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SUMMARY 

N \ 
H = ^ — (P* + QJ[) + Y [ V 3 + V k + . . .]> (1) 

where N is the number of oscillators, uû  are the positive frequencies 

of the harmonic approximation, y I s the nonlinear coupling parameter, 

and V^, V^, etc., are the cubic, quartic, etc., polynomials in and 

P̂ .. The purpose of this investigation is to demonstrate that macro

scopic irreversibility is an inherent property of physical nearly-

linear oscillator systems, even in the limit as the nonlinear parameter 

Y tends toward zero. In particular, we focus our attention on the 

individual trajectories of Hamiltonian (l) and seek to determine the 

conditions under which most of these trajectories exhibit stochastic 

behavior, by which we mean that a trajectory wanders more or less ran

domly over part or most of the energy surface. From the viewpoint of 

thermodynamics, most of the microscopic, mechanical states (Q^, P ) on 

a widely stochastic trajectory would correspond to macroscopic thermo

dynamic equilibrium states (P,V,T, etc.). Thus starting the trajectory 

in a , ,disequilibrium n (Q .̂, P ) state would inevitably lead to equili

brium, giving the appearance of irreversibility. In essence, then, our 

central purpose is to expose those essential properties of Hamiltonian 

This thesis investigates the classical motion of nonlinear 

oscillator systems governed by Hamiltonians having the nearly-linear 

form 



(l) that are crucial for irreversibility as the nonlinear coupling tends 

to zero. 

For the nearly-linear oscillator models described by Hamiltonian 

(l), we demonstrate that widespread stochasticity can occur for 

arbitrarily small but nonzero y provided that N ^ 3 and that the 

satisfy commensurability conditions which allow certain of the and/or 

interaction terms to strongly couple all internal degrees of freedom. 

This widespread stochasticity is demonstrated through an extensive com

puter study of the case N = 3 5 a case which is especially suitable for 

study since it possesses much of the complexity of the full many-body 

problem and yet is sufficiently simple to yield to graphical analysis, 

which provides a strikingly lucid pictorial display of the random motion 

of individual trajectories. 

The computer study also shows that system trajectories originally 

close to each other in a stochastic region of phase space can move 

apart more or less exponentially with time. This exponential stirring 

of phase space is of the type which Gibbs envisioned as leading to 

irreversible behavior. In particular, the slightest uncertainty in the 

initial state leads very quickly to complete uncertainty of the final 

state. Since the nonlinear oscillator systems, thought of as a model 

for a solid, share ownership of exponentially divergent trajectories 

with gaseous systems, we are led to believe that this exponentiating 

property is perhaps the ultimate source of irreversibility in physical 

systems exhibiting an approach to equilibrium. 

Having determined criteria for which nearly-linear Hamiltonian 

systems may exhibit stochastic behavior and having established that 
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stochastic systems may exhibit exponentially separating orbits, the 

thesis then directs its attention to elaborating further details of 

the motion in the stochastic region of phase space. In particular, 

attention is focused on the periodic orbits which appear to be dense 

throughout such regions. If each of these periodic orbits could be 

shown to be unstable, in the sense that neighboring non-periodic orbits 

would all diverge exponentially, then one would anticipate that each 

non-periodic orbit uniformly covers the whole stochastic region in an 

almost random fashion. In the graphical procedures used and described 

herein, periodic orbits appear as fixed points in a plane area-preserving 

mapping. Stability of the periodic orbits is thereby reduced to 

determining the stability of fixed points of the associated mapping. 

Using recently developed numerical procedures, it is established that 

a large and perhaps dense class of these fixed points is indeed unstable. 

Nonetheless, it appears that some stable periodic orbits continue to 

exist, which disallows uniform stochasticity throughout the basically 

unstable region. 
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CHAPTER I 

INTRODUCTION 

Classical statistical mechanics is founded on the premise that 

the phase space trajectories for an isolated system wander freely over 

the energy surface. It then deduces that the vast majority of mechani

cal, microstates (Q^, P^) on the energy surface correspond to macro

scopic, thermodynamic equilibrium states (P, V, T, etc.). One thus 

expects that an isolated system—started in some disequilibrium state 

and subsequently allowed to follow its assumed tendency to wander freely 

over the energy surface—would surely tend to equilibrium. Certainly 

the approach to equilibrium might not be monotonic and even large fluc

tuations from equilibrium might occur and recur; nonetheless, the 

general trend would be for the system to approach equilibrium and remain 

there. Using such partially intuitive arguments for a foundation, 

statistical mechanics has erected a theoretical structure which correctly 

predicts all calculable equilibrium properties and which accurately 

describes non-equilibrium properties, at least for a limited range of 

systems and disequilibrium initial states. 

From the viewpoint of classical mechanics, however, the enormous 

success of statistical mechanics appears somewhat paradoxical. All the 

solvable problems of classical mechanics yield trajectories which do 

not wander freely over the energy surface. Indeed a survey of the sol

vable problems shows that they all possess as many single-valued, 

analytic constants of the motion as there are degrees of freedom. Such 
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systems are said to be integrable, and the trajectory for such a system 

with N degrees of freedom can wander freely only over an N-dimensional 

subspace of the (2N-1)-dimensional energy surface. 

This gap between statistical mechanics and classical mechanics 

does not narrow even if one includes those nonintegrable systems which 

can be treated by classical perturbation theory. Here one considers 

systems with N degrees of freedom governed by Hamiltonians of the form 

H = H Q + Y V , (1-1) 

where yV represents a small perturbation to the integrable Hamiltonian 

H , and H Q may, without loss of generality, be taken to be a function 

of the generalized momentum variables P^ alone. 1 For such systems a 
2 3 k recent theorem due to Kolmogorov, Arnold, and Moser proves that, 

under very weak and general conditions, Hamiltonians (i-l) do not gen

erate trajectories which wander freely over the (2N-1)-dimensional 

energy surface. Indeed the Kolmogorov-Arnold-Moser (hereafter called 

KAM) Theorem asserts that Hamiltonians (i-l) yield trajectories which, 

excepting a set of small measure, lie on smooth, N-dimensional, integral 

surfaces called tori embedded in the 2N-dimensional phase space pro

vided, among other things, 

(i) the perturbation yV is sufficiently small, and 

(ii) the determinant of the matrix [3 2H / s P.oP.} does not 
O 1 J 

vanish identically. 

In essence, the KAM Theorem asserts that, even though nonintegrable, 

Hamiltonians (i-l) display integrable system behavior for the most part. 
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Although statistical mechanics is much too well established and 

experimentally verified to be shaken by the KAM results, the findings 

of KAM do at first glance come perilously close to forming a breach 

rather than a gap between statistical mechanics and classical mechanics. 

In particular, statistical mechanics frequently considers systems of 

the type governed by Hamiltonians (i-l) and asserts that their equili

brium properties may be calculated using the canonical probability 

—H /kT 

distribution e o / , where k is the Boltzmann constant and T is the 

absolute temperature. Most especially one should note that this cano

nical distribution neglects the weak perturbation yV9 tacitly assuming 

that the perturbation is too small to influence equilibrium properties 

even though it, and it alone, serves to bring the system to equilibrium. 

In short, statistical mechanics makes the uncommon physical assumption 

that a very small cause results in an incredibly large effect. Despite 

these facts, there exists only a gap rather than a breach because 

statistical mechanics is completely non-committal in regard to the char

acteristics of the yV perturbation which are required of systems falling 

under its jurisdiction. As a result, no contradiction exists. 

But aside from any element of contradiction, there are several 

reasons for seeking classical mechanical models which can be shown to 

exhibit the properties assumed by statistical mechanics. First, there 

is the desire, even if academic, to answer a host of troublesome ques

tions concerning the foundations of statistical mechanics; for until 

all such questions are answered, there remains a lingering, even if 

minor, suspicion that there exist physically interesting N-body systems 

which lie outside the province of statistical mechanics. But perhaps 
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more important, it is conjectured that such models might prove inval

uable in the development of a general theory for irreversible processes. 

For both these reasons, it is highly gratifying to note that recent 

computer experiments, supported by theoretical work, indicate that the 

conditions of the KAM Theorem form the dividing line between statistical 

and non-statistical trajectories for the systems of Hamiltonian (i-l). 

We now discuss briefly seme of the recent work which demonstrates that 

violation of KAM Condition (i) leads to freely wandering trajectories 

when the perturbation yV is large; the remainder of this thesis then 

demonstrates that, provided KAM Condition (ii) is violated, statistical 

behavior can occur no matter how small the perturbation yV, thus demon

strating that small causes can indeed have enormous consequences. 

5 6 7 

Although not the first, the work of Henon and Heiles pro

vides perhaps the clearest example of freely wandering trajectories, 

once KAM Condition (i) is violated. These investigators chose to con

sider the bounded motion generated by the two-oscillator Hamiltonian 

H = (l / 2)(p 2 + p 2 + q 2 + q 2 ) + q 2q - (l / 3)q 3 . (1-2) 
1 2 1 2 1 2 2 

In order to survey the nature of the trajectories for Hamiltonian (1-2), 

a Poincare' surface of section was utilized. 1^ We shall also refer to 

a surface of section as a level curve plane in this thesis. In applying 

this technique, one first notes that the trajectories for Hamiltonian 

(1-2) lie in a four-dimensional phase space (q ,p }q 5 p ) . However, 
1 1 2 2 

since the Hamiltonian (or energy) is a constant of the motion, we are 

permitted to plot trajectories in the three-space (q ,q ,p ), since p 
1 2 2 1 
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may be determined from Equation ( 1 - 2 ) . Let us now introduce as our 

surface of section (of the three-space) the plane (q ,p ), and consider 
2 2 

the set of points generated by a given trajectory as it intersects this 

surface of section; i.e., those (q ,p ) coordinates on a trajectory for 
2 2 

which q = 0 and p ^ 0 . If the perturbation term yV = q 2 q - (l / 3)q 3 

1 1 1 2 2 

is sufficiently small with respect to the unperturbed, integrable 

Hamiltonian H = ( 1 / 2 ) ( p 2 + p 2 + q 2 + q 2 ) , as it will be for the low 
° 1 2 1 2 

energy motion of Hamiltonian (l - 2 ) , then one may apply the KAM Theorem. 

In this situation, most trajectories will lie on smooth, two-dimensional 

integral surfaces, and the intersection points of each trajectory with 

the surface of section will form a curve. On the other hand at large 

energies where yV is not small with respect to H 0 and the KAM Condition 

(i) is violated, it is possible that each trajectory wanders freely over 

part or all of the (q ,q ,p ) space. In this event, the trajectory 
1 2 2 

intersection points with the surface of section would form a set of 

scattered points with little or no apparent correlation. Using this 

technique, Henon and Heiles surveyed the nature of the trajectories for 

Hamiltonian (l - 2 ) at three distinct energies. 

The results for the energy E = l /L2 are shown in Figure 1 . Here 

the system is seen to lie deep within the region of KAM stability, and 

we note that each trajectory investigated yields a curve of intersection 

points with the (q ,p ) plane. However at the increased energy E = l / 8 , 
2 2 

Figure 2 reveals the beginning of statistical or stochastic trajectories, 

since the scattered dots generated by a single trajectory cover more or 

less uniformly about 3 0 percent of the area allowed by the conservation 

of energy. Finally at the dissociation energy E = l/6, Figure 3 indi

cates that almost all trajectories are statistical in character since 
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Figure 1. Level Curves for the Henon and Heiles System for Energy 
E = 1/12. 



Figure 2. Level Curves for the Henon and Heiles System for Energy 
E = 1/8. 



Figure 3 . Level Curves for the Henon and Heiles System for Energ 
E = 1 / 6 . 
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the (q ? P 0 ) surface of section is now almost completely covered by the 

dots generated by a single trajectory. 

In order to pave the way for the following sections of this 

thesis, we now further illuminate the application of the KAM Theorem 

to the Henon-Heiles system. Our discussion will omit much mathematical 

detail and the interested reader is referred to any of several review 

articles.^-'^-lO, 1 6 - 1 9 pi r s-t ? 2.et us introduce into Hamiltonian ( 1 - 2 ) 

the canonical change of variables specified by 

qi = (2*V*cos v (I~5a) 

Hamiltonian ( 1 - 2 ) may then be written 

1 1 1 1 
H = J + J + 2%T J ^ cos cp + 2 " % J 2 cos(2cp + cp ) + (l-k) 

1 2 1 2 2 1 2 1 2 

1 1 1 a a. 
2 % J 2 cos(2cp - cp ) - 2 2 J 2 cos cp - (l/3v^)J 2 cos 3cp , 

1 2 1 2 2 2 2 2 

where the J\ are generalized momenta variables and the cp̂  are angle 

variables. Unfortunately, one may not apply the KAM Theorem directly 

to Hamiltonian ( 1 - 4 ) since H = J + J violates Condition (ii) of that 
0 1 2 

theorem. Nonetheless, we may introduce another canonical transfor

mation, 1 the details of which need not concern us here, such that 

Hamiltonian (l-h) becomes 
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H = H (j ,j ) + V(J ,J , e , e ), (1-5) 
u 1 2 12 12 

where the J. are new momenta variables and the G. are new angle vari-
I I 

ables, and where V may be written as a trigonometric series in the angle 

variables. Provided that the system energy is sufficiently small, we 

may prove that Hamiltonian (1-5) satisfies the assumptions of the KAM 

Theorem. 

In essence, the KAM Theorem is proved by eliminating all angle 

dependent terms from Hamiltonian (1-5) via a convergent sequence of 

canonical transformations, finally bringing the Hamiltonian to the 

clearly integrable form 

H = H(J ,J ). (1-6) 
1 2 

In illustration of this process, let us write Hamiltonian (1-5) as 
H = H (J 9J ) + f (J 9J )cos(m9 - n6 ) + . . . , ( 1 - 7 ) o i 2 m n 1 2 ! 2 

where only one angle-dependent term has been explicitly written out. 

A typical transformation equation which would be used to eliminate this 

explicit angle term has the form 

f (J ,J )cos(m0 - nG ) 
J' = J - ^ 1 2 3 2- + . . . , (1-8) 

1 1 (mf2 - nf2 ) 

1 2 
where Q.(J9J ) = dH /^J". . KAM Condition (i) insures that all the f 

i v i p' o' u c /i v ' mn 
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are small thereby aiding convergence of the procedure. KAM Condition 

(ii) insures that the J-dependent, denominators (mQ - nQ ) do not 
1 2 

vanish identically. KAM then proceed to prove that the sequence of 

canonical transformations leading to Hamiltonian ( 1 - 6 ) converges except 

in those small regions of phase space where one or more of the frequency 

denominators [mCl (J ,J ) - nCl (J ,J )] are small. Such denominators are 
1 1 2 2 1 2 

called resonant-denominators and the corresponding angle-dependent, 

interaction terms involving (m9 - nG ) are called resonant interactions. 
1 2 When all the f are small, the excluded regions affected by the re-mn ' D 

sonant interactions may be shown to possess small measure. However as 

the f increase, the excluded resonant regions also increase in size mn ' & 

eventually reaching the size of the allowed phase space. In particular, 

the excluded resonant width in phase space of each resonant interaction 

increases in size until the trajectories in almost every region of phase 

space are under the influence of many overlapping resonances. Intui

tively speaking, one then has the situation envisioned in the quantum 
20 

mechanical golden rule where an initial state (j ,J ) makes resonant 
l 2 

transitions to any of a density of final states leading to 
l 2 

irreversible behavior. In analogy, one expects the classical trajec

tories in phase space regions containing many overlapping resonances 

to wander erratically over the energy surface. The validity of this 

conjecture is of course supported by the Henon-Heiles calculations as 

well as those of others 1 0 > 2 2 

Thus using the KAM Theorem as a basis, one may assign resonance 

and resonance overlap a central role in the development of stochastic 

or freely wandering trajectories. In the example presented, resonance 
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and resonance overlap have an appreciable effect only when the per

turbation becomes large as might occur in a solid near melting or in 

polyatomic molecules near dissociation. In the following sections of 

this thesis, we investigate the conditions under which resonance and 

resonance overlap can occur no matter how small the perturbation. In 

the final computational sections, we reconsider the nature of the 

statistical regions of phase space and develop an alternative view of 

the source of stochasticity. 
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CHAPTER II 

GENERAL THEORY FOR THE N-OSCILLATOR 

SYSTEM WITH SMALL NONLINEARITY 

We have seen that for sufficiently large energies, the trajec

tories for N = 2 nonlinear oscillator systems can exhibit stochastic 

behavior, by which we mean that such trajectories wander freely over 

part or all of the energy surface. We shall now show that the trajec

tories for a physically interesting class of N-oscillator systems can 

also display highly erratic behavior using even a very small nonlinear 

perturbation provided a violation of Condition (ii) of KAM theory 

occurs. In order to observe this widespread stochasticity at low 

energies, we investigate the classical motion of oscillator systems 

having the nearly-linear form 

H = k§L 2 ^ P k + Q k ) + Y [ V 3 + \ + ' ' ' ] ' 

Here N is the number of oscillators, are the positive frequencies 

of the harmonic approximation, y is the nonlinear coupling parameter, 

and V^, V^, etc., are cubic, quartic, etc., polynomials in and P̂ .. 

Our intent is to expose those essential properties of Hamiltonian (il-l) 

which are crucial for irreversibility as the nonlinear coupling tends 

to zero. As in the earlier work described in the previous chapter, we 

shall achieve this end by focusing our attention on the individual 

trajectories of this nearly-linear Hamiltonian and by seeking to 
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determine the conditions under which most trajectories exhibit stochastic 

behavior. 

Unfortunately, not all Hamiltonians (il-l) yield freely wandering 

trajectories when the perturbation term y[V^ + + . . . ] is small. 

For example, we demonstrated in Chapter I that the Henon and Heiles 

Hamiltonian (1-2), which has the form of Hamiltonian (il-l), does not 

display stochastic behavior unless the perturbation is large. In order 

to determine that sub-class of Hamiltonian (il-l) which can yield 

stochastic trajectories when the perturbation is small, let us attempt 

to transform Hamiltonian (il-l) into a form for which the KAM Theorem 

would be valid. 

First, we introduce new canonical variables (J^.?^) defined by 

0^ = ( 2 J k ) * cos cp̂ , (Il-2a) 

Pk = "^V* S i n \> k = (Il-2b) 

where the Ĵ . are the new momenta variables and the cp̂. are the new 

position or angle variables. Hamiltonian (Il-l) may then be written 

H = ^ + Y[V 3 + + . . . ] , ( H - 3 ) 

where V^, V^, etc., are each a finite sum of trigonometric terms. Let 
N 

us here take H Q = a s "^ n e unperturbed Hamiltonian and seek to 

eliminate the angle-dependent terms in and in the fashion indicated 

by Equations (1-7) and (1-8). Now consists of a sum of terms each 
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in /2. in /2. in /2i sj, . 

having the form J. • IjJ 'j ' m • orn(rL ca + n.cp. + n cp ), where 
& k I m cos\ k^k X YX m T m / 5 

|n^| + |n^| + |n m| = 3 and where here we allow k = X or k = I = m. Thus, 
according to Equation ( 1-8), we may eliminate any angle-dependent 

term with argument (rŷ  + n ^ + n ^ ) provided (n̂  + + n ^ ) ^ 0, 

where û . = ^jQ- . Hence, if we require the harmonic frequencies û . to be 
k 

such that 2^11^. ^ 0 for every integer set {n^.} satisfying = 3? 

then Hamiltonian (II-3) can be canonically transformed to the form 

H =
 k ? ! \ J k + y [ \ + V 5 + ' ' ( l l ' k ) 

ln
±/2 I . 

Now is a sum of terms each having the form 1 'J 1 1 X 

J / " / 2 | j / m / 2 1 x &±f±+ \ \ +
 n^+ v0> where Kl+

 K\+ 

|n | + |n | = 4- and where here we again allow equality of the subscripts 
Jo m 

i, k, Xj and m. Each of these terms can be eliminated provided the 

corresponding frequency sum (n^u^ + n^u^. + 1 1 + n
m % ^ ^ °* However, 

there are pure J-terms in that cannot be eliminated regardless of the 

arithmetic nature of the û .. Since we allow equality of subscripts in 

the above general V, term, we may have terms like J 2 cos(cp + cp - cp -
^ i l l l 

which clearly cannot be eliminated because the corresponding 
l l 

frequency sum is identically zero. Nonetheless, if we also require that 

the harmonic frequencies are such that ^ \ _ \ ^ ^ f o r e v e r y integer set 

{n^} satisfying SJn̂ l = k9 then Hamiltonian (II-U) can be brought to the 

form 

N N 
H = k=\\J

k
 + v £ ̂  \AJi + v[v5 + vg + . . . ], (n-5) 
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where the A ^ are constants. Wow Hamiltonian (II-5) will in general 

R N 

satisfy the conditions of the KAM Theorem since H Q = I IL u^J + 
N - 1 k 

Y 2 A, .J, J„ will in most cases yield a determinant I d 2H /^J. dJ, I 
k, X=l k XJ 1 o' i k 1 

which is nonzero. 

We may summarize these results by stating Arnold's version of the 
23 

KAM Theorem which specifically applies to Hamiltonian (il-l). Arnold 

rigorously proves that most — in the sense of measure theory — 

trajectories of Hamiltonians (il-l) lie on smooth, N-dimensional integral 

surfaces provided, among other things, 

(a) Y o r ? equivalently, the total energy is sufficiently small, 

and 

(b) the harmonic frequencies û . do not satisfy low order reso

nance conditions of the form S n^.u^. = 0 ^ o r integer set 

{n^} such that S|n | £ k. 

In essence Arnold Condition (a) is equivalent to KAM Condition (i), 

while Arnold Condition (b) is a restatement of KAM Condition (ii) in a 

form applicable to nearly-linear Hamiltonians. Thus, only that sub

class of Hamiltonians (il-l) which violate Arnold's Condition (b) are 

even candidates for yielding stochastic behavior when the nonlinear 

perturbation y\V^ + + . . . ] is small. It is the task of this the

sis to demonstrate by example that violation of Arnold's Condition (b) 

does indeed lead to stochastic trajectories. 

In order to simplify the discussion without loss of significant 

generality, let us specialize to the case of resonant "three phonon" 

interactions for which = koo, where ou is a positive number. Here, 

using the action-angle variables of Equations (II-2), Hamiltonian (il-l) 
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may be written 

where the are constants, the second sum is taken over all resonant 

interactions defined as those terms with angle arguments S n

k 9 ^ 

for which Z n^u^. = 0 where = 3 [these are the terms which provide 

the violation of Arnold's Condition (b)], and yV includes all nonreso

nant terms as well as all higher order terms. If this resonant, 

second sum were absent from Hamiltonian (II -6 ) , then all the remaining 

angle-dependent terms in and could be eliminated, and most system 

trajectories would lie on the smooth, N-dimensional integral surfaces 

predicted by the Arnold Theorem. Moreover, for small y9 the yV terms 

would then serve only to slightly distort the N-dimensional integral 

surfaces of the y - 0 harmonic system and would thus have no appreciable 

effect on stochasticity. As a consequence, when y is extremely small, 

any widespread stochastic behavior of Hamiltonian (II-6) may be determined 

by investigating the pure resonant Hamiltonian 

N in. / 2 , in 7 2 , ,n / 2 , 
H = E kcul, + Y S A. .J.I K I) * l j I »' I X (II-7) k=l k kim k i m J 
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N 

In Hamiltonian (II - 7 ) , the term I^kujTk only serves to contribute 

rapidly varying terms to the cp^.-solutions; therefore, let us seek to 
eliminate these terms. To this end, we introduce the time dependent, 

21 
canonical transformation generated by 

N " 
F = k 2 1(J k)'(cp k - kcut), (II-8) 

which yields the transformation 

J k = \ , ( H - 9 a ) 

cp̂  = ^ + kujt; k = 1,...,N. (H - 9 b ) 

Substituting Equations (II-9) into Hamiltonian (II - 7 ) , we obtain 

,n_ / 2 , ,n / 2 , ,n / 2 , 
^ Y S i J J k LJ I * LJ I M I X ( 1 1 - 1 0 ) 

1 Kjlm k i r n v 

C O S ( NA + nA + NA }' 
N 

where H = 2 kojj + 5C. We now observe that y is only a multiplicative, 
k=l 

constant factor in Hamiltonian (1 1 - 1 0); hence, y primarily determines 

only the time scale of the motion. As a consequence, any widespread 

stochasticity which occurs for Hamiltonian (1 1 - 1 0) or the equivalent 

Hamiltonian (II -7) will continue to occur no matter how small the value 

of Y? excluding y = 0 of course. 
As discussed earlier in the Introduction, it is known that 
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wandering trajectories associated with stochastic motion for large y 

are found when there is multiple resonance overlap. Since each reso

nant term in Hamiltonian (II -7) strongly influences every trajectory, 

one has that complete, multiple resonance overlap anticipated to cause 

violent stochasticity. The effect of overlapping resonances is to de

stroy most of the smooth integral surfaces predicted by the Arnold 

Theorem, thus allowing each system trajectory to range widely over the 

energy surface. For the pure resonant Hamiltonian (II -7) however, 
N 
E kujT, is a constant of the motion in addition to the Hamiltonian it-
k=l k 

self. Thus each system trajectory can at best be stochastic only on 

a (2N-2)-dimensional subspace of the (2N-1)-dimensional energy surface. 

For N = 2 then, Hamiltonian (II -7) is no more stochastic than a pure 

harmonic system with N = 2. As N becomes greater than 2 however, an 

increasing percentage of the energy surface can be reached and a strik

ing increase in stochasticity is anticipated. 

In order to demonstrate that widespread stochasticity does indeed 

occur for low order resonant systems, the following two chapters de

scribe a detailed investigation of Hamiltonian (II -7) for the case N = 3 5 

which is especially interesting since it should exhibit the minimum 

stochasticity to be expected for low order resonant systems. Before 

concluding this discussion of the general case with N oscillators, it 
1 5-15 

is worth emphasizing that classical systems 5 can exhibit statis

tical mechanical behavior without invoking the traditional limit of 

N -• 00. We have already seen in the Introduction that the N = 2 system 
7 

of Henon and Heiles shows widespread stochasticity for large non-

linearity. We shall demonstrate widespread stochasticity with small 
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nonlinearity using N = 3« Sinai has rigorously proved that a hard 

sphere gas system is stochastic when the number of particles is two or 

greater. Thus, analytic studies of relatively small systems, aided by 

computers, may be able to contribute significantly to contemporary 

statistical mechanics. 
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CHAPTER III 

STOCHASTICITY FOR N = 3 AND Y = 1 

We demonstrate by example in this chapter that a pure resonant, 

nearly-linear, three-oscillator system can exhibit widespread stochas

ticity when there are low order resonant terms present in the Hamil

tonian which link all degrees of freedom. For the case N = 3 and co = 1 , 

Hamiltonian (II -7) becomes 

H = J + 2J + 3J + Y[A J cos(2cp - cp ) + ( I l l - l ) 
1 2 3 L l 2 T l 2 

i 
P(j J J ) 2 cos(cp + cp - cp ) 

1 2 3 1 2 3 Jj 

since there are only two resonant perturbation terms for N = 3 3 where 

we defined a resonant term in Chapter II to be one which violates 

Condition (b) of the Arnold Theorem. The ratio of the unperturbed fre

quencies ( 1 : 2 : 3 ) in the H Q term is chosen to simulate the linear acoustic 

region of the dispersion curve for solids, while the two cosine terms 

represent the overlapping, resonant, three-phonon interactions 2co £ co 
1 2 

and ((D + u) ) a) respectively; i.e., the pure resonant Hamiltonian 
1 2 3 

( i l l - l ) is a very simple model of a solid. 

In Hamiltonian ( i l l - l ) the only effect of the terms linear in J 

is to cause a relatively rapid change with time of the angle variables. 

We may eliminate this rapid angle change along with the linear J-terms 
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by transforming to a rotating coordinate system using the transformation 

generated by Equation (II-8). We then obtain 

K = Y 
_i _ - - i 

a J J 2 cos(2cp - cp ) + P(J J J ) 2 cos(cp + cp - cp ) 1 2 1 2 1 2 3 1 2 3 -1 (III-2) 

where H = (J + 2J + 3J ) + We may now eliminate y by canonically 123 
transforming the time variable to T = yt, obtaining^ 

- - - - i 
K = OJ J 2 cos(2cp - cp ) + p(J J J ) ? cos(cp + cp - cp ), ( I H - 3 ) 12 12 123 123 

where H = (J + 2J + 3J ) + YK. Clearly we could also eliminate 123 
either a or p by again changing the time scale, making K depend only on 

the ratio ( a / p ) ; instead, we somewhat arbitrarily fix p in all calcula

tions at p = O.k and vary the (a /p) ratio by changing a. 

Now from the definition of the resonant angle-dependent terms in 

Hamiltonian (III -3 ) , it can be shown that (J + 2J + 3J ) is a constant 

123 
of the motion. It is thus convenient to canonically transform to co

ordinates in which (J + 2J + 3J ) is one of the momenta. This may be 

123 
accomplished using the canonical transformation generated by 

F = (J - 2J - 3J )q> + J cp + J cp , (III-4) 

1 2 31 22 33 
from which we obtain the new Hamiltonian form 

K = A(J - 2J - 3J )JZ cos 6 + PL/ J (J - 2J - 3J ) ] 2 X (III-5) 

1 2 32 2 2 3 1 2 3 COs( 9 - 9 ) , 2 3 



23 

where H = J + yK, Since J is a constant of the motion and since 
1 1 

Hamiltonian (III-5) does not depend on 0 , we have in effect split the 
l 

original six-dimensional phase space into an independent product of a 

two-dimensional (j , 0 ) space and a four-dimensional (j 9J ,0,0 ) space. 
1 1 2 3 2 3 

In particular, we may regard Hamiltonian (III-5) as describing 
the motion of a system whose trajectories move only in the four-dimensional 

(j 9J ,0 ,0 ) space, treating J as merely a parameter like a or p. 
2 3 2 3 1 

Thus, we may canonically transform Hamiltonian (III -5 ) , which represents 

a system with two degrees of freedom, to rectangular coordinates and 

survey the nature of the trajectories for the rectangular Hamiltonian 

by the surface of section technique described in the Introduction. 

Using the canonical transformation ( l - 3 ) in Hamiltonian ( I I I - 5 ) * we 

obtain 

K = (a/v£)q A + (p /2)(q q + p p )A* ( l l l - 6 a ) 
2 2 3 2 3 

where 

A = J - (q 2 + p 2 ) - ( 3 / 2)(q 2 + p 2 ) , ( l l l - 6 b ) 
1 2 2 3 3 

and 

H = j + yK. (Ill-6c) 
1 

When the values of H, J , and y are specified, Hamiltonian (ill-6a) 
1 

becomes a constant of the motion, and we can plot trajectories in the 
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three-space (q ,q ,p ), since p can be determined from Equation (HI - 6 a ) , 
2 3 3 2 

We then choose the (q ,p ) plane as the surface of section and plot the 
3 3 

set of points representing trajectory intersections with this plane (that 

is, those (q ,p ) points on a trajectory for which q = 0 and p ^ 0 ) , 
3 3 2 2 

which will indicate the amount of stochasticity present in the associated 

regions of phase space. When the phase space motion takes place on two-

dimensional integral surfaces, the intersection points of the trajec

tories with the q p plane form a smooth curve; conversely, in those 
3 3 

regions of phase space where the motion is stochastic, the trajectories 
wander more or less randomly over some or most of the allowed (q ,q ,p ) 

2 3 3 

space and a set of scattered points is seen in the surface of section. 

We further observe that all the allowed points in the (q ,p ) 
3 3 

plane must lie on or within a simple closed curve called the bounding 

curve, since, from the equation for the constant of the motion J given 
l 

by 

J - J + (q 2 + p 2 ) + ( 3 / 2)(q 2 + P 2 ) , (III-T) 
1 1 2 2 3 3 

we see that J must be positive definite. The bounding curve equation 
l 

is obtained by the following scheme. We consider Equation (ill-6a) 

written for q = 0, which becomes 
2 

K = 0 / 2 )p p \{J - ( 3 / 2 )(q 2 + P 2 ) } - V2f • (III - 8 ) 

Substituting Equation (III-8) into Equation (lll-6c) and solving for 

p , we obtain the quadratic-quartic equation in p given by 
2 2 
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RMH-J )2

 1 

VH - & ~ (3/2)(Q2 + p 2 ) ] p 2 + 1 = 0 . (III-9) 

2 1 ^ Q 2 L̂ 2P2_2 J 3 
Using the property that the discriminant must be real when Equation 

(III-9) is solved for p and invoking the positive definiteness of J 
2 1 

from Equation (III-7), we find the equation for the bounding curve in 

the q p plane to be 3 3 
8(H -J ) 

q.2 - ( 2 / 3 V - P 2 - 1 , (111-10) 

3 1 3 5YPP 
where we take J < H. 

l 

In order to illustrate the extent to which Hamiltonian (III-6) 

exhibits widespread stochastic behavior, we first present some typical 

level curve or surface of section diagrams and then summarize the re

sults of a broad survey of representative level curve diagrams. These 

level curve plots were obtained by integrating the rectangular coordi

nate version of Hamiltonian (III-3) and determining the corresponding 

solution to Hamiltonian (III-6) using the connecting, canonical trans

formation. In particular, we first took the full six-space Hamiltonian 

(ill-3) and transformed it to rectangular coordinates via 

I 
Q i = (2J J"5 cos y 9 (Ill-lla) 

P i = ~(2^i^ s i Q V 1 = 1>2>^>' (Ill-lib) 

The resulting six-space rectangular Hamiltonian is a cubic polynomial 

given by 



26 

K = (^A){a[Q2Q - P 2 Q + 2Q P P ] + 
1 2 1 2 1 1 2 

( 1 1 1 - 1 2 ) 

( 3 [ Q Q Q - P P Q + P Q P + Q P P ]}, 
1 2 3 1 2 3 1 2 3 1 2 3 

where 

H = (J + 2J + 3J ) + yK = J + YK. 
1 2 3 1 

( 1 1 1 - 1 3 ) 

The trajectories used to develop the level curve diagrams were then 

obtained by integrating Hamilton's differential equations for Hamil

tonian ( 1 1 1 - 1 2 ) . The rotational relationships between the full six-space 

coordinates (Q^,P^) and the reduced four-space coordinates (q kjP k) a r e 

given by 

"q 

L. 2 _ J 

"cos 2cp -sin 2cp " 

|_sin 2cp cos 2cp J 
(ILL-L4A) 

P 

cos 3cp -sin 3cp 

|_sin 3cp cos 3$ 
1 3 

(HL-LUB) 

where 

m = tan _ 1(-P /Q ). 
l i i (ILL-LUC) 
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Having finished this preliminary discussion of the procedures 

followed in evolving the trajectories for this pure resonant, three-

oscillator system, we now consider the nature of the resulting level 

curve diagrams. We first set the values of K and J to determine the 
1 

four-space Hamiltonian (ill-6) and then selected a set of (q ,p ) points 
3 3 

as initial data from which we evolved the trajectories used to generate 

the level curve diagrams. For each ( K , J ,q =0,p ^ 0 , q , p ) set, 
1 2 2 3 3 

Equation (ill-9) gives two values for p that satisfy the energy con-
2 

dition of Equation (III -8) , which indicates that two level curves can 

pass through each (q ?p ) point. However, when K and J are specified, 
3 3 i 

all level curves for Hamiltonian (III-6) occupy only a half-plane. This 

can be seen most clearly from Equation (III-8) which shows that the level 

curve plane conditions q = 0, p > 0 require that p > 0 in all cases, 
2 2 3 

since we elect to take both K and f3 positive, and a half-plane results. 

Thus, in order to study the behavior of both branches, we chose to take 

p positive on both sides of the origin and plotted the level curves 
3 

initiating on one p branch in the upper half-plane and those commencing 
2 

with the second p > 0 branch in the lower half-plane. 
2 

Figure k shows a typical level curve plane containing about 70 
percent smooth curves. Here J = 2.999? K = 0.001, and a = 0 . 1 . As 

I 

mentioned earlier, in all calculations (3 is fixed at the value 0 .4 . 

Level curves initiating from the same seven (q ,p ) points appear in 
3 3 

both upper and lower half-planes with those in the upper half-plane 

initiating from one p branch while those in the lower half-plane ini-
2 

tiate from the other p branch. Figure 5 is a continuation of Figure 4 
2 

using only two (q ,p ) starting points. In the upper as well as the 
3 3 
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1 TICK= 0.5 

P3 

Figure k. Level Curves for Hamiltonian (III-6) with H = 3>«00, <?i = 
2.999, K = 0.001, and a = 0.100 for Seven Starting Points. 
(This plane contains about 70 percent smooth curves. For 
given ( q 3 , p 3 ) in the plane, p 2 is double valued and two 
level curves can pass through each ( q 3 , p 3 ) point. Each 
level curve in the upper half-plane is started on one p 2 

branch, while those in the lower half-plane start on the 
other p 2 branch. Here p 3 is positive on both sides of the 
origin. The smooth, outermost curve in all figures is the 
bounding curve which encloses all allowed (q^Pg) points.) 



Figure 5« Level Curves for Hamiltonian ( I I I - 6 ) with H = 3.00, J± = 
2.999, K = 0.001, and a = 0.100 for Two Starting Points. 
(This figure is a continuation of Figure h.) 
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1 TICK = 0.5 

Figure 6 . Level Curves for Hamiltonian (IU -6) with H = 3-00, J± = 
2 .901 , K = 0.099, and a = 0.100 for Five Starting Points. 
(The same five (q3 ,p 3 ) starting points are used in both 
upper and lower half-planes. This plane contains only about 
10 percent smooth, curves.) 
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1 TICK = 0.5 

P3 

Figure 1. Level Curves for Hamiltonian ( i l l - 6 ) with H = 3.00, J± = 
2 .901 , K = 0.099, and a = 0.100 for One Starting Point. 
(This figure is a continuation of Figure 6 using only one 
(ciasPs) starting point in upper and lower half-planes and 
integrating the trajectories for a longer time period.) 



1 TI CK = 0.5 

P3 

Figure 8. Level Curves for Hamiltonian (III-6) with H = 3.00, J± = 
2.990, K = 0.010, and a = 0.000 for Six Starting Points. 
(This plane contains 100 percent smooth curves. The same 
six starting points are used in both upper and lower half-
planes. This figure is the first in a- sequence of five 
showing the change in level curve pattern as only oc is 
varied.) 



LTICK = 0.5 

P3 

Level Curves for Hamiltonian (III-6) with H = 3 ' 00 , J1 -
2.990, K = 0.010, and oc = 0.001 for Six Starting Points. 
(There is only a slight distortion of the Figure 8 curves 
for this value of a.) 
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1 TICK =0.5 

P 3 

T 
Figure 1 0 . Level Curves for Hamiltonian (III-6) with H = 3.00, Jx = 

2.990, K = 0.010, and a = 0.010 for Six Starting Points. 
(This level curve plane continues the sequence begun in 
Figure 8. Increasing distortion occurs in the lower half-
plane, and beginning stochasticity appears in both half-
planes .) 



1 Tick = 0.5 

Figure 1 1 . Level Curves for Hamiltonian ( i l l -6) with H = 3.00, J± 
2.990, K = 0.010, and a = 0.025 for Six Starting Points 
(This is the fourth figure in the sequence begun in 
Figure 8.) 



1 Ti ck =0.5 

Figure 1 2 . Level Curves for Hamiltonian (III-6) with H = 3 '00, J i = 
2.990, K = 0.010, and a = 0.050 for Six Starting Points. 
(This is the final level curve plane in the sequence "begun 
in Figure 8. This plane contains about 50 percent smooth 
level curves.) 
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1 TICK = 0.5 

Figure 1 3 . Level Curves for Hamiltonian (III-6) with H = 3.00, J ± = 
2.990, K = 0.010, and a = O . O I 8 5 for One Starting Point. 
(Note the very unstable chain of islands in the fourth 
quadrant. The values of H, J l 9 and K from Figure 8 are 
used here.) 



38 

lower half-plane of Figure 5, the three small closed ovals represent 

a single level curve issuing from one of the (q ,p ) points. The other 
3 3 

(q ,p ) initial point yields both the incomplete, smooth level curve in 
3 3 

the second quadrant of the upper half-plane and the highly stochastic 

orbit of the lower half-plane. Figure 6 shows a typical level curve 

plane containing only about 10 percent smooth curves. Here J = 2 . 901 , 
1 

K = 0.099* and A = 0.1, and the same five starting points are used in 

upper and lower half-planes. Figure 7 is a continuation of Figure 6 

using only one (q ,p ) starting point and integrating the resulting two 
3 3 

trajectories for a longer time period. 

Next Figures 8-12 show a sequence of level curve planes that 

illustrate the change in stochastic behavior as the (CU/p) ratio is 

changed by varying A . In each figure of this sequence, j = 2.990, K = 
1 

0.010, and the same six (q ,p ) starting points are used. Figure 8 is 
3 3 

25 

for A = 0, in which case Hamiltonian (III-6) is integrable and all 

trajectories yield smooth level curves. In Figure 9 for 0 1 = 0.001, 

the upper half-plane is only slightly distorted, while the lower half-

plane has noticeable deviation from the Ct, = 0 curves. Figure 10 for ct = 

0.010 shows increasing distortion in the lower half-plane and beginning 

stochasticity in upper and lower half-planes. Figure 11 for ct = 0.025 

shows the lower half-plane on the verge of the almost complete stochas

ticity shown in Figure 12 for a = 0.050. The plane in Figure 12 con

tains only about 50 percent smooth curves. As ct increases, a maximum 

percentage of about 65 percent stochastic trajectories is found to occur 

around ct = 0.100. When Ct becomes very large, one in effect approaches 
25 

the case p = 0 for which Hamiltonian (ill-6) is integrable and all 
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trajectories again yield smooth level curves. Figure 13 shows a type 

of island structure in the fourth quadrant, which frequently develops 

in the transition from smooth level curves to stochastic behavior for 

a given region. The sensitivity of Hamiltonian (III-6) to small changes 

in oc can be seen by a comparison of Figure 13 with Figures 1 1 and 1 2 . 

We perhaps should emphasize that all level curve diagrams for 

given K and J in Hamiltonian (III-6) are invariant with respect to y. 
l 

In particular, the highly stochastic orbits exhibited in some of the 

diagrams are invariant as y tends to zero. As seen from Equation (lll-6c) 

however, the value of H to be associated with a particular level curve 

plane does depend on y, since a given level curve plane is determined 

by specifying the values of K and J . Conversely, if one desires to 

determine the amount of widespread stochasticity in a representative 

sampling of (K,J ) level curve planes allowed for a given value of H, 
l 

then the value of y must be fixed. In this chapter we estimate sto

chasticity for fixed H using y = 1 , while in Chapter IV we make the 

same estimate as y tends to zero and obtain almost the same result. 

Thus for small y, stochasticity depends only very weakly on y. More

over, since changing H is equivalent to changing y, stochasticity also 

depends only weakly on the particular value of H used. In short, 

stochasticity for Hamiltonian (ill-l) or (III-6) depends primarily upon 

J and (CC/P). For calculational convenience we set H = 3 .0 , y = 1 , and 
l 

P = O.k. 

Table 1 gives the percentage of trajectories for Hamiltonian 

(ill-6) that are widely stochastic for a representative sampling of j l 
and (cif/p) ratios. In particular, the numbers in Table 1 indicate the 



Table 1 . Percentage of Stochastic Trajectories for Hamiltonian (Ill-l) with H = 3.00 and 
Y = 1 . (The trajectories lie on the four-dimensional space allowed by fixed H 
and J± as a function of J± and (a/p). Percentages are rounded to the nearest 
whole number. J± decreases reading down and (oi/p) increases reading across 
the table.) 

a/p | p /a 0 1/8 2/8 3/8 k/8 5/8 6/8 7/8 8/8 7 /8 6/8 5/8 V8 3/8 2/8 1/8 0 

2.999 0 30 27 19 16 17 1 1 12 5 5 5 8 5 9 10 20 0 

2.985 0 52 61 61 52 hi 29 15 6 1 1 9 7 9 1 1 0 0 0 

2.968 0 50 61 7 1 75 65 hS 1 1 7 1 1 9 0 0 1 0 0 0 

2.9+7 0 52 68 72 81 76 39 0 0 0 0 0 0 0 0 0 0 

2 .921 0 51 82 72 +5 16 l 0 0 0 0 0 0 0 0 0 0 

Average 0 +7 60 60 5+ +3 25 8 h 5 h 3 3 h 2 k 0 
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amount of stochasticity in the full four-dimensional space allowed by 

fixed J and H. For example, the zero percentage figures for (O:/P) = 0 
1 

mean that Hamiltonian (UI-l) for this ratio is no more stochastic than 

an N = 3 harmonic system. The bottom row in Table 1 lists the average 

stochasticity of Hamiltonian (III-6) as a function of ( A / P ) , where each 
average is over the sampling of J values at the given (A/P) ratio. 

l 
Hence, the last row of Table 1 provides a rough estimate of stochasticity 

for Hamiltonian (UI-l) which is approximately independent of the values 

of H, y? a n d J • Finally, in Table 1 we have considered only positive 
l 

(A/P) ratios and have sampled only those J values for which J < H. 
l l 

Each column in Table 1 may be shown to be invariant to a sign change on 

the (A/P) ratio. The allowed values of J are almost symmetric about 
l 

J = H, which means that the bottom row of Table 1 would be essentially 
l 

unchanged if we included a sampling of J ^ H values. In addition, this 
l 

last row is essentially unchanged if one uses ten representative J 
l 

values rather than five. 

The data for Table 1 were not collected from detailed level 

curve plots, since such a procedure would be prohibitively time con

suming and expensive even on a very high speed computer. Instead we 

utilized the fact that the distance in phase space between two trajec

tories, initially started very close to each other, grows more or less 

linearly in time if the pair of trajectories is started in a smooth 

level curve region; the distance growth with time is of exponential 

order or greater for a pair not started in a level curve region. This 

exponential separation of orbits in phase space appears to be a funda-
7 18 2 3 2h 

mental property of all highly stochastic or ergodic systems. ' ? ' 
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Consequently, we integrate a representative sampling of orbit-pairs 

for each (K,J" ) level curve plane and take the fractional number of 
1 

exponentially separating pairs to be the percentage of stochastic or

bits in the plane. In addition, if the four-dimensional Hamiltonian 

(III-6) yields exponentially separating orbit-pairs, then the six-

dimensional Hamiltonian (III-3) will also. Thus, the data in Table 1 

also represent the fractional number of pair-orbits for Hamiltonian 

(III-3) with fixed H and J exhibiting exponential separation in the 
I 

full six-dimensional phase space. 

The distinction between linear separation and exponential di

vergence for orbit-pairs is clearly seen in Figures ±k and 1 5 . In 

Figure Ik we plot separation distance versus time for four distinct 

pair-orbits lying in a smooth level curve region. Here we notice a gen

eral linear growth of separation distance with time. In Figure 15 we 

plot l°g-j_Q o f separation distance versus time for four distinct pair-

orbits. The two generally lower lying curves are for pair-orbits 

started in a smooth level curve region and their negative curvature in

dicates the linear growth of separation distance with time. The 

generally upper lying curves are for two orbit-pairs started in a sto

chastic region of the level curve plane, which display the rapid, ex

ponentiating growth of separation distance with time. Thus, we see that 

integrating pair-orbits for a relatively short period of time will in

dicate whether they lie in a stochastic or in a stable region of phase 

space. 

Following Equation (II-6) we in effect suggested that including 

the nonresonant V, terms or the higher order terms in Hamiltonian (ill-l) 
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Figure Ik. A Plot of Phase Space Separation Distance Between Two 
Initially Close Trajectories Started in a Stable Region. 
(Separation distance versus time is plotted for four, dis
tinct orbit-pairs, each orbit-pair starting in a smooth 
level curve region. Linear growth with time is apparent.) 
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Figure 15. A Plot of log-|_Q of the Separation Distance Versus Time for 
Four Distinct Orbit- Pair a. (The generally lower lying 
curves are for orbit-pairs started in a smooth level curve 
region, and their generally negative curvature indicates 
the linear growth of separation distance with time. The 
generally upper lying curves are for orbit-pairs started 
in a stochastic region of the level curve plane, and the 
rapid exponential-order growth of separation distance with 
time is clear.) 



would not radically alter the data of Table 1 . In order to partially 

check this conjecture, we calculated the fractional number of orbit-

pairs exhibiting exponential separation after adding numerous non

resonant terms to Hamiltonian (ill-3) but using the same set of ini

tial conditions as for the pure resonant case. In the cases checked, 

the numbers in Table 1 were changed at most by a few percent. This 

calculation provides additional evidence that it is the resonant terms 

themselves in Hamiltonian (il-l) which generate stochastic behavior as 

predicted by their violation of Arnold's Condition (b). 
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CHAPTER IV 

STOCHASTICITY IN THE LIMIT AS 

Y TENDS TO ZERO FOR N = 3 

In this chapter we investigate stochasticity for the nearly-

linear, three-oscillator Hamiltonian (ill-l) in the limit as y tends to 

zero. As before, the results are summarized in a table analogous to 

Table 1 of Chapter III. In constructing this table, we follow the same 

procedure we employed previously. In particular, we estimate the sto

chasticity for fixed H in Hamiltonian (UI-l) by determining the per

centage of trajectories for Hamiltonian (lll-6a) that do not yield smooth 

level curves in each of a representative sampling of (q ,p ) planes. 
3 3 

As we mentioned earlier, the motion generated by Hamiltonian (ill-6a) 

for given values of K and J is invariant as y tends to zero, except 
l 

for a change in the time scale. The factor y enters the calculations 

only through Equation (lll-6c) which relates H to K and j . In par-
i 

ticular, the range of allowed K and J values for given H and y is de-
l 

termined by Equations (III -6 ) . 

In order to clarify this point, we rewrite Equations (III-6) for 

q = 0 in the form 
2 

K = 0 / 2 ) p p A*, (iV-la) 
2 3 

A + p 2 = J - (3/2)(q 2 + p 2 ) . (iV-lb) 
2 1 3 3 
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1 
Y 2 + p 2 = J - ( 3 / 2)(q 2 + p 2 ) , (lV-2a) 

2 1 3 3 
2Yp = (ij-K/p p ) . (lV-2b) 

2 3 
Using the technique of adding and subtracting to complete the squares 

on the left hand sides, we find 

p = (1/2){±IJ - (3/2)(<l 2 + p 2 ) + (te/p p ) ] * - (IV-3) 

2 1 3 3 3 
( ± ) [ J " ( 3 / 2 ) ( q 2 + P 2 ) - (Iffi/P P )?J . 
1 3 3 3 

In Equation (iV-la) we now observe that the product (p p ) must have 

2 3 
the same sign as K. Since we shall consider only the case K ^ 0, we 
choose to take both p and p positive. Using the relationship J = 

23 i 
H - yK from Equation (lll-6c), we may rewrite Equation (IV-3) as 

p = ( 1 / 2 ) {[(H - Y K ) - ( 3 / 2)(q 2 + p 2 ) + (ItfC/p p ) ? ± (iV-k) 

2 3 3 3 
[(H - YK) - (3 /2 ) (q 2 + p 2 ) - (UK/P p ) ]*). 

3 3 3 
Now Equation (TV-k) yields real roots for p only if 

2 
[(H - Y K ) - (3/2)(q2 + P 2 ) - (WP P )]*<>. (IV-5) 

3 3 3 

Defining Y = A 2 , we may write Equations (iV-l) as 
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Finally then Equation (IV-5) determines the allowed range of K, J = 
1 

H - YK, q , and p when H and Y a r e specified. In the limit as Y tends 
3 3 

to zero, Equation (IV-5) becomes 

[H - ( 3 / 2)(q 2 + P 2 ) - (4K/P P ) ] ^ 0, (IV-6) 
3 3 3 

while Equation (lll-6c) becomes 

H = J . (IV-7) l 

Thus as Y 0? J always equals the given value of H and the range on 
l 

K is determined by Equation (IV - 6 ) . We note in passing that Equation 

(TV-6) can be used to determine bounding curves in the q p plane for 
3 3 

the case Y -* 0 i n the same way that Equation (111-10) was used for Y = ! • 

In Table 2 we list the percentage of stochastic trajectories for 

Hamiltonian (III-6) in the limit as y -» 0 for a representative sampling 

of K and (ct/$) values. As in Table 1 each number in the bottom row is 

an arithmetic average of the percentages in the column above it. For 

comparison with Table 1, we again used H = 3*00 in all computer calcu

lations, although the numbers in Table 2 may be shown to be invariant 

to changes in the value of H. Each number in Table 2 gives the frac

tional area of the specified level curve plane containing exponentially 

separating orbit-pairs. In addition, each number is an approximate 

estimate of the area more or less uniformly covered by each stochastic 

orbit in the specified plane. 
We have demonstrated in Chapters III and IV that resonant, 



Table 2 . Percentage of Stochastic Trajectories for Hamiltonian (HI-l) in the Limit as 
Y -» 0. (The trajectories lie on the four-dimensional space allowed by fixed H 
and K as a function of K and (a/p). Percentages are rounded to the nearest 
whole number. K increases reading down while (a/p) increases reading across.) 

K 0 1/8 2/8 3/8 
a/p 
k/Q 5/8 6/8 7 /8 7 /8 6/8 5/8 

P /a 
U/8 3/8 2/8 1/8 0 

0.0010 0 28 26 19 17 17 12 12 5 3 8 6 

CO
 1 1 20 0 

0.0170 0 h9 61 6k 55 k2 31 15 

CO
 

CO
 9 9 5 ik 0 0 0 

0.0355 0 52 61 70 77 69 kQ 1 1 5 8 3 0 0 0 0 0 0 

0.0582 0 ^7 7 1 72 80 72 15 0 0 0 0 0 0 0 0 0 0 

0.0882 0 56 85 76 37 1 1 0 0 0 0 0 0 0 0 0 0 0 

Average 
over K 0 k6 61 60 53 k2 21 8 3 k 3 3 2 5 2 k 0 
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nearly-linear, three-oscillator systems do indeed exhibit stochastic 

behavior for arbitrarily small nonlinear coupling. In particular, 

Tables 1 and 2 clearly indicate that stochasticity for Hamiltonian 

(ill-l) is considerably more widespread than for an N = 3 harmonic sys

tem, though the percentage of stochasticity decreases appreciably on 

either side of the ratio (a/p) « ( 3 / 8 ) . In addition, as N increases 

above three, the percentage of stochasticity for the nearly-linear 

Hamiltonian (II-7) would be expected to depend less sensitively on the 

nonlinear parameters because the number of overlapping resonant 

terms goes as N 2 and the allowed fraction of the available energy sur

face increases rapidly with N. Thus, the widespread stochasticity we 

have observed for N = 3 probably represents the minimum stochasticity 

to be generated by the nearly-linear Hamiltonian (II-7) when Arnold's 

Condition (b) is violated. 
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CHAPTER V 

AREA-PRESERVING MAPPINGS 

Thus far in our studies of dynamical systems with two and three 

degrees of freedom,, we have made graphical surveys of the complexity of 

system motion by constructing plots of trajectory intersections with 

specified planes. Let us now observe that these graphs represent mappings 

of a plane onto itself which are generated by solving Hamilton's dif

ferential equations for the s y s t e m . 1 ^ ' I n d e e d , these mappings pre-
26 / serve areas as may be proved using Poincare 1s Theorem on integral 

invariants. As a consequence, there exists an intimate connection between 

the pathology of trajectories generated by Hamiltonian systems of 

differential equations and the pathology of area-preserving mappings. 

Thus, a study of the generic properties of algebraic area-preserving 

mappings of the form = f(x,y), y 1 = g(x,y), should further illuminate 

the pathology of the many-body problem. This direct study of algebraic 

mappings allows us to eliminate the numerical difficulties of solving 

differential equations and provides us with powerful mapping theorems 

that are not available for differential equation systems. Without loss 

of significant generality, we choose to consider only polynomial mappings 

which are especially convenient for numerical analysis. We shall spe

cify our area-preserving mappings via the relations 

x^ = f(x,y), (V-la) 
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Y± = g(x,y), (V-lb) 

x = x cos A - y sin a, (V-2a) 

y = x sin A, + y cos A . (V-2b) 
1 

The invariant curves for this linear transformation T are circles, 

corresponding to the earlier trajectory intersection level curves of 

the differential equation systems. The operator T will map each point 

(x,y) through the same rotation angle A on its invariant circle with 
1 

radius equal to (x 2 + y 2 ) 2 . We may rewrite this linear, rotation 

mapping in the polar coordinate form 

r = r, (v-3a) 
1 

6 = 6 + a . (V-3b) 
1 

If we now let the rotation angle A become a function of r, we will in

troduce a twist into the rotation mapping which is now written 

r = r, (V-4a) 

The simplest case of interest occurs when f and g are linear 
27 

functions of x and y. If we assume that the origin is a stable in

variant point, this linear mapping can be reduced to a rotation through 
28 

a constant angle A about the origin and written in the form 

and denote the mapping by (x ,y ) = T(x,y). 
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6 ^ = 9 + a(r). (V-kb) 

Circles are still invariant curves of this twist mapping, but the ro

tation angle of each circle depends on the radius of that particular 

circle. We further note that Equations (V-3) and (V-h) both generate 

mappings corresponding to "integrable" differential equation systems 

which have smooth trajectory intersection curves everywhere. 

We now introduce perturbation terms f and g into the twist map

pings of Equations (V-h) and ask if the invariant curves persist. The 

new mapping, denoted by T where p indicates "perturbation", is given 

by 

r = r + f(r, 0), (V-5a) 
1 

9 = 0 + a(r) + g(r, 0), (V-5b) 

where f and g have period 2jt in 0. For this mapping Moser has shown 

that if f and g are sufficiently small, those invariant curves for which 

the rotation number cu(r) satisfies the inequality | £ ' - — | ̂  ~ ~ s j 2 9 

* q q 

where p and q are integers, will persist under the perturbations f and 

g and experience only slight distortion. In comparison, the KAM Theorem, 

as applied to the differential equation systems of Hamiltonian (i-l) 

for small perturbation yV, states that most system trajectories continue 

to lie on smooth, integral surfaces when the frequencies of the motion, 
-NTT 

Cl.(j . ....J--) = Q., are incommensurate; i.e., for N = 2 the ratio of l i N' $J^' 9 9 

the frequencies is an irrational number of the type indicated by the 
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Moser inequality above. 

There is another theorem applicable to the mapping (V-5) which 

describes additional properties of algebraic systems experiencing small 

perturbations. This theorem deals with the invariant or fixed points 

of T^, by which we mean that the n*3*1 application of the mapping T^ will 

return a given point to its original position. As an illustration of 

fixed points, let us now consider the unperturbed curves of T^ bearing 

rational rotation numbers a(r) and observe that these curves consist 

wholly of the invariant points of T^ for a(r) = 2ir^^. When f and g 
29 

are nonzero but small, Birkhoff has shown that the complete curve of 

fixed points of T n does not persist; rather, only 2n fixed points re-
P 

main with n of these being stable and n being unstable, where the de

gree of stability of a given fixed point is manifested by the behavior 

of nearby points in the plane. The stable fixed points are called 

elliptic, because, in a small neighborhood of the fixed point, the map

ping yields elliptic invariant curves surrounding the fixed point. The 

unstable fixed points are called hyperbolic, because again nearby in

variant curves exist in the form of hyperbolas. The two separate fixed-

point families of n members each are generally interleaved in position 

around the locus of the former unperturbed invariant curve so that one 
sees alternating elliptic and hyperbolic points. 

23 

Figure l6 from the paper by Arnold illustrates a typical map

ping generated by Equations (V-5). Here we see the almost circular in

variant curves with irrational rotation numbers that are only slightly 

distorted by the perturbation as predicted by the Moser Theorem. The 

alternating elliptic-hyperbolic fixed points predicted by the Birkhoff 
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Figure l 6 . Typical Graph of the Mapping Generated by Equations 
(V-5), Showing Only the Grossest Features. 
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Theorem are seen near the origin. The waving, self-intersecting curves 

emanating from hyperbolic fixed points located near the periphery will 

be discussed in the next chapter. We should also note that both the 

Moser and Birkhoff theorems are valid in a neighborhood of each elliptic 

fixed point of Figure l 6 . Therefore, the macroscopic picture repeats 

itself on successive microscopic levels, and we have "boxes within boxes" 

ad infinitum! 

We now have the striking result that even simple algebraic map

pings such as Equations (V-5) or the level curve mappings generated by 

two-oscillator systems such as Hamiltonian (l-2) can yield the incredible 

intricacies seen in Figure l 6 . Using the greatest possible computer 

accuracy, one can see the beginning levels of this complexity in the 

Henon and Heiles system illustrated in Figure 1 . In lieu of attempting 

to improve the resolution of Figure 1 , let us consider the mapping T^ 

given by 

x^ = x cos a - (y - x 2 ) sin a, (V-6a) 

y 1 = x sin a + (y - x 2 ) cos a , (V-6b) 

which represents the product of a shear and a rotation as formulated 
27 

by Henon. It is shown by Henon that any general second-degree poly

nomials for f and g in Equations (V-l) can be reduced to the mapping 

form of Equations (V - 6 ) . In Figure 17 we graph the mapping T of Equa-
XI 

tions (V-6) for cos (X = 0,2k and notice that at this level of computer 

accuracy the curves around the elliptic points appear smooth. However, 

in Figure 18 we magnify a small region near the rightmost hyperbolic 



-U.5 0.5 1.0 

Figure 1 7 . The Henon Algebraic Mapping of Equations (V-6) for cos a 
0.24. (Here the invariant curves appear to be smooth.) 
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Figure 18. A Magnified Region Around the Rightmost Hyperbolic Fixed 
Point of the Henon Mapping for cos a = 0.2^. (This figure 
shows the very complex structure that exists on a micro
scopic scale.) 
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fixed point of Figure 17 and observe some of the incredible complexity 

of these simple systems. 

We have shown in this chapter that simple algebraic mappings can 

produce the same type of pathology that is generated in level curve 

planes by the differential equation systems. In particular, we observed 

that algebraic systems can be constructed which replicate the smooth 

behavior of integrable Hamiltonians and that the introduction of small 

perturbation terms into linear algebraic mappings produces diagrams very 

similar to surface of section plots for Hamiltonian (i-l) with small 

perturbation yV, We then discussed the fixed points of a mapping, which 

are the counterparts of periodic orbits in Hamiltonian systems. The 

following two chapters develop this close connection between fixed points 

and periodic orbits in such a way that we will gain new insights into 

the nature of stochastic behavior. 
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CHAPTER VI 

PATHOLOGY OF AREA-PRESERVING MAPPINGS 

One of the techniques employed in studying the pathology of 

area-preserving mappings is to linearize the mapping about an unstable 

fixed point and then to study the behavior of the extended eigenvectors 

or separatrices of the resulting linearized transformation matrix. In 

this chapter we develop this linearization technique for algebraic 

systems and then use it to illustrate several new properties of sto

chastic behavior. In Chapter VII we adapt the linearization proce

dure to differential equation systems and investigate these same 

stochastic properties for the Henon and Heiles system discussed pre

viously. We now establish the linearization formalism for our mapping 

analysis; we then proceed to use this analysis in illuminating the 

nature of stochasticity. 

We consider the algebraic mappings to have the general form' 19 

x l = f ^ x 0 ' y 0 ^ 5 (Vl-la) 

y 1 = g ( x 0 , y 0 ) , (VI-lb) 

which may be written more compactly as 

(x_ ,y ) = T ( x n , y J . (VI-2) 
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The functions f and g satisfy the area-preserving condition 

det (J) = 1 , (VI-3) 

where J is the Jacobian matrix of the partial derivatives, 

J(x,y) 

f f x y 

g x g y 
(Vl-k) 

in which we denote the partial derivatives as f = -i— s etc. The n^*1 

x £x 
iteration of the mapping can be written as 

We linearize the mapping around a given initial point (x^y^) by forming 

the first-order differentials of Equations (VI-l), 

sg\ 
l - w0 "̂o 

(VT-6a) 

(VI-6b) 

which may be expressed in the matrix form 

= 

f f xo yo Ax^ 0 

S x g y L o ̂ 0-1 

(vi-7) 
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The matrix representing the linearized mapping in the vicinity of a 

fixed point of I*1 is denoted by M and is defined by the relationship 

M S J ( X N - L ' Y N - L ) " J ( X N - 2 ' Y N - 2 ) ' 1 ' "̂o'V' (Vl-8) 

where (x^y^) is a fixed point of T n that satisfies the equation 

( V I - 9 ) 

The linearized mapping about (x^y^) for T 1 1 is then given by 

= M • 

5n *0 

(VI-10) 

With this linearization formalism in mind, we now turn our attention to 

the eigenvalues and eigenvectors of the matrix M in Equation (VT.-8) in 

order to see what stochastic properties they reveal in a mapping. 

Analysis of Separatrix Behavior 

In the discussion of Figure l 6 it was pointed out that Birkhoffs 

Theorem predicts that perturbations will break down certain invariant 

mapping curves into families of elliptic (stable) and hyperbolic (un

stable) fixed points. Let us focus our attention on the hyperbolic 

members of such families. One may linearize the mapping about these hy

perbolic fixed points and plot the associated, extended eigenvectors 

of the matrix M, thereby gaining insight into the basic structural or

ganization of the plane. We shall first consider the "integrable" 
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area-preserving mapping, defined as one that yields exact, invariant 

curves everywhere, which is shown in Figure 1 9 , hut which is not ex

plicitly written out here. This figure shows an elliptic point at the 

origin, which we shall ignore, and an ordinary hyperbolic point along 

the 45° line in the first quadrant, which we shall consider in detail. 

This hyperbolic fixed point has the incoming separatrix, labeled 1 - 1 ' , 

which consists of two branches or segments as shown in the figure; 

successive iterates of a point started on either of the two branches will 

asymptotically approach the fixed point while remaining on the same 

branch. In addition, successive iterates recede from the fixed point 

along the double-branched, outgoing separatrix, labeled 2 - 2 ' , where the 

iterates continue along the same branch as before. We may generate 

separatrix branches 1 and 1 ' by inverse-mapping a point along each in

coming branch, while separatrix branches 2 and 2 ' are evolved by forward-

mapping a point on each outgoing branch. Moreover, we observe for the 

"integrable" mapping of Figure 19 that the forward segment 2 and the 

inverse segment 1 join smoothly into a single curve. Here a single, 

smooth curve must result since an "integrable" mapping has smooth curves 

everywhere. 

If on the other hand, one now includes the general perturbation 

terms f and g of Equations (V-5), one finds that there are no longer 

smooth invariant curves everywhere and, in particular, that the separa-

trices intersect each other. Figure 20 shows the criss-crossing of the 

forward-mapped outgoing separatrix FJLQARQ'A'R'Q' 1'A'''R''' and the 

inverse-mapped incoming separatrix JTCLQBRsQ'R'Q'''B'''R''' for a typical 
30 non-integrable mapping. The line segment OAR evolves after three 
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Figure 1 9 . Invariant Curves for an Integrable Mapping. (The self-
intersection point is an ordinary hyperbolic fixed point.) 
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Figure 20. Invariant Curves for a Small Non-integrable Perturbation. 
(The separatrices are no longer firm but intersect in -wild 
oscillations.) 



66 

iterations of the mapping into the segment Q*''A'''R''', while the 

segment QBR transforms after three forward iterations into the seg

ment Q'''B T''R'''. Thus, the area QARBQ transforms into the thin 

filament Q ' , ' A ' , , R ' , , B ' , , Q ' , , having equal area. Succeeding iterations 

will transform this particular area into narrower and more elongated 

filaments as the section along the incoming separatrix asymptotically 

approaches the fixed point. These elongating area-filaments provide 

the mechanism by which points initially close together can map very 

quickly apart in an exponential fashion. As the strengths of the per

turbations f and g in Equations (V - 5 ) are increased, the forward and 

backward separatrices intersect at ever increasing angles, thus eroding 

more and more of the stable region surrounding the elliptic fixed 

point. 

This phenomenon of intersecting separatrices also occurs when 

the inverse-mapped incoming separatrix from one hyperbolic fixed point 

crosses the forward-mapped outgoing separatrix from an adjacent hyper

bolic point of the same family, as is illustrated in Figure l6. In 

this particular figure we note that the relative size of the elliptic 

fixed-point family in a given annulus diminishes as the distance from 

the origin increases, which is a direct result of the increasing erosion 

of the stable areas by the intersecting separatrices. Finally, at 

sufficient distances from the origin there will be an intertwining of 

separatrices from different fixed-point families in addition to the 

intersecting separatrices from adjacent hyperbolic points of the same 

family, thus giving a random appearance to successive iterates from 

a given point. When the complexity reaches this last state, it is 
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almost impossible to predict the location of successive iterates of a 

point by topological considerations of the type discussed in connection 

with Figure 20; this phenomenological behavior is characteristic of 

stochastic regions. 

Even the elliptic fixed points can change character and become 

hyperbolic (unstable) when the general perturbation terms f and g in 

Equations (V - 5 ) become sufficiently large. Moreover when f and g are 

large, most of the invariant curves, predicted by the Moser Theorem for 

small f and g, will decompose into sequences of erratic points. Those 

hyperbolic fixed points arising from converted elliptic fixed points are 

called hyperbolic with reflection or hyperbolic II in order to distin

guish them from the ordinary hyperbolic I fixed points which interleave 

between elliptic fixed points as shown in Figure l 6. As we shall illus

trate, the hyperbolic fixed point with reflection is much more patho

logical than the ordinary hyperbolic I fixed point. Both of these un

stable fixed points have one approaching and one receding separatrix. 

As we discussed earlier, iterates of points started on a given separatrix 

branch continue to lie on the same branch for the hyperbolic I fixed 

point; however, successive iterates for the hyperbolic II fixed point 

alternately jump from one separatrix branch to the other, hence the 

phrase "with reflection". 

Figure 21 illustrates this behavior by depicting the separatrices 

of two adjacent hyperbolic II fixed points for a mapping studied by 

Laslett^ 1 having the form 

2 
x = y + c x + c x , (Vl-lla) 



Figure 21. An Adjacent Pair of Hyperbolic II Fixed Points for the 
Laslett Mapping of Equations (VT-ll). 
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y-L = -x + + c 2 x 2 ; (VT-llb) 

where 

C l = -(1 / 8 ) , 

C^ = l - c r 

(VI-llc) 

(Vl-lld) 

Here we choose to consider the two members of a family of eight hyper

bolic II fixed points which are located at the ©-symbols in Figure 21. 

Consider the point A n that lies on the incoming separatrix approaching 

the right fixed point and that also lies on the outgoing separatrix di

rected away from the left fixed point. After eight applications of the 

mapping (VI-ll), the point A n becomes &n+Q and has moved so as to lie 

closer to the right fixed point (but on the other incoming branch) and 

to lie more remotely from the left fixed point (but on the other out

going branch). Alternatively, for the point which lies on the inter

section of the outwardly and inwardly directed separatrices from the 

same left-most hyperbolic II fixed point, we observe that B n + g lies 

closer in on the incoming separatrix and more remote on the outgoing 

separatrix. Moreover, ^n+Q is on the opposite branch of each separa

trix. Thus we see that the behavior of points near hyperbolic II fixed 

points is much wilder than that near ordinary hyperbolic I points. 

This pair of hyperbolic fixed points with reflection, which occurs 

for large perturbations, that we have been discussing in Figure 21 is 

part of a family of eight fixed points which is interleaved between an 
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associated family of eight ordinary hyperbolic I fixed points. Thus, 

the elliptic-hyperbolic I alternation that is seen in Figure 16 for 

weaker perturbations f and g quite generally becomes the hyperbolic I -

hyperbolic II pattern for the large perturbations of the Laslett 

mapping in Equations (VI-ll). We note in passing that the general per

turbation terms f and g in Equations (V-5) are simply nonlinear, 

algebraic terms that become larger as the distance from the origin 

increases, which means that there are alternating hyperbolic I -

hyperbolic II pairs of fixed points present at large distances from the 

origin beyond the periphery shown in Figure 1 6 . This configuration of 

alternating unstable points allows the interesting possibility that in 

the highly nonlinear, stochastic regions of a mapping all (or almost all) 

fixed points are hyperbolic. In such a region containing principally 

a large number of unstable fixed points, the iterates of almost every 

point would be expected to appear randomly, and two points started close 

together might be expected to diverge apart at an exponential rate. 

Thus, the exponentiating orbits associated with stochasticity appear to 

occur when the preponderance of fixed points are hyperbolic and when 

the measure of the stable regions influenced by elliptic fixed points 

is very small. 

In developing a theory of stochastic systems, Arnold and other 
l8 

investigators use this fundamental property of exponentiation as the 

defining condition for "C-systems" which may be shown to be both ergodic 

and mixing. Here ergodic means that each trajectory uniformly covers 

a specified region of phase space, while mixing is associated with a 

uniform diffusing of a cluster of initially close orbits throughout the 
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specified region of phase space. As a simple example, we consider 

Arnold's area-preserving mapping of the unit square onto itself given 

by 

x 1 = x + y, (VI-12a) 

y x = x + 2y, (VI-12b) 

where (x^,y^) is reduced modulo 1 . The eigenvalues of the already 

linearized transformation matrix for this mapping are exp(± 6), where 

cosh 6 = 3 / 2 . We now note that a series of transformations can bring 
28 

the general mapping of Equations (VI-l) into the form 

x = A.x, (VT-13a) 

y i = (l/\)y, (VI-13b) 

where \ and (l/X) are the real eigenvalues of the linearized trans

formation matrix. Thus, since the real eigenvalues are exp(± 6) for 

the specific mapping of Equations (VI - 1 2 ) , we anticipate that small area 

elements will change their shape exponentially for the Arnold trans

formation by successively diverging in one direction and shrinking in 

the other direction. The trend toward ergodicity and mixing after only 

two iterations of the Arnold mapping (VI -12) is indicated in Figure 22, 

which reveals a crazy, mixed-up cat! 

In agreement with the earlier suggestion that such stochastic 
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Figure 22 . An Example of the Arnold Mapping of Equations (VI -12) 
Which is Ergodic and Mixing. (Note the mixing of the 
cat after only two iterations of the mapping.) 
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behavior results from the presence of a host of hyperbolic fixed points, 

it is interesting to note that the Arnold mapping (VI-12) does have a 

dense set of hyperbolic fixed points. First, since the eigenvalues of 

the mapping are real, it is straightforward to show that all fixed 

points are hyperbolic. The integer coefficients in Equations (VI-12) 

then insure that each point (a,b) in the unit square, for which a and b 

are both rational, is a fixed point after k iterations of the mapping, 

for some integer k. As a consequence, each "non-periodic" point of the 

mapping uniformly covers the unit square, being "scattered" off the 

dense set of hyperbolic fixed points. 

We have seen that the eigenvalues and extended eigenvectors 

(separatrices) of the linearized transformation matrix about the unstable 

fixed points can reveal much interesting detail concerning stochastic 

behavior. We now turn our attention to a technique developed by Greene 

which quantifies the occurrence of fixed points, indicating that sto

chastic regions always contain a dense, or nearly dense, set of hyper

bolic fixed points. 

Stability Analysis Technique of Greene 

Having described the behavior of the extended eigenvectors of 

the linearized matrix about the hyperbolic fixed points, we seek to 

obtain aggregate data about the complete set of fixed points in a map

ping in order to determine the locations of stochastic regions of the 

mapping plane. Moreover, we desire to predict the stability of a macro

scopic area when the nature of a relatively small set of fixed points 

in the region is known so that we can obtain a maximum of information 

from a minimum of calculation. To these ends, Greene considers the 
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fixed points of the algebraic area-preserving mapping T given by' .19 

x. 1 (1/A)(x, 0 (Vl-l^a) 

y_ = Ay. + Bx_ - Cx; 5 
•1 9 (Vl-lUb) 

where 

A = 1 . 25 , B = 0 .10 , C = 0 .55 . (VI- lUc) 

This mapping is symmetric about the line y = x, and the fixed points of 

T are a hyperbolic I point at the origin and elliptic points at (l,l) 
el

and ( - 1 , - 1 ) . We shall refer to these two elliptic points as central 

fixed points of the mapping. The pattern of the mapping about either 

elliptic central fixed point looks very much like Figure l 6 . Here, 

however, we shall focus out attention only on the fixed points. Figure 

25, for example, shows several fixed-point families in the first quadrant 

lying about the central fixed point at (l,l) for the mapping (VT - l U ) . 

The fixed points of T form two families of Q members each about the 

central fixed point in which the Q members of each family have the same 

stability. In short, the elliptic central fixed point is surrounded by 

families of interleaving elliptic-hyperbolic I or, further out from the 

central fixed point, hyperbolic I - hyperbolic II fixed points just as 

in Figure 1 6 . 

It is convenient to further identify these fixed-point families 

by their rotation number uo = P/Q, where Q is the number of iterations 
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Figure 23 . Some Fixed Points of the Greene Algebraic Mapping Given 
by Equations (VT - l 4 ) . (The outermost ring consists of 
fixed points of T 1 1 with alternating hyperbolic I (+) 
and hyperbolic II (o). The inner ring is composed of 
fixed points of T^ with alternating elliptic (o) and 
hyperbolic I (+). Also shown by (.) are 20 members of a 
family of T 1 associated with the elliptic points of T^.) 
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of the mapping T~ required to return the fixed point to its initial 

position, and P is the number of rotations around the central fixed 

point when following from a fixed point to its return image through 

all Q members of the family. Thus in Figure 23 the rotation numbers 

of the families of 1 1 and 9 members are l/ll and 1 /9 respectively, 
180 

while the rotation number of the T_, family is 20 / l80 . We may also 

consider the rotation number P / Q as representing the average frac

tional part of a complete rotation around the central invariant point 

that is subtended by a fixed point and its first mapping image at the 

central fixed point. An additional property of the rotation number is 

that two fixed-point families lying close to each other should have 

nearly equal values of P / Q , which follows from the continuity of the 

approximate organization of the mapping. 

In order to discuss the overall composition of a mapping — its 

invariant curves and its stochastic regions — in terms of its fixed 

points, one must organize the fixed-point structure recursively in a 

hierarchy. The zeroth order of the hierarchy consists of the fixed 

points of T_. The first order consists of the invariant curves that 

enclose the fixed points of T_ and those fixed points of T Q for which 

P and Q are relatively prime. The second order of the hierarchy in

cludes this same type structure around the first-order elliptic fixed 

points in the hierarchy, etc. Thus, there is an infinite number of 

orders in the hierarchy. It is difficult to expose any meaningful re

lationships in the mapping unless one first disregards fixed points of 

higher orders and concentrates primarily on the first order. It perhaps 

should be pointed out that some fixed-point families cannot be ordered 
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into the hierarchy, but these appear to be in the minority. 

In order to describe the character of the fixed points of a 

mapping, it is convenient to calculate the trace of the linearized 

matrix M of Equation (VI-8) and to define a quantity R called the 

residue of the fixed point by the relation 

R = ( 1 / 2 ) - (l/k) • Trace (M). (VI -15) 

For fixed points, Greene establishes the following identification be

tween the various ranges of the residue and the corresponding eigen

values \^ of the matrix M; 

R < 0 - X± > 0: hyperbolic I fixed point, (VT - l6a) 

0 < R < 1 \ i complex: elliptic fixed point, (VI - l6b) 

R > 1 -. \ i < 0: hyperbolic II fixed point. (VI-l6c) 

In order to calculate the residue of a given fixed-point family (all 

members may be shown to have the same residue), one first determines 

the matrix M in either of two ways. In the first method one explicitly 

evaluates the Jacobian matrix of the transformation and forms the 

appropriate matrix product as indicated in Equation (VT -8 ) . The second 
32 

method due to Henon involves an empirical evaluation of the four 

elements of the matrix M. Here one first takes two closely spaced point-

pairs, each oriented parallel to a distinct axis of the mapping, and then 
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one determines the separation between the members of each pair generated 

by the required number of mapping iterations. Thence one can determine 

M. In order to illustrate this method for the case of a fixed point of 
Q \ T located at ( x ^ y ^ ) , we follow Greene and specify the matrix elements 

of M by the equation 

(a+d) (c+b) 

(c-b) (a-d) 

and then we rewrite Equation (VT-10) in the form 

M = (VT -17) 

r = M • = 

5Q i y 0 

• 

"(a+d) (c+b)" 
I I "I 

(VT-18) 
I I I 

(c-b) (a-d) 
We now choose a neighboring point of ( X Q , V Q ) having coordinates 

(x 0 + Ax Q,y 0) and iterate Q times, which carries the original point 

/ (!) (!) N 
(x Q + Ax Q , y 0 ) to the location (x ,y ) , Since A^Q = 0, we find 
using Equation (VT-18) that 

(a+d) 

(c-b) 

XI1) - X. 
Ax Q ' 

y ( 1 ) 

Ax, 

(VI-19a) 

(VI-19b) 

We then take another neighboring point of ( X Q , V Q ) with coordinates 

( X Q , V Q + AY"Q) and again iterate Q times, obtaining the new point 
(2) (2) 

(XQ , y^ ) . Since Ax Q = 0, Equation (VI-18) now yields 
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X (2) - x, 
(c+b) Q 0 (VI -19c) 

Ay, o 

y, (2) 
- y, 

(a-d) Q 0 (VI-19d) 
Ay, o 

Clearly Equations (VI-19) determine the matrix elements of M, and we 

shall use these equations to determine M for the fixed points of the 

Greene mapping. 

Since the mapping (Vl-lk) is symmetric about the line y = x, 

one member of each first-order fixed-point family for odd Q must lie 

on this line, while two members of each fixed-point family with even 

Q may lie on this line. Thus, we choose to numerically search the 
Q 

line y = x for fixed points of T , where Q may be even or odd, and Q 

and P are relatively prime. By varying a trial initial point 
th 

(XQJVQ = XQ) until the numerically calculated Q iteration returns 

to within a desired radius of the initial point, we sequentially de

termine a set of fixed points. The linearized matrix M is then de

termined for each fixed-point family using Equations (VT -19) and the 

residue R given by Equation (VI -15) is calculated. This numerical 

search finally then yields a spectrum of residues which demonstrates 

that most first-order fixed-point families located near the central 

invariant point at (l,l) consist of alternating elliptic-hyperbolic I 

fixed points, while an increasing percentage of alternating hyperbolic 

I - hyperbolic II fixed-point families are found to occur as the 

distance from (l,l) increases. Thus, the residue profile for the Greene 

mapping has confirmed the same topological progression — from stable 

elliptic to unstable hyperbolic II fixed points as the distance from 
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the central invariant point increases — that we mentioned earlier in 

connection with Figure l6. 

A further analysis of the residue spectrum using relationships 

(VI-l6) can provide additional insight into the predominant nature of 

fixed points lying in a stochastic region. In particular, we seek to 

determine the locations of stochastic regions in the mapping plane by 

ascertaining the nature of a relatively few selected fixed points of 

the mapping. In order to establish this insight, we note from previous 
31 

empirical mapping studies that it is fruitful to generate a residue 

profile using fixed-point families whose inverse rotation numbers 

co = Q / P lie in selected arithmetic sequences. In particular, we shall 
19 

follow the procedure used by Greene and consider only the residues 

of first-order fixed-point families with Q / P values lying on a sequence 

of the type Q / P = k/I ± l/n, where k and I are relatively small positive 

integers and n = 1 , 2 , 3 ? F r o m this vantage point, it may then be 

empirically shown that residues can be expressed in terms of a phe-

nomenological function f ( P / Q ) defined via 

R = a[f(P/Q)] Q/ 2 , (VI-20a) 

or equivalently by 

v2/Q f(p/Q) = ( R / a f ^ , (VI-20b) 

where Ct is a constant of proportionality. For the typically large values 

/ / \2/o 
of Q we encounter, the factor {1/0C) 1 is so close to unity that it can 
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be effectively ignored. We shall use Equations (VT-20) primarily in 

analyzing the residue spectrum for the selected sequences of first-

order fixed-point families indicated above, although in Appendix C we 

apply these equations to certain second-order families as well. Before 

presenting the actual fixed-point data obtained by Greene and verified 

in our own investigation of the T mapping, let us first indicate why 
G 

the investigative procedure we have described above is efficacious in 

attempting to locate the stochastic regions in the mapping plane. 

In the earlier sections of this chapter, we indicated that wide

spread stochasticity occurs when there is a predominance of alternating 

hyperbolic I - hyperbolic II fixed points in a given region of the 

mapping plane. In view of this result, we desire that the present in

vestigative technique clearly indicate the occurrence and distribution 

of the unstable hyperbolic I - hyperbolic II fixed-point families in 

the mapping plane. In this regard, Greene presents arguments indicating 

that a sequence of fixed points with Q,/P = k/x ± l/n for k and I re

latively small integers and n = 1 , 2 , 3 , . . . yields the minimum values of 

f that exist in a given Q,/P region where f is determined from the 

positive residues via Equation (VI-20b). Moreover, Greene establishes 
Q 

that the hyperbolic I families of the mapping T have residues with 

(j 
magnitudes comparable to their interleaved, associated T ^ elliptic 

(j 
positive-residue families. Thus, we are at liberty to take an absolute 

2/0 
value in the relationship f = |R/CK| ' and admit the negative-residue 

hyperbolic I families to the discussion. Since the equation f = \R./cc\ 

implies that f > 1 occurs when \ R \ > 1 and since relationships (VI-16) 

associate values of | R | > 1 with unstable hyperbolic fixed points, we 

2/( 
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would anticipate a preponderance of hyperbolic I - hyperbolic II 

families in those regions of the mapping plane for which the corres

ponding f-values exceed unity. Having indicated that the chosen pro

cedure does indeed augur a modest success, let us now consider some 

actual fixed-point data obtained by Greene using these techniques . 

Figure 2k presents a plot of f versus Q / P for a = l/k which is 

constructed from the first-order, positive-residue, fixed-point families 

of T ^ with inverse rotation numbers given by Q / P = k/I ± l/n as pre-

viously described. The most salient feature of this graph is the general 

upward trend of the minimum f-curve, which appears to remain above 

unity for values of Q,/P > 9»0. Since we shall locate the stochastic 

regions of the mapping plane by observing which portions of the f-curve 

lie above unity, it is important to establish beyond reasonable doubt 

that Figure 2k does in fact present the minimum f-curve for the given 

Q / P region. In this regard, we located a host of fixed points with rather 

arbitrary values of Q, /P, all of which yielded f-values that lay on or 

above the f-curve in Figure 2k. Therefore, the curve in the figure 

appears likely, as Greene suggests, to indeed be the minimum f-curve for 

the given span of Q / P values. 

In light of Equations (VI-20) and Figure 2k, we anticipate that 

nearly all fixed-point families with Q / P > 9.0 are hyperbolic I or II. 

We do not say "all" fixed-point families for at least two reasons. The 

first reason is that a minority of families are irregular in behavior 

and cannot be ordered into the hierarchial structure, and these anomalous 

families might have f-values lying below unity when Q / P > 9 .0 . The 

second reason why all fixed-point families may not be hyperbolic for 
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Figure 2k. A Plot of f = (k*f^ Versus Inverse Rotation Number 
for Selected Fixed Points of the Greene Mapping. 
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Q / P > 9*0 is that Figure 2k is an f-curve plot for only first-order 

families of the hierarchy. While it is reasonable to assume that the 

higher-order families associated with each first-order elliptic family 

become unstable concurrently with the transition to instability of the 
33 

first-order elliptic family, we cannot disallow the converse. Thus, 

there may be an associated set of higher-order elliptic-hyperbolic I 

fixed-point pairs that closely surround a first-order hyperbolic II 

fixed point. However, we conjecture that at worst the effective in

fluence of these higher-order elliptic families declines with higher 

values of Q / P , where the Q / P ratio becomes greater with increasing 

distance from the central invariant point of the mapping. In addition, 

our investigations indicate that the stability of the higher-order fixed-

point families is principally determined by the nature of their asso

ciated first-order fixed points. This in turn implies that most higher-

order families surrounding a first-order hyperbolic II point are 

unstable. Thus, there is non-trivial evidence that most fixed points 

are alternating hyperbolic I - hyperbolic II pairs in those Q / P regions 

for which the minimum f-curve exceeds unity. Finally let us note that 

Q / P regions exhibiting a preponderance of unstable families would also 

be expected to display widespread stochasticity. 

We have now achieved our purpose in developing the stability 

analysis technique of Greene; namely, we can now predict the locations 

of the widely stochastic regions in a mapping by determining the resi

due spectrum of selected sequences of fixed points of the transformation 

and then by calculating the corresponding f-curve as a function of Q / P 

for those fixed points. Let us now take these numerical techniques, 
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which proved rather powerful in studying the stochastic properties 

of algebraic mappings, and apply them to the Henon and Heiles non

linear oscillator system in order to expose additional characteristics 

of stochastic behavior in the differential equation systems. 
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CHAPTER VII 

STABILITY OF PERIODIC ORBITS OF 

THE HENON AND HEILES SYSTEM 

In the Introduction we discussed the nonlinear oscillator 

system of Henon and Heiles and showed that the very regular trajec

tories occurring at low system energy became highly stochastic for 

large values of energy. In this chapter we shall demonstrate that 

this increasing stochasticity as the energy increases is associated 

with a shift from predominantly stable periodic orbits to preponder

antly unstable periodic orbits in much the same fashion that stochastic 

behavior occurs in algebraic area-preserving mappings as one moves 

from the stable regions near the central invariant point into those 

more distant regions which contain mainly hyperbolic I - hyperbolic II 

fixed-point pairs. We shall also examine stability as a function of 

energy for two particular periodic orbits, illustrating the generic 

tendency of the system as a whole to develop an increasing number of 

unstable trajectories with increasing energy. Let us now direct our 

attention to the Henon and Heiles system and adapt the numerical pro

cedures used for algebraic area-preserving mappings in Chapter VI to 

this differential equation system. 
7 

The Henon and Heiles Hamiltonian introduced in Chapter I has 

the form 

H = (1/2)(p 2 + p 2 + q 2 + q 2 ) + q 2 q - (l/3)q 3 . (VII-l) 
1 2 1 2 1 2 2 
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As in the Introduction, we choose the q p plane with q = 0, p ^ 0 
2 2 1 1 

to be the surface of section and consider the set of (q ,p ) points 
2 2 

generated by a given trajectory as it intersects this surface of section. 

However, we now regard a given surface of section with constant energy 

as an area-preserving mapping of the plane onto itself which is here 

generated by solving the differential equations obtained from Hamil

tonian (VII-l). We note that the fixed points of (Q = 1 , 2 , 3 , . . . ) 

represent the intersections of periodic solutions of these differential 

equations with the surface of section. We shall call these periodic 

orbits stable or unstable as their generated fixed points are elliptic 

or hyperbolic. Thus, we may determine the stability of the periodic 

orbits in the four-dimensional phase space by applying the linearization 

techniques of Chapter VI to the corresponding fixed points in the sur

face of section. 

We utilize here the same basic procedure which was described 

earlier for the algebraic mappings in Chapter VI. In particular, we 
Q 

search numerically along the positive q axis for fixed points of T , 
2 h 

where Q, may be either odd or even, since periodic orbits of the Henon 

and Heiles system with odd Q must pass through the q axis due to a 
2 

symmetry of the level curve plane which is demonstrated analytically 

in Appendix A. Before presenting the results of this numerical search 

for fixed points of T^, we should point out that the notation employed 

in Chapter VT will be used in this chapter in order to expedite the 

discussion and to emphasize the strong similarities between the alge

braic mappings and the differential equation systems. In addition, we 

shall present the mathematical details of our computations in Appendices 

B and C. 
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In order to illustrate the pattern of fixed points for the Henon 

and Heiles system, we present Figure 25, which is a continuation of 

Figure 2. Here one observes an elliptic fixed-point family of four 

members with Q/P = k/l which has a very small residue, indicating a 

very stable periodic orbit in phase space. Although not shown in the 

figure, there is an associated family of four hyperbolic I fixed points 

interleaved between the four elliptic points. Indeed, in Figure 25 we 

have in each instance plotted only one of the two associated families 

for given cu = P/Q. Farther away from the central invariant elliptic 

fixed point of T^ whose coordinates are (0.303, 0.0) for this energy, 

we see the elliptic Q/P = 5/l family, which is surrounded by a hyper

bolic I family of the second order in the hierarchy with Q,/P = 55/ll. 

We note in passing that several other second-order families associated 

with the 5/l were found but are not plotted, those closest to the 5/l 

being either elliptic or hyperbolic I, while the more remote were 

hyperbolic I or II fixed points. Thus, differential equation systems 

yield the same type of recursive, fixed-point structure indicated in 

our discussion of Figure l 6 for the algebraic mappings. Next, lying 

even farther from and surrounding the central invariant point, there is 

a hyperbolic II family with Q/P = 8/l. A comparison of Figure 25 with 

Figure 2 indicates that the inner elliptic k/l family lies well within 

the stable level curve region, while the elliptic 5/l family of Figure 

25 lies on the borderline of the stochastic sea. Finally, the hyper

bolic 8/l is located in the unstable region itself, probably lying 

beyond the last Moser invariant curve for the T^ mapping. 

Let us now calculate a spectrum of residue values for the fixed 
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1 TICK = 0.2 

P2 

12 

Figure 2 5 . Selected Periodic Orbits in the Henon and Heiles Level 
Curve Plane for Energy E = l / l 2 . (The inner ring of 
four points denoted by (©) represents a stable elliptic 
orbit with Q / P = h/l. The five points denoted by (*) 
lie on a periodic orbit with Q/P = 5/l and have a residue 
almost unity. The sequence of 55 points indicated by 
(•) represents a hyperbolic I family with Q/P = 55/ll in 
the second order of the hierarchy. The eight points re
presented by (x) lie on a hyperbolic II periodic orbit 
with Q/P = 8 / 1 . ) 
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points of the Henon and Heiles mapping just as we did for the Greene 

algebraic mapping in Chapter VI. Noting that as before there is a 

regular decrease of rotation number oo = P/Q, with increasing distance 

from the central invariant point for the mapping T^, we again calculate 

residues for sequences of fixed points with Q / P = k/i ± l/n. Here we 

take I - 1 and let k be the set of smallest positive integers for which 

the corresponding orbits can be located. Using the procedure discussed 

in Appendix C, we determined that the factor a, of Equations (VI-20) 

equals unity for the Henon-Heiles mapping T^. Furthermore, we here 

calculated both positive and negative residues, determining f by taking 

absolute values in Equation (VI-20b). 

For the energy E = l / l 2 Figure 26 presents a plot of f = | R | 2 / ^ 

versus Q / P. This plot is based on the data for selected fixed-point 

sequences presented in Table 3» The same basic features of the earlier 

Figure 2k are present in Figure 26, with the important exception that 

the minimum f-curve in Figure 26 for the T^ mapping does not rise and 

remain above unity in the Q / P range considered. Thus, in keeping with 

the analysis of Chapter VT, we conjecture that most of the level curve 

plane is covered by fixed points which are members of elliptic-hyperbolic 

I pairs and that widespread stochasticity is not to be found at this 

energy. This appraisal is based on the observation that the f-curve 

shown in Figure 26 is empirically found to be the minimum f-curve for 

the region. As before, we located a host of fixed points for the T^ 

mapping representing a uniform sampling of Q / P values and found that 

their calculated f-values all lay on or above the f-curve presented in 

Figure 26 . A further aspect of Figure 26 that should be mentioned is 
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Table 3 . The Quantity f = |R| / y As a Function of Q/P for Selected 
Fixed Points of the Henon and Heiles System at Energy 
E = l / l 2 . 

No. Q P Q/P Residue f = |R|2//Q 

1 5 1 5.0000 1.00000000--007 I.58U89319-003 
2 1 1 2 5.5000 i+.51883022 • -009 3.03900913-002 
3 6 1 6.0000 7.01268928- -008 h.12377^09-003 
1+ 13 2 6.5000 1.1289^530--OÔ r 2.1+7012^87-001 
5 7 1 7.0000 1.066601+35- -006 1.9665961+1-002 
6 15 2 7.5000 1+.11+993099--007 1.1+0952281+-001 
7 8 1 8.0000 5.75775951--002 h.89850302-001 00 17 2 8.5000 1+. 22203676--008 1.3 561+83 00-001 
9 16 3 5.3333 -2.913^6265--008 1.11+301303-001 

10 21 h 5.2500 -3.2U771761--008 1.93560608-001 
1 1 26 5 5.2000 -5.5^611+518--008 2.76595735-001 
12 31 6 5.1667 -1.0083^686- -007 3.53687733-001 
13 36 7 5.11+29 -9.77007875- -008 1+.078961+19-001 
ih 1+1 8 5.1250 -1.0153^027--007 1+. 55888989-001 
15 h6 9 5 . 1 1 1 1 -9.92861+912--009 1+. 1+87853 82-001 
16 51 10 5.1000 - 1 . 5 5 7 1 9 9 1 7 --007 5.1+07955^-001 
17 56 1 1 5.0909 -1.^3^38778--008 5.21+663617-001 
18 61 12 5.0833 -6.80262321- -008 5.82110971-001 
19 66 13 5.O769 -h.06091892 --008 5.97061295-001 
20 7 1 ih 5.071U -1.5^385765--008 6.02505156-001 
21 76 15 5.O667 - 3 . 6 7 6 5 ^ 5 ^ --008 6.3731^32l+-OOl 
22 81 16 5.0625 -5.^7355^96--008 6.61756189-001 
23 17 3 5.6667 1.321^7397--007 1.55136067-001 
2h 23 5.7500 -2.8I+201621--007 2.69618777-001 
25 29 5 5.8000 1.39623252- -007 3.3669639ir-001 
26 35 6 5.8333 3.^6333661- -007 1+.27393850-001 
27 1+1 7 5.8571 -1.721+10939--007 1+. 678173 59-001 
28 hi 8 5.8750 5.80781872- -007 5.1+2798768-001 
29 53 9 5.8889 7.09915^86- -007 5.8609776I-OOI 
30 59 10 5.9000 -7.711991.93--007 6.20562185-001 
3 1 65 1 1 5.9091 3.1+01+61799--007 6.32392513-001 
32 7 1 12 5.9167 -6.63563837- -007 6.69836065-OOI 
33 77 13 5.9231 1.75805197--006 7.O879I+I+I+3-OOI 
3^ 19 3 6.3333 2.08271087- -007 1.98011+862-001 
35 25 h 6.2500 3.1+621+6869--007 3.01+19^157-001 
36 31 5 6.2000 7.3333027^- -007 1+. 01987805-001 
37 37 6 6.1667 7.87967356--007 1+. 67822953-001 
38 7 6 .1^29 h.75076037- -007 5.08037721-001 
39 h9 8 6.1250 8.7081I+651--007 5.65783177-001 



Table 3 - The Quantity f = | R | / H A S a Function of Q/P for Selected 
Fixed Points of the Henon and Heiles System at Energy 
E = 1 / 1 2 . (Continued) 

Wo. Q P Q/P Residue f = |R| 2 / / Q 

4o 55 9 6 . 1 1 1 1 -3.31520259-007 5.81275722-001 
ki 61 10 6.1000 1.87086803-007 6.01743283-001 
42 67 1 1 6.0909 9.72107588-OO7 6.61498382-001 
43 73 12 6.0833 1.71345455-006 6.95062578-001 
44 97 16 6.0625 -2.93299000-007 7.33339998-001 
45 20 3 6.6667 1.41977725-008 1.64142869-001 
4 6 27 4 6.7500 2.16714903-007 3.20894395-001 
47 34 5 6.8000 4 . 5 8 5 5 1 2 8 1 - 0 0 7 4.23780009-001 
4 8 4 l 6 6.8333 5.06422857-007 4.93063765-001 
49 4 8 7 6.8571 5.53582033-007 5 . 4 8 6 5 4 8 8 4 - 0 0 1 

50 55 8 6.8750 7.88617750-007 5.99884823-001 
51 62 9 6.8889 1.69112732-007 6.04719641-001 
52 69 10 6.9000 4.50937335-007 6.54728640-001 
53 76 1 1 6.9091 -3.67083152-007 6.77098257 -OOI 
54 83 12 6.9167 -3.76017999-007 7.00141386-001 
55 90 13 6.9231 3.43625137-006 7 .56100743 -OOI 
56 97 14 6.9286 1.91432285-006 7.62260483-001 
57 1 1 1 16 6.9375 6.29632936-OO7 7.73164394-001 
58 22 3 7.3333 5.64704627-007 2.70385725-001 
59 39 4 7.2500 3.21876421-006 4.18042025-001 
60 36 5 7.2000 1.56323333-006 4.75823368-001 
61 43 6 7.1667 6.24842518-007 5.14554274-001 
62 50 7 7 .1429 -5.19892141-007 5.60578620-OOI 
63 57 8 7 .1250 5.97959525-007 6.04835964-001 
6 4 6 4 9 7 . 1 1 1 1 8.46928945-007 6.46018891-001 
65 7 1 10 7.1000 5.20l4l4l2-006 7.09836538-OOI 
66 78 1 1 7.0909 1.08704004-007 6.62891108-001 
67 85 12 7.0833 -2.51909000-007 6 .99415327 -OOI 
6 8 92 13 7.0769 3.06619673-OO6 7.58828229-001 
69 99 14 7 .0714 2.55746341-006 7.70950427-001 
70 106 15 7.0667 -3.07324042-007 7 . 5 3 5 7 1 4 9 6 - 0 0 1 

7 1 113 16 7.0625 1.01958434-006 7 . 8 3 3 4 7 3 7 4 - 0 0 1 
72 120 17 7.0588 -I.OOO6995O-OO6 7.94337492-001 
73 127 18 7.0556 3.50719517-007 7.91308491-001 
Ik 141 20 7.05OO 1.29546294-006 8.25065253-001 
75 155 22 7.0455 I.92308388-OO6 8.43810914-001 
76 23 3 7.6667 -5.74828413-007 2.86649475-OOI 
77 31 4 7.7500 9.83724024-007 4.09678750-001 



Table 3. The Quantity f = | R | ' H A S a Function of Q/P for Selected 
Fixed Points of the Henon and Heiles System at Energy 
E = 1/12. (Concluded ) 

No. Q P Q/P Residue f = |R| 2/ Q 

78 39 5 7.8OOO 6.01017216-007 4.7969872O-OOI 
79 kl 6 7.8333 1.46940591-006 5.64668118-001 
80 55 7 7.8571 3.51128052-006 6.33363879-OOI 
81 63 8 7.8750 5.47211124-006 6.80702427-001 
82 71 9 7.8889 i.o4492490-oo4 7.72434302-OOI 
83 79 10 7.9000 3.07470484-005 7.68718221-OOI 
84 87 11 7.9091 4.87810964-005 7.95938196-001 
85 95 12 7.9167 1.50884926-004 8.30903214-001 
86 103 13 7.9231 3.43380698-004 8.56512119-OOI 
87 111 ik 7.9286 8.62903816-004 8.80627240-001 
88 119 15 7.9333 2.26194513-003 9.02687677-OOI 
89 25 3 8.3333 8.29728071-007 3.26223214-001 
90 33 k 8.2500 9.46369521-OO7 4.31432415-001 
91 kl 5 8.2000 2.61507860-OO6 5.34173308-001 
92 49 6 8.I667 -1.15536940-006 5.72350512-001 
93 57 7 8.1429 6.1l894o62-006 6.56260642-OOI 
9k 65 8 8.1250 3.03905835-006 6.76453774-001 
95 73 9 8.1111 9.53126426-006 7.28521679-OOI 
96 81 10 8.1000 4.30843198-005 7.80199043-OOI 
97 89 11 8.O909 9.45452609-005 8.12016658-OOI 
98 97 12 8.0833 2.66772634-004 8.43941204-001 
99 105 13 8.O769 6.44971787-004 8.69419441-OOI 
100 113 ik 8.0714 1.74692478-003 8.93697810-001 
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that the Q,/P = 5/1 fixed point lies very near the central invariant 

point while the Q / P = Yj/2 fixed point is located fairly close to the 

bounding curve on the right in Figure 1, which means that nearly all of 

the q p level curve plane for energy E = l/l2 about the central in-

2 2 
variant point is represented in Figure 26. Thus, Figure 26 indicates 

that the Henon and Heiles system would be expected to exhibit rather 

regular behavior with only a small measure of isolated stochastic re

gions at this low energy. This expectation is verified in Figure 1; it 

is also supported by the KAM Theory as well as the Moser and Birkhoff 

Theorems. 

2/0 
In Figure 27 we plot the curve f = | R | versus Q,/P for selected 

fixed-point sequences of the T^ mapping at energy E = l/8. We notice 

here the very rapid escalation of the minimum f-curve to a value which 

remains greater than unity for ( Q / P ) values greater than five. We 

re-emphasize here that the fixed points represented on this graph have 

Q / P values that lie in approach sequences of the type Q / P = k/x ± l/n 
. 19 for I = 1 and k = 3j4-j5* which according to Greene do approximate the 

minimum f-curve. Thus, noticing from Equation (VI-20b) that f > 1 

implies | R | > 1 for a = 1 and recalling the relationships (VI-l6), we 
now claim that nearly all fixed-point families are hyperbolic at energy 

E = l/8 when Q / P > 5.0. These facts in turn imply that the region be

yond the "chain" of five islands in Figure 2 is almost entirely sto

chastic . 

To summarize our results thus far, we have demonstrated that the 

KAM prediction of stability at low energies is verified by the f-curve 

in Figure 26. Here, most periodic orbits which exert a relatively wide

spread influence on the phase space trajectories generate fixed points 
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a/p 
A Plot of f = [ R J 2 ^ Versus Inverse Rotation Number for 
Selected Fixed Points of the Henon and Heiles System at 
Energy E = l / 8 . (Notice the rather quick excursion toward 
f > 1 associated with a preponderance of hyperbolic I -
hyperbolic II pairs of fixed points.) 
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consisting of elliptic-hyperbolic I pairs. On the other hand, we 

have shown in Figure 27 that at the energy E = l / 8 a sizeable portion 

of the level curve plane beyond the chain of five islands in Figure 2 

contains a dense or nearly dense set of hyperbolic fixed points. These 

periodic orbits act as unstable scattering centers for nearby, non-

periodic orbits in the four-dimensional phase space for Hamiltonian 

(VII-l), yielding the stochastic behavior shown in Figure 2 . Consid

eration of Figures 26 and 27 leads one to conjecture that an increasing 

number of stable periodic orbits become unstable as the system energy 

is increased. This conjecture could be proved by showing that increas

ing portions of the minimum f versus Q / P curve lie above unity as the 

system energy approaches the dissociation value E = l / 6 . Unfortunately, 

such a continued study is not economically feasible. Nonetheless, the 

generic trend toward an increasing percentage of hyperbolic I -

hyperbolic II fixed points at higher energies seems sufficiently well 

established by Figures 26 and 27 that a continued study of this type 

does not appear necessary. 

The second portion of our research with the Henon and Heiles 

differential equation system focuses on the residue values of two dis

tinct periodic orbits as functions of system energy. The behavior of 

these two periodic orbits illustrates the general tendency of the 

system as a whole to generate increasingly unstable trajectories with 

increasing energy. In addition, this investigation reveals new details 

about the evolution of fixed points in the mapping plane. We begin this 

study by examining the graph of residue versus system energy shown in 

Figure 2 8 , which was drawn from the data of Table k. The periodic orbit 
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Figure 28. The Profile of Residue Versus System Energy for the 5/l 

Fixed-Point Family in the Henon and Heiles System. 



Table k. The Residue as a Function of System Energy for the 5/l 
Fixed-Point Family in the Henon and Heiles System. 

No. Energy Residue 

1 9 . 0 0 0 0 0 0 0 0 - 0 0 2 7 . 6 5 5 5 9 ^ 6 7 - 0 0 3 
2 9 . 1 0 0 0 0 0 0 0 - 0 0 2 1 . 2 3 8 1 3 0 1 9 - 0 0 2 
3 9 . 2 0 0 0 0 0 0 0 - 0 0 2 1 . 7 ^ 9 7 6 9 9 0 - 0 0 2 
k 9 . 3 0 0 0 0 0 0 0 - 0 0 2 2 . 3 0 6 2 2 4 9 1 - 0 0 2 
5 9 . 1 + 0 0 0 0 0 0 0 - 0 0 2 3 . 3 5 8 8 5 8 2 2 - 0 0 2 
6 9 . 5 0 0 0 0 0 0 0 - 0 0 2 k.02586752-002 
7 9 . 6 0 0 0 0 0 0 0 - 0 0 2 5 . 2 0 6 5 3 6 ^ 3 - 0 0 2 
8 9 . 7 0 0 0 0 0 0 0 - 0 0 2 6 . U 6 0 9 3 9 1 0 - 0 0 2 
9 9 . 8 0 0 0 0 0 0 0 - 0 0 2 8 . 2 ^ 9 6 8 3 3 2 - 0 0 2 

1 0 9 . 9 0 0 0 0 0 0 0 - 0 0 2 1 . 0 1 2 6 8 1 9 9 - 0 0 1 
1 1 1 . 0 0 0 0 0 0 0 0 - 0 0 1 1 . 1 6 3 8 6 8 5 7 - 0 0 1 
1 2 1 . 0 1 0 0 0 0 0 0 - 0 0 1 l . U l 6 5 2 0 6 5 - 0 0 1 
1 3 1 . 0 2 0 0 0 0 0 0 - 0 0 1 1 . 6 3 3 5 3 ^ 2 6 - 0 0 1 
ik 1 . 0 3 0 0 0 0 0 0 - 0 0 1 1 . 9 0 7 3 1 T 7 3 1 T - 0 0 1 
1 5 1 . 0 1 + 0 0 0 0 0 0 - 0 0 1 2 . 1 9 2 2 5 2 5 5 - 0 0 1 
1 6 1 . 0 5 0 0 0 0 0 0 - 0 0 1 2.k8Qkk6k6-00l 
1 7 1 . 0 6 0 0 0 0 0 0 - 0 0 1 2 . 7 9 6 0 3 7 1 ^ - 0 0 1 
1 8 1 . 0 7 0 0 0 0 0 0 - 0 0 1 3 . 1 6 1 5 1 0 8 8 - 0 0 1 
1 9 1 . 0 8 0 0 0 0 0 0 - 0 0 1 3 . 5 8 1 + 8 3 5 8 0 - 0 0 1 
2 0 1 . 0 9 0 0 0 0 0 0 - 0 0 1 3 . 9 2 6 0 9 9 8 7 - 0 0 1 
2 1 1 . 1 0 0 0 0 0 0 0 - 0 0 1 1 + . 3 7 0 9 3 9 2 7 - 0 0 1 
2 2 1 . 1 1 0 0 0 0 0 0 - 0 0 1 1+.82555501+-001 
2 3 1 . 1 2 0 0 0 0 0 0 - 0 0 1 5.21+21+1857-001 

2k 1 . 1 3 0 0 0 0 0 0 - 0 0 1 5 . 7 1 3 ^ 3 6 3 5 - 0 0 1 
2 5 1 . 1 1 + 0 0 0 0 0 0 - 0 0 1 6 . 1 9 0 5 ^ 0 6 7 - 0 0 1 
2 6 1 . 1 5 0 0 0 0 0 0 - 0 0 1 6 . 6 2 5 i + 5 i r 6 l - 0 0 1 
2 7 1 . 1 6 0 0 0 0 0 0 - 0 0 1 7 . 1 5 5 ^ 0 1 + 7 - 0 0 1 
2 8 1 . 1 7 0 0 0 0 0 0 - 0 0 1 7 . 5 9 2 2 5 0 9 5 - O O I 
2 9 1 . 1 8 0 0 0 0 0 0 - 0 0 1 8 . 0 2 5 9 8 9 7 8 - O O I 
3 0 1 . 1 9 0 0 0 0 0 0 - 0 0 1 8.I+0723013-OOI 
3 1 1 . 2 0 0 0 0 0 0 0 - 0 0 1 8 . 7 7 8 7 5 1 5 O - O O I 
3 2 1 . 2 1 0 0 0 0 0 0 - 0 0 1 9 . 1 8 2 6 2 0 2 2 - 0 0 1 
3 3 1 . 2 2 0 0 0 0 0 0 - 0 0 1 9 . 1 + 7 6 3 8 9 3 7 - 0 0 1 
3 ^ 1 . 2 3 0 0 0 0 0 0 - 0 0 1 9 . 7 0 1 8 2 6 6 8 - O O I 
3 5 1 . 2 1 + 0 0 0 0 0 0 - 0 0 1 9 . 9 0 0 0 2 1 1 + 3 - 0 0 1 
3 6 1 . 2 5 0 0 0 0 0 0 - 0 0 1 9 . 9 7 ^ 6 1 + 2 6 8 - 0 0 1 
3 7 1 . 2 6 0 0 0 0 0 0 - 0 0 1 1 . 0 0 0 0 0 0 0 0 + 0 0 0 
3 8 1 . 2 7 0 0 0 0 0 0 - 0 0 1 9 . 9 1 6 1 + 0 3 1 2 - 0 0 1 
3 9 1 . 2 8 0 0 0 0 0 0 - 0 0 1 9 . 7 2 8 6 1 3 0 8 - 0 0 1 

i+o 1 . 2 9 0 0 0 0 0 0 - 0 0 1 9 . 3 9 9 5 1 2 1 0 - 0 0 1 



Table 4 . The Residue as a Function of System Energy for the 5/l 
Fixed-Point Family in the Henon and Heiles System. 
(Concluded) 

No. Energy Residue 

41 1.30000000-001 8.97096226-001 
42 1.31000000-001 8.39598348-001 
kl 1.32000000-001 7 .71882545-001 
kk 1.33000000-001 6.94090496-OOI 
45 1.3^000000-001 6 .02241222-001 

k6 1.35000000-001 5.05978765-001 
hi 1.36000000-001 4.06535308-001 
48 1.37000000-001 2.97067383-001 

h9 1.38000000-001 1.93317715-001 
50 1.39000000-001 1.03148572-001 
51 1.40000000-001 3.55634799-002 
52 1.41000000-001 1.00589784-003 
53 1.42000000-001 1.59569617-002 
54 1.43000000-001 9.48479468-002 
55 1.44000000-001 2.67453336-001 
56 1.45000000-001 5 .62555279-001 
57 1.46000000-001 I.01300786+OOO 
58 1.47000000-001 1 .66493475+000 
59 1.48000000-001 2.57457460+000 
60 1.49000000-001 3.8O158063+OOO 
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considered here generates the fixed-point family with Q / P = 5 / 1 , which 

we have also encountered previously in Figures 2 and 2 5 . In Figure 28 

we note that the inception residue is very small when this periodic 

orbit first evolves from the central invariant point near energy E = 

0.085, and we also observe that the interleaved 5/l elliptic-hyperbolic 

I fixed-point families eventually convert to hyperbolic I - hyperbolic 

II fixed-point families near the energy E = O.lkl. We mention in 

passing that the central invariant point and the 5 / 1 fixed point on the 

q axis indicated in Figures 2 and 25 both move to the right at rather 
2 

uniform rates with increasing energy; however, the 5 / 1 gradually separ

ates itself from the central invariant point because it has the higher 

uniform rate of travel. The rising and falling pattern we see in the 

residue curve in Figure 28 will be explained later in connection with 

Figure 30 . 

In Figure 29 we present a very similar curve of residue versus 

system energy for the fixed-point family with Q,/P = 8/l, whose location 

for energy E = l /8 was shown in Figure 25 . We note that the 8/l family 

appears at a lower energy than the 5 / 1 family, and that the elliptic 

8/l fixed-point family becomes a hyperbolic II family around energy E = 

l / 8 , which is also lower than the transition energy for the 5 / 1 family. 

These two examples are typical of the general case. Fixed-point 

families with larger values of Q / P first appear and then move away from 

the central invariant point at lower system energies than do the fixed 

points with smaller Q / P ratios, in agreement with our earlier observation 

that the Q / P quotients became larger for increasing distances from the 

central invariant point. In addition, we may point out that this 
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Fixed-Point Family in the Henon and Heiles System. 
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phenomenon of increasing Q/P for greater separations from the central 

invariant point is also seen in the arrangement of second-order fixed 

points around their associated first-order elliptic members. We find, 

for example, that the fixed-point family with Q/p = 55/ll shown in 

Figure 25 lies farther away from the 5/l fixed point than does the fam

ily with Q/P = 30/6 , which is not shown in Figure 25 . When these 

second-order families are viewed from a 5 / 1 fixed point itself, the 

inverse rotation numbers are ll/l and 6/l respectively, with the 6/l 

family lying closer to the central 5/l fixed point. In addition, the 

second-order families lying closer to the first-order elliptic fixed 

points are more stable than those located farther away, which is anal

ogous to the first-order 5/l family remaining stable after the 8/l 

elliptic family has become hyperbolic II. Thus, the macroscopic sta

bility progression in the first order of the hierarchy implied by Figures 

28 and 29 is also observed in sequentially higher orders of the hierarchy 

as anticipated in Figure 1 6 . 

The last property of individual periodic orbits we shall consider 

is illustrated in Figure 30 . At energy E » 0 . 1 2 1 , a numerical search 

along the positive q axis reveals at least two distinct fixed-point 
2 

families with Q/P = 8/l. The original 8/l continues to be found at the 

location predicted by its past uniform rate of travel rightward, while 

a new bifurcated 8/l lies on the q axis just to the left of the origi-

nal 8/l. As the system energy increases, the original 8/l continues to 

move rightward at the usual rate, but the bifurcated version appears to 

move leftward for a small energy range and then to move rightward at a 

uniform rate (but more slowly than the original 8/l) for succeeding 
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higher energies. It is entirely possible that more than one new 8/l 

evolved from the original 8/l, but only one was found along the q axis 
2 

in the search. 
19 35 

Greene ' offers an explanation of the bifurcation process it

self and then attempts to connect the unexpected rising and falling 

pattern of the residue profiles in Figures 28 and 2 9 with the bifurcation 

concept. According to Greene, each original 8/l fixed point is the 

center of a second-order system of surfaces and fixed points with re

lative P / Q values lying between zero and cuo, where the maximum ro

tation number ^ about the 8/l and the residue R of the 8/l fixed point 

are connected via 

R = sin 2 it w o . (VII-2) 

In Equation (VII-2) u> is the limiting rotation number about the 8/l when 

the 8/l itself is considered to be a central fixed point. Referring to 

Figure 29 , when R = 1/2 near the energy E = 0 .099* the maximum rotation 

number for the second-order hierarchy surrounding the 8/l fixed point 

extends to u)0 = l / 4 , which is equivalent to P/Q = 4 / 3 2 around the cen

tral invariant point. When R = 1 near E = 0.11, the linearized matrix 

M becomes the negative identity matrix and <j)Q = l/2. When R = l/2 

again near E = 0 . 1 1 7 , the maximum rotation number u) around the 8/l 

fixed point is 3 / 4 . There is a crisis at R = 0 near E = 0.1215 for 

which the linearized matrix M becomes the identity matrix. The ambi

guity in (dq is probably best resolved by taking = 1 for R = 0 . Thus, 

we can view the bifurcated 8/l as having u) = P/Q = l/l about the 
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original 8/l, which is equivalent to Q / P = 8/l about the central in

variant point. We note that a bifurcation of the original 8/l into 

another 8/l at R = 1 is not possible since u)Q = l / 2 , which implies 

that Q / P = l 6 / 2 around the central fixed point is the lowest Q and P 

multiple of the 8/l that could evolve. An extensive numerical search 

for a second 8/l at E = 0 . 1 1 was unsuccessful, whereas the second 8/l 

is easily found at E = 0 ,1215 when R = 0 and u) = 1 . 
0 o 

The bifurcation process also helps to explain the distribution 

of rotation numbers for the first-order fixed points in a given level 

curve plane of the Henon and Heiles system. Using Equation ( V H - 2 ) , 

we see that the limiting rotation number to about the central invariant 

point depends upon the residue of the central elliptic point, where 

the residue is determined by the given value of system energy. We note 

that specifying a maximum u)Q is equivalent to setting a minimum value 

of Q / P for the first-order fixed-point families, although Equation 

(VII-2) does not indicate a concurrent upper bound on Q / P . Since the 

central invariant point is itself tending to pass from elliptic to 

hyperbolic II as the system energy increases, we anticipate from Equa

tion (VII-2) that the u) is also increasing in the same fashion that 

we observed earlier for the 8/l family. Consequently, as the system 

energy increases, the minimum Q /P ratio in the level curve plane de-
Q 

clines, which explains why the T^ families with the smallest values 
of (Q /P) do not bifurcate from the central fixed point until higher 

Q 

energies are achieved. Moreover, an existing T^ family will move 

away from the central fixed point as the system energy is increased, 

which implies that the Q /P ratios increase with increasing distance 
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from the central fixed point. 

In this chapter we have sought to examine the nature of sto

chastic behavior in the Henon and Heiles differential equation system 

by applying some of the techniques of mapping analysis developed in 

Chapters V and VI. We have indicated that the widely stochastic re

gions of phase space contain a preponderance of unstable periodic 

solutions of Hamiltonian (VII-l), and that the nature of any given 

periodic orbit apparently tends toward eventual instability as the 

system energy is increased. This chapter has attempted to expose 

additional insight into stochastic behavior in the physical nonlinear 

oscillator systems, thereby enhancing our understanding of the ir

reversible processes. 
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CHAPTER VIII 

CONCLUSIONS 

One of the cornerstones of equilibrium statistical mechanics is 

the assignment of equal probability to states of equal energy for an 

isolated system using the microcanonical distribution. In this parti

cular distribution the small interaction terms coupling the internal 

degrees of freedom are neglected in the expression for the potential 

energy, since such terms are presumed significant only in destroying 

almost all well behaved constants of the motion and in bringing the 

system to equilibrium. Accordingly, statistical mechanics assumes that 

these small coupling terms, even though extremely weak, have a profound 

effect upon the individual system trajectories. One of the central con

cerns of this thesis has been to establish the criteria under which 

very weak nonlinear coupling terms can indeed radically alter the un

perturbed motion. Using a nearly-linear oscillator system as an example, 

we have demonstrated that statistical behavior can occur provided that 

there is resonance overlap. In this view each individual resonant 

interaction attempts to carry the unperturbed phase space trajectory 

into a distinct and previously unvisited region of the energy surface. 

When many resonances act simultaneously, the system trajectory is in

fluenced very strongly by first one and then another resonant term with 

the result that most system trajectories wander freely over much of the 

energy surface. In this thesis we have used the term stochastic behavior 

to denote the more or less random wandering of a trajectory over the 

energy surface. 
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Let us now indicate the role of resonance overlap in the whole

sale destruction of well behaved constants of the motion. Using 

Hamiltonian (II -7) as an example, we note that each resonant interaction, 

if acting alone, yields an integrable system in which linear combinations 
2 5 

of the J variables are constants of the motion. When resonance over

lap is present, the trajectory is very strongly influenced by first one 

and then another resonance; consequently, the actual trajectory may be 

approximated by a sequence of short integrable system segments with an 

analytically distinct set of constants of the motion for each segment. 

Thus, the trajectory as a whole would not have a well behaved constant 

of the motion beyond the total energy, since the approximate "local" 

constants of the motion have a varying analytic form. In addition, the 

number of overlapping resonant terms increases as N 2 in Hamiltonian 

(ll-7)j so that we would expect the motion to become more and more path

ological as the number of resonantly coupled oscillators increases. 

This latter view of the source of stochasticity for Hamiltonian (II-7) 

is quite closely related to the notions leading Poincare' to a proof of 

the non-existence of analytic constants of the motion for nonlinear 

systems. 

In the first portion of this thesis we demonstrated for arbi

trarily small Y that the purely resonant, nearly-linear, three-oscillator 

Hamiltonian (III-1.) did indeed exhibit those freely wandering trajec

tories which would be expected to lead to macroscopically irreversible 

behavior. Clearly, fluctuations from equilibrium would occur and recur, 

due to Poincare recurrences. If the motion along a trajectory approaching 

equilibrium were reversed, the system would proceed at the onset through 
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an excursion away from equilibrium and then return. Consequently, 

recurrence and irreversibility constitute paradoxes only if one in

sists on a monotonic approach to equilibrium without fluctuations. In 

regard to the origin of the irreversibility for these nonlinear oscil

lator systems, we note that the exponential pair-orbit separation in 

stochastic regions represents that stirring of phase space which Gibbs 

envisioned as causing irreversibility. In particular, the rate at 

which these pair-orbits diverge gives at least one measure of entropy 

production in the system. We anticipate that extensive use of pair-

orbit separation as a probe for studying various nonlinear systems will 

occur in the future. Indeed, a beginning has already been made by 
37 38 R. H. Miller and by E. Myles Standish, Jr. In addition, it is 

likely that this exponential pair-orbit separation will be used as a 

starting point for rederiving master equations governing the approach 

to equilibrium for nearly-linear oscillator systems. 

Whereas the first portion of this thesis sought to establish the 

criteria under which a nearly-linear oscillator system can exhibit wide

spread stochasticity and to demonstrate that such stochastic systems 

possess exponentially separating orbits, the second half of the thesis 

directed its attention to elaborating further details of the motion in 

the stochastic region of the system phase space. To this end, we showed 

that the surface of section graphs, which illustrated typical behavior 

of trajectories in nonlinear oscillator systems, could be regarded as 

area-preserving mappings of a plane onto itself ."L^ ,"L9 g i n c e there is 

such a close correspondence between the pathology of trajectories for 

Hamiltonian systems and the pathology of area-preserving mappings, a 
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study of the generic properties of algebraic area-preserving mappings 

was used to yield additional insight into the stochastic behavior pre

sent in the many-body problem. In particular, the direct study of 

algebraic systems provided us with powerful mapping theorems not avail-
Q 

able for differential equation systems. For example, the Moser and 
2Q 

Birkhoff Theorems for algebraic mappings were used to predict the 

dissolution processes that take place when small perturbation terms are 

added to smooth algebraic transformations. These theorems show that 

the introduction of small nonlinearity into an algebraic system exhi

biting otherwise regular behavior will cause the invariant curves 

bearing rational 2?otation numbers to decompose primarily into alter

nating elliptic (stable) and hyperbolic I (unstable) fixed points of 

the mapping. A typical mapping generated by a slightly nonlinear, al

gebraic area-preserving transformation was presented in Figure l 6 from 
23 

the paper by Arnold, showing the stable areas surrounding the elliptic 

fixed points and the waving separatrices emanating from the unstable 

fixed points of the associated hyperbolic I families. 

A detailed study of the nature of the fixed-point families, pre

dicted by the Moser and Birkhoff Theorems and illustrated in Figure 1 6 , 

revealed additional properties of stochastic behavior. In particular, 

we observed that the intersecting separatrices from adjacent hyperbolic 

fixed points of an unstable family encompass the elliptic fixed points 

of the associated stable family. When weak nonlinear perturbations are 

added to an otherwise smooth algebraic transformation, the total measure 

of the stable regions is only slightly reduced since the separatrices 

from adjacent hyperbolic fixed points almost join smoothly, and hence 
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they merely partition the original stable area into various stable sub-

regions. However, as the amount of nonlinearity in the mapping is 

increased, the separatrices intersect at larger angles and thus pro

gressively erode away more and more of the stable areas surrounding 

the associated elliptic fixed points. The culmination of the erosion 

process is reached when the stable elliptic fixed-point families them

selves change character and become unstable hyperbolic II families. 

Thus, our mapping studies have provided a geometrical interpretation to 

the advent of increasing stochasticity which accompanies increasing 

nonlinearity in the transformation. Moreover, we conjecture from these 

studies of algebraic mappings that the stochastic regions of a mapping 

plane are dominated by alternating hyperbolic I - hyperbolic II fixed 

points. 

In order to empirically verify the validity of this conjecture, 
19 

we modified a stability analysis technique developed by Greene and 

determined the nature of the periodic orbits in the stochastic region 

of phase space for the Henon and Heiles Hamiltonian (VTI-l). Using 

this procedure, we demonstrated that at low system energy in the Henon 

and Heiles mapping the surface of section is dominated by alternating 

elliptic-hyperbolic I fixed points. On the other hand, as the system 

passes beyond the province of KAM Theory with increasing energy, we 

observe an increasing occurrence of hyperbolic I - hyperbolic II fixed-

point pairs. In addition, we showed that regions of phase space which 

contain mainly unstable periodic orbits coincide with the domains that 

display widespread stochasticity. 

In conclusion, let us indicate two possible extensions of the 
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research described in this thesis. First, we could diversify our 

approach in studying stochastic behavior by considering the periodic 

orbits of nonlinear oscillator systems as scattering centers for the 

non-periodic trajectories. In this view, we might be able to measure 

the effective influence of an unstable periodic orbit by calculating a 

type of scattering cross section for the periodic solution. Further

more, the application of scattering theory to a stochastic region of 

phase space could perhaps elucidate additional pathological distinc

tions between the hyperbolic I and hyperbolic II fixed points and 

thereby reveal new characteristics of stochastic behavior. 

Second, and perhaps more important, it would be of great interest 

to know the extent to which a set of successive iterates of a point 

lying in a stochastic region is truly random. In this regard, Conto-
39 

poulos has found that two different starting points in a supposedly 

stochastic region of phase space can generate similar but distinctly 

different macroscopic patterns of trajectory intersections in a surface 

of section. In partial response to this issue, we observed in our 

studies that quasi-periodic orbits exist in Hamiltonian systems, which 

give the appearance of periodicity for several mapping iterations, but 

which then display very erratic behavior for all succeeding iterations. 

Thus, within the constraints of numerical mapping accuracy, there appear 

to be transition regions in phase space separating stable areas from 

stochastic domains, which might explain Contopoulos' result. It is 

hoped that future research in ergodic theory will answer these and other 

related questions that have arisen from our own research efforts. 
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APPENDIX A 

This appendix demonstrates that the q p level curve plane for 
2 2 

the Henon and Heiles Hamiltonian given in Equation (VII-l) is symmetric 

about the q axis. Consider the following diagram which represents 
2 

four points in the q p plane with q = 0, p ^ 0, for each point: 
2 2 1 1 

. ( q ( 2 ) , P ( 2 ) ) 
2 2 2 

? (* ( 1 ),P ( 1 )) 
-L 2 2 

^ / (1 ) ( 1 ) N • (q ,-p ) 
2 2 

^ (*(2W2)) 

The Henon and Heiles Hamiltonian is given by 

2 2 P P 
q 2 + q 2 + 2q 2q 

i— l 1 2 
- (2/3 ) q 3 ] , (A-l) 

for which Hamilton's equations of motion become 

l oP i l 
(A-2a) 



115 

4 = U = P , (A-2b) 
2 O P 2 

2 

V = - U = -q - 2q q , (A-2c) l dq l 1 2 l 

P = - H = q 2 - q - q a . (A-2d) 
2 oq 2 2 1 

2 

Hamiltonian (A-l) is sufficiently smooth so that the existence and 

uniqueness theorems of differential equations as applied to Equations 

(A-2) guarantee that there is only one orbit through each point of the 

allowable phase space. We postulate that the trajectory passing through 

the point 1 with coordinates (q^ 1) = 0, <i^\ P̂ "̂  ^ 0, P^ 1^) will next 
^ 1 2 1 2 / 

( (2) (2) 
intersect the q p plane in point 2 with coordinates [q = 0 , q , 

2 2 \ 1 2 

(2) (2)\ 
P ^ ° J P )j which defines a mapping represented by 

1 2 / 

T ( q ( l ) = 0, ̂ \ p ^ * 0, p ( l ) ) = (A-3) 
\ 1 2 1 2 / 

( q ( 2 ) = 0, q < 2 > , p<2> * 0, p< 2>) 
\ 1 2 1 2 / • 

The symmetry of the q p plane about the q axis can be demonstrated 
2 2 2 

by proving that if Equation (A-3) holds, then the "mirror" point 3 maps 

into the "mirror" point k. We write this latter mapping as 

T ( q ( 5 ) = 0, q < 2 > , p<2> * 0, - p ^ ) - (AA) 
\ 1 2 1 2 / 

q - u, q , p ^ u, -p } , 
1 2 1 2 
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since the values of p are determined from Equation (A-l). 
1 

A given trajectory in phase space will exactly reverse its 

evolution if we replace t by -t in Hamilton's equations. However, we 

observe from Hamilton's equations that an alternative reversing pro

cedure for Hamiltonians that are even functions in each momentum is to 

change the signs of the momenta and to perform a second integration 

in the forward time direction. The final position in phase space 

achieved by this technique is the mirror image in the momenta coordi

nates of the initial point from which the first integration began. If 

we apply the momentum reversing technique to return from point 2 to point 

1, we have via momenta sign changes that 

Equation (A-5) is the same as Equation (A-k) except the p momenta are 

negative instead of positive as required by the conditions for the q p 

level curve plane. This difference is reconciled in the following 

We observe that the equations of motion are invariant under the 

canonical transformation given by 

l 

2 2 

manner. 

q = -q , (A-6a) 
l l 

q. = q 9 (A-6b) 
2 2 
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P = -P , (A-6c) 
1 1 

P = P • 
2 2 

(A-6d) 

Since the two points indicated in Equation (A-5) lie on a solution to 

the equations of motion, Equations (A-6) ensure that the Equation (A-5) 

points with the signs of q and p reversed also lie on a solution for 
l l 

Hamiltonian (A-l). Therefore, using the transformation of Equations 

(A - 6 ) , we may rewrite the mapping sequence of Equation (A-5) in the 

form 

(A -7) 

which was to be proved. 
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APPENDIX B 

In this appendix we first present some of the mathematical 

considerations involved in locating the fixed-point families of the 

Henon and Heiles differential equation system, which we investigated 

in Chapter VII. We then discuss the accuracy criteria used in deter

mining the linearization matrix M of Equation (VI -17) for the Henon 

and Heiles system. 

All calculations were performed in double precision on the Univac 

1108 Computer using an eighth-order Runge-Kutta integration routine 

to generate the trajectories with a step size of 0.05 seconds. Passages 

of q within ± 10 ^ of zero and values of p ^ 0 were required before 
1 1 

the associated (q } p ) coordinates were accepted for plotting. In lo-
2 2 

Q 

eating the fixed points of for this differential equation mapping, 

we found that the reproducibility of the calculations was much more sen

sitive to the thickness of the level curve plane, measured by the max

imum allowable deviation of q from zero, than it was to the closeness 
1 

with which a trial initial point returned to its original location after 
Q intersections with the surface of section. The combination of a level 

curve plane thickness of ± 1 0 and a return after Q intersections to 
- 8 

within 10 of the initial starting point was found to provide a suffi-
0 

cient requirement for accurately locating the fixed-point family of . 

Once a fixed-point family was located within the desired precision, 

the associated linearized matrix M was determined using the second me

thod in conjunction with Equations (VI -17) - (VT - 1 9 ) . Here we transposed 
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(x,y) into (q ,p ) and identified an iteration of the algebraic map-
2 2 

ping with successive trajectory intersections of the surface of section, 

There were two criteria used to judge the reliability of the four com

puted elements of the matrix M. First,the determinant of M should 

equal unity, since M is the Jacobian matrix representing the linear

ized transformation for the canonical, area-preserving mapping T^. For 

the matrix M in Equation (VT -17) the unit determinant condition becomes 

a 2 + b 2 - c 2 - d 2 = 1. (B-l) 

The second accuracy check on the computed matrix M evolves from 
/ \ 19 a consideration of the quadratic form Y(q ,p ) given by 

2 2 

Y(q ,p ) = (b-o)(q - q ( 0 ) ) 2 + 2d(q - q ( 0 ) ) ( p - p ( 0 ) ) + (B-2) 
2 2 2 2 2 2 2 2 

(b+c)(p - p ( 0 ) ) 2 , 
2 2 

which may be shown to be an invariant of the matrix M of Equation 

(VI - 1 7 ) , which is 

'(a+d) (c+b) 
M = 

[(c-b) (a-d)J 
(B-3) 

Here M gives the linearized mapping about a fixed point at ( q ^ \ p ^ ^ ) . 
2 2 

For the linearized transformation matrix M, Y(q ,p ) represents an 
2 2 

elliptic or hyperbolic form as M is linearized about a stable or unstable 

fixed point respectively. We also note from Equation (B-3) that the 
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coefficients (b-c), 2d, and (b+c) occurring in ¥ are directly deter

mined by the elements of the matrix M. If the origin of coordinates is 

translated to the fixed point ( q / ^ , p ^ ) ) and if the symmetry in p from 
2 2 2 

Appendix A is invoked for the invariant curves around fixed points on 

the q axis, then we see that d = 0 in the matrix M of Equation (B-3>). 
2 

This equality of the diagonal elements of the matrix M constitutes the 

second accuracy condition. 

During the actual computation of the matrix M by the second 

method, the program determined the four matrix elements for each of 

five different separation distances between the fixed point and the 

second members of the two perpendicularly-oriented pairs. It was found 

for most fixed-point families considered that the same value of pair-

separation distance simultaneously provides the best satisfaction of 

both accuracy conditions stated above. In those cases which indicated 

a different optimal pair-separation distance for meeting each accuracy 

condition, the trace of the matrix M that best satisfies the determinant 

condition was almost the same as the trace from the linearized matrix 

for which the diagonal elements are the most nearly equal. In view of 

the minor difference between the two accuracy checks, we elected to 

determine the residue from that linearized matrix M whose determinant 

most nearly equaled unity. 
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APPENDIX C 

This appendix presents the analysis used to determine the 

factor a in Equations (VT-20) for the Henon and Heiles differential 

equation mapping T^ discussed in Chapter VII. Taking the absolute 

value in Equation (VI-20b), we have the relationship 

f(P/Q) = | R / a | 2 / Q , (C-l) 

from which we obtain 

In f = (2/Q).ln(l/a) + ( 2 / Q ) - U I | R | , ( C - 2 ) 

where we require that cc > 0. We may rewrite Equation ( C - 2 ) in the form 

Q - I J I f = 2(1JI |R | - In a ) . (C-3) 

As we mentioned previously in Chapter VI, Equations (VI-20) are used 

primarily for first-order fixed-point families, although the empirical 

investigation described below shows a consistency of results when 

Equations (VI-20) are also used for second-order families. If we now 

consider a first-order fixed point and an associated second-order 

family, which is required to have the same Q,/P ratio as the first-

order family it surrounds, we may write Equation (C-3) for each family 

separately, using f = f(P/Q), as 
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Q • In f = 2(ln|R I - In a ) , (C-ka) 
1 l 

Q • In f = 2(ln|R I - In A ) , (C-kb) 
2 2 

where the subscripts i and 2 denote the first-order and second-order 

families respectively. We then obtain from Equations (C-4) an expression 

for In A , which is given by 

In a = (C-5) 
1 2 

In order to determine the value of A to be used in Equation 

(C-l) for the system energy E = l / 8 , several second-order families, 

associated with the first-order fixed-point family bearing Q/P = 5 / 1 , 

were used successively in combination with the 5/l family in Equation 

(C - 5 ) , which gave an average value of A « 1 . 0 . In addition, numerical 

computations showed that the f-function as defined by Equation (C-l) is 

relatively insensitive to variations in CT, especially at low energies. 

Thus, we took A = 1 in our determinations of the f-curves via Equation 

(C-l) for both energies E = l / l 2 and E = l / 8 . 
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