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Abstract
Advances in distributed service-oriented computing and global com-
munications have formed a strong technology push for large scale data
integration among organizations and enterprises. It is widely observed
that multiple organizations in the same market sectors are actively
competing as well as collaborating with constantly evolving alliances.
Many such organizations want to find out the aggregation statistics
about sales in the sector without disclosing sales data in their private
databases. Privacy-preserving data sharing is becoming increasingly
important for large scale mission-critical data integration applications.

In this paper we present a decentralized peer-to-peer protocol for
supporting statistics queries over multiple private databases while re-
specting privacy constraints of participants. Ideally, given a database
query spanning multiple private databases, we wish to compute the an-
swer to the query without revealing any additional information of each
individual database apart from the query result. In practice, a popular
approach is to relax this constraint to allow efficient information inte-
gration while minimizing the information disclosure. The paper has a
number of unique contributions. First, we formalize the notion of loss
of privacy in terms of information revealed and propose a data privacy
metric. Second, we propose a novel probabilistic decentralized proto-
col for privacy preserving top � selection. Third, we perform a formal
analysis of the protocol and also experimentally evaluate the protocol
in terms of its correctness, efficiency and privacy characteristics.

1 Introduction
Information integration has long been an important area of re-
search as there is great benefit for organizations and individuals
in sharing their data. Traditionally, information integration re-
search has assumed that information in each database can be
freely shared. Recently, it has been recognized that concerns
about data privacy increasingly becomes an important aspects
of the data integration because organizations or individuals do
not want to reveal their private databases for various legal and
commercial reasons.
Application Scenarios. The increasing need for privacy pre-
serving data integration is driven by several trends [3]. In the
business world, with the push of end-to-end integration be-
tween organizations and their suppliers, service providers, and
trade partners, information sharing may occur across multiple
autonomous enterprises. Full disclosure of each database is un-
desirable. It is also becoming common for enterprises to col-

laborate in certain areas and compete in others. This in turn
requires selective information sharing.

Another important application scenario is driven by secu-
rity. Government agencies realize the importance of sharing in-
formation for devising effective security measures. For exam-
ple, multiple agencies may need to share their criminal record
databases in identifying certain suspects under the circumstance
of a terrorist attack. However, they cannot indiscriminately
open up their databases to all other agencies.

Such concerns of data privacy place limits on the informa-
tion integration. We are faced with the challenge of data in-
tegration while respecting privacy constraints. Ideally, given a
database query spanning multiple private databases, we wish
to compute the answer to the query without revealing any ad-
ditional information of each individual database apart from the
query result.
Current Techniques and Research Challenges. There are
two main existing techniques that one might use for building
the privacy preserving data integration applications and we dis-
cuss below why they are inadequate.

One technique is to use a trusted third party and have the par-
ticipating parties report the data to the trusted third party, which
performs the data integration task and reports back the result to
each party. However, finding such a trusted third party is not
always feasible. The level of trust required for the third party
with respect to intent and competence against security breaches
is too high. Compromise of the server by hackers could lead to
a complete privacy loss for all participating parties should the
data be revealed publicly.

The other is the secure multi-party computation approach
[9, 8] that developed theoretical methods for securely comput-
ing functions over private information such that parties only
know the result of the function and nothing else. However, the
methods require substantial computation and communication
costs and are impractical for multi-party large database prob-
lems.

Agrawal et al [3] recently proposed a new paradigm of in-
formation integration with minimal necessary sharing across
private database. As a tradeoff for efficiency and practicabil-
ity, the constraint of not revealing any additional information
apart from the query result can be relaxed sometimes to allow

1



minimal additional information to be revealed. As an example,
they developed protocols for computing intersection and equi-
join between two parties that is still based on cryptographic
primitives but more efficient with minimal information disclo-
sure.

Given this paradigm, research opportunities arise for devel-
oping efficient specialized protocols for different operations.
One important operation is statistics queries over multiple pri-
vate databases, such as top � data values of a sensitive attribute.
In particular, when ����� , it becomes the max(min) query. For
example, a group of competing retail companies in the same
market sector may wish to find out statistics about their sales,
such as the top sales revenue among them, but to keep the
sales data private at the same time. The design goal for such
protocols is two fold. First, it should be efficient in terms of
both computation and communication costs. In order to mini-
mize the computation cost, expensive cryptographic operations
should be limited or avoided. Second, it should minimize the
information disclosure apart from the query results for each
participant.
Contributions and Organizations. Bearing these design goals
in mind, we propose a protocol for selecting top � data values of
a sensitive attribute across multiple ( 	�

� ) private databases.
The paper has a number of unique contributions. First, we for-
malize the data privacy goal and the notion of loss of privacy in
terms of information revealed by proposing a data privacy met-
ric (Section 2). Second, we propose a novel probabilistic de-
centralized protocol for privacy preserving top � selection (Sec-
tion 3). Third, We perform a formal analysis of the protocol in
terms of its correctness, efficiency and privacy characteristics
(Section 4) and evaluate the protocol experimentally (Section
5). We provide a brief overview of the related work (Section 6)
and conclude the paper with a summary, and a brief discussion
of future work (Section 7).

2 Privacy Model
In this section we define the problem of top � queries across
private databases. We present the privacy goal that we focus in
the paper, followed by privacy metrics for characterizing and
evaluating how the privacy goal is achieved.
Problem Statement. The input of the problem is a set of pri-
vate databases, ��������������������������	�
�� � . A top � query is to
find out the top � values of a common attribute of all the in-
dividual databases. We assume all data values of the attribute
belong to a publicly known data domain. Now the problem is
to select the top � values with minimal disclosure of the data
values each database has besides the final result.

2.1 Adversary Model
We adopt the semi-honest model [8] that is commonly used
in multi-party secure computation research for privacy adver-
saries. A semi-honest party follows the rules of the protocol,
but it can later use what it sees during execution of the protocol

to compromise other parties’ data privacy. Such kind of behav-
ior is referred to as honest-but-curious behavior [8] and also
referred to as passive logging [18] in research on anonymous
communication protocols.

The semi-honest model is realistic for our context based on
the following observation. Today multiple organizations in the
same market sectors are actively competing as well as collab-
orating with constantly evolving alliances. These parties often
wish to find out aggregation statistics of their sales, such as the
total sales or the top � sales among them in a given category or
time period, while keeping their own sales data private. As a
result, each participating party will want to follow the agreed
protocol to get the correct result for their mutual benefits and
at the same time reduce the probability and the amount of in-
formation leak (disclosure) about their private data during the
protocol execution due to competition or other purposes.

Other adversary models include malicious model where an
adversary can misbehave in arbitrary ways. In particular, it
can change its input before entering the protocol or even ter-
minates it arbitrarily. Possible attacks under this model include
spoofing attack and hiding attack where an adversary sends a
spoofed dataset or deliberately hides all or part of its dataset
and leads to a polluted query result. We plan to study the mali-
cious model in our future work.

2.2 Privacy Goal
We focus on the data privacy goal for top � queries in this paper.
Ideally, besides the final top � results that are public to all the
databases, nodes should not gain any more information about
each others data. As we have discussed earlier, with a central-
ized third party approach, all participating organizations will
have to trust this third party and disclose their private data to
the third party, which is not only costly in terms of legal and ad-
ministration procedure but also undesirable by many. We pro-
pose a decentralized approach without any third trusted party.
Our goal is to minimize data exposure among the multi-parties
apart from the final result of the top � query.

We describe the different types of data exposure we con-
sider and discuss our ultimate privacy goal in terms of such
exposures. Given a node ! and a data value " # it holds, we
identify the following data exposures in terms of the level of
knowledge an adversary can deduce about "$# : (1) Data value
exposure: an adversary can prove the exact value of "$# ( "%#&�(' ),
(2) Data range exposure: an adversary can prove the range of" # ( '*)+" # )-, ) even though it may not prove its exact value,
and (3) Data probability distribution exposure: an adversary
can prove the probability distribution of " # (.0/213�4" # �5�61 ) even
though it may prove neither its range nor exact value.

Both data value and data range exposures can be expressed
by data probability distribution exposure, in other words, they
are special cases of probability distribution exposure. Data
value exposure is again a special case of data range exposure.
Intuitively, data value exposure is the most detrimental privacy
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breach. Due to the space restriction, we will focus our privacy
analysis on the data value exposures in the rest of this paper.

Similar to the exposures at individual node, we can con-
sider data exposures from the perspective of a group of nodes
by treating this subset of nodes as an entity. Note that even
if a groups privacy is breached, an individual node may still
maintain its privacy to some extent. For example, an adversary
may be able to prove that a group of nodes has a certain value
but it is not certain which exact node has the value. In other
words, the 7 -anonymity [15] is preserved given the size 7 of
the group.

The privacy goal we aim at achieving is to minimize the de-
gree of data value exposures for each individual node. This
includes the principle that we are treating all the nodes in the
system equally and no extra considerations will be given to the
nodes who contribute to the final top � values (e.g., the node
who owns the global maximum value). In addition to protect-
ing the data exposure of each node, a related goal could be
protecting the anonymity of the nodes who contribute to the fi-
nal results, though it is not the focus of this paper due to the
space limitation.

2.3 Privacy Metrics
Given the data privacy goal, we need to characterize the degree
with which the privacy is attained. The key question is how
to measure the amount of disclosure during the computation
and what privacy metrics are effective for such measurement.
Concretely, we need to quantify the degree of data exposure
for a single data item " # that node ! holds. Let us first consider
an existing metric and discuss why it is inadequate. We then
propose a general and improved metric for data privacy.

The metric that one might use is the probabilistic privacy
spectrum [14] proposed for web transactions anonymity and
was also adopted for document ownership privacy later [5].
Now we need to evaluate whether we can adapt it for our data
privacy purpose. Assuming an adversary is able to make a
claim 8 about the data value "�# (e.g., "%#9�:' ), based on the
intermediate result it sees during the execution. The privacy
spectrum can be defined based on the probability that the claim
is true. On one extreme is provably exposed where an adver-
sary can prove that "�#&�;' (with probability of 1). On the other
extreme is absolute privacy where an adversary cannot deter-
mine the exact value of "�# (with probability of 0). In between,
there are possible innocence where the claim is more likely to
be true, and probable innocence where the claim is less likely
to be true. A particularly interesting notion is beyond suspicion
where a node is no more likely to have a value that satisfies the
claim than any other nodes in the system. This is also known
as 7 -anonymity as we have mentioned earlier.

A closer look at the spectrum shows that it does not capture
the important differences among different claims for our data
privacy concerns. Consider an adversary that makes a claim"%#&�<' after executing a max query ( ����� ) and the probability

of the claim being true is ��=>	 , i.e. there are some node(s) in the
system that have the value but none is more likely than others
to have it. By the privacy spectrum, the degree of data value
exposure for the node is beyond suspicion. However, if '?�"%@BADC , where "%@EAFC denotes the final maximum value, it should
not be considered as a privacy breach at all. This is because"%@BADC is public information to all the nodes after the protocol
and every node has a probability ��=>	 holding " @EAFC . On the
other hand, if 'HG�I"�@EAFC , then it is indeed a privacy breach
because other nodes would not haven known anything about
the value ' by just knowing "�@EAFC .

In fact, such differences among different claims are more
obvious and important for data range privacy. Intuitively, a data
range exposure with a very precise (small) range is much more
severe than those with a large range. For example, consider
the case where an adversary is able to prove " #J)�' . By the
privacy spectrum, node ! has provable exposure regarding its
data range. However, the severity of the privacy breach actually
varies (decreases as ' increases). At the extreme, if '��<" @EAFC ,
it should not be considered as a privacy breach at all because" # )�" @EAFC is known to all the nodes after the final result of" @BADC is returned.

We propose a general metric - loss of privacy - to character-
ize how severe a data exposure is by measuring the relative loss
in the degree of exposure. Let K denote the final result set after
the execution and L$K denote the intermediate result set during
the execution. Let M��N8�O KJ�PL KQ� denote the probability of 8 be-
ing true given the final result and the intermediate results, and
similarly, M��N8�O KR� the probability given only the final result.
We define Loss of Privacy ( S5T>M ) in Equation 1. Intuitively,
this gives us a measure of the additional information an adver-
sary may obtain given the knowledge of the intermediate result
besides the final query result.

SUT>M
�(M��N8�O KJ�PL KQ�WVXM��N8�O KQ� (1)

We illustrate the metric for data value privacy in the context of
top � queries, where 8 is in the form of " # �;' and K is the final
top � values denoted as YZT[.]\ . If '*^�YZT[.0\ , every node has
the same probability to hold ' so we have M��4" #&�<'�O YZT[.0\_�3���=�	 . Otherwise ( '6=^`YZT[.]\ ), it is close to impossible for an
adversary to guess the exact value of a node given only the
final result. This is especially true when the data domain is
large enough, because a node can take any of the values in the
data domain. So we approximate M��4"�#��a'�O YZT[.]\*� with 0.
Thus the S5T>M is slightly smaller when 'b^cYZT[.]\ . In the
cases where all an adversary knows is that some node in the
system has a value equal to 'd�4'e^<YZT[.]\*� , we have M���" # �'dO YZT[.]\f��L$KQ�g�+��=>	 and S5T>M+�;h .

Given the definition of S5T>M for a single data item at a sin-
gle node, we define SUT>M for a node as the average SUT>M for
all the data items used by a node in participating the protocol.
Intuitively, when nodes participate the protocol with their local
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top � values, the more values that get disclosed, the larger theS5T>M for the node. We measure the privacy characteristics for
the system using the average S5T>M of all the nodes.

3 The Decentralized Protocol
In this section we describe a decentralized computation pro-
tocol for multiple organizations to compute top � queries over	 private databases (nodes) with minimum information disclo-
sure from each organization.

Bearing the privacy goal in mind, we identify two impor-
tant principles for our protocol design. First, the output of the
computation at each node should prevent an adversary from
being able to determine the nodes data value or data range
with any certainty. Second, the protocol should be able to pro-
duce the correct final output of a top � query (effectiveness) in a
small and bounded number of rounds of communication among
the 	 nodes (efficiency). Using these principles as the design
guidelines, we propose a probabilistic protocol with a random-
ized local algorithm for top � queries across 	 private databases
( 	6ibj ). To facilitate the discussion of our protocol, we first
present a naive protocol as the intuitive motivation and then
describe the rational and the algorithmic details of our decen-
tralized probabilistic protocol.

3.1 A Naive Protocol
Consider a group of 	 databases who wish to select the max
value ( �_�:� ) of a common attribute. A straightforward way
to compute the result without a central server is to have the
nodes arranged in a ring in which a global value is passed from
node to node along the ring. The first node sends its value to
its successor. The next node computes the current max value
between the value it gets from its predecessor and its own value
and then passes the current max value to its successor. At the
end of the round, the output will be the global max value.

Clearly, the scheme does not provide good data privacy.
First, the starting node has provable exposure to its successor
regarding its value. Second, the nodes that are close to the
starting node in the ring have a fairly high probability disclos-
ing their values. A randomized starting scheme can be used to
protect the starting node and avoid the worst case but it would
not help with the average data value disclosure of all the nodes
on the ring. In addition, every node ! ( �e)k!f)l	 ) suffers
provable exposure to its successor regarding its data range, i.e.
the successor knows for sure that node ! has a value smaller
than the value it passes on. This leads us to consider alternative
protocols for better privacy preservation.

In the rest of this section, we present our probabilistic proto-
col. We first give a brief overview of the key components of the
protocol and then use the max (min) queries (the top � queries
with ���m� ) to illustrate how the two design principles are im-
plemented in the computation logic used at each node (private
database) to achieve the necessary minimum disclosure of pri-
vate information (our privacy goal).

3.2 Protocol Structure
The protocol is designed to run over a decentralized network
with a ring topology, and consists of the node communication
scheme, the local computation module and initialization mod-
ule at each node.

Ring Topology. Nodes are mapped into a ring randomly.
Each node has a predecessor and successor. It is important
to have the random mapping to reduce the cases where two
colluding adversaries are the predecessor and successor of an
innocent node. We will discuss more on this in Section 4.

Communication protocol. The communication among the
nodes is from a node to its successor. Encryption techniques
can be used so that data are protected on the communication
channel. In case there is a node failure on the ring, the ring
can be reconstructed from scratch or simply by connecting the
predecessor and successor of the failed node.

Local computation module. The local algorithm is a stan-
dalone component that each node executes independently. Nodes
follow the semi-honest model and executes the algorithm cor-
rectly.

Initialization module. The initialization module is designed
to select the starting node among the 	 participating nodes and
then initialize a set of parameters used in the local computation
algorithms.

In this paper we do not handle the data schema heterogene-
ity issues. We assume that the database schemas and attribute
names are known and are well matched across 	 nodes. Read-
ers who are interested in this issue may refer to [7] for some
approaches to the problem of schema heterogeneity.

3.3 Privacy Preserving Max Selection
Before going into details of the protocol, we first present the lo-
cal computation component of the protocol for max(min) queries
(the special case of top � with ���-� ) over 	 private databases.
This will help readers understand the key ideas and techniques
used in our protocol design. We describe the general protocol
for top � queries in next subsection.

The intuitive idea of using a probabilistic protocol is to in-
ject some randomization into the local computation at each
node, such that the chance of data value disclosure at each node
is minimized and at the same time the eventual result of the pro-
tocol is guaranteed to be correct. Concretely, the protocol per-
forms multiple rounds in which a global value is passed from
node to node along the ring. A randomization probability is as-
sociated with each round and decreased in the next round to en-
sure that the final result will be produced in a bounded number
of rounds. During each round, nodes inject certain randomiza-
tion in their local computation with the given probability. The
randomization probability is eventually decreased to 0 so that
the protocol outputs the correct result.
Randomization Probability. We first define the randomiza-
tion probability. It starts with an initial probability denoted as
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.on in the first round and decreases exponentially with a damp-
ening factor denoted as / , so that it tends to 0 with sufficient
number of rounds. Formally, the randomization probability for
round p denoted as M3q��4p>� is defined as follows:

M q ��p%�r�X. nBs / q�t�� (2)

Randomized Algorithm. Each node, upon receiving the global
value from its predecessor, performs the local randomized al-
gorithm, and passes the output to its successor. The core idea
of this algorithm is to determine when (the right time) to inject
randomization and how much (the right amount of randomiza-
tion) in order to implement the two design principles of the
protocol: namely, the output of the algorithm should prevent
an adversary from inferring the value or range of the data that
the node holds with any certainty; and the randomized output
should not generate potential errors that lead to incorrect final
output of the protocol.
Algorithm 1 Local Algorithm for Max Protocol (executed by
node ! at round p )

INPUT: u�# t�� �4p%� , "%# , OUTPUT: u #��4p%�MWq��4p>�Uvw.on s / q�t��
if u # t��%��p%�Ei?" # thenu # �4p>�Uvlu # tx�%�4p%�
else

with probability M3q : u # ��p%�Xv a random value betweeny u�# t�� ��p%�F��"%#2�
with probability �EV_M q : u�#z�4p>�rva"%#

end if

A sketch of the randomized algorithm is given in Algorithm
1 for node ! at round p . The algorithm takes two inputs: (1)
the global value node ! receives from its predecessor !{V;� in
round p , denoted as u # t�� ��p%� , and (2) its own value, denoted
as " # . The algorithm compares these two input values and de-
termines the output value, denoted as u # ��p%� , in the following
two cases. First, if the global value u # t�����p%� is greater than or
equal to its own value " # , node ! simply returns the current lo-
cal maximum value ( u # tx�>�4p>� in this case). There is no need to
inject any randomization because the node does not expose its
own value in this case. Second, if u$# tx� ��p%� is smaller than "�# ,
instead of always returning the current local maximum value
( "%# in this case), node ! returns a random value with probabilityM q ��p%� , and only returns "�# with probability �3V|M q ��p%� . The ran-
dom value is generated uniformly from the range

y u$# t�� ��p%�F��"%#2� .
Note that the range is open ended at " # to warrant that the node
will not return "%# when we want to return a constrained random
value instead of the actual " # .

Such randomization has a number of important properties.
First, it successfully prevents an adversary from deducing the
value or range of "�# with any certainty. This is because the out-
put of node ! can be either a random value, or the global value
passed by the predecessor of node ! , or its own value " # . Sec-
ond, the global value monotonically increases as it is passed

along the ring, even in the randomization case. Recall the case
when randomization is injected, the random value output u # �4p%�
can be smaller than " # but has to be greater than or equal tou # tx�>��p%� , which ensures that the global value keeps increasing.
This monotonic increasing property further minimizes the need
for other nodes after node ! to have to disclose their own values
because they can simply pass on the global value if it is greater
than their own values. Finally, the randomized value will not
generate any potential errors for the protocol because it is al-
ways smaller than "�# and thus smaller than the global maximum
value. It will be replaced by the value that is held either by the
node ! itself or any other node that holds a greater value in a
later round as the randomization probability decreases. We will
analyze the correctness and data value privacy of the protocol
formally in Section 4.
Protocol Details. We now walk through the protocol by de-
scribing the initiation process, the communication scheme, com-
bined with the local computation logic.

At the initiation state, every node in the network sorts their
values and takes the local max value to participate the global
max selection. The protocol randomly chooses a node from the	 participating nodes, say indexed by ! with !9�a� . In addi-
tion, the initialization module will set the default global valueu%n �}��� to the lowest possible value in the corresponding data do-
main, and initialize the randomization probability with .dn , the
dampening factor / (recall Section 3.2), and the round counterp . The key idea of using a randomized selection scheme for
starting node is to preserve the anonymity of the starting node
so an adversary does not know where the protocol start from
and hence protecting the starting node.

Upon the completion of the initiation process, the local com-
putation module is invoked at node ! . Each node ! , upon receiv-
ing the global value u # tx� �4p%� from its predecessor at round p ,
executes the local computation algorithm, and passes the out-
put u�#P��p%� to its successor. At the end of each round p ( p�i-� ),
the last node 	 passes the current global value u � ��p%� to the first
node, which serves as the input u n ��p�~+��� at the first node in
round p�~�� . The protocol terminates at the starting node after a
sufficient number of rounds. We will discuss how to determine
the number of rounds needed and what we mean by sufficient
in Section 4. It is interesting to note that if we set the initial ran-
domization probability to be 0 (.]n��<h ), the protocol is reduced
to the naive deterministic protocol.
Figure 1 shows an example walk-through of the protocol over
a network of 4 nodes, initialized with .]n*�I� and /?�I�>=%� .
Assume the protocol starts from node 1 with the initial global
value u�n �}���E�+h . In the first round ( pJ�b� ), the randomization
probability MWq �}��� is initialized to 1, so if a node receives a value
smaller than its own value, it will always return a random value
between the received value and its own value. As a result, node
1 returns a random value between [0,30), say 16. Node 2 passes
16 to node 3 because it is greater than its own value 10. Node
3 returns a random value between [16,40), say 25, since value
16 is smaller than its own value 40. Node passes value 25 to
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Figure 1: Illustration for Max Protocol Walk-through

the first node because it is greater than its own value 20. In
the second round ( pR�6� ), the randomization probability M{q��N� �
decreases to ��=�� according to equation 2. As a result, node 1
returns its own value 30. Node 2 passes on value 30. Node 3
returns a random value between [30,40), say 32. Node 4 passes
on value 32. In the third round ( pe��j ), the randomization
probability M q �4j$� decreases to 1/4. Node 1 and Node 2 both
pass on the value 32. Node 3 finally returns its own value 40
and node 4 passes on the value 40. In the termination round all
nodes simply passes on the final result.

This example illustrates how our probabilistic protocol works
and why our protocol ensures that each node retains good pri-
vacy about the exact value and the range of their data. It is im-
portant to note that the random selection scheme for the starting
node plays an important role for preserving good privacy of the
starting node. For instance, in the above example, if node 1
was known as the starting node, then upon receiving 16 from
node 1 in the first round, node 2 knows for sure that node 1 has
a value greater than 16, leading to the data range exposure for
node 1.

We provide an analytical model to formally study the cor-
rectness and data value privacy of the protocol in Section 4 and
report the result of our experimental evaluation in Section 5.

3.4 Privacy Preserving Top- � Selection
Now we describe the general protocol for top � selection. It
works similarly as the max selection protocol ( ���-� ) in terms
of the probabilistic scheme. The complexity of extending the
protocol from max to general top � lies in the design of the ran-
domized algorithm.

At the protocol initial step, each node first sorts its values
and takes the local set of top � values as its local top � vector
to participate in the protocol, since it will have at most � val-
ues that contribute to the final top � result. Similar to the max
selection protocol, the initialization module randomly picks a
node from the 	 participating nodes as the starting node, ini-
tializes the global top � vector to the lowest possible values in
the corresponding data domain, sets the round counter p , and

initializes the randomization probability .]n and the dampening
factor / (recall Equation 2 in Section 3.3).

The protocol performs multiple rounds in which a current
global top � vector is passed from node to node along the ring
network. Each node ! , upon receiving the global vector from
its predecessor at round p , performs a randomized algorithm
and passes its output to its successor node. The starting node
terminates the protocol after a sufficient number of rounds.
Randomized Algorithm. The randomized algorithm is the
key component of the probabilistic top � selection protocol. We
want the algorithm to have the same properties as those of the
max selection algorithm (Algorithm 1) when deciding the right
time and the right amount of randomization to inject, namely,
to guarantee the correctness on one hand and minimize the data
value disclosure on the other hand. For example, we can use the
same idea of generating random values and inject them into the
output of the global top � vector at node ! ( ��)m!�)b	 ) in or-
der to hide the nodes own values. However, with � values in
the local top � vector, we need to make sure that the randomly
generated values will eventually be shifted out from the final
global top � vector. In other words, it is not as straightforward
as in the max selection algorithm where a random value less
than a nodes value will be replaced eventually.
Algorithm 2 Local Algorithm for Top � Protocol (executed by
node ! at round p )

INPUT: �Q# t�� ��p%� , �o# , OUTPUT: ��#��4p%�M q �4p>�rvw. nUs / q�t���Q�# ��p%�5� topK( �Q# t�� ��p%�����0# )� �# vI� �# ��p%�gVX�Q# tx� �4p%�7wv�O �9�# O
if 7w�<h then� # �4p%�5v�� # t��%��p%�
else

with probability �EV_M3q��4p>� : � # �4p%�5vI�Q�# ��p%�
with probability M q ��p%� :�Q#��4p%� y ��� �JV*7|�dv��Q# tx� ��p%� y �����JV*7|��Q#��4p%� y ��V�7�~6�����$�{v sorted list of 7 random values
from [ 7�!�	{�4�Q�# ��p%� y �$��V��>���Q# t�� ��p%� y �QV�7�~������ , �Q�# ��p%� y �$� )

end if

Algorithm 2 gives a sketch of a randomized algorithm for gen-
eral top � selection with respect to node ! executing at roundp . The input of the algorithm is (1) the global vector node! receives from its predecessor !EV�� in round p , denoted as� # tx�%�4p>� , and (2) its local top � vector, denoted as � # . The out-
put of the algorithm is the global vector denoted as � # �4p>� . Note
that the global vector is an ordered multiset that may include
duplicate values.

The algorithm first computes the real current top � vector,
denoted as ���# �4p%� , over the union of the set of values in � # t��>�4p%�
and � # , say, using a merge sort algorithm. It then computes a
sub-vector of � # , denoted as � �# , which contains only the values
of �0# that contribute to the current top � vector �9�# �4p>� by taking
a set difference of the set of values in �9�# �4p%� and �Q# t�� ��p%� . Note
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that the union and set difference here are all multiset opera-
tions. The algorithm then works under two cases.

Case 1: The number of elements in �9�# , 7 , is 0, i.e. node! does not have any values to contribute to the current top � .
In this case, node ! simply passes on the global top � vector� # tx�>��p%� as its output. There is no randomization needed be-
cause the node does not expose its own values.
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Figure 2: Illustration for Top � Local Algorithm

Case 2: Node ! contributes 7X�4h?�c7�)���� values in the
current top � . Figure 2 gives an illustrative example where7���j and ���w� . In this case, node ! only returns the real
current top � ( �Q�# ��p%� ) with probability �QVeM q ��p%� . Note that a
node only does this once, i.e. if it inserts its values in a cer-
tain round, it will simply pass on the global vector in the rest
of the rounds. With probability M q ��p%� , it copies the first �JV�7
values from �Q# t�� ��p%� and generate last 7 values randomly and
independently from [ 7|!�	{�4� �# ��p%� y �$�oV*�>���Q# t�� ��p%� y ��V�7m~e�D��� ,�Q�# �4p>� y ��� ), where ���# �4p%� y �$� denotes the � th (last) item in �9�# �4p>� ,� # tx�>��p%� y �dVZ7f~��D� denotes the ��V�7�~�� th item in � # t��%��p%� , and� denotes a minimum range for generating the random values.
The reason for generating 7 random values is because only the
last 7 values in the output are guaranteed to be shifted out in
a later round when the node inserts its real values if the global
vector has not been changed by other nodes. The range is de-
signed is such a way that it increases the values in the global
vector as much as possible while guaranteeing the random val-
ues do not exceed the smallest value in the current top � so they
will be eventually replaced. In an extreme case when 7��m� ,
the current top � vector is equal to �]# , it will replace all � val-
ues in the global vector with � random values, each randomly
picked from the range between the first item of � # t�����p%� and
the � th (last) item of � # .

It is worth noting that when �*� � the local top � selection
algorithm becomes the same as the local algorithm for max pro-
tocol. We report our experimental evaluation on the correctness
and privacy characteristics of the general protocol in Section 5.

4 Analysis
We conducted a formal analysis on the max protocol in terms
of its correctness, efficiency, and privacy characteristics.

4.1 Correctness
Let ud�4p>� denote the global value at the end of round p andM���u���p%���¡"%@EAFC$� denote the probability that ud�4p%� is equal to
the global max value "�@EAFC . At round ¢]�}��) ¢()wp%� , if the
global value has not reached " @EAFC , the nodes who own "�@EAFC
have a probability �£V`M q �¤¢�� to replace the global value with"%@BADC . Once the global value reaches "�@EAFC , all nodes simply
pass it on. So after round p , the global value will be equal to"%@BADC as long as one of the nodes that owns " @EAFC has replaced
the global value with "�@EAFC in any of the previous rounds. Thus
the probability of the protocol returning the global maximum
value after round p can be computed as M���ud�4p>�|�¡" @EAFC ��i��V�¥ q¦�§ � MWq��¤¢�� . If we substitute M3q��¨¢$� with .0n s / ¦ tx� by
Equation 2, we can derive the following equation:

M���ud�4p>�U�`"%@EAFC �Ei(�EV�. qn s /W©}ª«©�¬$­4®¯ (3)

Equation 3 shows that, for any h°�6. n )�� and hX�H/��¡� ,
the precision bound increases monotonically with increasing p .
For any given number of nodes, we can make the computed
global value equal to the global max value with a probability
very close to 1 by increasing the number of rounds.
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Figure 3: Precision Guarantee with Number of Rounds

Figure 3(a) and (b) plot the precision bound in equation 3 with
increasing number of rounds ( p ) for varying initial randomiza-
tion probability (.0n ) and dampening factor ( / ) respectively. We
can see that the precision increases with the number of rounds.
A smaller .0n with a fixed / results in a higher precision in the
earlier round and reaches the near-perfect precision of 100%
faster. A smaller / with a fixed MWn makes the protocol reach
the near-perfect precision of 100% even faster.

4.2 Efficiency
Now we analyze the efficiency of the protocol in terms of the
computation and communication cost. The computation at each
node in the protocol does not involve any cryptographic oper-
ations and should be negligible compared to the communica-
tion cost over a network of 	 nodes. The communication cost
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is determined by two factors. The first is the cost for a sin-
gle round which is proportional to the number of nodes on the
ring. The second is the number of rounds that is required for
a desired precision. For any ±²�Nh³��±e�´�²� , we can deter-
mine a minimum number of rounds, denoted by p>@B# � , such
that the result is equal to the global max value with the proba-
bility greater than or equal to �ZV�± . Since we have M���u���p%�Z�"%@BADC �*iµ�JV�. qn s / ©}ª«©�¬$­N®¯ iµ�9V�. n�s / ©2ª¶©�¬$­4®¯ from Equa-
tion 3, we can ensure M���u���p%�Q�H" @BADC �9i��£V?± by requiring��V�. nrs / ©}ª«©�¬$­N®¯ i���V°± . We solve this equation and derive a
minimum number of rounds for the desired precision ( �gV�± ) as
follows:

p @B# ����· �� s �}�U~ ¸ ¹ sJº¨»�¼ �4±D=[. n �º¨»�¼ / Ve�²��½ (4)
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Figure 4: Required Number of Rounds with Precision Guarantee
We can see that the minimum number of rounds p�@B# � scales
well with the desired precision ( ��V£± ) in the order of ¾��2¿ À4T²u�±[� .
Figure 4(a) and (b) plot the minimum number of rounds in
Equation 4 for varying error bound ( ± ) with varying initial ran-
domization probability (. n ) and dampening factor ( / ) respec-
tively. Note that the X axis is of logarithmic scale. We can see
that the protocol scales well with increasing desired precision
(decreasing ± ). In addition, a smaller .]n and a smaller / are
desired for better efficiency with / having a larger effect on the
reduction of the required number of rounds.

It is important to note that the minimum number of rounds
is independent of the number of nodes. Hence, the overall
communication cost is proportional to the number of nodes.
One possible way to improve the efficiency for a system with
a larger number of nodes is to break the set of 	 nodes into
a number of small groups and have each group compute their
group maximum value in parallel and then compute the global
maximum value at designated nodes, which could be randomly
selected from each small group.

4.3 Data Value Privacy
In addition to ensuring correct output and increasing efficiency
of the protocol, another important goal of the protocol is pre-
serving the data privacy of individual participating nodes in the
network. The communication between nodes consists of send-
ing the current global value from one node to its successor. An

adversary may utilize the value it receives from its predeces-
sor to try to gain information about the data its predecessor and
other nodes hold. We dedicate this section to analyzing the
loss of data value privacy in the protocol using the metric we
proposed in Section 2.

Without loss of generality, we assume the protocol starts
from node 1. We now analyze the loss of privacy for node !
with value " # . Since node ! passes its current global value u # �4p%�
to its successor !�~(� in round p , all the successor can do with
respect to the exact data value node ! holds is to guess that"%#��ku�#���p%� . Recall Equation 1 in Section 2, the loss of pri-
vacy is defined as the relative probability of a node holding a
particular value with and without the intermediate result. LetM���"%#Q��u�#��4p>��O u�#P��p%�D�z"%@EAFC�� denote the probability that node !
holds the value u #z�4p%� with the knowledge of the intermediate re-
sult u�#���p%� and M��4"%#&�<u�#z�4p>��O "%@EAFC�� denote the probability with-
out it. If u # ��p%�£�-" @EAFC , we have M���" # �-u # ��p%��O " @EAFC ������=>	
as all nodes have the same probability holding the global max-
imum value. Otherwise, we approximate M���" # �+u # ��p%��O " @EAFC �
with 0 as we have discussed earlier in Section 2. Now let us
look at M���" # �6u # �4p>��O u # �4p>�D�z" @EAFC � for both naive protocol and
probabilistic protocol and derive the Loss of Privacy ( SUT>M ).
Naive Protocol. In the naive protocol where only one round is
needed, the global value u # that node ! passes on is the current
maximum value of all its previous nodes and itself. Since all of
them have the same probability to hold the current maximum
value, so we have M��4"�#{�6u�#z�4p>��O u�#[�4p>�D�z"%@EAFC��r�H��=�! . Thus the
data value loss of privacy for node ! in naive protocol is ��=>!P�>=�	
if u�#��`"%@EAFC and ��=>! otherwise.

It is clear that the loss of privacy for node ! in the naive
protocol depends on its position. Nodes closer to the start-
ing node suffer a larger loss of privacy. In the worst case,
the starting node ( !��Á� ) has provable exposure of its value
to its successor. By average, the loss of privacy is greater thanÂ �# § � �z��=>! V���=>	���=>	 . Using the inequality bound for

Â �# § � ��=>!
(the 	 th Harmonic number [13]), we can derive the averageS5T>M bound for the naive protocol in Equation 5. We can see
that it is fairly high especially when 	 is small.

SUT>M&ÃEAF#¨ÄDÅ�
 º¨Æ 		 (5)

Probabilistic Protocol. The probabilistic max selection pro-
tocol requires multiple rounds. Since aggregating the values
a node passes on in different rounds does not help with deter-
mining its exact data value, though it may help with determin-
ing the probability distribution of the value, we first compute
the loss of privacy for node ! at each round p and then take the
highest result in all the rounds as final loss of privacy for node! .

Recall the probabilistic computation in Algorithm 1, a node
only replaces the global value with its own value with probabil-
ity �rV�MWq���p%� when the value it receives is smaller than its own
value. Thus we have M���" # �¡u # ��p%��O u # ��p%�F��" @BADC ���kM���" # 
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u # tx�>��p%��� s �z�ZV°MWq���p%���3~?M��4" # �
u # tx�>��p%��� . We performed an
analysis on the expected value for u # �4p>� and derived an approx-
imate lower bound of expected SUT>M for node ! in round p . By
taking the highest (maximum) S5T>M of all rounds for each in-
dividual node, we derive the average expected SUT>M for all the
nodes in Equation 6.

Ç �NS5T>MxÈDq[ÉPÊ A Ê #¤ËÌ#ÎÍ�Ï�#ÎÐ �r)e7�'$Ñ0q � �� qDtx� s �z�gVJ.0n s / q�t�� �z� (6)
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Figure 5: Expected Loss of Privacy in Different Rounds
From Equation 6, we can see that the expected loss of privacy
for the probabilistic protocol depends on how we choose the
randomization parameters. Also intuitively, the highest (peak)
loss of privacy may happen at different rounds with different
randomization parameters. Figure 5 plots the behavior of the
bound inside the 7�'$Ñ function with varying randomization pa-
rameters. Figure 5(a) shows the effect of . n with / set to 1/2. It
is interesting to see that . n plays an important role in the loss of
privacy. A larger . n results in a lower loss of privacy in the first
round. The reason is quite intuitive since a larger . n implies
that more nodes have injected randomized values instead of re-
turning the real current max value in the computation. With
a smaller .0n , the loss of privacy gradually decreases from the
peak of loss as the protocol converges. With a larger .dn , such
as .0n��+� as shown, the loss of privacy starts with 0 in the first
round and increases in the second round to the peak of loss,
and then gradually decreases. If we compare the peak loss of
privacy in different rounds, we conclude that a larger . n pro-
vides a better privacy. Figure 5(b) shows the effect of / with. n set to 1. We see that a larger / corresponds to a lower loss
of privacy, starting from the second round, though with a small
margin. Overall, by tuning the parameters . n and / , we can
keep the loss of privacy very low. Our experimental evaluation
in Section 5 confirms with our analytical results regarding the
loss of privacy.

Now we briefly discuss the loss of privacy under the sce-
nario where the predecessor and the successor of node ! hap-
pen to collude with each other. Assuming that an adversary has
intermediate results of both u # t��%��p%� and u # ��p%� , we have M��4" # �u # ��p%��O u # t�����p%�F�zu # ��p%�F��" @BADC �{�³��V�MWq%��p%� when u # t��%��p%�E��u # ��p%� .
Knowing this still does not give the adversary any certainty in
determining the data value of node ! , especially in the begin-
ning rounds when M3q��4p%� is large. Intuitively, when M3q���p%� gets

close to 0, u # tx�>��p%� should be already getting close to " @EAFC so
there is very small chance for the data at node ! to be disclosed.
It is interesting to note though, if node ! happens to hold " @EAFC
then it will be susceptible to provable exposure if it has two
colluding neighbors. One technique to minimize the effect of
collusion is for a node to ensure that at least one of its neigh-
bors is trustworthy. This can be achieved in practice by having
nodes arrange themselves along the network ring(s) according
to certain trust relationships such as digital certificate based [6]
combined with reputation-based [20]. Further, we can extend
the probabilistic protocol by performing the random ring map-
ping at each round so that each node will have different neigh-
bors at each round.

5 Experimental Evaluations
This section presents a set of initial results from our experi-
mental evaluation of the protocols in terms of correctness and
privacy characteristics.

5.1 Experiment Setup

Param. Description	 # of nodes in the system� parameter in top �. n initial randomization prob./ dampening factor for randomization prob.

Table 1: Experiment Parameters
The system consists of 	 nodes. The attribute values at each

node are randomly generated over the integer domain
y � ���²h�h�h h>� .

We experimented with various distributions of data, such as
uniform distribution, normal distribution, and zipf distribution.
The results are similar so we only report the results for the
uniform distribution. The experiment proceeds by having the
nodes compute top � values using the probabilistic protocol. We
evaluate the accuracy and privacy properties. Each plot is aver-
aged over 100 experiments. Table 1 lists the main parameters
for the experiments.

5.2 Precision of Max Selection
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Figure 6: Precision of Max Selection with Number of Rounds
We first verify the correctness of the probabilistic max protocol
( ���+� ). Figure 6(a) and (b) show the precision with increasing
number of rounds ( p ) for different initial randomization prob-
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ability ( M&n and dampening factor ( / ) respectively. We see that
the experimental results match the analytical bounds in Figure
3. The precision reaches to 100% as the number of rounds in-
creases. A smaller M&n results in a higher precision in the first
round and makes the precision go up to 100% faster as the num-
ber of rounds increases, though with a small margin. A smaller/ reaches the perfect precision of 100% much faster.

5.3 Privacy Characteristics of Max Selection
We evaluate the privacy characteristics of the protocol in terms
of their data value loss of privacy. In particular, we want to an-
swer a number of questions. What is the loss of privacy during
the execution of the algorithm? How does the number of nodes
affect the privacy characteristics? How do the randomization
parameters affect the privacy characteristics and how to select
them? How does the protocol compare to the naive protocol?
Loss of Privacy in Different Rounds. We first study the loss
of privacy of the protocol in each round during the execution
with different randomization parameters. We experimented with
different number of nodes and the trends in different rounds are
similar but most pronounced with a small number of nodes. So
we only report the results for 	X�³� to show the different loss
of privacy in different rounds and will present another set of ex-
periments later to show the effect of varying number of nodes.
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Figure 7: Loss of Privacy for Max Selection in Different Rounds

Figure 7(a) and (b) show the average data value loss of privacy
for all nodes in different rounds with varying initial random-
ization probability (. n ) and dampening factor ( / ) respectively.
The result matches our analysis in Section 4. With a smallerM n , the highest loss of privacy happens in the first round and
it gradually decreases as the protocol converges. With a largerM n (e.g., M n �c� ), the loss of privacy is zero in the first round
and reaches the peak in the second round and then gradually
decreases. If we look at the peak loss of privacy, a larger .dn
provides a better privacy. In Figure 7(b), all three cases ( /9��� ,/*�¡�>=%� , /_�Ò��=�� ) start with zero loss of privacy in the first
round, and increase to the highest (peak loss) in the second
round, and decreases as the protocol converges. A smaller /
results in a higher peak loss of privacy.

In this set of experiments, we have shown the loss of pri-
vacy in different rounds during the execution. For the rest of
the experiments we will take the highest (peak) loss of privacy
among all the rounds for a given node to measure its overall

loss of privacy, because that gives us a measure of the highest
level of knowledge an adversary can obtain regarding the nodes
data value.
Effect of Number of Nodes. We now report the experiments
showing how the number of nodes affects the loss of privacy of
the protocol.
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Figure 8: Loss of Privacy for Max Selection with Different Number
of Nodes

Figure 8(a) and (b) show the average data value loss of privacy
for all nodes with varing initial randomization probability ( M n )
and dampening factor ( / ) respectively. We can that the loss
of privacy decreases with increasing number of nodes. This
is very intuitive because the larger the number of nodes, the
faster the global value increases and thus the less probability
the nodes have to disclose their own values. Again, the result
shows that a smaller M&n and / provide a better privacy.
Selection of Randomization Parameters. This set of experi-
ments is dedicated to study the effect of randomization param-
eters on both privacy characteristics and efficiency of the proto-
col. Recall the experiments described so far and our analysis in
Section 4, a smaller . n and / provide better privacy but requires
more cost in terms of number of rounds required. Our design
goal is to increase the efficiency while minimizing the loss of
privacy. Put differently, we want to select a pair of . n and /
parameters that gives us the best tradeoff between privacy and
efficiency.
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Figure 9: Tradeoff between Privacy and Efficiency with
Randomization Parameters

Figure 9 shows the loss of privacy on Ó axis and the cost
in terms of number of rounds for a given precision guaran-
tee ( ±��wh�Ô h�ho� ) on Õ axis for varying randomization param-
eter pairs (.on ��/ ). We can see that .0n has a dominating effect
on the loss of privacy while / has a dominating effect on ef-
ficiency. The (.0n��P/ ) pair of �}� ����=���� in the lower left corner
gives a nice tradeoff of privacy and efficiency. Therefore, we
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will use .0n9�m� and /��b��=�� as our default parameters for the
rest of the experiments.
Comparison of Different Protocols. We have discussed the
naive protocol with fixed starting node, and our probabilistic
protocol. The experiments reported below compare the proba-
bilistic protocol with the naive protocol. For comparison pur-
poses, we include the anonymous naive protocol which uses a
randomized starting scheme, instead of fixed starting node, to
provide the anonymity of the starting node. We show both av-
erage and worst case loss of privacy for different nodes in the
system. By worst case, we mean highest loss of privacy among
all the nodes and it typically happens at the starting node in
the fixed starting scheme. Our goal is to show the effectives of
our probabilistic protocol over the naive ones and the benefit of
randomly selecting the starting node.
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Figure 10: Comparison of Loss of Privacy with Number of Nodes

Figure 10(a) and (b) show the average and worst case data value
loss of privacy for all nodes with different number of nodes ( 	 )
respectively. We make a few interesting observations. First,
the anonymous starting scheme has the same average SUT>M as
the naive protocol but avoids the worst case scenario. This
can be seen in Figure 10(b) where the naive protocol suffers
a loss of privacy close to 100% (at the starting node) while
the anonymous protocol does not change significantly from the
average case in Figure 10(a). Second, the probabilistic proto-
col achieves significantly better privacy than the naive proto-
cols. It is close to 0 in most cases. Finally, all of the protocols
have a decreasing loss of privacy as the number of nodes in-
creases. Interestingly, when the number of nodes is sufficiently
large, the anonymous naive protocol performs reasonably well
compared to the probabilistic protocol. However, most of the
privacy preserving data integration will be among tens or hun-
dreds of nodes with membership controls. A network of size
on the order of thousands seldom happens.

5.4 Precision of Top- � Selection
We have presented results for max protocol so far. Now we
evaluate the general top � protocol in terms of its correctness
and privacy characteristics. In addition to running the same set
of experiments for max protocol, we also run a set of experi-
ments with varying � . Since most of the results we obtained are
similar to those for max protocol, we only report in these two
subsections the results for general top � protocol with varying� to show the effect of � .

We first verify the correctness of top � protocol. In order
to evaluate the precision of top- � selection, we first define the
precision metric we use. Assume YZT[.0\ is the real set of top- �
values and K is the set of top- � values returned. We define the
precision as O K?Ö|YZT[.0\eO =%\ .
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Figure 11: Precision of Top � Selection with Number of Rounds

Figure 11 shows the precision of the top � protocol with increas-
ing number of rounds ( p ) for varying � . The precision reaches
to 100% in all lines after a sufficient number of rounds. The
effect of � on the convergence is not significant. We also ran
experiments for varying 	 with �;
l� and the result did not
show any significant effect.

5.5 Privacy Characteristics of Top- � Selection
Now we report the loss of privacy for the general top � protocol
with varying � and its comparison to the naive protocol.
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Figure 12: Comparison of Loss of Privacy with �
Figure 12(a) and (b) show the average and worst case data value
loss of privacy for all nodes with varying � . We can make a few
interesting observations. We see that the probabilistic protocol
achieves significantly better privacy than the naive protocols.
Interestingly, the probabilistic protocol has an increasing loss
of privacy as � increases. An intuitive explanation is that the
larger the � , the more information a node exposes to its succes-
sor and hence the larger the loss of privacy.

6 Related Work
Privacy related problems in databases have been an active and
important research area. Research in secure databases, Hip-
pocratic databases and privacy policy driven systems [12, 4,
2] has been focused on enabling access of sensitive informa-
tion through centralized role-based access control. More re-
cently research has been done in areas such as privacy pre-
serving data mining, privacy preserving query processing on
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outsourced databases, and privacy preserving information inte-
gration.

In privacy preserving data mining [17], the main approach is
to use data perturbation techniques to hide precise information
in individual data records, as the primary task in data mining
is the development of models and patterns about aggregated
data. In database outsourcing scenarios, the main technique
is to use data partitioning to evaluate obfuscated range queries
with minimal information leakage [10, 11]. These techniques
may not apply to information integration tasks where precise
results are desired.

In the information integration domain, Agrawal et al. [3] in-
troduced the paradigm of minimal information sharing for pri-
vacy preserving information integration. Under this paradigm,
a few specialized protocols have been proposed, typically in
a two party setting, e.g., for finding intersections [3], and � th
ranked element [1]. Though still based on cryptographic primi-
tives, they achieve better efficiency than traditional multi-party
secure computation methods by allowing minimal information
disclosure. As a contrast, our protocol does not require any
cryptographic operations. It leverages the multi-party network
and utilizes a probabilistic scheme to achieve minimal infor-
mation disclosure and minimal overhead.

Another related area is the anonymous network where the
requirement is that the identity of a user be masked from an
adversary. There have been a number of application specific
protocols proposed for anonymous communication, including
anonymous messaging (Onion Routing [16]), anonymous web
transactions (Crowds [14]), anonymous indexing (Privacy Pre-
serving Indexes [5]) and anonymous peer-to-peer systems (Mu-
tual anonymity protocol [19]). Some of these techniques may
be applicable for data integration tasks where parties opt to
share their information anonymously. However, anonymity is
a less strong requirement than data privacy.

7 Conclusion
We have presented a probabilistic protocol for top- � selections
across multiple private databases. We formalized the notion of
loss of privacy in terms of information revealed and developed
an efficient decentralized probabilistic protocol, which aims at
selecting top � data items across multiple private databases with
minimal information disclosure. We evaluated the correctness
and privacy characteristics of the proposed protocol through
both formal analysis and experimental evaluations.

Our work on privacy preserving data integration continues
along several directions. First, we are extending and gener-
alizing the privacy analysis on the probability distribution of
the data using aggregated information from multiple rounds.
Second, given the probabilistic scheme, it is possible to design
other forms of randomization probability and randomized algo-
rithms. We are interested in conducting a theoretical analysis
for discovering the optimal randomized algorithm. Third, we
plan to relax the semi-honest model assumption and address

the situations where adversaries may not follow the protocol
correctly. Finally, we are developing a privacy preserving � NN
classifier on top of the top � protocol.
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