ACCURACY OF A NEW METHOD FOR MEASUREMENT OF AN ACOUSTIC IMPEDANCE

A THESIS
Presented to The Faculty of the Graduate Division by
Raoul
Francois Feuillebois

In Partial Fulfillment of the Requirements for the Degree Master of Science In the School of Aerospace Engineering

In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or, in his absence, by the Dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is understood that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission.

Francois R. FEUILLEBOIS \Rightarrow

$7 / 25 / 68$
i

ACCURACY OF A NEW METHOD FOR MEASUREMENT OF
 AN ACOUSTIC IMPEDANCE

> Approved:

ACKNOWLEDGMENTS

The author would like to express here his appreciation to his thesis advisor, Dr. Warren C. Strahle, for his guidance and understanding, and for his encouragement in the difficult periods of the research.

Also appreciated is the work of Mr. Brady R. Daniel who was instrumental in the construction and operation of the experimental apparatus. He generously donated many free hours of time toward the completion of this project. The contribution of Mr. Charlie R. Lord of the electronics laboratory is also acknowledged.

Dr. Ben T. Zinn and Dr. James E. Hubbartt are due a special note of thanks for their sincere interest and constructive comments as readers.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ii
LIST OF TABLES iv
LIST OF FIGURES v
SUMMARY vi
NOTATION vii
Chapter
I. INTRODUCTION 1
II. EVALUATION OF THE FIRST EXPERIMENT 3
III. DESIGN OF THE SECOND EXPERIMENT 10
IV. THEORY OF THE IMPEDANCE MEASUREMENT 19
V. EXPERIMENTAL RESULTS 26
VI. SUMMARY AND CONCLUSIONS 47
Appendix
I. CALIBRATION OF THE MICROPHONES 48
II. CALIBRATION TABLES OF THE FIVE CHANNELS 49
III. LISTING AND USE OF THE COMPUTER PROGRAM 65
IV. ADDITIONAL FIGURES 69
BIBLIOGRAPHY 72

LIST OF TABLES

Table Page

1. Transformation from the Amplitude Reading (volts) to the Pressure Level (μ bar) 28
2. Results of the Experiment 29
3. Results of the Program 30

LIST OF FIGURES

Figure Page

1. First Experiment 4
2. Second Experiment:
2a: Overall Shematic 11
2b: Enlargements 70
2c: Enlargements 71
3. Temperature vs. Pressure for Freon 114:
Cooling Path 13
4. Design of the Cooling System 14
5. Experiment Setup 18
6. Impedance Z as a Function of A / B 25
7. Calibration Curves of the Third Channel at 186 cps in Frequency 27
8. Pressure on Complex Plane: Error on
$\mathrm{Y}=\frac{\mathrm{p}_{1}+\mathrm{P}_{3}}{2 \mathrm{P}_{2}}$43
9. Magnitude of the Impedance vs. the Frequency 44
10. Phase of the Impedance vs. the Frequency 45

SUMMARY

Two possible experimental procedures are described for the measurement of the acoustic impedance of a vaporizing liquid. Theoretical investigation of the first procedure shows that the use of a vaporizing spray in an impedance tube would require experimental precision far beyond present capabilities. Consequently this approach is rejected. The second procedure involves an impedance tube terminated by a plane vaporizing surface. The design of this experiment is described and initial experiments to determine the impedance of the end plate assembly without mean air flow and without a vaporizing fluid are performed. It is found that the experimental precision of the impedance measurement is rather poor. Reasons for the imprecise results are deduced and recommendations for experiment improvement are given.

NOTATION

A
complex constant
complex constant
mean speed of sound
diffusion coefficient
diameter of a droplet
frequency
height of the plexiglass wall
imaginary number $\sqrt{-1}$
proportional to the wave number, defined by K_{r} and K_{i}
dimensionless circular frequency, $K_{r}=\frac{\omega L}{c}$
decay factor
length of the tube
heat of vaporization
instantaneous mass flow rate
mean mass flow rate
perturbation of the mass flow rate, $m=\tilde{m}-\bar{m}$
mach number
mass flow rate vaporizing per droplet
ambient pressure
instantaneous pressure at a point
perturbation of the pressure at a point, or acoustic
pressure, $p=\tilde{p}-\bar{P}$
dimensionless acoustic pressure, $P=p / \vec{P}$
number defined by $P^{\prime}=|P| e^{i \psi}$
Reynolds number
Schmidt number
time
temperature
instantaneous speed of the gas
perturbation of the speed of the gas
dimensionless perturbation of the speed of the gas, $U=u / c$
abscissa
dimensionless abscissa, $X=x / L$
number defined by $Y=\frac{P_{1}+P_{3}}{2 \mathrm{P}_{2}^{\prime}}=\frac{\mathrm{p}_{1}+\mathrm{p}_{3}}{2 \mathrm{P}_{2}}$
acoustic impedance, $z=p / u$
dimensionless acoustic impedance, $Z=\frac{P}{u}=\frac{z c}{\bar{P}}$
quantity defined by equation (9)
ratio of specific heats
viscosity
phase of P, taking the phase of $P_{1}\left(\right.$ at $\left.X_{1}\right)$ as zero
complex constant
instantaneous density
mean density
perturbation of the density
circular frequency
dimensionless circular frequency, $\Omega=\frac{\omega L}{c}$

Subscripts:

vaporization
j
index related to the three transducers used in the experiment

```

\section*{CHAPTER I}

\section*{INTRODUCTION}

Several theoretical treatments have appeared in the literature \({ }^{1-4}\) concerning the change of vaporization rate of a liquid due to acoustic waves in the ambient fluid. However, no experiments have been successfully designed to measure this effect. This thesis explores two methods.

Both methods use an impedance tube, which is an enclosure where a system of one dimensional standing waves is produced; then measurements of the pressures of various locations enable the acoustic impedance to be computed at any point of this tube. In particular, if a liquid vaporizes at a given point of the tube in a mean one dimensional air flow, it is possible to compute the acoustic impedance at this point for any given vaporization rate.

The vaporization process of interest is one which occurs in flight vehicle engines in the form of a vaporizing spray. An initial attempt is made to model this situation experimentally. It is found theoretically in the second chapter that the influence of the spray on the acoustic wave pattern is too small to be evaluated. This method is therefore to be rejected.

A second approach explored is to use an impedance tube
terminated by a flat porous plate through which a vaporizing fluid is allowed to pass. It can be shown that the presence of a vaporization process induces a small but noticeable change of the acoustic impedance of the flat porous plate. It is therefore important to be able to determine this impedance with precision, even without vaporization.

The third chapter of this thesis is concerned with the design of the experiment, including the vaporization devices. The fourth and fifth chapters present measurements of the end plate impedance without mean air flow in the tube, and without the flow of a vaporizing fluid. The measurements are taken using a new method similar to the one investigated in Ref. 5 . Several fixed microphones are employed, instead of the classical single traversing microphone. The fifth chapter presents results of this acoustic experiment, and remarks on their accuracy.

\section*{CHAPTER II}

\section*{EVALUATION OF THE FIRST EXPERIMENT}

The first method investigated is depicted in Figure 1. A low speed air flow ( \(240 \mathrm{in} / \mathrm{sec}\) ) passes horizontally between two plexiglass walls. Perpendicular to the flow a spray of droplets is introduced by a vibrating hypodermic needle \({ }^{6}\). The droplets vaporize, as they fall due to gravity, and the flow passage is divided, therefore, into region \(I\) containing air and region \(I I\) containing air and vapor. Acoustic waves are produced by an acoustic driver located at the left hand end.

The feasibility of determining the effect of the vaporizing spray may be determined theoretically. Since \(\tilde{m}_{2}=\tilde{\rho}_{2} \tilde{u}_{2}\) at point 2 downstream of the droplets, if small amplitude disturbances are allowed
\[
\begin{equation*}
\mathrm{m}_{2}=\rho_{2} \bar{u}_{2}+\bar{\rho}_{2} u_{2} \tag{1}
\end{equation*}
\]

This equation may be transformed, using three relations. Assume isentropic oscillations \(P_{2} / \bar{P}=\gamma\left(\rho_{2} / \bar{\rho}_{2}\right)\). Note that the acoustic pressure is assumed the same on both sides of the droplets,since 1). The momentum equation applied to a small control surface containing the droplets and their vaporization process \({ }^{8}\) shows that the change in pressure across

the droplets depends on the change in Mach number. This change being very low, as shown later, a strong expansion wave does not exist; 2). The wavelength of the traveling wave is very large compared to the control surface considered so that there are no wave propagation phenomena in the control volume. Furthermore, wave scattering from the droplets is negligible. Thus, \(p_{I I} \simeq p_{I}\). Finally, use the definition of the dimensionless acoustic impedance, \(Z=\frac{P / \bar{P}}{u / C}\). Equation (1) then becomes
\[
\begin{equation*}
\frac{\mathrm{m}_{v} / \overline{\mathrm{m}}_{v}}{\mathrm{P} / \overline{\mathrm{P}}}=\frac{1}{r}+\frac{\bar{m}_{2}}{\bar{m}_{v}} \frac{1}{M_{2} Z_{2}}-\frac{\bar{m}_{1}}{\bar{m}_{v}} \frac{1}{M_{1} Z_{1}} \tag{2}
\end{equation*}
\]

The quantity on the left hand side of Equation (2) is the quantity of interest. From theory \({ }^{l}\) it is dependent upon frequency and is a quantity of the order of unity. Measurable quantities on the right hand side of Equation (2) are \(Z_{1}\) and \(Z_{2}\)

Assuming a pressure wave in region \(I\) of the form
\[
P_{I}=A_{I} \sin \left(\Omega_{I} X-\Psi_{I}\right) e^{i \omega t}
\]
where \(P_{I}, A_{I}, \Psi_{I}\) are complex numbers, and a corresponding waveform in region \(I I\), consider the determination of \(Z_{1}\) and \(Z_{2}\). The acoustic impedance of the end of the tube determines the value of \(\Psi^{\Psi}\). For convenience in computation, assume that the end of the tube behaves as an ideal open end with a zero
impedance. Then, at \(X=1, P_{I I}=0\) or \(\sin \left(\Omega_{I I}-\Psi_{I I}\right)=0\). Consequently, \({ }^{\Psi} I I{ }^{=}{ }^{\Omega} I I\) or \({ }^{\Psi} I I={ }^{\prime} I I{ }^{+\pi}\). At \(X=X_{1}\), the relation \(\mathrm{P}_{I I}=\mathrm{P}_{I}\) proved earlier gives \(\mathrm{A}_{\mathrm{II}}\). Finally,
\[
P_{I I}=\frac{A_{I} \sin \left[\Omega_{I} X_{1}-\Psi_{I}\right]}{\sin \left[\Omega_{I I}\left(X_{1}-1\right)\right]} \sin \left[\Omega_{I I}(X-1)\right] e^{i \omega t}
\]

Using the acoustic equation \({ }^{7} \partial P / \partial X=-\bar{\rho} \partial u / \partial t\)
\[
\frac{u}{c}=-\frac{\overline{\mathrm{P}} \mathrm{~A}}{i \bar{\rho} c^{2}} \cos [\Omega X-\Psi] e^{i \omega t}
\]
so that, from the definition of the dimensionless acoustic impedance, \(Z=-i \gamma \tan (\Omega X-\Psi)\). Consequently, Equation (2) becomes
\[
\begin{align*}
& \frac{\mathrm{m}_{\mathrm{v}} / \overline{\mathrm{m}} v}{\mathrm{P} / \overline{\mathrm{P}}}= \\
& \frac{1}{r}\left\{1+\frac{\mathrm{i} \bar{m}_{2}}{\bar{m}_{v}^{M_{2}}}\left[\frac{1}{\tan \left[\Omega_{I I}\left(X_{1}-1\right)\right]}-\frac{c_{2}}{c_{1}} \frac{1}{\tan \left[\Omega_{I} X_{1}-\Psi_{I}\right]}\right]\right\} \tag{3}
\end{align*}
\]

It now remains to be seen whether normal experimental errors would yield an acceptable computation of the ratio \(\frac{m_{v} / \bar{m}_{v}}{P / \bar{P}}\). The measurable acoustic quantities in Equation (3) are \(c_{1}\), \(c_{2}, \Omega_{I}, \Omega_{I I}\), and \(\Psi_{I}\). To evaluate the ratio \(\bar{m}_{v} / \vec{m}_{2}\), consider the following development.

Consider first droplets of 750 microns in diameter since Dabora \({ }^{6}\) has determined that droplets of this size remain equally spaced during their downward travel. That is, there
is no risk of droplet coalescence. For computational simplicity assume the liquid is water at \(212^{\circ} \mathrm{F}\) and the air is at \(900^{\circ} \mathrm{R}\) and 1 atm. The formula for the vaporization rate in dry air is \({ }^{8}\)
\[
\begin{equation*}
\dot{M}=2 n D_{\ell} \mu \ell n\left[1+\frac{c_{P}\left(T-T_{\ell}\right)}{L_{V}}\right]\left(1+0.276 \mathrm{Re}^{1 / 2} S_{C}^{1 / 2}\right) \tag{4}
\end{equation*}
\]

The following numerical values are chosen from Reference 9.
\[
\begin{array}{ll}
\mu(\text { water vapor }) & =4.42 \times 10^{-2} 1 \mathrm{bm} / \mathrm{ft} / \mathrm{hr} \\
\mu(\text { air }) & =6.6 \times 10^{-2} 1 \mathrm{bm} / \mathrm{ft} / \mathrm{hr} \\
\mathrm{~L}_{\mathrm{v}} & =1205.5 \mathrm{BTU} / 1 \mathrm{bm} \\
\mathrm{C}_{\mathrm{p}} & =6007 \mathrm{BTU} / 1 \mathrm{bm} /{ }^{\circ} \mathrm{F} \\
\rho_{\text {air }} & =0.113 \mathrm{x} 10^{-4} 1 \mathrm{bm} / \mathrm{ft}^{3} \\
{ }^{D_{\text {vapor-air }}} & =1.337 \mathrm{ft}^{2} / \mathrm{hr}
\end{array}
\]

Consequently, \(\mathrm{Sc}=1.117, \operatorname{Re}=19.5\) and, using Equation (4), \(\dot{M}=7 \times 10^{-8} \mathrm{lbm} / \mathrm{sec}\). This is the initial vaporization rate. Assuming the droplet velocity in the Reynolds number in Equation (4) to remain unchanged and noting \(\dot{M}=-\rho_{L} \frac{d}{d t}\left(\pi D_{1}^{3} / 6\right)\) an integration for the lifetime of the droplet yields 14.1 sec. A simpler formula for the lifetime results if the Reynolds number is assumed constant in Equation (4). In this case the lifetime is 9.68 sec which is of the same order of magnitude as the more precise estimate. According to Dabora \({ }^{6}\) the liquid velocity at the needle exit should equal the Stoke's velocity (drag = weight). This velocity of \(36.7 \mathrm{ft} / \mathrm{sec}\)
can be obtained pressurizing the fluid ahead of the orifice. Integrating Stokes formula to account for the changing droplet size it is found that for a fall of 2 inches the time required is 0.00446 sec and the droplet size at the end of the fall is \(D_{1}=749.8\) microns. For a fall of 40 in ( 1 m ) the time is 0.0896 sec and the diameter has only devreased to 746.5 microns. In these computations the air velocity has been assumed small in comparison with the droplet velocity. To produce these droplets by a vibrating needle requires a vibration frequency of 1100 cycles per second \({ }^{6}\), which is also the droplet number production rate. For a 40 in/sec ( \(1 \mathrm{~m} / \mathrm{sec}\) ) air flow it is therefore determined that \(\overline{\mathrm{m}}_{\mathrm{v}} / \overline{\mathrm{m}}_{1}=\) \(4.8 \times 10^{-4}\) if the distance between the plexiglass walls is about 0.4 in ( 1 cm ), a reasonable minimum distance to prevent splashing of the spray on the walls. A higher speed airflow would result in downstream displacement of the droplets and destruction of the one dimensional situation, although it would increase the vapor production. Using multiple needles would be possible but there are experimental difficulties in making them all perform properly \({ }^{6}\). It therefore appears that the experiment is constrained to operate with small mass flow ratios, say \(\bar{m}_{v} / \bar{m}_{1} \tilde{\sim} \overline{\mathrm{~m}}_{\mathrm{v}} / \overline{\mathrm{m}}_{2}<10^{-3}\).

Repeating the calculation for \(100 \mu\) droplets yields \(\bar{m}_{v} / \bar{m}_{2}=8.3 \times 10^{-4}\) where in this case vaporization is complete after a fall of only 1.07 in. It is concluded that there is no experimental arrangement of this type to produce \(\bar{m}_{v} / \bar{m}_{2}\)
greater than roughly \(10^{-3}\).
Returning to Equation (3) and noting that \(M_{2} \approx 0.003\), it is seen that the term in braces
\[
\left[\frac{1}{\tan \left[\Omega_{I I}\left(X_{1}-1\right)\right]}-\frac{c_{2}}{c_{1}} \frac{1}{\tan \left[\Omega_{I} X_{1}-\Psi_{1}\right]}\right]
\]
must be small, of the order of \(10^{-5}\) in order that the vaporization ratio \(\frac{\mathrm{m}_{\mathrm{v}} / \overline{\mathrm{m}} v}{\mathrm{P} / \overline{\mathrm{P}}}\) be of order unity \({ }^{1}\). The temperature is not important in this evaluation: Since \(\frac{\bar{m}_{2}}{\bar{m}_{v} M_{2}}=\frac{\bar{\rho}_{2} c_{2}}{\bar{m}_{v}}\) which is inversely proportional to the square root of the temperature \(T_{2}\), assuming a perfect adiabatic gas, and inverse1y proportional to \(\bar{m}_{v}\) which is a logarithmic function of \(T_{2}\).

The small term in braces is the difference of two terms of order unity which contain numerical errors due to the experimental error. It is concluded that this method is not satisfactory for the measurement of the change in vaporization rate.

\section*{CHAPTER III}

\section*{DESIGN OF THE SECOND EXPERIMENT}

The first experiment was shown to be impractical, due to the too low ratio of vaporized mass flow rate to air flow rate. This ratio can be raised to the order of \(10^{-1}\) if the configuration of Figure 2 is used. Here the vaporizing surface which covers the end plate of an impedance tube. Air flows downward toward the plate which is constructed of porous metal through which the vaporizing fluid is forced. Escape of the air and vapor is provided by a cylindrical passage between the tube wall and the end plate. In this second experiment, it can be shown that the presence of a vaporization process induces a small but noticeable change of the acoustic impedance of the flat porous plate. This chapter is concerned with the design of the experiment, including the vaporization devices and the acoustic apparatus. The following chapters will discuss the acoustic problem and measurements.

In order to match the Reynolds number of droplets in a rocket engine, a constraint on the design was selected as \(10 \leq \operatorname{Re} \leq 100\), where the reference length is the end plate radius, selected as 3 in. For ambient air the velocity in the tube approaching the end plate varies from 0.16 to 1.6

in/sec as the Reynolds number goes from 10 to 100 . Obviously, the velocities occurring in a rocket chamber are not matched. The maximum air flow rate is \(0.77 \mathrm{ft}^{3} / \mathrm{min}\).

Freon 114 was selected as the most promising nontoxic, non flammable fluid as the vaporizing substance. Freon 114 has the lowest storage pressure at ambient temperature of the Freon family. It has a boiling point at one atmosphere of \(38.4^{\circ} \mathrm{F}\) and a vapor pressure at \(72^{\circ} \mathrm{F}\) of 2 atm . Further data on Freon 114 are given in Reference 10. The storage pressure in standard Freon bottles is slightly above the vapor pressure at the ambient temperature and this vapor pressure is used to pump the Freon. Before the expansion of the Freon from the storage bottle to the atmosphere, it is necessary that the Freon be cooled below its boiling point, as shown in Figure 3. The path consists of cooling at constant pressure, Then expansion of the liquid to latm, by heat transfer from the experimental apparatus. A shematic of the cooling system (at constant pressure) is shown in Figure 4.

The flow rate required can be determined using the method of Reference 11 , in which it is assumed that the end plate surface behaves as a stagnation point. Using this method, the estimated flow rate is \(0.106 \mathrm{~cm}^{3} / \mathrm{min}\) at an air flow Reynolds number of 10 , and \(0.335 \mathrm{~cm}^{3} / \mathrm{min}\) at an air flow Reynolds number of 100 (Recall that \(10 \leq R e \leq 100\) to match the Reynolds number of droplets in a rocket engine). The flow-


Figure 3. Temperature vs. Pressure for Freon 114


Figure 4. Design of the Cooling System
meter required for the Freon can be roughly sized using these figures.

Actual construction of the air and Freon flow systems were not included in the scope of this thesis. However, the acoustic system was completed. Sound generation is performed by a University 50 watt, 16 ohm driver which yields a satisfactory signal above 100 cps. A Dynasciences Corporation, Model PC 125, oscillator is used to generate a sine wave of a selected frequency and the signal is fed to a Krohn-Hite amplifier, Model DCA, 50R. To adapt the amplifier impedance to the drive impedance a Krohn-Hite matching transformer, Model MT-56, is used. As shown later, the acoustic pressure is measured at five points as located in Figure 2. Bruel and Kjaer condenser microphones, Type 4135, are used. Calibration of the transducers is accomplished with a Bruel and Kjaer Microphone Amplifier, Type 2604. The 5 power supplies and amplifiers for the pressure transducers are grouped into a compact single unit. Each channel has seven attenuation settings ranging from gains of 1 to 1000 , in increments of a factor of \(\sqrt{10}\). To record the signals an Ampex, Model FR 1300 , 14 channel tape recorder is used. A two channel Tektronix, Model 535 A , oscilloscope is used to determine appropriate amplifier gain settings, determine resonance frequencies, check signal distortion and check phase differences between two signals.

From the recorded signals it is necessary to determine
the amplitudes and phases of the five channels used. The output voltage is read by a digital voltmeter, Data Technology Corporation, Model 360B. The phase difference between two channels is determined using an Aerometrics, Model PM 730, phasemeter. The error in phase angle is roughly \(\pm 0.7^{\circ}\). The primary error in the amplitude arises from a \(\pm 2 \%\) error in the tape recorder.

Calibration of the acoustic system is accomplished by introducing a known acoustic source to each microphone. The signals used ranged from 110 to 160 db re \(2 \times 10^{-4} \mu \mathrm{bar}\). 180 db is the maximum signal rating for the transducers and below 110 db the signal is not strong enough for the tape recorder. Each microphone is provided a correction factor (K) to add to the readings on the Bruel and Kjaer microphone amplifier, which is used as a standard. It was checked with another acoustic standard, a Dynasciences Corporation, Model PC 125, acoustic calibrator and some differences were noted. The \(K\) factors were modified in accordance with the results in Appendix \(I\).

To calibrate the channel amplifiers a microphone is placed near the acoustic driver and a \(d b\) level is determined on the \(B \& K\) microphone amplifier. The microphone signal is then put through a channel on the five channel box. The output voltage is recorded for all attenuation settings, several db settings, and several frequencies. The frequencies of interest were determined as the resonant frequencies of the
acoustic tube \(186,312,443,585,882\), and 1025 cps . The results of this calibration are given in Appendix II. The assumption is then made that the output voltage is linearly transformed to the tape recorder.

A photograph of the experimental setup is shown in Figure 5.


Figure 5. Experimental Setup

\section*{CHAPTER IV}

\section*{THEORY OF THE IMPEDANCE MEASUREMENT}

In the second experiment, the presence of a vaporization process induces a small but noticeable change of the acoustic impedance of the flat porous plate. It is therefore important to be able to determine this impedance with precision, even without vaporization. This chapter presents the theory of this determination.

The classical method of measuring the acoustic impedance at the end of a tube uses a traversing microphone \({ }^{7}\). This approach is undesirable in the present program because of the presence of a mean flow and a vaporization in its future version, and the consequent mechanical complexity of the device. An attempt is therefore made to measure to impedance by five fixed transducers.

In the future version, the presence of a mean flow will affect the acoustics of the system \({ }^{7}\), and in particular the fundamental mode in which we are interested. However, the effect is proportional to the Mach number. Since \(M \approx 0.003\), the effect is negligible in this experiment. The standing wave in the tube will consist of two traveling waves, the wave produced by the driver and the wave reflected from the tube end \({ }^{7}\). These waves are damped due to wall effects. Using complex notation the general expression for the standing
waveform is given by
\[
P=\left(A e^{i K X}+B e^{-i K X}\right) e^{i \omega t}
\]
with
\[
k=k_{r}+i k_{i}
\]

A and B are also complex numbers. The objective is the measurement of the three unknowns \(A, B\), and \(K\). Note that \(K_{r}\) is unknown because \(c\) is unknown in the absence of a temperature measurement.

Let us write the acoustic pressure as \(P=|P| e^{i(\omega t+\psi)}\). The time origin may be chosen so that, at \(X=X_{1}\), the location of the top transducer, \(\psi_{1}=0\). Thus, measurement of the pressure amplitude \(|P|\) and phase relative to transducer number 1 yields a complex number \(P^{\prime}\). Three such measurements at three different points yield three equations
\[
\begin{equation*}
P_{j}=A e^{i K X}+B e^{-i K X_{j}} \quad j=1,2,3 \tag{5}
\end{equation*}
\]
for \(A, B\), and \(K\). Solving for \(A\) and \(B\) using \(j=1\) and 2 ,
\[
\begin{align*}
& A=\frac{P_{1} e^{-i K X_{2}}-P_{2} e^{-i K X_{1}}}{2 i \sin K\left(X_{1}-X_{2}\right)} \\
& B=\frac{P_{2} e^{i K X_{1}}-P_{1} e^{i K x_{2}}}{2 i \sin K\left(X_{1}-X_{2}\right)} \tag{6}
\end{align*}
\]

Placing Equations (6) into \(j=3\) of Equations (5)
\[
\begin{gather*}
P_{1} \sin K\left(X_{2}-X_{3}\right)+P_{2}^{\prime} \sin K\left(X_{3}-X_{1}\right) \\
+P_{3}^{\prime} \sin k\left(x_{1}-X_{2}\right)=0 \tag{7}
\end{gather*}
\]

In general Equation (7) cannot be solved analytically. However, for equal transducer spacings with \(\Delta X=X_{3}-X_{2}=\) \(X_{2}=X_{1}\), there results as a nontrivial solution
\[
\begin{equation*}
Y=\cos K \Delta X=\frac{\mathrm{P}_{1}^{\prime}+\mathrm{P}_{3}^{\prime}}{2 \mathrm{P}_{2}^{\prime}}=\frac{\mathrm{p}_{1}+\mathrm{p}_{3}}{2 \mathrm{p}_{2}} \tag{8}
\end{equation*}
\]

Equation (8) is the fundamental equation which determines \(K\) from the measured \(P_{1}^{\prime}, P_{2}^{\prime}\) and \(P_{3}^{\prime}\). Using five transducers there are four possible determinations of \(K\) at any given frequency, using the first three, the second three, the last three or the first, third, and last transducers. After some algebra the inversion of Equation (8) for \(K_{r}\) and \(K_{i}\) gives
\[
\begin{align*}
& \mathrm{K}_{\mathrm{i}}=\frac{\ln \left(\mathrm{zz}+\sqrt{\mathrm{zz}^{2}-1}\right)}{\Delta \mathrm{X}} \\
& \mathrm{~K}_{\mathrm{r}}=\varepsilon \frac{\cos ^{-1}\left(\mathrm{Y}_{\mathrm{r}} / \mathrm{zz}\right)}{\Delta \mathrm{X}}+\mathrm{n} \frac{\pi}{\Delta \mathrm{X}} \quad \mathrm{n}=\text { integer } \\
& \varepsilon= \pm 1 \\
& \mathrm{zz}=\frac{1+\mathrm{Y}_{\mathrm{r}}^{2}+\mathrm{Y}_{\mathrm{i}}^{2}+\sqrt{\left(1+\mathrm{Y}_{\mathrm{r}}^{2}-\mathrm{Y}_{\mathrm{i}}^{2}\right)^{2}-4 \mathrm{Y}_{\mathrm{r}}^{2}}}{2} \tag{9}
\end{align*}
\]
\(Y_{r}\) and \(Y_{i}\) are the real and imaginary parts of Equation (8), determined experimentally. The choice of \(\varepsilon\) and \(n\) can be most
easily accomplished by comparison with the theoretical value of \(K_{r}\left(K_{r}=\frac{\omega L}{c}\right)\) which can be closely approximated if the speed of sound can be computed. Then if there is an integer \(n_{k}\) such that
\[
\left(2 n_{K}-2\right) \pi<K_{r}{ }_{\text {theoretical }} \Delta X \leq\left(2 n_{K}-1\right) \pi
\]
it follows that \(\varepsilon=1, n=2\left(n_{K}-1\right)\). If there is an integer \(n_{K}\) such that
\[
\left(2 n_{K}-1\right) \pi<K_{\text {reoretical }} \Delta \mathrm{X} \leq 2 n_{K} \pi
\]
it follows that \(\varepsilon=-1, n=2 n_{K}\). This problem in the choice of \(\varepsilon\) and \(n\) arises because with fixed transducers there is difficulty in knowing how many wavelengths exist between transducers. A and \(B\) may now be computed from Equation (6).

The computation of the impedance follows from its definition and the relation between the pressure and velocity \({ }^{7}\) through \(\partial p / \partial x=-\rho \partial u / \partial t\). The result is
\[
\begin{equation*}
z=\gamma \frac{K_{r}}{K}\left[\frac{A e^{i K X}+B e^{-i K X}}{-A e^{i K X}+B e^{-i K X}}\right] \tag{10}
\end{equation*}
\]

A computer program has been developed to handle the solution of Equation (6) - (10). For a listing of the program and an explanation of its use see Appendix III.

Some comments concerning accuracy of the results are
in order here. If \(Y_{i}\) is near zero, \(z z=1\) from Equations (9). Consequently \(K_{i}\) is known with bad precision, and it is not possible to check that \(K_{i}\) is small. For this reason the calculation for \(z z\) is carried out in double precision on the computer. Checking the calculation with known pressure profiles K can be determined with an accuracy of \(5 \times 10^{-6}\). Another problem occurs in the computation of \(A\) and \(B\). Equations (6) use Equations (5) with \(j=1\) and 2. But clear\(1 y \mathrm{j}=1,3\) or \(\mathrm{j}=2,3\) could also be used. Because of experimental errors the results will be different. The computer program calculates three values of \(A\) and \(B\) from the three possibilities and takes an arithmetic average. This average is the expression of the least mean square method in the A and \(B\) planes, respectively.

Another problem occurs if \(Z\) is large (rigid, closed end tube). Rewriting Equation (10)
\[
z=\gamma \frac{K_{r}}{K}\left[\frac{A / B e^{2 i K X}+1}{A / B e^{2 i K X}-1}\right]
\]
it follows that \(Z\) is large if \(A / B \approx e^{-2 i K X}\). As an example consider
\[
\begin{array}{ll}
\gamma=1.405 & K=3+0.01 i \\
x=0.9 & B=1
\end{array}
\]
\(Z\) is then large if \(A Z 0.646+0.786\) i. Computations for \(Z\),
varying the real and imaginary parts of \(A\), are shown in Figure 6. It is clear that near \(A=0.6462+0.7868 i\) a \(10^{-4}\) error in \(A\) can make a drastic error in the computed impedance. Pressure profiles have been introduced into the main computer program of Appendix III which simulate \(\operatorname{Re}(Z)=10,100,1000\) and 10000. The accuracy with which this may be done is shown in the first two columns of the following table:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\(\operatorname{Re}(\mathrm{Z})\)} & \multicolumn{2}{|l|}{Precision of program} & \multicolumn{2}{|l|}{\(10^{-7}\) Var. on \(\mathrm{P}_{1}\) gives} \\
\hline & on \(\mathrm{A}, \mathrm{B}\) & on Z & on \(\mathrm{A}, \mathrm{B}\) & on Z \\
\hline 10 & \(5 . \times 10^{-7}\) & \(5 . \times 10^{-6}\) & \(10^{-6}\) & \(5 . \times 10^{-5}\) \\
\hline 100 & \(5 . \times 10^{-7}\) & \(10^{-4}\) & 2. \(10^{-6}\) & \(10^{-2}\) \\
\hline 1000 & \(5 . \times 10^{-7}\) & \(5 . \times 10^{-2}\) & 2. \(10^{-6}\) & \(10^{-1}\) \\
\hline 10000 & \(5 . \times 10^{-7}\) & 1. & 2. \(10^{-6}\) & 1 to 100 \\
\hline
\end{tabular}

Then a \(10^{-7}\) error in \(\left|P_{1}\right|\) is introduced at point \(X_{1}\) and the resulting variation \(Z\) is noted in the last two columns of the table. The error is primarily in \(I_{m}(Z)\) since the pressure profiles were selected so that \(I_{m}(Z) \approx 0\). Nevertheless, if \(|z|>100\), say, there can be expected a rather poor precision in its determination, particularly when \(P\) cannot be experimentally determined within \(1 \%\).


\section*{CHAPTER V}

\section*{EXPERIMENTAL RESULTS}

\begin{abstract}
The calibrations of Appendix II reduce to straight lines on a plot of voltage output vs absolute pressure as illustrated for channel 3 in Figure 7. The best straight line fits with pressure linear in voltage output for all channels are shown on the middle line of each box on Table 1 . There is a slight variation with frequency. Generally the calibration can be performed within an error of 0.1 db . This corresponds to an error in absolute pressure of approximately \(1 \%\).
\end{abstract}

The pressures obtained from all five channels as a function of frequency are shown in Table 1. They are obtained by putting the voltage, data of the experiment (on the top line of each box, on Table 1) into the calibration formula (on the middle line of each box). These pressures are on the lower line of each box. Table 2 shows the results of the phase measurement along with a repeat of the pressure data of Table 1. The data of Table 2 are used in the computer program of Appendix III, and the computational results are shown in the output of Table 3 .

As expected \(K_{i}\) is small compared with \(K_{r}\), showing small acoustic losses. The three values of \(A\) and \(B\) are shown in Table 3 for each run along with the average value. The


Figure 7. Calibration Curves of the Third Channel at 186 cps .

Table 1. Transformation from the Amplitude Reading (volts) to the Pressure Level ( \(\mu \mathrm{bar}\) )

Reading (volts) and attenuation

Transformation formula

Pressure ( \(\mu\) bar
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { frequency } \\
& (\mathrm{cps})
\end{aligned}
\]} & \multicolumn{7}{|c|}{channel} \\
\hline & 1 & 2 & & 3 & 4 & 5 & \\
\hline 186 & \[
\begin{aligned}
& 1.154{ }^{1}=3 \\
& 1625 \mathrm{~V}+10 \\
& 1886
\end{aligned}
\] & \[
\begin{gathered}
.723 \\
\mathrm{P}=1313 \mathrm{~V}+9 \\
958
\end{gathered}
\] & 3 & \[
\begin{array}{r}
1.280 \\
\mathrm{P}=623.0 \mathrm{~V} \\
797
\end{array}
\] & \[
\begin{aligned}
& 1.082 \\
& \mathrm{P}=1647 \mathrm{~V}+15 \\
& 1796
\end{aligned}
\] & \[
\mathrm{P}=\begin{gathered}
.893 \\
1948 \mathrm{~V}+13 \\
1752
\end{gathered}
\] & 3 \\
\hline 312 & \[
\begin{gathered}
1.225 \\
\mathrm{P}=1627 \mathrm{~V}+4 \\
1996
\end{gathered}
\] & \[
\begin{gathered}
1.026 \\
\mathrm{P}=1319 \mathrm{~V}+3 \\
1356
\end{gathered}
\] & 3 & \[
\begin{gathered}
1.039 \\
\mathrm{P}=1850 \mathrm{~V}+6 \\
2427
\end{gathered}
\] & \[
\begin{gathered}
1.140 \\
\mathrm{P}=555 \mathrm{~V}+1.23 \\
633.9
\end{gathered}
\] & \[
\begin{gathered}
1.310 \\
\mathrm{P}=1949 \mathrm{~V}+9 \\
2561
\end{gathered}
\] & 3 \\
\hline 443 & \[
\begin{gathered}
.992 \\
\mathrm{P}=1623 \mathrm{~V}+2 \\
1611
\end{gathered}
\] & \[
\begin{gathered}
.535 \\
\mathrm{P}=4356 \mathrm{~V}+14 \\
2345
\end{gathered}
\] & 2 & \[
\begin{gathered}
1.135 \\
\mathrm{P}=620 \mathrm{~V}+2 \\
705.7
\end{gathered}
\] & \[
\begin{gathered}
1.064 \\
\mathrm{P}=1657 \mathrm{~V}+4 \\
1766
\end{gathered}
\] & \[
\begin{gathered}
1.193 \\
\mathrm{P}=1951 \mathrm{~V}+2 \\
2329
\end{gathered}
\] & 3 \\
\hline 585 & \[
\begin{gathered}
1.070 \\
\mathrm{P}=1617 \mathrm{~V}+4 \\
1733
\end{gathered}
\] & \[
\begin{gathered}
.704 \\
\mathrm{P}=4394 \mathrm{~V} \\
3093
\end{gathered}
\] & 2 & \[
\begin{gathered}
.651 \\
\mathrm{P}=6110 \mathrm{~V}+13 \\
3991
\end{gathered}
\] & \[
\begin{array}{r}
.723 \\
\mathrm{P}=5575 \mathrm{~V} \\
4030
\end{array}
\] & \[
\begin{gathered}
1.688 \\
\mathrm{P}=1952 \mathrm{~V}+2 \\
3297
\end{gathered}
\] & 3 \\
\hline \[
\begin{array}{r}
882 \\
\hline
\end{array}
\] & \[
\mathrm{P}=545 \begin{gathered}
.607 \\
335
\end{gathered}
\] & \[
\begin{gathered}
1.261 \\
\mathrm{P}=1315 \mathrm{~V}+1 \\
1659
\end{gathered}
\] & 3 & \[
\begin{gathered}
1.046 \\
\mathrm{P}=1836 \mathrm{~V}+8 \\
1928
\end{gathered}
\] & \[
\begin{gathered}
1.400 \\
\mathrm{P}=552 \mathrm{~V}+4 \\
776
\end{gathered}
\] & \[
\begin{gathered}
1.286 \\
\mathrm{P}=667 \mathrm{~V}-4 \\
853
\end{gathered}
\] & 4 \\
\hline 1025 & \[
\begin{aligned}
& .643 \quad 3 \\
& \mathrm{P}=1618 \mathrm{~V} \\
& 1040
\end{aligned}
\] & \[
\begin{array}{r}
1.274 \\
\mathrm{P}=1320 \mathrm{~V} \\
1681
\end{array}
\] & 3 & \[
\begin{gathered}
1.179 \\
\mathrm{P}=627 \mathrm{~V} \\
740
\end{gathered}
\] & \[
\begin{gathered}
1.076 \\
\mathrm{P}=1645 \mathrm{~V}+6 \\
1775
\end{gathered}
\] & \[
\begin{gathered}
.584 \\
P=673 \mathrm{~V} \\
393
\end{gathered}
\] & 4 \\
\hline
\end{tabular}

Table 2. Results of the Experiment
```

phase
(degrees)
amplitude
(\mu bar

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{frequency (cps)} & \multicolumn{5}{|c|}{channel and abscissa} \\
\hline & \(\mathrm{X}_{1}=.0750167\) & \(\mathrm{X}_{2}=.2893503\) & \(\mathrm{X}_{3}=.5036838\) & \(\mathrm{X}_{4}=.7180174\) & \(\mathrm{X}_{5}=.9323509\) \\
\hline 186 & 2886 & \[
-16.6
\] & \[
\underbrace{-151.7}_{79}
\] & \[
-169.5
\] & \[
175.3
\] \\
\hline 312 & \[
1996
\] & \[
-156.5
\] & \begin{tabular}{l}
\[
-175.8
\] \\
242
\end{tabular} & \[
40.8
\] & 4.7 \\
\hline 443 & \[
1611
\] & \[
-
\] & \[
16.3
\] & & \[
-173
\] \\
\hline 585 & \[
\begin{equation*}
1733 \tag{403}
\end{equation*}
\] & \[
3093
\] & \[
9
\]
\[
3991
\] & \[
-162
\] & \[
9.6
\] \\
\hline \[
882
\] &  & \[
160 .
\] & \[
1928
\] & \[
162.5
\] & \[
62.3
\] \\
\hline 1025 &  &  &  & \[
17
\] &  \\
\hline
\end{tabular}

Table 3. Results of the Program

FREQUENCY \(=186,000\)
TEST NO 1
\[
\begin{aligned}
& X=.0750167 \operatorname{MAG}(P)=1886.0 \quad \operatorname{PHASE}(P)=\quad .0 \\
& X=.2893503 \operatorname{MAG}(P)=958.0 \quad \operatorname{PHASE}(P)=-16.6 \\
& X=.5036838 \operatorname{MAG}(P)=797.0 \quad \operatorname{PHASE}(P)=-151.7 \\
& \mathrm{Y}=\quad .64866903 \quad-.01240699 \\
& A A=.142092544053314024+001 \\
& \mathrm{UU}=.265704647543574905-003 \\
& \mathrm{ZZ}=.100013284350007403+001 \\
& \text { KR THEOR. }=\quad 4.02108127 \quad \mathrm{KR} \mathrm{EXPER.}=4.03611571 \\
& A=\begin{array}{lll}
A 10.9536 & -39.6650 \quad B=1108.4565 & 135.0231
\end{array} \\
& A=810.9533 \quad-39.6649 \quad B=1108.4562 \quad 135.0230 \\
& A=810.9532 \quad-39.6652 \quad B=1108.4561 \quad 135.0233 \\
& A=\begin{array}{lll}
810.9534 & -39.6650 & B=1108.4563 \\
\text { MAG }(Z)= & 135.0231
\end{array}
\end{aligned}
\]

TEST NO 2


Table 3. Results of the Program (Continued)

TEST NO 3
\[
\begin{aligned}
& X=.5036838 \quad \operatorname{MAG}(P)=797.0 \quad \text { PHASE }(P)=-151.7 \\
& X=.7180174 \quad \operatorname{MAG}(P)=1796.0 \quad \operatorname{PHASE}(P)=-169.5 \\
& X=.9323509 \quad \operatorname{MAG}(P)=1752.0 \quad \operatorname{PHASE}(P)=175.3 \\
& \mathrm{Y}=\quad .68194750 \quad-.06005530 \\
& \mathrm{AA}=.146865901610550976+001 \\
& \mathrm{UU}=.670323842863777435-002 \\
& Z \mathrm{Z}=.100334602128509872+001 \\
& \mathrm{KR} \text { THEOR. }=\quad 4.02108127
\end{aligned}
\]

TEST NO 4


Table 3. Results of the Program (Continued)

FREQUENCY \(=312.000\)
TEST NO 1
\begin{tabular}{|c|c|c|c|c|}
\hline x & . 0750167 & \(\operatorname{MAG}(P)=1996.0\) & PHASE (P) & 0 \\
\hline X & . 2893503 & \(\operatorname{MAG}(P)=1356.0\) & PHASE \((\mathrm{P})=-\) & -156.5 \\
\hline X & . 5036838 & MAG(P) \(=2427.0\) & PHASE \((\mathrm{P})=-\) & -175.8 \\
\hline \(\mathrm{Y}=\) & . 16967 & 312 -.00230605 & & \\
\hline \(\mathrm{AA}=\) & . 102879428 & \(580346488+001\) & & \\
\hline UU \(=\) & . 547549659 & \(706244998-005\) & & \\
\hline \(\mathrm{ZZ}=\) & . 100000273 & \(774455091+001\) & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{KR THEOR. \(=\)}} & \multirow[t]{2}{*}{6.74503952} & KR EXPER. \(=6\) & 6.53326792 \\
\hline & & & KI EXPER. \(=\) & . 01091745 \\
\hline \(\mathrm{A}=\) & 1019.5775 & 366.7428 & \(B=1496.8974\) & \(4-110.5920\) \\
\hline A & 1019.5780 & 366.7418 & \(B=1496.8967\) & \(7-110.5912\) \\
\hline & 1019.5779 & 366.7428 & \(B=1496.8976\) & \(6 \quad-110.5918\) \\
\hline \(\mathrm{A}=\) & 1019.5778 & 366.7425 & \(B=1496.8972\) & \(2-110.5917\) \\
\hline & \(\operatorname{MAG}(Z)=\) & 2.6909 & PHASE \((Z)=\) & 24.1418 \\
\hline
\end{tabular}

TEST NO 2


Table 3. Results of the Program (Continued)

TEST NO 3


TEST NO 4


Table 3. Results of the Program (Continued)

FREQUENCY \(=443.000\)
TEST NO I
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{X}=\) & . 0750167 & \(\operatorname{MAG}(P)=1611.0\) & \(\operatorname{PHASE}(\mathrm{P})=\) & . 0 \\
\hline X & . 2893503 & \(\operatorname{MAG}(P)=2345.0\) & PHASE \((\mathrm{P})=\) & -166.5 \\
\hline & . 5036838 & \(\operatorname{MAG}(\mathrm{P})=705.7\) & PHASE (P) & 16.3 \\
\hline & -. 48429 & 9536 .07283767 & & \\
\hline \(\mathrm{AA}=\) & \(=.1239847313\) & \(379972203+001\) & & \\
\hline \(\mathrm{UU}=\) & \(=.6916361313\) & 174878890-002 & & \\
\hline Z \(\mathrm{Z}=\) & \(=.1003452221\) & \(173940538+001\) & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{KR THEOR. \(=9\)}} & \multirow[t]{2}{*}{9.57709134} & KR EXPER. \(=\) & 9.67860639 \\
\hline & & & KI EXPER. \(=\) & . 38756917 \\
\hline \(\mathrm{A}=\) & 1329.5989 & 9543.1717 & \(B=986.2412\) & 112.2863 \\
\hline \(\mathrm{A}=\) & 1314.8620 & -61.5104 & \(B=1080.9186\) & -199.7945 \\
\hline \(A=\) & 976.6632 & 2289.9548 & \(B=1332.7239\) & 91.5341 \\
\hline \(\mathrm{A}=\) & \(=1207.0414\) & 4298.2123 & \(B=1133.2946\) & 1.3419 \\
\hline & \(\operatorname{MAG}(Z)=\) & 2.7638 & PHASE \((Z)=\) & 49.5566 \\
\hline
\end{tabular}

TEST NO 2


Table 3. Results of the Program (Continued)

TEST NO 3


TEST NO 4


Table 3. Results of the Program (Continued)

FREQUENCY \(=585.000\)

TEST NO 1
\begin{tabular}{|c|c|c|c|c|}
\hline & . 0750167 & \(\operatorname{MAG}(P)=1733.0\) & \(\operatorname{PHASE}(\mathrm{P})=\) & . 0 \\
\hline \(\mathrm{X}=\) & . 2893503 & \(\operatorname{MAG}(P)=3093.0\) & PHASE \((\mathrm{P})=\) & -164.2 \\
\hline & . 5036838 & \(\operatorname{MAG}(P)=3991.0\) & PHASE (P) & 9.0 \\
\hline \(\mathrm{Y}=\) & -. 910192 & 212 . 15266986 & & \\
\hline \(\mathrm{AA}=\) & . 1851757761 & \(116342661+001\) & & \\
\hline \(\mathrm{UU}=\) & . 9559050101 & 171439152-001 & & \\
\hline \(\mathrm{ZZ}=\) & . 1046704591 & \(109394562+001\) & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{KR THEOR. \(=12\)}} & \multirow[t]{2}{*}{2.64694917} & KR EXPER. \(=\) & 12.24793983 \\
\hline & & & KI EXPER. \(=\) & 1.42045841 \\
\hline A \(=\) & 2947.8187 & 7522.4212 & \(B=1180.8026\) & -111.2670 \\
\hline A \(=\) & 1577.9561 & - 360.7932 & \(B=1562.6576\) & 85.1742 \\
\hline & 653.5620 & -676.9771 & \(B=1612.1762\) & 873.0749 \\
\hline \(\mathrm{A}=\) & 1726.4456 & \(6 \quad 853.3972\) & \(B=1451.8788\) & 282.3274 \\
\hline & \(\operatorname{MAG}(Z)=\) & 1.6084 & PHASE \((Z)=\) & 99.7786 \\
\hline
\end{tabular}

TEST NO 2


Table 3. Results of the Program (Continued)

TEST NO 3


\section*{TEST NO 4}


Table 3. Results of the Program (Continued)

FREQUENCY \(=882.000\)

TEST NO 1


TEST NO 2
\[
\begin{aligned}
& X=.2893503 \quad \operatorname{MAG}(P)=1659.0 \quad \operatorname{PHASE}(P)=-160.0 \\
& X=.5036838 \quad \operatorname{MAG}(P)=1928.0 \quad \operatorname{PHASE}(P)=-12.0 \\
& X=.718074 \quad \operatorname{MAG}(P)=776.0 \quad \operatorname{PHASE}(P)=162.5 \\
& \mathrm{Y}=\quad-.56518120 \quad-.20870333 \\
& \mathrm{AA}=.136298686578819983+001 \\
& \mathrm{UU}=.622867031394315490-001 \\
& \text { ZZ = . } 103067293703649343+001 \\
& \text { KR THEOR. }=19.06770778
\end{aligned}
\]

Table 3. Results of the Program (Continued)

TEST NO 3


TEST NO 4


Table 3. Results of the Program (Continued)

FREQUENCY \(=1025.000\)

TEST NO 1


TEST NO 2


Table 3. Results of the Program (Continued)

TEST NO 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline X & . 5036838 & MAG (P) & & & & PHASE (P) & & & 170.8 \\
\hline X & . 7180174 & MAG (P) & & 1775 & & PHASE (P) & & & 7.0 \\
\hline X & . 9323509 & MAG (P) & & & & PHASE (P) & ) & & -5.5 \\
\hline & -. 09209 & 376 & & . 03419 & & & & & \\
\hline \(\mathrm{AA}=\) & . 1009650575 & 5768713 & 305 & +001 & & & & & \\
\hline UU = & . 1179304913 & 3484117 & 795 & -002 & & & & & \\
\hline \multirow[t]{3}{*}{\(\mathrm{ZZ}=\)
KR} & . 1000589478 & 8714164 & \(483+\) & +001 & & & & & \\
\hline & THEOR. \(=22\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2.1591842}} & & & R EXPER. & & & . 55619884 \\
\hline & & & & & & I EXPER. & & & . 16019076 \\
\hline \(\mathrm{A}=\) & -906.1895 & & 661. & 2070 & & \(=-694.4\) & 4929 & & 321.3182 \\
\hline A & -906.1711 & & 661. & 1882 & & \(=-694\). & 4736 & & 321.3212 \\
\hline \(\mathrm{A}=\) & -906.1912 & & 661. & . 2023 & & \(=-694\). & 4933 & & 321.3143 \\
\hline \(\mathrm{A}=\) & -906.1839 & & 661. & 1991 & & \(=-694.4\) & 4866 & & 321.3179 \\
\hline & MAG ( \(Z\) ) & 13. & . 769 & & & PHASE (Z) & = & & -17.4620 \\
\hline
\end{tabular}

TEST NO 4

dispersion generally increases with frequency. Another problem concerning accuracy was uncovered during the data reduction. In Equation (8), if \(P_{i}\) and \(P_{3}^{\prime}\) are nearly \(180^{\circ}\) out of phase and of comparable magnitude, the experimental precision on \(Y\) is poor as shown in Figure 8.

The phase and magnitude of \(Z\) are shown on Figures 9 and 10. Clearly, the precision of the measurement decreases with a frequency increase, as more wavelengths occur between transducers. It is not immediately obvious why this should be so. However some findings are the following:
1. As frequency increases more pairs of transducers 1 and 3 are \(180^{\circ}\) out of phase yielding the accuracy problem mentioned above. However, rejecting those measurements does not appear to reduce the data scatter.
2. Nonlinearities at acoustic resonance may alter the waveform and it was specifically assumed that only the fundamental component of the wave was present. However, an independent spectral analysis of the tape yielded only very small higher harmonic content.
3. The first and fifth transducers were rather near the acoustic source and end plate, respectively. Since these may not be located in a region of a sufficiently one dimensional waveform, errors may occur. A check on this assumption could not be made


Figure 8. Pressure on Complex Plane


because rejection of data from these two transducers yield only one measurement with the middle three transducers.

It should finally be noted that the precision obtained in the impedance measurement is insufficient to extract the vaporization response with sufficient accuracy. Therefore, changes in the experiment should be made to improve the accuracy.

\section*{CHAPTER VI}

\section*{SUMMARY AND CONCLUSIONS}
1. Measurement of the impedance of a vaporizing spray was shown to be not feasible due to an insufficient feedback to the acoustic wave in an impedance tube using a practical experimental setup for spray injection.
2. An experiment was designed to measure the impedance of a large vaporizing surface upon which a mean flow was impinging.
3. Measurement of the impedance of the vaporization surface assembly without air or liquid flow was accomplished using an impedance tube with fixed pressure transducers.
4. The precision of the impedance measurement was poor, especially at the higher frequencies. It is recommended that
a) The transducers be moved closer together so that no more than one wavelength is under surveillance by the transducers.
b) The two outside transducers be moved farther from the driver and endplate.
c) The tape recordings be filtered to remove components of the wave at frequencies higher than the driving frequency.

These changes should improve the precision of the measurements.

\section*{APPENDIX I}

CALIBRATION OF THE MICROPHONES
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Serial No. \\
Given correc- \\
tion factor \(K\)
\end{tabular} & \[
\begin{gathered}
1 \\
176067 \\
33.0 \mathrm{db}
\end{gathered}
\] & \begin{tabular}{l}
176152 \\
37.7 db
\end{tabular} & \[
176154
\]
\[
37.5 \mathrm{db}
\] & \[
\begin{gathered}
4 \\
176330 \\
33.7 \mathrm{db}
\end{gathered}
\] & \[
\begin{gathered}
5 \\
276991 \\
36.5 \mathrm{db}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& 120 \mathrm{db} \\
& \text { (calibrator) }
\end{aligned}
\] & 121.6 db & 124.6 db & 121.7 db & 122.4 db & 121.0 db \\
\hline 130 db (calibrator) & 131.6 & 134.5 & 131.6 & 132.5 & 130.8 \\
\hline \[
\begin{aligned}
& 140 \mathrm{db} \\
& \text { (calibrator) }
\end{aligned}
\] & 141.6 & 144.6 & 141.6 & 142.4 & 141.0 \\
\hline \[
\begin{aligned}
& 150 \mathrm{db} \\
& \text { (calibrator) }
\end{aligned}
\] & \[
151.6
\] & 154.6 & 151.7 & 152.5 & 150.9 \\
\hline Thus, mean correction to add, k & -1.6 & -4.6 & -1.6 & -2.5 & -0.9 \\
\hline Correction factor to & 31.4 db & 33.1 db & 35.9 db & 31.2 db & 35.6 db \\
\hline
\end{tabular}

\section*{APPENDIX II}

CALIBRATION TABLES OF THE FIVE CHANNELS

Voltage output (Volt) for a given pressure input ( \(d B\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & ( dB ) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 16634. & 158.4 & 1.024 & 3.07 & & & & & & \\
\hline 5260. & 148.4 & . 321 & . 961 & 3.23 & & & & & \\
\hline 1663.4 & 138.4 & . 104 & . 303 & 1.013 & 3.02 & & & & \\
\hline 526.0 & 128.4 & . 034 & . 096 & . 317 & . 946 & 3.16 & & & \\
\hline 166.34 & 118.4 & . 012 & . 031 & . 102 & . 301 & 1.006 & 3.01 & & \\
\hline 52.60 & 108.4 & . 005 & . 010 & . 032 & . 095 & . 317 & . 948 & 3.17 & \\
\hline 16634. & 158.4 & 1.003 & 3.01 & & & & & & \\
\hline 5260. & 148.4 & . 321 & . 958 & 3.23 & & & & & \\
\hline 1663.4 & 138.4 & . 102 & . 302 & 1.012 & 3.02 & & & & \\
\hline 526.0 & 128.4 & . 035 & . 097 & . 321 & . 956 & 3.20 & & & 312 \\
\hline 166.34 & 188.4 & . 013 & . 031 & . 101 & . 302 & 1.010 & 3.02 & & \\
\hline 52.60 & 108.4 & . 004 & . 010 & . 032 & . 096 & . 320 & . 956 & 3.21 & \\
\hline
\end{tabular}

Frequency
(cps)

186

312

\section*{CALIBRATION OF CHANNEL No. 1 (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & ( dB ) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 16634. & 158.4 & 1.019 & 3.06 & & & & & & \\
\hline 5260. & 148.4 & . 322 & . 962 & 3.24 & & & & & \\
\hline 1663.4 & 138.4 & . 104 & . 305 & 1.019 & 3.04 & & & & \\
\hline 526.0 & 128.4 & . 034 & . 097 & . 323 & . 959 & 3.22 & & & \\
\hline 166.34 & 118.4 & . 012 & . 031 & . 102 & . 302 & 1.009 & 3.02 & & \\
\hline 52.60 & 108.4 & . 004 & . 010 & . 032 & . 096 & . 320 & . 956 & 3.20 & \\
\hline 16634. & 158.4 & 1.025 & 3.07 & & & & & & \\
\hline 5260 . & 148.4 & . 323 & . 965 & 3.25 & & & & & \\
\hline 1663.4 & 138.4 & . 105 & . 306 & 1.024 & 3.05 & & & & \\
\hline 526.0 & 128.4 & . 032 & . 096 & . 323 & . 960 & 3.23 & & & \\
\hline 166.34 & 118.4 & . 012 & . 031 & . 102 & . 303 & 1.017 & 3.04 & & \\
\hline 52.60 & 108.4 & . 007 & . 010 & . 032 & . 096 & . 321 & . 960 & 3.21 & \\
\hline
\end{tabular}
```

CALIBRATION OF CHANNEL No. 1 (Continued)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & (dB) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 16634. & 158.4 & 1.017 & 3.06 & & & & & & \\
\hline 5260 . & 148.4 & . 324 & . 972 & 3.27 & & & & & \\
\hline 1663.4 & 138.4 & . 103 & . 307 & 1.028 & 3.04 & & & & \\
\hline 526.0 & 128.4 & . 033 & . 096 & . 322 & . 950 & 3.22 & & & \\
\hline 166.34 & 118.4 & . 011 & . 030 & . 101 & . 297 & 1.005 & 3.01 & & \\
\hline 52.60 & 108.4 & . 003 & . 009 & . 031 & . 094 & . 318 & . 952 & 3.19 & \\
\hline 16634. & 158.4 & 1.014 & 3.05 & & & & & & \\
\hline 5260. & 148.4 & . 323 & . 968 & 3.25 & & & & & \\
\hline 1663.4 & 138.4 & . 102 & 305 & 1.025 & 3.02 & & & & \\
\hline 526.0 & 128.4 & . 034 & . 097 & . 325 & . 953 & 3.24 & & & 1025 \\
\hline 166.34 & 118.4 & . 010 & . 030 & . 101 & . 299 & 1.015 & 3.04 & & \\
\hline 52.60 & 108.4 & . 005 & . 011 & . 032 & . 095 & . 322 & . 964 & 3.23 & \\
\hline
\end{tabular}

Voltage output (Vo1t) for a given pressure input (dB).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & (dB) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 11776. & 155.4 & . 893 & 2.68 & & & & & & \\
\hline 3724. & 145.4 & . 282 & . 846 & 2.83 & & & & & \\
\hline 1177.6 & 135.4 & . 088 & 2.63 & . 881 & 2.63 & & & & \\
\hline 372.4 & 125.4 & . 027 & . 082 & . 277 & . 830 & 2.77 & & & \\
\hline 117.76 & 115.4 & . 008 & . 025 & . 087 & . 265 & . 885 & 2.65 & & \\
\hline 37.24 & 105.4 & . 003 & . 007 & . 027 & . 082 & . 280 & . 83 & 2.75 & \\
\hline 11776. & 155.4 & . 884 & 2.65 & & & & & & \\
\hline 3724. & 145.4 & . 281 & . 842 & 2.82 & & & & & \\
\hline 1177.6 & 135.4 & . 089 & . 265 & . 887 & 2.65 & & & & \\
\hline 372.4 & 125.4 & . 029 & . 084 & . 280 & . 838 & 2.79 & & & \\
\hline 117.76 & 115.4 & . 009 & . 026 & . 088 & . 265 & . 887 & 2.66 & & \\
\hline 37.24 & 105.4 & . 003 & . 008 & . 027 & . 083 & . 279 & . 84 & 2.78 & \\
\hline
\end{tabular}

CALIBRATION OF CHANNEL No. 2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & (dB) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 11776. & 155.4 & . 900 & 2.70 & & & & & & \\
\hline 3724. & 145.4 & . 281 & . 842 & 2.82 & & & & & \\
\hline 1177.6 & 135.4 & . 089 & . 267 & . 897 & 2.67 & & & & \\
\hline 372.4 & 125.4 & . 028 & . 084 & . 281 & . 839 & 2.80 & & & 443 \\
\hline 117.76 & 115.4 & . 009 & . 026 & . 088 & . 263 & . 880 & 2.64 & & \\
\hline 37.24 & 105.4 & . 003 & . 009 & . 028 & . 083 & . 279 & . 838 & 2.78 & \\
\hline 11776. & 155.4 & . 894 & 2.68 & & & & & & \\
\hline 3724. & 145.4 & . 284 & . 849 & 2.84 & & & & & \\
\hline 1177.6 & 135.4 & . 090 & . 268 & . 896 & 2.66 & & & & \\
\hline 372.4 & 125.4 & . 027 & . 084 & . 283 & . 839 & 2.81 & & & 585 \\
\hline 117.76 & 115.4 & . 010 & . 026 & . 089 & . 264 & . 880 & 2.64 & & \\
\hline 37.24 & 105.4 & . 006 & . 008 & . 027 & . 082 & . 276 & . 830 & 2.75 & \\
\hline
\end{tabular}

CALIBRATION OF CHANNEL No. 2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & ( dB ) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 11776. & 155.4 & . 893 & 2.68 & & & & & & \\
\hline 3724. & 145.4 & . 282 & . 845 & 2.83 & & & & & \\
\hline 1177.6 & 135.4 & . 089 & . 267 & . 894 & 2.64 & & & & \\
\hline 372.4 & 125.4 & . 028 & . 084 & . 282 & . 834 & 2.81 & & & 882 \\
\hline 117.76 & 115.4 & . 011 & . 027 & . 090 & . 264 & . 894 & 2.68 & & \\
\hline 37.24 & 105.4 & . 007 & . 010 & . 028 & . 082 & . 278 & . 833 & 2.76 & \\
\hline 11776. & 155.4 & . 900 & 2.70 & & & & & & \\
\hline 3724. & 145.4 & . 283 & . 851 & 2.85 & & & & & \\
\hline 1177.6 & 135.4 & . 088 & . 264 & . 884 & 2.60 & & & & \\
\hline 372.4 & 125.4 & . 029 & . 085 & . 283 & . 834 & 2.82 & & & 1025 \\
\hline 117.76 & 115.4 & . 011 & . 027 & . 090 & . 264 & . 894 & 2.68 & & \\
\hline 37.24 & 105.4 & . 006 & . 010 & . 028 & . 082 & . 277 & . 832 & 2.76 & \\
\hline
\end{tabular}

Voltage output (Volt) for a given Pressure input (dB).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & (dB) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 16634. & 158.4 & . 902 & 2.71 & & & & & & \\
\hline 5260. & 148.4 & . 283 & . 852 & 2.84 & & & & & \\
\hline 1663.4 & 138.4 & . 088 & . 266 & . 890 & 2.67 & & & & \\
\hline 526.0 & 128.4 & . 030 & . 084 & . 279 & . 835 & 2.80 & & & \\
\hline 166.34 & 118.4 & . 010 & . 027 & . 089 & . 267 & . 890 & 2.66 & & \\
\hline 52.60 & 108.4 & . 003 & . 008 & . 027 & . 084 & . 277 & . 840 & 2.83 & \\
\hline 16634. & 158.4 & . 888 & 2.68 & & & & & & \\
\hline 5260 . & 148.4 & . 283 & . 849 & 2.84 & & & & & \\
\hline 1663.4 & 138.4 & . 091 & . 268 & . 893 & 2.68 & & & & \\
\hline 526.0 & 128.4 & . 028 & . 084 & . 281 & . 841 & 2.82 & & & \\
\hline 166.34 & 118.4 & . 009 & . 026 & . 089 & . 265 & . 890 & 2.67 & & \\
\hline 52.60 & 108.4 & . 002 & . 008 & . 027 & . 083 & . 280 & . 846 & 2.81 & \\
\hline
\end{tabular}

CALIBRATION OF CHANNEL No. 3 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & (dB) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 16634. & 158.4 & . 904 & 2.72 & & & & & & \\
\hline 5260. & 148.4 & . 286 & . 855 & 2.86 & & & & & \\
\hline 1663.4 & 138.4 & . 089 & . 267 & . 894 & 2.68 & & & & \\
\hline 526.0 & 128.4 & . 030 & . 085 & . 283 & . 845 & 2.84 & & & \\
\hline 166.34 & 118.4 & . 009 & . 026 & . 088 & . 265 & . 885 & 2.65 & & \\
\hline 52.60 & 108.4 & . 002 & . 008 & . 027 & . 083 & . 280 & . 846 & 2.82 & \\
\hline 16634. & 158.4 & . 899 & 2.72 & & & & & & \\
\hline 5260. & 148.4 & . 284 & . 851 & 2.86 & & & & & \\
\hline 1663.4 & 138.4 & . 091 & . 270 & . 899 & 2.70 & & & & \\
\hline 526.0 & 128.4 & . 030 & . 086 & . 283 & . 844 & 2.84 & & & \\
\hline 166.34 & 118.4 & . 009 & . 026 & . 089 & . 265 & . 893 & 2.67 & & \\
\hline 52.60 & 108.4 & . 005 & . 009 & . 028 & . 083 & . 283 & . 845 & 2.83 & \\
\hline
\end{tabular}

CALIBRATION OF CHANNEL No. 3 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{b} a \mathrm{r}\) ) & (dB) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 16634. & 158.4 & . 892 & 2.68 & & & & & & \\
\hline 5260. & 148.4 & . 285 & . 857 & 2.86 & & & & & \\
\hline 1663.4 & 138.4 & . 089 & . 269 & . 899 & 2.66 & & & & \\
\hline 526.0 & 128.4 & . 027 & . 084 & . 282 & . 836 & 2.83 & & & \\
\hline 166.34 & 118.4 & . 008 & . 026 & . 089 & . 264 & . 896 & 2.68 & & \\
\hline 52.60 & 108.4 & . 003 & . 008 & . 027 & . 082 & . 280 & . 843 & 2.83 & \\
\hline 16634. & 158.4 & . 900 & 2.72 & & & & & & \\
\hline 5260. & 148.4 & . 288 & . 863 & 2.88 & & & & & \\
\hline 1663.4 & 138.4 & . 091 & . 269 & . 897 & 2.65 & & & & \\
\hline 526.0 & 128.4 & . 030 & . 086 & . 283 & . 835 & 2.85 & & & 1025 \\
\hline 166.34 & 118.4 & . 011 & . 027 & . 090 & . 264 & . 897 & 2.69 & & \\
\hline 52.60 & 108.4 & . 004 & . 009 & . 028 & . 083 & . 280 & . 845 & 2.82 & \\
\hline
\end{tabular}

Voltage output (Volt) for a given pressure input (dB).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & (dB) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 14998. & 157.5 & . 903 & 2.70 & & & & & & \\
\hline 4743. & 147.5 & . 284 & . 852 & 2.87 & & & & & \\
\hline 1499.8 & 137.5 & . 088 & . 265 & . 894 & 2.68 & & & & \\
\hline 474.3 & 127.5 & . 027 & . 082 & . 279 & . 840 & 2.81 & & & \\
\hline 149.98 & 117.5 & . 008 & . 026 & . 088 & . 267 & . 890 & 2.67 & & \\
\hline 47.43 & 107.5 & . 005 & . 009 & . 028 & . 084 & . 280 & . 841 & 2.81 & \\
\hline 14998. & 157.5 & . 893 & 2.68 & & & & . & & \\
\hline 4743. & 147.5 & . 280 & . 847 & 2.86 & & & & & \\
\hline 1499.8 & 137.5 & . 091 & . 268 & . 901 & 2.70 & & & & \\
\hline 474.3 & 127.5 & . 029 & . 085 & . 284 & . 851 & 2.85 & & & \\
\hline 149.98 & 117.5 & . 011 & . 027 & . 090 & . 268 & . 899 & 2.69 & & \\
\hline 47.43 & 107.5 & . 002 & . 008 & . 028 & . 085 & . 286 & . 848 & 2.84 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & ( dB ) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 14998. & 157.5 & . 913 & 2.74 & & & & & & \\
\hline 4743. & 147.5 & . 284 & . 850 & 2.86 & & & & & \\
\hline 1499.8 & 137.5 & . 089 & . 267 & . 904 & 2.71 & & & & \\
\hline 474.3 & 127.5 & . 028 & . 084 & . 284 & . 850 & 2.84 & & & \\
\hline 149.98 & 117.5 & . 009 & . 026 & . 089 & . 267 & . 900 & 2.69 & & \\
\hline 47.43 & 107.5 & . 002 & . 008 & . 028 & . 084 & . 287 & . 853 & 2.86 & \\
\hline 14998. & 157.5 & . 895 & 2.69 & & & & & & \\
\hline 4743. & 147.5 & . 286 & . 855 & 2.90 & & & & & \\
\hline 1499.8 & 137.5 & . 089 & . 269 & . 905 & 2.71 & & & & \\
\hline 474.3 & 127.5 & . 028 & . 084 & . 286 & . 853 & 2.87 & & & 585 \\
\hline 149.98 & 117.5 & . 008 & . 026 & . 089 & . 267 & . 900 & 2.69 & & \\
\hline 47.43 & 107.5 & . 005 & . 009 & . 028 & . 084 & . 283 & . 849 & 2.84 & \\
\hline
\end{tabular}

CALIBRATION OF CHANNEL No. 4 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & ( dB ) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 14998. & 157.5 & . 899 & 2.70 & & & & & & \\
\hline 4743. & 147.5 & . 284 & . 850 & 2.86 & & & & & \\
\hline 1499.8 & 137.5 & . 089 & . 269 & . 904 & 2.71 & & & & \\
\hline 474.3 & 127.5 & . 028 & . 084 & . 285 & . 844 & 2.86 & & & \\
\hline 149.98 & 117.5 & . 011 & . 027 & . 090 & . 265 & . 900 & 2.69 & & \\
\hline 47.43 & 107.5 & . 002 & . 008 & . 028 & . 083 & .283 & . 848 & 2.83 & \\
\hline 14998. & 157.5 & . 900 & 2.70 & & & & & & \\
\hline 4743. & 147.5 & . 286 & . 858 & 2.88 & & & & & \\
\hline 1499.8 & 137.5 & . 091 & . 270 & . 904 & 2.67 & & & & \\
\hline 474.3 & 127.5 & . 028 & . 084 & . 285 & . 840 & 2.85 & & & \\
\hline 149.98 & 117.5 & . 010 & . 027 & . 090 & . 264 & . 899 & 2.69 & & \\
\hline 47.43 & 107.5 & . 003 & . 008 & . 028 & . 083 & . 284 & . 849 & 2.83 & \\
\hline
\end{tabular}

Voltage output (Volt) for a given
pressure input (dB).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & \multirow[t]{2}{*}{\begin{tabular}{l}
Frequency \\
(cps)
\end{tabular}} \\
\hline ( \(\mu \mathrm{bar}\) ) & (dB) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\hline 18032. & 159.1 & . 918 & 2.75 & & & & & & \\
\hline 5702. & 149.1 & . 289 & . 865 & 2.92 & & & & & \\
\hline 1803.2 & 139.1 & . 089 & . 269 & . 910 & 2.72 & & & & \\
\hline 570.2 & 129.1 & . 030 & . 085 & . 286 & . 856 & 2.85 & & & \\
\hline 180.32 & 119.1 & . 008 & . 026 & . 090 & . 272 & . 907 & 2.72 & & \\
\hline 57.02 & 109.1 & . 003 & . 008 & . 028 & . 085 & . 283 & . 850 & 2.84 & \\
\hline 18032. & 159.1 & . 899 & 2.70 & & & & & & \\
\hline 5702. & 149.1 & . 290 & . 866 & 2.92 & & & & & \\
\hline 1803.2 & 139.1 & . 092 & . 272 & . 915 & 2.73 & & & & \\
\hline 570.2 & 129.1 & . 030 & . 086 & . 288 & . 860 & 2.86 & & & 312 \\
\hline 180.32 & 119.1 & . 011 & . 028 & . 092 & . 274 & . 913 & 2.73 & & \\
\hline 57.02 & 109.1 & . 005 & . 009 & . 028 & . 085 & . 285 & . 855 & 2.85 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & ( dB ) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 18032. & 159.1 & . 924 & 2.77 & & & & & & \\
\hline 5702. & 149.1 & . 289 & . 868 & 2.92 & & & & & \\
\hline 1803.2 & 139.1 & . 091 & . 273 & . 919 & 2.74 & & & & \\
\hline 570.2 & 129.1 & . 028 & . 086 & . 291 & . 868 & 2.90 & & & \\
\hline 180.32 & 119.1 & . 011 & . 028 & . 091 & . 271 & . 905 & 2.71 & & \\
\hline 57.02 & 109.1 & . 005 & . 009 & . 029 & . 086 & . 286 & . 860 & 2.86 & \\
\hline 18032. & 159.1 & . 916 & 2.75 & & & & & & \\
\hline 5702. & 149.1 & . 289 & . 870 & 2.92 & & & & & \\
\hline 1803.2 & 139.1 & . 091 & . 274 & . 925 & 2.75 & & & & \\
\hline 570.2 & 129.1 & . 028 & . 086 & . 291 & . 868 & 2.90 & & & 585 \\
\hline 180.32 & 119.1 & . 011 & . 027 & . 091 & . 271 & . 908 & 2.71 & & \\
\hline 57.02 & 109.1 & . 005 & . 009 & . 028 & . 085 & . 285 & . 855 & 2.85 & \\
\hline
\end{tabular}

CALIBRATION OF CHANNEL No. 5 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p & p & \multicolumn{7}{|c|}{Attenuation} & Frequency \\
\hline ( \(\mu \mathrm{bar}\) ) & (dB) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & (cps) \\
\hline 18032. & 159.1 & . 903 & 2.72 & & & & & & \\
\hline 5702. & 149.1 & . 291 & . 875 & 2.95 & & & & & \\
\hline 1803.2 & 139.1 & . 090 & . 273 & . 920 & 2.71 & & & & \\
\hline 570.2 & 129.1 & . 029 & . 087 & . 294 & . 867 & 2.92 & & & \\
\hline 180.32 & 119.1 & . 009 & . 027 & . 093 & . 277 & . 931 & 2.79 & & \\
\hline 57.02 & 109.1 & . 002 & . 008 & . 028 & . 085 & . 290 & . 870 & 2.90 & \\
\hline 18032. & 159.1 & . 900 & 2.70 & & & & & & \\
\hline 5702. & 149.1 & . 288 & . 864 & 2.91 & & & & & \\
\hline 1803.2 & 139.1 & . 090 & . 272 & . 915 & 2.69 & & & & \\
\hline 570.2 & 129.1 & . 028 & . 084 & . 285 & . 839 & 2.83 & & & 1025 \\
\hline 180.32 & 119.1 & . 009 & . 027 & . 092 & . 271 & . 922 & 2.75 & & \\
\hline 57.02 & 109.1 & . 002 & . 008 & . 028 & . 085 & . 291 & . 872 & 2.90 & \\
\hline
\end{tabular}

\section*{APPENDIX III}

LISTING AND USE OF THE COMPUTER PROGRAM

The data required consist of \(2+2 n\) cards where \(n\) is the number of frequencies for which experiments were run.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{Card \#1} & F15.8 & Length of the impedance tube (ft) \\
\hline & I 2 & Number of frequencies, \(n\) \\
\hline & F10. 7 & Dimensionless value of X at which \\
\hline & & the impedance measurement is \\
\hline & & computed (usually \(\mathrm{X}=1.0\) ) \\
\hline \multirow[t]{2}{*}{Card \#2} & 5(F10.7) & Dimensionless X locations of the \\
\hline & & five transducers \\
\hline Card\#3 & F10.3 & Frequency (cps) \\
\hline \multirow[t]{4}{*}{Card \#4} & 5(F10.3, F6.1) & Five pairs of values of the pressure \\
\hline & & amplitude (any units) followed by \\
\hline & & the phase (degrees) for the five \\
\hline & & transducers \\
\hline
\end{tabular}

Repeat cards \#3 and 非 4 n times
The program gives four results for each frequency.
 for 2, 3 and 4, Test \#3 is for 3,4 and 5, and Test \(\#^{4}\) is for channels 1,3 and 5. The value \(K R\) THEOR \(=\frac{\omega L}{c}\) where \(c=1130 \mathrm{ft} / \mathrm{sec}\). KR EXPER and KI EXPER are the experimentally determined values of \(K\). The first three pairs
of values for \(A\) and \(B\) are determined from \(p_{j}\) measurements with \(j=2,3, j=3,1\), and \(j=1,2\), respectively. The fourth pair is the average which is used in these impedance calculation.

The following is a program listing:
```

 COMPLEX P(3)
 DIMENSION X(5),AP(2,3),AX(5),AAP (2,5)
 COMPLEX CI,A,B,K,Y,DEN, Z,A1,A2,A3, B1, B2, B3
 REAL KR,KI
 DOUBLE PRECISION AA,UU,ZZ
 PI=3.141592
 CI=CMPLX (0, 1)
 READ(5,100),RL,N,XX
 100 FORMAT(F15.8,I 2,F10.7)
 READ(5,110)(AX(I),I=1,5)
 110 FORMAT(5(F10.7))
C=1130.
GAM=1.405
DO 10 II=1,N
READ(5,101)F
101 FORMAT(F10.3)
WRITE (6,1110) F
1110 FORMAT(1H1,11HFREQUENCY =,F10.3/////////)
READ(5,200)((AAP (I, J), I=1, 2), J=1,5)
200 FORMAT(5(F10.3,F6.1))
RKTH=2.*PI*F*RL/C
DO }9\textrm{JJ}=1,
DO 1 J=1,3
DO 16 I=1,2
IF(JJ-2)13,14,15
13 AP (I,J)=AAP(I,J)
X(J) =AX(J)
GO TO 16
14 AP (I, J) =AAP (I, J+1)
X(J)=AX(J+1)
GO TO 16
15 IF (JJ-4)17, 18, 18
17 AP(I,J)=AAP(I,J+2)
X(J)=AX(J+2)
GO TO 16
18 AP (I,J) =AAP(I, 2*J-1)
X(J)=AX(2*J-1)
16 CONTINUE
1 P(J)=AP(1,J)*CEXP(CI*AP(2,J)*PI/180.)
Y=(P(1)+P(3))/2./P(2)
AA=1.+CABS (Y)*CABS (Y)
YR=REAL (Y)

```
```

 YI=AIMAG(Y)
 UU=YI*YI*(.5+(1.+YR*YR+YI*YI*.5)/(1.-YR*YR+SQRT(AA*AA - 4
 *YR*YR)))
 ZZ=SQRT(1.+UU)
 KR=ACOS (REAL(Y)/ZZ)/(X(2)-X(1))
 KI=ALOG(SQRT(1. +UU)+SQRT(UU))/(X(2)-X(1))
 RKT=RKTH* (X (2) -X (1))/PI
 DO 2 NK=1,100
 RNK1=RKT-2.*FLOAT(NK) +1.
 RNK2=RKT-2.*FLOAT(NK)
 IF (RNK1) 3,3,4
 3 KR-KR+2.*FLOAT (NK-1)*PI/(X (2) -X (1))
GO TO 6
4 IF(RNK2) 5,5,2
5 KR=-KR+2.*FLOAT(NK)*PI/(X(2)-X(1))
GO TO 6
2 CONTINUE
6 \mp@code { C O N T I N U E }
WRITE (6,1000) JJ
1000 FORMAT(1H , 7HTEST NO,I2/)
WRITE (6,1500)(X(J),(AP(I,J),I=1,2),J=1,3)
1500 FORMAT(1H , 10X,3HX =,F10.7,4X,8HMAG(P) =,F8.1, 3X,10H
PHASE(P) =,F8.11)
TEST=ABS(X(1)+X(3)-2.*X(2))-.0001
IF(TEST) 11, 12,12
12 WRITE (6,1200)
1200 FORMAT(1H , 37HX(3)-X(2) = X(2)-X(1) IS NOT VERIFIED)
11 CONTINUE
WRITE (6,1111)Y,AA,UU,ZZ
1111 FORMAT(1H ,10X,3HY =,2(F15.8)/1H ,10X,3HAA=,D25.18/1H
, 10X, 3HUU=,D125.18/1H , 10X, 3HZZ
=,D25.18)
WRITE(6,2000)RKTH,KR
2000 FORMAT(1H , 10X,10HKR THEOR. =,F15.8,10X,10HKR EXPER.=
,F15.8)
WRITE(6, 3000)KI
3000 FORMAT(1H ,45X,10HKI EXPER. =,F15.8)
K=CMPLX(KR,KI)
DEN=2.*CI*CSIN(K*(X(2)-X(3)))
AI - (P (2)*CEXP(-CI*K*X(3))-P(3)*CEXP(-CI*K*X(2)))/DEN
BI=(P(3)*CEXP(CI*K*X(2))-P(2)*CEXP(CI*K*X(3)))/DEN
DEN=2.*CI*CSIN(K*(X(3)-X(1)))
A2 = (P(3)*CEXP(-CI*K*X(1))-P(1)*CEXP(-CI*K*X(3)))/DEN
B 2 = (P(1)*CEXP (CI*K*X(3))-P(3)*CEXP(CI*K*X(1)))/DEN
DEN=2.*CI*CSIN(K*(X(1)=X (2)))
A3=(P(1)*CEXP(-CI*K*X(2))-P(2)*CEXP(-CI*K*X(1)))/DEN
B3=(P(2)*CEXP(CI*K*X(1))-P(1)*CEXP(CI*K*X(2)))/DEN
A=(A1+A2+A3)/3.
B=(B1+B2+B3)/3.
Z=-GAM*KR/K*(A*CEXP(2.*CI*K*XX)+B)/A*CEXP(2.*CI*K*XX) -B)
ARGZ=CABS (Z)
ZR=REAL (Z)

```
\(Z I=A I M A G(Z)\)
\(\mathrm{PHZ}=\mathrm{ATAN} 2(\mathrm{ZR}, \mathrm{ZI}) * 180 . / P I\)
\(\operatorname{WRITE}(6,3500) \mathrm{A} 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2, \mathrm{~A} 3, \mathrm{~B} 3\)
3500 FORMAT (3(1H, 10X,3HA \(=, 2(\mathrm{~F} 13.4), 6 \mathrm{X}, 3 \mathrm{HB}=, 2(\mathrm{~F} 13.4) /))\)
WRITE \((6,3600) \mathrm{A}, \mathrm{B}\)
3600 FORMAT ( \(1 \mathrm{H}, 10 \mathrm{X}, 3 \mathrm{HA}=, 2(\mathrm{~F} 13.4), 6 \mathrm{X}, 3 \mathrm{HB}=, 2(\mathrm{~F} 13.4)\) )
WRITE (6, 4000) ARGZ, PHZ
4000 FORMAT \((1 \mathrm{H}, 13 \mathrm{X}, 8 \mathrm{HMAG}(\mathrm{Z})=, \mathrm{F} 15.4,10 \mathrm{X}, 10 \mathrm{HPHASE}(\mathrm{Z})=\) ,F15.4///////)
9 CONTINUE
10 CONTINUE
STOP
END

END OF COMPILATION:
NO DIAGNOSTICS.

\section*{APPENDIX IV}

\section*{ADDITIONAL FIGURES}


SECTION B-B. MATERIAL ALUMINUM

Figure 2b. Enlargement


\section*{BIBLIOGRAPHY}
1. Strahle, W. C., "A theoretical study of unsteady droplet burning: Transients and periodic solutions," Princeton University Aeronautical Engineering Report No. 671
(December 1963).
2. Strahle, W. C., "Periodic solutions to a convective droplet burning problem: The Stagnation Point," Tenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh (1965), pp. 1315-1325.
3. Strahle, W. C., "Unsteady reacting boundary layer on a vaporizing flat plate," A.I.A.A. J. 3, No. 6, 1196 (June 1965).
4. Williams, F. A., "Response of a burning fuel plate to sound vibration," A.I.A.A. J. 3, No. 11, 2112
(November 1965).
5. Bell, William A., "Theoretical considerations of impedance tubes for three dimensional oscillations," Graduate special problem, Georgia Tech., June 1970.
6. Dabora, E. K., "Production of monodisperse spray," The review of scientific instruments, vol. 38, No. 4, 502-506, April 1967.
7. Morse, P. M. and Ingard, Theoretical Acoustics, Mc.Graw Hi11 Co., New York, Toronto, London,(1968), pp.243, 468-471, 698.
8. Williams, F. A., Combustion Theory, Addison-Wesley publishing Co., Inc., Reading (Massachussetts), Palo-Alto, London, (1965), pp. 394, 54.
9. American Institute of Physics Handbook, Mc.Graw Hill Co., New York, Toronto, London, (1957), pp. 2-201 to 2-212.
10. Anonymous, "1,2-Dichlotetrafluoroethane," The Matheson Company.
11. Strahle, W. C., "Droplet Evaporation with Finite Vaporization kinetics and liquid heat transfer." (To be published)```

