
?. 2! (7: 26 OCA PAD AMENDMENT - PROJECT HEADER INFORMATION 12/13/95

Active
Project #: C-36-X17 Cost share #: Rev #: 6

DCA file #: Center # : 10/24-6-R7917-0AO Center shr #:

Contract#: N00014-93-1-0783
Prime #:

Subprojects ? : N
Main project #:

Project unit: COMPUTING
Project director(s):

SCHWAN K COMPUTING

Sponsor/division names: NAVY
Sponsor/division codes: 103

Mod #: A00002
Work type. : RES
Document GRANT
Contract entity: GTRC

CFDA: 12.300
PE #: NA

Unit code: 02.010.300

(404)894-2589

I OFC OF NAVAL RESEARCH
I 025

Award period : 930701 to 960615 (performance) 960615 (reports)

Sponsor amount
Contract value
Funded

Cost sharing amount

New this change
o. no
0.00

Does subcontracting plan apply ?: N

Total to date
68,366.00
68,366.00

0.00

Title: DPARTS - A DYNAMIC PARALLEL ADAPTIVE MULTIPROCESSOR REAL-TIME SCHEDULER

PROJECT ADMINISTRATION DATA

OCA contact: Jacquelyn L. Bendall

Sponsor technical contact

ANDRE M. VAN TILBORG, CODE 3330
(703)696-4312

OFFICE OF NAVAL RESEARCH
BALLSTON TOWER ONE
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5660

Security class CU,C,S,TS) : U
Defense priority rating
Equipment title vests with:

Administrative comments -

NA
Sponsor

894-4820

Sponsor issuing office

SHARON MARSHALL, CODE 2520 (1520) SM
(703)696-2607

OFFICE OF CHIEF OF NAVAL RESEARCH
BALLSTON TOWER ONE
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5660

ONR resident rep. is ACO (Y/N): Y
supplemental sheet

GIT X

ISSUED TO EXTEND THE PERIOD OF PERFORMANCE TO JUNE 15, 1996.

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

L{

Closeout Notice Date 10/14/96

Project No. C-36-Xl7 __________________ __ Center No. 10/24-6-R7917-0AO_

Project Director SCHWAN k __________________ _____ School/Lab COMPUTING ________ _____

Sponsor NAVY/OFC OF NAVAL RESEARCH __ _____

Contract/Grant No. N00014-93-l-0783 ___________________________ ____ Contract Entity GTRC

Prime Contract No.

Title DPARTS - A DYNAMIC PARALLEL ADAPTIVE MULTIPROCESSOR REAL-TIME SCHEDULER ____

Effective Completion Date 960615 (Performance) 960615 <Reports)

Closeout Actions Required:

Final Invoice or Copy of Final Invoice
Final Report of Inventions and/or Subcontracts
Government Property Inventory & Related Certificate
Classified Material Certificate
Release and Assignment
Other

YIN

y
y
y

N
N
N

Date
Submitted

Comments ___ _

Subproject Under Main Project No.

Continues Project No.

Distribution Required:

Project Director
Administrative Network Representative
GTRI Accounting/Grants and Contracts
Procurement/Supply Services
Research Property Hanagment
Research Security Services
Reports Coordinator COCA)
GTRC
Project File
Other

NOTE: Final Patent Questionnaire sent to PDPI.

y
y
y
y
y

N
y
y

v
N
N

- 6
I

DPARTS -A Dynamic Parallel Adaptive Multiprocessor Real-Time
Scheduler

PJROGRESS REPORT 1

Byron Jeff
Karsten Schwan

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

1

1 Research Agenda

Motivation. The area of real-time scheduling has received increased attention during the last
few years, in part due to the creation many recent multiprocessor and distributed applications ·
demanding real-time performance. Such applications include robotics [5], multi-media [3] and
music [2]. These applications are characterized by their need for real time response, heavy
computational load, and unpredictable events that must be processed in a timely manner.

The specific application domain addressed by this research concerns multi-media systems.
Specifically, it concerns the real-time synthesis of voice and music, where partially ordered
sequences of computations and communications must be processed under given time con
straints. We are investigating the dynamic (on-line) scheduling of action sequences triggered
by real-time events, where multiple action sequences and different independent segments of a
single action may execute in parallel. A real-time parallel digital audio synthesis system serves
as a concrete example of such an application. A sample real-time event in this application is
a note played on a Musical Instrument Device Interface (MIDI) keyboard.

The proposed DPARTS multiprocessor scheduler is now partially implemented. It will
perform scheduling in an event driven manner, in reaction to sequences of incoming events.
Furthermore, DPARTS will have the ability to adapt its scheduling during execution. Such
adaptations will be performed in accordance with user specifications that address the actions
to be taken in response to exceptions like deadline failures and sudden overloads. The intent
is to have DPARTS adapt its schedule to maximize some global, time-dependent measure of
schedule quality, even under high system loads.

Multi-media and Music A.pplications. Some recent research has addressed the
scheduling and real-time processing of multi-media applications [3]. However, such research
has addressed relatively static applications like the transfer of successive image frames across
a network [1] or the scheduling of a music application with some fixed number of tasks
[2]. In contrast, we are addressing multi-media applications that are highly dynamic, which
means that applications must react to unexpected or unanticipated external events. Such
reactions may result in the on-line creation of additional tasks that must be dynamically
scheduled in reference to existing task sets. Furthermore, for dynamic music programs that
react to unanticipated human inputs, timing constraints have to be stated differently from
other application domains. Namely, it is not natural to state timing constraints in terms
of start times, execution times, and deadlines. Instead, novel semantics have to be defined
for 'deadlines', such as semantics that capture notions of lateness based on the perception of
different musical instruments by the listener. For example, a deadline for an instrument like
a drum approximates the well-known notion of hard deadlines [4] because drum beats must
be very precise. On the other hand, for musical tones that are long and drawn out, such as
those generated by string instrum(~nts, 'softer' deadline semantics are appropriate. We are
investigating and specifying such novel timing semantics and using them in the development
of efficient on-line scheduling algorithms and schedulers supporting this class of real-time
applications.

1

Distributed M ultiprocessoJr Scheduling. The scheduler being developed in this re
search is a specific example of an operating system service to be offered in future parallel
and distributed systems. Part of this research will address the issues of distributed service
design and implementation currently being addressed by other OS researchers. Specifically,
we are building on the research described in [6] to construct the DPARTS scheduler to be
internally concurrent so it can be easily scaled to different size parallel machines and to vary
ing application demands. This implies that scheduling is performed by multiple concurrent
and cooperating tasks.

DPARTS Scheduling Details. Some details about the DPARTS scheduler further
demonstrate its novelty. As stated above, each external event may trigger a sequence of pro
cesses that jointly handle the event. These processes must execute in an application-specific
order. DPARTS must have information about (1) such orderings, (2) the computation time
of the involved processes, and (3) about possible alternate or optional processes. We are
developing a directed graph representation to contain such information, where the compu
tation times and any other information DPARTS needs to know about processes is stored
in the graph's nodes, and the directed edges represent the processes' order of computation.
Processes must be scheduled concurrently and to meet real-time constraints, such that the
graph's topological order is maintained. This implies that multiple parts of the schedule
graph may be active at any point during the applications execution.

The research questions addressed in this work focus on the development of fast heuristic
algorithms, on experimentation w}.th those algorithms, and on the use of such algorithms
within the music application described above. We are not developing optimal algorithms
since all of the scheduling and assignment problems we are addressing have been shown
NP-hard. Some specific questions we are addressing include:

• When should DPARTS be invoked? What is the required frequency of DPARTS invo
cation with respect to the latency of scheduling decisions and the overheads incurred
by scheduling?

• Should DPARTS have the option of rescheduling existing tasks if such rescheduling can
result in the successful scheduling of otherwise unschedulable process sequences?

• Deadline semantics. In our sample music application, precise deadlines are usually not
necessary in order to produce acceptable results. As such we are evaluating what type
of sematics are appropriate for addressing the application we are scheduling.

2 DPARTS Status

The design of the scheduler is nearly completed, with implementation currently in progress.
Through initial testing we have determined that the single largest degrader of performance is
the Unix signal call. The elapsed time of catching and responding to a signal takes nearly half

2

of our proposed scheduling cycle. Based on these results our scheduler design is based on the
non-preemptive execution of threads. The scheduler indicates to each application thread how
many cycles it should execute before giving up the processor. Through the use of cooperative
task scheduling we believe that much of the performace gained will be retained.

Preliminary responses to the above stated research questions are as follows:

• When should DPARTS be :invoked? The DPARTS scheduler will be invoked once
each execution frame. The execution frame time will be based on the Just Noticable
Difference Perception Time for audio. We plan to start with a 5 millisecond cycle time.
Also a DPARTS scheduler will be executed on each processor in a non-overlapping
fashion throughout the system. Therefore, initially only one scheduler will be active in
the system at any instant.

• What is the required frequency of DPARTS invocation with respect to the latency of
scheduling decisions and the overheads incurred by scheduling? And, should DPARTS
have the option of rescheduling existing tasks if such rescheduling can result in the
successful scheduling of otherwise unschedulable process sequences? Initially, tasks will
not be reschedulable. When all of the available time for a frame is filled, then the
task invocation request will be passed to the next scheduler with an increasingly higher
priority. In this manner, evt~n low priority events such as string invocations will be
scheduled in a reasonable time frame.

• Deadline semantics. In our sample music application, precise deadlines are usually not
necessary in order to produce acceptable results. As such we will evaluate what type of
sematics are appropriate for addressing the application we are scheduling. Furthermore,
our initial model for incoming events will assign a relative priority to each different
instrument. Within each time frame, available tasks will be scheduled in priority order
and any remaining tasks will be passed to the next scheduler with a temporarily higher
priority than the initial priority so that increasingly earlier events will be scheduled.

Digital Audio Synthesizer. Our sample application, a parallel digital audio synthe
sizer, consists of a number of interlinked modules that communicate by passing packets of
audio samples. The application embodies modules to perform the following functions:

• Digital Audio Generation (sine wave, FM, wavetable lookup).

• Filtering (a generic digital filter that produces high pass, low pass, bandpass, and notch
filter outputs).

• Amplification.

• Mixing.

• Effects (chorusing and delays) .

3

• Output.

The user will specify the linkages between these modules, and the application will accept input
events that triggers a set of modules which produce the synthesized digital audio output.

Digital Audio Synthesizer Status. The initial Digital Audio Generation, Mixing,
and Output modules are complete. In addition, the Input Event Generator that converts
MIDIFILES into a stream of incoming events has been completed.

Equipment Status. PCs are becoming increasingly important as actual business and
research computing engines. For example, much of the research in Japan addressing real-time
applications (the TRON project) :is based on PCs. Therefore, our current equipment base is
a PC purchased with equipment funds allocated to this work:

• 90 Mhz Pentium, 32 Megs RAM, 17 in SVGA Color Monitor.

This machine is attached via Ethernet to high performance computing and visualization
engines, as well as to MIDI input devices and to multimedia output engines. The cost of the
items are summarized in the attached expense report.

References

[1] D.P. Anderson and R.G. Herrtwich. Resource management for digital audio and video. In
Seventh IEEE Workshop on Real-Time Operating Systems and Software, pages 99-103.
IEEE, May 1990.

[2] D.P. Anderson and R. Kuivila. A system for computer music performance. ACM Trans
actions on Computer Systems, 8(1):56-82, Feb 1990.

[3] D.P. Anderson, S. Tzou, R. Wahbe, R. Govindan, , and M. Andrews. Support for conti
nous media in the dash system. In Proceedings of the 1Oth International Conference on
Distributed Computing Systems, Paris France. IEEE,ACM, 1990.

[4] Aloysius Ka-Lau Mok. Fundarnental Problems of Distributed Systems for the Hard Real
Time Environment. PhD thesis, Laboratory for Computer Science, Massachussetts Insti
tute of Technology, May 1983.

[5] Karsten Schwan and Rajiv Ramnath. Adaptable operating software for manufacturing
systems and robots: A computer science research agenda. Technical report, Computer
and Information Science, The Ohio State University, OSU-CISRC-TR-84-4, May 1984.

[6] Hongyi Zhou. Task Scheduling and Synchronization for Multiprocessor Real-Time Sys
tems. PhD thesis, College of Computing, Georgia Institute of Technology, May 1992.

4

~- 3 h- X 17
#~

DPARTS- A Dynamic Parallel Adaptive Nlultiprocessor Real-Time Scheduler

Submitted to
Andre vanTilborg
Office of Naval Research (ONR)
800 N. Quincy St.
Arlington, VA 22217-5000.

Byron Jeff

FINAL REPORT

Byron Jeff
Karsten Schwan

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

Technical Contacts

Phone: (404) 880-6934
Email: byron@cc.gatech.edu

Karsten Schwan
Phone: (404) 894-2589

Email: schwan@cc.gatech.edu

1

1 Summary of Research Results

1.1 Motivation

The area of dynamic real-time scheduling has received increased attention during the last few years, in
part due to the creation many recent multiprocessor and distributed applications demanding real-time
performance. Such applications include robotics [5], multi-media [3], music [2], and complex command
and control systems that execute complex mixtures of data dependent (e.g., target recognition) and
human-initiated tasks. These applications are characterized by their need for real time response, poten
tially heavy computational load, and unpredictable events that must be processed in a timely manner.

The specific application domain addressed by this research concerns multi-media systems. Spe
cifically, it concerns the real-time synthesis of voice and music, where partially ordered sequences of
computations and communications must be processed under given time constraints. This grant has
permitted us to investigate the dynamic (on-line) scheduling of action sequences triggered by real-time
events, where multiple action sequences and different independent segments of a single action may ex
ecute in parallel. A real-time parallel digital audio synthesis system serves as a concrete example of such
an application. A sample real-time event in this application is a note played on a Musical Instrument
Device Interface (MIDI) keyboard.

The proposed DPARTS multiprocessor scheduler has been partially implemented and is performing
scheduling in an event driven manner, in reaction to sequences of incoming events. The DPARTS system
and the scheduler will have the abili~y to adapt scheduling during execution. Such adaptations will be
performed in accordance with user specifications that address the actions to be taken in response to
exceptions like deadline failures and sudden overloads. The intent is to have DPARTS adapt its schedule
to maximize some global, time-dependent measure of schedule quality, even under high system loads.
Toward this end, we are now also considering changes to the Unix operating system kernel to permit
customizable scheduling supported by the kernel.

1.2 Multi-media and Music Applications

Some recent research has addressed the scheduling and real-time processing of multi-media applications
[3]. However, such research has addressed relatively static applications like the transfer of successive
image frames across a network [1] or the scheduling of a music application with some fixed number of
tasks [2]. In contrast, we are addressing multi-media applications that are highly dynamic, which means
that applications must react to unexpected or unanticipated external events. Such reactions will result
in the on-line creation of additional tasks that must be dynamically scheduled in reference to existing
task sets. Furthermore, for dynamic music programs that react to unanticipated human inputs, timing
constraints have to be stated differently from other application domains. Namely, it is not reasonable to
expect users to characterize timing constraints in terms of start times, execution times, and deadlines.
Instead, we have defined some novel semantics for 'deadlines', such as semantics that capture notions of
lateness based on the perception of different musical instruments by the listener. For example, a deadline
for an instrument like a drum approximates the well-known notion of hard deadlines [4] because drum

1

beats must be very precise. On the other hand, for musical tones that are long and drawn out, such as
those generated by string instruments, 'softer' deadline semantics are appropriate. We have begun to
investigate and specify such novel timing semantics and are using them in the development of efficient on
line scheduling algorithms and schedulers supporting this class of real-time applications. vVhat remains
to be done is additional implementation so that we can compare our work to results attainable with
'classical' methods for on-line scheduling, such as deadline-based scheduling algorithms [7] or some of
the extensions of rate-based scheduling addressing dynamic task arrivals [6].

Another aspect of the real-time generation of multimedia artifacts is the potential for a large reduction
of the storage size of multimedia objects. Many of the elements of these objects can be represented
by algorithms and event lists. An example of this is a MIDifile representation of a piece of music.
By storing/transporting the algorithms/event lists and generating the actual multimedia object in real
time, a net reduction in the storage/transportation costs of such objects can be achieved.

1.3 Multiprocessor Scheduling

The scheduler developed in this research is a specific example of a customizable operating system service
as offered in high performance systems, with more general methods for offering such services being
developed in recent work, like the Exokernel research. Part of this research will address the issues
designing such customizable services for parallel, not just sequential, machines, which is especially
important due to the recent arrival of quad-processor Pentium boards. Such work is building on the
research described in [7] and is constructing the DPARTS scheduler to be internally concurrent so it
can be easily scaled to different size parallel machines and to varying application demands. This implies
that scheduling is performed by multiple concurrent and cooperating tasks.

1.4 DPARTS Scheduling Details

Some details about the DPARTS scheduler further demonstrate its novelty. As stated above, each
external event may trigger a sequence of processes that jointly handle the event. These processes must
execute in an application-specific order. DPARTS must have information about (1) such orderings, (2)
the computation time of the involved processes, and (3) about possible alternate or optional processes.
We will develop a directed graph representation to contain such information, where the computation
times and any other information DPARTS needs to know about processes is stored in the graph's nodes,
and the directed edges represent the processes' order of computation. Processes must be scheduled
concurrently and to meet real-time constraints, such that the graph's topological order is maintained.
This implies that multiple parts of the schedule graph may be active at any point during the applications
execution.

The specific research questions that remain to be addressed in this work focus on the development of
fast heuristic algorithms, on experimentation with those algorithms, and on the use of such algorithms
within the music application described above. We will not develop optimal algorithms since all of
the scheduling and assignment problems we are addressing have been shown NP-hard. However, the

2

availability of the optimal multiprocessor real-time scheduling algorithm described in < hongyi> should
enable us to compare our work with other rigorous research. Some specific questions we have begun to
address are (see the preliminary responses to these questions listed in the next section):

1. When should DPARTS be invoked? What is the required frequency of DPARTS invocation with
respect to the latency of scheduling decisions and the overheads incurred by scheduling?

2. Should DPARTS have the option of rescheduling existing tasks if such rescheduling can result in
the successful scheduling of otherwise unschedulable process sequences?

3. Deadline semantics. In our sample music application, precise deadlines are usually not necessary in
order to produce acceptable results. As such we will evaluate what type of sematics are appropriate
for addressing the application we are scheduling.

1.5 DPARTS Scheduling Status

The design of the scheduler is completed. An initial prototype has been tested and with its evaluation,
we have determined that the single largest degrade'r of performance is the Unix signal call. The elapsed
time of catching and responding to a signal takes nearly half of our proposed scheduling cycle. Based
on these results, our scheduler design is based on non-pre-emptive execution of threads. The scheduler
indicates to each thread of the application how many execution cycles it should execute before giving up
the processor. Through the use of cooperative task scheduling we believe that much of the performace
gained will be retained. In addition, by using novel methods like 'processor reservation', we should be
able to interact gracefully with the operating system kernel controlling the low-level events based on
which scheduling decisions may have to be made.

Preliminary responses to the above stated research questions are as follows:

1. When should DPARTS be invoked? The DPARTS scheduler is invoked once each execution frame.
The execution frame time is based on the Just Noticable Difference Perception Time for audio.
We are starting with a 5 millisecond cycle time. Also a DPARTS scheduler is executed on each
processor in a non-overlapping fashion throughout the system. So initially only on scheduler is
active in the system at any instant.

2. What is the required frequency of DPARTS invocation with respect to the latency of scheduling
decisions and the overheads incurred by scheduling?

3. Should DPARTS have the option of rescheduling existing tasks if such rescheduling can result in
the successful scheduling of otherwise unschedulable process sequences? Initially tasks will not be
reschedulable. When all of the available time for a frame is filled then the task invocation request
will be passed to the next scheduler with an increasingly higher priority. In this manner even low
priority events such as string invocations are scheduled in a reasonable time frame.

3

4. Deadline semantics. In our sample music application, precise deadlines are usually not necessary in
order to produce acceptable results. As such we will evaluate what type of sematics are appropriate
for addressing the application we are scheduling.

Our initial model assigns to incoming events a relative priority for each different instrument. \Vithin
each frame, available tasks are scheduled in priority order and any remaining tasks are passed to the
next scheduler. An aging algorithm gives leftover tasks a temporarily higher priority than the initial
priority, resulting in increasingly higher priorities for the scheduling of earlier events.

1.6 Digital Audio Synthesizer Details

Our sample application is a parallel digital audio synthesizer, which consists of a number of interlinked
modules that communicate by passing packets containing audio samples. The application embodies
modules that perform the following functions:

• Digital Audio Generation (sine wave, FM, wavetable lookup),

• Filtering (a generic digital filter that produces high pass, low pass, bandpass, and notch filter
outputs),

• Amplification,

• Mixing,

• Effects (chorusing and delays), and

• Output.

The user specifies the linkages between these modules, and the application accepts input events that
triggers a set of modules which produce the synthesized digital audio output.

1. 7 Digital Audio Synthesizer Status

The initial Digital Audio Generation, Mixing, and Output modules are complete. In addition the Input
Event Generator that converts MIDIFILES into a stream of incoming events has been completed.

2 Equipment Status

The initial proposed equipment needs failed to meet our goals due to the extremely heavy load on the
existing SGI Multiprocessor. Instead, we chose to move to PC platforms, which are moving toward
quad-processor boards (perhaps up to 16 in the near future). In response, the following items were
purchased with this funding:

4

• 90 Mhz Pentium, 64Megs RAM, 17 in SVGA Color Monitor, 8X CDROM, multimedia speakers.

The cost of the items are summarized in the attached expense report.

In the immediate future, we intend to purchase a number of quad-processor Pentium machines,
and to cluster them using high performance PCI-based interconnects (or even with distributed shared
memory interconnects). This would result in an exciting set of equipment that would drive this research.
In addition, we are investigating the use of Windows NT as a suitable research platform (we are now
in the process of acquiring an NT source license).

3 Publications and Conferences/Workshops

DIMAS-Constructing Dynamic Interactive Multimedia Artifacts, B. Jeff and K. Schwan, Workshop
Proceedings: THE ROLE OF REAL-TIME IN MULTIIvlEDIA/INTERACTIVE SYSTEMS, 1993

PARSYNTH: A Case Study on Implementing a Real-Time Digital Synthesize, B. Jeff and K.
Schwan,Workshop Proceedings: 4th International Workshop on Parallel and Distributed Real-Time
Systems, 1996

4 Interactions with Clark Atl~nta University

As a faculty member at Clark Atlanta University, Byron Jeff assisted ONR related projects in several
capacities:

Mentor Served as faculty mentor for ONR sponsored Summer Intership program at Georgia Tech. Duties
included student selection and monitoring student research progress.

Advisor Served as faculty research advisor for Tiki Suarez, member of the ONR sponsored Prism-D pro
gram. Ms. Suarez graduated with honors and is now attending Florida State University as a PhD
student in Computer Science.

5 Free software development

Another thrust of the project was the incorporation of the Free Software model into research. The Linux
Operating System, a free U nixlike OS, has been heavily integrated into the research paradigm for this
project. The usefulness is multifold:

Free As the software is freely available students can duplicate research results without a heavy invest
ment in resources.

5

Hardware Linux runs on standard PC hardware which is easily accessible to most researchers.

Source Since the source code for the OS kernel and all applications are available, it is possible to distribute
modified versions of software aJong with applications.

References

[1] D.P. Anderson and R.G. Herrtwich. Resource management for digital audio and video. In Seventh
IEEE vVorkshop on Real- Time Operating Systems and Software, pages 99-103. IEEE, May 1990.

[2) D.P. Anderson and R. Kuivila. A system for computer music performance. ACJY.l Transactions on
Computer Systems, 8(1) :56-82, Feb 1990.

[3] D.P. Anderson, S. Tzou, R. vVahbe, R. Govindan , , and M. Andrews. Support for continous media
in the dash system. In Proceedings of the 1Oth International Conference on Distributed Computing
Systems, Paris France. IEEE,ACM, 1990.

[4] Aloysius Ka-Lau Mok. Fundamental Problems of Distributed Systems for the Hard Real- Time
Environment. PhD thesis, Laboratory for Computer Science, Massachussetts Institute of Technology,
May 1983.

[5] Karsten Schwan and Rajiv Ramnath. Adaptable operating software for manufacturing systems and
robots: A computer science research agenda. Technical report, Computer and Information Science,
The Ohio State University, OSU-CISRC-TR-84-4, May 1984.

[6] B. Sprunt, John P. Lehoczky, and Lui Sha. Exploiting unused periodic time for aperiodic service
using the extended priority exchange algorithm. In Proceedings of Real-Time Systems Symposium,
Huntsville, AL, pages 251-258. IEEE, 1988.

[7] Hongyi Zhou. Task Scheduling and Synchronization for Multiprocessor Real- Time Systems. PhD
thesis, College of Computing, Georgia Institute of Technology, May 1992.

6

DIMAS - Constructing Dynamic Interactive Multimedia ArtifactS

Byron Jeff
Karsten Schwan

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

1 The DIMAS System

Real-time systems interact with their external execution environments, and complex, large
scale systems often cannot anticipate all such interactions. As a result, real-time systems are
increasingly being constructed with mechanisms and policies that permit them to adjust to
new environmental conditions, based on higher-level knowledge about system functionality
and requirements[8, 4, 6, 5). The goals of the DIMAS system are:

• to provide mechanisms, policies, and human interfaces for dynamic system configuration
and control,

• for multi-media, real-time applications executing on parallel and distributed target
computing platforms.

Nlore specifically, DIMAS will address the issues of system response to dynamic exter
nal environments in the domain of interactive sound and video generation, processing, and
display. Traditional computer based multimedia generation systems have the following short
comings that limit ftexibilty and creativity:

• Typically the sound and graphics generation algorithms (the patch) and score are fixed
before the playing of the piece. Little iiexibility in terms of modifying patches or the
play sequence of a piece are provided. This preprogrammability dampens the ability
of the user to creatively change in any significant way the format or texture of a piece
once it has been started.

• Computer based sound generation systems only allow the interaction of a single user
by way of a console or keyboard. This limitation is not necessary, since multiple users
may wish to interact with the piece as it plays.

1

• Most production computer based multimedia generation systems are embedded in hard
ware with limited patch manipulation capabilities. As a result, the typical studio will
have several different types of computer generated multimedia equipment in order to
produce the different types of sounds necessary to produce a piece.

• Some computer based music generation systems, such as Csound and Cmusic, are soft
ware based. However, the computational complexity of many of the sounds these sys
tems generate prohibits real-time usage of these systems. Exploitation of multiprocessor
technologies may remove this limitation.

DIMAS addresses the shortfalls for computer based multimedia generation. DIMAS offers
dynamic interactions with external "multimedia agents" during the execution of a piece. As
an example, consider the following two agents and their on-line interactions with DIMAS.

Performance agents. A performance agent issues a sequence of musical notes or images
to be generated. Typically, this type of agent is a human playing a MIDI-capable instrument
or a computer based program that generates MIDI sequences. Performance agents can also
produce a series of video or graphics images to. be integrated with and synchronized into a
musical piece. Two types of interactions exist between DIMAS and a performance agent.
First, the performance agent can initiate changes in tempo, exchange or modify patches,
volume, and pitch. Second, DIMAS provides system status indicators to human proformance
agents via a console and to computer based performance agents via a message facility. The
message facility permits multimedia agents to interact with one another. For example, a
human performance agent can ask for a certain section of a piece to be repeated. DIMAS will
send a corresponding message to each of the other human and computer based performance
agents with the information indicating what section and when the section will be repeated.

Production agents. A production agent will manage the overall production of a piece
by giving instructions to both DI~fAS and the performing agents. The types of instructions
that performance agents issue include but are not limited to:

• Patch modification of a certain sound.

• Patch changes.

• Repeat or change to a new section of a piece.

• Change tempo or pitch.

• Adding and modifying effects such as chorusing and reverberation.

• Syncronizing video and graphic images.

• Control of volume, panning, and mixing of tracks generated by performance agents.

2

DIMAS will accept messages that affect it directly (such as patch change or modification)
and also forward production agent messages to performance agents (change tempo or pitch,
repeat or jump to a new section). In summary, DIMAS provides an environment that provides
flexibility in the way in which a multimedia piece is played, by allowing changes in the
execution environment while the piece is playing.

2 DIMAS Components

DIMAS Objects. DIMAS structures interactive multimedia applications as sets of interact
ing objects, which implement the performance and production agents mentioned above. This
is a natural representation for many multimedia applications since they are easily regarded as
collections of "black boxes" performing computations and communicating with one another.
For example, a typical real-time sound synthesis application can be broken down into compo
nents such as oscillators, mixers, and filters, which communicate with one another via sample
passing. In addition, many of today's multimedia applications represent the unification in
one computer program of jobs that were formerly performed by separate hardware devices
connected by wires. For example, the real-time synthesis application mentioned above is the
natural descendant of early synthesizers which contained many discrete hardware oscillators,
filters, and so on, connected by patch cables.

The "black boxes" mentioned above translate naturally into program objects. The con
nections between these "black boxes" translate into interactions between program objects.
Furthermore, the object-based approach affords a straightforward approach to parallel pro
gramming, since program objects are a natural unit of computation to distribute among
multiple processors. Finally, program objects and their interactions can be associated with
timing attributes in a straightforward way[ll, 7]. As a result, any DIMAS application is
constructed from a set of audio and graphics generation objects.

Links and attributes. Links ernbody the interaction semantics between objects.
Namely, program object instances are connected by link instances, and links contain details
descriptions of user-defined invocation semantics. For example, simple link semantics are
synchronous message passing, asynchronous message passing, and conventional object invo
cation. More complicated examples include remote object invocation, video frame exchange,
and emulation of the MIDI protocol.

Invocations among DIMAS objects implementing multi-media applications are often sub
ject to timing constraints. Since such constraints must be explicitly specified and enforced,
DIMAS program objects are not ju8t characterized by their classes, but also support extensive
compile-, load-, and runtime attributes, including invocation time attributes. These attributes
can be interpreted in a variety of ways by the invoked object; typically, they are used for
specification of timing constraints on the execution of objects' code and for determination of
assignments of objects to processors.

3

From the point of view of an object which uses links to interact with other objects,
the links are themselves objects which export methods that implement the interaction. For
example, 'SamplesLink' is an asynchronous message passing link used for exchanging packets
of samples in digital audio applications. It exports send() and receive() methods.

As might be suggested by the above, links are often· implemented as objects. Such is
the case with 'SamplesLink'. However, links do not have to be implemented as objects.
For example, a link whose job is to simply pass conventional object method invocations on
to another object can be implemented by rerouting the invocation at compile time to the
appropriate destination.

A primary advantage of the link concept is that it allows the programmer to avoid explic
itly naming other object instances in the description of an object class which is intended for
reusability. An example. is a 'Mixer' object, which uses a variable number of 'SamplesLinks'
to perform its input, and one 'SamplesLink' to perform its output. The 'Mixer' object thus
implements a computational "black box" which is quite analogous to a real hardware mixer.
Its job is to do mixing; it does not have any knowledge of the objects which produce its
inputs or consume its outputs.

Constructing DIMAS applications. Constructing a DIMAS application (a multi
media artifact) can be thought of as proceeding in several phases. In the first phase, the
programmer writes class descriptions for any required new program object classes, and in
some cases for new link types. In the seoond phase, the programmer uses language-level
tools to create program object instances, connect these instances using instances of various
types of links, and assign and analyze timing attributes and parallel execution attributes. In
the third phase, the programmer adds user-interactive object instances, thereby essentially
designing an application-specific user interface. Finally, in the fourth phase, the programmer
uses graphical or MIDI-capable user interfaces to interact with the running DIMAS program.

DIMAS application development is simpler than the development of arbitrary parallel
object-based programs because built into the DIMAS system are a collection of audio and
graphics generation objects. A piece is constructed by assembling a group of audio instru
ments and video generators. These instruments will produce sound/images based on event
inputs from the performance agents external to the DIMAS system. Both performance and
production agents can modify the parameters of these objects be invoking their 'change'
methods.

The DIMAS runtime system. The two primary parts of the DIMAS system, there
fore, are (1) the environment for defining and instantiating new classes of DIMAS objects
outlined above (using an object-oriented language and graphical user interface), and (2) run
time system support for the efficient and parallel execution of DIIviAS objects. Runtime
support includes facilities for the efficient on-line monitoring of DIMAS applications[9], for
representation of DIMAS objects, and for real-time dynamic scheduling -The Dynamic Par
allel Adaptive Real- Time Scheduler (DPARTS). The DPARTS scheduler is described next.
More general operating system support for real-time objects is described elsewhere[lO, 7).

4

DPARTS will schedule and invoke groups of generation objects based on event inputs
from performance agents. DPARTS is adaptive because it will modify the schedule based on
the available time and resources that the generation objects have to do their jobs. Because
of this feature DPARTS may schedule only certain features of a generative object if the
time and/or resources are not available for a complete generation. Part of DPARTS task is
to provide information to production agents about resources available and when DPARTS
uses the reduced functionality of agenerative object based on limited resources. Production
agents can send messages to DPARTS indicating on what priority can generative objects can
be modified or even eliminated based on resource availablity.

In order to achieve real-time response, the DPARTS scheduler will be internally concur
rent so it can be easily scaled to different size parallel machines and to varying application
demands. This implies that scheduling will be performed by multiple concurrent and cooper
ating tasks. Furthermore, since large-scale machines typically exhibit non-uniform memory
access (NUMA) characteristics (or do not offer shared memory at all, as with distributed
memory machines), the D PARTS scheduler will be designed to access scheduling informa
tion locally whenever possible. In other words, its scheduling information will be distributed
across multiple memory units. Such distribution of scheduling information enables access
locality and concurrency during scheduling. However, additional scheduling overhead may
result from accesses to remote scheduling information required in several situations, including
when a processor's scheduler atterapts to schedule a task on a remote processor. Such over
head can be reduced by the scheduler's use of incomplete infonnation about other processors'
schedules[l4).

Some details about the DPARTS scheduler further demonstrate its novelty. As stated
above, each external event may trigger a sequence of processes that jointly handle the event.
These processes must execute in an application-specific order. DPARTS must have informa
tion about (1) such orderings, (2) the computation time of the involved processes, and (3)
about possible alternate or optional processes. We will develop a directed graph represen
tation to contain such information, where the computation times and any other information
DPARTS needs to know about processes is stored in the graph's nodes, and the directed edges
represent the processes' order of computation. Processes must be scheduled concurrently and
to meet real-time constraints, such that the graph's topological order is maintained. This
implies that multiple parts of the schedule graph may be active at any point during the
applications execution.

The specific research questions to be addressed in this work focus on the development
of fast heuristic algorithms, on experimentation with those algorithms, and on the use of
such algorithms within the music application described above. We will not develop optimal
algorithms since all of the scheduling and assignment problems we are addressing have been
shown NP-hard[l2). Some specific questions we intend to address include:

1. Deadline semantics- in our sample music application, precise deadlines are usually not
necessary in order to produce acceptable results. As such we will evaluate what type

5

of sematics are appropriate for addressing the application we are scheduling.

2. Should DPARTS have the option of rescheduling existing tasks if such rescheduling can
result in the successful scheduling of otherwise unschedulable process sequences?

3 Status, Conclusions, and Related Research

A current prototype DIMAS program runs on SparcStatfons, on the BBN Butterfly GP1000
multiprocessor, and is being ported to a 64-node KSR2 parallel supercomputer for attain
ment of real-time response for complex on-line sound generation. In addition, multiprocessor
SCI machines will provide the sounds and graphics capabilities required by realistic DIMAS
artifacts. DIMAS is being constructed using two existing platforms for the construction of
real-time applications: real-time threads(13] and the Chaos-arc real-time operating system[7].

The next steps in our work concern construction of a more complex sound synthesis
application, followed by its use for a first prototype of the DPARTS runtime scheduler.
Experimentation with the resulting multimedia program should establish whether real-time·
response to human-generated MIDI events can be attained on current parallel machines.
Once we have established that fact, we will continue our work by construction of a more
general DIMAS system, its user interfaces, and its applications.

Our work differs from other research in multimedia systems in that most current multi
media operating system efforts are focusing on the support of frame-based interactive video,
in file systems, with runtime scheduling or resource allocation[3, 2, 1], and in communication
protocols that attempt to reserve end to end channel bandwidth. In contrast to such work, the
focus of DIMAS is to allow dynamic configuration and control of multimedia streams in real
time. Both internal heuristics and external interfaces to the system allow for modifications
of generation algorithms based on system resources.

Acknowledgements. David Rosenbaum contributed extensively both to earlier drafts
of this paper and to the DIMAS concepts and our DIMAS execution environment. This work
is supported in part by the Office of Naval Research under grant #N00014-93-1-0783.

References

[1] D.P. Anderson and R.G. Herrtwich. Resource management for digital audio and video. In
Seventh IEEE Workshop on Real- Time Operating Systems and Software, pages 99-103.
IEEE, May 1990.

[2] D.P. Anderson and R. Kuivila. A system for computer music performance. ACM Trans
actions on Computer Systems, 8(1):56-82, Feb 1990.

6

[3] D.P. Anderson, S. Tzou, R. Wahbe, R. Govindan, , and M. Andrews. Support for
continous media in the dash system. In Proceedings of the 10th International Conference
on Distributed Computing Systems, Paris France. IEEE,ACM, 1990.

[4] T. Bihari and K. Schwan. Dynamic adaptation of real-time software. ACM Transac
tions on Computer Systems, 9(2):143-174, May 1991. Older version available from the
Department of Computer and Information Science, The Ohio State University, OSU
CISRC-5/88-TR, newer version available from College of Computing, Georgia Institute
of Technology, Atlanta GA, GTRC-TR-90/67.

[5] S. Davari, T.F. Leibfried, S. Natarajan, D.Pruett, L. Sha, and W. Zhao. Real-time
issues in the design of data management for the space station freedom. In Workshop on
Real- Time Applications, New York, pages 161-165. IEEE, May 1993.

[6] Ed Ferguson. Resource scheduling for adaptive systems. In U!orkshop on Real- Time
Applications, New York, pages 102-103. IEEE, May 1993.

[7] Ahmed Gheith and Karsten Schwan. Chaos-arc- kernel support for multi-weight objects,
invocations, and atomicity in real-time applications. ACM Transactions on Computet
Systems, 11(1):33-72, April 1993.

[8] Jim McDonald and Karsten Schwan. Ada dynamic load control mechanisms for dis
tributed embedded battle management systems. In First Workshop on Real-time Appli
cations, New York, pages 156-160. IEEE, May 1993.

[9] David M. Ogle, Karsten Schwan, and Richard Snodgrass. The dynamic monitoring
of real-time distributed and parallel systems. Technical report, College of Computing,
Georgia Institute of Technology, ICS-GIT-90/23, Atlanta, GA 30332, May 1990. To
appear in IEEE TPDS August 1993.

[10] Karsten Schwan, Prabha Gopinath, and Win Bo. Chaos - kernel support for objects in
the real-time domain. IEEE Transactions on Computers, C-36(8):904-916, July 1987.

[11] Karsten Schwan, Rajiv Ramnath, Sridhar Vasudevan, and Dave Ogle. A system for par
allel programming. In 9th International Conference on Software Engineering, Monterey,
CA, pages 270-282. IEEE, ACM, March 1987. Awarded best paper.

[12] Karsten Schwan and Hongyi Zhou. Dynamic scheduling of hard real-time tasks and
real-time threads. IEEE Transactions on Software Engineering, 18(8):736-748, Aug.
1992.

[13] Karsten Schwan, Hongyi Zhou, and Ahmed Gheith. Multiprocessor real-time threads.
Operating Systems Review, 25(4):35-46, Oct. 1991. Also appears in the Jan. 1992 issue
of Operating Systems Review.

[14] Hongyi Zhou, Karsten Schwan, and Ian Akyildiz. Performance effects of information
sharing in a distributed multiprocessor real-time scheduler. Technical report, College

7

of Computing, Georgia Tech , GIT-CC-91/40, Sept. 1991. Abbreviated version in 1992
IEEE Real-Time Systems Symposium, Phoenix.

8

PARSYNTH: A Case Study on Implementing a Real-Time Digital Audio
Synthesizer

Byron Jeff
Department of Computer and Information Science

Clark Atlanta University
Atlanta, GA 30314

Email: byron@cc.gatech.edu
Phone: 404-880-6934

Fax: 404-880-6963

Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

Email: schwan@cc.gatech.edu
Phone: 404-894-2589

Keywords: Digital Audio Synthesis, Multimedia, Dynamic Scheduling

1

1 Motivation

Real-time systems interact with their external execution environments, and complex, large-scale systems
often cannot anticipate all such interactions. As a result, real-time systems are increasingly being
constructed with mechanisms and policies that permit them to adjust to new environmental conditions,
based on higher-level knowledge about system functionality and requirements[6, 1, 3, 2].

In addition the area of real-time sc.heduling has received increased attention during the last few years,
in part due to the creation of many recent multiprocessor and distributed applications demanding real
time performance. Such applications include robotics , multi-media, and music . These applications are
characterized by their need for real time response, heavy computational load, and unpredictable events
sequences that must be processed in a timely manner.

The specific application domain addressed by this research, Dynamic Interactive Multimedia Arti
factS (DIMAS), concerns multi-media systems. Specifically, DIMAS will provide a framework for the
real-time synthesis of voice, music, graphics, and video where partially ordered sequences of computa
tions and communications must be processed under given real-time constraints. This framework will
consist of:

• A library of multimedia generation and manipulation objects and the linkages between these
objects.

• Language support for specifying interconnections between existing library objects and the ability
to create user defined application specific objects and links.

• Run time support to execute a DIMAS constructed application in real-time on shared memory
multiprocessor computers.

DIMAS will utilize the Dynamic PArallel Real-Time Scheduler (DPARTS) to perform (on-line)
scheduling of action sequences triggered by real-time events, where multiple action sequences and dif
ferent independent segments of a single action may execute in paralleL

The PARSYNTH real-time parallel digital audio synthesis system is an application using the DIMAS
run-time libraries. This concrete example of a real-time application, provides a testbed for testing
DIMAS/DPARTS mechanisms and policies.

2 DIMAS SYSTEM OVERVIEW

The goals of the DIMAS system are:

• To provide mechanisms, policies, and human interfaces for dynamic system configuration and
control,

1

• To provide a framework for the execution of multi-media, real-time applications on parallel and
distributed target computing platforms.

l\'Iore specifically, DIMAS will address the issues of system response to dynamic external environ
ments in the domain of interactive sound, video, and graphics generation, processing, and display.

Traditional computer based multimedia generatiorr systems have shortcomings that limit flexibilty
and creativity [5]. These fall into two broad categories:

• Hardware based generation systems have fixed generation algorithm (patch) capability. There
are limits to the number of available patches, the number of events that the hardware device
can simulteaneosly process, and the types of manipulations that can be performed on individual
patches during the execution of a piece. Hardware based system however do provide real-time
response to events within their limited scope.

• Software based generation systems do provide more flexibility in terms of the number of sounds
per patch and patch manipulation during execution. However the computational complexity of
such systems fail to deliver real-time performance levels for all but the most simple compositions.

2.1 DIMAS Components

2.1.1 DIMAS Objects

DIMAS structures interactive multimedia applications as sets of interacting objects, which implement
the performance and production agents mentioned above. This is a natural representation for many
multimedia applications since they are easily regarded as collections of" black boxes" performing com
putations and communicating with one another. For example, a typical real-time sound synthesis applic
ation can be broken down into components such as oscillators, mixers, and filters, which communicate
with one another via sample passing. In addition, many of today's multimedia applications represent
the unification in one computer program of jobs that were formerly performed by separate hardware ·
devices connected by wires. For example, the real-time synthesis application mentioned above is the
natural descendant of early synthesizers which contained many discrete hardware oscillators, filters, and
so on, connected by patch cables.

The "black boxes" mentioned above translate naturally into program objects. The connections
between these "black boxes" translate into interactions between program objects. Furthermore, the
object-based approach affords a straightforward approach to parallel programming, since program ob
jects are a natural unit of computation to distribute among multiple processors. Finally, program
objects and their interactions can be associated with timing attributes in a straightforward way[7, 4].
As a result, DIMAS applications are constructed from a set of audio and graphics generation objects.

To maintain flexibility for execution each object is designed to process a small amount of work for
each work request. The basic model for a object is as follows:

2

Initialize

v
-> Wait for new work request on my admin link.

v
Process packets from work request.

v
Send packets down output link(s).

I
v

Inform object at other end of link of new work using its admin link.

A DIMAS object will accept work from any entity that is able to send administrative packets to
the admin link for the object. This provides a simple linkage meehanism for the DPARTS scheduler
to control DIMAS objects. The scheduler will be able to send work requests to each of the objects
specifying the amount of work each object is to perform. CPU utilization for each objects can be varied
by specifying differents amounts of work for each iteration through the execution loop. In addition the
scheduler can receive information from objects via a simularly constructed administrative link. The
object execution loop model is designed to facilitate the interfacing of DIMAS objects and the DPARTS
scheduler.

2.1.2 DIMAS Links

Links embody the interaction semantics between objects. Namely, program object instances are connec
ted by link instances, and links contain detailed descriptions of user-defined invocation semantics. For
example, simple link semantics are synchronous message passing, asynchronous message passing, and
conventional object invocation. More complicated examples include remote object invocation, video
frame exchange, and emulation of the MIDI protocol.

From the point of view of an object which uses links to interact with other objects, the links are
themselves objects which export methods that implement the interaction. For example, 'SamplesLink'
is an asynchronous message passing link used for exchanging packets of samples in digital audio ap
plications. It exports send{) and receive() methods. Simple links however can be implmented without
defining specific objects but by simply rerouting the invocation/message from one DIMAS object to
another.

A primary advantage of the link concept is that it allows the programmer to avoid explicitly naming
other object instances in the description of an object class which is intended for reusability. An example

3

is a 'Mixer' object, which uses a variable number of 'SamplesLinks' to perform its input, and one
'SamplesLink' to perform its output. The 'Mixer' object thus implements a computational "black box"
which is quite analogous to a real hardware mixer. Its job is to do mixing; it does not have any
knowledge of the objects which produce its inputs or consume its outputs. In addition the 'Mixer
object' can dynamically be instructed to accept or drop additional links at runtime.

2.2 Constructing DIMAS applications

Constructing a DIMAS application can be thought of as proceeding in several phases:

Phase 1 - the programmer writes class descriptions for any required new program object classes,
and in some cases for new link types.

Phase 2 - the programmer uses language-level tools to create program object instances, connect
these instances using instances of various types of links, and assign and analyze timing attributes and
parallel execution attributes.

Phase 3 the programmer adds user-interactive object instances, thereby essentially designing an
application-specific user interface.

Phase 4 the programmer uses graphical or NliDI-capable user interface DIMAS objects to interact
with the running DIMAS program.

DIMAS application development is simpler than the development of arbitrary parallel object-based
programs because built into the DIMAS system are a collection of audio and graphics generation objects
along with graphical and device interface objects. A composition is constructed by assembling a group
of audio-video generator objects. These objects will produce sound/images based on event inputs from
input devices external to the DIMAS application which interface to the application via the DIMAS device
interface objects. External users can interact with the DIMAS application via DIMAS user interface
objects.

Another aspect of the DIMAS system paradigm is that once system performance are consistently
maintaining real-time levels that the actual artifact generated by the system need not be maintained
by the system after execution. Since the specifications of a composition (including objects, patches,
events, scores, visual objects, links) are often several orders of magnitude smaller in size than the
artifact produced by the execution of the system, a significant reduction in the storage and transmission
requirements of a composition can be achieved.

3 A DIMAS APPLICA'fiON: PARSYNTH

A parallel digital audio synthesizer (PARSYNTH) serves as an application implementation using the DI
MAS run-time libraries. PARSYNTH is an example of the type of application produced at the end of the
DIMAS application specification compilation phase describe above. PARSYNTH has been implemented
with a message passing link mechanism that represents the links in the DIMAS model. PARSYNTH

4

also implements the DIMAS object model that simplifies the linkage of the PARSYNTH application
to the DPARTS scheduler. The PARSYNTH implementation serves as a testbed for demonstrating
concepts and models embodied within the DINIAS system.

PARSYNTH requires several audio representations to do its job. PARSYNTH produces CD quality
audio at a sample rate of 44.1 Khz. The digital audio entities based on this representations are:

• sample- a single unit of digital audio. As stated above PARSYNTH must product 44100 samples
for each second of sound generated.

• packet - The smallest unit of digital audio that PARSYNTH uses. A packet currently consist of
21 samples. PARSYNTH produces 2100 packets per second. All of PARSYNTH's timings are
based on packet numbers.

3.1 PARSYNTH IMPLEMENTATION

3.1.1 COMPUTATIONAL IMPLMENTATION

PARSYNTH is implemented with the DIMAS object run-time libraries.

The C-threads parallel threads library provides a lightweight threads environment for implementing
objects. The DIMAS run-time object library is implemented in C-threads. Each object is assigned to a
single thread with multiple threads assigned to each available processor in the multiprocessor machine.

3.1.2 OBJECT TYPES

Currently 5 types of objects are implemented:

Generators: This type of thread generates a digital audio stream. Like all objects generators sit
idle until a NOTE ON work request come through its admin link. At this point a generator will produce
a small number of packets for the note, generate a NEW WORK event for the downstream object, then
wait on its admin link. Generally a CONTINUE message from the downstream object will come along
and the generator will produce another set of packets. This process continues until a NOTE OFF work
reqest comes though. The NOTE OFF request is passed downstream and the generator discontinues
the generation of packets and goes back into its idle state, waiting for another work request.

Syncronizer: This type of object is required when multiple audio links are directed into a single
object. Since generators function asyncronously and there is some latency involved between the receipt
of a work request and the actual generation of packets, often the packet numbers between different
streams vary. This object's job is to receive multiple links of input, collate the links into syncronization
by matching the packet numbers of the packets on each link , and pass the syncronized packets of each
link into the output links. Not only can a syncronizer object have multiple input and output links, but
these links are dynamically allocated and destroyed by NOTE ON /OFF messages sent to the ad min

5

link. These objects must generate CONTINUE messages for each of the upstream objects and a NEW
WORK message for the downstream objects. Also it receives and processes NEW WORK messages
from the upstream objects.

Combiner: This type of object combines multiple links into a single link. By convention the
incoming links must be syncronized by a syncronizer object. Typically a Combiner object will have
a single output link that the combined results of the input. As with other objects a combiner object
creates and destroys input links on NOTE ON /NOTE OFF messages, accepts new work from NEvV
WORK messages coming from upstream, sends NEW WORK messages downstream with whatever
new work it generates, and accepts CONTINUE messages from the downstream object.

The first implemented combiner object is an digital audio mixer.

Output: This object type has the specific purpose of directing the final digital audio link produced
from PARSYNTH to the outside world. Typically there will only be one output object in a PARSYNTH
execution. This object has the potential of having multiple input links, but obviously output links are
out. Output objects respond to the typical NOTE ON / NOTE OFF / NEW WORK / CONTINUE
admin messages as other types of objects. However as the single point of having a complete audio
stream, output objects monitors the packet numbers of the output stream and sends reports to the
dispatch object (described below) creating a closed system that self governs its production rate.

Due to the large size of the output streams generated, the implemented output object actually sends
the stream to a Unix socket. An external applications can then direct the stream to the digital audio
output device or to a file.

An output device that discards the output is currectly under development. This output object is
useful for sample runs where the output isn't relavent.

Dispatch: This type object is unique in that it doesn't directly process any of the digial audio
streams in parsynth. Dispatch object performs the following:

• - Monitor for new incoming events

• - Introduce new events into the PARSYNTH system

• - Monitor the packet numbers output from the output object

Dispatch interacts with the rest of the PARSYNTH objects solely through the admin links. It injects
NOTE ON and NOTE OFF messages into appropriate generators to create/destroy links for new events.

3.1.3 COMMUNICATIONS Il\IIPLEMENTATION

Objects in PARSYNTH transmit data between one another using links. PARSYNTH uses shared
memory, which is implemented in the C-Threads Library, to implement both packets and links. Inter
object communication is accomplished through a separate link called the admin link. Each object

6

receives work requests via its admin link. Objects communicate with other objects by sending messages
to the destination object's admin link. The types of admin messages sent are as follows:

• NOTE ON - This message signals the start of a new note. The event causes the dynamic re
configuration of PARSYNTH by adding a new set of links through which the system process the
event.

• NOTE OFF - This message signals the end of a note. The event causes the reconfiguration of
PARSYNTH by destroying the set of links that the NOTE OFF was being processed.

• NEW WORK - This message accompanies any new work processed by an object. It is sent
"downstream" to the next object to signal it to begin work.

• CONTINUE - This is an acknowledgement message that acknowledges a NEW WORK admin
message. This message is sent" upstream'' after the new work has been processed.

• INFO - This message is used to alter the internal state of a object. Its primary purpose is to
change the virtual chain of admin links.

• DIE - This message is used to signal an object to cease operations.

4 DIMAS Run-time Scheduler: DPARTS

In order for DIMAS applications to achieve real-time performance under varying external event input
loads, a dynamic scheduling system must be utilized at run time. The DIMAS framework along with
the underlaying DPARTS parallel real-time scheduler will utilize the enhanced computational power of
parallel distributed computing platforms to give real-time performance for software based multimedia
applications.

In addition DPARTS will utilize application specific information in order to make scheduling de
cisions. For example in digital audio applications perceived lateness is tied to the initial attack rate of a
note. For example sounds with fast attack rates, such as percussive and piano sounds, will be perceived
as being late sooner than a softer attack, such as strings. The DIMAS application designer can embody
such attributes in the object specification and the DIMAS objects will share this scheduling information
with the DPARTS scheduler. So in the instance that an event with a hard attack rate and one with a
soft attack rate are presented to the DPARTS scheduler at the same time, the scheduler will schedule
the event connected to the hard attack rate before the event with the soft attack. Even in the case where
the soft attack event misses its dealine, the perception of lateness by the listener will be lessened.

DPARTS will schedule and invoke groups of DIMAS objects based on event inputs from DIMAS
objects that interface to devices external to the DIMAS application. DPARTS must be dynamic because
it will have to modify the schedule based on the available time and resources that the DIMAS objects have
to do their jobs. Because of this feature DPARTS may schedule only certain features of a DIMAS object
if the time and/or resources are not available for a completion of that object's task. Part of DPARTS

7

task is to provideinformation to DIMAS objects about resources available and instruct Dil\tiAS objects
to use reduced functionality because of limited resources.

In order to achieve real-time response, the DPARTS scheduler will be internally concurrent so it can
be easily scaled to different size parallel machines and to varying application demands. This implies
that scheduling will be performed by multiple concurrent and cooperating objects.

As stated above, each external event may trigger a sequence of objects that jointly process the event.
These objects must execute in an application-specific order. DPARTS must have information about (1)
such orderings, (2) the computation time of the involved objects, and (3) about possible alternate or
optional object invocations. We will develop a directed graph representation to contain such information,
where the computation times and any other information DPARTS needs to know about objects is stored
in the graph's nodes, and the directed edges represent the processes' order of computation. Objects
must be scheduled concurrently and to meet real-time constraints, such that the graph's topological
order is maintained. This implies that multiple parts of the schedule graph may be active at any point
during the applications execution.

5 Initial Results

The current PARSYNTH application runs on three platforms:

• Pentium 90 Mhz running Linux 1.2.13

• Sun Spare running SunOS 4.1.3

• SGI Challenge with 4 MIPS 4400 150 Mhz CPUs running IRIX 5.3

Currently PARSYNTH's dispatch object simulates the generation of events from MIDI devices by
reading from MIDI files that have been translated into packet event format. In order to guage the relative
performance times of the PARSYNTH application, events from these files are passed into PARSYNTH
system as fast as the system can process the events even if the input rate exceeds actual real-time.

All testing was performed on the SGI platform using a 4 instrument MIDI file that generates 60
seconds of digital audio. The PARSYNTH application consists of 8 objects: 4 sine wave generators, a
syncronizer, a mixer, an output object, and the dispatch object. For testing purposes the final digital
audio stream are not written into a file.

The initial result using a single processor multi-thread execution run completed in 31.5 seconds.
However the initial run of the 4 processor multi-thread execution run took 234.31 seconds to complete.

An examination of the trace file generated from Cthread 's monitoring facilities showed that for the
multiprocessor run that the threads processors were idle much of the time. This idleness was due to the
light load the input event file provided to the system. The lack of events to process resulted in most of
the 8 objects blocking on links waiting for work.

8

As an initial test of this hypothsis the packet size for PARSYNTH was increased by a factor of 10
(from 21 samples per packet to 210 samples per packet). The change in packet size results in a factor
of 10 change to the computation communication cycle that is designed into each PARSYNTH object.

The results were improved. The single processor multi-thread execution run completed in 17.5
seconds which is a 45 percent reduction in the completion time for the the run. The 4 processor multi
thread execution run dropped from 234.31 seconds to 41.47 seconds which is an 83.4 percent reduction
in the completion time.

These results point towards three trends:

• The overall performance of the system can be controlled by varying the grainularity of the packet
size. Larger packet sizes creates more computation and less communication while smaller packet
sizes results in more communications.

• The multiprocess application needs heavier workloads to be effective.

• Some fine tuning is required to reduce the computation time of the multiprocessor application to
match and exceed the computation time for the single processor version.

6 Next Steps

Further areas of interest are:

• Implement the DPARTS scheduler and use it to schedule the objects for DIMAS applications such
as PARSYNTH.

• Fine tune the multiprocessor execution environment for parsynth.

• Test PARSYNTH under varying loads in terms of packet rate for each instrument and the number
of intruments to observe PARSYNTH's performance.

• Implement a dispatch object that actually monitors a live MIDI keyboard for input events.

7 Acknowledgements

Vernard Martin assisted in editing and with the monitoring of PARSYNTH. This work is supported
in part by the Office of Naval Research under grant N00014-93-1-0783 and in part by ARO grant #
DAAL03-92-G-0377.

9

References

[1] T. Bihari and K. Schwan. Dynamic adaptation of real-time software. A C1~f Transactions on Com
puter Systems, 9 (2): 143-17 4, May 1991. Older version available from the Department of Computer
and Information Science, The Ohio State University, OSU-CISRC-5/88-TR,-newer version available
from College of Computing, Georgia Institute of Technology, Atlanta GA, GTRC-TR-90/67.

[2] S. Davari, T.F. Leibfried, S. Natarajan, D.Pruett, L. Sha, and W. Zhao. Real-time issues in the
design of data management for the space station freedom. In lVorkshop on Real- Time Applicat£ons,
New York, pages 161-165. IEEE, May 1993.

[3] Ed Ferguson. Resource scheduling for adaptive systems. In Workshop on Real- Time Applications,
JVew York, pages 102-103. IEEE, May 1993.

[4] Ahmed Gheith and Karsten Schwan. Chaos-arc- kernel support for multi-weight objects, invoca
tions, and atomicity in real- time applications. A C1l1 Transactions on Computer Systems, 11 (1) :33-
72, April 1993.

[5] B. Jeff and K. Schwan. Dimas-constructing dynamic interactive multimedia artifacts. In Workshop
Proceedings: THE ROLE OF REAL-TIME IN MULTIMEDIA/INTERACTIVE SYSTE1\tfS. IEEE,
1993.

[6] Jim McDonald and Karsten Schwan. Ada dynamic load control mechanisms for distributed embed
ded battle management systems. In First · Workshop on Real-time Applications, JVew York, pages
156-160. IEEE, May 1993.

[7] Karsten Schwan, Rajiv Ramnath, Sridhar Vasudevan, and Dave Ogle. A system for parallel pro
gramming. In 9th International Conference on Software Engineering, Monterey, CA, pages 270-282.
IEEE, ACM, March 1987. Awarded best paper.

10

PRINCIPAL INVESTIGATOR K SCHWAN

STATUS AT END OF JULY 1996

SP9NSOR. ·

A\il~ARD NUM~~R :·.

N•VY

NOQ014~g3-1~o783

07-01-93

PERSONAL SERVICES

BOO<i'ET .
EX.PaNDeo.-:::· ... :::-~:::
eflicU...-a~ReP ·· .. :,: :::·
FREE BALANCE

MATERIALS AND SUPPLIES

BUDGET .' · :,:<: :' ':':

TRAVEL

E).(flE.NQ~t;> : ~;: :: :-:::::: <::: ·:· :.:-:-

ENCUMBERED ::::···'·.:: · .
FRE~ flAl~ANcE ,:, ::.

BUDGET
EXPENOEO · ...

. ENC4~E.~~p· ·.~ .:. ·•····.·.· ·
. FREI; QAl:<"NCt; .
. .:.:: .:::.· ;.::: ;:;{_ . .:::<:·.::: · ; : ·:-~::· _: · .: --:

CAPITAL OUTLAY

BUDGET
EXPENDED
ENCU~EREO ·· . .

:" ·~.:~.'::~.~Y'$.~ hA .•. : .,~ f:t=>
:::-:· ;:;: : .·-· :-:-:-

to"TA~.·· QJRE¢T} ¢~~R~~S :

. · .:

GEORGIA INSTITUTE OF TECHNOLOGY

MONTH

.00

.00

.oo
::l; 184.00

.oo

.oo

.00

.00

.00
3. 184.00

CENTER NO. 246R79170AO

R~ CENTER NO. 00642901000

BILLING GROUP GTRC

FISCAL YEAR

.00

.00

,00
3,184.00 '

<00
.oo

. 00

.oo

.00
3,184 . 00

TOTAL CONTRACT

36,829.00
38,007.99

.00
-1,178 . 99

3,579.00
3,470.01
3, 184.00

-3.075.01

3.878.00
686,86

. 00
3. 191. 14

3,500.00
3. 881.00

.oo
-381.00

47,786.00
46,045 . 86

3. 184.00
-1,443,86

454

ACCOUNT NO . C-36-X17

DEPARTMENT COLL COMP

RESTRICTED FUND RF - 48202

EXPIRATION DATE 06-15-96

PAGE 02

PRINCIPAL INVESTIGATOR K SCHWAN

STATUS AT END OF

SPQNSOR.

AWARD NU~BIH~

EFFECTIVE DATE

INDIRECT CHARG~S

BUDGEt .
EXP~NDEQ . .. ·.·
~N~UMBEREO ,
FREE BALANCE

TOTAL

· BUDGET
EXP~NPEO ,
ENCU~E~EO ·
F~~E BALANCE

JULY 1996

,NAVY

NOf>Ot4~93-1~0793

07 - 01-93

GEORGIA INSTITUTE OF TECHNOLOGY

MONTH

.00
' ·~ 576.08

.oo
~~L7ao.oa

CENTER NO. 246R79170AO ACCOUNT NO . C - 36 - X 17

DEPARTMENT COLL COMP

RF CENTER NO. 00642901000 RESTRICTED FUND RF-48202

BILLING GROUP GTRC EXPIRATION DATE 06 - 15-96

FISCAL YEAR

. 00
1,576.08

.oo
4,76Q.09

TOTAL CONTRACT

:w. 580.00
16,997.88 RATE OF 49.5 BASE OF 4

1,576.08
2,006.04

68,366.00
63,043.74 THIS ACCOUNT IS 99 . 2 EXPENDED
4,760 . 08

562 . 18

PAGE 03

455

