem (6) is the

mathematical formulation of a problem whose solution will be a path

through the network that will satisfy the necessary criteria. (6) can

46

also be viewed as determining the path through the network which

minimizes the sum of the arc costs of the form PTT- £ B"^ along it

and its length is less than a known constant, L* - 1. From this point

of view the problem becomes a constrained shortest path problem. The

general constrained shortest path problem has been formulated by

Berry and Jensen (6) and Hinkle (1). A solution algorithm has been

discussed by Hinkle and it applies to the arc costs, pTT - ^ * A N C*
the known are lengths to the network, and uses a labelling scheme to

determine the optimal solution (i.e. the entering path) of problem (6).

His algorithm requires that all of the arc costs are positive to avoid

the difficulties arising from a network that could contain negative

cost-directed cycles in it. If a cycle existed in the network with

negative arc costs, his labelling routine would proceed around the cycle

endlessly and if a path including this cycle was ever returned by

problem (6), the value of the objective function would be negative

infinity. Therefore if the arc costs are not positive,problem (6) can

have an unbounded solution since Hinkle does not require the network

to be acyclic (i.e. a directed network which contains no cycles). It

is easy to see that negative arc costs would not be possible. From the

dual of the maximal flow problem,

Min TT b
s.t. TT A ^ C

TT ̂ 0

We know all of the dual variables (TJ'S) must be positive in the
I

optimal solution. Since Hinkle!s min-max path flow algorithm begins

47

with the optimal solution to the maximal flow problem and p can be any

positive number, by simply increasing p until pn > S B"^, all of
VI 1

the arc costs are assured to be positive.

Let us now summarize Hinkle1s algorithm for determining the min-

max path flow solution for a network which has only upper capacities

on the arcs.

STEP 1: Obtain the maximal flow solution to problem (1) for the given

network. Determine the set, l>, of the longest paths carrying

flow through the network and the value of L*.

STEP 2: Using the current values of the dual variables,TT , and the

current basis inverse matrix, B ~ \ determine the arc cost of

the form p7T- X B^ .

STEP 3: Obtain the optimal solution to the constrained shortest path

problem (6) using the arc costs and lengths. If no path is

found with a length less than the current L* stop, otherwise

continue to step 4.

STEP 4: Enter the new path by the standard linear programming techniques

arid determine the new length value, L*, of the longest path

carrying flow; return to step 2.

Hinkle has shown that his algorithm will converge to an optimal solu­

tion in a finite number of steps. Upon termination this algorithm will

have determined the optimal min-max path flow solution for the given

network, that is, the maximal amount of flow will be carried through the

network on a set of paths such that the length of this longest path

in this set is minimal.

48

Hinkle1s algorithm for determining the min-max path flow solution

would generate an optimal solution to the Ships-to-Ports subproblem

formulated as problem (1) in Chapter III except that this problem has

both lower and upper arc capacities and his algorithm in its present

form will only solve the problem for a network with upper arc capacities.

However, if his algorithm could be extended so that it would be appli­

cable to the ship scheduling network developed in Chapter III it would

determine the schedule of the ships to the ports such that the arrival

time of the last ship at the objective area would be minimal. In

addition this schedule would insure that the last unit of the supplies

would also arrive in the minimal amount of time.

Let us examine problem (1) in more detail to ascertain what

extensions of Hinkle1s algorithm are required before it is capacable

forsolving the Ships-to-Ports scheduling problem. Recall the mathema­

tical formulation of the ship scheduling problem is,

Extensions of Hinkle1 s Algorithm for

the Ships-to-Ports Subproblem of Chapter III

(7) Max cx

s. t.

b £ Ax ^ b +
x £ 0

and the dual of problem (7) is,

49

Min TT* b" + TT+ b +

+
s. t. TT A ;> c

TT c
TT+ ^ 0

^ 0

TT -f

where TT is the vector of dual variables corresponding to the upper

capacity constraints and

T" is the vector of dual variables corresponding to the lower

capacity constraints.

Hinkle1s algorithm begins with the maximal flow solution to the network

problem. The maximal flow problem in a network which has both lower

and upper arc capacities, as in problem (7) would require a basis of

size 2m, where m is the number of arcs in the network. The basis size

could be reduced if some of the lower arc capacities are zero, since the

constraints corresponding to these zero lower capacity arcs would be

linearly dependent and redundant with respect to the non-negativity

constraints for all the path flow variables in the primal problem (7).

In general though, this type of basis size reduction would not be possible

and there would be two rows and two variables in the basis for each

constraint of the maximal flow problem. Thus the basis size would

severily restrict the size of the networks for which Hinkle1s algorithm

would be applicable. However, both constraints for a particular arc

cannot be binding at the same time. To see this fact, let us look at
an example of a possible constraint in problem (7),

m
- . +

50

and specifically the constraint

2 £ + x + x £ 10

if i arc had an upper capacity of 10 and a lower capacity of 2, and

there are three paths using it. Clearly it would be impossible for the

sum of the flows on the three paths to simultaneously equal 10 and 2.

Furthermore only one of the arc capacities could bind the flow on all

of the paths using the arc. An algorithm is discussed in Chapter V

which will take advantage of this fact in both the maximal flow problem

and the entering of a reducing path steps of Hinkle*s algorithm.

Let us now examine the constrained shortest path generation

scheme iin the context of the maximal flow solution to a network with

both upper and lower arc capacities. In the optimal solution to the

maximal flow problem it is possible for some of the dual variables to

be negative. If can be seen from the dual of problem (7), that if any

of the TT" variables are in the optimal basis of the dual, they must have

a negative value. Let us now partion the vector of dual variables for

the optimal solution to the maximal flow problem into two sets, the

upper constraint dual variables TT+ and the lower constraint dual vari-

ables TT • Hence TT can be expressed in vector notation as [-n- ,TT]•

The objective function of the constrained shortest path problem (6) is

(p TT J

In particular, let us examine the vector of arc costs,

51

PTT - £ B 7 1

VI 1

If the partioning of the TT vector is applied to this expression for the

arc costs, they can be divided into 2 sets. The first set

, ^ -1 + (8a) P n . • E B » TT. e TT
1 V I ^i 1

contains the costs for arcs which have the upper capacity constraint in

use in the basis, and this constraint does not necessarily have to be

binding. Under an extended entry rule, Hinkle has shown for any arc i

and any row B" of B that if 2 B~ > 0 that TT >O. Since p can be

any arbitrarily large positive number, the arc costs of set (8a) can

always be made positive if £ B"^ is greater than zero. The second set
VI ^

(8b) PTT - £ B ' 1 , TT e TT"
1 VI / L l 1

contains the costs for arcs which have the lower capacity constraint

in use in the basis, and again this constraint can be either binding

or not. If a constraint cofresponding to an arc of this set is binding

then the dual variable must be either zero or negative in value. If

the dual variable is zero there does not exist any difficulties with

the arc cost. However, if the dual variable is negative the p TT term
i

of the arc cost expression will dominate the £ B term, and it is
VI l ±

possible to obtain a negative arc cost.

For a general network, either cyclic or acyclic, the constrained

shortest path problem requires that all arc costs are positive in order

to avoid an infinite solution that could be generated if a negative cost,

52

directed cycle existed. If the constrained shortest path problem is

to be used to generate a path to reduce the flow on the longest path

in a network which has both upper and lower arc capacities, negative

cost cycles must still be avoided. Since there exists a real possibi­

lity that some arc costs are negative, can negative cost directed

cycles be avoided. Recall the network, whose construction was described

in Chapter III, that will be used in the Ships-to-Ports subproblem. In

this network ships (units of flow) move from the source to the temperal

expansion of a port and then on to the port's sink, which represents

the objective area. Since the temporal expansion of a port was con­

structed in network form to represent a port's operation through time,

it would be illogical to have cycles. A cycle in the temporal expan­

sion would indicate that a ship could arrive at a port, go through the

cycle and depart from the port at a time before it arrived. Therefore

each port's temporal expansion must acyclic. It is also impossible for

a ship to be scheduled to more than one port and thus there are no arcs

between ports. So it is not possible for a ship to cycle between

temporal expansions of different ports. Hence the complete portion of

the ship scheduling network representing ports is acyclic. All other

arcs of the network are forward directed arcs, either from ship nodes

to the ports portion of the network or from the ports to the port-sink

nodes. It can be seen, therefore, that the ship scheduling network, for

the Ships-to-Ports subproblem, is completely acyclic. So even though

negative arc costs are possible, no negative cost-directed cycles can

ever exist. In Chapter VT, a modification of Hinkle's labeling

algorithm is presented, which takes advantage of this acyclic property

53

of the network for the Ships-to-Ports scheduling problem, for the

solution to the constrained shortest path problem.

54

CHAPTER V

CONS TRAINT SWITCHING

The maximal flow problem with lower and upper bounds can be

formulated as:

Max z = cx (1)

s. t. b < Ax <, b

x ;> 0

where c is a vector of all l's.

b and b + are the vectors of lower and upper bounds on the flows

in the arcs,

x is a vector of the flows on the paths, and

A is the arc-path incidence matrix (a„ = 1, is path j uses

arc i; and a.. = 0, otherwise).

Decomposing the constraintin (1), and rewriting (1) in equation

form, we obtain

Max z =F ^Xj (2)

s.t. Va..x. + s. = b"!" Vi (A)

Va. .x. - t. = bT Vi (B)

x., x. , t. ^ 0 Vi and Vj

55

The SUBOPT Procedure Applied to the Maximal Flow Problem

A number of methods have been proposed to solve this problem in

either of the above forms. Robers and Ben-Israel (5) have developed a

procedure called SUBOPT (sub-optimization method) to solve problem

(1), which they refer to as an interval programming problem. SUBOPT

decomposes the master problem (1) into a subproblem of the special

form

Max z = cx (3a)
s.t. b" £ Bx £ b + (3b)

b" £ a x <; b + (3c) s s s

where B is a nonsingular, nxn matrix,

n is the number of variables in the master problem,
th

a g is the s row of the original A matrix,

is a submatrix of A

- + + and b ^ b and b £ b are the lower and upper bounds on the s s
constraints from the master problem.

In order to solve the above subproblem a variable change is made,

Y = Bx

x = B _ 1Y

Subproblem (3) is now written as

Max z = cB _ 1y (3a 1)

56

s.t. b < Y < b + (3b»)

b £ a B -1 <; b + (3c 1)
s s s

If the optimal solution to (3 1) is Y*, then the optimal solution to

(3) is x* = B~LY*.

At each iteration, SUBOPT solves a subproblem of the form (3)

where the B matrix is formed by using n linearly independent rows of

the original A matrix and the constraint (3c) is one of the other

(m-n) constraints. Instead of solving this subproblem directly, a

variable change is performed to obtain the subproblem (3 1). This new

subproblem is solved by initially assigning each variable the corres­

ponding lower or upper b value depending upon the cost coefficient of

the variable in the objective function. If the initial solution does

not satisfy the constraint (3c1) then this solution altered in such a

way that will guarantee that all of the constraints (both 3b1 and 3c')

are satisfied and the decrease in the value of the objective function

due to this alteration of the initial solution is minimal. Once having

obtained an optimal solution to subproblem (3 1), then an optimal solu­

tion to subproblem (3) is also obtained. This solution is checked for

feasibility in the other (m-n-1) constraints of the master problem.

If any of the constraints are violated a new subproblem of the form
st

(3) is solved using one of the violated constraints as the (n+1)

constraint.

We continue to solve these subproblems at each iteration until

at some point either one of the subproblems is infeasible, implying

master problem (1) is infeasible, or the solution to the subproblem

57

satisfies all of the constraints of the master problem, and then we can

terminate the SUBOPT procedure. The finiteness of this procedure has

been shown by Robers and Ben-Israel in (5). This SUBOPT will solve

problem (1) and render either an optimal solution or the information

about the infeasibility of the problem in a finite number of iterations.

However, there are a number of disadvantages in applying the

SUBOPT procedure to a maximal flow network problem with lower and upper

bounds on flows in arcs. First, all n variables are required to be

known explicitly in the problem for both the variable change (i.e. ,

(Y=Bx) and the size of the B matrix. Since the maximal flow problem is

in arc-path formulation the knowledge of all the variables would require

that all the possible paths through the network be enumerated. For

even moderately large networks this task would be extremely inefficient,

if it could be accomplished at all. Secondly, SUBOPT requires the

number of variables n (i.e., the number of paths) to be less than the

number of constraints m (i.e., the number of arcs). Since there is one

variable for each path and one constraint for each arc in the network,

SUBOPT requires the number of paths to be less than the number of arcs.

However, in a general network the maximum possible number of directed

arcs is x(x-l) where x ia the number of nodes in the network, and the
y-x+1

maximum number of paths is 2 , where y is the number of directed

arcs. Hence, for a general network this requirement would not be ful­

filled. However, SUBOPT could still be applied to networks where the

number of paths is less than the number of arcs, but this requirement

severely limits the number of networks that could be solved by SUBOPT.

Thirdly, a series of subproblems must be solved in order to obtain an

58

optimal solution to the master problem (i.e., problem (1)). Each of

these subproblems requires a basis and basis inverse of size nxn, where
st

n is the number of variables, plus the (n+1) constraint which is used

for a feasibility check (i.e., the constraint set for each subproblem

contains n+1 constraints). Thus each subproblem would require large

amounts of storage for computer implementation due to the size of the

basis and basis inverse. Fourthly there would be a large number of

iterations of the SUBOPT procedure since each subproblem has only one

constraint in the constraint set replaced by one of the (m - (n+1)) other

constraints of the master problems, which are not used in the solution

of the subproblem. SUBOPT does, however, allow a smaller maximum number

of possible iterations (i.e., (*!\) = , . 1 % ? / T\t) than a
n+1 (n+1);(m-n-1).

standard linear programming problem. This reduction does not seem to

outweigh the necessity of solving a complete subproblem at each iteration.

The Standard Linear Programming Approach

to the Maximal Flow Problem

It would seem that standard linear programming could be applied

to the maximal flow network problem with lower and upper bounds on

the flow in the arcs, as formulated in (1). If problem (1) was re­

written as (2) and formulated as a linear programming problem, a basis

matrix of size (2m x 2m) would be required since each of m constraints

in problem (1) decomposes into one constraint of type A and one con­

straint of type B. Thus linear programming would require two constraints

for each arc of the network and thus large networks would require that

2m variables be in the basis. Hence, the m slack variable from the

59

constraints of type A would be used. However, the slack variables

from the constraints of type B could not be used in the basis since

they would have a value less than zero (i.e., -t. = b. => t. = -b.), J 1 1 1 1

which violates the nonnegativity constraint. Therefore, m artificial

variable must be added to the slack variables from the type A constraints

(i.e., s /s) to complete 2m variables needed for the initial basic

solution. Once these artificial valuables have been introduced into

the problem, formulation (2) becomes:

Max z = y x. - Mp_̂
Vj Vi

(4)

s. t.

V a..x. + x. = b? Vi (A)

V a..x. - t. + p. = bT Vi (B)
x., s., t., p. 2=0 Vi and Vi 1
j I i i J "

th

where p^ is the artificial variable from the i constraint of type B

and M is a large positive cost, if the big "M" method is to be employed

to remove the artificial variables from the basis. These artificial
variables will be removed first from the basis since linear programming

f b i 1
uses min \ — ; a ^ > 0 \ , where a^ is the entering variable, as an

aik 1 _ J
+

exit criteria and b^ ^ b^, Vi. Hence, there must be m iterations

before all the artificial variables are removed from the basis. Thus

there seems to be some unnecessary inefficiency incurred by the use of

linear programming on problem (2) as rewritten in (4). Another major

limitation would be storage on the computer due to the large basis size

60

as indicated above, if implementation on the computer was necessary.

Theory of Constraint Switching in the Problem of

Maximal Flow Through a Network with

Lower and Upper Arc Capacities

Due to the disadvantages incurred by using SUBOPT or standard

linear programming to problem (2), it was conjectured that this problem

could be solved by treating only one type of constraint, either type A

or type B, at a time and solving the resultant subproblem by standard

linear programming. Thus, a problem as shown below could be solved.

Max z = Xj (5)

; a. .x. + a. = BT Vi
L ij j i i

s. t.

x., s. £ 0 Vi and Vj J i

Once having obtained an optimal solution to problem (5), the dual vari­

ables could be used to determine which constraints were actually binding

th
(i.e., if the i dual variable, TL, had a value greater than zero then

th
the slack variable corresponding to the i constraint, S^, would have

th

a value of zero and the i constraint would be an equality of the

form / a..x. = BT. Thus the constraint will bind the variables x., to

exact values). A subset of the m constraints that are binding could be

determined. Let
B^ = fi | TT̂ > 0} = set of indices of the binding constraints

B^ = {i j TL = 0} = set of indices of the non-binding constraints

61

Clearly B„ U B' = m = set of all m indices. The other subproblem of 5 5
(2) could also be solved, namely

Max z = ^ X j (6)

s. t.

Y a. .x. - t. = bT Vi
/- ij J 1 i

x., t. £ 0 Vi and Vi
J J

and the sets of binding and non-binding constraints would be

B 6 = fi | TT. > 0 1

Bj= {i|n. = 0 1.

Since only the constraints of B^ are required to bound the solution space

of problem (5) and the constraints of B^ are necessary to the solution

space of problem (6) it would seem that the union of sets B_ and Y>,
D b

would be the only constraints necessary to completely bound the solution

space of problem (2). However, in general B^ U B^ ^ {m} i.e., the

union of the two sets of binding constraints would not equal the set

of binding constraints for problem (2). However, this decomposition of

problem (2) brought about the discussion of another way to look at the

constraint set of (2) and sufficient condition for a binding set of

constraints in Lemma 1.
th

In formulation (2) consider the i constraint in set (A) and

its associated constraint in (B). This pair can be expressed as either

62

) a. . x. + s. = b~!~
L ii j i i

0 £ s. £ bt - b~ i l l

or
> a..x. - t. = b"

0 < t. <> b"!" - bt. i i i

= b^ - b^ (its upper bound) implies the lower constraint aj[jxj "

t. = b. is binding, and similarly for t. = b^ - b.. Thus, by intro-1 1 & • ' i l l
ducing upper bounds on variables (slacks) we can eliminate one of the

two constraints. Further, to eliminate the need for keeping track of

variables at their upper bounds we will develop a technique of con­

straint switching when a variable reaches its upper bound.

We state as a lemma below, that there can be only m constraints

in the constraint set at any particular iteration and furthermore that

for each arc i there will be only one constraint in the set of either

type A or B.

Lemma 1 At any particular iteration, k, one and only one constraint

will be active for each arc in the network, and this constraint

will be of type A or B.

Proof: Let x R be the flow on arc i at some iteration k, then x^
1 + i

is feasible in terms of problem (1), if b. ^ x <. b.. l B. l l
Case 1 If Xg is increasing we wish to bound the flow on arc i at

+ 1 + b.. If x„ = b. we know that i B. l l

63

) a..x. = b.
L ij j i

which implies s^ = 0.

We know that constraint is binding in the sense that s^ = 0

and thus A. must be active in the constraint set in order that l
x D remains feasible. We also know that t. 4 0 and that

Bi 1

) a.. > b. so that constraint B. is not binding and is
LJ IJ I i
j
unnecessary to the feasibility of x .

d .

1

Case 2 If x^ is decreasing we wish to bound the flow on arc i at b^.
i

If X g = b^ we know that
i

Y a..x. = b.
j

which implies t̂ = 0.

Again we see that constraint B^ is binding and that B^ must

be active in the constraint set so that x^ remains feasible.
V 1 +

Again we also know that s. 4 0 and) a..x. < b., so that A.
l /_• ij J i l

is not binding and is unnecessary to the feasibility of x .
B.

+ 1

Case 3 Since the flow on arc i is bounded by b. and b., the slack
I I variables t. and s. can be viewed as indicating the distance i i G

which the flow is from the lower and upper bound. Thus if

the flow on arc is not at either bound, the slack variables

have value (i.e., t., s. <. b~!" - b.).
i i I i y

Therefore either constraint A^ or B^ can be used to express

the flow requirements on arc i, since they are equivalent,

as seen below.

64

A.
1
: Y a. .x. + s. = b\

L ij j i i

B.:) a..x. - t. = b~
l L ij J i i

(A. - B.) s. + t. = b*!" - b~ l i i l l l

and since b"!" - b. is the total amount of slack variable at l l
arc i, it can be seen that constraint A. can be obtained

l
from B. by substituting t. = b"!" - b. - s. into B.. l J ° I I I I l

v* +) a..x. - (b. - b. - s.) = b.
L l j] 1 1 1 1
j

y a. .x. + a, = b t which is A.
L- ij J "i i i
j

Therefore, we only need one constraint,either A. or B.
i i

to express the flow requirements on arc i.

In fact, for this case we actually don't need either constraint.

There are three different variables that can be in the basis.

They are a lower-bound slack t, an upper-bound slack s, and a path x.

The bounds on these variables are

0 £ t. <. bt - b~ Vi i i i

0 <. s. < bt - bT Vi i i i

0 <. x. £ OO Vj J

A variable can enter the basis of a linear programming problem,

under maximization of the objective function, if

65

z. - c. < 0
J J

c B ^a. - c. < 0 B J J

where is the entering vector

c. is the coefficient in the objective function
J

J 1 if entering vector is a path
3 0 if entering vector is a slack

z. - ct = MAX z. - c. k k | I J J
Vj i basis

The above expression is used as the entry criterion to determine the

variable a^ to enter the basis. As the flow on (value of) a^ increases

two things can happen:

(1) one of the variables reaches its lower bound first (i.e.,

zero) and an ordinary simplex pivot operation is performed.

(2) one of the slack variables reaches its upper bound first, (i.e.

b + - b) and a constraint switch is performed, followed by

a simplex pivot operation.

To ascertain which of the two cases above happens, we must deter­

mine the blocking variables. To find blocking variable let

F b. / I A "1 9 t = m m \ L / A a. . > 0 \ 1 t \ ' a i] £ ij J

,A + A - A
r (b. - b.) " b. \

9_ = m m] a.. < 0 j
2 -A

ik

66

only if i*"*1 variable is a slack

0^ = = amount of flow possible on entering

vector
A th where b. = i element of the updated b-vector

1 R

A -1
b = B b

^ th
a ^ = i element of the updated entering vector

The blocking variable is associated with the constraint for which

@ = min {Q^ 9 2,

Once the blocking variable has been determined we have either

case (1) or (2) above and we wish to exit this blocking variable from

the basis. We want to exit the variable which will become infeasible

first. If 0 = 0^, we have the standard linear programming exit proce­

dure. However, if 9 = 9^' we have the standard linear programming exit
th

procedure. However, if 0 = the i slack variable is increasing and
th

as shown in the diagrams below this will cause the flow on the i arc

to exceed its bounds. If s^ is in the basis, it will increase causing

the

B .
l

+

flow Xg on the arc to decrease below b . If t̂ is in the basis, it

67

will increase causing the flow, x B. i

+

+ to increase above the upper bound b . Therefore a constraint switch

must be in order to bound the flow within b + - b .

th

Constraint Switching Algorithm

To perform a constraint switch:

(1) Exchange variables in the basis by multiplying the i

column by -1.

T . 1 if s. in basis
A ± = [0,0,0,... , 1 .,0,0] where I = j 1

-1 if t. in basis i

Thus, if s. -» t.: B..: +1 -» -1
l l ii

t. -» s.: B..: -1 +1
l l ii
th B.. is the i element in column i of the current basis, n

th
(2) If we now take the inverse of the basis the i row will be

th
the negative (i.e., -1 times) of the i row before the variable ex-

th
change of (1). So we could just multiply the i row of the basis
inverse to accomplish the exchange in the inverse.

th
(3) Since we have multiplied the i row of the basis inverse

th A

by -1, the i element of both b (updated b-vector) and a. (updated

68

entering vector) will also be multiplied by -1. Thus the new i"*1 element

a, is -a., and the new i"*1 element of the b-vector is -b\ +(b"!" - b.). k ik 1 l l
(4) Now an ordinary simplex pivot is performed with a.̂ entering

th
the basis to replace the i slack variable.

Convergence

Lemma 1 9^, for any variable which is a candidate blocking variable,

the amount it can change before it is driven to infeasibility

remains the same after a constraint switch is made.
th

Proof: A constraint switch can only take place if for the i slack

variable in the basis, a^ the update entering vector has a

negative in the a ^ element, then the i"*1 slack variable is in

the set of candidate blocking variables, because for unit in­

crease in a^ the i"*1 slack will also increase one unit and it
must remain ^ b. (where b. = bt - b.) for it to be feasible, l l l l

u. - b.
Q ^ = f o r a ^ < 0 in general

a i

u. = b. = bt - b"
1 1 1 1

(1) 5 i " fii
9. = before switch

1 -a
aik

When a constraint switch takes place we change the basis by sub­

stituting slack variables. This is accomplished by multiplying the
th -1 ^ A i column by -1. We must also update the B , b, by multiplying

th
the i row of each by -1, and the value of the slack variable becomes

69

A
A A A A
b. = -b. + b., after updating, -a > 0. Therefore 9. is — for i i i IK. i a

a.. > 0 in general. So now 1 J

A A

-b.+b. b.-b.

ik ik

From equations 1 and 2 we see 9 is the same so that a switch does not

have to be performed in order to determine 9^ for a slack variable in

the basis.
th - \ Lemma II The ratio of the i row elements of the updated B to th A

the i element a, remain the same even if a constraint k
th

switch is performed on the i variable in the basis.
th

Proof: Again, a constraint switch can be performed if the i
slack variable is in the basis and a., < 0.

ik

b: 1

(3) Ratio = j=l,2,...,m
A
aik

After switch

(4) Ratio = — ^ j=l,2,...,m
A

" aik

Therefore the ratios from equations 3 and 4 are equal, and

again a switch does not have to be performed in order to

determine these ratios.

When degeneracy occurs, there is a possibility that the objec­

tive function will not increase during a sequence of iterations, and

it is also possible that a basis may be repeated. If this happens the

70

simplex algorithm will not converge. Dantzig (2) has proposed a method

of perturbation to avoid degeneracy. The general max flow problem

becomes,

m
Max ^ Xj

m
s.t.) a..x. + x., = b. + s 1 j=l,2,...,m

l, ij j l+m 1
i=l

x's ^ 0

It is shown that the value of the basis variables are of the form

m

V E) = I b i k (\ + e k) 1=1.2,...,m
k=l

= b. + b... s + b ' l e 2 + ... + b' 1
 P

m

l ii i2 lm 6

where b. is value x. when e= 0, and [b *1 is the current basis in-
J l

verse. It is also stated that the basic variable to leave the basis

is determined by

x
s

b. (e) _i - 1 2 -1 m
— = MIN f(b. + b., e + b . . e + . . . + b . e a. }
. I ii i2 im is J

a i s a_._>0 is

From Lemma II in Dantzig (2), the minimum of polynomial expressions

is determined by first comparing the constant terms and choosing the

minimum, if there is more than tied, compare the terms involving e and

so forth until a unique minimum is found. We have shown by lemmas I

and II that the ratios of these terms of the polynomial expressions re-

71

main unchanged after a constraint switch. Therefore the variable to

leave the basis can be determined by

x
s
* = V e > = MIN {(b. + bt?- + . . . + bt 1 m) a. }

1 ll im is J a a-
rs is

where a. > 0 for path variables and a. is unrestricted for slack is is
variables without switching any constraints. Once the leaving variable

has been determined and it is a slack then a constraint switch is

performed, followed by the usual simplex pivot operation. Dantzig (2)

has also shown that the simplex algorithm applied to the perturbed

problem will converge to an optimal value in a finite number of itera­

tions, and that the optimal basic feasible solution to the perturbed

problem is also the optimal solution to the unpertrubed problem, when

- 0. Therefore we can conclude that the constraint switching proce­

dure with the associated pivot operation will converge to an optimal

value in a finite number of iterations.

EXAMPLE OF THE CONSTRAINT SWITCH PROCEDURE

s = source

72

(b ,b) = lower and upper bounds on the flow in the arc.

Initial basic feasible solution contains path, P^ = [1,3,5] and upper

constraint slack variables for arcs 1, 2, 3, 4, in the basis.

INITIAL BASIS

1 0 0 0 1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

R.H.S.

All constraints are

upper-bounded.

0 0 0 0 1

INITIAL BASIS INVERSE

1 0 0 0 -1
0 1 0 0 0
0 0 1 0 -1
0 0 1 1 0
0 0 0 0 1

B - 1b

-1 0 0 0 0 Flow = 4

Shortest path column generation

m m
j

c . = m m z .
3 j J

= min c B a. B j J

= m m
P . P . r ,

I 1

73

(TT) is applied to each arc

shortest path: = {1,4}

Enter x.

z. - c. = (0+0) -1 = -1
J J

-1

sl 1 0 0 0 -1

S 2 0 1 0 0 1

S 3 0 0 1 0 -1

8 4 0 0 0 1 0

xl 0 0 0 0 1

c3
0

0

1
0

Updated entering
vector

x„

Blocking variable is s^

-1

1 0 0 0 t-1

0 1 0 0 0

0 0 1 0 -1

-1 0 0 1 1

0 0 0 0 t-1

Flow = 6

Shortest Path: P 3= {2,5}

z. - c. = (0+0) J J

Enter x„.

B" 1

*2 1 0 0 0 -1

s 2 0 1 0 0 0

S 3 0 0 1 0 -1

S 4 -1 0 0 1 0

x 1 0 0 0 0 1

Candidates for blocking variable s

1)

2)

3)

4)

5)

S 2

3
s,' =

x 3 + 9

s 2 - 9

s 3 + 9

s, - 9 4

9

8 - 9

1 + 9

5 - 9

4 - 9

(* 0)

0)

5 -2)

0)

(* 0)

1) 9 ;> 0

2) 9 ^ 8

3-1
3) 9 * ^
4) 9 ^ 5

5) 9 ^ 4

= 2

i"bi
9 = min

9 = min
2 i

ij
bt - bT) - V

A
-a. .

i j

a.. < 0
iJ

« 2

9 3= u 3 =

9 = blocking variable = 2 s.

The lower constraint for arc 3 is blocking. Therefore exchange the

lower constraint for the upper constraint, and then pivot.

A
b

X 2 1 0 0 0 -1

S2 0 1 0 0 0

fc3 0 0 -1 0 1

S 4 -1 0 0 0 1

x l 0 0 0 0 1

ik

A
bik -b0 + (bt - bl) = -1 + (5-2) =

TYPE -1

+ X 2 1 0 -1 0 0

+
S 2 0 1 1 0 -1

X 3 0 0 -1 0 1

+ S 4 -1 0 1 1 0

+ x l 0 0 1 0 0

-1 0 0 - 1 0

OPTIMAL SOLUTION

max flow = 8

P x - {1, 3, 5} * l = 2

P 2 - [1, 4} x 2 = 4

P 3 = {2, 5} x 3 = 2

Shortest path: { 1, 3, 5 1 has length = 1. Therefore, the above solu­

tion is optimal.

78

CHAPTER VT

THE CONSTRAINED SHORTEST PATH ALGORITHM

FOR ACYCLIC NETWORK

In a shortest path network problem, there are lengths associated

with the arcs of the network. These lengths can represent time, cost

or distance. The shortest path problem determines the minimum length

path from the source node to the sink node through the network. The

constrained shortest path problem has been formulated by Berry and

Jensen (6) such that in addition to a length on each arc, there is

also a requirement of some limited resource. So the constrained shortest

path problem becomes one of determining the minimum length path through

the network subject to these resource restrictions. Hinkle (1) has

shown that a constrained shortest path problem can be used to generate

a path through the network of maximal flow problem, which will possibly

reduce the flow on the longest path and yet retain maximal flow.

The mathematical formulation of Hinkle's constrained shortest

path problem is

(1) Min (p TT - £ B" 1) a

V., nonbasic J '
s. t. L ^ L * - 1

j

The vector a , which does in fact minimize this objective function
j

will be a path through the network which will: (1) insure that the

maximal flow through the network is maintained; (2) tend to reduce

79

the flow on the path or set of paths with the longest length through

the network; and (3) have a length less than the longest path. Since

the contrained shortest path problem is searching for that returns

an optimal value to problem (1), let us reformulate the problem in

terms of the set of all paths through the network. In general terms,

the constrained shortest path problems may be stated as: determine

the path through the network which has the minimal sum of costs on the

arcs which make up the path, and has a sum of lengths on the arcs which

is less than or equal to the length of the longest path minus one. Now

the problem of finding enter path is defined in terms of the arc costs

and lengths of the network, and can be formulated as,

(2) Min £ d x
p ep i j i j

s. t, S
V. . I . . x. . <;L* - 1 Vjep ij ij

x = 0, 1
ij

m -1
where c. . = cost of using arc (i, j) - pxt £ B

ij i Vl li
- length of arc (i, j)

L* = length of the longest path(s) in the network carrying

flow

1, if arc (i,j) is used in path p

0, otherwise

P = set of all paths, p through the network

Problem (2) can be solved by the arc costs, c , and the arc
ij

Xij -

80

lengths, -t̂ j , to the network and determining the minimal cost path

through the network such that its length is less than or equal to L* - 1.

Since there exists a possibility of negative arc costs if the con­

strained shortest problem is used to generate a "reducing" path for the

ship scheduling problem, the solution procedure must take advantage

of the acyclic property of the network representing the ship scheduling

problem if negative cost directed cycles are to be avoided.

The following labelling procedure is a modification of Hinkle1s

procedure in that the network must be acyclic and negative arc costs are

allowed.

ALGORITHM:

x is defined as a scanned set, which includes a node that has

been labeled, or a node for which it has been determined it could not

be labelled.

The Constrained Shortest Path Algorithm

A is the arc set for the network.

STEP 0: Label the sink, t, with

L (t) = (0,0,co) and place t in x

STEP 1: Find a node i which can be labeled: a node, i, such that

(i, j) e A - j e x .

There must be at least one if s, the source, is not in x.

STEP 2: If A node, i, is found construct

L (i) = U(j) + lmm9 c(j) + c..9 (i, j)) k n ii ij iJ

81

where = length of arc (i,j)

c.. = cost of arc (i.i) ij '

^(j) = length to node j from sink
c(j) = cost to node j from sink

If any two labels have the same length take the one with the smaller

cost.

Place i in x.

STEP 3: Repeat Steps 1 and 2 until the source, s, has been labeled,

or until it has been determined that s cannot be labeled

because the length from the source to the sink (the shortest

path) is greater than L* - 1.

Rule 1:

Do not construct labels for node i until all nodes j, such that

(i, j) e A, are elements of set x (i.e., all nodes j have been labeled).

Remark 1:

Since we are searching for the minimum cost, shortest path from s

to t, we wish to construct a label list for node i which contains only

minimum length and cost labels. So the resulting list for i is a

subset of all possible labels that could be generated by the above

procedure and Rule 1. If the second part of Step 2 is not employed

we will generate labels which do not indicate minimum length and cost,

partial paths from node i to the sink.

Remark 2:

If at any stage of the labeling procedure the length of all k

82

labels from node j £(j) Vk ^ L* - 1 and j^s then this node j and all

arcs incident to node j can be removed from the network. This removal

operation will avoid unnecessary calculations in the labeling procedure,

because the path generated using this node will not meet the requirements

to be a candidate to enter basis, as defined by Hinkle (3), i.e., a ? P j

L*-l. A simple way to find a node which can be labeled is to pick any

node, i, not in x. Then if all the successors, j, to node i (i.e., those

j for which (i,j) e A) are labeled then node i can be labeled. Other­

wise, pick some successor, j, not in x and try to label it. Even­

tually some node must be found which can be labeled since t is in x and

the network is assured to be acyclic.

At each iteration of the algorithm a new node receives all of

its labels. Thus, the algorithm requires exactly as many iterations as

there are nodes in the network.

83

An Example of the Constrained Shortest Path Procedure

2 A (3,0) 7.

(5,18000)
2.

(, c) = Length and cost on (i,j) A from Hinkle's (1) example
1 J i j -i

with the costs being generated from p7t- ,X for
JL K
L

the last iteration of .CSPATH in the computer program.

Network Below has All Possible Labels Shown

(7, 0,7)
(5,1000,7)

(10, 0,3)
(8,1000,3)
(7,1000,4)
(5,2000,4)

1 (1,19000)

(3,0) 7.

8.

(1,1000),

(2,0)

(5,18000)

(11,19000,1) (4,0)
(9,20000,1) ' " ^
(8,20000,1)
(6,21000,1)(6,1000,5)
(12,18000,2)(4,2000,5)
(11,19000,2)(7, 0,6)
(9,20000,2)

(5,1000,8)
(3,2000,8)

(4,0,9)
(2,1000,10)

(1,0)

ll.
(3,0) (0,0,

(3,0,11)

LABEL = (LENGTH, COST, ARC NOS.)

LSTAR = L - 1 = 12-1 = 11 B

85

Network Below Shows Final Labels

(6,1000,5) (3,0,11)
(4,2000,5)
(7,0,6)

Label = (Length, Cost, Arc Nos.)

Label at s, that generates candidate path is (8,20000,1) and the

path is 1-4-8-9-11.

86

CHAPTER VII

EXAMPLE

STEP 1 SOLUTION OF THE SUPPLY TRANSPORTATION SUBPROBLEM

I) GIVEN a.

A) Available load equivalents

of supplies at the bases

B) "Base to Port" travel time matrix, BP PORTS
1 2

C) "Ship to Port" travel time matrix, SP

D) "Port to Objective" travel time vector, PO

PORTS
1 2

OBJECTIVE

P
0 1
R
T 2

87

The required load equivalents (ship loads) of supplies at the

ports were determined as; thus the number of ships that must
T

travel to port 1 is 2 and to port 2 is 3,

II) SOLUTION OF THE LEAST TIME TRANSPORTATION PROBLEM

PORTS
a

1 2

B 1
A

b
j

6
1

2
1

3
1

4
3 4

2 CO
 5

T = MAX {t t , t }
! ' 11 21 22'

= MAX \ 6, 3, 4}
= 6

PORTS

B
A
S
E
S

x

6 2
1 1

3
2

4
2 4

2 CO
 5

12

OPTIMAL SOLUTION:

= 1

X21 = 2

x 22 = 2

t = 2 12
t = 3 21 J

t 2 2 = 4

z = t,„+ t + t = 9 12 2 1 22

88

CLOSURE TIME = MAX t 1 2, t^, t = 4 (i.e. all the

supplies will have arrived at the ports in 4 time units).

III) NETWORK CONSTRUCTION

The NETWORK was constructed according to the algorithm

developed in Chapter 3, and it appears in Figure 4. A renumber ver­

sion of this network appears in Figure 5.

IV) APPLICATION OF UPPER AND LOWER CAPACITIES, AND LENGTHS TO THE

ARCS

The first network shown in Figure 4, was constructed and

labelled using the procedures described in Chapter 3. However, the

computer program will actually construct the ship scheduling network

internally. The second network shown in Figure 5, is the renumbered ver­

sion of the network in Figure 4. In comparison, the network in Figure

5 has arcs (21, 2t), (11, It) and (12,It) removed since no flow can move

through them due to the upper and lower arc capacities equalling zero.

Nodes 10, 16, and 17 have been added to the network, to prevent any

excess units of flow from moving through the port portions of the net­

work (i.e. node 16 was added to prevent more than one ship from leaving

port one before time four, when the next units of supplies arrive at

port one). The node and arc numbers on this network correspond to those

numbers generated internally by the computer program.

STEP 2 SOLUTION OF THE SHIP SCHEDULING SUBPROBLEM

OPTIMAL SOLUTION

BASIS FLOW LENGTH PATH

2
3

.00

.00
0
0

1
2

89

Figure 4. The Ship Scheduling Network for the Example.

90

Figure 5. The Ship Scheduling Network The Example Renumbered.

91

OPTIMAL SOLUTION (Continued)

BASIS FLOW LENGTH PATH

END

4 .00 0 3
5 2.00 0 4
6 2.00 0 5
7 2.00 0 6
8 1.00 0 7
9 1.00 0 8

10 2.00 0 9
11 2.00 0 10
12 2.00 0 11
13 .00 0 12
14 .00 5 34
15 1.00 0 14
16 1.00 0 15
17 3.00 0 16
18 2.00 0 17
19 2.00 0 18
20 1.00 0 19
21 3.00 0 20
22 .00 6 33
23 1.00 0 22
24 1.00 0 23
25 .00 0 24
26 1.00 0 25
27 .00 0 26
28 .00 0 27
29 1.00 0 28
30 1.00 0 29
31 .00 0 30
32 .00 0 31
33 1.00 0 32
34 1.00 5 33
35 1.00 7 34
36 1.00 7 35
37 1.00 7 36
38 1.00

3169 MLSEC
7 37

26 17 13 21 2

24 18 14 21 2

24 13 21 2
26 17 18 19 15 22 2
27 7 8 3 12 1
30 19 15 22 2
31 3 12 1

The above listing is the optimal solution to the ship sche­

duling subproblem for this example. This solution must now be inter­

preted to give the schedule of the ships to the ports. Only paths with

positive flow and length correspond to actual routings of ships through

the network. Each path contains the arcs of the second network that are

92

used to make up the path. Thus the schedule of the ships may be ob­

tained by comparing these paths with the input networks. The first

path with positive flow and length is the path using arcs 33, 24, 13, 21,

2. This path corresponds to assigning ship 1 to port 2 and it will

arrive, at port 2 at time 2 and the objective area at time 5. The

complete solution can be interpreted as above and is shown in the

following table.

SHIP PORT ARRIVAL TIME

AT THE PORT AT THE OBJECTIVE

1 2 2 5

2 2 1 7

3 1 1 7

4 2 3 7

5 1 3 7

Ships 1 and 2 arrive at each port at time 1 but they must wait 3 and

2 time periods respectively, until supplies arrive at the ports before

they can take on these goods and travel to the objective area.

93

CHAPTER VIII

PROCEDURES FOR

COUPLING THE TWO SUBPROBLEMS TOGETHER

The least time transportation problem, in Chapter II, requires

explicit knowledge of the quantities of supplies that must eventually

arrive in the ports (i.e., the b. values must be known). These
J

requirements for supplies become the linking mechanisms between the

supply transportation and ship scheduling subproblems, since each ship

load of supplies that must be transported from a base to a port implies

that a ship must travel to that port to take on these supplies. Once

the port requirements are determined the number of ships that must

be scheduled through each port is known, however, the actual assign­

ment of ship i to some port j is determined by the second subproblem.

Since the number of ship loads of supplies available at each inland

base, and the number of ships necessary to transport these are known

inputs to the master problem, the only variables are the port require­

ments. Having selected a set of b values the schedule of ships
j

generated by the second subproblem is only optimal (minimal closure)

with respect to these port requirements. Thus, if the b^'s were

altered in some manner, an improved schedule could be obtained, A

branch and bounding scheme would seem to have application to this

sort of problem.

94

Branch and Bound

The strategic transportation problem may now be restated as:

determine the set of port requirements for the Bases-to-Ports problem

that will generate a ship schedule in the Ships-to-Ports problem, which

has an overall minimal closure time. This problem would fall into the

class of problem, known as combinatorial problems. Agin (7) has

defined a combinatorial problem to be one of assigning discrete

numerical values to some finite set of variables X, in such a way as

to minimize an objective function subject to a set of constraints.

Let us relate this definition to our problem. We would like to assign

a requirement value to each port such that the sum of the assigned

values equals the number of ship loads of supplies available at the bases

and generates a minimal closure schedule of the ships (i.e. minimizes

the objective function of closure at the objective area). Branch and

bound algorithms can be constructed to solve these types of problems,

and they may be viewed as creating a tree consisting of nodes and

branches between the nodes. The collection of all solutions to the

combinatorial problem can be thought of as the root of the tree and

branches indicating a partioning process of the collection into smaller

and smaller collections of the solutions with each of these collections

represented by a node. A branch and bound algorithm is defined by

Agin to be a set of rules for (1) branching from nodes to new nodes,

(2) determining lower bounds for new nodes, (3) choosing an intermediate

node from which to branch next, (4) recognizing when a node contains

only infeasible or non-optimal solutions and (5) recognising when a

95

final node contains an optimal solution.

If there did not exist an initial set of port requirements from

which a search for the best set could be started from, the tree created

by a branch and bound algorithm would have a root containing all possi­

ble sets of port requirements. Let us now define a process that would

partion this collection of all possible solutions into simpler

collections of solutions. Let the partioning consisting of assigning

a requirement value to a particular port and allowing the remainder

of the available supplies to be assigned to the other ports in all the

ways possible with the restriction the sum of all the assigned require­

ment values must equal the number of available units of supplies. If

the total units of supplies available at the bases is five and there are

three ports to which the supplies can be assigned, one node of the tree

would represent the sets of port requirements such that there was

one unit assigned to the first port and the other four units were

assigned in all combinations to the other two ports. Since we are

seeking the set of port requirements which renders an overall minimal

closure ship schedule, let us define a lower bound for each node of the

tree to be the minimal closure time of the schedules that could be

generated from the set of port requirements represented by the particular

node. A new node would be selected based on the minimal value of the

bounds at the same level of the tlree. The following figure shows a

portion of the tree that would be created for a three port and five

units of supplies problem. The bounds shown do not represent closure

values from an actual ship achedule, but are simply used to indicate

96

Figure 6. A Portion of a Tree Created by a
Branch and Bound Algorithm.

97

how the branching would take place. With the bounds used the optimal

set of port requirements would be one unit at port one, two units at

port two and two units at port three.

Given an initial set of port requirements, a closure time for

the master problem could be obtained through the solution of both sub-

problems and this time could be used as a bound on that particular

solution (i.e., assignment of supplies to ports and ships to the

ports). Then a branching scheme could be invoked to change certain

of the port requirements and this new master problem could be solved.

A continued branching and bounding could be employed until an overall

minimal closure time solution was generated. Each solution in the branch

and bound method would be the specification of requirements at the

ports for the Bases-to-Ports transportation problem. Branching would

result in a new assignment of requirements which would either lead to

improvement in the overall closure time and a better solution or give

indications that other branchings must be made.

A branch and bound procedure which enumerates requirements

at the ports could be cumbersome and (algorithmic) time consuming.

Methods need to be found which could accelerate the branch and

bound procedure and/or which could lead to good heuristic solutions

to the total problems.

Utilizing Linear Programming Information

in the Branch and Bound Procedure

In the previous section a branch and bound procedure was dis­

cussed which combined the Bases-to-??orts least time transportation

98

problem with the Ships-to-Ports min-max flow problem. In review,

lower and upper bounds were placed on certain arcs of the Ships-to-

Ports problem in order to "force" ships through specified ports and

specific times. These bounds would be generated from the solution

to the Basas-to-Ports problem.

In this section w4 shall describe methods by which the solution

information to the Ships-to-Ports problem can be used to generate a

new solution to the Bases-to-Ports problem. This would close the

loop in the branch and bound process and thereby, produce an iterative

method for solution to the total problem. We begin by presenting some

basic economic results from linear programming theory.

The basic linear programming problem can be stated in matrix

form as:

Min z = CX (1)

s. t. AX = b

x 0.

Suppose we know that B < A is an optimal basis. Then partitioning

A = (B,N), C = (C B, C N) , X* = (X*,X*) we get
B N

and

BX B + = b.

99

X* = B - 1b + B _ 1NX^

and the optimal basic feasible solution is = B" b, = 0, z =

CgB~^b. Let us define

T. V 1 -
These are the dual variables associated with the optimal solution to

the above l.p. problem. Then z = TT_,b«
a

Assuming regularity of the optimal basis under small perterba-
"k tions of the b-vector we can use z = TT b to obtain B

o* " ^B

or

*
Bb. \ ' (2)

This has a very powerful economic interpretation. In effect, equation

(2) indicates that if the values of some b is changed by a small
i

amount e (and the problem were resolved) then we would expect the

optimal objective value, z , to change by an amount TT . e • This
B.
l

provides us with information as to how the right hand side values, b^,

might be changed so as to improve the optimal value of the objective

function.

Again, assuming a regularity condition on the optimal basis under

100

small perterbations in the b-vector, we can use XL = B b to obtain

ax. B -1 B ob

or

ax.
b. = B, ,-1 'ki (3)

Interpreting (3) we find that a small change e in some b. is expected
* -1 to produce a change in X in the amount of B • e . As before, this

indicates which b, might be changed in order to offset desired changes

in the optimal values of the variables. We shall utilize (3) to "drive"

the min-max flow problem to a better solution.

Recall, in the Ships-to-Ports problem we are trying to

minimize the closure time, i.e., the length of the longest path

carrying flow. For fixed lower and upper bounds we utilized linear

programming and the constrained shortest path problem to successively

alternate optimal basic feasible solutions in which the flow on the

longest path (with positive flow) is being driven to zero. When that

algorithm stopped an optimal solution (one in which the longest path

carrying flow was as short as possible) was obtained for the pre­

scribed set of lower and upper bounds on arc flow. It is important to

note that these lower and upper bounds were used as right hand side

values, b., in the linear programming problem. Therefore, when the

ki

I

101

algorithm finally stops we could apply result (3) to determine what

effect changes in each (each lower and/or upper bounds) is

expected to have on the flow in the longest path. Specifically, we

could determine which b^'s (which lower and upper bounds) could be

changed, and in what direction, so that the flow in the longest path

might be moved toward zero. This would in turn indicate which supplies

have to be changed, either in arrival time or destination, at the ports,

As an illustration of how this method can be utilized consider

the example problem of Chapter IV. Information associated with the

optimal solution for that problem is:

TYPE ,-1

+ X*
2

1 0 -1 0 0

+ s*
2 0 1 1 0 -1

- X*
3

0 0 -1 0 1

+ s*
4 -1 0 1 1 0

+ X* 0 0 1 0 0
1

C B" 1

B 1 0 -1 0 1

p =
1

3

The example did not have lengths

important to our discussion here

fl, 3, 5}

fl,

specified for arcs, but, this is not

102

Suppose path 2 had been the longest path in the optimal solu­

tion (above). Considering the first row of B"̂ " we find that

This indicates that there are potentially two ways to lower the flow,
it

x , on path 2. One way is to lower the right hand side value
2

associated with constraint #1. From the TYPE indication we see that the

upper constraint was active for arc #1. Hence, one way to reduce the
it + flow, x 2, on path 2 is to decrease the upper capacity, b^, on arc #1.

* +
This is reasonable since x^ = 4, b^ = 6, and the additional two units

of capacity are being utilized by path l(x* = 2) .

A second way to lower the flow on path 2 is to raise the right

hand size value associated with constraint #3. From the TYPE indica­

tion we see that the lower constraint was active for arc #3. There­

fore to lower the flow on path 2 we should raise the lower capacity,
b , on arc #3. Again this is reasonable. If b is increased more flow
3 3

is forced onto path 1 since path 1 is the only path using arc #3.

However, since path 1 also shares arc #1 with path 2, any increase

in flow on path 1 must be accompanied by a corresponding decrease in

flow on path 2 as arc #1 is saturated.

In a like manner the other entries in B can be interpreted

as effecting changes in flow (or slacks).

t = i ± = -l ax* 3x* = o i^l or 3.

103

Total Travel Time Utilized in a Hueristic Solution Procedure

In the last section an iterative method for solution of the

total strategic transportation problem was discussed. It consisted

of a branch and bound procedure which allows the solution informa­

tion obtained from the Ships-to-Ports problem to generate a new solu­

tion to the Bases-to-Ports problem. This iterative method, utilizing

the linear programming information available from the Ships-to-Ports

problem solution to generate a new set of requirements at the ports,

assures an optimal solution to the total strategic transportation

problem will be found, if a backtrack scheme is included in the branch

and bound process. In this section a hueristic method, utilizing the

total travel time of all of the ships will be discussed. Generally this

method will use the solution information from the Bases-to-Ports problem

coupled with the travel time information of the ships to generate a

new requirement set at the ports. This requirement set will be

successively altered until an optimal set in terms of a total travel

time criterion is found. The Ships-to-Ports problem is then solved

using this optimal requirement set. The schedule of the sMps to the

ports generated, will be a near optimal schedule for the total strategic

transportation problem.

The travel of a ship in the Ships-to-Ports subproblem can be

represented by the time units required for the prescribed travel rather

than distances traveled. The total travel time of a particular ship

is defined to be the sum of (1) the travel time of the ship from its

location at sea to the scheduled port, (2) any delay experienced by the

104

ship at the port due to waiting for samples which have not arrived at

the port, and (3) the travel time of the ship from the port to the

objective area. The total ship travel time can be expressed in

equation form as,

T J = SP + d J + PO , for ship i scheduled to port j
i ij 1 J

where SP . is the ij*-*1 element of the Ship-to-Port travel time matrix,

dJ is the delay experienced by ship i at port j

d-̂ = max (0, SP - t } i ij ij
th

t is the arrival time of the i ship load of supplies at
ij

port j,
th

and PO is the j element of the port-to-objective area travel
j

time vector.

If all the ships were truely located randomly at sea, then there

would be a probability associated with each location and the total

ship travel time T^, would then become on expected value of travel
i

time. The SP matrix values would have to be weighted with the

probability of the ship being at that particular location. The sum

over all possible locations of the ship would become the SP portion
•i of T . Since the exact location of each ship is known with certainty i

(i.e., with a probability of one), the value of total travel time for
j

ship i, T^ is deterministic (since PO vector is also known with

certainty). Since each ship can be scheduled to one and only one

port, let 6"? be an indicator variable such that,

105

• C 1, if ship i is scheduled to travel to port j
1 0, otherwise

Now the total travel time for all ships in the Ships-to-Ports sub-

problem will be

£ S 6̂ T^ where S is the set of all ships,
ieS j eP 1 i

and P is the set of all ports.

For a given set of port requirements, the Ships-to-Ports problem

will determine this minimal closure schedule of the Ships to the

ports. Closure is defined as the time that the last ship carrying

supplies arrives at the objective area. If the actual schedule of the

ships was known, the delay component of each ship's travel time could

be determined accurately and the T"̂ ' s would reflect the actual travel
i

times. And closure would be the max f T"' 1 • To determine the overall
ieS 1

optimal solution of this strategic transportation problem, the set of

port requirements must be found which will result in a ship schedule

that has a closure time which is minimal over the set of all possible

schedules. If the set of port requirements is changed, the schedule

of the ships to the ports will also change. So we would like to change

the port requirements in such a way, that the schedule of the ships

generated by the Ships-to-Ports problem would have the minimal closure

time (i.e. the minimal max {T-? } . Alternately if the set of port
ieS 1 '

requirements was found that resulted in the set of T 's which contained
the minimal travel time for each ship, then the ship schedule would

106

also be the minimal closure schedule. Since the Ships-to-Ports

subproblem will not be explicitly solved until the best set of port

requirements is determined, the delay component of the ship travel

time will not be known exactly, but it will be taken as the

max fo, SP., - t..]. The ship travel times, T^'s, will still

reflect a travel time which is closed to the actual travel time values.

The solution method discussed in this section will be based on deter­

mining the set of port requirements which will generate the set of

minimal ship travel times, but it will not be able to guarantee that

the ship schedule resulting from this set of port requirements is the

overall minimal closure schedule of the strategic transportation

problem. The method will however generate a near optimal solution to

the strategic transportation problem. The major advantage of this

method over the branch and bound procedure discussed in the previous

section is that the solution of the Ships-to-Ports problem is not

required at each iteration to determine how to alter the port require­

ments such that the. overall closure time will tend to improve.

A method must be found to alter the port requirements so that

the set which corresponds to the minimal values of the T^'s is
i

determined. One method might be to determine the port requirements so

that the first ship has a minimal travel time, then adjust them

so that the second ship has a minimal travel time and so forth, until

all the ships in the set S have a minimal travel time. However, this

type of sequential alteration would seem to be an inefficient process,

computationally. The travel times of all the ships and how they are

107

effected by the particular change in the port requirements is not taken

into account by this sequential process. Since there does exist an

iteraction between changes in the port requirements and the travel

time of the ships the complete set of ship travel times must be taken

into account during the alteration proces. To accomplish this, let us

use the total travel time of all of the ships instead of the individual

travel times during the alteration scheme of the port requirements.

Determining the set of port requirements that would achieve a minimal

value of the total travel time for all of the ships would insure that

the individual travel times would be closed to their minimal values.

In general, however, minimizing the sum of numbers is not the same as

minimizing the maximum and then summing the numbers (this has been

shown in relation to both the least-time transportation model and the

min-max path flow algorithm). Using the total travel time as a criter­

ion for altering the port requirements will in general obtain a set of

port requirements that would generate a good solution to the ship

scheduling problem and in turn a good overall solution to the strategic

transportation problem.

A hueristic algorithm is now presented which uses the total

travel time of all ships as a criterion for altering the port require­

ments of the Bases-to-Ports problem in order to determine the best

possible schedule of the ships to the ports. In general terms, this

algorithm begins with a feasible set of port requirements, determines

the total travel time for all ships, and alters the requirements in

such a way as to reduce the total travel time. A judicious choice of

108

initial port requirements can significantly reduce the number of

alteration that must occur before the best set of port requirements in

terms of t-he total travel time is found. Since the ships are assumed

to be randomly located at sea, but with a travel time matrix, SP,

known with certainty, a set of port requirements which is not biased

in favor of any one particular port would be a good initial choice.

Hence, the algorithm is started with as even as possible distribution

of the port requirements (i.e. for a given set of supply availabilities

at the bases attempt to make the port requirements all equal).

ALGORITHM:

(1) Obtain an initial feasible set of port requirements.

(2) Solve the least time transportation problem discussed in

Chapter II for the given set of supply availabilities and the current

set of port requirements.

(3) Assign the required number of ships to each port so that all the

port requirements are met. This assignment should correspond to the

best assignment as indicated by Step 5.

(4) Calculate the total travel time of all the ships, T, using

SP matrix, PO vector and the optimal solution to the least time

transportation problem in Step 2.

(5) Determine the possible decrease in T that would result if the

i t n ship was scheduled to one of the other ports such that its travel

time would be a minimum over all the other ports. The possible decrease

in is the sum over all the ships in S of the possible decrease for

each ship. If the possible decrease in T is zero, stop; otherwise

109

continue on to Step 6.

(6) Eor all the ships for which a decrease in is possible,

adjust the port requirements in accordance with the new T j , s

(i.e. for a particular ship i, if - is positive, where T^*

is the travel time of ship i, if it were scheduled through port j

instead of port j, then decrease port requirements at j by one and

increase port requirements at j by one). Return to Step 2.

This algorithm successfully determines a new set of port

requirements for the Bases-to-Ports problem such that the total travel

time, for iteration (K+1) is less than T for iteration (K). This

algorithm does, in fact, attempt to find the set of port requirements

such that the closure (i.e., max { T~ 1) is minimal. This can be seen
i eS k •

from the way the possible decrease in T is determined. The possible

decrease in T is the sum of the reductions in the individual ship

travel times if a different set of port requirements was used. So

even though this algorithm does not explicitly minimize the maximal

ship travel time and does not explicitly solve the Ships-to-Ports

scheduling problem until after the algorithm has determined the best

set of port requirements to use, it does generate schedule of the

ships to the ports that would be near the optimal schedule of the total

strategic transportation problem. Since closure for the strategic trans­

portation problem is not determined until this algorithm has rendered

the best set of port requirements in terms of the total travel time

criterion, a checking procedure might be employed to determine if this

solution is close to the overall minimal closure solution.To accomplish the

110

checking, sequentially perturb the minimal T set of port requirements

and solve the corresponding Bases-to-Port problem and Ships-to-Ports

problem for this new requirement set, continue until the minimal

closure solution is found. With a limited amount of computational

experience we have that this algorithm will indeed generate a solution

to the total strategic transportation problem which is very close to

the overall optimal, and in some cases the solution rendered was in

fact the optimal solution.

An example, utilizing the total travel time concept as a criterion

for altering the set of pore requirements is now presented.

GIVEN:

Number of bases = 2

Number of ports = 2

Number of ships = 6

Availability of supplies at the bases

Ship-to-Port travel time matrix PORTS
1 2

Port-to-objective travel time vector

3

Ill

ALGORITHM:

STEP 1: Use an even port requirement allocation (i.e.)

STEP 2: The solution of the least time transportation problem using

an availability vector (3, 3) and a requirement vector (3,3). The

Base-to-Port travel time matrix is not needed for the complete

algorithm, but it is however required for step 2.

BP MATRIX
B
A
S
E

PORTS
1 2

4 3
2 5

1 2

0 CO

3 0

X. ij ij
The solution of the least time transportation problem can be expressed

th

in matrix form, where the ij element is the number of ship loads of

supplies arriving at port j in time period i.
PORTS
1 2

T 1 0 0
I
M 2 3 0
E 3 0 3

STEP 3: Assign ships 1, 5, 6 to port one, and ships 2, 3, 4 to port

two.

STEP 4: T J = SP + d J + PO
i ij i j

T 1 = 2 + 0 + 2 = 4
1

T = 4 + 0 + 2 = 6
5

112

1

Possible decrease in equals 1, since the travel time of ship 4

could be reduced one unit if it were assigned to port 1.

T = 3 + 0 + 2 = 5 6

The delay is zero for ships 1, 5 and 6 since all supplies arrive at

time two.

T 2 = 3 + 0 + 3 = 6

T 2 = 1 + 2 + 3 = 6
3

T 2 = 2 + 1 + 3 = 6
4

The delay experienced by ships 3, 4 is due to the arrival of supplies

at time 3.

T = £ £ \ T J

ieS jep 1 i

1 1 1 2 2 2 = T + T + T + T + T „ + T 1 5 6 2 3 4

= 4 + 6 + 5 + 6 + 6 + 6 = 33

STEP 5: Any possible decrease in T would occur only if the ship(s)

assigned to port 1 were assigned to port 2 and vice versa. There­

fore, travel times for all ships are calculated if they were assigned

to the other ports.

113

STEP 6: The new requirement vector becomes

Now return to Step 2.

For this example the algorithm does in fact terminate with the

set of port requirements (i.e. (4, 2)) which will generate a ship

schedule that has the overall minimal closure time. However, in

general the algorithm will not determine the best set of port require­

ment, but it will find a set that renders a near-optimal ship schedule,

114

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

This research has been concerned with a study of a class

of network problems, known as minimal closure problems. A strategic

transportation problem has been used as a medium through which this

study was conducted.

The objectives of this study were to characterize the structure

of the strategic transportation problem within the framework of other

network problems discussed in the literature and to develop a solution

algorithm. We have observed that the strategic transportation problem

can be decomposed into two subproblems. One of these subproblems is

concerned with the transportation of a commodity from a set of sources

to a set of destinations. And the second subproblem deals with the

scheduling of a group of carriers to the same set of destinations,

so that the commodity may be transferred to these carriers and trans­

ported to a common location (or objective area). The coupling link

between these two subproblems is the units of the commodity, available

at each destination for further transportation by the carriers. The

first subproblem could be solved by a standard transportation algorithm

and the second subproblem could be solved by a maximal flow algorithm.

However, the overall objective of a strategic transportation problem

is minimal closure (i.e. the arrival time of the last unit of commodity

at the objective area must be minimal). Therefore, the first subproblem

115

transports all of the commodity to the destinations such that the last

unit arrives in a minimal amount of time. The second subproblem must

schedule the carriers to the destinations such that the arrival time

of the last one at the objective area is also minimal.

A Summary of Research Results

In order to insure minimal closure, the transportation sub-

problem must be solved by an algorithm which does not minimize the total

time required to transport all of the commodity, but minimizes the

longest time required to transport any units of the commodity. The

general solution algorithm discussed in this thesis uses a series of

standard transportation problems and a penalization scheme to solve

this problem.

A network can be constructed to represent both the operation

through time of each port (destination) and the travel of each ship to

a port and from the port to the objective area. The ship scheduling

subproblem is formulated as a maximal flow problem through this net­

work. The maximal flow solution will not however insure minimal closure

for this subproblem. Hinkle has developed a solution algorithm for the

minimal closure, maximal flow problem (min-max path flow problem)

through a network which has only upper arc capacities in it. Since

lower arc capacities are required in the ship scheduling network to

force flow (ships) through certain arcs, Hinkle1s algorithm could not be

directly applied to the ship scheduling subproblem. Two extensions of

his algorithm have been made to assure its applicability to this sub-

problem. A constraint switching procedure has been added to his basic

algorithm to illiminate the necessity having both an upper and lower

116

capacity constraint represented by a row in the linear programming basis

of the ship scheduling subproblem. Using a constrained shortest path

problem, Hinkle1s algorithm finds a path through the network which

tends to reduce the flow on the longest path. A labelling routine,

which does not allow negative arc costs, is used to solve the con­

strained shortest path problem. In a network with lower arc capacities

there is a possibility of obtaining negative arc costs, however, the

difficulties arising from negative cost, directed cycles do not exist

in the ship scheduling network since it is acyclic. An acceleration

version of the labelling procedure, which takes advantage of the acyclic

property of the network, was also developed in this thesis.

The second subproblem determines a schedule of the ships to the

ports such that the arrival time of the last ship at the objective area

is minimal. Since each ship must transport one unit of the commodity

from the ports, to the objective area, the number of units available

at each port is also the number of ships that must travel to the port.

Therefore the minimal closure schedule rendered by the second subproblem

is only optimal with respect to the set of units available at the ports.

A better overall solution to the strategic transportation problem might

exist for a different set of the port requirements (i.e. units available

for transportation at each port). An iterative solution algorithm was

developed based on changing the port requirements in such a way that an

improved overall solution to the strategic transportation problem is

found. A branch and bound algorithm is usdd to combine the transporta­

tion subproblem with the scheduling subproblem, in such a way that

solution to the second subproblem will indicate how to change the port

117

requirements of the first subproblem in order to improve the overall

minimal closure of the strategic transportation problem. Using two

basic results of linear programming theory, namely the interpretation

of the dual variables and the elements of the basis inverse matrix,

the optimal solution of the scheduling subproblem indicates a new set

(or sets) of port requirements for the transportation subproblem. If

the total stragegic transportation problem is solved for each of these

sets 016 port requirements, a bound on closure time is determined for

each set. The algorithm will tend to branch to the best set of port

requirements in terms of this bound and the determination of new sets

of port requirements will be repeated. A backtracking scheme can be

used to determine if a better set of port requirement in terms of the

bound exists along another portion of the tree generated by the branch

and bound algorithm. If a backtracking scheme is added to this branch

and bound algorithm, an optimal solution to the strategic transportation

problem is guaranteed to be found.

If the backtracking scheme is illiminated from the above solution

algorithm then the algorithm represents a one pass type algorithm,

since all the possible sets of port requirements are not examined.

However, a one pass branch and bound algorithm will be a good hueristic

algorithm and it would generate a near-optimal solution to the strategic

transportation problem. Another hueristic algorithm was developed which

only uses the solution of the transportation subproblem for a given

set of port requirements and the ship travel time information to

generate a new set of port requirements. After calculating the total

travel time for all of the ships for the new set of port requirements,

118

it is determined if this value of total travel time can be reduced by

assigning a particular ship to another. And if the total travel time

can be reduced the port requirements are changed accordingly and the

transportation subproblem solved again using the new set of port require­

ments. However, if no reduction is possible by reassigning the ships,

the best set of port requirements in terms of the total travel time of

all of the ships has been found and the actual schedule of the ships

and the closure time is found solving the second subproblem. Again, this

algorithm will generate a near-optimal solution to the total strategic

transportation problem.

Other Applications

Multi-Commodity Flow Problems

The general multi-commodity flow problem would require both a

lower and upper capacity on certain arcs of the network to force the

flow of the commodities through these particular arcs. A positive

lower capacity might be required on an arc leading out of particular

commodity's source node to insure that a specified amount of the

commodity move through the network to its sink node. The multi-commodity

flow problem could be stated as maximize the flow of all the commodities

through the network such that the arc capacities are not violated. The

mathematical formulation of this problem in arc path form is exactly

the maximal flow problem through a capacitated network discussed in

Chapter III. Since each path through the network of the multi-commodity

problem represents a route over which the flow of that commodity can be

moved, and if all the path through the network were enumerated for all

119

the commodities the sum of the flow on the paths using a particular

arc must not violate its capacities,either upper or lower. If the

nulti-commodity problem was to be solved by linear programming

techniques the basis would require a row for each lower capacity con­

straint and for each upper capacity constraint. Since both constraints

for a particular arc are not needed to bound the flow at the same time,

the constraint switching procedure developed in Chapter V could be

applied to this problem to allow the reduced basis to accurately

represent all of the constraints in the multi-commodity flow problem.

Other Transportation Problems

Transportation problems in other areas besides the military can

be modeled as a strategic transportation problem. One area might be

the perishable food industry, where moving the crops to market or to

a processing plant must be accomplished in such a way that all of the

product would reach its final destination before spoilage destroyed it.

The transportation of the crops from the farms to a set of collection

centers could be modeled by the least-time transportation problem. If

the food processor had a group of trucks for instance, that could be

scheduled to any of the collection centers, then the scheduling sub-

problem could be used to determine a minimal closure schedule of these

trucks. In addition, one of the solution algorithms developed in

Chapter VIII of this thesis could be implemented, so that the overall

minimal closure solution could be found. Now the food processor would

be in the position to determine the minimal amount of time required

to transport all the crops from the farms to his plant and this informa­

tion could then be used to accurately schedule the processing operation

120

at the plant.

The general structure of the strategic transportation problem

could be used in modeling other transportation problems, such as a

transshipment type problem. A transshipment problem could consist of

set of locations which act as destinations with respect to one stage of

the problem, and act as sources in a second stage. In each stage there

could exist a difference mode of transportation, one of which has an

unlimited availability and low operating costs and the other might have

a limited availability and high operating costs. The total problem

could be decomposed into subproblems with the coupling link being the

requirements for the commodity at the common set of locations. This

decomposition would allow one of the subproblems to be modeled with the

transportation of the commodity as the primary objective and the

scheduling of the carriers to be implicitly accomplished through the

solution algorithm. The other subproblem could be modeled with

scheduling of the carriers as the primary objective. Therefore a

multi-stage transportation could be modeled as separate subproblem

with different objectives and yet accomplishing the overall objective

of the problem, that is to transport the commodity from the original

sources to the final destinations.

Extensions and Areas of Further Research

The strategic transportation problem discussed in this thesis

has been formulated in view of what the military anticipates its supply

systems will be like in the future. However there exists a need for an

accurate model and solution algorithm for the military supply systems

of today. There are a number of characteristic of the future supply

121

system which are not present in today's systems. These characteristics

might be viewed as simplifying assumptions in the current supply systems.

It would seem, however, that the structure and the algorithm could be

extended and/or modified to model a system in which these special

characteristics did not exist.

Let us examine a number of these special characteristics and

indicate how the strategic transportation nodel and/or the solution

algorithm might change in the absence of them. The network constructed

in Chapter III to model the ship scheduling subproblem did not include

either supply storage or berth capacities, since the port's operation

only involved the transfer of standardized units of supplies from one

mode of transportation to another (i.e. to the ships). A berth capacity

would limit the number of ships that could be loaded with supplies a time

unit in the port's operation. A storage capacity at a port would also

limit the number of ships that could be loaded, and it also limits the

number of ships that could leave a port during one time unit. The arc

between two subnodes of a port's temperal expansion represents the

passage of one time unit. A berth capacity can be used as an upper

arc capacity to limit the number of ships that stay in the port waiting

to be loaded. The arc between a subnode and a port's sink node repre­

sents a loaded ship leaving the port and traveling to the objective

area. An upper capacity on this arc is maximum number of loaded ships

that can leave a port during one time unit. To accurately model a

port with storage and berth capacities this upper capacity must be the

minimum of these two capacities. However, if the quantity of supplies

that have arrived at the port up until this time unit is less than the

122

minimum of the storage and berth capacities, then only that number of

loaded ships could possibly leave the port. Therefore the upper capa­

city of these arcs must be the minimum of all three values. There would

also exist a time associated with the actual loading of the ships.

However, t M s time would be the same for each ship loaded at a port,

so it could simply be added to the lengths of the arcs connecting the

subnodes and the port sink nodes. Graphically the arcs of the port

portion of the ship scheduling network would now have the capacities

and lengths shown below.

supply
+ loading

time

Only one difficulty seems apparent if both berth and storage

capacities are added to the network representation of a port's operation;

and it concerns the representation of ships waiting to enter a port for

loading when all of the berths are full. This situation arises if the

berth capacity is smaller than the number of ships that could be

scheduled to arrive at a port during a time unit and no supplies will

arrive at the port until some future time period. No simple way of

reconstructing the network to handle this situation of out-of-port

waiting has been found. So further study would be required if the

basic network, constructed in Chapter III is to be modified for berth

and storage capacities.

123

Another characteristic of the strategic transportation model

developed in this thesis is that all of the ships are the same size

(i.e. they have the same load carrying capacity) and travel at the

same speed. Our model changes drastically if these ship characteristics

are not present. In the context of the Bases-to-Ports transportation

problem, the supplies would no longer be transported in standardized

ship loads, but they would be moved as units of the individual types of

supplies. This transportation problem becomes a multi-commodity trans­

portation problem with each commodity being a different type of supply.

Since there are no capacities on the travel links in the Bases-to-Ports

problem, the minimal cost solution (i.e. min £ c•^ x..) to the multi-

commodity transportation problem can be determined by solving a series

of single commodity, standard transportation problems. If the penaliza­

tion scheme discussed in Chapter II is used in the solution of each

single commodity transportation problem, then we would be solving a

series of min-max (least time) transportation problems. And thus a

min-max solution for this multicommodity transportation problem could

be found. If the individual types of supplies are transported from the

bases to the ports, instead of ship load units of supplies, there are

no real difficulties in determining the least time solution for the

Bases-to-Ports problem, except the computational effort required has

increased significantly.

She Ships-to-Ports subproblem of the strategic transportation

problem was easily formulated as a min-max path flow problem. The net­

work constructed in Chapter II, represented each ship's travel to a

port to take on supplies and its travel to the objective area. Since

124

each ship could only carry one ship load of supplies, the flow through

the network could also be interpreted as ship loads of supplies moving

to the objective area. Arc capacities were added to the network to

both force and limit flow through the network. The arcs connecting

each port sink node and the super-sink were added as driving arcs, in

the sense that their upper and lower capacities equaled the number of

ships that must move through each port, which is also the number of

ship loads of supplies that were available at each port for further

transportation. Both the flow and the arc capacities were in ctnmmon

units and the network represented a single commodity problem, which the

min-max path flow algorithm, with the modifications described in this

work, could easily be solved. Now however, there are different sizes

of ships and different types of supplies arriving at the ports. Each

ship no longer carries a standard load of supplies, but it could carry

any combination of supplies as long as the carrying capacity was not

exceeded. There no longer exists a common unit in either the flow or

the arc capacities. And now the Ships-to-Ports scheduling problem is

also a multi-commodity problem. Since neither the network representa­

tion nor the solution algorithm developed in this thesis, can be applied

to this problem further study, directed at how this multi-commodity

situation might be represented on a network and how the solution

algorithm might be modified, is required.

In Chapter VIII, an iterative method, using a branch and bound

algorithm, was developed for the solution of the total strategic trans­

portation problem. It was indicated that the solution to the ship

scheduling problem could be used to generate a new set of port

125

requirements, such that the closure time for the total problem is lower

than the closure time for the best previous set of port requirements.

Implicit in the determination of the closure time for the new set of

port requirements is the complete solution of both subproblems using

this new set. By changing the port requirements, the min-max

solution to the Bases-to-Ports transportation problem will indicate a

new set of arrival times of the supplies at the ports. Since the quan­

tities and the arrival times of the supplies at each port are used as

arc capacities in the ship scheduling network, the new solution of the

Bases-to-Ports problem will dictate certain changes in the arc capacities.

These arc capacities are used as the "b" values in the linear programming

formulation of the ship scheduling subproblem. Instead of completely

resolving this subproblem with the new "b" values, a sensitivity

analysis of the previous optimal solution to the ship scheduling

problem can be performed in light of these new "brr values. Since the

optimal solution in terms of the variables (paths) that are in the

basis, will not change if the "b" values are changed, however, the value

of these variables might. The new variable values can be determined by

simply updating the new b vector by matrix multiplication with the

current feasis inverse (i.e. b^B'^b). If all of the updated "b" values

remain non-negative then we have obtained the new solution to the ship

scheduling problem without completely resolving it. However, if any

of the new "b" values become negative during the updating process,

then this new solution is infeasible. Therefore any variable with a

negative value must be removed from the basis. One method to easily

accomplish this removal would be the dual simplex algorithm. This same

type of sensitivity analysis could be used in determining the new

126

solution to Bases-to-Ports subproblem if it was solved as a linear

programming problem. However, it is solved using the transportation

algorithm. Some study would be required to determine if there did exist

a method to use the previous solution to this subproblem in connection

with changes in port requirements, to determine the least-time solution

without completely resolving the problem. In general the use of

sensitivity analyses could greatly reduce the computional effort

required in the complete solution algorithm for the strategic trans­

portation problem.

127

APPENDICES

128

APPENDIX A

PROGRAM LISTING

CODE FOR STRATEGIC TRANSPORTATION PROBLEM
DATE: 101473 TIME: 124218

DIMENSION BP(20,20) ,A(20) ,B(20) ,IB(20) ,TAB.(20,20)
DIMENSION ITAB(20,20) ,INDEX(20,2) ,NROW(20) ,NCOL(20) .SUPPLY(20,20)
DIMENSION SP(20,20),PO(20)
INTEGER BP,BASES,PORTS,SHIPS,ROWS,COLUMN,TEST,SUPPLY, S P , PO
EQUIVALENCE (TAB,lTAB)
COMMON /HELP/ SUPPLY,BP,SP,PO,IB
COMMON /HELP/ BASES,PORTS,SHIPS,MAXTIM

C**** REQUIRED INPUT:
C NUMBER OF BASES
C NUMBER OF PORTS
C NUMBER OF SHIPS
C AVAILABILITIES AT PORTS
C REQUIREMENTS AT PORTS
C BASE TO PORT TIME MATRIX
C SHIP TO PORT TIME MATRIX
C PORT TO OBJECTIVE TIME VECTOR

READ(5,100) BASES,PORTS,SHIPS
READ(5,100)(A(I),1=1,BASES)
READ(5,100)(B(J),J=1,PORTS)
READ(5,100)((BP(I,J),J=1,PORTS),1=1,BASES)
READ(5,100)((SP(I,J),J=l,PORTS),1=1,SHIPS)
READ(5,100)(PO(J),J=1,PORTS)

100 FORMAT()
C WRITE(6,110) BASES,PORTS,SHIPS
C110 FORMAT(315)
X WRITE(6,111)(A(I),I=1,BASES)
Xlll FORMAT(2F6.2)
C WRITE(6,112)(B(J),J=1,PORTS)
C112 FORMAT(2F6.2)

WRITE(6,113)((BP(I,J),J=l,POSTS)
C113 FORMAT(215)
C WRITE(6,113)((SP(I,J),J=1,PORTS), 1=1,SHIPS)
C WRITE(6,113)(PO(J),J=l,PORTS)

WRITE(6,114)
114 FORMAT(» INTERMEDIATE TABLEAUS FOR LTT 1)

DO 10 J=l,PORTS
10 IB(J)=B(J)
C**** NORTHWEST CORNER RULE

129

1=1
J=l
ZERO=.00
EPS=.01
INF=99999
MAXTIM=-INF
K=l

120 IF(A(I).LE.B(J)) GO TO 130
TAB(I,J)=B(J)
A(I)=A(I)-B(J)
IF(BP(I,J).LT.MAXTIM) GO TO 125
MAXTIM=BP(I,J)
NR0W(K)=I
NCOL(K)=J

125 IF(A(I).GE.ZERO+EPS) GO TO 135
1=1+1
TAB(I,J)=EPS

135 J=J+1
140 IF(I,GT.BASES.OR.J.GT PORTS) GO TO 160

GO TO 120
130 TAB(I,J)=A(I)

B(J)=B(J)-A(1)
IF(BP(I,J).LT.MAXTIM) GO TO 145
MAXTIM=BP(I,J)
NROW(K)=l
NCOL(K)=J

145 IF(B(J).GE.ZERO+EPS) GO TO 150
J=J+1
TAB(I,J)=EPS

150 IKL+1
GO TO 140

C**** NORTHWEST CORNER SOLUTION
160 WRXEE(6,109)
109 FORMAT(fO TABLEAU FROM NORTHWEST CORNER RULE 1)

WRITE(6,105)((TAB(I,J),J=l,PORTS),1=1,BASES)
105 FORMAT(2F6.2)
C**** LEAST TIME ALGORITHM
161 LL=K

DO 600 L=1,LL
MMM=PORTS+BASES

165 DO 170 1=1,MMM
DO 170 J=l,2

170 INDEX(I,J)=0
INDEX(l,l)=NROW(L)
INDEX(l,2)=NCOL(L)
MROW=NROW(L)
MCOL=NCOL(L)
K=l

C^WWWc SEARCH FOR ROW CELLS
DO 180 J=L,PORTS
IF(TAB(MROW,J).LT.EPS) GO TO 180

130

IF(MCOL.EQ.J) 00 TO 180
K=K+1
INDEX (K, 1)=MR0W
INDEX(K,2)=J

180 CONTINUE
ROWS=K

C**** SEARCH FOR COLUMN CELLS
DO 190 1=1, BASES
IF(TAB(I,MCOL).LT.EPS) GO TO 190
IF(I.EQ.MROW) GO TO 190
K=K+1
INDEX(K,1)=I
INDEX(K,2)=MCOL

190 CONTINUE
COLUMN=K

C WRITE(6,500)((INDEX(I,J),J=l,2),1=1,K)
C500 FORMAT(215)
C**** SEARCH FOR PATHS TO CHANGE ALLOCATION TO MAXTIM CELL

IF(ROWS.EQ.l) GO TO 215
DO 200 K=2,ROWS
M=INDEX(K,2)
DO 210, 1=1,BASES
IF(I.EQ.MROW) GO TO 210
IF(TAB(I,M).LT.ZERO+EPS) GO TO 210
IF(BP(I,MCOL).GE.MAXTIM) GO TO 210
TEST=0
GO TO 240

210 CONTINUE
200 CONTINUE
C**** NO PATH FOUND YETj

IF(COLUMN.EQ.ROWS) GO TO 600
215 ROWS=ROWS»l

DO 220 KasROWS,COLUMN
M=INDEX(K,1)
DO 230 J=l,PORTS
IF(J.EQ.MCOL) GO TO 230
IF(TAB(M,J).LT.ZERO+EPS) GO TO 230
IF(BP(MROW,J).GE.MAXTIM) GO TO 230
TEST=1
GO TO 240

230 CONTINUE
220 CONTINUE
C**** NO PATH FOUND!

GO TO 600
240 IF(TEST.EQ.O)GO TO 300
C**** COLUMN CHANGE

IF(TAB(MROW,MCOL).LE.TAB(M,J)) GO TO 250
C HANGE*vEAB (M, j)
GO TO 255

250 CHANGE=TAB(MROW,MCOL)
255 TAB(MROW,MCOL)=TAB(MROW,MCOL)-CHANGE

1 3 1

T A B (M , J) = T A B (M , J) - C H A N G E
T A B (M , M C O L) = T A B (M , M C O L) + C H A N G E
T A B (M R O W , J) = T A B (M R O W , J) + C H A N G E
I F (T A B (M R D W , M C O L) . L T . Z E R O + E P S) G O T O 6 0 0
W R I T E (6 , 5 0 2)
W R I T E (6 , 5 0 1) ((T A B (I , J) , J = l , P O R T S) , 1 = 1 , B A S E S)

5 0 1 F O R M A T (2 F 6 . 2)
G O T O 1 6 5

C * * * * R O W C H A N G E
3 0 0 I F (T A B (M R O W , M C O L) , L E . T A B (I , M)) G O T O 2 6 0

C H A N G E = T A B (I , M)
G O T O 2 6 5

2 6 0 C H A N G E = T A B (M R O W , M C O L)
2 6 3 T A B (M R O W , M C O L) = T A B (M R O W , M C O L) - C H A N G E

T A B (I , M) = T A B (I , M) - C H A N G E
T A B (M R O W ,M) = T A B (M R O W ,M) + C H A N G E
T A B (I M C O L) = T A B (I , M C O L) + C H A N G E
I F (T A B (M R O W , M C O L) . L T . Z E R O + E P S) G O TO 6 0 0
W R I T E (6 , 5 0 2)
W R I T E (6 , 5 0 1) ((T A B (I , J) , J = 1 , P O R T S) , 1 = 1 , B A S E S)
G O T O 1 6 5

6 0 0 C O N T I N U E
M A X = B P (M R O W , M C O L)

C * * * * R E C A L C U L A T E M A X T I M
3 0 5 M A X T I M = - I N F

W R I T E (6 , 5 0 2)
5 0 2 F O R M A T (' 0 O T H E R T A B L E A U S 1)

W R I T E (6 , 5 0 1) ((T A B (I , J) , J = l , P O R T S) , 1 = 1 , B A S E S)
D O 3 1 0 1 = 1 , B A S E S
D O 3 2 0 J=l,PORTS
I F (T A B (I , J) . L T . Z E R O + E P S) G O T O 3 2 0
I F (B P (I , J) . L T . M A X T I M) G O T O 3 2 0
M A X T I M = B P (I , J)

3 2 0 C O N T I N U E
3 1 0 C O N T I N U E

I F (M A X T I M . E Q . M A X) G O T O 4 0 0
K = 0
D O 3 2 5 1 = 1 , B A S E S
D O 3 3 0 J=l,PORTS
I F (T A B (I , J) . L T . Z E R O + E P S) G O T O 3 3 0
I F (B P (I , J) . N E . M A X T I M) G O T O 3 3 0
K = K + 1
N R O W (K) - I
N C O L (K) = J

3 3 0 C O N T I N U E
3 2 5 C O N T I N U E

G O T O 1 6 1
C * * * * C O N V E R S I O N O F F L O A T I N G P T . I N F O . T O I N T E G E R I N F O .
4 0 0 D O 4 0 5 1 = 1 , B A S E S

D O 4 0 5 J=l,PORTS

132

TAB(I,J)=TAB(I,J)+(4.*EPS)
ITAB(I,J)=TAB(I,J)

405 CONTINUE
DO 410 1=1,MAXTIM
DO 410 J=l,PORTS

410 SUPPLY(I,J)=0
DO 415 1=1,BASES
DO 420 J=l,PORTS
IF(lTAB(I,J).LE.O) GO TO 420
M=BP(I,J)
SUPPLY(M,J)=ITAB(I,J)

420 CONTINUE
415 CONTINUE
C**** OPTIMAL SOLUTION

WRITE(6,106)
106 FORMAT('OPTIMAL SOLUTION TO LIT',/,' FINAL TABLEAU1)

WRITE(6,107)((ITAB(1,J),J=l,PORTS),1=1,BASES)
WRITE(6,108)

108 FORMAT(' SUPPLY MATRIX1)
WRITE(6,107)((SUPPLY(I,J),J=l,PORTS),1=1, MAXTIM)

107 FORMAT(215)
CALL CONSTR
END

SUBROUTINE CONSTR
DIMENSION INPUT(100,5),BP(20,20),SP(20,20),PO(20),SUPPLY(20,20)
DIMENSION SUM(20),REQUIR(20),NODEST(25,25)
DIMENSION Bl(100),E(100),UC(100),LC(100),LENGTH(100),Y(100)
INTEGER B1,E,UC,Y,SOURCE
INTEGER BP,SP,PO,SUPPLY,SUM,REQUIR,BASES,PORTS,SHIPS,TIME
INTEGER ARCS,TEMPOR,COUNTR,X
COMMON /HELP/ SUPPLY.BP,SP,PO,REQUIR
COMMON /HELP2/ BASES,PORTS,SHIPS,TIME
COMMON /NETWOR/ NODES,ARCS,SOURCE,B1,E,LENGTH,UC,LC,Y
WRITE(6,101)BASES,PORTS,SHIPS

101 FORMAT('NUMBER OF BASES: ',15,/,' NUMBER OF PORTS: ', 15,
l/,1 NUMBER OF SHIPS:',15)
INF=99999

C**** ARCS FROM PORTS SINKS TO SUPER SINK
NODES=PORTS+l
DO 110 1=2,NODES
ARCS=I-1
INPUT(ARCS,1)=1
INPUT(ARCS,2)=1
INPUT (ARCS,3)=0
INPUT(ARCS ,4)=REQUIR(ARCS)+5
INPUT(ARCS ,5)=REQUIR(ARCS)

110 CONTINUE
C**** DETERMINE SIZE OF TEMPORAL EXPANSION

DO 120 J=l,PORTS
TEMPOR=-INF

IF(SUPPLY(I,J).EQ.O) GO TO 130
IF(TEMPOR.GE.I) GO TO 130
TEMPOR=I

130 CONTINUE
DO 140 1=1,SEE PS
IF(SP(I,J).LE.TEMPOR) GO TO 140
TEMPOR=SP(I,J)

140 CONTINUE
C**** CALCULATE CUMMULATIVE SUPPLY ARRIVALS FOR EACH TIME PERIOD

DO 150 1=1,TEMPOR
150 SUM(I)=0

IHELP=TEMPOR+l
DO 160 L=2,IHELP
IF(L-l.GT.TIME) GO TO 165
LL=L-1
SUM(L)=SUM(LL)+SUPPLY(LL,J)
GO TO 160

165 LL=L-1
SUM(L)=SUM(LL)

160 CONTINUE
C**** ARCS FROM TEMPORAL EXPANSION TO PORT SINKS

KK=NODES+l
KKK=NO DES +TEMPO R
1=2
DO 170 K=KK,KKK
ARCS=ARCS+1
INPUT(ARCS,1)=K
INPUT (ARCS, 2) =J+1
INPUT (ARCS ,3) =P0 (J)
INPUT (ARC S, 4) =SUM(I)
INPUT (ARCS, 5)=0
L=I-1
NODEST(L,J)=K
1=1+1

170 CONTINUE
C**** CONNECTING ARCS IN TEMPORAL EXPANSION

NODES=NODES+TEMPOR
DO 180 K=KK,NODES
ARCS=ARCS+1
IF(K.EQ.NODES) GO TO 180
INPUT(ARCS,1)=K
INPUT(ARCS,2)=K+1
INPUT(ARCS,3)=1
INPUT (ARCS ,4)=SUM(TEMP0R+1)
INPUT (ARCS, 5)=0

180 CONTINUE
C**** ADD EXTRA NODES AND ARCS TO AVOID DUPLICATE SHIP ARRIVALS

ARCS=ARCS-1
NNN=ARC S =TEMPOR+l
NN-ARCS- 2*'(TEMPOR=l)

134

COUNTR=0
DO 200 N=NN,NNN
IF(INPUT(N,4).EQ.O) GO TO 200
IF(N.EQ.NNN) GO TO 191
L=N+1
IF(INPUT(N,4).EQ.INPUT(L,4) GO TO 190

191 IF(COUNTR.EQ.O) GO TO 200
II=N-COUNTR
DO 195 I=II,N
INPUT(I,2)=NODES+l

195 CONTINUE
ARCS=ARCS+1
INPUT (ARCS,1)=NODES+l
INPUT(ARCS,2)=J+1
INPUT (ARCS,3) =0
INPUT(ARCS ,4)=INPUT(N,4)
INPUT(ARCS,5)=0
O0UNTR=0
NODES=N0DES+l
GO TO 200

190 COUNTR=COUNTR+l
200 CONTINUE
120 CONTINUE
C**** ARCS FROM SHIPS TO PORTS

DO 210 1=1,SHIPS
DO 220 J=l,PORTS
ARCS=ARCS+1
INPUT(ARCS,l)=NODES+l
X«SP(I,J)
INPUT(ARCS,2)=NODEST(X,J)
INPUT (ARCS,3)=X
INPUT (ARCS,4)=1
INPUT (ARCS,5)=0

220 CONTINUE
210 CONTINUE
C**** ARCS FOR SUPER SOURCE

NN-NODES+1
NNN=NODES+SETPS
NODES=NODES+SHIPS+l
DO 230 N=NN,NNN
ARCS=ARCS+1
INPUT (ARCS,1)=NODES
INPUT (ARCS,2)=N
INPUT(ARCS,3)=0
INPUT (ARCS,4)=1
INPUT(ARCS,5)=0

230 CONTINUE
SOURCE=NODES
WRITE(6,102) NODES ,ARCS,SOURCE

102 FORMAT(1 NUMBER OF NODES: 1,15,/,' NUMBER OF ARCS: ',15,

135

1/,' SOURCE IS: 1,15)
C WRITE(6,103)
C103 FORMAT (f BEGINNING ENDING LENGTH UPPER LOWER 1)
C WRITE(6,104)((INPUT(I,J),J=l,5),1=1,ARCS)
C104 FORMAT(16,317,16)

DO 700 K=1,ARCS
B1(K)=INPUT(K,1)
E(K)=INPUT(K,2)
LENGTH(K)=INPUT(K,3)
UC(K)=INPUT(K,4)
LC(K)=INPUT(K,5)

700 CONTINUE
DO 701 J=1,ARCS

701 Y(J)=0
CALL START
RETURN
END

SUBROUTINE START
DIMENSION B1(100,E(100),UC(100),XB(100),BASIS(100,100),LC(100)
DIMENSION LENGTH(IOO),BINV(100,100),LBASIS(100),ACT(100),X(100)
DIMENSION PATH (100)
COMMON /NETWOR/NODES,ARCS,SOURCE, B1,E,LENGTH,UC,LC,X
COMMON /SOLN/ DIM,BINV,XB,BASIS,LBASIS,ACT
COMMON D,OUT
INTEGER PATH
INTEGER Bl,E,ARCS,SOURCE,DIM,ACT,X,UC

C
C**** LEXICON OF IMPORTANT VARIABLES
C NODES NUMBER OF NODES IN NETWORK
C ARCS NUMBER OF ARCS IN NETWORK
C BASIS BASIS MATRIX

c
BINV INVERSE OF BASIS MATRIX

c
DIM SIZE OF MATRICES

c
Bl LIST OF BEGINNING NODES FOR THE ARCS

c
E LIST OF ENDING NODES FOR THE ARCS

c
LENGTH LENGTH OF THE ARCS

c
LC LOWER CAPACITY OF FLOW ON THE ARCS

c
UC UPPER CAPACITY OF FLOW ON THE ARCS

c
X FLOW ON THE ARCS

c
XB FLOW ON THE PATHS

c
LBASIS LENGTH OF PATHS IN THE BASIS

C ACT ACTIVE CONSTRAINTS, EITHER UPPER OR LOWER

c
PATH VECTOR CONTAINING ARCS IN THE PATH

c
STORE VECTOR USED IN CALCULATING UPDATE,STORES PATH VECTOR

c
UPDATE UPDATED ENTERING VECTOR

c
PRICE CALCULATED ARC COSTS PASSED TO CONSTRAINED SHORTESTRPATH

c
SIZE NUMBER OF ARCS USED TO MAKE UP PATH

c
LSTAR LENGTH OF LONGEST PATH IN BASIS WITH FLOW ON IT

C

136

C**** NODE 1 IS THE SINK
C**** PATHS ARE ASSUMED TO HAVE POSITIVE LENGTHS
C**** AND SIACKS HAVE ZERO LENGTH
C**** LAST NODE IS THE SOURCE
C**** ANY ARCS WITH UPPER AND LOWER
C**** BOUNDS OF ZERO MUST BE REMOVED FROM THE NETWORK
C**** PROGRAM WILL NOT HANDLE ARCS WITH EQUAL LOWER
C**** AND UPPER BOUNDS THUS ONE MUST BE CHANGED !
C

INF=999999
C READ(5,1111)(CA(I),1=1,30)
Cllll FORMAT(30A1)
C WRITE(6,1112)(CA(I),1=1,30)
C1112 FORMAT(1X,30A1)

WRITE(6,1000)
1000 FORMAT(1 NODES,ARCS, SOURCE?1)

WRITE(6,1001)
1001 FORMAT(" ARC DATA?1)

DIM=ARCS+1
C**** PREPROCESSOR TO REMOVE ARCS WITH UC=0

K=0
DO 100 J=1,ARCS
IF(UC(J).LE.O) GO TO 100
K=K+1
B1(K)=B1(J)
E(K)=E(J)
LENGTH (K) =LENGTH (J)
UC(K)=UC(J)
LC(K)=LC(J)

100 CONTINUE
ARCS=K
DIM=ARCS+1

C**** INITIALIZE RETURN ARC DATA
B1(DIM)=1
E(DIM)=NODES
LENGTH(DIM)=-999999
UC(DIM) =999999
LC(DIM)=0
X(DIM)=0
CALL FIRST
CALL MATINV(DIM)
IF(OUT.LT.l.)GO TO 310
WRITE(6,105)

105 FORMAT(f ERROR HAS OCCURRED- BASIS WRONG 1)
GO TO 999

310 CONTINUE
WRITE(6,6000) NODES

6000 FORMAT('NUMBER OF NODES IN THE NETWORK IS', 15)
WRITE(6,6001)ARCS

6001 FORMAT(1 NUMBER OF ARCS IN THE NETWORK IS', 16)
WRITE(6,6002)

137

6002 F O R M A T ^ THE FOLLOWING ARC DATA IS USED: »,
l/,1 BEGINNING NODE ENDING NODE LENGTH UPPER LOWER C A P A C I T Y 1)
DO 6005 J=l, ARCS
WRITE(6,6004) B1(J),E(J),LENGTH(J),UC(J),LC(J)

6004 FORMAT(5110)
6005 CONTINUE

WRITE(6,307) XB(1)
307 F O R M A T C M A X FLOW = F , F 7 . 2)

WRITE(6,304)
3 0 4 FORMAT(FARC ACTIVE PATH RIGHT H A N D 1 , / ,

TYPE LENGTH SIDE V E C T O R 1)
WRITE(6 ,306)(J,ACT(J) ,LBASIS(J+1) ,XB(J+1) ,J=1 ,ARCS)

306 FORMAT (IX,13,4X,6X,I3,7X,F7,2)
WRITE(6,108) D

108 FORMAT(1 THE DETERMINANT OF BASIS I S F , F 6 . 2)
666 CALL REVISE(LENGTH,UC,LC)

CALL PRINT
WRITE(6,3001)

3001 F O R M A T C OPTIMAL SOLUTION 1 ,/,
*• BASIS FLOW LENGTH P A T H 1)
DO 3050 1=2,DIM
IF(LBASIS(I).EQ.O) GO TO 3060
L=0
K=NODES

3070 L=L+1
DO 3080 J=2,DIM
IF(ABS(BASIS(J,I)).LE..5)GO TO 3080
KK=B1(J-1)
IF(KK.EQ.K) GO TO 3090

3080 CONTINUE
C**** ERROR
3090 PATH(L)=J-1

K=E(J-1)
IF(K.NE.l)GO TO 3 0 7 0
WRITE(6,4000)1,XB(1),LBASIS(I),(PATH(J),J=l,L)

4000 FORMAT(16,F6.2,I8,2X,1014,5(/,22X,1014))
GOTO 3050

3060 11=1-1
WRITE(6,4001) I,XB(I),LBASIS(I),II

4001 FORMAT(16,F6.2,I8,2X,14)
3050 CONTINUE

999 RETURN
END

SUBROUTINE FIRST
DIMENSION B(100),LS(101),XL(100),XU(100),X(100)
DIMENSION BASIS(100,100),LBASIS(100),ACT(100),PATH(50)
DIMENSION BINV(100,100),XB(100)
DIMENSION P(100),Q(100),C(100)
COMMON Fl,F2,PI(100),D(100),U(100),R(100),NC,LV
COMMON/NETWOR/MJARCS,SOURCE,P,Q,C,XU,XL,B

138

COMMON/SOLN/N,BINVjXB,BASIS ,LBASIS ,ACT
INTEGER F1,F2,P,Q,CB,C,PI,X,XU,XL,D,U,R,B,E,T,S
INTEGER SP,SM,AP,AM,W,RR,ACT,ARCS,SOURCE
DO 430 1=1 ,N
U(I)=0

430 R(I)=0
RR=100000000

C INITIALIZATION
DO 12 J=1,N
K=P(J)
I=Q(J)
X(J)=XL(J)
B(K)=B(K)-XL(J)
B(I)=B(I)+XL(J)

12 CONTINUE

SM=0
Sp=0
NI=N+5P
NZ=NT+1
NTT=NT
AP=0
AM=0
DO 19 1=1,M
IF(B(I).LT.O) GO TO 19
W= W+l
AP=AP+1
P(W)=I
XL(W)=0
XU(W)=0
X(W)=B(I)
PI(I)=0
C(W)=0
D(I)=W

19 CONTINUE
DO 89 1=1,M
IF(B(I).GE.O) GO TO 89
W=W+1
AM=AM+1
P(W)=I
XL(W)=0
XU(W)=RR
X(W)=-B(I)
PI(I)=-RR
C(W)=RR
D(I)=W

89 CONTINUE
NCZ=1

C INITIALIZATION COMPLETE
17 NTTT=NTTT+AP

139

NTTTT =NTTT+AM
ITER=0

200 IF(J.GE.N)J=0
IFP=0
ITER=ITER+1
Fl=l
DO 21 JC=1,N
J=J+1
K=P(J)

201 L=Q(J)
CB=C(J)-P1(K)+PI(L)
IF(CB.GT.O.AND.X(J).EQ.XU(J).OR.CB.LT.O.AND.X(J).EQ.XL(J)) GO TO
1202
GO TO 211

202 IF(IFP.NE.O) GO TO 203
IFP=1
ICKLN=CB
JST=J
GO TO 221

203 IF(IABS(ICMIN).GE.IABS(CB)) GO TO 221
IFP=IFP+1
ICMIN=CB
JST=J

221 IF(J.EQ.N)J=0
IF(IFP.EQ.NCZ) GO TO 205

21 CONTINUE
IF(IFP.GT.O) GO TO 205
J=N
IF(SP.EQ.O) GO TO 432
DO 22 JC=1,SP
J=J+1
K=P(J)
CB=C(J)-PI(K)
IF(CB.GT.O.AND.X(J).EQ.XU(J).OR.CB.LT.O.AND.X(J).EQ.XL(J))GO TO 2
0

22 CONTINUE
432 IF(SM.EQ.O) GO TO 431

DO 23 JC-l.SM
J=J+1
K=P(J)
CB=C(J)+PI(K)
IF(CB.GT.O.AND.X(J).EQ.XU(J).OR.CB.LT.O.AND.X(J).EQ.XL(J))GO TO 2
0

23 CONTINUE
431 GO TO 100
205 J=JST

CB=ICMIN
20 IF(CB.GT.O) GO TO 25

B(l)=l
GO TO 86

25 B(l)=-1
86 1=1

K=P(J)
LS(1)=J
IF(J.LE.NT.0R#(J#GT#NTT.AND.J.LE.NTTT))GO TO 26
GO TO 76

26 1=2
30 LS(I)=D(K)

IF(LS(I).GT.N) GO TO 27
IB+LS(I)
IF(P(IB).EQ.K) GO TO 28
B(I)=-B(1)
K=»Q(IB)
GO TO 29

28 B(I)=B(1)
K=Q(IB)

29 1=1+1
GO TO 30

27 IF(LS(I).LE.NT.OR.(LS(I).GT.NTT.AND#LS(I).LE.NTTT))GO TO 31
B(I)=-B(1)
GO TO 32

31 B(I)=B(1)
32 IF(J.GT.N) GO TO 33

K=Q(J)
76 IL=I
36 1=1+1

LS (I)+D(K)
IF(LS(I).GT.N) GO TO 34
IB=LS(I)
IF(Q(IB).EQ.K) GO TO 6
B(I)=-B(1)
K=Q(IB)
GO TO 36

6 B(I)=B(1)
K=P(IB)
GO TO 36

34 IF(LS(I).EQ.LS(IL)) GO TO 60
IF(LS(I).LE.NT.OR.(LS(I).GT.NTT.AND#LS(I).LE.NTTT))GO TO 37
B(I)=8(1)
GO TO 33

37 B(I)=-B(1)
TWO ROOTED TREES

33 E=XU(J)-XL(J)
NI=1
K=l

38 K=K+1
IB=LS(K)
IF(B(K).GT.O) GO TO 39
T=XU(IB)=X(IB)

39 T=X(IB)-XL(IB)
40 IF(T.GE.E) GO TO 41

E=T
LV=LS(K)
NJ>K
IB=P(LV)
IF(D(IB).EQ.LV) GO TO 42
NC=P(LV)
GO TO 43

42 NC=Q(LV)
43 F2=l
41 IF(K.LT.l) GO TO 38

IF(LV.LE.N) GO TO 44
NC=P(LV)
F2=2

44 IF(E.EQ.O) GO TO 45
B(l)=-B(l)
DO 46 K=l,l
IB=LS(K)

46 X(IB)+X(IB)-B(K)*E
45 IF(NI.EQ.l) GO TO 200

IF(NI.GT.IL) GO TO 48
CALL LBC(J,P(J))
K=P(J)
L=Q(J)
PI(K)=C(J)+P(L)
CALL PIC(K)
GO TO 200

48 CALL LBC(J,Q,(J))
K=P(J)
L=Q(J)
PI(L)=PI(K)-C(J)
CALL PIC(L)
GO TO 200

47 Fl=2
CALL LBC(J,P(J))
K=P(J)
IF(J.LE.NT) GO TO 49
PI(K)=-C(J)
GO TO 50

49 PI(K)=C(J)
50 CALL PIC(K)

GO TO 200
ONE ROOTED TREE

60 S=I
IT=IL
F2=l
NI=0

61 S=S-1
IT=IT-1

IF(LS(S).EQ.LS(IT)) GO TO 61
E=XU(J)-XL(J)
Fl=l
K=l

62 IF(K.EQ.IT) GO TO 67
K=K+1
IB=LS(K)
IF(B(K).GT.o) GO TO 63
T=XU(IB)-X(IB)
GO TO 64

63 T=X(IB)-XL(IB)
64 IF(T.GE.E) GO TO 62

E=T
LV=IB
NI=K
IB=P(LV)
IF(D(IB).EQ.LV) GO TO 65
NC=P(LV)
GO TO 62

65 NC=Q(LV)
GO TO 62

67 K=IL
66 IF(K.EQ.S) GO TO 68

K=K+1
IB=LS(K)
IF(B(K).GT.O) GO TO 69
T=XU(IB)-X(1B)
GO TO 70

69 T=X(IB)-XL(IB)
70 IF(T.GE.E) GO TO 66

E=T
lv=ib
NI=K
IB=P(LV)
IF(D(IB).EQ.LV) GO TO 71
NC=P(LV)
GO TO 66

68 IF(E.EQ.O) GO TO 72
B(l)=-B(l)
0073 IZ=1,IT
IB=LS(IZ)

73 X(IB)=X(IB)-B(IZ)*E
IL=IL+1
IF(IL.GT.S) GO TO 72
DO 74 IZ=IL,S
IB=LS(IZ)

74 X(IB)=X(IB)-B(IZ)*E
72 IF(NI.EQ.O) GO TO 200

IF(NI.LE.IL-l) GO TO 75
K=P(J)
L=Q(J)

IF((S.EQ.0.AND.IT.EQ.2).0R.(S.EQ.l.AND.IT.EQ.l)) GO TO 91
CALL LBC(J,Q(J))
GO TO 92

91 IF(U(K).EQ.K(L)) GO TO 93
M1(U(K)

97 IF(P(M1).EQ.K) GO TO 94
M1=P(M1)
GO TO 95

94 M1=Q(M1)
95 IF(R(M1).EQ.D(L)) GO TO 96

Ml=R(Ml)
GO TO 97

93 U(K)=J
GO TO 98

9.6 R(M1)=J
98 D(1)=J
92 PI(L)=PI(K))-C(J)

CALL PIC(L)
GO TO 200

75 L=P(J)
K-Q(J)
IF((S.EQ.O.AND.IT.EQ.2).OR.(S.EQ.l.AND.IT.EQ.l)) GO TO 191
CALL LBC(J,P(J))
GO TO 192

191 IF(U(K).EQ.D(L)) GO TO 193
M1=U(K)

197 IF(P(M1).EQ.K) GO TO 194
M1=P(M1)
GO TO 195

194 Ml=Q(KL)
195 IF(R(M1).EQ.D(L)) GO TO 196

M1=R(M1)
GO TO 197

193 U(K)=J
GO TO 198

196 R(M1)=J
198 D(L)=J
192 PI(L>PI(K)+C(J)

CALL PIC(K)
GO TO 200

C OUTPUT SECTION
100 CONTINUE

C***** BEGIN ROUTINE TO CONVERT FLOWS ON ARCS
C***** TO FLOWS ON PATHS

DO 115 I-1,ARCS
XB(I+1)=0
K=P(I)
KK=Q(I)

C***** DETERMINE WHICH CONSTRAINTS ARE ACTIVE
CB*C (1) -PI (K)+PI (KK)

IF(CB.GT.O.AND.XL(I).GT.O) GO TO 116
ACT(I)=1
XB(I=1)=XU(I)=X(I)
GO TO 115

116 ACT(I)=-1
XB(I+1)=X(I)=XL(I)

115 CONTINUE
DO 110 I-1,N
LBASIS(I)=0
DO 110 J«1,N

110 BASIS(I,J)=0
106 KK=0

I=M
EPA=999999
LB=0
DO 111 K=1,ARCS

111 PATH(K)=0
103 KK=KK+1

DO 120 J=L,N
IF(P(J).NE.I) GO TO 120
IF(X(J).NE.O) GO TO 101

120 CONTINUE
GO TO 113

101 PATH(KK)=J
C***** CALCULATE LENGTHS OF PATHS IN BASIS

LB=LB+C(J)
IF(X(J).GE.EPS) GO TO 102
EPS=X(J)
JAL=J+1

102 I=Q(J)
IF(I.EQ.l) GO TO 104
GO TO 103

104 DO 105 1=1,KK
J=PATH(S)

G***** SET-UP THE BASIS
BASIS(J+1,JBL)=1
X(J)=X(J)-EPS

105 CONTINUE
LBASIS(JBL)=LB
BASIS(1,JBL)=-1

C***** ASSIGN VALUES TO RHS
XB(JBL)=EPS
XB(1)=XB(1)+EPS
GO TO 106

113 BASIS(1,1)=1
DO 112 1=2,N
IF(BASIS(I,I).GE..5) GO TO 112
BASIS(I,I)=1
IF(ACT(I=l).LT.O) BASIS(I,I)=-1

112 CONTINUE

145

RETURN
END

SUBROUTINE LBC(J,ND)
COMMON FI,F2,PI(100),D(100),U(100),R(100),NC,LV
DIMENSION P(100),Q(100),C(100)
COMMDN/NETWOR/NODES ,ARCS,SOURCE,P,Q,C,UC,LC,X
INTEGER F1,F2,PI,D,U,R,P,Q,C
IF(Fl.EQ.l) GO TO 1
KD=D(ND)
KR=R(ND)
D(ND)=J
R(ND)=0
K=ND
IF(ND.EQ.NC) GO TO 100
GO TO 2

1 KD=D(ND)
IF(ND.EQ.P(J)) GO TO 12
K=P(J)
GO TO 13

12 K=Q(J)
13 KR=R(ND)

D(ND)=J
R(ND)=U(K)
U(K)=J
IF(ND.EQ.NC) GO TO 100
K=ND

2 L=K
IF(L.EQ.P(KD)) GO TO 3
K=P(KD)
GO TO 4

3 K=Q(KD)
4 IF(U(K).EQ.KD) GO TO 5

M=U(K)
9 IF(P(M).EQ.K) GO TO 6

I=P(M)
GO TO 7

6 I=Q(M)
7 IF(R(I).EQ.KD) GO TO 8

M*R(I)
GO TO 9

5 U(K)=KR
GO TO 10

8 R(I)=KR
10 IF(K.EQ.NC) GO TO 11

I=KD
KD=D(K)
KR=R(K)
D(K)=I
R(K)=U(L)
U(L)=I
GO TO 2

11 IF(F2.EQ.l) GO TO 100
R(K)=U(L)
U(L)=KD
D(K)=DK

100 RETURN
END

SUBROUTINE PIC(I)
COMMON Fl,F2,PI(100),D(100),U(100),R(100),NC,LV
DIMENSION P(100),Q(100),C(100)
COMMON/NETWOR/NODES.ARCS,SOURCE,P,Q,C,UC,LC,X
INTEGER F1,F2,PI,D,U,R,P,Q,C
IF(U(I).EQ.O) GO TO 100
K=I

4 J=U(K)
6 IF(K.NE.P(J)) GO TO 1

L=Q(J)
PI(L)=PI(K)-C(J)
GO TO 2

1 L=P(J)
PI(L)=PI (K)+C(J)

2 IF(U(L).EQ.Q) GO TO 3
K=L
GO TO 4

3 IF(R(L).EQ.O GO TO 5
J=R(L)
GO TO 6

5 IF(K.EQ.I) GO TO 100
L=K
J=D(L)
IF(P(J).EQ.L) GO TO 7
K=P(J)
GO TO 3

7 K=Q(J)
GO TO 3

100 RETURN
END

SUBROUTINE REVISE(LENGT,UC,LC)
DIMENSION STORE(100).UPDATE(100),BlNV(100,100),XB(100),

+BASIS(100,100),PRICE(100),PATH(100),LBASIS(100),
+LENGT(100),UC(100),LC(100),SUMM(100) ,ACT(100)
COMMON /PATH/ PATH, LENGTH,SIZE
COMMON /SOLN/ DIM,BINV,XB,BASIS,LBASIS,ACT
INTEGER DIM,SIZE,PATH,SLACK,UC
INTEGER PRICE,ACT,HEKP,CHGTST

C**** INITIALIZE DATA
IF=999999
EPS=.001
ONE=l.

ZERO=0
NA=DIM=1

C**** PASS PRICES DOWN
1000 CONTINUE
1001 DO 101 1=2,DIM

K=I
IF(BINV(1,I)) 103,101,101

101 CONTINUE
C**** PASS TO CONSTRAINED SHORTEST PATH ROUTINE

LSTAR=-INF
DO 200 1=2,DIM
IF(LSTAR.LT.LBASIS(I) .AND. XB(I).GE.ZERO+EPS)

+LS.IAR+LBASIS(I)
200 CONTINUE

WRITE(6,5555) LSTAR
5555 FORMAT(f LSTAR=f,15)

C**** ENTER A SLACK WHEN LONGEST PATH HAS ZERO FLOW
DO 201 1=2,DIM

201 IF(LSTAR.LT.LBASIS(I)) GO TO 230
GO TO 231

230 DO 232 K=2,DIM
232 IF(ABS(BINV(I,K)).GE.ZERO+EPS) GO TO 233
C**** 'ERROR1

233 SLACK^l
NR-I
DO 234 J=1,DIM
STORE(J)=0
UPDATE(J)=BINV(J,K) *ACT(K-1)

234 CONTINUE
STORE(K)=ACT(K-l)
KKK=K-1
WRITE(6,6548) KKK
GO TO 333

231 DO 202 1=1,NA
SUMM(I)=0

202 CONTINUE
DO 204 1=2,DIM
IF(LBASIS(I).LT.LSTAR) GO TO 204
DO 206 J=2,DIM
SUMM(J=1)=SUMM(J=1)+BINV(I,J)

206 CONTINUE
204 CONTINUE

DO 205 K=2,DIM
205 IF (ABS(BINV(1,K)).LE.ZERO+EPS .AND.SUMM(K-1)*ACT(K-1)

*.GE.ZERO+EPS) GO TO 103
P=0
DO 207 I-1,NA
IF(ABS(BINV(1,1+1)).LE ZERO+EPS) GO TO 207
Q=ABS(SUMM(I)/BINV(1,I+1))
IF(Q.GT.P) P=Q

207 CONTINUE

P=10*P
C WRITE(6,2)
C2 FORMAT(! PI SUM PRICE 1)

DO 208 1=1,NA
PRICE(I)=1000.*(P*BINV(1,I+1)-SUMM(I))

208 CONTINUE
LSTAR=LSTAR-1
CALL CSPATH(PRICE,LENGT,LSTAR)
IF(SIZE.GT.O) WRITE(6,6479) (PATH(I),1=1.SIZE)

6479 FORMAT(IX,2013)
SUM=0
DO 886 J=I,SIZE
K=PATH(J)
SUM=SUM+BINV(1,K+1)

886 CONTINUE
IF(SUM.LT.l) GO TO 121

C**** TEST OPTIMALITY
IF(SIZE.EQ.O) GO TO 999
VALUE=0
DO 210 1=1,SIZE
J=PATH(I)
VALUE=VALUE+SUMM(J)

210 CONTINUE
IF(VALUE.LE.ZERO+EPS) GO TO 999

C**** CREATE AND UPDATE ENTERING VECTOR
121 DO 104 1=1,DIM
104 STORE(I)=0

STORE(1)=-1
DO 106 1=1,SIZE
J=PATH(I)+1

106 STORE(J)=l
DO 107 1=1,DIM
UPDATE(I)=0
DO 108 J=1,DIM

108 UPDATE(I)=UPDATE(I)+BINV(I,J)*STORE(J)
107 CONTINUE

SLACK=0
GO TO 109

C**** SET UP SLACK COLUMN WHEN PI(I) NEGATIVE
103 DO 105 J=1,DIM

STORE(J)=0
IF(J.EQ.K) STORE (J)=ACT(K-1)
UPDATE(J)=BINV(J,K) *ACT(K* 1)

105 CONTINUE
KKK=K-1
WRITE(6,6548) KKK

6548 FORMAT(fSLACK= 1,15)
SLACK=1

C**** FIND DEPARTING VECTOR
109 NR=0

RATMIN=INF

DO 600 1=2,DIM
IF(ABS(UPDATE(I)).LE.ZERO+EPS) GO TO 600
IF(LBASIS(I)) 605,610,605

605 IF(UPDATE(I).IE.ZERO+EPS) GO TO 600
RATIO=XB(I)/UPDATE(I)
CHGTST=0

607 IF(RATMIN.LE.RATIO) GO TO 600
RATMIN=RATIO
NR=1
HELP=GHGTST
GO TO 600

C***** BLOCKING VARIABLE COULD BE SLACK
610 IF(UPDATE(I)) 611,600,615
615 RATIO=XB(I)/UPDATE(I)

CHGTST=0
GO TO 607

600 CONTINUE
IF(HELP.EQ.O) GO TO 333

C***** SLACK VARIABLE IS BLOCKING -EXCHANGE CONSTRAINTS
DO 620 J=1,DIM
BINV(NR,J)=-BINV(NR,J)

620 GONTINUE
XB (NR) =-XB (NR) +(UC (NR-1) -LC (NR-1))
UPDATE (NR) =-UPDATE (NR)
ACT (NR-1) =-ACT (NR-1)

C**** PIVOT
333 WRITE(6,4456)NR

4456 FORMAT('PIVOT ROW =',13)
630 PIVELE-UPDATE(NR)

DO 112 J=1,DIM
112 BINV(NR,J)=BINV(NR,J)/PIVELE

XB(NR) =XB(NR)/PIVELE
DO 114 1=1,DIM
IF(I.EQ.NR) GO TO 114
XB(I)=XB(I)=UPDATE(I)*XB(NR)
DO 116 J=1,DIM

116 BINV(I,J)=BINV(I,J)=UPDATE(I)*BINV(NR,J)
114 CONTINUE

C**** STORE THE PATH VECTOR
LBASIS(NR)=0
DO 118 1=1,DIM
BASIS(I,NR)=STORE(I)
IF(SLACK.EQ.l.OR.I.EQ.l) GO TO 118
LBASIS(NR)=LBASIS(NR)+LENGT(I-1)*STORE(I)

118 CONTINUE
GO TO 1000

999 RETURN
END

SUBROUTINE MATINV(N)

DIMENSION BASIS (100,100) ,A(100,200) ,BINV(100,100)
DIMENSION LBASIS(100),ACT(100)
DIMENSION XB(IOO)
COMMON D,OUT
COMMON/SOLN/DIM,BINV,XB, BASIS ,LBASIS ,ACT

C***** AUGMENT BASIS WITH INDENITY MATRIX
EPS=.0001
OUT=0.
M=2*N
DO 100 1=1,N
DO 95 J=1,M
IF(J.GT.N) GO TO 80
A(I,J) = BASIS(I,J)
GO TO 95

80 A(I,J)=0
IF((J-N).NE.I) GO TO 95
A(I,J)=1

95 CONTINUE
100 CONTINUE
C***** BEGIN ELLIMINATION
C***** DETERMINANT IS D

D=l.
DO 200 K=1,N
D=d*A(K,K)

C***** CHECK FOR ZERO PIVOT ELEMENT
IF(ABS(A(K,K)).GT.EPS) GO TO 210
WRITE(6,102)

102 FORMAT(' ZERO PIVOT ELEMENT- MAYBE ERROR IN BASIS')
OUT=l
GO TO 999

C***** DIVIDE ROW BY PIVOT ELEMENT
210 KK=K+1

DO 215 J=KK,M
A (K, J) =A (K, J) /A (K,K)

215 CONTINUE
A(K,K)=1.

C***** SWEEP OUT K(TH) COLUMN
DO 220 1=1,N
IF(I.EQ.K.OR.ABS(A(I,K)).LT.EPS) GO TO 220
DO 225 J=KK,M
A(I>J)=A(I,J)=A(I,K)*A(K,J)

225 CONTINUE
A(K,I)=0

220 CONTINUE
200 CONTINUE

DO 300 1=1,N
DO 301 J=1,N
BINV(I,J)=A(I,J+N)

301 CONTINUE
300 CONTINUE
999 RETURN

151

END

SUBROUTINE PRINT
DIMENSION BINV(100,100),XB(100),BASIS(100,100),LBASIS(100)
DIMENSION ACT(100)
INTEGER DIM,ACT
COMMON/SOLN/ DIM,BINV,XB,BASIS,LBASIS,ACT
WRITE(6,120)

120 FORMAT(1 BASIS MATRIX1)
WRITE(6,106)((BASIS(I,J),J=1,DIM),1+1,DIM)

106 FORMAT(10F6.2)
WRITE(6,121)

121 FORMAT(1 BASIS INVERSE1)
WRITE(6,106)((BINV(I,J),J=l,DIM),1=1,DIM)
RETURN
END

SUBROUTINE CSPATH (CARC ,LARC ,LSTAR)
DIMENSION LSWTCH(IOO),LABEL(100,10,3),LISTB(100),LISTE(100)
DIMENSION LNUMB(IOO),LARC(100),PATH(100),LEXIT(100)
INTEGER CARC(100), ARCS,SAVE(100),SAVEl(100)
INTEGER DIST,SIZE,PATH,CTEST,ENTER,EXIT
COMMON/NETWOR/NODES,ARCS,SOURCE,LISTB,LISTE
COMMON/PATH/PATH,LENGTH,SIZE

C***** CONSTRAINED SHORTEST PATH ALGORITHM TO GENERATE
C***** COLUMNS TO ENTER BASIS
C***** PROCEDURE USES REVERSE NUMBERING OF NETWORK
C***** NODE 1 IS THE SINK
C***** LAST NODE IS THE SOURCE

INF=99999
DO 10 1=1,NODES
lexit(i)=0
LSWITCH(I)=0
LNUMB(I)=0
SAVE(I)=0
SAVE1(I)=0

10 CONTINUE
C***** INITIALIZATION OF LABEL FOR SINK

MM=1
LSWTCH(1)=1
LABEL(1,1,1)=0
LABEL(1,1,2)=0
LABEL(1,1,3)=INF
LNUMB(1)=1

C***** SEARCH FOR NODE THAT CAN BE LABELED
95 DO 200 1*1,NODES

IF(LSWTCH(I).EQ.1.0R.LSWTCH(I).EQ.INF) GO TO 200
K=l

C ***** SEARCH ARCS
DO 100 J=1,ARCS

IF(LISTB(J).NE.I) GO TO 100
JJ=LISTE(J)
IF(LSWTCH(JJ).EQ.O) GO TO 200
IF(LSWTCH(JJ).EQ.INF) GO TO 100

C ***** NODE HAS BEEN FOUND
SAVE(K)=JJ
SAVE1(K)=J
K=K+1

100 CONTINUE
IF(K.NE.l) GO TO 101
WRITE(6,102) I

102 FORMAT(1 LABEL CAN NOT BE CREATED BECAUSE LENGTH1,/,
1 1 IS GREATER THAN LSTAR FOR ALL NODES CONNECTED TO
2NODE1,15)
LSWTCH(I)=INF
IHELP=I
GO TO 200

101 KK=K=1
C ***** BEGIN LABELING

DO 400 L=1,KK
NN=SAVE1(L)
LL=SAVE(L)
LLL=LNUMB(LL)
DO 300 M=l,LLL

C ***** IS THERE MORE THAN ONE NODE FROM
C ***** WHICH PRESENT NODE CAN BE LABELED

IF(LSWTCH(I).NE.O) GO TO 250
IF(LARC(NN)+LABEL(LL,M,1).GT.LSTAR) GO TO 300
LNUMB (I) =LNUMB (I)+l
MMM=LNUMB(I)
LABEL(I,MMM, 1)=LARC(NN) +LABEL(LL,M , 1)
LABEL(I,MMM,2)=CARC(NN)+LABEL(LL,M.2)
LABEL(I,MMM,3)=NN
GO TO 300

250 III=LNUMB(I)
HNTEE=0
EXIT=0
DO 260 11=1,111

260 LEXIT(II)=0
DO 275 11=1,11

C ***** IF MORE THAN ONE NEW LABEL POSSIBLE
C ***** DONT ADD IF LENGTH AND COST ARE GREATER
C ***** THAN ANY OF THE PRESENT VALUES

IF(LARC(NN)+LABEL(LL,M,1).GT.LSTAR) GO TO 300
IF(LARC(NN)+LABEL(LL,M,1).GE.LABEL(I,II,1).AND.CARC(NN)

++LABEL(LL,M,2).GE,LABEL(I,II,2)) GO TO 300
IF(LARC(NN) +LABEL(LL,M,1).GT.LABEL(1,11,1).OR.CARC(NN)

++LABEL(LL,M,2).GT.LABEL(1,II,2)) GO TO 270
C ***** WE CAN DELETE A LABEL

EXIT=1

LEXIT(II)=1
270 ENTER=1

275 CONTINUE
C ***** CAN WE CHANGE LABEL LIST

IF(ENTER.EQ.O) GO TO 300
IF (ENTER.EQ.l.AND.EXIT.EQ.O) GO TO 281

C ***** UP DATE LABEL LIST
LNUMB(I)=0
DO 280 11=1,111
IF(LEXIT(ll).EQ.l) GO TO 280
LNUMB (I) =LNUMB (I) +1
JJ=NUMB(I)
LABEL(I,JJ,1)=LABEL(I,II,1)
LABEL(I,JJ,2)=LABEL(I,II,2)
LABEL(I,JJ,3)=LABEL(1,11,3)

280 CONTINUE
281 LNUMB(I)+LNUMB(I)+1

JJ=LNUMB(I)
LABEL(I,JJ,1)=LARC(NN)+LABEL(LL,M,1)
LABEL(I,JJ,2)=CARC(NN) +LABEL(LL,M,2)
LABEL(I,JJ,3)=NN

300 CONTINUE
IF(LNUMB(I).EQ.O) GO TO 400
LSWTCH(I)=1

400 CONTINUE
IF(LNUMB(I).NE.O) GO TO 200
LSWTCH(I)=INF

200 CONTINUE
SIZE=0
IF(IHELP.EQ.NODES) GO TO 900
CTEST=INF
IIII=LNUMB(NODES)
IF(IIII.LT.l) GO TO 95

C ***** PROCEDURE TO FIND PATH TO PASS
C ***** TO REVISED SIMPLEX SUBROUTINE

DO 500 11=1,1111
IF(LABEL(NODES,II,l).GT.(LSTAR)) GO TO 500
IF(LABEL(NODES,II,2).GE.CTEST) GO TO 500
CTEST=LABEL(NODES,11,2)
M=II

500 CONTINUE
IF(CTEST.EQ.INF) GO TO 604
GO TO 699

604 WRITE(6,605)
605 FORMAT(* NO PATH OF SHORTER LENGTH HAS BEEN FOUND 1)

GO TO 900
699 I=NODES
700 JJ=LABEL(I,M,3)

DlST=LABEL(I,M,1)=LARC(JJ)
SIZE=SIZE+1

154

PATH(SIZE)*=JJ
J=LISTE(JJ)
IF(J.EQ.l) GO TO 900
K=LNUMB(J)
DO 705 N=l,K
M=N
IF(LABEL(J,N,1).EQ.DIST) GO TO 710

705 CONTINUE
WRITE(6,800)

800 FORMAT(• MISTAKE IN THE LABELING PROCEDURE1)
GO TO 900

710 I=J
GO TO 700

900 RETURN
END

- - - T H E E N D - - -

155

APPENDIX B

INPUT TO AND OUTPUT FROM THE COMPUTER PROGRAM

In Appendix A of this thesis is a copy of the computer code,

written in FORTRAN IV, for the complete solution strategic transporta­

tion problem as described in Chapter I. This program includes the

algorithm, for the least time transportation problem in Chapter II,

the network generation scheme of Chapter III, and the algorithm to solve

the ship scheduling subproblem. The only required input to the com­

puter program is the information necessary for the solution of the

Base-to-Port transportation problem (i.e. least time transportation

problem). The general data required by the program is:

(1) the number of bases

(2) the number of ports

(3) the number of ships

(4) the base to port travel time matrix, BP

(5) the ship to port travel time matrix, SP

(6) the port to objective area travel time vector, PO

(7) the vector of available ship loads of supplies at the bases

(8) the vector required ship loads of supplies at the ports.

The output of the program consists of three sections: a

listing of the input data, certain intermediate results, and the

optimal solution. The listing of data is a table of all the input in­

formation that can be used for verification of the input data. Among

156

the intermediate results displayed are: (1) the maximal flow through

the network; (2) a list of the path length and the amount of flow on

each of these paths which constitute the maximal flow solution; (3) an

indicator of which constraint is binding for each arc in the network

-a refers to a type A constraint and a "-1" refers to a type B

constraint; (4) the basis and basis inverse matrices from the maximal

flow solution; and (5) a series of values which are concerned with the

reduction of the flow on the longest path (or paths) through the net­

work. LSTAR is the length of the longest path carrying flow. SLACK is

the number of the slack variable entering when applicable. When a

path enters the arc numbers will be printed, e.g., "2 5 8". PIVOT ROW

is the row in which the variable (path or slack) entered. The optimal

solution is displayed in tableau form, with the BASIS indicating which

column vector a path was in the basis matrix of the optimal solution

to the ship scheduling problem, FLOW indicates the flow along each path,

and LENGTH indicates the length of each path. PATH is the portion of

the table which is of most interest, since it will be the schedule for

the ships. Each path corresponds to the travel of a ship through the

network, with arc of the path being a portion of the travel (i.e., one

arc might indicate movement from some point at sea to a port). If path

3, corresponding to the third ship being scheduled, uses arc 8, 10, 12

for instance, then these arcs will determine which port ship 3 must

travel to, when compared with the input network. Thus the optimal

(i.e., minimal closure) ship schedule is displayed in this table. The

+Note that the first row of BINV contains the 1 s. Rows 2 through m+1
are associated with the arcs.

157

closure time of the ship scheduling subproblem is the maximum LENGTH

of the paths in the optimal solution, since length actually corresponds

to a travel time. Due to the method of construction of the ship schedul­

ing network the closure time of the ship scheduling subproblem is the

same as that for the overall problem.

The following is an example output from the computer program.

INTERMEDIATE TABLEAU'S FOR LIT

TABLEAU FROM NORTHWEST CORNER RULE

1.00 .00
1.00 3.00

OTHER TABLEAUS
.00 1.00

2.00 2.00

OTHER TABLEAUS
.00 1.00

2.00 2.00
OPTIMAL SOLUTION TO LIT
FINAL TABLEAU
0 1
2 2

SUPPLY MATRIX
0 0
0 1
2 0
0 2

NUMBER OF BASES: 2
NUMBER OF PORTS: 2
NUMBER OF SHIPS: 5
NUMBER OF NODES: 23
NUMBER OF ARCS: 40
SOURCE IS: : 23

NODES,ARCS, SOURCE?
ARC DATA?
NUMBER OF NODES IN THE NETWORK IS 23
NUMBER OF ARCS IN THE NETWORK IS 37
THE FOLLOWING DATA IS USED:

BEGINNING NODE ENDING NODE LENGTH UPPER LOWER CAPACITY

2 1 0 7 2
3 1 0 8 3
6 10 4 2 0
7 10 4 2 0
8 10 2 0
9 10 4 2 0
4 5 1 2 0
5 6 1 2 0
6 7 1 2 0
7 8 1 2 0
8 9 1 2 0

10 2 0 2 0
12 16 3 1 0
12 16 3 1 0
13 16 3 1 0
14 17 3 3 0
15 17 3 3 0
11 12 1 3 0
12 13 1 3 0
13 14 1 3 0

114 15 1 3 0
16 3 0 1 0
17 3 0 3 0
18 9 6 1 0
18 12 2 1 0
19 6 3 1 0
19 11 1 1 0
20 4 1 1 0
20 15 5 1 0
21 7 4 1 0
21 13 3 1 0
22 6 3 1 0
22 15 5 1 0
23 18 0 1 0
23 19 0 1 0
23 20 0 1 0
23 21 0 1 0
23 22 0 1 0

MAX FLOW = 5.00

ARC ACTIVE PATH RIGHT HAND
TYPE LENGTH SIDE VECTOR

1 - 1 0 .00
2 - 1 0 .00
3 1 0 .00
4 1 0 2.00
5 1 0 2.00

ARC ACTIVE
TYPE

PATH
LENGTH

RIGHT HAND
SIDE VECTOR

6 1 0 2.00
7 1 0 1.00
8 1 0 1.00
9 1 0 2.00
10 1 0 2.00
11 1 0 2.00
12 1 0 .00
13 1 0 .00
14 1 0 1.00
15 1 0 1.00
16 1 0 1.00
17 1 0 2.00
18 1 0 2.00
19 1 0 1.00
20 1 0 3.00
21 1 0 .00
22 1 0 1.00
23 1 0 1.00
24 1 0 .00
25 1 0 1.00
26 1 0 .00
27 1 0 .00
28 1 0 1.00
29 1 0 1.00
30 1 0 .00
31 1 0 .00
32 1 0 1.00
33 1 5 1.00
34 1 7 1.00
35 1 7 1.00
36 1 7 1.00
37 1 7 1.00

THE DETERMINANT OF BASIS IS 1.00
LSTAR = 7

34 26 17 13 21 2
PIVOT ROW= 14
LSTAR= 7

33 24 18 14 21 2
PIVOT ROW= 22
LSTAR= 7

33 24 13 21 2

BASIS MATRIX
1.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 -1.00 .00 .00 .00 .00 .00 .00
,00 -1.00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 -1.00 -1.00 -1.00 -1.00 -1.00 .00 -1.00
.00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 1.00 .00 1.00 .00 .00 -1.00 .00
.00 .00 .00 .00 .00 .00 .00 1.00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 1.00

1.00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 1.00
.00 1.00 .00 .00 .00 .00 1.00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 ,00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 ,00 1.00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 1.00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
,00 1.00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 1.00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 1.00
.00 .00 ,00 .00 .00 .00 .00 .00 .00 .00
.00 1.00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

1.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 1.00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 1.00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 1.00 .00 1.00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 1.00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 1.00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
,00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 ,00
.00 1.00
.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 ,00

.00 .00

.00 1.00

.00 .00
1.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 ,00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

1.00 .00

.00 1.00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
,00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

161

.00 ,00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00
,00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 ,00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 ,00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1,00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

.00 .00 1.00 .00 .00 .00 .00 .00 .00 .00
..00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 1.00 .00 .00 .00 .00 .00 .00
.00 1.00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 1.00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 ,00 .00
,00 1.00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 ,00 .00

1.00 .00 .00 .00 .00 .00 1.00 .00 ,00 .00
.00 .00 .00 .00 .00 .00 .00 .00 ,00 .00

1.00 .00 .00 .00 .00 .00 .00 .00 ,00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 1.00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00. .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 1.00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 ,00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 1.00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 1.00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 1.00 .00 .00 .00 .00
.00 .00 ,00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 1.00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 1.00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 ,00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 1.00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 1.00

BASIS INVERSE
1.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 ,00 .00 .00 .00 .00 .00 .00 .00
,00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 1.00 1.00 1.00 1.00 1,00 .00 -1.00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 ,00 ,00 .00 .00 .00

163

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 .00
.00 -1.00
.00 .00
,00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 -1.00
.00 .00
.00 .00
.00 .00
.00 .00
,00 1.00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 -1.00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
,00 .00
.00 .00
.00 .00
.00 .00
,00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 -1.00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
,00 .00
.00 .00
.00 .00
,00 .00
,00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 .00
.00 1.00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 ,00
.00 .00
.00 .00
.00 ,00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
,00 -1.00
.00 .00

1,00 .00

.00 .00
-1.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00

.00 -1.00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 ,00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 -1.00

.00 .00
,00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00
-1.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 -1.00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

-1.00 .00
.00 .00
.00 .00
.00 .00
,00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

.00 -1.00

.00 .00

.00 .00

.00 .00

.00 .00

.00 -1.00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 .00
.00 1.00
,00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

-1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

-1.00 .00
.00 .00
.00 ,00

.00 .00

.00 .00

.00 .00

.00 1,00

.00 .00
-1.00 .00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 -1.00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 -1.00
.00 .00
.00 .00
.00 1.00
.00 .00
.00 .00
.00 .00

1.00 .00
.00 .00
.00 .00
.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00
-1.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 -1.00

.00 .00

.00 .00

.00 .00
-1.00 • .

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00

.00 .00

.00 .00

.00 ,00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00
-1.00 .00

.00 .00

.00 .00

.00 .00
-1.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 1.00

.00 .00

.00 .00

.00 .00
1.00 .00
.00 -1.00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
,00 .00
.00 .00
.00 .00

165

.00 .00 .00 1.00 .00 .00 .00 .00 .00 .00

.00 -1.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 1.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 1.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
1.00 .00 .00 .00 .00 .00 1.00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .000 ,00 .00 .00 .00 .00 .00 .00 .00
.00 .00 ,00 .00 ,00 .00 .00 .00 .00 1.00
.00 .00 .00 .00 ,00 -1.00 .00 .00 .00 .00
.00 .00 .00 .00 ,00 .00 .00 .00 .00 .00
.00 .00 .00 .00 ,00 .00 .00 .00 .00 .00
.00 .00 .00 .00 ,00 .00 .00 .00 1.00 .00
.00 .00 .00 .00 ,00 .00 .00 .00 .00 .00
.00 .00 .00 .00 ,00 .00 .00 1.00 .00 .00
.00 .00 .00 .00 .00 -1.00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 1.00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
,00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 -1.00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 1.00 1.00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 1.00 .00 .00 .00 .00
.00 .00 ,00 .00 .00 .00 .00 .00 .00 ,00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 1.00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
,00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
,00 .00 .00 1.00

OPTIMAL SOLUTION
BASIS FLOW LENGTH PATH

2 .00 0 1 CO .00 0 2
4 .00 0 3
5 2.00 0 4
6 2.00 0 5
7 2.00 0 6 CO 1.00 0 7

166

9 1.00 0 8
10 2.00 0 9
11 2.00 0 10
12 2.00 0 11
13 .00 0 12
14 .00 5 34 26 17 13 21 2
15 1.00 0 14
16 1.00 0 15
17 3.00 0 16
18 2.00 0 17
19 2.00 0 18
20 1.00 0 19
21 3.00 0 20
22 .00 6 33 24 18 14 21 2
23 1.00 0 22
24 1.00 0 23
25 .00 0 24
26 1.00 0 25
27 .00 0 26
28 .00 0 27
29 1.00 0 28
30 1.00 0 29
31 .00 0 30
32 .00 0 31
33 1.000 0 32
34 1.00 5 33 24 13 21 2
35 1.00 7 34 26 17 18 19 15 22
36 1.00 7 35 27 7 8 3 12 1
37 1,00 7 36 30 19 15 22 2
38 1.00 7 37 31 3 12 1

END 3169 MLSEC

167

REFERENCES

1. Hinkle, Robert G., Min-Max Path Flow in Directed Networks,
Ph.D. Dissertation, Georgia Institute of Technology.

2. Dantzig, George B., Linear Programming and Extensions,
Princeton University Press, Princeton, New Jersey, 1963.

3. Taha, Hamdy, D., Operations Research: An Introduction, Macmillan,
New York, New York, 1971.

4. Ford, L. R. and D. R. Fulkerson, Flows in Networks, Princeton
University Press, Princeton, New Jersey, 1962.

5. Robers, Philip and Adi Ben-Israel, Interval Programming,
I & EC Process Design and Development, 8, No. 4., 496-501,
October, 1969.

6. Berry, Ronald C. and Paul A. Jensen, A Constrained Shortest
Path Algorithm, 39th National ORSA Meeting, Dallas, Texas,
May 5-7, 1971.

7. Agin, Norman, Optimum Seeking with Branch and Bound,
Management Science, Vol. 13, No. 4, Dec. 1966.

168

VITA

Peter Dean Keith was born in Hinsdale, Illinois on July 30,

1949, the son of Kenneth Burton Keith and Gloria Johnson Keith. In

1967, after graduating from St. Procopius Academy in Lisle, Illinois,

he entered the University of Michigan. He graduated from the Univer­

sity of Michigan with a Bachelor of Science in Industrial Engineering

in December, 1971. After a year of work and travel, he entered the

Graduate School of Georgia Institute of Technology in January, 1973.

He is presently planning to continue his education at Northwestern

University, Evanston, Illinois in the area of urban systems.

