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SUMMARY

Speech communication encompasses diverse types of information, including

phonetics, affective state, voice quality, and speaker identity. From a speech produc-

tion standpoint, the acoustic speech signal can be mainly divided into glottal source

and vocal tract components, which play distinct roles in rendering the various types

of information it contains. Most deployed speech analysis systems, however, do not

explicitly represent these two components as distinct entities, as their joint estimation

from the acoustic speech signal becomes an ill-defined blind deconvolution problem.

Nevertheless, because of the desire to understand glottal behavior and how it relates

to perceived voice quality, there has been continued interest in explicitly estimat-

ing the glottal component of the speech signal. To this end, several inverse filtering

(IF) algorithms have been proposed, but they are unreliable in practice because of

the blind formulation of the separation problem. In an effort to develop a method

that can bypass the challenging IF process, this thesis proposes a new glottal source

information extraction method that relies on supervised machine learning to trans-

form smoothed spectral representations of speech, which are already used in some of

the most widely deployed and successful speech analysis applications, into a set of

glottal source features. A transformation method based on Gaussian mixture regres-

sion (GMR) is presented and compared to current IF methods in terms of feature

similarity, reliability, and speaker discrimination capability on a large speech corpus,

and potential representations of the spectral envelope of speech are investigated for

their ability represent glottal source variation in a predictable manner. The pro-

posed system was found to produce glottal source features that reasonably matched

their IF counterparts in many cases, while being less susceptible to spurious errors.

xix



The development of the proposed method entailed a study into the aspects of glottal

source information that are already contained within the spectral features commonly

used in speech analysis, yielding an objective assessment regarding the expected ad-

vantages of explicitly using glottal information extracted from the speech signal via

currently available IF methods, versus the alternative of relying on the glottal source

information that is implicitly contained in spectral envelope representations.

xx



CHAPTER I

INTRODUCTION

Spoken language expresses much more than phonetic content. Along with phonetic

information, listeners naturally and habitually extract from the acoustic speech signal

a diverse set of supplementary cues that are crucial for successful human communi-

cation. Over several decades, computational speech processing has sought to build

automated systems which can recreate – or even surpass – the information extrac-

tion and production abilities of human listeners and speakers with respect to various

aspects of spoken language. While there have been many successes in the extraction

of certain types of information, particularly phonetic content, other aspects of speech

communication, such as vocal affect and voice quality, remain difficult to analyze and

reproduce.

From a speech production standpoint, the properties of the acoustic speech signal

can be mainly divided into two categories: vocal tract effects, which relate to the

shape of the oral and nasal cavities at a particular point in time, and glottal source

effects, which relate to the airflow pattern across the glottis as the vocal folds abduct

and adduct. These two components of speech play distinct roles in rendering the

various types of information contained in the speech signal. Phonetic identity, for

instance, is in many cases conveyed by formants – a series of resonances that are

controlled by the shape of the vocal tract. For other types of speech content, such as

voice identity and voice quality, both the vocal tract and glottal components of speech

contain perceptually relevant and complementary information [68, 91], while in the

case of emotion and affective state, there has been strong interest in investigating

specific relationships to glottal source effects [28, 72, 48, 89, 88, 79, 105].
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Although the complementary nature of the vocal tract and glottal components of

speech has been well established, in practice, these components are often not explic-

itly analyzed as separate entities. One reason for this is that these components are

not observed separately, but in combination, in the acoustic speech signal, and the

separation of two unknown signals from a single observed signal remains, even under

simplifying assumptions, an ill-defined blind deconvolution problem. Indeed, some of

the most widely deployed and successful speech analysis applications, such as speech

recognition and speaker identification / verification, have conventionally focused not

on a production model, but on a perceptual one, adopting a warped and smoothed

spectral representation of the speech signal that is affected by the state of both the

vocal tract and the glottis, and from which the desired discriminatory information

is extracted via pattern analysis [30, 61, 97, 96, 76]. Even speech coders that use a

linear predictive (LP) representation of speech – due to the all-pole LP filter’s ability

to model vocal tract resonances – work with a residual signal that is by no means

intended to specifically represent the glottal content of speech beyond the presence

of pitch marks.

Nevertheless, partly because of the apparent limitations of conventional spectral

representations in emerging speech applications such as vocal affect analysis, but

also because of an interest in understanding glottal behavior and how it relates to

perceived voice quality [21, 7, 87], there has been a continued interest in explicitly

estimating and parameterizing the glottal component of the acoustic speech signal.

To this end, several inverse filtering algorithms have been proposed over the years in

an attempt to estimate and remove the vocal tract component of the signal in order to

reveal the glottal component. These algorithms are, however, difficult to use in prac-

tice. One issue that has precluded their widespread adoption is that the simplifying

assumptions under which inverse filtering algorithms operate are often violated in real

speech signals. Although recent work has allowed for the relaxation of some of those
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assumptions, this has been at the cost of much increased model complexity, which

has lead in some cases to convergence problems [43]. Furthermore, the time-domain

representation of speech on which these algorithms operate is susceptible to noise and

phase degradation, which have limited the utility of these algorithms to laboratory

settings in which high-quality audio capture can be performed. Thus, if glottal in-

formation is to be used in practical settings, an information extraction method that

overcomes some of the difficulties associated with inverse filtering is needed.

The goal of the work presented in this thesis was to propose and evaluate a new

glottal information extraction method which may be easily incorporated into con-

ventional feature extraction frameworks that rely on a low-dimensional short-time

spectral representation of speech. The proposed system makes use of supervised ma-

chine learning techniques to model transformations from a conventional set of spectral

speech features into the desired glottal features. Once trained, the system may be

used to quickly estimate glottal features using existing spectral feature sets. The

development of the proposed method entails a study into the aspects of glottal source

information in normal speech that are already contained within the spectral features

commonly used in speech analysis. Therefore, this investigation yields an objective

assessment regarding the expected advantages of explicitly using glottal information

extracted from the acoustic speech signal via currently available blind-deconvolution

methods, versus the alternative of relying on the glottal source information that is

implicitly contained in conventional spectral envelope representations.

The remainder of this thesis begins with a brief introduction to basic concepts in

speech processing (Chapter 2), wherein the source-filter model of speech production is

presented and the basic properties of the glottal and vocal tract components of speech

are discussed. Chapter 3 continues the presentation of background material with a

review of existing methods for measuring glottal airflow and observing vocal fold

behavior, which include visual, impedance, and acoustic signal modalities. Emphasis
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is given to the discussion of existing inverse filtering techniques that are designed to

estimate glottal behavior using the acoustic speech signal alone. The review proceeds

with a survey on the use of glottal source information in speech analysis applications

and concludes with a discussion of previous work that is relevant to the estimation of

glottal source information from conventional features of the speech spectrum.

The machine learning techniques that were used to develop the proposed method

of glottal information extraction are presented in Chapter 4, along with the objective

measures and methods used to evaluate its performance. The chapter concludes with

a description of TIMIT, a large speech corpus of 630 speakers that was used to train

and evaluate the proposed method.

The existing inverse filtering techniques that were chosen to obtain glottal source

information for this study are defined and discussed in Chapter 5. These techniques

range from a “classical” inverse filtering method to a recently proposed method that

may be regarded as “state-of-the-art,” and were used to extract baseline glottal fea-

tures for training the proposed system. Chapter 6 describes the spectral envelope

features of the acoustic speech signal that were considered as candidate input fea-

tures for the proposed system, as well as a comprehensive set of glottal waveform

features that were estimated. The chapter then proceeds with an account of the

feature extraction procedure for the entire TIMIT corpus. As a preliminary step to

the development and evaluation of the proposed system, the measurement reliability

of the extracted glottal waveform measures was analyzed in order to select the most

suitable inverse filtering method for obtaining the glottal waveform features to be

used for training.

The proposed method of glottal waveform feature estimation is presented in

Chapter 7. The system was trained using each potential spectral envelope feature
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set, and the estimated glottal waveform features were compared to their inverse fil-

tering counterparts in terms of similarity, measurement reliability, and speaker dis-

crimination capability. Chapter 8 provides a summary of the conducted research,

draws general conclusions from the combined results, and suggests directions for fu-

ture work.
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CHAPTER II

CONCEPTS

2.1 Speech Production

Speech production occurs as air is expelled from the lungs and travels through the

glottis and into the oral and nasal cavities, finally exiting the body through the lips

and/or nose. At any given time, the characteristics of the emitted acoustic waveform

are controlled by the shape of the oral cavity and lips, the proportion of air that

escapes through the nasal cavity, and the state of the glottis. Spectrally, the oral and

nasal cavities create a series of perceivable resonances and anti-resonances that change

according to the position and movement of the articulators (jaw, tongue, teeth, and

lips). In many cases, these resonances are sufficient for identifying phonemes. The

vocal folds, which surround the glottis, can be relaxed, in which case air flows freely

through the glottis, resulting in a turbulent, ‘noisy’ sound (unvoiced speech). During

voiced speech, the vocal folds are placed within close proximity of each other, and the

air pressure from the lungs causes them to vibrate, resulting in an airflow pattern with

a fundamental frequency equal to the vocal folds’ rate of vibration. In addition to

determining the fundamental frequency of voiced speech, the properties of the glottal

airflow pattern during voiced phonation are responsible for perceivable differences in

voice quality, and contribute to the perception of speaker stress, affective state, and

identity, as discussed in Section 3.2.

2.2 The Linear Time-Invariant Source-Filter Model

Although it has been established that speech production is a non-linear process [16, 11,

110, 111] in which the state of the oral and nasal cavities can affect the airflow pattern
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across the glottis, and vice-versa, the linear source-filter model of speech production

relies on the simplifying assumption that the vocal tract and glottal components of

speech are independent and separable. Under this model, the time-domain acoustic

speech signal s[n] is understood to consist of the convolution of a glottal waveform

signal (also called the glottal source or the voice source) g[n], which represents the

volume velocity of airflow across the glottis as a function of time, with the impulse

response of a vocal tract filter (VTF) that represents the resonances (formants) and

anti-resonances produced in the oral and nasal cavities. To represent the continuous

changes to the vocal tract spectrum that occur in speech due to the movement of the

articulators, the vocal tract filter ought to be time-varying. However, because the

rate of movement of the articulators is limited, the general approach is to convert

the source-filter representation of speech into a time-invariant model by segmenting

s[n] into 10–30 ms frames sk[n], and using a separate, time-invariant VTF Vk(z) for

each frame k. This linear, time-invariant (LTI) representation enables the application

of “classical” DSP and linear systems theory to the processing and analysis of the

acoustic speech signal.

The LTI speech production model for a short time frame of speech sk[n] can be

stated in the Z domain as

Sk(z) = Gk(z)Vk(z)Rk(z), (1)

where Gk(z) is the transfer function of gk[n] and Rk(z) represents the lip radiation fil-

ter, which models the coupling of the vocal tract to the surrounding air volume. Rk(z)

is usually approximated as a first-order difference Rk(z) = R(z) = 1 − αz−1, with

α ≈ 1. For practical simplicity, the glottal waveform and lip-radiation components

are sometimes lumped together, giving rise to the concept of the glottal waveform

derivative, which is expressed in the time-domain as g′[n] = g[n]−αg[n− 1] or in the

Z domain as Gd(z) = G(z)R(z).

Figure 1 illustrates the glottal source and vocal tract components of speech for
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a 25 ms segment of a vowel utterance. The fundamental period T0 = 1/f0 of the

glottal waveform (Figure 1(a)) determines the fundamental frequency f0 or pitch1 of

the speech signal s[n]. The fundamental period of s[n] can be clearly observed from

Figure 1(e) and is also apparent in the frequency domain (Figure 1(f)) as the distance

between the pitch harmonics Hn of S(ejw). In addition to a harmonic structure,

the glottal waveform derivative spectrum Gd(e
jw) (Figure 1(b)) generally possesses a

bandpass spectral envelope, with a zero at DC and a peak somewhere between H1

and H2 called the glottal formant. At higher frequencies, the main feature of an ideal

glottal waveform is its spectral roll-off, which is typically in the range -6 dB to -12

dB per octave.

The contribution of the vocal tract filter V (z) (Figure 1(d)) is a set of broadband

resonances, or formants, which provide perceptual cues that are necessary to identify

a phoneme. It can be seen from Figure 1(f) that the broad envelope of the resulting

speech spectrum is affected by both the formant structure of V (z) and the spectral

envelope of G(z).

2.3 The Glottal Cycle

For non-pathological, modal phonation, a typical glottal cycle can be divided into

five overlapping phases, as illustrated in Figure 2. The opening phase is generally

defined as the portion of the glottal cycle where the vocal folds abduct and there is

an increase in airflow through the glottis, up to the instant of maximum abduction, tp.

The closing phase starts at tp and ends at the glottal closure instant (GCI) te, where

the vocal folds quickly adduct, resulting in a negative peak in g ′[n] (Figure 2(a)).

The return phase is the interval starting from te, where vocal fold adduction continues

until g′[n] is effectively zero. The open phase interval [0, te] spans the opening and

1Strictly speaking, pitch is a perceptual phenomenon related to how the human auditory system
interprets the harmonic structure of sound. The term will be used here to simply refer to the
fundamental frequency of the signal.
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Figure 1: Glottal and vocal tract components of speech, according to the linear
time-invariant source-tract speech production model.
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closing phases, while the closed phase starts at the GCI (te) and continues through

the end of the glottal cycle. From a glottal waveform estimate ĝk[n] or its first-order

difference ĝ′k[n] = ĝk[n] − αĝk[n − 1], salient features can be computed either by

direct measurement or by fitting a parametric model. These features include a set of

quotients that measure the relative lengths of the various phases of the glottal cycle,

as well as various frequency-domain measures that quantify the slope of spectral

roll-off and the relative strength of the lower harmonics. It is these features that

are then input to a machine learning algorithm in speech analysis applications that

make use of glottal information. Likewise, in formant-based speech synthesis, a set of

these features are used as model parameters to generate an artificial glottal waveform.

Thus, for these applications, it is the features of the glottal waveform, and not the

waveform itself, that are of interest.
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Figure 2: Synthetic (Liljencrants-Fant Model) glottal waveform derivative (a) and
corresponding glottal waveform (b).
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CHAPTER III

BACKGROUND

3.1 Observation of Glottal Behavior

There exist several methods for directly and indirectly assessing glottal and vocal

fold behavior, including direct visual observation of the larynx, measurements of la-

ryngeal impedance, airflow volume velocity measurements at the mouth, and finally,

manipulation of the acoustic (pressure) speech signal via inverse filtering. These

methods range from the highly-invasive (visual observation) to the minimally inva-

sive (impedance) and the non-invasive (acoustic speech). Their level of invasiveness,

combined with the particular signal modality that is observed (image, impedance,

airflow), circumscribes the scenarios under which each method can provide useful in-

formation. The following sections describe the main issues associated with each type

of procedure.

3.1.1 Laryngeal Imaging

Vocal fold motion may be directly observed via several high-speed imaging tech-

niques, such as videokymography [107], stroboscopy [100], and high-speed digital

video recording [63], the latter of which allows direct observation of the vocal folds

by recording video at 2000–4000 frames per second. In a modern stroboscopic setup,

a flexible endoscope is introduced into one nostril and brought close to the glottis,

affording an unobstructed view of the vocal folds. However, high-resolution, high-

speed video recording typically requires the use of a rigid endoscope and oral access,

thus impeding the observation of speech segments where the mouth is not sufficiently

open. While immensely useful for the diagnosis and treatment of speech disorders by

a speech pathologist, the use of video signals for speech analysis applications is made
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difficult by the complex relationship between the image of the vocal folds and the

acoustic speech waveform, as the video signal generally contains much more informa-

tion than the acoustic speech signal, and many details apparent in the video recording

may not have significant acoustic effects. The quantitative analysis of high-speed vo-

cal fold video remains the subject of current research [50, 122, 123]. In addition, the

invasive nature of direct vocal fold imaging methods not only makes recording large

amounts of speech impractical, but can also affect the acoustic speech output due

to physical (invasion of the nasal or oral cavity) and psychological (speaker stress

and discomfort) reasons. Such unintended modification of the acoustic signal is of

particular concern in studies involving voice quality and vocal affect.

3.1.2 Electroglottography

The laryngograph, also known as the electroglottograph or EGG [20], is an external

device that measures the impedance across the larynx. This impedance is closely

related to the contact area between the vocal folds. The main advantage of the EGG

over other methods is that, because its sensors consist of a pair of electrodes placed

over the neck, it is able to provide information about vocal fold motion without being

affected by the state of the vocal tract and with minimal discomfort to the subject.

Although it is not a measure of airflow through the glottis, there exists a relation-

ship between the EGG signal and the glottal waveform. Specifically, the EGG signal

and the glottal waveform are synchronous (have the same fundamental frequency).

Furthermore, the time derivative of the EGG signal can be used to approximate the

instants of glottal closure and, to a lesser extent, glottal opening1 [117, 71, 60, 113].

However, due to the fact that the EGG waveform represents the degree of contact

between the folds, the EGG provides virtually no information about vocal fold dy-

namics during the open glottal phase. Conversely, during the closed glottal phase (in

1Strictly speaking, EGG-estimated opening and closing instants should be called instants of vocal
fold contacting and decontacting, respectively.
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cases where complete glottal closure does occur), additional changes in the contact

area between the folds that occur due to the three-dimensional nature of the folds

may be registered in the EGG signal even though no changes in airflow take place

[15].

Such limitations have resulted in the EGG signal being used primarily for voicing

and pitch detection. Nevertheless, due to the minimal invasiveness of the EGG,

and because the EGG signal is unaffected by variations in the vocal tract, EGG-

derived features were initially identified as potentially desirable targets for the feature

transformation method presented in this thesis. The use of EGG information is this

manner is subject to the existence of an approximate correspondence between glottal

contact and airflow information, since variations in airflow are what lead to acoustic

(and perceptual) changes. Appendix B discusses the results of an initial study on

the relationship between salient features of the EGG signal and those of the glottal

airflow waveform, where features from the two signals were found to be related to

each other in an inconsistent and speaker-dependent manner.

3.1.3 Inverse Filtering

Under the assumptions of the LTI source-filter model of speech production, discussed

in Section 2.2, it should be possible to compute the glottal waveform signal from the

acoustic speech signal if the VTF is known. In practice, when only the acoustic speech

signal is observed, the computation of the glottal waveform estimate ĝk[n] relies on

how well the vocal tract filter can be estimated from sk[n], which is in itself a difficult

task because both glottal and vocal tract characteristics influence the observed speech

signal, thus turning the joint estimation of the VTF and glottal waveform into a blind

deconvolution problem [32, 52, 121]. Nevertheless, assuming the existence of a VTF

estimate V̂k(z) that is valid for time frame k, the glottal waveform estimate ĝk[n] can
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Figure 3: Speech production and analysis according to the LTI source-filter model.

be computed via inverse filtering (Figure 3) as follows:

Ĝk(z) =
Sk(z)

V̂k(z)R(z)
. (2)

It should be noted that because of the R(z) term in the denominator of Equation 2,

gk[n] is defined up to an arbitrary constant term, so that it is generally not possible to

determine from gk[n] whether the closed phase represents complete or partial glottal

closure2.

Over time, proposed automatic inverse filtering algorithms have attempted to

produce better estimates of the glottal waveform by exploiting various assumptions

about the speech production process. What follows is a brief discussion of the main

ideas put forth in the inverse filtering literature. The purpose of the following sections

is to highlight notable algorithms that are representative of the main thrusts in inverse

2The possibility of obtaining an absolute measurement of airflow at the lips using a vented
pneumotachograph mask [98, 14] does exist. However, this method is somewhat intrusive as it
involves the use of a mask that completely covers the nose and mouth.
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filtering research, with emphasis on recent work, and is not meant as an exhaustive

review. A recent, in-depth survey on inverse filtering may be found in [120], while

[29] gives a thorough review of the various glottal source models that are sometimes

incorporated into inverse filtering algorithms. The specific algorithms that were used

in this thesis are described in detail in Chapter 5.

3.1.3.1 Closed-Phase Analysis

Under the assumptions of the source-filter model, it has been widely accepted that the

best interval of the glottal cycle for estimating the glottal and vocal tract components

of speech begins at the instant of glottal closure [121, 114]. The primary rationale

behind closed-phase analysis is the approximate lack of vocal tract excitation during

the closed glottal phase, where the air from the sub-glottal region is generally cut-

off or greatly reduced. This implies a corresponding reduction in the exchange of

energy between the sub-glottal (i.e., air from the lungs) and the supra-glottal (i.e.,

vocal tract) regions, which maximizes the validity of the independent source-filter

assumption. Based on these assumptions about the closed glottal phase, closed-phase

inverse filtering is carried out by aligning an analysis window much shorter than the

length of the pitch cycle with the instant of glottal closure and estimating the VTF

using the covariance method of linear prediction (LP) analysis [121].

In practice, however, glottal closure is not always complete, and even when the

vocal folds do close completely, the closed phase is often not long enough to contain

the entire analysis window. The problem of short closed phases can be somewhat

ameliorated by the use of multiple pitch-synchronous estimation windows [18, 91],

which allows individual windows to be smaller. However, the inability to handle in-

complete closures remains a major issue with the closed-phase approach. In addition,

it has been observed that even small estimation errors of the location of the closed
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Figure 4: Glottal waveform estimates from the same speech segment, obtained using
a small linear prediction analysis window centered inside (a) the closed glottal phase
and (b) the open glottal phase. The estimate in (b) is corrupted by first-formant
ripple.

glottal phase can result in substantially different vocal tract estimates [114]. Incor-

rect estimation of the vocal tract can lead to, for example, glottal estimates that are

corrupted by first-formant ripple, as shown in Figure 4. Such errors can adversely

affect the computation of glottal waveform features.

3.1.3.2 Incorporation of Parametric Glottal Waveform Models

An alternative approach to closed-phase analysis is to begin the inverse filtering pro-

cess by assuming a parametric model of the glottal waveform and preliminarily re-

moving its effects from the speech signal. The vocal tract filter may then be esti-

mated from the pre-processed signal using data from either the entire pitch cycle [6],

or an extended “pseudo-closed phase” [4], and progressive refinement of the Vk(z)

and gk[n] can occur over a number of iterations. These algorithms usually rely on

a low-complexity model of the glottal source to produce the initial vocal tract esti-

mate, and may therefore suffer in cases where the actual glottal waveform does not

fit the assumed model. A variation of this approach [43] assumes the more complex
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Liljencrants-Fant (LF) model of the glottal waveform [41] from the start of the pro-

cedure. While their approach was shown to perform well on synthesized speech, the

authors noted that in the case of real speech, “problems still exist with regard to

robustness”.

More recently, an algorithm that jointly estimates LF-model and vocal-tract pa-

rameters according to a time-varying autoregressive model was introduced [44]. The

main advantage of this algorithm is that it allows the VTF to change at every sam-

ple. The use of a time-varying VTF within the speech frame allows the algorithm

to represent source-tract interaction by incorporating its effects into a VTF that is

allowed to vary across the various phases of the glottal cycle. The authors point out

that, as with other approaches that make use of parametric glottal models, “assuming

an exact initialization and a converged optimization, the accuracy of the proposed

method is finally determined by the ability of the LF model to model phonation”.

3.1.3.3 Zeros of Z-transform Representation

A recent, unconventional approach to glottal waveform estimation [17] relies on pre-

cisely centering two pitch periods inside a Blackman window. If this is achieved

precisely, the glottal waveform can be considered mostly anti-causal and the vocal

tract response mostly causal. Upon taking the Z-transform of the entire frame, ex-

amination of the zeros of the Z-domain polynomial reveals that the source spectrum

contains mostly zeros outside the unit circle. By reconstructing the time-domain sig-

nal using only these zeros, an approximation of the glottal waveform can be obtained.

Pending issues with this algorithm involve the requirement to precisely segment and

align two pitch periods, as well as the inability to separate the glottal source zeros

corresponding to the ‘causal’ portion of the glottal waveform (i.e. inside the unit

circle) from the zeros of the vocal tract. In addition, the assumption of glottal wave-

form causality and anti-causality is based on experiments with synthetic waveforms
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generated by the LF model. Although [104] showed the algorithm working well on a

short segment of real speech, its adequacy for use on real speech data has yet to be

evaluated.

3.1.3.4 Summary

Existing inverse filtering approaches share a common set of limitations, the main issue

being the ambiguity in determining which properties of the speech frame belong to

Vk(z) and which belong to gk[n]. The various assumptions that are made about each

of these signals in an effort to tackle this blind deconvolution problem has lead to

algorithms that may not perform well when these assumptions are not met in real

speech data. On the other hand, the relaxation of these assumptions often leads to

more complex models and algorithms that are susceptible to convergence problems.

3.2 Use of Glottal Features in Speech Analysis

Despite the limitations of inverse filtering procedures, many studies have shown that

features related to the glottal source are an important component for the analysis of

various forms of non-phonetic content in speech. What follows is a brief review of this

work, focusing on recent results related to voice identity and the affective component

of speech. While the accuracy of glottal waveform estimation is often mentioned as

a limiting factor, these studies do show benefits from incorporating glottal source

information into the analysis.

Glottal source features derived from glottal waveforms obtained via inverse fil-

tering have been shown to somewhat complement mel-frequency cepstral coefficients

(MFCCs), a representation of the spectral envelope of sk[n], in speaker identification

applications. Recent work [51] shows that the combination of the glottal waveform’s

cepstral coefficients with conventional MFCCs can reduce the speaker misclassification

rate by over 1% on the TIMIT corpus and over 3% on a corpus with a smaller number
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of speakers. These results are consistent with previous studies in which glottal wave-

form features obtained via parametric model fitting were found improve classification

rate when combined with vocal tract and prosodic features [18], and MFCCs [91] in a

speaker ID scenario. Other studies have obtained similar results by extracting glottal

source features using novel representations of the linear-prediction (LP) residual. In

these studies, the LP filter was computed over the entire speech frame and no explicit

effort was made to obtain an accurate estimate of the glottal waveform. While this

linear prediction procedure does not amount to inverse filtering, as the LP filter will

likely represent some of the spectral properties of the glottal source (such as spectral

tilt and the glottal formant), and vice-versa, the information contained in the LP

residual can be regarded as being mainly glottal-source specific, while the LP filter

represents most of the properties of the vocal tract. Wavelet coefficients [127] and

features derived from the phase spectrum [83] of the LP residual have each been found

to reduce the classification error of an MFCC-based speaker identification system by

a small percentage.

Perceptual evidence of the complementarity between glottal source and vocal tract

information in the formation of voice identity was obtained from a voice conversion

study [68] where the voice quality of a set of source speakers was converted to that

of a set of target speakers by performing a statistical transformation of the source

speakers’ LP filters so that they resembled the LP filters of the target speakers.

Perceptual evaluation revealed that in some cases, listeners judged the converted

speech as coming from a “third” speaker having characteristics from both the source

and target speaker. Improved perceptual results were obtained by also modifying

the LP residual during conversion [67]. A more recent voice conversion study [31]

obtained positive results by performing inverse filtering and transforming both the

VTF and glottal waveform components of the speech signal.

The glottal source has also been shown to play an important role in the recognition
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of stress and affective states in speech. Several studies have established the relation-

ship between specific changes in glottal source features and laryngeal voice quality

[21, 7, 87]. Furthermore, a perceptual study on the relationship between voice quality

and the communication of emotion [48] included glottal waveform parameters in the

set of variables that were modified to synthesize speech stimuli with varying voice

quality. The results have suggested that voice quality plays an important role in the

differentiation of subtle emotions, although the perceptual mappings between voice

quality and emotion labels varied across listeners.

Direct links between emotional speech and glottal waveform parameters have been

studied as well. Glottal waveform features have been shown to vary significantly across

utterances representing different types of simulated (acted) emotion [72, 3, 119] as

well as induced and simulated stress [28, 116, 54], although the observation has been

made that the acoustic expression of each emotion varies significantly across speakers

[72] and genders [3]. In addition, glottal features have been shown to be useful for

the classification of clinically-depressed subjects from their speech [88, 78], and have

been found to perform better than vocal tract features in this task when combined

with prosodic features [79].

Other studies have established glottal waveform features as helpful in extracting

emotional information from the speech signal beyond what may be obtained from

conventional prosodic features (pitch and energy). A feature selection and classifica-

tion experiment on acted emotional speech [42] found features related to the length

and symmetry of the open glottal phase to be the highest ranked among a large set

of glottal, loudness, and pitch features. Similarly, a recent study [105] found glot-

tal waveform features to be useful in differentiating between pairs of emotions with

similar pitch statistics, while a study on deceptive speech found a similar feature set

to generally perform better than pitch in detecting the stress arising from deception

[115]. These results are in agreement with the study described in [86], where MFCCs
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computed over a limited frequency range of 20–300 Hz (MFFC-low) were found to be

similarly useful to full-band MFCCs and more useful than pitch features for emotion

classification. Over a frequency range of 20–300 Hz, the MFCC-low features are less

influenced by the vocal tract, since the first formant is near 300 Hz only for high

vowels (e.g., /iy/, /ux/), and higher formants are out of range [95]. The spectral

characteristics of the glottal waveform, on the other hand, are mostly within range,

as the glottal formant is usually between the first two pitch harmonics. Thus, par-

ticularly for male speakers, the MFCC-low features are not only representing pitch

information, but also contain glottal source information, which may explain their

additional ability to discriminate emotions in comparison to the pitch feature.

3.3 Related Work

The difficulties related to inverse filtering (Section 3.1.3) have motivated the develop-

ment of analysis methods that can obtain at least some amount of information about

glottal airflow directly from the acoustic speech signal without the need to explicitly

estimate the glottal waveform. The long-term average spectrum (LTAS) [74] is a clas-

sical method that provides insight into the glottal source spectrum directly from the

speech signal. The LTAS is computed over a long sample of speech (>30 seconds) and

operates under the assumption that the resonances of a time-varying vocal tract will

average out across the long sample into an approximately flat spectrum, revealing an

average spectral estimate of the underlying glottal source. A major limitation of the

LTAS procedure is the loss of time resolution, which impedes the use of this approach

in situations where the object of the analysis may be of short duration (e.g. vocal

affect or voice quality analysis) or where a long speech sample is not available. In

addition, the results obtained via this method may be undesirably affected by both

the (time-invariant) transfer function of the recording channel and by the choice of

speech sample, as the assumption of a flat long-time average vocal tract spectrum
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critically depends on the balance of phonetic content within the sample.

An alternative approach [55, 65] allows limited estimation of glottal source har-

monics at the speech frame level (≈20 ms) by applying a correction formula to the

speech spectrum in order to remove the influence of the vocal tract formants, thus

revealing an estimate of the first two glottal source harmonics (H1, H2). This ap-

proach can be regarded as a “partial” inverse filtering in the spectral domain, and

is useful when the phase of the speech signal has been corrupted by the recording

equipment (thus hindering the use of time-domain inverse filtering). However, the

success of this procedure is still dependent on an accurate estimate of Vk(z).

The proposed idea of transforming conventional, frame-level spectral envelope fea-

tures (SEFs) into glottal waveform features is motivated by studies that have shown,

either explicitly or implicitly, a relationship between the spectral envelope of speech

and characteristics of the glottal waveform. It has long been recognized that spectral

envelope features reflect a combination of the vocal tract and glottal contributions

to the speech signal. In [66], favorable results were obtained in speech recognition

experiments through the use of a liftering procedure designed to remove the influence

of glottal flow characteristics from cepstral features. Similarly, the authors in [75]

used, for the purpose of improving the matching of real speech to a stored codebook

in an articulatory speech coding application, a set of optimal lifters to minimize the

influence of the glottal flow on the cepstral coefficients. The lifters were derived by

examining the effects of variations in the parameters of a physical vocal fold model

on the cepstrum of the speech signal generated by an articulatory synthesizer. Con-

versely, SEFs which were initially designed to capture the phonetic content of speech,

have shown significant discrimination ability in certain speech analysis tasks where

the glottal source is believed to play a major role. For example, the work in [124]

classified creaky phonation, largely a glottal effect, using a representation of the spec-

tral magnitude envelope of speech, while the authors in [34] identified pathological
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phonation using a combination of spectral envelope features and pitch information.

An explicit relationship between the glottal waveform and the speech spectrum

has been established for synthesized speech in [40, 12, 36], where the magnitude

spectrum of time-domain parametric models of the glottal waveform is analytically

derived. These studies demonstrate how specific variations of the time-domain pa-

rameters lead to systematic changes in the magnitude spectrum of the synthesized

glottal waveforms, therefore affecting the spectrum of the speech output. Specifically,

variations in the relative duration of the changes in open phase, and the degree of

asymmetry between the opening and closing phases have been shown to be related,

respectively, to the center frequency and bandwidth of the glottal formant, which in

turn affects the shape of the speech signal’s spectral envelope. In addition, the extent

of the return phases has been shown alter the spectral roll-off of the speech spectrum.

On real speech signals, recent work [76] has explored the estimation of funda-

mental frequency (f0), perhaps the most easily measurable glottal effect, from SEFs,

obtaining high accuracy via a hybrid HMM-GMM (Hidden Markov Model - Gaussian

Mixture Model) system. In their approach, the HMMs are used to classify the speech

into monophones, and an associated GMM is then used to transform MFCCs into f0

estimates. Interestingly, it was found that an accuracy level near that achieved by

the HMM-GMM system was obtained using a single, larger GMM.

Collectively, these studies suggest that the spectral envelope of the acoustic speech

signal may contain enough separable information about the characteristics of the glot-

tal waveform as to allow for a direct transformation from the speech spectral envelope

into glottal waveform features, thus bypassing explicit glottal waveform estimation

and the challenging process of inverse filtering.
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CHAPTER IV

EVALUATION METHODS, TOOLS, AND DATA

4.1 Introduction

Given a set of spectral envelope features and a corresponding set of glottal waveform

features, such as those obtained via inverse filtering, the development and evaluation

of a system that can transform the former into the latter requires a model that can

learn and perform the mapping across feature spaces, as well as a set of measures to

evaluate the accuracy of the transformation. Section 4.2 presents a statistical model

and training method capable of learning an arbitrary multivariate distribution from

a multidimensional dataset. The learned distribution can then be used to perform a

regression from one set of variables into another, as described in Section 4.3. Objec-

tive measures that will be used to evaluate both the measurement reliability of the

glottal waveform features as well as the accuracy of the feature transformation are

described in Section 4.4. Finally, a procedure for evaluating the speaker separation

ability of a given set of features is described in Section 4.5, and the dataset to be used

in this study is described in Section 4.6.

4.2 Statistical Feature Modeling with Gaussian Mixtures

A Gaussian mixture model represents the multivariate probability distribution func-

tion of a feature vector w as

f(w) =
N
∑

i=1

πi N (w; µi,Σi ), (3)

where
∑N

i=1 πi = 1 and N (w; µ,Σ ) is a multivariate Gaussian distribution with

mean vector µ and covariance matrix Σ. Given a set of observation vectors W =

[w1w2...wM ], the maximum-likelihood parameters {πi, µi,Σi} for the N Gaussian
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mixtures can be estimated via the Expectation Maximization (EM) algorithm [112,

49], which iteratively improves the log-likelihood function

φf (W) =
1

M

M
∑

m=1

log(f(wm)). (4)

The EM algorithm needs to be given initial estimates of the GMM parameters, which

may be obtained by a clustering procedure such as k-means. Because the EM algo-

rithm converges to a local and not a global maximum, in practice it is often run several

times with different initializations, and the model from the best run is retained.

The number of Gaussian mixtures N controls the complexity of the model, and

it can be shown that given a sufficiently large N , a GMM can represent any arbi-

trary distribution function. In practice, larger values of N increase the number of

parameters, thus requiring more observations for training and increased computation

time1.

4.3 Feature Transformation via GMM Regression

If an observation w =
[

xT yT
]T

is said to consist of the concatenation of a source

feature vector x (e.g. spectral envelope features) and a target feature vector y (e.g.

glottal waveform features), then, assuming that w is distributed according to the

GMM of Equation 3, the nonlinear Gaussian mixture regression (GMR) function

that minimizes the mean-squared error between the actual y and its estimate ŷ is

given as [67, 106, 82]

ŷ = Ff(x) = E(y|x)

=

∑N

i=1 πi N (x;µix,Σixx )
[

µiy +ΣiyxΣ
−1
ixx(x− µix)

]

∑N

j=1 πj N (x;µjx,Σjxx )
, (5)

where

µi =







µix

µiy






, Σi =







Σixx Σixy

Σiyx Σiyy






.

1An approach which has proved useful in speaker identification applications [96] is to increase N
and to decrease the number of model parameters by restricting Σi to be diagonal.
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Thus, the ability to transform spectral envelope features into glottal features is

contingent upon their local covariances Σiyx. The proposed feature transforma-

tion method then consists of training a GMM f with a suitable number of mix-

tures N to estimate the joint distribution of the spectral and glottal feature obser-

vations [w1w2...wM ] and constructing the transformation function Ff(x) according

to Equation 5. Once this function has been learned, an unseen set of spectral fea-

ture observations [x′

1x
′

1...x
′

K ] can be transformed into glottal feature estimates as
[

ŷ′

1ŷ
′

2...ŷ
′

K

]

= [Ff(x
′

1)Ff(x
′

2)...Ff (x
′

K)].

4.4 Measures of Similarity between Two Observation Sets

To evaluate and compare the extent to which two estimates of a scalar feature (or two

different scalar features) approximate each other, multiple observations are required.

Given two sets of K feature observations u = [u1, u2...uK ] and v = [v1, v2...vK ] the

linear correlation coefficient

rc(u, v) =

∑K

k=1(uk − ū)(vk − v̄)
√

∑K

k=1(uk − ū)2
∑K

k=1(vk − v̄)2
, (6)

where

ū =
1

K

K
∑

k=1

uk, v̄ =
1

K

K
∑

k=1

vk,

can be used to measure the similarity between them. The correlation coefficient,

valued between -1 and 1, reflects the strength and direction of the linear relationship

between u and v, with rc = 0 indicating a lack of linear relationship and rc < 0

indicating a tendency for u to increase linearly as v decreases.

Another measure of similarity between u and v is the coefficient of determination

[33], defined as

rd(u, v) = 1−

∑K

k=1(uk − vk)
2

∑K

k=1(uk − ū)2
. (7)

This measure takes a maximum value of 1 if and only if u = v, and can be interpreted

as a measure of the mean-squared error between u and v relative to the variance of
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u:

rd(u, v) = 1− (
K

K − 1
)
MSE(u, v)

σ2
u

, (8)

where

MSE(u, v) =
1

K

K
∑

k=1

(uk − vk)
2, and σ2

u =
1

K − 1

K
∑

k=1

(u− ū)2

For large K, a value of rd close to zero implies that the mean squared error between

u and v is as great as the variance of u.

There are two important differences between these measures. Unlike the correla-

tion coefficient, rd is not symmetric unless u and v have equal variance (rd(u, v) =

rd(v, u) ⇔ σ2
u = σ2

v). In addition, given a perfectly linear relationship ∀ k : vk =

αuk + β, the correlation coefficient rc(u, v) will be equal to 1.0 while rd(u, v) will

depend on the slope α and offset β of the linear relationship. Thus, rd decreases with

respect to differences of scale and bias between u and v while rc remains unaffected

by such differences. Furthermore, if u and v share the same mean and variance, it

can be shown by application of the Cauchy-Schwarz inequality that the square of the

correlation coefficient becomes an upper bound for the coefficient of determination

(i.e., rd <= r2c , with equality if u and v are linearly related).

A third similarity measure, which can be useful for quantifying non-linear rela-

tionships between u and v, is the Spearman rank-correlation coefficient rr, given by

rr(u, v) =

∑K

k=1(Γuk
− Γ̄u)(Γvk − Γ̄v)

√

∑K

k=1(Γuk
− Γ̄u)2

∑K

k=1(Γvk − Γ̄v)2
, (9)

where Γuk
and Γvk denote the ranks for the kth observation of u and v, respectively,

and Γ̄u, Γ̄v denote the average rank of each variable. From Equations 6 and 9, it

can be seen that rr is computed in exactly the same way as the linear correlation

coefficient, except that the values of u and v are replaced by their ranks (i.e., their

order within the set of K observations). By basing the similarity measure on ranks,

rr is invariant to any monotonic transformation of u and v, and is therefore able to
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measure the strength of an arbitrary monotonic, non-linear relationship between the

variables.

4.5 Maximum Likelihood Pairwise Speaker Classification

Another way to determine the usefulness of a scalar feature or a feature vector is

to evaluate its performance in a speech analysis application. As this study focuses

on estimation of glottal waveform features, which are an important component of

voice quality and voice identity (as discussed in Section 3.2), it is useful to compare

different features and estimation methods by their ability to correctly distinguish

between the voices of different speakers. Here, the goal is not to improve upon the

already high performance of current speaker identification systems, but to use the

speaker ID system as a way to gather information about the discrimination ability of

the features, with the assumption that noisy or poorly estimated features will show a

decreased ability to correctly distinguish between the voices of different-speaker pairs.

As it is already widely used in speaker identification [97, 96, 91, 39, 77, 51] a GMM

classifier will be adopted here. In the case of binary classification of speaker pairs,

two separate GMMs, fω1
and fω2

are trained with the EM algorithm as described in

Section 4.2, using the training observations [zω1,1 zω1,2 ... zω1,M ], from speaker ω1 and

[zω2,1 zω2,2 ... zω2,M ] from speaker ω2, respectively. Then, for the kth observation ẑk

from an independent test data set, the most probable speaker ĉk ∈ {ω1, ω2} is chosen

according to the Bayes classification rule [112], given as

P (ω1| ẑk)
ĉk=ω1

≷
ĉk=ω2

P (ω2| ẑk), (10)

which can be rewritten in terms of the class-conditional likelihood functions p(z|ω1) =

fω1
(z) and p(z|ω2) = fω2

(z) as

fω1
(ẑk)P (ω1)

ĉk=ω1

≷
ĉk=ω2

fω2
(ẑk)P (ω2). (11)

Assuming equal a priori probabilities for each speaker, P (ω1) = P (ω2), the decision
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rule is then based on selecting the speaker whose GMM outputs the highest likelihood

for the input vector:

fω1
(ẑk)

ĉk=ω1

≷
ĉk=ω2

fω2
(ẑk). (12)

Given a set of actual speaker labels [c1c2...cK ], ck ∈ {ω1, ω2}, and the corresponding

classification results [ĉ1ĉ2...ĉK ] obtained according to Equation 12, the classification

rate can then be computed as

Crate =
1

K

K
∑

k=1

φ(ck, ĉk), (13)

where

φ(c, ĉ) =











1 if c = ĉ

0 otherwise.

4.6 Speech Corpus

Evaluation of the measurement reliability, predictability, and speaker discrimination

ability of the selected glottal waveform features was performed using a large set

of speakers from the DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus

[45, 46]. TIMIT contains a total of 6300 utterances, with 10 sentences spoken by each

of 630 native speakers representing 8 major dialects of American English (438 males,

192 females). The 10 sentences contain approximately 30 seconds of speech material

per speaker. In total, the corpus contains roughly 5 hours of speech. All speak-

ers were judged by a professional speech pathologist as having no clinical speech

pathologies. The 630 corpus sentences are divided into 3 categories: dialect sen-

tences (SA), designed to expose dialectal differences in pronunciation among speak-

ers; phonetically-compact sentences (SI), designed as a compact set of sentences that

collectively provide good diphone coverage; and phonetically diverse sentences (SX),

selected to maximize the number of allophonic contexts in the text. Table 1 shows

the distribution of sentence texts among speakers. In addition to the acoustic speech

30



Table 1: Distribution of TIMIT sentence texts

Sentence Type Sentences
Speakers per
Sentence

Total
Utterances

Sentences
per Speaker

Dialect (SA) 2 630 1260 2

Compact (SX) 450 7 3150 5

Diverse (SI) 1890 1 1890 3

Total: 2342 N/A 6300 10

Table 2: Distribution of TIMIT speakers by dataset.

Dataset Male Speakers Female Speakers Total
TRAIN1 260 108 368
TRAIN2 66 28 94
TEST 112 56 168
Total: 438 192 630

data, each utterance in the TIMIT corpus contains a professionally produced, hand-

labeled phonetic transcription that is aligned with the speech.

The speech utterances were recorded in a double-walled sound booth using a

Sennheiser HMD-414 head-mounted, noise-cancelling microphone and stored at a 16

kHz sampling rate. The corpus is divided into TRAIN and TEST sets containing

independent sets of speakers. As the present work requires an additional independent

dataset for validation, the TRAIN set was subdivided into two subsets as follows:

80% of the speakers in each gender were randomly selected from the TRAIN set and

assigned to the TRAIN1 set, while the remaining 20% of the speakers were assigned

to the TRAIN2 set. Table 2 lists the number of male and female speakers in each

dataset. Each dataset contains all 10 sentences for each of its speakers.
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CHAPTER V

INVERSE FILTERING METHODS

A general discussion of the concept and limitations of inverse filtering was given in

Section 3.1.3. The purpose of this chapter is to describe the four algorithms that

were selected for this study, which represent a set of important ideas from the inverse

filtering literature. Closed-phase linear prediction analysis (Section 5.1), one of the

oldest automatic inverse filtering algorithms, relies on the concept of source-tract sep-

arability during the closed glottal phase, an idea that is still being exploited by newly

proposed algorithms [10]. Glottal quality inverse filtering (Section 5.2) somewhat re-

laxes the assumptions about the closed phase and instead estimates the vocal tract

filter from a short time region in the vicinity of the closed phase, chosen according to

a set of quality measures on the candidate glottal waveforms. The iterative adaptive

inverse filtering algorithm (Section 5.3) is a widely used method that relies on pre-

processing the speech signal to remove the (approximate) spectral influence of the

glottal waveform and then estimating the vocal tract filter using data from the en-

tire speech frame. Finally, the recent algorithm by Fu and Murphy [44] (Section 5.4)

was selected as an example of a recent, state-of-the-art algorithm that incorporates a

parametric glottal model into the estimation process while rejecting the assumption

of a time-invariant vocal tract.

5.1 Closed Phase Linear Prediction Analysis

Closed-phase inverse filtering (CPIF) [121] is a classical procedure for extracting glot-

tal waveform estimates from the speech signal automatically and objectively. The

guiding principle behind CPIF is that the closed glottal phase is the optimal time
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segment of the glottal cycle for performing VTF estimation, as the air from the sub-

glottal region is greatly reduced or cut off, implying reduced physical interaction

between the vocal tract and sub-glottal regions and therefore maximizing the validity

of the convolutional source-filter model given in Equation 1. In addition, glottal clo-

sure tends to be abrupt, so that the time-domain speech signal s[n] should be most

similar to the impulse response v[n] of the vocal tract in a time interval that begins

at the instant of glottal closure and extends through the closed glottal phase.

The challenge in obtaining a good implementation of CPIF lies in being able to

automatically detect the closed glottal phase directly from the speech signal, which

is rather difficult since an estimate of the glottal waveform has yet to be computed.

The original implementation by Wong, Markel and Gray [121] was based on finding a

minimum region of the normalized linear prediction error residual. The implementa-

tion used in this study estimates glottal closure instants using the recently developed

DYPSA algorithm [70, 85] as implemented in the VOICEBOX toolbox [19].

For each frame of speech sk[n] with at least one GCI estimate, the CPIF algorithm

proceeds as follows: The starting sample of the length Nlpa = 2 p+1 analysis window

wap = [sk[n̂] sk[n̂ + 1] ... sk[n̂+Nlpa − 1]]T ,

where p is the model order, is aligned with the GCI estimate n̂ closest to the center

of the frame. A least-squares, all-pole estimate of the vocal tract filter

V̂k(z) =
1

1 +
∑p

m=1 a(m)z−m
(14)

is then computed from wap using the covariance method of linear prediction analysis

(LPA) [58]. The covariance method of linear prediction is not guaranteed to produce

a stable filter. To address this issue, poles of V̂k(z) lying outside the unit circle are

reflected as a post-processing step to enforce filter stability. The reflection operation

does not affect the magnitude spectrum of the filter. Similarly, because the vocal
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tract is not supposed to have resonances at DC, positive real poles are removed from

V̂k(z).

Given a vocal tract filter estimate V̂k(z), a first-order lip-radiation filter R(z) = 1−

α z−1, and assuming the linear source-filter model of speech production of Equation 1,

the glottal waveform estimate ĝk[n] is obtained as follows:

ĝk[n] =

(

sk[n] +

p
∑

m=1

a(m)sk[n−m]

)

+ α ĝki[n− 1]. (15)

5.2 Glottal Quality Inverse Filtering

The main idea behind the Glottal Quality Inverse Filtering (GQIF) algorithm is to

extend closed-phase inverse filtering to situations where the estimation of the glottal

closure instant (GCI) is inexact, or where the closed phase is so short that placing

the spectral analysis window at the GCI would cause it to extend beyond the point

of glottal opening. This is achieved by allowing the spectral analysis window to shift

around the GCI estimate, producing several candidate glottal estimates. A ranking

procedure is then employed to select the “best” estimate as the final solution.

Because the true glottal waveform is not directly observed in the acoustic speech

signal, the quality of a glottal waveform estimate is a vague concept at best. Nev-

ertheless, a set of criteria allowing for an approximate, objective quality assessment

of a given set of glottal waveform estimates can enable the design of a more robust

glottal waveform estimation algorithm. Several proposed glottal waveform quality

measures (GQMs) [13, 5, 80] may be used for this purpose. A GQM is defined as a

scalar-valued function of the glottal waveform estimate (and/or possibly, the associ-

ated vocal tract filter) that outputs a numerical value representing the relative quality

of inverse filtering, such that values closer to either extremum of the real line indicate

“better” or “worse” glottal waveform estimates, respectively. As it is unlikely that

any single GQM can completely assess the quality of a glottal waveform estimate,

Moore and Torres [80] presented a rank-based method to allow the combination of
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an arbitrary number of GQMs for the selection of the “best” out of a set of glottal

waveform estimates. Using sustained vowel recordings for which a simultaneous EGG

signal was available, a later study by the same authors [81] evaluated the performance

of all possible combinations of a set of 12 GQMs. Parting from the assumption that

covariance-LPA is expected to perform better when the analysis window is near the

region of glottal closure, the authors defined GQM performance as the frequency

with which a particular GQM subset selected a mostly closed-phase glottal waveform

estimate over a mostly open-phase estimate. The beginning of closed and open glot-

tal phases were approximated a priori using EGG signals (Section 3.1.2). The study

found that a combination of four GQMs could correctly select glottal waveform esti-

mates obtained using analysis windows located in the closed glottal phase 94.7% of

the time.

The following sections describe the GQIF algorithm, which is based on the results

in [81]. The presentation of the rank-based method used to select an “optimal” glottal

waveform estimate is followed by a brief discussion of the four GQMs used by the

algorithm, and finally, a formal description of the GQIF procedure.

5.2.1 Rank-Based Glottal Waveform Quality Assessment

As mentioned in the previous section, choosing the “best” gk[n] estimate based on

any single GQM is inherently dependent on the extremum of the measure (e.g., the

maximum or minimum value), which can vary or become ambiguous if there is noise

or quantization of the GQM values. It seems more natural to assume that good

GQMs should reliably establish trends among a set of glottal waveform estimates

(i.e., from relatively good to relatively bad) without the “best” or “worst” necessarily

being represented by the extreme values. Additionally, no single GQM is designed

to measure all of the qualities of a glottal waveform estimate and it is likely that

a combination of GQMs would produce better results. In [80], Moore and Torres
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introduced a simple new technique for combining multiple GQMs to evaluate the

relative quality of a set of gk[n] estimates. This technique is referred to as Rank-

Based Glottal Waveform Quality Assessment (RB-GQA) and it is implemented in

the following steps:

1. For each GQM, rank each stored estimate from ‘1’ to the number of stored

estimates available (i.e., for N stored estimates, a rank of ‘1’ indicates the “best”

of the stored estimates for that GQM and rank of N indicates the worst).

2. Compute the average ranking across a subset of GQMs and sort the estimates

by increasing average rank. The estimate with the lowest average rank (i.e.,

closest to 1) is selected as the highest-quality estimate.

An advantage of RB-GQA is that it is invariant to any monotonic transformation of

the GQM values, thus allowing input from any subset of the GQMs to be effectively

combined in the final quality assessment.

5.2.2 Glottal Quality Measures

5.2.2.1 Phase-Plane Measures

The work in [13] presented two GQMs based on phase-plane analysis. These measures

rely on the assumption that the glottal waveform can be modeled as a second-order

harmonic equation, which implies that its plot in the phase-plane (x(t), dx
dt
) should

consist of one closed loop per fundamental period. Resonances not completely re-

moved by inverse filtering should appear as sub-cycles within the fundamental loops.

The phase-plane plots are quantified by measures reflecting the number of cycles

per fundamental period (ppcper), with fewer cycles reflecting better estimates, and

the mean sub-cycle length (ppcyc), with smaller sub-cycles reflecting better estimates.

These measures are computed using MATLAB code from TKK Aparat [1]. Figure 5

shows the phase-plane plots of a higher and lower-quality glottal waveform estimate,

respectively.
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Figure 5: Phase-plane plots and corresponding GQMs for (a) the higher quality
estimate in Figure 4(a), and (b) the lower quality estimate in Figure 4(b). The lower
quality estimate shows an additional large sub-cycle.
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Figure 6: Group delay and its variance for (a) the higher quality estimate in
Figure 4(a), and (b) the lower quality estimate in Figure 4(b). The group delay
of the lower quality estimate shows additional extraneous peaks that increase the
variance.

5.2.2.2 Group Delay

The motivation for using the group delay as a GQM was presented in [5], where it

was observed that the phase spectrum over a single cycle of the glottal flow should

be essentially constant over a wide frequency range if the vocal tract resonances were

completely removed by the inverse filtering procedure. RB-GQA uses the variance of

the group delay (GDvar) of the glottal flow (computed over a single cycle and using an

FFT size of 4096) as a GQM. Better estimates of the glottal waveform are be expected

to have a variance closer to zero. Figure 6 shows the group delay function for a higher

and lower-quality glottal waveform estimate and their corresponding variances.
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5.2.2.3 Harmonic Ratio

Ideally, the spectrum of the glottal waveform Gk(e
jω) should exhibit a strictly negative

spectral slope due to the lack of resonant structure. If formant residuals from an

improperly estimated V̂ (z) are present, this linear trend is disturbed. RB-GQA uses a

GQM based on the ratio of the first harmonic peak to the maximum peak present over

a frequency range 0 – 3700 Hz (hrmx). Ideally, the first harmonic peak should tend

to be greater than successive peaks to adhere to the negative linear trend expected

from an ideal glottal waveform. Deviations from this trend can create ratios that

are greater than one and indicate worse glottal waveform estimates. The frequency

range of 0–3700 Hz was used to cover the most prominent formants in voiced speech.

Figure 7 shows examples and the resulting measurements of the harmonic ratio and

linear regression GQMs for a lower and higher-quality glottal waveform estimate.

5.2.3 GQIF Algorithm

Given a frame of speech sk[n] and a GCI estimate ne,k (In current implementation,

the GCIs are estimated from s[n] using the DYPSA algorithm), the GQIF Algorithm

proceeds as follows:

1. Let Nlpa = 2p+1 be the length of the LP analysis window, where p is the LPA

model order.

2. For i = ne,k −Nlpa + 1 ... ne,k

(a) Compute the all-pole vocal tract estimate

V̂i(z) =
1

1 +
∑p

m=1 a(m)z−m
,

via covariance LPA, using analysis window

wi = [sk[i] sk[i+ 1] ... sk[i+Nlpa − 1]]T .
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Figure 7: Harmonic peaks and corresponding hrmx values for (a) the higher quality
estimate in Figure 4(a), and (b) the lower quality estimate in Figure 4(b). The lower
quality estimate has a second harmonic that is larger than the first harmonic, and a
large peak around 1500 Hz, causing an increase in the hrmx measure.
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(b) Compute the glottal waveform estimate via inverse filtering:

ĝki[n] =

(

sk[n] +

p
∑

m=1

a(m)sk[n−m]

)

+ α ĝki[n− 1],

where α is the lip radiation coefficient.

(c) Calculate and store the value of each GQM for ĝki[n]:

ppcper[i], ppcyc[i], GDvar[i], hrmx[i].

3. Use the GQMs and the RB-GQA procedure described in Section 5.2.1 to find

the optimal value of the analysis window position ĩ. Return the final estimate

gk[n] = gkĩ[n].

5.3 Iterative Adaptive Inverse Filtering

An alternative to finding an optimal short region of the pitch cycle from which to

perform spectral estimation of the vocal tract is to estimate the vocal tract filter

from an entire frame of speech that has been pre-processed to approximately remove

the spectral influence of the glottal source. The iterative adaptive inverse filtering

(IAIF) algorithm is based on this idea. In this study, the IAIF algorithm was used

as implemented in the TKK Aparat toolbox [1]. Although the algorithm is fully

specified in this section, the exact implementation may be obtained from the Aparat

website [2]. The algorithm is described in detail in the original paper by Alku [8] and

in the Aparat documentation [1].

IAIF is based on a spectral estimation method called discrete all-pole modeling

(DAP) [38], which was designed to overcome the biasing of VTF pole estimates to-

wards pitch harmonics that occurs in autocorrelation LP analysis of high-pitched

speech. The IAIF procedure is a multi-stage process in which progressively detailed

estimates of the glottal waveform’s spectrum are removed from the speech spectrum

to obtain progressively refined estimates of the vocal tract filter. It should be noted

that the original paper by [8] recommends high-pass filtering the speech signal with
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a high-pass filter having a cutoff frequency well below f0 as a pre-processing step to

remove low-frequency fluctuations in the signal. That step is not implemented by the

iaif function in the current version of Aparat [2], nor was it deemed necessary for

this study since the analyzed speech data was captured via a high-quality recording

process (Section 4.6) and there are no low-frequency noise/bias issues associated with

it. The IAIF algorithm for a frame of speech sk[n] is described below. For notational

simplicity, the description is given in the Z domain, although the filtering operations

in IAIF are actually performed in the time domain. A fixed, first-order lip radiation

filter R(z) = 1− α z−1 is used throughout.

1. Fit a 1st-order all-pole filter Hg1(z) to Sk(z) via DAP. Hg1(z) represents a first

approximation of the glottal waveform’s spectral tilt.

2. Compute Sg1(z) = Sk(z)/Hg1(z), a processed version of the speech frame from

which the glottal spectral tilt has been approximately removed.

3. Fit a pth-order all-pole filter V1(z) to Sg1(z) via DAP. This is the first approxi-

mation of the vocal tract filter.

4. Compute G1(z) = Sk(z)/(V1(z)R(z)), the first estimate of the glottal waveform.

5. Fit an 4th order all-pole model Hg2(z) to G1(z) using DAP. Hg2(z) is a refined

parametric model of the glottal waveform’s spectrum.

6. Compute Sg2(z) = Sk(z)/(Hg2(z)R(z)), a processed version of the speech frame

from which the spectral effects of the glottal waveform have been mostly re-

moved.

7. Fit a pth-order all-pole filter

V̂ (z) =
1

1 +
∑p

m=1 a(m)z−m

to Sg2(z) via DAP. This is the final approximation of the vocal tract filter.
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8. Compute the final estimate of the glottal waveform as

Ĝk(z) = Sk(z)/(V̂ (z)R(z)).

The time-domain expression describing this final inverse filtering step is identical

to Equation 15.

5.4 Time-varying Inverse Filtering via the Fu-Murphy Al-

gorithm

Recent work on inverse filtering algorithms has focused on relaxing some of the as-

sumptions about the speech signal made by previous procedures in an effort to produce

better estimates of the glottal waveform. A representative of this research direction

is the algorithm by Fu and Murphy [44], which relaxes the assumption of a stationary

vocal tract by incorporating a time-varying vocal tract filter model into the inverse

filtering process. The use of the Fu-Murphy inverse filtering algorithm (FMIF) in

this study is based on an implementation of the algorithm described in [44] by the

author of this thesis, since it was not possible to obtain a copy of the original imple-

mentation. This section provides provides a functional description of the algorithm

implementation used in this study and explains any differences to the description in

the original paper when they arise.

The FMIF algorithm works pitch-synchronously and is based on a time-varying

model of the vocal tract. For a speech frame sk[n], the instants of glottal closure

(GCIs) (estimated by the DYPSA algorithm in this author’s implementation) are

used to segment each pitch period. For each pitch period sr[n], the algorithm begins

by finding an approximate estimate of the VTF and glottal waveform. While the

original paper by Fu and Murphy describe the use of pitch-synchronous LP-analysis

on pre-emphasized speech to obtain a preliminary (time-invariant) VTF estimate and

the least-squares fitting of a Rosenberg model to obtain an initial glottal waveform

estimate, the implementation used in this study simply uses the VTF V̂k(z) and
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glottal waveform estimate ĝ[n] obtained via IAIF for the entire frame as initial values

for the FMIF optimization.

The FMIF algorithm consists of a descent optimization procedure whereby the

residual of a time-varying autoregressive vocal tract filter that is estimated from the

speech signal using a Kalman filter is compared to a potential parametric estimate

of the glottal waveform. Given a segment of speech sr[n] representing a single pitch

period, the FMIF algorithm seeks to represent the sr[n] as follows:

sr[n] = g′[n]−

p
∑

i=1

ai[n]sr[n− i], (16)

where ai[n] are the time-varying coefficients of the autoregressive (all-pole) vocal

tract filter and g′[n] is the glottal waveform derivative, which is represented by the

Liljencrants-Fant (LF) model [41]. The objective function to be minimized is given

by

E(θ) =

∥

∥

∥

∥

∥

sr[n]− g′r[n] +

p
∑

i=1

ai[n]sr[n− i]

∥

∥

∥

∥

∥

2

, (17)

where θ represents the LF-model parameter vector that uniquely determines g′r[n]. An

optimal value of θ that minimizes E(θ) is found using the interior-trust-region descent

algorithm described in [26] and implemented by the fmincon function in MATLAB.

On every evaluation of the error function E(θ), the time-varying VTF coefficients are

obtained by the Kalman filtering procedure described in [44]. The final result is a set

of LF-model parameters for synthesizing g ′

r[n].
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CHAPTER VI

ACOUSTIC SPEECH FEATURES AND FEATURE

EXTRACTION

6.1 Spectral Envelope Features

A widespread approach for obtaining a useful set of features for speech analysis is

via feature extraction procedures inspired by human auditory perception. It has

been found that the goal of obtaining a compact representation of the speech signal

that retains information which is relevant to the analysis task at hand can be met,

at least in the case of speech recognition and speaker identification, by a spectral

magnitude envelope representation in a warped frequency domain that is consistent

with experimentally derived frequency resolution properties of the human auditory

system [49]. This section describes the spectral envelope features (SEFs) used in

this study: the quasi-ubiquitous [126, 94] mel-frequency cepstral coefficients (mfcc);

Perceptual linear prediction (plp), which includes additional processing steps to model

the amplitude dynamics of auditory perception, and a decorrelated mel-scale subband

feature set (melsub) that has been found to produce very high classification rates in

speaker identification [77] and speech recognition [84, 90].

The extraction of spectral envelope features (SEFs) typically begins with the

construction of a perceptually-spaced bank of band-pass filters. A common choice for

the spacing of these filters is based on the mel-scale, defined in [125] as

Mel(f) = 2595 log10(1 +
f

700
). (18)

The mel-scale is loosely based on perceptual experiments which have found that the

frequency-resolution of human hearing is higher at lower frequencies and decreases

logarithmically at higher frequencies. A mel-scale filter bank is constructed by equally

45



0 1000 2000 3000 4000 5000 6000 7000 8000

1

frequency (Hz)

F
26

F
25

F
24

F
23

F
22

F
21

F
20

F
19

F
18. . .

Figure 8: 26-channel mel-scale filter bank.

spaced B triangular filters along the mel-frequency axis. The bandwidth of the bth

filter Fb(ω) is such that it extends from the center frequency of Fb−1(ω) to the center

frequency of Fb+1(ω), as shown in Figure 8. Each filter is applied by weighting each

frequency bin in the input spectrum by the magnitude of Fb at that frequency. The

output of the filter bank is a signal Ψ[b] representing the spectral energy at each filter

bank channel b. For a givenM-point discrete spectrum Sk[m] (i.e. the DFT of speech

frame sk[n] after modulation by a Hamming window), Ψ is computed as follows:

Ψ[b] =
M−1
∑

m=0

|Sk[m]Fb(2πm/M)|2 . (19)

The filter bank energies Ψ[b] can be considered to be a low-dimensionality representa-

tion of the power spectrum designed to hide fine spectral structure while highlighting

broader spectral variations that way be perceptually relevant. The final SEF vector

is obtained through additional processing of Ψ[b] to further reduce dimensionality

and/or decorrelate the B channel outputs. In this study, spectral envelope features

were obtained using the HCopy program included with HTK version 3.4 [125].
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6.1.1 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients were originally devised by Davis and Mermelstein

[30] with the objectives of obtaining a compact representation of the speech signal that

suppressed non-phonetic information while enhancing aspects of the signal pertinent

to speech recognition. The mel-frequency cepstrum is computed by applying a discrete

cosine transform (DCT) to the log mel-scale filter bank energies Ψ[b]. It is defined in

[125] as

C[l] =

√

2

B

B
∑

b=1

log (Ψ[b]) cos (
π l

B
(b− 0.5)), (20)

where l denotes cepstral coefficient index. The purpose of transforming the filter

bank energies to cepstral coefficients is two-fold: First, the DCT, which is close to the

Karhunen-Loève transform, results in approximately decorrelated features. Second,

a property of the cepstrum is that the broad spectral variations are encoded by the

low-order coefficients, while the spectral details are represented by the higher-order

coefficients. Thus, by selecting the first L coefficients, where L < B, a smoother

representation of the spectral envelope can be obtained. For the purposes of this

study, values of L = 13 and B = 26 were used to compute mfcc SEFs. These are

fairly typical settings for a 16 kHz sampling rate. The resulting L-dimensional mfcc

vector includes the 0th cepstral coefficient.

6.1.2 Perceptual Linear Prediction

Perceptual linear prediction was introduced by Hermansky [61] as a compact represen-

tation of the speech spectrum that modeled the following psychoacoustic properties:

variable frequency resolution, variable loudness perception as a function of frequency,

and the power law relationship between intensity and loudness. While the original

implementation is based on the (similar) Bark scale, the HTK implementation of

plp feature extraction is based the same mel-frequency filter bank used for mfcc.

The mel-scale filter bank energies Ψ[b] are weighted by an equal-loudness curve and
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then compressed by taking the cubic root as a way to model the amplitude dynamics

of human hearing. From these modified filter-bank energies Ψ̂[b], further frequency

smoothing and dimensionality reduction is achieved by computing the coefficients

A[q] of a Qth-order all-pole model using the autocorrelation method of linear pre-

diction (LP). To obtain approximately decorrelated features, the LP coefficients are

transformed to cepstral coefficients by the recursion

C[q] = −A[q]−
1

q

q−1
∑

i=1

(q − i)A[i]C[q − i]. (21)

The LP order was set to Q = 12, and a 26-channel filter bank was used as with the

mfcc features.

6.1.3 Decorrelated Mel-Frequency Filter-Bank Energies

Although cepstral features such as mfcc and plp have a long usage history in speech

analysis, studies by Nadeu et al. [84] and Paliwal [90] have independently found that

if some simple post-processing is performed on the log filter-bank energies log(Ψ[b]),

these features can meet or even improve upon the performance of mfcc features on

speech recognition. These results have been recently validated in [77], where features

obtained following the approach of [84] were found to outperform mfcc features in

speaker identification. For the purposes of this study, the decorrelated mel-frequency

filter bank energy features (melsub) are computed following [77], where B = 21 filter-

bank channels were used to process 16 kHz speech. The melsub features

D[b] = log(Ψ[b])− log(Ψ[b− 1]) (22)

are obtained from Ψ[b] by taking a first-order difference across the channel index b.

This simple procedure was found in [84] to approximately decorrelate the resulting

feature set. A practical advantage of this feature set over cepstral coefficients is that

the D[b] coefficients have a clear physical interpretation. Each coefficient D[b] can

be regarded as a local spectral slope, whose bandwidth varies in a psychoacoustically
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correct way across frequency. The frequency-domain locality of the coefficients has

been exploited in [77] in a speaker ID application on noisy speech, where, in a given

speech frame, the noise may corrupt only some of the frequency channels. In this

study, a higher-resolution version of this feature set using a 41-channel filter bank

(melsub41) is also investigated.

6.2 Glottal Waveform Features

Various measures taken from the glottal waveform estimates obtained via inverse fil-

tering have been proposed as useful ways for objectively characterizing the pattern of

airflow across the glottis. Such measures may be obtained by one of three approaches:

(1) direct measurement of the time-domain glottal waveform, (2) direct measurement

of the waveform’s magnitude spectrum, or (3) fitting a parametric model. The ex-

act procedure for performing each measurement can vary by author, and there is no

strong consensus on the exact definition of some measurements. Nevertheless, glottal

waveform measures can be generally grouped according to the underlying aspect of

glottal behavior that they intend to quantify. This section describes existing glottal

feature categories and defines the feature set used in this study.

6.2.1 Salient Features of the Glottal Cycle

A primary feature of the glottal cycle is the duration of the time interval where the

vocal folds are open and air flows through the glottis, denoted as the open phase, in

relation to the duration of the closed phase, where airflow is generally cut off. The

“duty cycle” of the glottal waveform is measured by the open quotient (OQ), which

is defined as the ratio between the duration of the open phase to the duration of the

glottal cycle. A second salient time-domain feature is the asymmetry of the open

phase, which is usually quantified by the speed quotient (SQ), a ratio between

the duration of the opening phase and closing phase of the vocal folds. For non-

pathological, modal phonation, the vocal folds open more slowly than they close,
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resulting in an SQ value greater than one. The closing quotient (ClQ), defined

as the duration of the closing phase relative to the pitch period, may be used as an

alternative time-domain measure since it does not depend on estimating the instant

of glottal opening, which can be difficult to find when the glottal waveform estimate is

corrupted by formant ripple due to errors in inverse filtering. The return quotient

(Qa) measures the effective duration of the return phase, which starts at the point of

maximum closing (i.e. the glottal closure instant) and continues up to the point of

maximum glottal closure, where airflow through the glottis is minimal or non-existent.

One of the most perceptually salient glottal effects on the speech signal is the

introduction of a spectral roll-off in the frequency domain that is approximately linear

on a log-log scale over much of the frequency range. This effect is measured from the

glottal waveform spectrum by the spectral tilt (TILT ), which is defined as the slope

of spectral roll-off starting from the spectral peak (glottal formant), generally located

between f0 and 2f0 (i.e., between the first two harmonics). The harmonic richness

factor (HRF ) [21], defined by the spectral amplitude of the higher harmonics relative

to the amplitude of the first harmonic, is a closely related measure which was proposed

for its ability to characterize variations in the high-frequency portion of the spectrum

due to different phonation types.

Research efforts on glottal waveform parameterization have also sought to quantify

glottal behavior in a meaningful way by a single parameter. The harmonic level

difference (H1-H2) has been widely used to characterize phonation type and voice

quality [69, 55, 56, 108]. In [40], a regression analysis of vowels along a pressed-breathy

phonation continuum led to the proposal of the shape parameter (Rd), which is

closely related to the rate of glottal closure and was found to be effective as a single-

parameter descriptor of pressed or breathy voice quality on a set of Swedish vowels.

Interestingly, this parameter was found to have a near-perfect linear relationship to

H1-H2, and was later discovered in [35] to be closely related to a perceptual distance
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measure.

In the context of the present study, it is important to understand that the afore-

mentioned time-domain glottal measures have theoretically known frequency domain

correlates [40, 108, 59, 12, 36]. The analysis of synthetic glottal waveforms generated

by the Liljencrants-Fant (LF) model reveals that Qa controls the starting frequency

of an additional -6 dB/octave of spectral roll-off. This starting frequency is lower for a

longer return phase. Meanwhile, open and speed quotients were found to modify the

center frequency and bandwidth, respectively, of the spectral peak, which is located

at a lower center frequency for higher OQ and has a larger bandwidth for higher SQ.

Therefore, some amount of correlation is expected to exist between OQ (or SQ) and

H1-H2, as well as Qa with TILT and HRF . However, each of these related fea-

tures will also reflect the advantages and disadvantages of the measurement method

(time-domain, frequency-domain, or model fitting) through which they are obtained.

6.2.2 Measurement Methods

In what follows, the 16 glottal features used in this study are formally defined. This

feature set was chosen to include, where applicable, several variations of each fea-

ture type, obtained via different measurement methods. The reader is referred to

Figures 9 and 10 for illustration of the time instants, amplitude intervals, and pitch

harmonics described in the text.

6.2.2.1 Time-Domain Direct Waveform Measurement

Direct measurement time-domain features were computed using modified code from

the TKK Aparat toolbox [1]. The glottaltimeparams function was modified to use

glottal closure instant (GCI) estimates to segment individual pitch cycles from frame-

based glottal waveform estimates and to compute additional amplitude-threshold

based variations of OQ and SQ. Traditionally, the estimation of time-domain fea-

tures is based on the detection of critical time instants that are intended to denote
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the boundaries between distinct phases of the glottal cycle. To reduce quantization

errors in the detection of these time instants, which arise due to a finite sampling rate,

cubic-spline interpolation was used to refine the detected time instants to fractions of

a sample. Estimates of the glottal closure instants te had been previously obtained

using the DYPSA algorithm [70, 85] as implemented in the VOICEBOX toolbox [19].

For each glottal cycle k, the fundamental frequency f0,k = 1/T0,k, where T0,k =

te,k − te,k−1, was computed from the time difference between two adjacent GCI’s, and

the instant of maximum closure tc,k, which denotes the start of the closed phase,

was detected as the first zero crossing of the glottal waveform derivative g′[n] after

te,k. The time instant of maximum airflow tp,k, which denotes the boundary between

the opening and closing phases, was computed as the local maximum of the glottal

waveform g[n] in the interval between te,k−1 and te,k.

The point of minimum airflow tmin,k was computed by finding the local minimum

of g[n] in the interval between tc,k−1 and tp,k, and the instant of maximum opening

t∆max,k was found as the location of the maximum value of g′[n] between tmin,k and

tp,k. The amplitude of glottal airflow was then computed Aac,k = g[tp,k]− g[tmin,k].

To detect the instant of glottal opening, the glottal waveform derivative was first

scanned starting from tmin,k to find the point where it crossed a threshold of 10% above

g[tmin,k] relative to Aac,k, denoted as t10%,k. The primary opening instant to1,k was

then detected as the last positive zero crossing of g′[n] between tmin,k and t10%,k. Due

to ambiguities in the detection of the glottal opening instant in (noisy) inverse-filtered

glottal waveforms, a secondary opening instant to2,k, proposed in [92], was computed

as the local maximum of a smoothed version of the second glottal waveform derivative

g′′[n] in the interval between to1,k and tp,k.

From these time instants, Aparat computes the durations of the primary opening

phase Top1,k = tp,k − to1,k, secondary opening phase Top2,k = tp,k − to1,k, and closing

phase Tcl,k = tc,k − tp,k, which leads to the calculation of the primary and secondary
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speed quotients (SQ1, SQ2) and the closing quotient (ClQ), defined as follows:

SQ1 =
Top1
Tcl

(23)

SQ2 =
Top2
Tcl

(24)

ClQ =
Tcl
T0
. (25)

Because exact estimation of critical time instants via peak detection can be prob-

lematic when performed on noisy IF-derived glottal waveform estimates, measures

have been proposed based upon the measurement of time intervals between ampli-

tude threshold crossings. The threshold-based opening and closing instants were

computed from the 20%, 50%, and 80% positive and negative threshold crossings of

g[n], respectively, as shown in Figure 9. From these instants, variations of OQ and

SQ were computed as follows:

SQ20-80 =
to80 − to20
tc20 − tc80

(26)

OQ20 =
tc20 − to20

T0
(27)

OQ50 =
tc50 − to50

T0
(28)

OQ80 =
tc80 − to80

T0
. (29)

Another alternative to the exact detection of critical time instants has been to

construct features based on amplitude level ratios. In an effort to produce more robust

glottal features, the normalized amplitude quotient (NAQ) was introduced in
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[9] as a noise-resilient alternative to the closing quotient. Similarly, the amplitude-

based measure OQa was proposed in [47] as a robust alternative to the timing- or

threshold-based open quotient. These measures were computed in Aparat as follows:

NAQ =
Aac

T0A∆min

(30)

back

OQa = Aac

(

π

2A∆max

+
1

A∆min

)

f0 (31)

6.2.2.2 Liljencrants-Fant Model Fitting

Time-domain glottal features may also be obtained by least-squares fitting of a para-

metric model to a glottal waveform estimate. The simultaneous advantage and draw-

back of computing features by this method is that the fitted model will represent a

theoretically correct glottal cycle. Thus, model fitting may be helpful in obtaining

robust parameter estimates in the presence on noise in the speech signal and/or dis-

tortion in the glottal waveforms, but this may also result in less “useful” features due

to the fact that the parametric model is based on the properties of an ideal, simplified

glottal flow that may not fully represent the glottal variations present in real speech

signals.

The Liljencrats-Fant (LF) model [41] has been widely used to parameterize the

glottal waveform, and has been shown to be functionally equivalent to (and in some

cases a superset of) other popular parametric glottal flow models [36]. The LF model

represents the glottal waveform derivative g′lf(t) as follows:

g′lf(t) =











A0 e
αt sin(ωgt) 0 ≤ t < te

−A0

εta

[

eε(t−te) − e−ε(tc−te)
]

te ≤ t ≤ tc,
(32)

where 0 < t < tp and tp < t < te represent the opening and closing phases, re-

spectively, and te < t < tc represents the return phase, as shown in Figure 2. The
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synthesis parameters A0, α, wg, and ε are fully determined by the timing parameters

tp, te, ta, tc and A∆min, as discussed in [41]. The parameter ta is the projection of

g′′lf(te) onto the time axis, and controls the effective length of the return phase. For

simplicity tc can be set to T0, and the model-fitting procedure reduces to finding the

values of the four parameters tp, te, ta, and A∆min that minimize the mean squared

error

εt =

N0−1
∑

n=0

∣

∣g′[n]− g′lf(nTs)
∣

∣

2
, (33)

where Ts = 1/fs is the sampling period of the speech signal and N0 = ⌊T0 fs⌋ is the

length of the glottal cycle in samples.

A solution to this non-linear minimization problem was found via an interior

trust-region-reflective algorithm [26] as implemented by the lsqnonlin function in

the MATLAB Optimization Toolbox. The constraints of the minimization problem

can be simplified by transformation into a set of parameters with fixed bounds [36].

To this end, the timing parameters {tp, te, ta} were transformed into the following

set of equivalent parameters, which also form part of the glottal feature set:

OQLF =
te
T0

(34)

αm =
tp
te

(35)

Qa =
ta

T0 − te
, (36)

where OQLF , defined between 0 and 1, is the LF-derived open quotient. The asym-

metry coefficient (αm), defined between 0.65 and 1, is related to the LF-model

speed quotient by αm = SQLF/(1 + SQLF ). The return quotient Qa ranges from 0

to 1 and controls the effective length of the return phase.

LF-model fitting was then performed by finding values of {OQLF , αm, Qa A∆min}

that minimize εt, using the trust-region-reflective procedure. Initial values for the

optimization algorithm were given by the direct-measurement estimates of tp, te, and
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A∆min described in Section 6.2.2.1. The initial value of Qa was set to 0.1. Before

LF-fitting, g′[n] was up-sampled by a factor of four to allow for accurate estimation

of the parameters. Once the least-squares fit ĝ′lf(nTs) is found, the maximum airflow

Aac was measured as shown in Figure 9 from the LF waveform. The shape parameter

Rd was computed as follows:

Rd =
Aacf0

110A∆min

, (37)

An important concern with the extraction of glottal features from glottal wave-

forms that have been estimated by inverse filtering is that the waveforms are subject

to corruption due to phase distortion during the recording or transmission processes

[120]. While this is not expected to be a major issue with the database used for

this study, which was recorded with a high-quality microphone into digital media

(Section 4.6), it is nevertheless worthwhile to explore the use of estimation methods

that seek to circumvent the phase distortion problem. The LF-parameters may also be

derived by matching the LF waveform’s discrete magnitude spectrum to the discrete

magnitude spectrum of the glottal waveform estimate [40]. This was implemented

by replacing the objective function εt of Equation 33 with its magnitude spectrum

counterpart:

εf =

Mmax−1
∑

m=0

(|Gd[m]| − |Gdlf [m]|)2 , (38)

where Gd and Gdlf are the length N0 DFTs of g′[n]w[n] and g′lf [n]w[n] = g′lf(nTs)w[n],

respectively, and w[n] is an N0 point Hanning window. The frequency range of the

optimization was restricted to 0 – 4 kHz by setting Mmax = ⌊4000N0 Ts⌋. The

frequency-domain LF-fitting procedure was exactly the same as for the time domain,

except that εt was replaced by εf .

6.2.2.3 Direct Spectral Magnitude Measurement

Glottal features resilient to phase distortion may also be obtained directly from the

magnitude spectrum of g′lf [n]. Aparat uses the magnitude spectrum of the entire
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glottal waveform frame, as shown in Figure 10, and the magnitudes {H1, H2 ... HN}

of the pitch harmonics (in dB) to compute the harmonic level difference (H1-H2) and

the harmonic richness factor (HRF ) as follows:

H1-H2 = H1−H2 (39)

HRF =

∑

i>1Hi

H1
. (40)

It should be noted that, to prevent small errors in f0 estimation and natural cycle-to-

cycle f0 deviations from affecting the computation of these features, the harmonics are

not measured exactly at integer multiples of f0. Instead, the ith harmonic is defined

as the local maximum of the magnitude spectrum in the region f0 i ± f0/2 [1]. An

additional frequency-domain measure, the spectral tilt (TILT) was computed from

the magnitude spectrum on a log-log scale as the slope of the least-square line-fit in

the frequency region fmax – fs/2, where fmax is the location of the global maximum

of the magnitude spectrum and fs is the sampling rate. The TILT feature is given

in units of dB/decade.

6.3 Feature Extraction

As explained in Section 3.1.3, existing inverse filtering algorithms rely on an all-pole

representation of the vocal tract to estimate and remove its influence from the speech

signal in order to reveal an estimate of the glottal waveform. Furthermore, three of

the four inverse filtering algorithms being evaluated (Chapter 5) assume a stationary

vocal tract across the extent of a speech frame. The assumption of an all-pole,

locally time-invariant vocal tract is most optimally satisfied during the phonation

of stationary vowels, as the production models for the other phonetic classes may

introduce spectral zeros into the vocal tract model (nasals), add a noise source that

is modulated by the glottal waveform (voiced fricatives), involve a shorter duration

than that of a typical speech frame (plosives), or be characterized by a time-varying
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vocal tract with rapidly moving formants (diphthongs and semi-vowels)[93].

To construct an experimental setup amenable to inverse filtering, the majority of

the analyses presented in this study focus on stationary vowels. Separately analyzing

the speech for each stationary vowel contained in the corpus is problematic however,

as the amount of data contained in the corpus for each vowel varies widely due to

differences in the average length of phonation as well as differences in pronunciation

among individual speakers. With the dual goal of using phonemes with a high number

of observations while representing vocal tract spectral variations among vowels, three

stationary vowels were chosen for this study: /iy/ (beet), /ae/ (bat), and /ux/ (toot).

These three vowels form a triangle in the F1, F2 plane [95] (where Fn denotes the center

frequency of the nth formant), with /iy/ having a low F1 (≈ 270 Hz) and a high F2

(≈ 2290 Hz), /ae/ a high F1 (≈ 660 Hz) and a moderate F2 (≈ 1720 Hz), and /ux/

a low F1 (≈ 300 Hz) and a low F2 (≈ 870 Hz) [95].

Feature extraction proceeded as follows: The speech data in the TIMIT corpus

(Section 4.6) was divided into 25 ms frames with a frame step size of 10 ms. These

are common frame length and step size values used speech recognition and speaker

identification. Phonetic labels and time-alignment information were obtained from

the transcription included with the TIMIT corpus. Each frame was assigned a pho-

netic label if it was found to lie completely within the boundaries of a single phoneme.

Frames spanning two or more phonemes were discarded. The spectral envelope fea-

tures described in Section 6.1 were computed for each frame. Also for each frame,

the glottal waveform features given in Section 6.2 were estimated using each of the

inverse filtering methods described in Chapter 5 (a model order of pap = 16 was used

for all methods). Pitch information (f0,k) was obtained for each frame k using the

RAPT algorithm [109] implementation found in the Snack Sound Toolkit [102]. Glot-

tal closure instants (GCIs) were also estimated for each frame, independently of the

pitch estimates, using the DYPSA algorithm [85] as implemented in the VOICEBOX
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toolbox [19]. Frames for which the average distance between GCIs differed from 1/f0,k

beyond a 20% tolerance value were deemed inconsistent and discarded.

In order to measure time-domain glottal waveform features, it is necessary for the

speech frame to contain at least one complete, uninterrupted glottal cycle. Therefore,

before performing inverse filtering, it was sometimes necessary to dynamically expand

the frame size nwk according to the following criteria:

nwk =











3 / f0,k if f0,k < 120 Hz

25× 10−3 otherwise
(41)

where nwk is the length of the kth frame, in milliseconds, and f0,k is its pitch, in Hz.

The frames were expanded by adding an equal number of samples at the beginning

and end of the frame, so that the frame centers would remain aligned with the cen-

ters of the 25 ms frames used to compute the spectral envelope features. On frames

that contained two or more complete cycles, time-domain glottal feature values were

averaged across the cycles within the frame in order to maintain a one-to-one obser-

vation correspondence with the spectral envelope features (i.e. one observation per

frame). In the case of the FMIF glottal waveform estimation method, where the al-

gorithm’s output consisted of a vector of LF-model parameters for every pitch cycle,

direct-measurement time- and frequency-domain parameters were computed from the

synthesized LF-model waveforms.

6.3.1 Post-Processing

To facilitate the analysis of the extracted data, observations with extreme values were

discarded using an outlier removal procedure based on order statistics. For a set of

feature observations X = [x1 x2 ...xN ], where xi = [x1,i x2,i ... xM,i]
T represents a

single univariate (M = 1) or multivariate (M > 1) observation, a spread function

M(xi) = ‖xi − x̃‖ (42)
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Table 3: Minimum number of observations by dataset, phoneme, and gender.

Dataset
Male Speakers Female Speakers

/iy/ /ae/ /ux/ Total /iy/ /ae/ /ux/ Total
TRAIN1 21825 20977 7292 50094 11140 10528 3659 25327
TRAIN2 5663 5509 1766 12938 2944 2867 836 6647
TEST 9424 8689 2506 20619 6265 5160 1556 12981
Total: 36912 35175 11564 83651 20349 18555 6051 44955

was defined as the L2 distance from the median vector x̃ = [x̃1 x̃2 ... x̃M ]T . This func-

tion facilitated the detection of outliers on multivariate data, and was observed to

be particularly useful for variables with two-tailed distributions with a long tail and

a short tail. In this situation, the removal of observations in the top percentiles of

M resulted in a heavier trimming of the long tail. In addition, for the removal of

a small number of outliers, M was observed to behave well for single-tailed distri-

butions and two-tailed distributions with similar tail lengths. Outlier removal was

performed by removing observations above the 99th percentile of M, and was applied

separately to each glottal feature and each SEF vector for the observations of each

gender. Removed observations were tagged with a value of NaN , so that subsequent

experiments involving an arbitrary combination of features could easily select the ob-

servations where none of the variables specific to the experiment had NaN values.

Table 3 gives lower bounds on the number of available observations for each TIMIT

subset, phoneme, and gender by listing the number of observations for which no single

feature dimension contained an outlier.

6.4 Measurement Reliability of Glottal Waveform Features

Obtained via Inverse Filtering

Before attempting to perform further analysis on a glottal waveform feature, it is

prudent to first evaluate the feature’s measurement reliability, particularly given the

imprecise nature of inverse filtering. However, when only the acoustic speech signal
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is available, there is no source of “ground truth” with which to compare the feature

estimate, and an indirect assessment approach must be employed instead. Although

it is understood that the characteristics of the glottal cycle are not entirely stationary

even within small portions of a phoneme realization, it is also the case that indepen-

dent noise arising from the feature estimation process (e.g., inverse filtering errors,

model fitting errors) should, on average, result in increased distance between adjacent

measurements of a glottal feature. Therefore, if it is assumed that the structure of

the glottal cycle does not usually change abruptly during steady voicing, a measure of

similarity between the features obtained from adjacent speech frames can be indica-

tive of measurement reliability. This section describes the application of the above

approach as a way to measure and compare the reliability of features computed from

glottal waveform estimates obtained via inverse filtering.

For each IF method discussed in Chapter 5 and each glottal feature presented

in Section 6.2.2, pairs of observations from voicing regions which can be assumed

to be maximally “steady” were obtained from the TRAIN1 dataset by pairing a

feature estimate ui from the middle frame of each realization i of the three stationary

vowels {/iy/, /ae/, /ux/} with the feature estimate vi for the frame immediately

following . To quantify the variation between frame pairs, the correlation coefficient

rc(u, v) and the coefficient of determination rd(u, v) (Section 4.4) were computed,

where u = [u1 u2 .. uN ] and v = [v1 v2 ... vN ] are the feature observations obtained

from the center frames and the frames immediately following, respectively. Assuming

that the variances of u and v are equal, rd can be interpreted as a measure of the

mean-squared error (MSE) between adjacent estimates, expressed as a fraction of the

variance of u or v (Equation 8). A value of rd = 1 implies that the MSE is zero (u = v)

and values below zero indicate that the MSE between u and v is actually greater than

the variance of the feature’s distribution over the entire phoneme. The results for each

gender, phoneme, and inverse filtering method are given in Figures 11–14.
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The results show wide variability across features and IF methods, with correlation

coefficient values below 0.2 and above 0.9. Table 4 shows the mean rd values (across

the three phonemes) of the best-performing IF method for each feature. The females

show much higher overall values of rd than the males. This difference seems to be

mostly due to the more extreme lower-bound of rd found in the males, as both the

male and female speakers produced rd values of ≈ 0.76 for their “most reliable”

glottal feature. For the female speakers, the IAIF method consistently produced the

most reliable features almost without exception. For the males, the IF method with

the highest reliability varied with respect to the glottal feature, mostly alternating

between closed-phase inverse filtering (CPIF ) and IAIF .

The overall advantage of IAIF on female speakers is consistent with the char-

acteristics of female glottal cycles, which are more likely to contain an incomplete

closed glottal phase [69, 103, 62, 73] or one that is too short to fit an LP analysis

window, thus hindering the performance of the closed-phase inverse filtering method.

The global mean values of rd for males (0.149) and females (0.4250) illustrate how

error-prone glottal feature extraction via IF can be, as values of rd < 0.5 indicate that

the MSE between adjacent measurements is more than 0.5 times the overall variance

of the feature across the data. This assertion is further supported by the numerous

feature-IF method combinations for which rd < 0, as shown in Figures 13–14, and

by the excellent measurement reliability results for the pitch feature (f0), shown in

Table 5. The f0 feature, which obtained rc and rd values above 0.99 and 0.98, re-

spectively, can be regarded as an example of the high values that can be obtained by

the reliability measurement method under discussion for a glottal feature that can be

easily estimated directly from the speech signal with a known low error rate.
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Figure 11: Measurement reliability: correlation coefficient rc between observation
pairs from adjacent frames, direct measurement features. Male and female speakers,
stationary vowels /ae/, /iy/, /ux/.
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Figure 12: Measurement reliability: correlation coefficient rc between observation
pairs from adjacent frames, LF-model features. Male and female speakers, stationary
vowels /ae/, /iy/, /ux/. The sp subscript denotes frequency-domain LF model fitting
(Section 6.2.2.2).
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Figure 13: Measurement reliability: coefficient of determination rd between obser-
vation pairs from adjacent frames, direct measurement features. Male and female
speakers, stationary vowels /ae/, /iy/, /ux/.
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Figure 14: Measurement reliability: coefficient of determination rd between obser-
vation pairs from adjacent frames, LF-model features. Male and female speakers,
stationary vowels /ae/, /iy/, /ux/. The sp subscript denotes frequency-domain LF
model fitting (Section 6.2.2.2).
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Table 4: Inverse filtering methods with highest measurement reliability across
phonemes

Males Females
Feature Best Method r̄d Feature Best Method r̄d
HRF CPIF 0.755 OQa IAIF 0.769
OQa IAIF 0.554 NAQ IAIF 0.650
Rd CPIF 0.478 Rd IAIF 0.614
NAQ IAIF 0.460 OQ80 IAIF 0.561
OQLF CPIF 0.249 OQLF IAIF 0.550
H1-H2 IAIF 0.207 SQ20-80 IAIF 0.486
OQ80 CPIF 0.178 OQ50 IAIF 0.453
αm CPIFsp 0.164 Qa IAIF 0.436
Qa IAIFsp 0.067 HRF IAIF 0.393
ClQ IAIF 0.050 ClQ IAIF 0.377
SQ1 CPIF -0.003 H1-H2 IAIF 0.335
SQ2 CPIF -0.027 OQ20 IAIF 0.277
TILT IAIF -0.061 TILT IAIF 0.268
OQ20 IAIF -0.177 SQ2 IAIF 0.242
SQ20-80 CPIF -0.220 SQ1 IAIF 0.237
OQ50 CPIF -0.289 αm IAIFsp 0.120
Mean: 0.1490 Mean: 0.4230

Table 5: Measurement reliability for pitch (f0) estimates obtained via the RAPT
algorithm. Male and female speakers, stationary vowels /ae/, /iy/, /ux/.

Males Females
/iy/ /ae/ /ux/ /iy/ /ae/ /ux/

rc 0.992 0.994 0.988 0.991 0.993 0.992
rd 0.983 0.987 0.975 0.982 0.985 0.982
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6.4.1 Glottal Waveform Feature Statistics

The mean and standard deviations for each glottal waveform feature, after outlier

removal, are given in Table 6 for each gender and phoneme. Each feature was obtained

using the IF method showing the highest measurement reliability, as listed in Table 4.

Most features show gender differences that are in general agreement with known

properties of the glottal source for male and female speakers. Apart from the obviously

higher mean pitch for female speakers, which is accompanied by a higher standard

deviation due to the logarithmic scale of pitch perception, female speakers obtained

higher values of the open quotient, which is consistent with the known existence of

incomplete closed phases of female speakers [103, 62, 73].

The higher open quotient of female speakers was accompanied by lower values of

H1-H2, which is contrary to the expected decrease in the center frequency of the glot-

tal formant due to the higher OQ, and to previous findings of higher H1-H2 values

for female speakers [69, 56]. It should be noted, however, that those studies involved

speech material where sustained vowels had been deliberately prompted, so that the

difference in results may be due to the increased diversity of text materials and speak-

ers in the larger TIMIT database. This possibility is supported by the relatively large

intra-gender variation for the H1-H2 feature (approx. 7–8 dB standard deviation),

which is about the same as the average difference between gender means (7.12 dB).

In addition, even in the theoretical LF-model of the glottal waveform, H1-H2 has

been shown to be jointly related not only to the open quotient but also to the speed

and return quotients [40, 36].

Incomplete glottal closure in females speakers is also consistent with the observed

increases in the return quotient (Qa), closing quotient (ClQ) and normalized ampli-

tude quotient (NAQ), which are all indicative of slower and more gradual vocal fold

adduction. An interesting result was the decrease in spectral tilt (less negative values

indicate a decreased spectral slope) for female speakers, which is inconsistent with
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Table 6: Mean value and standard deviation (shown in parentheses) for each glottal
feature, computed on the TRAIN1 dataset from glottal waveforms obtained via the
IF methods in Table 4.

/iy/ /ae/ /ux/
f0 Males 122 (25) 118 (24) 125 (25)
(Hz) Females 212 (44) 197 (45) 208 (42)
OQLF Males 0.383 (0.11) 0.356 (0.090) 0.373 (0.11)

Females 0.461 (0.14) 0.374 (0.11) 0.464 (0.15)
αm Males 0.809 (0.020) 0.810 (0.018) 0.810 (0.019)

Females 0.828 (0.017) 0.825 (0.015) 0.826 (0.017)
Qa Males 0.0401 (0.052) 0.0232 (0.026) 0.0363 (0.045)

Females 0.0923 (0.080) 0.0961 (0.075) 0.0860 (0.067)
Rd Males 0.466 (0.20) 0.430 (0.18) 0.475 (0.19)

Females 1.64 (0.65) 1.29 (0.56) 1.66 (0.65)
NAQ Males 0.0665 (0.030) 0.0582 (0.025) 0.0722 (0.030)

Females 0.159 (0.068) 0.123 (0.056) 0.168 (0.070)
ClQ Males 0.170 (0.097) 0.145 (0.075) 0.183 (0.083)

Females 0.340 (0.14) 0.269 (0.12) 0.356 (0.14)
OQa Males 0.250 (0.066) 0.223 (0.058) 0.271 (0.066)

Females 0.398 (0.12) 0.320 (0.097) 0.403 (0.12)
SQ1 Males 3.28 (1.9) 2.81 (1.4) 3.33 (2.0)

Females 1.36 (0.73) 1.36 (0.60) 1.26 (0.64)
SQ2 Males 1.79 (1.1) 1.49 (0.83) 1.88 (1.2)

Females 0.690 (0.48) 0.733 (0.41) 0.628 (0.43)
SQ20-80 Males 0.469 (0.51) 0.392 (0.32) 0.465 (0.52)

Females 0.795 (0.69) 0.512 (0.47) 0.784 (0.65)
OQ80 Males 0.0753 (0.043) 0.0695 (0.033) 0.0750 (0.045)

Females 0.106 (0.055) 0.0817 (0.037) 0.111 (0.062)
OQ50 Males 0.202 (0.12) 0.171 (0.082) 0.205 (0.13)

Females 0.273 (0.10) 0.205 (0.074) 0.275 (0.10)
OQ20 Males 0.652 (0.19) 0.666 (0.19) 0.637 (0.17)

Females 0.562 (0.17) 0.549 (0.18) 0.554 (0.17)
H1-H2 Males 1.89 (8.5) 3.13 (8.0) 1.44 (8.2)
(dB) Females -4.56 (7.3) -5.53 (7.8) -4.82 (7.2)
HRF Males 9.81 (6.7) 8.09 (5.9) 10.8 (6.4)

Females 29.7 (7.3) 29.3 (8.4) 28.9 (7.2)
TILT Males -29.0 (4.2) -29.3 (4.2) -29.2 (4.1)
(dB/dec) Females -21.7 (4.7) -21.9 (4.7) -22.5 (4.3)
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the results in [69], where a more abducted glottal configuration is shown to be related

to an increase in spectral roll-off. A possible cause for this result is the aspiration

noise that is associated with incomplete glottal closure, which raises the noise floor of

the glottal spectrum, thus potentially decreasing the measurement of spectral slope if

this measurement includes a frequency interval where the aspiration noise is higher in

amplitude than the pitch harmonics. Such an interval is likely included in the TILT

feature, as it goes all the way to the Nyquist frequency (8 kHz), where little harmonic

energy is expected. Aspiration noise, in combination with more closely-spaced har-

monics due to higher pitch, also explain the much higher value of HRF for female

speakers.

For most glottal features, between-phoneme variation was much lower than within-

phoneme standard deviation, suggesting that these features are largely unaffected

by inter-phoneme differences in vocal tract configuration. Other features, however,

showed noticeably lower values for /ae/ than for the other vowels. These included

Qa (males only); OQa, NAQ, ClQ (both genders); OQ20 and SQ20-80 (females only).

The inter-phoneme differences, which may be due to how the high first-formant of

the /ae/ vowel affects the inverse filtering process and the resulting glottal waveform

(/iy/ and /ux/ tend to have a similarly low first-formant), highlight the importance of

considering multiple methods (e.g., time-domain v.s. frequency-domain, threshold-

based v.s. amplitude-based) for measuring the same underlying properties of the

glottal source.

Since the 16 glottal features chosen for this study span several ways to measure

a smaller set of salient properties of the glottal waveform, the Spearman rank cor-

relation coefficient rr between features was computed for male and female speakers

(Tables 7 and 8) to detect pairwise linear and non-linear monotonic relationships.

Some interesting and unexpected results are worth mentioning. It should first be

emphasized, however, that the absence of a strong rank correlation between a pair of

72



features does not necessarily indicate that the features are independent or unrelated.

Such a result could arise from a more complicated non-linear relationship, or due to

a multivariate relationship where the first feature in the pair jointly depends on a

group of features that includes second feature.

For male speakers, the highest correlation coefficient was between NAQ and ClQ

(0.78), showing that the normalized amplitude quotient did indeed approximate the

closing quotient, as intended. Interestingly, OQa was moderately correlated with

NAQ and ClQ (0.58 and 0.51, respectively), but not strongly correlated with any

other measure of open quotient, suggesting that this feature may be measuring some-

thing other than open quotient. Similarly, SQ20-80 was strongly correlated with OQLF

(0.68) but not with any measure of speed quotient, while OQLF did not appear to

be strongly correlated to any other OQ measure. The OQ20 feature was not strongly

correlated with any other feature, indicating that the 20% amplitude threshold may

not be a useful method for measuring open quotient. Two of the threshold-based

open quotients (OQ80 and OQ50) did show an expected correlation (0.62), as did the

primary and secondary speed quotients SQ1 and SQ2 (0.64). The harmonic richness

factor (HRF ) showed some correlation with spectral tilt (0.51) and a strong corre-

lation to f0 (0.76). Both of these relationships are expected due to the definition of

HRF .

Spectral tilt appeared to be uncorrelated with the return phase quotient Qa (0.03),

which would contradict theoretical results on the spectra of the LF model [40, 36].

This may be due to the extended frequency range over which TILT was computed,

which may be causing this feature to be primarily a measure of aspiration noise. An-

other result that contradicts the analysis of LF waveforms and their spectra is the

near zero correlation between Rd and H1-H2 (0.08), as these features were shown

to be linearly related in [40]. In general, apart from the correlation between Rd and
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f0, LF-model features did not show much correlation with any other feature, suggest-

ing that the direct-measurement and LF-model fitting methods of glottal waveform

measurement may yield a fundamentally different set of features.

The pairwise feature correlations for female speakers were generally higher than for

males, but followed a similar pattern. Notable exceptions were a decreased correlation

between HRF and f0, as well as a strong correlation between OQa and OQLF . The

amplitude-based open quotient (OQa) obtained moderate to strong correlation with

SQ20-80 and the open quotients OQ80 and OQ50 (0.63, 0.68, and 0.69, respectively).

This is in addition to the strong correlation with the closing quotient measures ClQ

andNAQ. Unlike the case of male speakers, ClQ showed a strong negative correlation

to the primary and secondary speed quotients (-0.74, and -0.66, respectively), while

Rd appeared to be correlated to NAQ, ClQ, and OQa. From these results, it appears

that OQa is behaving as a function of both open and closing quotients, while Rd holds

a close relationship to the closing quotient that it did not hold for the male speakers.

In addition, the negative correlation between ClQ and the speed quotients suggests

that for female speakers, variations in the asymmetry of the open glottal phase may

be primarily due to a change in the length of the closing phase, with the length of

the opening phase remaining relatively unchanged.
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Table 7: Spearman rank correlation coefficient rr between pairs of glottal features, averaged across phonemes. Computed on
the TRAIN1 dataset from glottal waveforms obtained via the IF methods in Table 4. Male speakers.

f0 OQLF αm Qa Rd NAQ ClQ OQa SQ1 SQ2 SQ
20-80 OQ80 OQ50 OQ20 H1-H2 HRF TILT

f0 1.00 -.04 .12 .25 .62 .4 .31 .28 -.37 -.27 .01 .15 .12 -.15 .1 .76 .46
OQLF -.04 1.00 -.18 .03 .37 .15 .13 .32 .36 .05 .68 .3 .39 -.04 .05 -.24 -.04

αm .12 -.18 1.00 .25 -.01 .23 .17 -.06 -.37 -.38 -.34 -.04 -.21 0 -.05 .21 0
Qa .25 .03 .25 1.00 .26 .36 .27 .19 -.3 -.23 -.03 .21 .13 -.06 0 .14 .03
Rd .62 .37 -.01 .26 1.00 .45 .37 .39 -.27 -.23 .23 .37 .42 -.09 .08 .33 .27

NAQ .4 .15 .23 .36 .45 1.00 .78 .58 -.38 -.32 .11 .22 .2 -.19 .04 .21 -.02
ClQ .31 .13 .17 .27 .37 .78 1.00 .51 -.33 -.3 .07 .23 .17 -.16 .03 .15 -.03
OQa .28 .32 -.06 .19 .39 .58 .51 1.00 -.12 .04 .32 .42 .4 -.13 .05 .01 -.04
SQ1 -.37 .36 -.37 -.3 -.27 -.38 -.33 -.12 1.00 .64 .33 -.22 -.01 .04 -.03 -.2 -.11
SQ2 -.27 .05 -.38 -.23 -.23 -.32 -.3 .04 .64 1.00 .12 .03 .19 .11 .01 -.2 -.1

SQ20-80 .01 .68 -.34 -.03 .23 .11 .07 .32 .33 .12 1.00 .18 .36 -.14 .08 -.2 0
OQ80 .15 .3 -.04 .21 .37 .22 .23 .42 -.22 .03 .18 1.00 .62 .13 .08 -.17 -.04
OQ50 .12 .39 -.21 .13 .42 .2 .17 .4 -.01 .19 .36 .62 1.00 .11 .07 -.13 .01
OQ20 -.15 -.04 0 -.06 -.09 -.19 -.16 -.13 .04 .11 -.14 .13 .11 1.00 -.02 -.13 -.07

H1-H2 .1 .05 -.05 0 .08 .04 .03 .05 -.03 .01 .08 .08 .07 -.02 1.00 -.04 -.03
HRF .76 -.24 .21 .14 .33 .21 .15 .01 -.2 -.2 -.2 -.17 -.13 -.13 -.04 1.00 .51
TILT .46 -.04 0 .03 .27 -.02 -.03 -.04 -.11 -.1 0 -.04 .01 -.07 -.03 .51 1.00
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Table 8: Spearman rank correlation coefficient rr between pairs of glottal features, averaged across phonemes. Computed on
the TRAIN1 dataset from glottal waveforms obtained via the IF methods in Table 4. Female speakers.

f0 OQLF αm Qa Rd NAQ ClQ OQa SQ1 SQ2 SQ
20-80 OQ80 OQ50 OQ20 H1-H2 HRF TILT

f0 1.00 .38 .12 .4 .59 .48 .43 .49 -.19 -.25 .33 .4 .49 .11 .5 .51 .54
OQLF .38 1.00 .11 .27 .36 .44 .35 .65 .23 -.17 .71 .6 .56 .26 .15 .07 .05

αm .12 .11 1.00 .19 .07 .07 .04 .14 .02 .06 .05 .15 .11 .01 .02 .1 .04
Qa .4 .27 .19 1.00 .35 .39 .32 .47 -.17 -.09 .28 .45 .4 0 .17 .14 .12
Rd .59 .36 .07 .35 1.00 .77 .68 .69 -.5 -.49 .38 .43 .58 -.12 .25 .22 .19

NAQ .48 .44 .07 .39 .77 1.00 .82 .76 -.56 -.57 .36 .56 .62 -.01 .18 .12 .05
ClQ .43 .35 .04 .32 .68 .82 1.00 .64 -.74 -.66 .28 .44 .53 -.03 .17 .1 .07
OQa .49 .65 .14 .47 .69 .76 .64 1.00 -.27 -.25 .63 .68 .69 .04 .18 .13 .04
SQ1 -.19 .23 .02 -.17 -.5 -.56 -.74 -.27 1.00 .64 .15 -.11 -.18 .25 -.04 -.07 -.03
SQ2 -.25 -.17 .06 -.09 -.49 -.57 -.66 -.25 .64 1.00 -.12 -.1 -.15 .16 -.08 -.11 -.09

SQ20-80 .33 .71 .05 .28 .38 .36 .28 .63 .15 -.12 1.00 .49 .44 .01 .13 .05 .04
OQ80 .4 .6 .15 .45 .43 .56 .44 .68 -.11 -.1 .49 1.00 .78 .2 .15 .05 -.01
OQ50 .49 .56 .11 .4 .58 .62 .53 .69 -.18 -.15 .44 .78 1.00 .23 .22 .07 .06
OQ20 .11 .26 .01 0 -.12 -.01 -.03 .04 .25 .16 .01 .2 .23 1.00 .11 .02 .04

H1-H2 .5 .15 .02 .17 .25 .18 .17 .18 -.04 -.08 .13 .15 .22 .11 1.00 .02 .29
HRF .51 .07 .1 .14 .22 .12 .1 .13 -.07 -.11 .05 .05 .07 .02 .02 1.00 .68
TILT .54 .05 .04 .12 .19 .05 .07 .04 -.03 -.09 .04 -.01 .06 .04 .29 .68 1.00
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CHAPTER VII

TRANSFORMATION OF SPECTRAL ENVELOPE

FEATURES INTO GLOTTAL WAVEFORM FEATURES

The proposed method of glottal feature extraction is motivated by the limitations

associated with existing inverse filtering methods and by the fact that in many appli-

cations it is the features of the glottal waveform, and not the exact waveform itself,

that are of interest. Given that the exact shape or spectrum of the glottal waveform is

difficult to separate from the vocal tract resonances of the acoustic speech signal, this

chapter explores the possibility of obtaining, by learning statistical transformations of

the spectral envelope, equally useful and/or more robust glottal features than those

obtainable through inverse filtering. To this end, each of the four spectral envelope

feature vectors (SEFs) described in Section 6.1 were augmented with each of the in-

verse filtering (IF) glottal waveform features listed in Section 6.2 and used to train

Gaussian mixture models (GMMs) to learn their joint probability density functions

(PDFs), as described in Section 4.2. These GMMs were then used to estimate, from

a separate set of observations, the glottal waveform features using only the SEFs as

input, according to Equation 5.

The success of each model in transforming SEFs into glottal features via Gaussian

mixture regression (GMR) was evaluated in three ways: First, the correlation coef-

ficient rc and coefficient of determination rd between the GMR and inverse filtering

features were used to quantify how closely the GMM regression can match the fea-

tures that it was trained to reproduce. These measures were then used to select the

most useful SEF for glottal feature estimation (Section 7.1) and to determine whether

the use of pitch information (f0) in addition to SEFs significantly improved the GMR
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feature estimates (Section 7.2). Next, in Section 7.3, the correlation coefficient and

coefficient of determination between adjacent observations were used to quantify the

measurement reliability of the GMR glottal features, allowing for direct comparison to

the reliability results for IF glottal features. Finally, the merits of GMR and IF glot-

tal features in a speech analysis application were evaluated and compared through a

series of pairwise speaker identification experiments (Section 7.5) using single glottal

features, a combination of glottal features, and SEFs combined with glottal features.

7.1 Evaluation of Spectral Envelope Feature Vectors for

Glottal Feature Estimation

As stated in Section 6.1, Spectral envelope features were designed to discard spectral

details in order to produce a lower-dimensional representation of speech that cap-

tures the important broad attributes of the magnitude spectrum. Commonly, what

is defined as “important” is the set of formants and anti-formants that carry much

of the phonetic information. The intention is then to minimize the contribution of

other sources of variability in the speech spectrum, which include fundamental fre-

quency and shape of the glottal waveform. However, changes in the glottal waveform

obviously affect its spectrum, and it has been shown, at least in the case of synthetic

glottal waveform signals, that changes in glottal time-domain features affect the glot-

tal waveform spectrum in a broad manner, by altering the location and width of a

wide formant and the spectral roll-off at high frequencies [40, 12, 36]. These changes

to the glottal spectral envelope will inevitably affect the spectral envelope of speech

as well, and this is part of the reason why the glottal source plays an important per-

ceptual role in voice quality [48] and voice identity [22, 68, 67]. However, different

SEFs are computed through varying amounts of preprocessing and may operate of

somewhat different perceptual frequency scales. As such, the extent to which glottal

information will manifest itself on a particular SEF set is likely to vary among them.

This section describes a procedure designed to measure this variability in order to
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find, among the SEFs described in Section 6.1, the one that is most adequate for

estimating glottal waveform features via GMM-regression.

7.1.1 Training Procedure

The observations of SEFs xi,m and glottal features yj,m, where m is the frame index,

i ∈ {mfcc, plp, melsub, melsub41} denotes the spectral feature vector, and

j ∈











OQlf , αm, Qa, Rd, NAQ, ClQ, OQa, SQ1, SQ2,

SQ2080, OQ80, OQ50, OQ20, H1-H2, HRF, TILT











indicates a particular glottal waveform feature, were obtained from the TRAIN1

dataset (Section 4.6). Each SEF vector was augmented with a glottal feature, pro-

ducing the vectors

wi,j,m =
[

xT
i,m yj,m

]T
.

For each phoneme phn ∈ {/iy/, /ae/, /ux/} and gender g ∈ {male, female}, GMM

representations fi,j of the distributions wi,j were trained via the EM algorithm, as

described in Section 4.2. The IF method was chosen separately for each glottal fea-

ture and for each gender as the one with the highest average measurement reliabil-

ity across all phn, as shown in Table 4. The stopping criterion for the EM algo-

rithm consisted of a threshold tEM on the improvement of the log-likelihood function

1
M

∑M

m=1 log(fi,j(wi,j,m)) over consecutive iterations. Training stopped when tEM was

less than 1×10−4. To minimize the effect of convergence to global minima, three train-

ing sessions were performed per GMM, and the one with the highest final likelihood

was kept. Separate GMMs were trained using 2, 4, 8, and 16 Gaussian components, as

larger models would have required more than the limited number of frames available

for single phonemes (Table 3).

7.1.2 Evaluation

Testing was carried out on the TRAIN2 subset of TIMIT, which contains a set of

speakers independent from those in the TRAIN1 subset (Section 4.6). For each frame
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k of the testing data, the glottal features were estimated from the SEFs as

ŷj,k = Ffi,j(xi,k),

where Ff(x) is the GMM regression (GMR) function defined by Equation 5. The ac-

curacy of the GMM regression procedure was measured by computing the correlation

coefficient rc(yj, ŷj) and the coefficient of determination rd(yj, ŷj) between the glottal

features obtained via IF and those obtained via GMR.

The correlation coefficient rc quantifies the degree to which yj and ŷj approximate

each other, up to an arbitrary scale and shift operation. The interpretation of rd

in this context is as a measure of the mean-squared error (MSE) between ŷj and

yj, expressed as a fraction of the variance in the IF-derived feature observations yj

(Equation 8). A value of rd(yj, ŷj) = 0 represents what would be obtained using a

0th order estimator ŷj,k = 1
K

∑K

m=1 yj,k, which does not depend on xj,k and simply

outputs the mean value of the glottal waveform feature over the training data.

7.1.3 Results

The resulting values of rc and rd for each combination of SEF and glottal feature

are given in Appendix A.1, while rc and rd averages across all glottal features are

listed by SEF in Tables 9 and 10, and by number of GMM components (Nr) in

Tables 11 and 12. From Table 10, it can be seen that the use of melsub features

consistently results in GMR features that more closely match their IF counterparts

when compared to mfcc or plp SEFs. The increase in spectral resolution afforded by

the 41-subband melsub41 SEF vector results in an additional increase in rd, particu-

larly for males. A possible explanation for this gender-specific result is that for the

lower-pitched male speakers, the glottal waveform harmonics are more closely spaced

than for the female speakers, thus requiring somewhat finer spectral resolution to be-

come individually identifiable. When compared across phonemes, average rd values

are consistently lower for /ux/ than for /iy/ and /ae/, which is most likely due to
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the lower number of training observations available for this vowel (Table 3).

From Table 12, it can be seen that the use of 4-component GMMs results in the

highest mean rd for both genders. The results again suggest a limitation due to the

finite number of observations (Table 3), with /ux/ favoring smaller GMMs more so

than /iy/ and /ae/. While the results in Table 11 do show additional improvement

of rc for 8-component GMMs, the rd measure is preferred for the selection of an

appropriate model size Nr, since this measure is affected not only by the linear rela-

tionship between the estimated and target values but also by bias and scale differences

(Section 4.4).

Tables 13 and 14 list the average correlation coefficient and coefficient of deter-

mination, respectively, for each feature, obtained using 4-component GMMs trained

on melsub41 features. From these tables it is evident that the accuracy of GMM

glottal feature estimation varied widely with respect to the specific glottal feature.

The average correlation coefficient was as high as 0.855 (HRF , males) and as low

as 0.108 (SQ2, females). Two features for each gender obtained average values of

r̄c > 0.70 and r̄d > 0.49 (Rd, and HRF for males; HRF , and H1-H2 for females).

As a baseline for comparison, the correlation and determination coefficients between

pitch estimates obtained directly from the speech signal via (RAPT) and those esti-

mates from the melsub41 SEF via GMR are given in Table 15. The obtained values

for pitch were substantially higher, with correlation coefficients well above .80 and as

high as 0.93. This result is consistent with a recent study that has shown success in

estimating pitch from MFCCs [76].

Three male features (SQ2, SQ20−80, OQ20) and four female features (αm, SQ1,

SQ2, OQ20) obtained values of rd near or below zero for every phoneme, which could

suggest that for these features GMM regression performed no better than a simple

estimator that always outputs the mean value of the feature over the training data.

However, these features show a correlation coefficient as high as 0.435 in Table 13,
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Table 9: Mean correlation coefficient rc between IF and GMR glottal features, by
spectral envelope feature set.

Males Females
Feature Set: /iy/ /ae/ /ux/ Mean: /iy/ /ae/ /ux/ Mean:
melsub41 0.512 0.560 0.482 0.518 0.513 0.550 0.435 0.499
melsub 0.409 0.470 0.344 0.407 0.484 0.477 0.399 0.453
mfcc 0.379 0.434 0.318 0.377 0.361 0.364 0.265 0.330
plp 0.284 0.358 0.217 0.286 0.315 0.293 0.200 0.269

Mean: 0.396 0.455 0.340 0.397 0.418 0.421 0.324 0.388

Table 10: Mean coefficient of determination rd between IF and GMR glottal features,
by spectral envelope feature set.

Males Females
Feature Set: /iy/ /ae/ /ux/ Mean: /iy/ /ae/ /ux/ Mean:
melsub41 0.273 0.321 0.235 0.276 0.281 0.316 0.150 0.249
melsub 0.161 0.222 0.094 0.159 0.242 0.227 0.120 0.196
mfcc 0.143 0.194 0.079 0.138 0.116 0.114 -0.008 0.074
plp 0.071 0.126 0.009 0.069 0.084 0.047 -0.051 0.026

Mean: 0.162 0.216 0.104 0.161 0.181 0.176 0.052 0.136

indicating some amount of linear relationship between the IF and GMR estimates.

Therefore, it is most likely that the negative rd values are indicative of differences in

offset or scale between the IF and GMR estimates of these features.

Finally, it should be noted that perfectly estimating the IF glottal features should

not necessarily be the goal of the proposed estimation method, as the IF features

themselves can be very noisy. In fact, comparison between Table 14 and Table 4

reveals some agreement between the measurement reliability of the IF features and

how closely the GMR method is able to estimate them from the spectral envelope of

speech.
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Table 11: Mean correlation coefficient rc between IF and GMR glottal features, by
number of GMM components (Nr).

Males Females
Nr /iy/ /ae/ /ux/ Mean: /iy/ /ae/ /ux/ Mean:
2 0.375 0.444 0.343 0.387 0.390 0.417 0.328 0.378
4 0.397 0.456 0.355 0.403 0.423 0.422 0.336 0.394
8 0.408 0.463 0.342 0.404 0.436 0.429 0.325 0.397
16 0.404 0.459 0.321 0.395 0.424 0.418 0.309 0.384

Mean: 0.396 0.455 0.340 0.397 0.418 0.421 0.324 0.388

Table 12: Mean coefficient of determination rd between IF and GMR glottal features,
by number of GMM components (Nr).

Males Females
Nr /iy/ /ae/ /ux/ Mean: /iy/ /ae/ /ux/ Mean:
2 0.147 0.208 0.125 0.160 0.163 0.187 0.092 0.147
4 0.165 0.219 0.128 0.171 0.191 0.185 0.085 0.153
8 0.172 0.223 0.101 0.165 0.198 0.183 0.051 0.144
16 0.163 0.213 0.061 0.146 0.170 0.150 -0.018 0.101

Mean: 0.162 0.216 0.104 0.161 0.181 0.176 0.052 0.136
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Table 13: Correlation coefficient rc between IF and GMR glottal features for
melsub41 spectral envelope feature vector and 4-component GMMs.

Males Females
Feature: /iy/ /ae/ /ux/ Mean: /iy/ /ae/ /ux/ Mean:
OQLF 0.526 0.639 0.470 0.545 0.559 0.530 0.470 0.520
αm 0.485 0.507 0.381 0.458 0.175 0.359 0.151 0.228
Qa 0.466 0.510 0.430 0.468 0.398 0.568 0.443 0.470
Rd 0.736 0.747 0.697 0.726 0.699 0.675 0.487 0.620
NAQ 0.631 0.603 0.609 0.614 0.602 0.593 0.481 0.559
ClQ 0.453 0.518 0.448 0.473 0.510 0.482 0.332 0.441
OQa 0.657 0.692 0.622 0.657 0.699 0.729 0.670 0.699
SQ1 0.454 0.518 0.391 0.454 0.304 0.292 0.202 0.266
SQ2 0.408 0.393 0.339 0.380 0.280 0.261 0.108 0.216

SQ20-80 0.347 0.380 0.214 0.314 0.509 0.465 0.331 0.435
OQ80 0.509 0.675 0.336 0.507 0.571 0.644 0.428 0.547
OQ50 0.413 0.570 0.267 0.417 0.629 0.682 0.478 0.597
OQ20 0.233 0.247 0.213 0.231 0.099 0.120 0.125 0.114
H1-H2 0.632 0.626 0.618 0.625 0.786 0.755 0.699 0.747
HRF 0.856 0.874 0.836 0.855 0.749 0.794 0.664 0.736
TILT 0.587 0.566 0.514 0.556 0.733 0.774 0.627 0.711
Mean: 0.524 0.567 0.462 0.518 0.519 0.545 0.418 0.494
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Table 14: Coefficient of determination rd between IF and GMR glottal features for
melsub41 spectral envelope feature vector and 4-component GMMs.

Males Females
Feature: /iy/ /ae/ /ux/ Mean: /iy/ /ae/ /ux/ Mean:
OQLF 0.265 0.399 0.179 0.281 0.294 0.240 0.160 0.231
αm 0.232 0.245 0.117 0.198 -0.020 0.108 -0.170 -0.027
Qa 0.205 0.249 0.159 0.204 0.095 0.313 0.023 0.144
Rd 0.540 0.546 0.471 0.519 0.487 0.441 0.145 0.358
NAQ 0.391 0.355 0.340 0.362 0.350 0.335 0.118 0.268
ClQ 0.160 0.243 0.163 0.189 0.253 0.216 -0.029 0.147
OQa 0.431 0.478 0.345 0.418 0.482 0.511 0.420 0.471
SQ1 0.200 0.260 0.108 0.189 0.038 -0.004 -0.217 -0.061
SQ2 0.159 0.119 0.072 0.117 0.014 -0.036 -0.290 -0.104

SQ20-80 0.050 0.003 -0.078 -0.008 0.182 0.099 0.005 0.096
OQ80 0.240 0.444 0.028 0.237 0.314 0.357 0.096 0.256
OQ50 0.148 0.310 -0.019 0.146 0.388 0.450 0.118 0.319
OQ20 0.034 0.033 0.000 0.022 -0.160 -0.160 -0.281 -0.200
H1-H2 0.399 0.387 0.376 0.387 0.614 0.569 0.479 0.554
HRF 0.732 0.763 0.696 0.730 0.558 0.629 0.381 0.523
TILT 0.343 0.318 0.251 0.304 0.530 0.595 0.326 0.484
Mean: 0.283 0.322 0.201 0.269 0.276 0.292 0.080 0.216

Table 15: Correlation coefficient rc and coefficient of determination rd between
RAPT and GMR pitch (f0) estimates for melsub41 spectral envelope feature vector
and 4-component GMMs.

Males Females
/iy/ /ae/ /ux/ Mean: /iy/ /ae/ /ux/ Mean:

rc 0.927 0.862 0.886 0.892 0.896 0.826 0.870 0.864
rd 0.859 0.742 0.785 0.795 0.796 0.677 0.740 0.738
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7.2 Pitch and Delta Features

In speech analysis applications that typically use spectral envelope features, it is

common practice to augment the feature vector with its first or second-order time

derivatives (delta features) as a way to capture information about speech dynamics

in a form that can be used with static learning models such as GMMs. Given a

sequence of N -dimensional SEF observation vectors xk = [xk,1 xk,2 ... xk,N ]
T , where

k is the frame index, an estimate of the first-order derivative for the kth frame can be

computed as [125]

dk =
1

10

2
∑

i=1

i(xk+i − xk−i). (43)

The derivative vector is then concatenated with the SEF vector to produce the aug-

mented feature set φk = [xT
k dT

k ]
T . Pitch is another common feature in speech analysis,

and it is one of the few properties of the glottal waveform that can be well observed

directly from the speech signal. Because pitch is known to be related to changes

in other glottal waveform parameters, and since pitch and delta features are com-

monly used and easily obtainable from the acoustic speech signal, it is reasonable

to investigate whether their use in combination with SEFs facilitates glottal feature

estimation by the proposed GMR method. To this end, GMMs for the estimation

of each glottal feature were trained separately for each gender and phoneme on the

TRAIN1 speaker set, using melsub41 features either by themselves or augmented by

f0 or a delta feature vector.

Summary results are given in Figure 15 show the average difference in rc and rd

due to the addition of f0 and the first-order derivative of the SEF, where rc and

rd were computed on the TRAIN2 speaker set. These results indicate that the use

of f0 produces a small but consistent improvement in the ability of the GMMs to

estimate IF features, while there is no visible pattern for the addition of delta features.

Statistical hypothesis tests on r̄d confirm these observations (two-tailed paired t-tests,

DF = 65 for males, DF = 27 for females), with p < 10−30 when the baseline SEF
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vector is compared to its augmentation by f0, and no significant difference when the

baseline is compared to its augmentation by delta features. Appendix A.2 provides

detailed results, showing the values of rc and rd for each feature, phoneme, gender,

and number of GMM components, as obtained by augmenting the melsub41 SEF

with f0 and/or delta features.

These results are not surprising. The inclusion of delta features nearly doubles

the dimensionality of the GMM, which increases number of GMM parameters by

more than a factor of three, thus imposing additional requirements on the size of the

training data set. This explanation is suggested by the results in Figure 15, which

show that for the /ux/ phoneme, which is the one with the fewest observations, the

addition of delta features actually decreases rc and rd. Meanwhile, although pitch

is known to have a strong relationship with certain glottal features, it has also been

shown that it is possible to estimate pitch from SEFs (Section 7.1.3), so that the

addition of explicit pitch information is not expected to be helpful inasmuch as it is

already contained in some form within the SEF vector.
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Figure 15: Average difference in Correlation coefficient rc (a) and Coefficient of
determination rd (b) between IF and GMR glottal features, arising from the addition
of delta features and pitch to baselinemelsub41 feature vector. Positive values indicate
increases in rd or rc due to the addition of f0 and/or delta features.
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7.3 Measurement Reliability and Statistics of GMR Esti-
mates

Given the overall low measurement reliability of IF glottal features (Section 6.4),

an improvement in the quality of the feature estimates may not necessarily be evi-

denced by an increase in the similarity between IF and GMR features as measured

in Section 7.1, since an alternate feature estimation approach that perfectly mimics

IF features would only be reproducing errors inherent in the inverse filtering pro-

cess. Then, it is plausible for GMR features that only roughly correspond to their

IF counterparts to be more useful than IF features if this lack of correspondence

is accompanied by an increase in measurement consistency. This section presents

the measurement reliability of the GMR glottal features as an additional method for

assessing the merit of the proposed method of glottal feature estimation.

Based on the results in Section 7.1, the work presented in this section focuses on

GMR features obtained by the transformation of melsub41 SEF vectors using GMMs

with 4 components. Because the data in the TRAIN1 and TRAIN2 speaker sets

were used to select the optimal SEF and number of GMM components (Section 7.1),

measurement reliability was computed on GMR features extracted from the TEST

speaker set, using GMMs that were trained on a combination of the TRAIN1 and

TRAIN2 speakers. The purpose of using the independent TEST set was to prevent

“parameter tuning” from optimistically biasing the results due to finite observation

effects [53]. Just as was done in Section 6.4, the glottal feature observations were

segmented into continuous voicings of each phoneme. For each phoneme realization

i, the glottal feature observation vi from the center frame of the segment was paired

with the observation ui from the frame immediately following, and rc(u, v), rd(u, v)

were computed.

Figures 16 and 17 show the resulting rc and rd values, respectively, for GMR fea-

tures and corresponding IF features obtained using the inverse filtering methods listed
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in Table 4. GMR and IF features were computed from the TEST observations. From

the figures, it can be observed that the GMR features obtained consistently higher

values of rc and rd than the IF features. While several IF features obtained values

of rd below 0, all but one GMR feature obtained values of rd > 0.5. Likewise, most

of the GMR features obtained a correlation coefficient > 0.8. It is also interesting to

note the pattern between the results for the IF and GMR features. For the most part,

the least reliable IF features were also the least reliable GMR features, and vice-versa.

This behavior is expected, as a noisier IF feature can be expected to result is a less

accurate joint PDF estimate, thus impeding the transformation of the SEF vector

into the glottal feature via GMR.

To illustrate how GMR features approximate their IF counterparts, a random

utterance for each gender was selected and the glottal feature values for each GMR

feature were plotted along with their corresponding IF features as a function of time

(Figures 18–20). From these figures it can be seen that the statistical approach of the

proposed glottal feature estimation procedure results in a type of filtering operation

on the feature values, such that the GMR features generally follow the trends of the IF

features, but extreme peaks and valleys are filtered out. This is particularly evident

for the GMR features that were shown in Tables 13–14 to most closely agree with

their corresponding IF features.

The behavior of GMR estimation under adverse conditions can be understood

from inspection of the regression formula of Equation 5. The GMR feature estimate

ŷ is computed from the input feature set x as the conditional expectation E(y|x),

which is in turn estimated by the Gaussian mixture model of the joint PDF between

x and y. Thus, in the extreme case where x and y are statistically independent, and

given a perfect model of the joint density, the optimum estimate of y would simply

be ŷ = E(y|x) = E(y), or the mean of y over the GMM training set. Equation 5

further shows that the local (GMM component-specific) mean of y is modified by a

90



linear term that is a function of x, but this term is weighted by ΣiY X , the covariance

matrix between the input and target features. Thus, the regression function suggests

that when there is reduced covariance between x and y, which can arise due to actual

independence between the glottal feature and the SEF vector as well as independent

noise in the glottal features estimates, the GMR output will elegantly tend towards

the mean of y over the training data.

This property of the GMR procedure is further supported by a comparison between

the feature statistics of the IF and GMR features. Tables 16 and 17 show the mean

and standard deviation of the IF and GMR features on the TEST set for males

and females, respectively. These results indicate that all glottal features obtained

similar mean values for GMR and IF methods, but the standard deviations for the

GMR features were substantially lower. Furthermore, the ratio between the standard

deviations of the IF and GMR estimates were generally lower (0.3 – 0.5) for features

with low rd similarity values (Table 14) than those obtained for glottal features where

the GMR method was better able to match the IF features (Rd, and HRF for males;

H1-H2, HRF , and TILT for females), which have standard deviation ratios in the

ranging from 0.7 to above 0.8. Similarly the standard deviation ratios for the highly

reliable and predictable pitch feature were as high as 0.95.

Examination of the pairwise Spearman rank correlations rr between the GMR fea-

tures (Tables 18 and 19) indicates an overall increased correlation between features,

with preservation of the patterns seen in IF features (discussed in Section 6.4.1) and

the addition of some interesting relationships. Rank correlations between feature

pairs that are expected to be related to each other were enhanced without exception,

these included SQ1 and SQ2, OQ80 and OQ50, TILT and HRF , as well as NAQ and

ClQ. Some pairs of features that were expected to be correlated, but whose IF esti-

mates showed little correlation, obtained much higher values in the GMR case. The

LF-model open quotient OQLF is now correlated with OQ80 and OQ50. Similarly,
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Rd shows moderate correlation (> 0.60) with Qa as well as NAQ, ClQ and OQa for

males, and strong correlation (> 0.80) for females. There is also strong correlation

between Rd and OQ features for females. These relationships are expected because

Rd was introduced in [40] as a single parameter that is related to the other three

wave-shape parameters of the LF model.

The LF-model measure of cycle asymmetry, αm, now shows correlation to SQ1

and SQ2 (-0.62 and -0.64, respectively) for male speakers . The negative correlation

is surprising, but could be caused by differences in the definitions of these parameters,

as the speed quotients include in their computation of the closing phase the portion of

the glottal cycle that is considered the “return phase” in the LF-model. Furthermore,

the method of detecting the start of the closed phase tc as the first zero crossing

beyond the GCI te (see Section 6.2.2.1), which was used in the computation of SQ1

and SQ2, may run into robustness issues due to noise or small DC offsets in the glottal

waveform estimates.

It should be noted that unexpected correlations have appeared as well: Qa shows

strong correlation to NAQ and ClQ, while OQ80 is now strongly correlated with

the closing quotient features ClQ, NAQ, and OQa. This last relationship was only

observed for female speakers in the IF features. For female speakers, Qa showed

strong correlation to all open quotient features except OQ20, and NAQ/ClQ showed

strong correlation to OQ50 as well as OQ80.

There are at least three possible ways to explain how a set of separate regressors

has increased the pairwise correlation between glottal feature estimates. First, there

is the possibility that, under a situation where the SEF x has little useful information

about y, the GMR function converges approximately to an estimate of µy, but that the

small variations that remain in the output ŷ mainly reflect changes in x (Equation 5),

giving rise to a general increase in correlations due to the fact that the same sequence

of x observations was used to test each GMR model. This scenario may be occurring
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for a few of the glottal features, but is unlikely for most of the features given the

positive values of rd between IF and GMR estimates (Table 14), as well as standard

deviations for the GMR features that are only moderately smaller than those obtained

for their IF counterparts (Tables 18 and 19).

The second possibility is that the GMR procedure can only estimate the changes

in y that are reflected unambiguously in the spectral envelope of the speech signal. In

that case, distinct glottal features that have some similarity (e.g. speed quotient and

closing quotient) could be forced to converge if their underlying differences are not

predictable from the speech spectrum. A third contributing cause for the observed

results is that the GMR procedure may actually be improving the IF estimates,

since a statistical model that produces estimates based on encapsulated knowledge

of a large training dataset should be less likely to produce spurious errors than an

inverse filtering procedure that can only make decisions based on a 25 millisecond

observation. The removal of spurious errors from the IF estimates could be revealing

true underlying relationships among the set of 16 glottal features, which is quite

plausible given the low-dimensionality of parametric glottal waveform models (2-3

independent shape parameters) [36, 12, 118], as well as production and perception

studies that have shown that a single derived glottal parameter can approximately

represent a continuum of pressed to breathy of voice quality [40, 35].
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Figure 16: Correlation coefficient (rc) between observation pairs from adjacent
frames. Males and female speakers, TEST dataset, sustained vowels /ae/, /iy/, /ux/.
Plot symbols denote feature estimation method: inverse filtering (IF) or GMM re-
gression (GMR).
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Figure 17: Coefficient of determination (rd) between observation pairs from adja-
cent frames. Males and female speakers, TEST dataset, sustained vowels /ae/, /iy/,
/ux/. Plot symbols denote feature estimation method: inverse filtering (IF) or GMM
regression (GMR).
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Figure 18: LF-model features for a randomly selected male utterance (a) and female
utterance (b) from the TEST dataset. Comparison between features obtained via
inverse filtering (IF) and GMM regression (GMR).
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Figure 19: Direct measurement features for a randomly selected male utterance
from the TEST dataset. Comparison between features obtained via inverse filtering
(IF) and GMM regression (GMR).
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from the TEST dataset. Comparison between features obtained via inverse filtering
(IF) and GMM regression (GMR).
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Table 16: Mean value and standard deviation (shown in parentheses) for each glottal
feature, computed on the TEST dataset from glottal waveforms obtained either by in-
verse filtering (IF) or by Gaussian mixture regression (GMR) using melsub41 spectral
envelope feature vector and 4-component GMMs. Values for pitch estimates obtained
via the RAPT algorithm or by the GMR method are also given. Male speakers.

Males /iy/ /ae/ /ux/
f0 RAPT 121 (24) 118 (24) 125 (26)
(Hz) GMR 121 (23) 118 (21) 125 (23)
OQLF IF 0.382 (0.11) 0.359 (0.090) 0.379 (0.11)

GMR 0.385 (0.063) 0.356 (0.062) 0.384 (0.070)
αm IF 0.810 (0.021) 0.813 (0.017) 0.809 (0.019)

GMR 0.809 (0.010) 0.811 (0.0095) 0.809 (0.010)
Qa IF 0.0408 (0.052) 0.0244 (0.027) 0.0387 (0.049)

GMR 0.0400 (0.027) 0.0238 (0.016) 0.0373 (0.023)
Rd IF 0.462 (0.20) 0.419 (0.17) 0.477 (0.19)

GMR 0.463 (0.14) 0.427 (0.14) 0.484 (0.14)
NAQ IF 0.0692 (0.029) 0.0588 (0.025) 0.0718 (0.032)

GMR 0.0683 (0.019) 0.0591 (0.017) 0.0731 (0.023)
ClQ IF 0.172 (0.087) 0.144 (0.071) 0.186 (0.087)

GMR 0.171 (0.053) 0.146 (0.043) 0.187 (0.059)
OQa IF 0.256 (0.067) 0.222 (0.061) 0.276 (0.070)

GMR 0.256 (0.041) 0.224 (0.041) 0.274 (0.047)
SQ1 IF 3.22 (1.9) 2.78 (1.3) 3.24 (1.9)

GMR 3.25 (0.85) 2.77 (0.73) 3.39 (1.1)
SQ2 IF 1.77 (1.1) 1.43 (0.79) 1.91 (1.2)

GMR 1.79 (0.49) 1.49 (0.37) 1.93 (0.57)
SQ20-80 IF 0.449 (0.44) 0.370 (0.28) 0.481 (0.53)

GMR 0.443 (0.24) 0.388 (0.18) 0.476 (0.28)
OQ80 IF 0.0757 (0.044) 0.0678 (0.033) 0.0788 (0.045)

GMR 0.0748 (0.026) 0.0702 (0.024) 0.0790 (0.025)
OQ50 IF 0.199 (0.12) 0.166 (0.081) 0.205 (0.12)

GMR 0.198 (0.061) 0.170 (0.053) 0.212 (0.058)
OQ20 IF 0.640 (0.19) 0.661 (0.18) 0.620 (0.18)

GMR 0.652 (0.055) 0.663 (0.058) 0.635 (0.058)
H1-H2 IF 1.47 (8.5) 2.82 (7.9) 1.37 (8.6)
(dB) GMR 1.58 (5.2) 2.96 (5.1) 1.35 (5.6)
HRF IF 9.60 (6.6) 7.99 (6.1) 10.5 (6.9)

GMR 9.47 (5.5) 8.00 (5.3) 10.6 (5.8)
TILT IF -29.4 (4.2) -29.4 (4.2) -29.4 (4.1)
(dB/dec) GMR -29.3 (2.5) -29.5 (2.4) -29.2 (2.2)
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Table 17: Mean value and standard deviation (shown in parentheses) for each glot-
tal feature, computed on the TEST dataset from glottal waveforms obtained either
by inverse filtering (IF) or by Gaussian mixture regression (GMR) using melsub41
spectral envelope feature vector and 4-component GMMs. Values for pitch estimates
obtained via the RAPT algorithm or by the GMR method are also given. Female
speakers.

Females /iy/ /ae/ /ux/
f0 RAPT 206 (44) 194 (43) 209 (37)
(Hz) GMR 204 (42) 194 (39) 207 (36)
OQLF IF 0.444 (0.13) 0.366 (0.099) 0.489 (0.16)

GMR 0.449 (0.085) 0.370 (0.066) 0.463 (0.093)
αm IF 0.828 (0.017) 0.825 (0.016) 0.825 (0.018)

GMR 0.827 (0.0054) 0.825 (0.0064) 0.825 (0.0058)
Qa IF 0.0825 (0.071) 0.0909 (0.073) 0.0735 (0.049)

GMR 0.0838 (0.039) 0.0913 (0.044) 0.0847 (0.038)
Rd IF 1.59 (0.66) 1.24 (0.51) 1.66 (0.63)

GMR 1.58 (0.47) 1.26 (0.37) 1.70 (0.45)
NAQ IF 0.158 (0.067) 0.121 (0.052) 0.180 (0.066)

GMR 0.155 (0.044) 0.121 (0.033) 0.173 (0.046)
ClQ IF 0.340 (0.14) 0.269 (0.12) 0.377 (0.13)

GMR 0.332 (0.079) 0.263 (0.060) 0.356 (0.080)
OQa IF 0.387 (0.12) 0.315 (0.084) 0.403 (0.11)

GMR 0.385 (0.086) 0.317 (0.066) 0.405 (0.085)
SQ1 IF 1.34 (0.75) 1.33 (0.56) 1.23 (0.62)

GMR 1.36 (0.34) 1.38 (0.25) 1.21 (0.30)
SQ2 IF 0.706 (0.49) 0.726 (0.39) 0.579 (0.41)

GMR 0.690 (0.18) 0.743 (0.16) 0.607 (0.20)
SQ20-80 IF 0.682 (0.60) 0.460 (0.38) 0.829 (0.71)

GMR 0.747 (0.38) 0.509 (0.26) 0.786 (0.36)
OQ80 IF 0.104 (0.054) 0.0768 (0.030) 0.117 (0.063)

GMR 0.102 (0.031) 0.0803 (0.023) 0.112 (0.038)
OQ50 IF 0.272 (0.11) 0.198 (0.066) 0.283 (0.094)

GMR 0.263 (0.067) 0.202 (0.048) 0.278 (0.068)
OQ20 IF 0.584 (0.17) 0.554 (0.17) 0.579 (0.18)

GMR 0.553 (0.060) 0.541 (0.065) 0.542 (0.089)
H1-H2 IF -5.48 (8.1) -5.35 (8.4) -5.75 (7.3)
(dB) GMR -5.58 (6.3) -5.70 (6.2) -5.59 (5.4)
HRF IF 28.5 (7.7) 29.0 (9.1) 29.4 (6.3)

GMR 28.5 (5.9) 28.5 (7.2) 28.9 (5.2)
TILT IF -22.5 (4.6) -22.3 (4.8) -22.7 (4.0)
(dB/dec) GMR -22.4 (3.7) -22.2 (3.9) -22.6 (3.0)
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Table 18: Mean Spearman rank correlation coefficient rr between pairs of glottal features obtained via the GMR method using
melsub41 spectral envelope feature vector and 4-component GMMs. Male speakers.

f0 OQLF αm Qa Rd NAQ ClQ OQa SQ1 SQ2 SQ
20-80 OQ80 OQ50 OQ20 H1-H2 HRF TILT

f0 1.00 -.05 .18 .44 .71 .45 .45 .35 -.48 -.43 .10 .17 .14 -.38 .15 .78 .73
OQLF -.05 1.00 -.48 .30 .40 .42 .37 .59 .15 .22 .75 .61 .68 -.21 .08 -.35 -.13

αm .18 -.48 1.00 .29 -.01 .22 .18 -.07 -.62 -.65 -.54 -.11 -.34 .15 -.06 .29 -.08
Qa .44 .30 .29 1.00 .64 .76 .71 .56 -.53 -.47 .26 .61 .48 -.06 .09 .29 .13
Rd .71 .40 -.01 .64 1.00 .68 .67 .64 -.44 -.31 .41 .59 .55 -.26 .23 .42 .48

NAQ .45 .42 .22 .76 .68 1.00 .86 .77 -.59 -.43 .33 .69 .51 -.18 .13 .16 .04
ClQ .45 .37 .18 .71 .67 .86 1.00 .75 -.58 -.41 .36 .70 .49 -.14 .10 .15 .06
OQa .35 .59 -.07 .56 .64 .77 .75 1.00 -.37 -.15 .48 .72 .58 -.27 .14 -.05 .00
SQ1 -.48 .15 -.62 -.53 -.44 -.59 -.58 -.37 1.00 .79 .17 -.32 .03 -.01 -.11 -.26 -.12
SQ2 -.43 .22 -.65 -.47 -.31 -.43 -.41 -.15 .79 1.00 .20 -.11 .18 .04 -.03 -.34 -.14

SQ20-80 .10 .75 -.54 .26 .41 .33 .36 .48 .17 .20 1.00 .49 .59 -.29 .10 -.17 .08
OQ80 .17 .61 -.11 .61 .59 .69 .70 .72 -.32 -.11 .49 1.00 .73 .05 .13 -.17 -.10
OQ50 .14 .68 -.34 .48 .55 .51 .49 .58 .03 .18 .59 .73 1.00 -.05 .07 -.06 .05
OQ20 -.38 -.21 .15 -.06 -.26 -.18 -.14 -.27 -.01 .04 -.29 .05 -.05 1.00 -.06 -.27 -.35

H1-H2 .15 .08 -.06 .09 .23 .13 .10 .14 -.11 -.03 .10 .13 .07 -.06 1.00 -.08 .03
HRF .78 -.35 .29 .29 .42 .16 .15 -.05 -.26 -.34 -.17 -.17 -.06 -.27 -.08 1.00 .72
TILT .73 -.13 -.08 .13 .48 .04 .06 .00 -.12 -.14 .08 -.10 .05 -.35 .03 .72 1.00
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Table 19: Mean Spearman rank correlation coefficient rr between pairs of glottal features obtained via the GMR method using
melsub41 spectral envelope feature vector and 4-component GMMs. Female speakers.

f0 OQLF αm Qa Rd NAQ ClQ OQa SQ1 SQ2 SQ
20-80 OQ80 OQ50 OQ20 H1-H2 HRF TILT

f0 1.00 .57 .29 .54 .83 .71 .69 .62 -.46 -.49 .43 .52 .64 .18 .42 .72 .75
OQLF .57 1.00 .45 .70 .71 .74 .67 .86 -.15 -.23 .83 .80 .83 .24 .23 .26 .24

αm .29 .45 1.00 .66 .35 .37 .31 .51 -.06 .00 .40 .50 .44 .06 .05 .17 .11
Qa .54 .70 .66 1.00 .62 .68 .60 .78 -.28 -.23 .65 .76 .70 .09 .18 .29 .25
Rd .83 .71 .35 .62 1.00 .89 .89 .82 -.58 -.53 .54 .69 .81 .11 .33 .54 .52

NAQ .71 .74 .37 .68 .89 1.00 .93 .89 -.61 -.55 .56 .78 .84 .10 .22 .43 .37
ClQ .69 .67 .31 .60 .89 .93 1.00 .83 -.67 -.60 .49 .73 .81 .09 .20 .42 .37
OQa .62 .86 .51 .78 .82 .89 .83 1.00 -.40 -.34 .72 .84 .88 .14 .21 .33 .26
SQ1 -.46 -.15 -.06 -.28 -.58 -.61 -.67 -.40 1.00 .74 -.01 -.32 -.34 .14 -.01 -.36 -.30
SQ2 -.49 -.23 .00 -.23 -.53 -.55 -.60 -.34 .74 1.00 -.10 -.24 -.27 .13 -.04 -.40 -.36

SQ20-80 .43 .83 .40 .65 .54 .56 .49 .72 -.01 -.10 1.00 .70 .69 .12 .21 .19 .18
OQ80 .52 .80 .50 .76 .69 .78 .73 .84 -.32 -.24 .70 1.00 .87 .20 .21 .22 .16
OQ50 .64 .83 .44 .70 .81 .84 .81 .88 -.34 -.27 .69 .87 1.00 .28 .26 .31 .29
OQ20 .18 .24 .06 .09 .11 .10 .09 .14 .14 .13 .12 .20 .28 1.00 .33 .02 .10

H1-H2 .42 .23 .05 .18 .33 .22 .20 .21 -.01 -.04 .21 .21 .26 .33 1.00 .19 .38
HRF .72 .26 .17 .29 .54 .43 .42 .33 -.36 -.40 .19 .22 .31 .02 .19 1.00 .87
TILT .75 .24 .11 .25 .52 .37 .37 .26 -.30 -.36 .18 .16 .29 .10 .38 .87 1.00
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7.4 Joint Models for Estimation of Glottal Feature Vectors
on Multiple Phonemes

Up to this point, the proposed glottal feature estimation procedure has been evaluated

separately on single glottal features in an effort to discover feature-specific differences

in the merit and accuracy of the estimates while maintaining a low-dimensional model

with a correspondingly low number of training parameters. Models were also trained

separately on each phoneme as a way to limit the variability in the input SEFs,

with the assumption that this would result in a simpler joint density function whose

primary source of variation is the interaction between the SEFs and the glottal feature

rather than the variations in SEFs across phonemes. Furthermore, the analysis has

been limited to three stationary vowels {/iy/, /ae/, /ux/} that are representative of

the class of phonemes most amenable to inverse filtering, as discussed in Section 6.3.

However, there is strong motivation for the use of larger models which could si-

multaneously output several glottal features from any voiced phoneme. Not only

would such a system do away with the requirement of a preliminary speech recogni-

tion / phonetic alignment step, it may also model more efficiently the variability in

the speech spectral envelope and the glottal features for the following reasons: First,

there is considerable similarity and coupling between some of the glottal features un-

der study (Section 6.2, Section 6.4.1), which a joint GMM that can represent both

local and global covariance could obviously exploit. Second, studies on the spectral

variations produced by changes in glottal features [108, 12, 36] have shown certain

spectral effects to be the result of the combined variation of two or more spectral

features, such that the features can be better ascertained by a model that can rep-

resent this joint relationship. Finally, it is well known that even if the phonetic

content is controlled by processing frames with the same phonetic label, there will

still be considerable vocal tract variation in the observed spectra due to factors that
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include physiological differences among speakers, changes in pronunciation, and co-

articulation [93, 57]. Therefore, training a model with speech from several phonemes

may not imply adding much more complexity to a statistical model that already has

to cope with these additional sources on spectral variation.

From the description in Section 4.3, it should be clear that the proposed GMM

regression method is not limited to estimating a single feature, but can just as easily

estimate one feature vector from another. If xm and ym represent the SEF vector

and a vector containing several glottal features for the mth frame, respectively, a

GMM modeling their joint distribution can be trained on wm = [xT
my

T
m]

T and used

to transform an independent set of SEF vectors [x̂1 x̂2 ... x̂K ] into the corresponding

glottal feature vector estimates [ŷ1 ŷ2 ... ŷK ], according to Equation 5.

The correlation coefficient rc and coefficient of determination rd between GMR and

IF features from the TRAIN2 speaker set were computed for each feature and gender,

using joint model and separate model configurations. All GMMs were trained on the

TRAIN1 speaker set. The rc and rd results for a single GMM trained on a vector of 16

glottal features from observations of all three vowels {/iy/, /ae/, /ux/} were compared

against the average rc and rd values for a 3-GMM configuration (one GMM per

phoneme) and a 48-GMM configuration (one GMM per glottal feature per phoneme).

The results show that, especially for female speakers, and particularly for features

that already attained high values in the baseline separate-GMM configuration, the

joint model tends to improve the approximation of GMM-estimated features to their

IF counterparts. Detailed results for each glottal feature and each value of Nr are

given in Appendix A.3.

To evaluate performance on additional phonemes, GMMs were again trained on

the TRAIN1 speaker set either on all stationary phonemes in the TIMIT phonetic

code [46] {/iy/, /ih/, /eh/, /ae/, /aa/, /ah/, /ao/, /uh/, /uw/, /ux/, /er/} or on all

voiced frames, regardless of phonetic transcription. The set of evaluated model sizes
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was expanded to include 32-component and 64-component GMMs in order to take

advantage of the increased number of observations due to the additional processed

phonemes and to cope with the wider variety of speech spectra. The results for each

case are given in Appendix A.4 for the TRAIN2 set, and show substantial improve-

ment due to the use of all phonemes for certain features (e.g. Qa on female speakers,

OQ80) and small decreases on others. It is also noticeable from these figures that in

the case of additional phonemes, there is a small but consistent advantage to using

the larger 32 and 64-component GMMs.

These results are summarized in Table 20, which shows the average rd values for

each model configuration (joint or separate, 3 vowels or additional phonemes) along

with the results of statistical significance tests comparing against the rd values for

a baseline separate-GMM configuration. The optimal value of Nr (number of GMM

components) was independently chosen for each combination of feature and method.

The results show small improvements in rd when a single GMM was used for all

features and all 3 vowels, as well as for the case where additional phonemes were

processed. However, the differences are not statistically significant once the confidence

level is adjusted for multiple comparisons. Still, the small improvements in r̄d for the

larger GMMs indicate that a single GMM that outputs the entire feature vector

for all the processed phonemes may be used without sacrificing the quality of the

estimation, and that, optionally, all voiced phonemes may be processed, thus allowing

the proposed procedure to be used without the need for a phonetic transcription.

7.5 Speaker Discrimination Ability of IF and GMR Glottal

Waveform Features

A third way to compare the merits of a set of glottal feature estimates is to evaluate

their performance in a speech analysis application. This evaluation method can be

used to determine the practical implications of differences in measurement reliability

and in the level of agreement between GMR and IF features. Because glottal waveform
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Table 20: Mean rd for separate and joint GMMs. p-values obtained from paired,
two-tailed t-tests (DF = 65 for males, 27 for females) against the baseline condition
in the first row (separate GMM per feature-phoneme pair). The optimal value of
Nr (number of GMM components) was used for each glottal feature / model type
combination.

Model Type:
Males Females

r̄d p r̄d p
48 GMMs: one per feature / phoneme pair 0.296 0.278
3 GMMs: one per phoneme (/iy/, /ae/, /ux/) 0.280 0.1688 0.268 0.4798
1 GMM: {/iy/, /ae/, /ux/} 0.307 0.2917 0.313 0.0742
1 GMM: all stationary vowels 0.297 0.8992 0.329 0.0111
1 GMM: all voiced phonemes 0.310 0.4631 0.346 0.0031

variation has been shown to contribute to the identification and transformation of

voice identity [91, 68, 22, 67], and because the TIMIT corpus contains speech samples

from a large number of speakers, this section focuses on a speaker identification task.

The goal of these experiments was not to improve upon the performance of existing

speaker identification systems, but to measure the ability of each feature or feature

vector to distinguish the voices of different speakers. With this in mind, the evaluation

was designed around binary classification of speaker pairs.

7.5.1 Procedure

Speaker identification proceeded as follows: For each gender, the 20 speakers with

the most observations of the vowels {/iy/, /ae/, /ux/} were selected from the TEST

speaker set. There were at least 200 total observations per speaker (from the three

vowels combined). Spectral envelope (melsub41) and glottal waveform features were

computed for each observation. In the case of inverse filtering features, the IF method

was selected on a per-feature basis, as shown in Table 4. For GMR features, the re-

gression was performed using 4-component GMMs which had been previously trained

on melsub41 and IF glottal features from the TRAIN1 and TRAIN2 speaker sets

combined.
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For a given feature vector ψ, which may contain a single feature h (in which

case ψ = h) or any combination of SEF or glottal features (ψ = [h1 h2 ... hN ]
T ), the

10 sentences from each speaker ωl, l ∈ {1 ... 20} were divided randomly into three

sets of sentences i1, i2, and i3, with an approximately equal number of sentences

per set. Pairs of sentence sets were combined into three folds : j1 = {i2, i3}, j2 =

{i1, i3}, j3 = {i1, i2}, and used to train the GMMs fωj1, fωj2 , and fωj3. The remaining

sentence set for each fold was reserved for testing. This data division procedure was

repeated to obtain 20 random partitions τt of the data. All GMMs were trained using

diagonal covariance matrices, as this enables the use of a larger number of GMM

components1 Nc and has been generally found to produce better results than full-

covariance matrices in GMM-based speaker identification (for example, see [91, 97,

96]).

For each pair of speakers ωl and ωm, and each random partition τt, the clas-

sification accuracy was computed via 3-fold cross-validation. For each fold n, the

observations from the test sentence sets in of speakers ωl and ωm were concatenated.

To ensure a 50% baseline classification rate, a random subset of Kn observations for

the most populous speaker was selected in order to match the Kn observations for

the least populous speaker. Given the labeled test observations [ψ1 ψ2 ... ψKn
] with

speaker labels [c1 c2 ... cKn
] and the GMMs for each speaker and each fold fωljn, fωmjn,

the class label estimates [ĉ1 ĉ2 ... ĉKn
] were generated according to Equation 12, and

the classification rate Cτtwlwmjn was computed according to Equation 13. The mean

classification rate C̄ for the feature vector ψ was obtained by averaging over the

random partitions, folds, and speaker pairs:

C̄ =
1

20

20
∑

t=1

1

3

3
∑

n=1

1

190

19
∑

l=1

20
∑

m=l+1

Cτtwlwmjn (44)

1Nc < K/9, where K is the number of training observations, guarantees a 3:1 ratio between
training data elements and GMM parameters when diagonal covariance matrices are used.
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7.5.2 Results

Figures 21 and 22 show the mean classification rate C̄ of each glottal feature for male

and female speakers, respectively. All glottal features obtained classification rates

above 60%, thus showing some ability to discriminate between speakers. The figures

show that for most glottal features, the GMR method resulted in higher classifica-

tion rate than inverse filtering. This relationship can be observed more clearly on

Figures 23 and 24, which show the difference C̄IF − C̄GMR between the mean classi-

fication rates for IF and GMR features to be as high as 7%. The results of statistical

significance tests (two-tailed paired t-tests, DF=9) given in Table 21 show that, for

female speakers the mean C̄ across all the glottal features is significantly higher for

GMR features than for IF features. For males, the classification rate was also higher,

but the difference was not statistically significant. The results indicate that, at least

in the context of single features, GMR features at least equally able to discriminate

between speaker voices.

7.5.3 Speaker Discrimination Ability of Glottal Feature Combinations

To examine the discrimination ability of glottal features in a more realistic scenario,

the classification rate for a combination of glottal features was evaluated by construct-

ing, for each gender, a glottal feature subset chosen from the studied set of 16 glottal

features in an effort to represent the main aspects of variation in glottal behavior.

The criteria for constructing this feature vector were threefold: First, it should ide-

ally contain at least one representative feature for each of these salient glottal source

features: open quotient, speech quotient, closing quotient, and spectral tilt. Second,

the chosen features should have the highest possible measurement reliability. Third,

correlation among pairs of features should be minimized in order to diminish informa-

tion redundancy. These criteria were applied by first selecting the highest-reliability

representative (Table 4) from each feature type, then pruning the resulting feature set
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by marking pairs of features with rank-correlation above 0.70 (Tables 18 and 19) and

removing the element with the lower measurement reliability from each pair. H1-H2

was added to the feature sets, as it does not appear to be strongly correlated with

any other feature. The resulting feature sets were {OQLF , NAQ, Rd, H1-H2, HRF ,

αm} for males and {OQa, HRF , SQ2, H1-H2} for females. Principal component

analysis (PCA) was used to obtain uncorrelated coordinates from these feature sets.

In addition to using a combination of glottal features, the evaluation dataset was

expanded to include all voiced phonemes, and a single joint GMM was used for each

gender to estimate every glottal feature on the entire TEST dataset. The number

of speakers was increased to 50, which resulted in at least 1000 observations per

speaker. The data division and testing procedure remained identical to that described

in Section 7.5.1, namely 20 random repetitions of 3-fold cross-validation.

The mean classification rate for this feature vector is given in Table 22, which

shows classification rates as high as 90.3% (males) and 87.7% (females). A very

slight increase in classification rate (≈ 0.3%) was observed for the GMR features over

IF features for the males, and a 2.4% decrease was observed for the females, but

neither difference was statistically significant (paired t-tests, DF=49). This result,

in combination with the results for single glottal features (Table 21) further suggests

that the GMR features can be as useful for discriminating speaker’s voices as the IF

features.

The same glottal feature vectors were then used in combination with the melsub41

SEF to examine how they complement the speaker discrimination ability of the spec-

tral magnitude envelope. The results, listed in Table 23, show a small, but statisti-

cally significant (p < 1.1 × 10−4) increase in classification rate due to the addition

of IF glottal features. The small value of the increase (0.4% – 0.9 %) is not surpris-

ing. The fact that the GMR procedure was able to transform the SEF vector into
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Table 21: Mean pairwise speaker classification rate for individual glottal features,
with p values of two-tailed paired t-tests (DF=9), Nc = 8.

Feature Type:
Males Females

C̄ p C̄ p
IF 0.6469 0.6467
GMR 0.6616 3.020E-02 0.6693 9.853E-04

glottal features that are equal or better speaker discriminators than their IF counter-

parts when used alone (Figures 23 and 24) indicates that most speaker-specific glottal

source information (with respect to the set of glottal waveform features under study)

is already contained in the spectral envelope of the acoustic speech signal. Therefore,

one would expect very little discrimination power due to the addition of IF features,

and, ideally, no advantage from the addition of GMR features, since the latter were

themselves estimated from the SEFs. Indeed, hypothesis tests show no statistically

significant improvement over melsub41 features due to the addition of GMR features.

The small decrease in classification rate of the melsub41 + GMR set with respect to

the combination melsub41 + IF (0.2% for males, 0.7% for females) was found to be

statistically significant only for female speakers (p < 3.5× 10−5).

Finally, it is worth noting that the results for the melsub41 feature set were not

greatly higher than those obtained using a glottal feature vector by itself. The

melsub41 features obtained classification rates of 95.2% for males and 92.0% for fe-

males, representing an improvement over glottal features of 4.9% and 4.3%, respec-

tively. This modest difference, taken in the context of the limitations and difficulty

associated with inverse filtering, highlights the importance of the glottal source as a

component of voice identity.
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Figure 21: Mean pairwise speaker classification rate for individual inverse filtering
(IF) and Gaussian mixture regression (GMR) features, male speakers.
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Table 22: Mean pairwise speaker classification rate, using a vector of glottal features.

Feature Source:
GMM Components (Nc)
8 16 32 64

Males
IF 0.844 0.864 0.884 0.900
GMR 0.847 0.867 0.886 0.903

Females
IF 0.811 0.831 0.855 0.877
GMR 0.776 0.799 0.826 0.853

Table 23: Mean pairwise speaker classification rate, using a combination of spectral
envelope features with a glottal feature vector.

Feature Set
GMM Components (Nc)
8 16 32 64

Males
melsub41 0.944 0.952 0.955 0.952
melsub41 + IF 0.950 0.957 0.960 0.956
melsub41 +GMR 0.944 0.953 0.957 0.954

Females
melsub41 0.868 0.891 0.911 0.920
melsub41 + IF 0.888 0.908 0.924 0.929
melsub41 +GMR 0.874 0.895 0.914 0.922
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CHAPTER VIII

CONCLUSION

8.1 Research Summary

The objective of the research presented in this thesis was to investigate which charac-

teristics of the glottal source in non-pathological speech are contained in a predictable

manner within a spectral envelope representation of the acoustic speech signal and

to what extent can these characteristics be measured directly from commonly used

feature vectors that represent the spectral envelope of speech. The motivation for

this work arises from the difficulties and uncertainty associated with current meth-

ods for extracting glottal information from the acoustic speech signal, along with

stated evidence about the usefulness of glottal source features for the discrimination

of paralinguistic and extralinguistic content in speech.

The lack of availability of a large speech corpus containing an acoustic signal

recorded in synchrony with one or more ancillary signals that represent a more direct

observation of glottal and vocal fold behavior, as well as unresolved issues regarding

the relationship between these signal modalities and glottal airflow (Appendix B),

necessitated the use of a baseline consisting of glottal features computed from glottal

waveforms which had been obtained by inverse filtering the acoustic speech signal

(IF features). Because inverse filtering is an error-prone procedure, the measurement

reliability, or consistency of IF features from a set of four inverse filtering algorithms

and two methods of model-fitting were compared for the purpose of determining the

most adequate way of obtaining each feature as well as an overall estimate of the

noise level of the IF feature estimates. Measurement reliability was evaluated using

the correlation coefficient rc and the coefficient of determination rd to measure the
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similarity between pairs of feature estimates from time-adjacent observations located

at the center of each continuous realization of the stationary vowels {/iy/, /ae/,

/ux/}. On a dataset of 260 male and 108 female speakers from the TIMIT corpus, it

was found that measurement reliability varied widely among IF methods and glottal

features, with correlation coefficients in the range (0.14 – 0.92) and coefficients of

determination in the range (-0.88 – 0.83), where a coefficient of determination below

zero is indicative of a mean squared distance between adjacent observations of the

feature that is larger than the variance of the feature over the dataset. For the female

speakers, the IAIF inverse filtering method consistently produced the most reliable

features, and this method resulted in rd values above zero for all features. For the

males, the most reliable method alternated between closed-phase inverse filtering

(CPIF) and IAIF, but six out of 16 features obtained rd values below zero.

Comparison of the glottal feature means across genders suggested a more abducted

glottal configuration for female speakers and the presence of incomplete glottal clo-

sure, a result consistent with the literature and with the observed advantage of the

IAIF method over closed-phase analysis on female speakers. Analysis of the Spearman

rank correlation coefficient to detect the presence of monotonic relationships between

IF feature pairs revealed both expected and unexpected trends. The LF-model fea-

tures did not show much correlation to their direct-measurement counterparts, and

the amplitude-based open quotient was actually found to depend mostly on the clos-

ing quotient measures.

To establish a statistical model that enables the transformation of spectral en-

velope features (SEFs) into glottal waveform features, a set of Gaussian mixture

models (GMMs) were trained on the aforementioned speaker set to model the joint

distribution of four common spectral envelope feature vectors and each of the 16

glottal waveform features under study. The evaluated set of spectral feature vectors

consisted of mel-frequency cepstral coefficients (mfcc), perceptual linear prediction
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coefficients (plp), decorrelated channel energies from a 21-band mel-scale filter bank

(melsub), and a higher-resolution version of melsub features using a 41-band filter

bank (melsub41). Each of the 16 glottal features was obtained using the IF method

showing the highest measurement reliability for that feature and gender. GMMs

were then used to transform SEFs from an independent set of 66 male and 28 female

speakers into glottal feature estimates via Gaussian mixture regression (GMR), and

an initial performance evaluation was performed by using rc and rd to measure the

similarity between the IF and GMR-estimated glottal features.

It was found that, on average, the highest values of rc and rd were obtained by

using the mel-scale filter-bank energies, with additional improvement for the higher

resolution 41-band variation. In addition, out of the evaluated values for the GMM

size parameter (number of Gaussian components), it was found that 4-component

GMMs resulted in the highest average rd. Using melsub41 SEFs and 4-component

GMMs, the correlation coefficient rc varied on a per-feature basis from 0.21 to 0.86

for males and 0.10 to 0.76 for female speakers, and several features (OQLF , Rd,

NAQ, OQa, OQ80, H1-H2, HRF , TILT ) obtained a correlation coefficient above

0.5 consistently across genders. The coefficient of determination varied between -0.01

to 0.73 for males and -0.2 to 0.55 for females.

The effect on GMR regression from the augmentation of the melsub41 SEF with

delta features (across time) and pitch information was also evaluated. It was found

that the addition of f0 resulted in a small but statistically significant (p < 1× 10−30)

improvement on the rd values between IF and GMR feature estimates (< 0.04). The

differences in rd due to the addition of delta features were not found to be statistically

significant. It was hypothesized that the lack of improvement from using delta features

may be due to the size of the training data, as the addition of delta features essentially

doubles the dimensionality of the GMM.

In an effort to perform a more comprehensive evaluation of the proposed GMR
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glottal feature estimation procedure, the measurement reliability of the GMR features

was compared to the measurement reliability of the IF features. The GMMs were

trained on a set of 326 male and 136 female speakers (TRAIN dataset), and the

reliability of IF and GMR features was computed on an independent set of 112 male

and 56 female speakers (TEST dataset). The GMR features were found to obtain

consistently higher measurement reliability, as evidenced by higher values of rc and

rd than for the IF features, with rc and rd for the GMR features being consistently

higher than 0.8 and 0.5, respectively. A time-plot of the IF and GMR glottal feature

estimates reveals that the GMR features tend to follow the general trends of their

IF counterparts, but that the statistical nature of the regression procedure results in

a filtering of sorts, such that some of the sharp variations of the IF features are not

found on the GMR feature plots. This result suggests that the proposed method may

actually be able to produce more useful glottal feature estimates by filtering out some

of the noise present in the IF features that arises from inverse filtering errors.

In the interest of facilitating the use of the proposed glottal feature estimation

procedure, the use of joint models for estimating multiple glottal features from mul-

tiple phoneme data using a single GMM was explored. Measurements of rd between

GMR and IF features were used to compare the joint models to the case of individ-

ual GMMs for each feature and each phoneme. For both genders, there was a small

increase in the mean value of rd due to the use of a single GMM, and an additional

increase when the model was trained and tested on all voiced phonemes. Although

the differences with respect to the separate-GMM, 3-phoneme case were not statis-

tically significant, the improvement suggests no real disadvantage to using a single

GMM to estimate combinations of glottal features from the desired set of phonemes.

As a final measure of merit for the proposed glottal feature estimation procedure,

the performance of IF and GMR features was compared on a speaker identification

application. Speaker-specific Gaussian mixture models for single glottal features were
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trained on the /iy/, /ae/, /ux/ utterances for each speaker and maximum likelihood

classification of speaker pairs was performed on 20 male and 20 female speakers

from the TEST speaker subset of TIMIT. (The GMMs for generating GMR features

had been trained with the independent TRAIN speaker set.), The classification rate

was estimated using 20 random repartitions of 3-fold cross-validation, and an equal

number of test observations were used for both speakers in a pair to maintain a 50%

baseline classification rate.

The most useful single feature was HRF for males and OQa for females, both

achieving a classification rate slightly above 70%. For most individual glottal features

(12 for males, 14 for females), the mean classification rate for individual GMR features

showed a small increase (up to 7.4%) over their IF counterparts. On average, the

classification rate for GMR features was 66.8% for males and 67.0% for females. This

represented an increase of 2.1% for males and 2.4% for females over IF features, but

the difference was not found to be statistically significant.

A larger-scale speaker classification experiment using a single, joint GMM for

estimating a vector of glottal features from any voiced phoneme was also performed.

The increased number of observations allowed for 50 speakers to be evaluated. The

use of a vector of glottal features resulted in a mean classification rate of 90.0% for

the males and 87.7% for the females, with an improvement of 0.3% and a decrease of

2.4%, respectively, due to the choice of GMR over IF features. The pairwise speaker

classification rate using melsub41 feature vectors resulted in a classification rate of

95.2% for males and 92.0% for females, with a small, but statistically significant

improvement due to the addition of IF glottal features (0.4% males, 0.9% females).

The addition of GMR features to melsub41 increased the classification rate by only

0.2%, and the difference was not found to be statistically significant.
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8.2 Conclusions

The presented research has yielded insights into the reliability of current glottal in-

verse filtering algorithms as well as the predictability of glottal waveform features

from the magnitude spectral envelope of speech. It was found that the measurement

reliability of glottal waveform features obtained via inverse filtering, defined as the

similarity between adjacent observations from segments of steady phonation, was gen-

erally low and varied widely among IF algorithms and glottal features. The oldest and

simplest of the inverse filtering algorithms under consideration (closed-phase analysis)

was in many cases the one that resulted in the most reliable feature estimates.

Interestingly, the inseparability of the glottal and vocal tract components of speech

that causes inverse filtering to be problematic is also what enables the presented

approach to work, as glottal source information is still present in spectral envelope

features that in some cases were originally designed to enhance phonetic information

while minimizing the effects of other sources of variation in the speech signal [30, 61].

The moderate correlation between glottal feature estimates obtained by IF and GMR

indicates that the presented GMR glottal feature extraction procedure can roughly

approximate most IF features. Perfect correspondence between IF and GMR features,

however, is not always a desirable goal, since the IF features themselves were found

to be rather noisy. The much improved measurement reliability of GMR features,

coupled with their similar performance in a speaker ID application, suggests that

the statistical estimation approach of the GMR method incorporates some amount

of noise filtering on the IF features, which in some cases resulted in individual GMR

features that appeared to be more useful for speaker discrimination than the IF

features which they were intended to mimic. It must be noted, however, that the

small, but statistically significant advantage of IF features in multivariate experiments

suggests that not every aspect of glottal source variation can be captured by the

proposed approach.
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If it is possible to derive glottal waveform features as a function of the spectral

envelope of speech, the question arises as to the usefulness of features obtained via

currently available inverse filtering methods in speech analysis applications where the

goal is not to characterize glottal source behavior explicitly, but rather to recognize

an informational aspect of the speech signal that is believed to be related to glottal

source variation. If information characterizing glottal behavior were contained within

the speech spectrum in a systematic, predictable manner, then there would be little

advantage from the explicit use of glottal features (whether these are obtained via

IF or GMR) over the case where the intended analysis is performed directly on the

spectral envelope features. This issue was evidenced in speaker identification results,

where IF and GMR features added to the SEF vector produced a very modest im-

provement in the classification rate even though both the IF and GMR glottal feature

sets had shown good discrimination ability when used alone. In light of this result,

and given the large differences in predictability observed with respect to the particular

spectral envelope feature-set used as the input to the GMR process (Appendix A.1,

Tables 9 and 10), it is proposed that a straightforward way to incorporate glottal

source information into a speech analysis application may be as simple as choosing

an appropriate spectral envelope representation, whose level of glottal source content

can be evaluated by the GMR approach presented in this thesis.

8.3 Contributions and Future Work

The contributions of this research consist of the following:

• A procedure for measuring and comparing the reliability of glottal inverse fil-

tering algorithms and glottal waveform features that uses normalized measures

of distance between adjacent estimates during segments of sustained phonation.

• The evaluation and comparison of reliability for four existing glottal inverse

filtering methods on a large speech corpus. The set of studied IF methods
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represents main ideas put forth in the inverse filtering literature and range from

the classical approach of closed-phase inverse filtering to a recently proposed

state-of-the-art procedure that is capable of modeling a time-varying vocal tract.

• The evaluation of measurement reliability and speaker identification ability for

a set of widely studied glottal waveform parameters on a large speech corpus.

The evaluated features included several alternatives for measuring the main

characteristics of the glottal cycle.

• The development and evaluation of a statistical supervised learning procedure

for estimating glottal waveform features directly from a spectral envelope feature

vector, thus allowing for the characterization of the glottal airflow cycle without

the need to perform inverse filtering.

• An objective assessment of the merit of using explicit glottal waveform informa-

tion in speech analysis, over the alternative of implicitly using such information

by performing speech analysis on conventional spectral envelope features.

Future work includes the evaluation of IF and GMR features on other speech anal-

ysis applications, such as the recognition of vocal affect. While the present results

on speaker ID suggest only a small advantage due to the use of explicit glottal in-

formation over direct analysis with spectral envelope features (and the low reliability

of IF features further suggests the generalizability of this result), the result should

be confirmed in other speech applications by comparing the use of SEFs with and

without IF and GMR features.

Furthermore, the results on measurement reliability of IF and GMR features sug-

gest that the presented glottal feature estimation procedure may be applicable to

clinical or forensic settings where an explicit assessment of glottal behavior is sought,

as it allows an approximation to be obtained from the acoustic speech signal alone, but

with a higher level of consistency than would result from an inverse filtering procedure
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via current methods. The evaluation of the GMR procedure’s applicability in this

area would necessitate a comparison of the obtained GMR feature values to ground-

truth information about glottal behavior. Such a comparison may be performed

against glottal parameters manually extracted by clinicians from visual inspection of

high-speed video of the vocal folds.

Finally, the availability of a large database containing ancillary signals (e.g. high-

speed video) representing a more direct observation of glottal behavior from a large

set of speakers may also enable training of the GMR model on much cleaner and

reliable data than what can be obtained through IF methods. While the relationship

between alternative signal modalities and glottal airflow is far from simple, and would

become a component of this line of investigation, the trained GMMs may be able to

capture relationships between glottal behavior and the spectral envelope of speech

which cannot be consistently observed from glottal waveform estimates due to errors

in the inverse filtering process.
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APPENDIX A

SIMILARITY BETWEEN IF AND GMR FEATURES

A.1 Effect of Spectral Envelope Feature Set
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Figure 25: Correlation coefficient rc between IF and GMR glottal features, Direct
measurement features, phoneme /iy/, male speakers.
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Figure 26: Correlation coefficient rc between IF and GMR glottal features, Direct
measurement features, phoneme /ae/, male speakers.
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Figure 27: Correlation coefficient rc between IF and GMR glottal features, Direct
measurement features, phoneme /ux/, male speakers.
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Figure 28: Correlation coefficient rc between IF and GMR glottal features, Direct
measurement features, phoneme /iy/, female speakers.
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Figure 29: Correlation coefficient rc between IF and GMR glottal features, Direct
measurement features, phoneme /ae/, female speakers.
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Figure 30: Correlation coefficient rc between IF and GMR glottal features, Direct
measurement features, phoneme /ux/, female speakers.
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Figure 31: Coefficient of determination rd between IF and GMR glottal features,
Direct measurement features, phoneme /iy/, male speakers.
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Figure 32: Coefficient of determination rd between IF and GMR glottal features,
Direct measurement features, phoneme /ae/, male speakers.

131



Male Speakers  /ux/

 

 

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub → NAQ

mfcc → NAQ
plp → NAQ

melsub41 → ClQ
melsub → ClQ

mfcc → ClQ
plp → ClQ

melsub41 → OQ
a

melsub → OQ
a

mfcc → OQ
a

plp → OQ
a

melsub41 → SQ
1

melsub → SQ
1

mfcc → SQ
1

plp → SQ
1

melsub41 → SQ
2

melsub → SQ
2

mfcc → SQ
2

plp → SQ
2

melsub41 → SQ
20−80

melsub → SQ
20−80

mfcc → SQ
20−80

plp → SQ
20−80

melsub41 → OQ
80

melsub → OQ
80

mfcc → OQ
80

plp → OQ
80

melsub41 → OQ
50

melsub → OQ
50

mfcc → OQ
50

plp → OQ
50

melsub41 → OQ
20

melsub → OQ
20

mfcc → OQ
20

plp → OQ
20

melsub41 → H1−H2
melsub → H1−H2

mfcc → H1−H2
plp → H1−H2

melsub41 → HRF
melsub → HRF

mfcc → HRF
plp → HRF

melsub41 → TILT
melsub → TILT

mfcc → TILT
plp → TILT

r
d

2

4

8

16

GMM Components
( N

r
 )

Figure 33: Coefficient of determination rd between IF and GMR glottal features,
Direct measurement features, phoneme /ux/, male speakers.
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Figure 34: Coefficient of determination rd between IF and GMR glottal features,
Direct measurement features, phoneme /iy/, female speakers.
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Figure 35: Coefficient of determination rd between IF and GMR glottal features,
Direct measurement features, phoneme /ae/, female speakers.
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Figure 36: Coefficient of determination rd between IF and GMR glottal features,
Direct measurement features, phoneme /ux/, female speakers.
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Figure 37: Correlation coefficient rc between IF and GMR glottal features, LF-
model features, phoneme /iy/, male speakers.

Female Speakers  /iy/

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → OQ
LF

melsub → OQ
LF

mfcc → OQ
LF

plp → OQ
LF

melsub41 → α
m

melsub → α
m

mfcc → α
m

plp → α
m

melsub41 → Qa
melsub → Qa

mfcc → Qa
plp → Qa

melsub41 → Rd
melsub → Rd

mfcc → Rd
plp → Rd

r
c

2

4

8

16

GMM Components
( N

r
 )

Figure 38: Correlation coefficient rc between IF and GMR glottal features, LF-
model features, phoneme /iy/, female speakers.
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Figure 39: Correlation coefficient rc between IF and GMR glottal features, LF-
model features, phoneme /ae/, male speakers.
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Figure 40: Correlation coefficient rc between IF and GMR glottal features, LF-
model features, phoneme /ae/, female speakers.
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Figure 41: Correlation coefficient rc between IF and GMR glottal features, LF-
model features, phoneme /ux/, male speakers.
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Figure 42: Correlation coefficient rc between IF and GMR glottal features, LF-
model features, phoneme /ux/, female speakers.
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Figure 43: Coefficient of determination rd between IF and GMR glottal features,
LF-model features, phoneme /iy/, male speakers.
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Figure 44: Coefficient of determination rd between IF and GMR glottal features,
LF-model features, phoneme /iy/, female speakers.
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Figure 45: Coefficient of determination rd between IF and GMR glottal features,
LF-model features, phoneme /ae/, male speakers.
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Figure 46: Coefficient of determination rd between IF and GMR glottal features,
LF-model features, phoneme /ae/, female speakers.
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Figure 47: Coefficient of determination rd between IF and GMR glottal features,
LF-model features, phoneme /ux/, male speakers.
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Figure 48: Coefficient of determination rd between IF and GMR glottal features,
LF-model features, phoneme /ux/, female speakers.
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Figure 49: Correlation coefficient rc (a) and coefficient of determination rd (b)
between RAPT and GMR pitch estimates (f0) for each choice of SEF and number of
GMM components (Nr).
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A.2 Training on Pitch and Delta Features

143



Male Speakers  /iy/

 

 

r
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N

r
 )

Figure 50: Correlation coefficient rc between IF and GMR glottal features. Effect
of delta features (∆) and pitch (f0). Direct measurement features, phoneme /iy/,
male speakers.
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Female Speakers  /iy/

 

 

r
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N

r
 )

Figure 51: Correlation coefficient rc between IF and GMR glottal features. Effect
of delta features (∆) and pitch (f0). Direct measurement features, phoneme /iy/,
female speakers.
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Male Speakers  /ae/

 

 

r
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N

r
 )

Figure 52: Correlation coefficient rc between IF and GMR glottal features. Effect
of delta features (∆) and pitch (f0). Direct measurement features, phoneme /ae/,
male speakers.
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Female Speakers  /ae/

 

 

r
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N

r
 )

Figure 53: Correlation coefficient rc between IF and GMR glottal features. Effect
of delta features (∆) and pitch (f0). Direct measurement features, phoneme /ae/,
female speakers.
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Male Speakers  /ux/

 

 

r
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N

r
 )

Figure 54: Correlation coefficient rc between IF and GMR glottal features. Effect
of delta features (∆) and pitch (f0). Direct measurement features, phoneme /ux/,
male speakers.
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Female Speakers  /ux/

 

 

r
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N

r
 )

Figure 55: Correlation coefficient rc between IF and GMR glottal features. Effect
of delta features (∆) and pitch (f0). Direct measurement features, phoneme /ux/,
female speakers.
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Male Speakers  /iy/

 

 

r
d

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N

r
 )

Figure 56: Coefficient of determination rd between IF and GMR glottal features.
Effect of delta features (∆) and pitch (f0). Direct measurement features, phoneme
/iy/, male speakers.
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Female Speakers  /iy/

 

 

r
d

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N

r
 )

Figure 57: Coefficient of determination rd between IF and GMR glottal features.
Effect of delta features (∆) and pitch (f0). Direct measurement features, phoneme
/iy/, female speakers.
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Male Speakers  /ae/

 

 

r
d

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N
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 )

Figure 58: Coefficient of determination rd between IF and GMR glottal features.
Effect of delta features (∆) and pitch (f0). Direct measurement features, phoneme
/ae/, male speakers.
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Female Speakers  /ae/

 

 

r
d

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2

melsub41+ f0 → SQ
2

melsub41+ ∆ + f0 → SQ
2

melsub41 → SQ
20−80

melsub41+ ∆ → SQ
20−80

melsub41+ f0 → SQ
20−80

melsub41+ ∆ + f0 → SQ
20−80

melsub41 → OQ
80

melsub41+ ∆ → OQ
80

melsub41+ f0 → OQ
80

melsub41+ ∆ + f0 → OQ
80

melsub41 → OQ
50

melsub41+ ∆ → OQ
50

melsub41+ f0 → OQ
50

melsub41+ ∆ + f0 → OQ
50

melsub41 → OQ
20

melsub41+ ∆ → OQ
20

melsub41+ f0 → OQ
20

melsub41+ ∆ + f0 → OQ
20

melsub41 → H1−H2
melsub41+ ∆ → H1−H2
melsub41+ f0 → H1−H2

melsub41+ ∆ + f0 → H1−H2

melsub41 → HRF
melsub41+ ∆ → HRF
melsub41+ f0 → HRF

melsub41+ ∆ + f0 → HRF

melsub41 → TILT
melsub41+ ∆ → TILT
melsub41+ f0 → TILT

melsub41+ ∆ + f0 → TILT

2

4

8

GMM Components
( N
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 )

Figure 59: Coefficient of determination rd between IF and GMR glottal features.
Effect of delta features (∆) and pitch (f0). Direct measurement features, phoneme
/ae/, female speakers.
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Male Speakers  /ux/

 

 

r
d

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

melsub41 → NAQ
melsub41+ ∆ → NAQ
melsub41+ f0 → NAQ

melsub41+ ∆ + f0 → NAQ

melsub41 → ClQ
melsub41+ ∆ → ClQ
melsub41+ f0 → ClQ

melsub41+ ∆ + f0 → ClQ

melsub41 → OQ
a

melsub41+ ∆ → OQ
a

melsub41+ f0 → OQ
a

melsub41+ ∆ + f0 → OQ
a

melsub41 → SQ
1

melsub41+ ∆ → SQ
1

melsub41+ f0 → SQ
1

melsub41+ ∆ + f0 → SQ
1

melsub41 → SQ
2

melsub41+ ∆ → SQ
2
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Figure 60: Coefficient of determination rd between IF and GMR glottal features.
Effect of delta features (∆) and pitch (f0). Direct measurement features, phoneme
/ux/, male speakers.
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Figure 61: Coefficient of determination rd between IF and GMR glottal features.
Effect of delta features (∆) and pitch (f0). Direct measurement features, phoneme
/ux/, female speakers.
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Figure 62: Correlation coefficient rc (a) and coefficient of determination rd (b)
between IF and GMR glottal features. Effect of delta features (∆) and pitch (f0).
LF-model features, phoneme /iy/, male speakers.
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Figure 63: Correlation coefficient rc (a) and coefficient of determination rd (b)
between IF and GMR glottal features. Effect of delta features (∆) and pitch (f0).
LF-model features, phoneme /iy/, female speakers.
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Figure 64: Correlation coefficient rc (a) and coefficient of determination rd (b)
between IF and GMR glottal features. Effect of delta features (∆) and pitch (f0).
LF-model features, phoneme /ae/, male speakers.
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Figure 65: Correlation coefficient rc (a) and coefficient of determination rd (b)
between IF and GMR glottal features. Effect of delta features (∆) and pitch (f0).
LF-model features, phoneme /ae/, female speakers.
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Figure 66: Correlation coefficient rc (a) and coefficient of determination rd (b)
between IF and GMR glottal features. Effect of delta features (∆) and pitch (f0).
LF-model features, phoneme /ux/, male speakers.
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Figure 67: Correlation coefficient rc (a) and coefficient of determination rd (b)
between IF and GMR glottal features. Effect of delta features (∆) and pitch (f0).
LF-model features, phoneme /ux/, female speakers.

161



A.3 Joint Feature / Joint Phoneme GMMs
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Figure 68: Correlation coefficient rc between IF and GMR glottal features, effect
of joint feature / joint phoneme GMMs compared against baseline, where a separate
GMM was trained for each feature and phoneme. Male speakers.
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Figure 69: Correlation coefficient rc between IF and GMR glottal features, effect
of joint feature / joint phoneme GMMs compared against baseline, where a separate
GMM was trained for each feature and phoneme. Female speakers.
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Figure 70: Coefficient of determination rd between IF and GMR glottal features,
effect of joint feature / joint phoneme GMMs compared against baseline, where a
separate GMM was trained for each feature and phoneme. Male speakers.
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Figure 71: Coefficient of determination rd between IF and GMR glottal features,
effect of joint feature / joint phoneme GMMs compared against baseline, where a
separate GMM was trained for each feature and phoneme. Female speakers.
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A.4 Training on Additional Phonemes
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Figure 72: Correlation coefficient rc between IF and GMR glottal features, effect
of training / testing on additional phonemes compared against baseline where only
/iy/, /ae/, and /ux/ were processed. Male speakers.
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Figure 73: Correlation coefficient rc between IF and GMR glottal features, effect
of training / testing on additional phonemes compared against baseline where only
/iy/, /ae/, and /ux/ were processed. Female speakers.
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Figure 74: Coefficient of determination rd between IF and GMR glottal features,
effect of training / testing on additional phonemes compared against baseline where
only /iy/, /ae/, and /ux/ were processed. Male speakers.

170



Female Speakers

 

 

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 
 
(/iy/ /ae/ /ux/)

 
 
OQ

lf
 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
α

m
 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
Qa (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
Rd (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
NAQ (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
ClQ (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
OQ

a
 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
SQ

1
 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
SQ

2
 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
SQ

2080
 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
OQ

80
 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
OQ

50
 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
OQ

20
 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
H1−H2 (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
HRF (stationary vowels)

 
 
(all voiced phn.)

 
 
(/iy/ /ae/ /ux/)

 
 
TILT (stationary vowels)

 
 
(all voiced phn.)

r
d

GMM Components
(N

r
)         

2

4

8

16

32

64

Figure 75: Coefficient of determination rd between IF and GMR glottal features,
effect of training / testing on additional phonemes compared against baseline where
only /iy/, /ae/, and /ux/ were processed. Female speakers.
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APPENDIX B

CORRESPONDENCE BETWEEN

ELECTROGLOTTOGRAPH AND GLOTTAL

WAVEFORM FEATURES

B.1 Introduction

The electroglottograph (EGG) signal can be regarded as a potential source of glottal

features for the system proposed in Chapter 7, as it contains voice source information

that is unaffected by the vocal tract and can be obtained with minimal inconvenience

to the subject (Section 3.1.2). As the electroglottograph signal is a measure of vocal

fold contact, the utility of EGG-derived features as outputs of the proposed Gaus-

sian mixture regression (GMR) feature transformation procedure is dependent on the

existence of a relationship between EGG (contact) and glottal waveform (airflow)

features. This is because changes in airflow are what ultimately produce variations in

the acoustic speech signal and its spectral envelope. Although a strong motivation for

focusing on IF glottal features as GMR estimation targets on the remainder of this

thesis stems from the unavailability of a sufficiently large EGG corpus of continuous

speech,1 initial experiments were performed to evaluate the correspondence between

specific EGG and glottal airflow features. In what follows, these experiments are de-

scribed and their results are discussed in an effort to evaluate the potential usefulness

of the EGG signal within the context of the present work.

1The two EGG corpora initially considered for the research presented in this thesis contained
either a large number of utterances (50) from a small number of speakers (7 males, 5 females) [67]
or only 3 short utterances (and a total of 3 sentence texts) for 25 male and 27 female speakers [23].
Neither of these corpora contained the simultaneous phonetic and speaker diversity needed to train
a generalizable, speaker-independent GMR model.)
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B.2 EGG Features

Because the EGG signal transduces vocal fold contact, its salient features are some-

what different from those of the glottal waveform. Specifically, the information pro-

vided by the EGG waveform l[n] is mostly related to the opening and closing phases

of the glottal cycle. This is because during the open glottal phase, where the vocal

folds are almost fully decontacted, the EGG signal becomes largely insensitive to fur-

ther opening of the glottis and corresponding increases in glottal airflow. Conversely,

during the closed phase, the EGG may register additional contact area between the

vocal folds, due to their three-dimensional nature, even after the glottis has fully

closed and no changes in airflow are taking place [15].

Generally, the glottal closure instant (GCI) is easily observable as a large positive

peak in the derivative of the EGG signal l′[n], as shown in Figure 76. Detection of

the glottal opening instant, however, can be somewhat ambiguous due to strands of

mucus that form across the glottis during the beginning of the opening phase [24],

resulting in reduced impedance across the larynx. This is a possible explanation for

the multiple negative peaks observed in Figure 76 in the vicinity of the opening phase.

Such additional peaks may be due to the breaking of a mucus bridge, which causes

a quick increase in impedance that may be misinterpreted on the EGG waveform as

an instant of glottal opening even though the actual parting of the vocal folds (and

the start of airflow) will have commenced sometime before.

In consideration of the EGG signal’s limitations, the five time-domain EGG fea-

tures used in this study focus on the contacting and decontacting phases of the EGG

cycle. Four of these measures are intended to provide similar information to the

airflow-based open quotient. The OQeggXX measures were obtained by thresholding

[99, 101] the EGG signal at 20%, 50%, or 80% of its maximum amplitude, as shown

in Figure 76. The interval of the glottal cycle above the threshold (high contact) was

denoted as the closed glottal phase and the interval below the threshold (low contact)
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as the open glottal phase. The open quotient measures were then computed as

OQeggXX =
tcXX − toXX

T0
, (45)

where T0 is the length of the pitch period, defined as the interval between consecutive

EGG-derivative peaks tpk. An additional OQ measure, OQEGGpk, was computed using

Howard’s method [64], where the positive peak of l′[n] (tpk in Figure 76) denotes the

beginning of the closed glottal phase. Under this method, the start of the glottal open

phase is defined as the instant where the EGG waveform crosses a 35% threshold of

its maximum amplitude.

Because the EGG signal is insensitive during much of the open phase, the minima

of l[n] cannot be used to detect the point of maximum glottal flow. Therefore, an

alternative definition of speed quotient, proposed in [101], was used. The EGG-based

speed quotient was computed in a similar way to the glottal airflow feature SQ20-80

(Section 6.2.2.1). Amplitude thresholds were set at 20% and 80% of the maximum

EGG amplitude, and the positive and negative threshold crossing instants (tc20, tc80,

to80, to20) were obtained as shown in Figure 76. The speed quotient was then computed

as

SQEGG =
to20 − to80
tc80 − tc20

. (46)

In an effort to explore possible relationships between other types of variation in

the EGG waveform’s shape and existing airflow features, the coarse time-domain

structure of the EGG signal was represented as a set of DCT coefficients. For the

kth pitch cycle lk[n], which begins at the kth GCI and ends at the (k + 1)th GCI,

a Hamming window w[n] was applied to reduce edge effects. Then, to reduce the

effect of pitch variations, lk[n]w[n] was resampled to 200 points, and the DCT was

computed from the resampled, windowed EGG pitch cycle l̂k[n] as follows:

Dm =
√

2
N

∑N−1
n=0 l̂k[n] cos

[

πm
N

(n+ 0.5)
]

m = 0, ... ,M − 1. (47)
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Figure 76: Electroglottograph (EGG) and acoustic speech signals for a vowel utter-
ance.
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The first 5 DCT coefficients [D1, ... , D5] were retained, as they were found to contain,

on average, over 98% of the energy in l̂[n]. D0 was not used, as it is a measure of

DC-offset.

B.3 Speech Data and Feature Extraction

The data used for the experiments that follow came from the corpus by D.G. Childers,

which may be obtained from the CD-ROM accompanying his book [23]. The corpus

contains speakers with non-pathological larynges performing sustained utterances of

12 American English vowels. For each utterance, simultaneous acoustic and elec-

troglottograph signals were recorded to digital media at a 10 kHz sampling rate

(16-bit resolution). The acoustic speech signals were obtained using an Electro-Voice

RE-10 microphone located 6 inches from the speaker’s lips, and an electroglottograph

by Synchrovoice, Inc. was used to obtain the EGG signals. A microphone correction

transfer function was used to correct for low-frequency microphone distortions, as

discussed in [25].

A set of 24 male and 24 female utterances of the vowel /AA/ (as in Bach) was

selected for this study, as the high first-formant of the /AA/ vowel facilitates inverse

filtering. Each utterance was roughly 2 seconds long. Because the EGG signal is

measured near the larynx, the glottal events registered by the laryngograph occur

sometime before the corresponding events in the acoustic speech signal, due to the

physical delay caused by the length of the vocal tract and the distance between the

subject and the microphone. (This effect can be observed in Figure 76, where the

glottal closure instant, as evidenced by the positive peak of the EGG derivative, still

occurs slightly before the corresponding energy increase in the speech signal despite

an approximate correction for the time-delay.) The exact time delay is dependent on

the vocal tract length of each speaker, and must be accurately determined to allow

for simultaneous, pitch-synchronous analysis of the EGG and speech signals. The
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speaker-dependent delay between the EGG signal l[n] and the acoustic speech signal

s[n] was determined by obtaining estimates of the glottal closure instants (GCI) from

s[n] via the DYPSA algorithm [85], and computing their average distance to the

locations of the positive peaks tpk of the EGG derivative l′[n] (i.e., the EGG-based

GCI estimates). The delay dl between l[n] and s[n] was found to be typically between

9 to 11 samples. Lower-frequency variations in the EGG signal, which occur due to

movement of the larynx and other neck structures [15, 27], and are not related to the

vocal fold vibratory pattern, were removed using a zero-phase high-pass filter with a

30 Hz cutoff.

Sustained vowel utterances are particularly amenable to inverse filtering (IF) be-

cause an approximately stationary vocal tract can be assumed. Glottal waveform

estimates were obtained via multiple-window closed-phase inverse filtering, in which

data from the closed glottal phase of each pitch period are combined to derive a more

robust estimate of the vocal tract filter (VTF) via the inclusion of additional normal

equations [18]. The length of each closed phase was set to 2p+ 1, where p, the VTF

order, was manually adjusted for each utterance to obtain glottal waveform estimates

with minimum ripple (by visual inspection). The optimal values of p varied from 10

to 14. Slight manual adjustments the EGG delay dl were also made as to ensure that

the EGG-estimated GCIs coincided with the onset of glottal closure on the glottal

waveform estimates.

EGG and glottal waveform features were extracted pitch-synchronously from each

utterance, with one observation per pitch cycle. Outlier removal was performed as

described in Section 6.3.1. This resulted in 9,477 and 5,358 observations for female

and male speakers, respectively. The mean and standard deviation for each IF and

EGG feature are shown in Tables 24 and 25, respectively. From these tables, an

important difference between EGG and IF features can already be observed. While

all of the open quotient (OQ) features obtained from IF features show largely different
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Table 24: Mean value and standard deviation for each EGG feature, obtained from
24 male and 24 female sustained utterances of the vowel /AA/.

Males Females
Mean Std. Mean Std.

OQEGG20 0.423 0.054 0.421 0.084
OQEGG50 0.560 0.053 0.585 0.072
OQEGG80 0.712 0.041 0.753 0.059
OQEGGpk 0.540 0.057 0.551 0.077
SQEGG 5.72 3.3 4.80 1.8

means across genders, the EGG-based OQ features do not vary much between males

and females. This result suggests a similar conclusion as the studies in [37, 101], where

airflow-based OQ was found to vary significantly across different vocal intensities while

EGG-based OQ did not. Because the open quotient is known to vary with respect to

vocal intensity, the authors concluded that the EGG-based “OQ” measures are not

indicative of the relative duration of the open and closed phases of the glottal airflow

cycle.

B.4 Rank Correlation between Glottal Waveform and EGG

Time-Domain Features

An initial assessment of the relationship between glottal airflow and vocal fold con-

tact features was obtained by examining the Spearman rank-correlation coefficient rr

(defined in Equation 9) between each IF and EGG feature pair. All experiments were

conducted separately for each gender. As discussed in Section 4.4, rr can be used

to measure the strength of a possibly non-linear, monotonic relationship between a

pair of features, with rr ≈ 1 indicating that one feature can be well-approximated

as a monotonic function of the other. The rr values across all speakers, shown in

Table 26, indicate relationships between feature pairs that are usually weak, with

nearly all values of |rr| below 0.5. The speaker-dependent nature of the correlations

between EGG and IF features is evidenced in Table 27, which shows the 25th and
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Table 25: Mean value and standard deviation for each glottal waveform feature,
obtained from 24 male and 24 female sustained utterances of the vowel /AA/ via
inverse filtering (IF).

Males Females
Mean Std. Mean Std.

OQLF 0.439 0.15 0.781 0.12
αm 0.826 0.015 0.838 0.022
Qa 0.140 0.075 0.310 0.16
Rd 1.20 0.49 2.24 0.69
NAQ 0.163 0.068 0.183 0.041
ClQ 0.381 0.15 0.361 0.083
OQa 0.395 0.14 0.761 0.13
SQ1 1.06 0.49 1.85 0.61
SQ2 0.518 0.31 1.45 0.62
SQ20-80 0.794 0.73 2.51 1.1
OQ20 0.478 0.16 0.760 0.13
OQ50 0.231 0.081 0.542 0.11
OQ80 0.100 0.050 0.316 0.088
H1-H2 -5.97 0.82 -6.11 0.86
HRF 15.7 2.9 11.4 1.5
TILT -37.0 4.6 -47.2 5.9
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75th percentiles of rr when correlation is computed separately on individual speakers.

The results show that there is moderate-to-high correlation (0.60 > |rr| > 0.76) on

a few feature pairs for more than one speaker. However, the low |rr| values at the

opposite percentile indicate that these relationships do not persist across speakers.

In some cases (e.g., TILT for male speakers), the interquartile range shows a change

in sign, indicating that the relationship between the EGG and IF feature tends to be

monotonically increasing for some speakers, and monotonically decreasing for others.

B.5 Estimation of Airflow Features from Contact Features

While the rank-correlation coefficient is a useful tool for measuring relationships be-

tween pairs of features, it does not provide information about possible relationships

between an IF feature and a set of EGG features. To investigate this possibility, the

GMR feature transformation method was applied to the estimation of glottal wave-

form features (obtained via IF) through the transformation of a set of EGG features.

For each gender and each IF feature, GMMs were trained using all 24 speakers, with

the number of Gaussian mixtures Nr varying from 2 to 16. For each IF feature, the

GMMs were trained using either the set of EGG DCT coefficients {D1, ... , D5} or

the set of five time-domain EGG features {OQEGG20, OQEGG50, OQEGG80, OQEGGpk,

SQEGG}. Two-thirds of the observations were randomly selected for training and the

rest were used for testing. In this way, both the training and testing data contained

observations from the same speakers, producing a best-case-scenario that is helpful

in detecting any potential multivariate relationships.

The ability to transform a set of EGG features into each IF feature was evaluated

by the linear correlation coefficient rc between the IF feature observations and the

estimates produced by transforming either the time-domain or DCT EGG features

using the GMR procedure (Section 4.3). The correlation coefficient rc was computed

separately for each speaker. The 25th, 50th, and 75th percentiles are given in Tables
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Table 26: Spearman rank-correlation coefficient rr between IF and EGG features
obtained from 24 male and 24 female sustained utterances of the vowel /AA/.

OQEGG20 OQEGG50 OQEGG80 OQEGGpk SQEGG

OQLF Males 0.43 0.40 0.31 0.36 -0.18
Females -0.16 -0.10 -0.11 -0.06 0.01

αm Males 0.22 0.28 0.23 0.28 -0.14
Females 0.07 0.08 0.11 0.05 -0.11

Qa Males 0.34 0.11 -0.04 0.11 -0.06
Females 0.07 0.13 0.15 0.06 -0.19

Rd Males 0.26 -0.02 -0.15 0.04 -0.06
Females 0.04 0.16 0.21 0.09 -0.22

NAQ Males 0.06 -0.17 -0.28 -0.13 -0.02
Females 0.21 0.26 0.22 0.23 -0.37

ClQ Males -0.05 -0.32 -0.40 -0.25 -0.01
Females 0.06 0.15 0.16 0.11 -0.24

OQa Males 0.44 0.35 0.16 0.35 -0.39
Females 0.06 0.09 0.07 0.03 0.10

SQ1 Males 0.25 0.48 0.48 0.40 -0.06
Females -0.10 -0.14 -0.15 -0.12 0.16

SQ2 Males 0.33 0.57 0.57 0.54 -0.33
Females -0.16 -0.25 -0.25 -0.25 0.21

SQ20-80 Males 0.45 0.33 0.12 0.33 -0.04
Females -0.12 -0.14 -0.12 -0.10 0.10

OQ20 Males -0.22 -0.14 -0.08 -0.17 -0.06
Females -0.15 -0.05 -0.09 -0.01 -0.24

OQ50 Males 0.22 0.10 0.00 0.14 -0.29
Females -0.36 -0.32 -0.37 -0.35 -0.08

OQ80 Males 0.11 0.06 -0.03 0.10 -0.42
Females -0.40 -0.35 -0.39 -0.37 -0.14

H1-H2 Males 0.13 0.01 -0.02 -0.02 0.13
Females -0.05 -0.09 -0.11 -0.10 0.02

HRF Males -0.35 -0.20 -0.02 -0.24 0.32
Females -0.07 -0.18 -0.23 -0.11 0.22

TILT Males -0.32 -0.22 -0.12 -0.19 0.44
Females -0.05 -0.13 -0.15 -0.07 0.11
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Table 27: Spearman rank-correlation coefficient rr between IF and EGG features.
Interquartile-range (IQR) across speakers.

OQEGG20 OQEGG50 OQEGG80 OQEGGpk SQEGG

OQLF Males -.02, .46 -.05, .58 -.12, .49 -.05, .61 -.40, .12
Females -.09, .12 -.17, .16 -.15, .10 -.17, .16 -.19, .24

αm Males -.20, .16 -.26, .13 -.22, .11 -.24, .11 -.19, .25
Females -.10, .12 -.06, .19 -.06, .14 -.05, .23 -.13, .06

Qa Males -.21, .23 -.13, .25 -.06, .22 -.15, .22 -.33, -.04
Females -.08, .10 -.03, .22 -.05, .15 -.01, .22 -.15, .09

Rd Males -.17, .25 -.17, .24 -.05, .21 -.18, .22 -.29, .00
Females -.10, .06 -.09, .25 -.06, .19 -.04, .23 -.26, .10

NAQ Males -.21, .35 -.24, .34 -.21, .32 -.27, .28 -.27, .16
Females -.16, .52 -.17, .37 -.08, .41 -.18, .42 -.41, .12

ClQ Males -.20, .31 -.30, .22 -.25, .11 -.33, .15 -.15, .16
Females -.18, .19 -.16, .24 -.10, .20 -.16, .29 -.23, .17

OQa Males .07, .52 .13, .56 .03, .51 .10, .56 -.49, .15
Females -.13, .21 -.06, .29 -.13, .29 -.01, .22 -.15, .13

SQ1 Males -.19, .50 -.18, .54 -.21, .39 -.12, .57 -.27, .15
Females -.19, .18 -.23, .26 -.20, .14 -.26, .30 -.13, .29

SQ2 Males -.09, .33 -.08, .35 -.18, .28 -.09, .38 -.20, .12
Females -.10, .23 -.17, .16 -.16, .10 -.21, .17 -.13, .18

SQ20-80 Males .10, .60 .26, .73 .03, .58 .29, .76 -.41, -.09
Females -.30, .26 -.38, .39 -.25, .18 -.32, .42 -.19, .33

OQ20 Males -.30, .27 -.30, .20 -.25, .20 -.37, .20 -.27, .16
Females -.30, .26 -.22, .28 -.21, .21 -.21, .29 -.18, .42

OQ50 Males -.14, .49 .00, .28 -.14, .27 -.02, .29 -.50, .05
Females -.34, .28 -.15, .30 -.12, .25 -.24, .33 -.12, .44

OQ80 Males -.16, .56 -.15, .59 -.31, .45 -.07, .60 -.62, .02
Females -.28, .27 .05, .36 .02, .32 -.12, .41 -.24, .27

H1-H2 Males -.11, .04 -.17, .03 -.14, .05 -.13, .03 -.06, .04
Females -.02, .06 -.07, .04 -.04, .02 -.05, .05 -.04, .05

HRF Males -.52, -.11 -.54, -.18 -.45, -.11 -.61, -.15 .10, .51
Females -.20, .16 -.29, .07 -.27, .01 -.26, .04 -.05, .21

TILT Males -.46, .36 -.44, .33 -.56, .27 -.39, .32 .04, .58
Females -.29, .14 -.37, .04 -.30, .07 -.35, .08 -.09, .37
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28, 29, 30, respectively. In Table 28, the near-zero (and sometimes negative) rc

values obtained in most cases for the 25th percentile speaker indicate that a consistent

correlation across speakers could not be maintained for any IF feature. Nevertheless,

as shown in Table 30, the 75th percentile speakers did obtain moderate to high values

(0.60 – 0.81) for the following IF features: OQa, SQ20-80, OQ50, OQ80, and TILT for

male speakers, as well as NAQ for female speakers. This result suggests that for some

speakers, the EGG may in fact contain information that is approximately equivalent

to the aforementioned airflow features, even if the relation is speaker-specific. It is

interesting to note that when comparing time-domain to DCT EGG features, there

was no obvious trend as to which feature set led to more accurate estimates of the

IF features. These feature sets appear to be similar in their overall ability to model

glottal airflow features.

B.6 Conclusion

The results presented in the previous two sections demonstrate a complex, speaker-

specific relationship between EGG and glottal airflow features. Possible explanations

for the speaker-dependence of these relationships include imprecise placement of the

EGG electrodes and variations in extra-laryngeal neck structures, both of which can

affect the EGG signal [27]. While the results presented herein are specific to sustained

utterances and to the EGG feature extraction methods employed, the lack of a consis-

tent contact-airflow relationship across speakers puts into question the usefulness of

EGG features as estimation targets for the glottal waveform characterization method

proposed in this thesis. This is because changes in the EGG waveform that are not re-

lated to specific changes in the glottal airflow pattern are unlikely to have consistent,

predictable acoustic effects, thus precluding the estimation of EGG features from the

spectral envelope of the acoustic speech signal. Additionally, the limited size of avail-

able EGG corpora, described in Section B.1, is unsuitable for the goal of training a
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large, speaker-independent statistical feature transformation model. Overall, unless a

more intricate procedure for extracting features from the EGG signal that overcomes

inter-speaker variation is found, the usefulness of the EGG signal within the context

of the research goals of this thesis appears to be limited to providing voiced/unvoiced

detection and GCI information, both of which can be well-approximated from a clean

acoustic speech signal via well-established implementations of pitch and GCI detec-

tion algorithms [85, 109, 19, 102].
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Table 28: Correlation coefficient rc between IF and GMR airflow feature estimates.
Nr denotes number of GMM components. GMR estimates obtained by transforming
time-domain (tfeat) or DCT-based EGG features, respectively. 25th percentile across
speakers.

Nr = 2 Nr = 4 Nr = 8 Nr = 16
tfeat DCT tfeat DCT tfeat DCT tfeat DCT

OQLF Males -0.19 -0.07 0.02 0.04 -0.01 0.01 0.17 0.07
Females -0.12 -0.04 -0.10 -0.06 -0.05 0.06 0.00 0.10

αm Males -0.25 -0.10 -0.19 -0.17 -0.06 0.01 0.05 0.04
Females -0.17 -0.06 -0.03 -0.06 -0.09 -0.03 -0.02 0.05

Qa Males -0.16 -0.09 -0.05 0.00 -0.07 0.05 0.02 0.17
Females -0.15 0.01 -0.06 0.12 -0.01 0.09 0.05 0.07

Rd Males -0.14 -0.18 -0.03 -0.15 -0.23 0.08 0.02 -0.06
Females -0.14 0.03 -0.05 0.05 0.04 0.00 0.08 0.12

NAQ Males -0.09 -0.27 -0.06 -0.06 -0.07 -0.04 -0.13 0.08
Females -0.15 0.21 -0.13 0.02 -0.07 0.12 0.20 0.27

ClQ Males -0.04 0.03 -0.07 -0.18 -0.11 -0.22 0.04 0.00
Females -0.09 -0.08 -0.09 -0.10 -0.12 -0.02 0.04 0.05

OQa Males 0.00 -0.01 -0.21 0.00 0.05 0.10 0.15 0.21
Females -0.10 -0.17 -0.23 -0.16 -0.08 -0.06 0.09 0.04

SQ1 Males -0.24 -0.20 -0.09 -0.31 -0.20 -0.04 -0.05 0.08
Females -0.14 0.04 -0.05 -0.02 -0.07 -0.02 0.05 0.03

SQ2 Males -0.18 -0.25 -0.06 -0.16 -0.04 -0.02 -0.05 0.06
Females -0.10 -0.09 0.00 -0.14 0.01 -0.04 0.01 0.06

SQ20-80 Males -0.01 -0.02 0.12 0.01 -0.02 0.17 0.19 -0.03
Females -0.31 -0.06 -0.22 0.04 -0.06 0.05 0.06 0.21

OQ20 Males -0.11 -0.06 -0.05 -0.22 0.03 0.00 0.06 0.02
Females -0.28 -0.35 -0.26 -0.11 -0.10 -0.04 0.01 0.13

OQ50 Males -0.06 -0.30 -0.12 -0.20 0.11 0.08 0.26 0.08
Females -0.32 -0.21 -0.26 -0.15 -0.29 0.02 0.05 0.06

OQ80 Males -0.12 -0.13 0.13 0.08 0.08 -0.02 0.21 0.23
Females -0.32 -0.13 -0.16 -0.05 -0.07 -0.05 0.03 -0.04

H1-H2 Males -0.14 -0.12 -0.17 -0.11 -0.08 -0.10 -0.09 -0.10
Females -0.11 -0.04 -0.10 -0.05 -0.07 -0.06 -0.04 -0.05

HRF Males 0.02 -0.13 -0.02 0.10 -0.02 0.11 0.18 0.14
Females -0.08 -0.03 -0.07 0.07 -0.05 0.11 0.05 0.12

TILT Males 0.01 -0.04 -0.12 0.11 -0.02 0.12 0.23 0.20
Females -0.10 -0.10 -0.08 -0.02 -0.03 0.04 0.05 0.17
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Table 29: Correlation coefficient rc between IF and GMR airflow feature estimates.
Nr denotes number of GMM components. GMR estimates obtained by transform-
ing time-domain (tfeat) or DCT-based EGG features, respectively. Median across
speakers.

Nr = 2 Nr = 4 Nr = 8 Nr = 16
tfeat DCT tfeat DCT tfeat DCT tfeat DCT

OQLF Males 0.17 0.32 0.26 0.31 0.19 0.29 0.33 0.34
Females 0.00 0.15 -0.02 0.13 0.06 0.15 0.12 0.22

αm Males -0.10 0.11 -0.03 0.00 0.11 0.14 0.27 0.21
Females -0.02 0.15 0.08 0.11 0.04 0.13 0.15 0.17

Qa Males 0.12 0.02 0.03 0.15 0.13 0.17 0.20 0.24
Females -0.01 0.18 0.09 0.22 0.15 0.16 0.18 0.17

Rd Males 0.08 0.06 0.15 0.04 0.02 0.19 0.15 0.18
Females 0.02 0.17 0.08 0.22 0.12 0.16 0.15 0.19

NAQ Males 0.10 -0.01 0.17 0.11 0.20 0.12 0.24 0.18
Females 0.12 0.41 0.17 0.28 0.25 0.35 0.25 0.38

ClQ Males 0.15 0.21 0.15 0.15 0.16 0.05 0.23 0.26
Females 0.11 0.12 0.10 0.03 0.06 0.21 0.18 0.27

OQa Males 0.30 0.16 0.15 0.16 0.22 0.30 0.44 0.37
Females 0.08 0.04 -0.02 0.05 0.12 0.10 0.18 0.13

SQ1 Males 0.09 0.09 0.22 0.23 0.30 0.20 0.38 0.37
Females 0.02 0.25 0.08 0.09 0.11 0.16 0.23 0.27

SQ2 Males 0.13 -0.01 0.13 0.11 0.05 0.24 0.19 0.24
Females 0.00 0.22 0.12 0.11 0.09 0.19 0.13 0.24

SQ20-80 Males 0.31 0.29 0.29 0.37 0.42 0.39 0.54 0.46
Females -0.02 0.16 0.11 0.22 0.04 0.23 0.22 0.42

OQ20 Males 0.06 0.08 0.07 0.00 0.19 0.06 0.28 0.18
Females -0.04 -0.08 0.05 0.15 0.12 0.16 0.11 0.28

OQ50 Males 0.34 0.09 0.25 0.24 0.26 0.22 0.41 0.38
Females -0.11 0.14 0.08 0.13 0.09 0.13 0.21 0.21

OQ80 Males 0.17 0.22 0.29 0.38 0.33 0.37 0.44 0.48
Females 0.01 0.09 0.18 0.25 0.21 0.27 0.26 0.40

H1-H2 Males -0.03 -0.04 -0.04 -0.03 0.03 0.05 0.02 0.02
Females -0.04 0.00 -0.03 0.02 0.02 0.02 0.01 0.03

HRF Males 0.18 0.21 0.27 0.21 0.25 0.30 0.40 0.34
Females 0.07 0.15 0.07 0.19 0.06 0.23 0.18 0.24

TILT Males 0.36 0.21 0.19 0.27 0.21 0.45 0.41 0.48
Females 0.16 0.07 0.08 0.13 0.15 0.14 0.22 0.29
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Table 30: Correlation coefficient rc between IF and GMR airflow feature estimates.
Nr denotes number of GMM components. GMR estimates obtained by transforming
time-domain (tfeat) or DCT-based EGG features, respectively. 75th percentile across
speakers.

Nr = 2 Nr = 4 Nr = 8 Nr = 16
tfeat DCT tfeat DCT tfeat DCT tfeat DCT

OQLF Males 0.52 0.56 0.56 0.46 0.57 0.57 0.58 0.56
Females 0.12 0.27 0.20 0.25 0.31 0.31 0.35 0.33

αm Males 0.21 0.34 0.16 0.26 0.29 0.26 0.42 0.38
Females 0.15 0.28 0.18 0.28 0.20 0.36 0.33 0.35

Qa Males 0.41 0.19 0.38 0.34 0.25 0.35 0.44 0.46
Females 0.09 0.30 0.18 0.39 0.29 0.33 0.39 0.39

Rd Males 0.18 0.21 0.33 0.25 0.22 0.25 0.30 0.41
Females 0.10 0.31 0.16 0.35 0.28 0.30 0.32 0.36

NAQ Males 0.22 0.23 0.40 0.32 0.37 0.28 0.54 0.36
Females 0.33 0.56 0.37 0.47 0.39 0.46 0.54 0.64

ClQ Males 0.27 0.42 0.27 0.36 0.32 0.22 0.42 0.34
Females 0.22 0.43 0.37 0.29 0.26 0.30 0.29 0.45

OQa Males 0.62 0.47 0.37 0.46 0.40 0.48 0.57 0.64
Females 0.22 0.12 0.12 0.23 0.38 0.21 0.50 0.42

SQ1 Males 0.36 0.43 0.40 0.42 0.50 0.55 0.52 0.49
Females 0.21 0.36 0.26 0.29 0.31 0.36 0.39 0.49

SQ2 Males 0.31 0.39 0.33 0.37 0.28 0.40 0.46 0.53
Females 0.21 0.33 0.20 0.25 0.25 0.26 0.30 0.43

SQ20-80 Males 0.69 0.62 0.63 0.56 0.75 0.63 0.81 0.67
Females 0.20 0.42 0.33 0.48 0.40 0.46 0.41 0.51

OQ20 Males 0.26 0.19 0.35 0.21 0.32 0.37 0.47 0.32
Females 0.18 0.08 0.27 0.48 0.26 0.36 0.36 0.47

OQ50 Males 0.62 0.45 0.43 0.41 0.44 0.52 0.66 0.59
Females 0.23 0.48 0.30 0.24 0.26 0.31 0.41 0.42

OQ80 Males 0.48 0.66 0.59 0.60 0.61 0.55 0.71 0.72
Females 0.25 0.27 0.44 0.53 0.43 0.56 0.49 0.65

H1-H2 Males 0.06 0.16 0.13 0.13 0.18 0.24 0.19 0.25
Females 0.02 0.10 0.02 0.07 0.07 0.06 0.08 0.11

HRF Males 0.50 0.58 0.53 0.49 0.52 0.50 0.57 0.59
Females 0.23 0.29 0.29 0.34 0.26 0.36 0.39 0.42

TILT Males 0.49 0.46 0.37 0.53 0.39 0.61 0.69 0.57
Females 0.26 0.26 0.23 0.25 0.33 0.30 0.35 0.37
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