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Abstract—According to the latest ITRS roadmap, the pitch of
area array packages is expected to decrease to 100 m by 2009. Si-
multaneously, the electrical performance of these interconnections
needs to be improved to support data rates in excess of 10 Gbps,
while guaranteeing thermomechanical reliability and lowering the
cost. These requirements are challenging, thus, needing innovative
interconnection designs and technologies. This paper describes
the development of three interconnection schemes for wafer-level
packages (WLPs) at 100-pm pitch, involving rigid, compliant, and
semicompliant interconnection technologies, extending the state
of the art in each. Extensive electrical and mechanical modeling
was carried out to optimize the geometry of the interconnections
with respect to electrical performance and thermomechanical
reliability. It was found that the requirements of electrical perfor-
mance often conflict with those of thermomechanical reliability
and the final “optimum” design is a tradeoff between the two.
For the three interconnection schemes proposed, it was found that
the electrical requirements can be met fairly well but acceptable
mechanical reliability may require organic boards with coefficient
of thermal expansion of 10 ppm/K or lower.

1. INTRODUCTION

NFORMATION technology (IT) is more than a trillion

dollar industry. It includes hardware, software, services,
and applications. Contrary to perception, hardware accounts
for more than two-thirds of the IT industry, and the single
most important building block of this hardware, of course,
is semiconductor devices such as CMOS, GaAs, SiGe, and
silicon-on-insulator (SOI) for a variety of computing, commu-
nication, consumer, automotive, and other applications. The
total worldwide annual market for these devices is approxi-
mately $150 B. These devices, the technology for which is at
the threshold of nanoscale (100 nm), are typically fabricated
into wafers as big as 300 mm in diameter and are subsequently
diced into individual integrated circuits (ICs). They are then
packaged, tested, and burnt into individual IC devices, ready to
be surface mount bonded onto system level boards. The total
number of ICs produced in 2003 was about 375 billion units,
each packaged at some cost, typically US$0.01 per I/O. The
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Fig. 2. Proposed 100-z1m-pitch interconnections.

total packaging market, which includes IC packaging, as well
as systems packaging, is almost as big as the semiconductor
market, together accounting for 25% of the IT industry.

The semiconductor industry is racing toward a historic tran-
sition—nanochips with less than 100-nm features. The first set
of such chips reached production in 2003. Some of these chips
have several hundred million transistors which require I/Os in
excess of 10000 and power in excess of 150 W, providing com-
puting speed at terabits per second. These requirements, to-
gether with digital and wireless systems around 20 GHz (in
2010), require new approaches to IC and systems packaging in
general and IC-to-package interconnections in particular.

1521-3323/04$20.00 © 2004 IEEE
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Fig. 4. Three-dimensional models developed for the wafer level interconnections: (a) SB, (b) SSC, and (c) BON.

A. Finer Pitch Need and Technology Barriers

The latest ITRS roadmap clearly states the need for finer
pitch area array package and assembly technologies calling for
100-pm pitch by 2009. Simultaneously, the electrical perfor-
mance of these interconnections need to be improved to sup-
port data rates in excess of 10 Gb/s, while guaranteeing thermo-
mechanical reliability and lowering cost. These drivers present
enormous barriers. The current approach of lead-free solders
with underfill present major challenges in both dispensing the
underfill and guaranteeing fatigue resistance as the height of
solder bumps is lowered. The currently available compliant in-

terconnections, on the other hand, present electrical challenges
due to their higher inductance and resistance.

This paper proposes to understand the limits, as well as pro-
pose new ways of extending the state of the art of in three
IC-to-package interconnection technologies:

1) current solder bumps by extension to stretched-solder
column (SSCO);

2) current compliant interconnections by extension to lower
cost and higher compliancy;

3) current lead-free with organic underfills by extension to
improvements in underfill technology.
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In 2002, an international collaboration program between the
National University of Singapore, the Institute of Microelec-
tronics, Singapore, and the Packaging Research Center, Georgia
Institute of Technology, was initiated with a vision is to develop
interconnection technologies spanning from 100-pm pitch in
the short term to nanoscale in the long term, as wafer level
technologies, for the best electrical properties and lowest cost,
while guaranteeing mechanical reliability. This paper reviews
the progress by this team in the 100-pm-pitch interconnection
technologies.

B. What is Wafer Level Packaging?

As illustrated in Fig. 1, a wafer-level package (WLP) is one
in which the die and “package” are fabricated and tested on the
wafer prior to singulation. This process eliminates many of the
packaging processes required using conventional packaging re-
sulting in drastic reduction in manufacturing cost. The benefits
of WLP are as follows:

1) smallest IC package size as it is a truly a chip-size package
(CSP);
2) lowest cost per I/O because the interconnections are all
done at the wafer level in one set of parallel steps;
3) lowest cost of electrical testing, as this is done at the wafer
level;
4) lowest burn-in cost, as burn-in is done at the wafer level,
5) enhances electrical performance because of the short in-
terconnections;
6) ease of cooling through the fully exposed back of the die.
In this paper, three basic interconnection technologies for WLPs
at 100-pm pitch are pursued, each extending the state of the art
(Fig. 2):
1) lead-free solder ball (SB) with underfill, a rigid inter-
connection;
2) bed of nails (BON), a compliant interconnection;
3) SSC, semicompliant interconnection.
The following are the main electrical and mechanical design
parameters considered in this paper:
size of chip: 20 mm x 20 mm;
pitch of interconnections: 100 um;
number of 1/0s: 10000 per cm?;
temperature cycling range: —40 to 150 °C;
thermal cycle fatigue life: 1000 cycles (target);
signal frequency: 20 GHz;
interconnection parasitics:
dc resistance: 25 m¢2;
inductance: 50 pH;
capacitance: 10-15 fF.

C. Electromechanical Design of Interconnections

While the primary function of interconnections between chip
and substrate (Fig. 3) is to provide electrical connections, me-
chanical integrity guarantees this electrical connection. At the
assembly temperature, the stress in the interconnections is zero.
However, during the operation of the chip, the interconnections
experience temperature changes which result in differential ex-
pansion between chip and substrate due to the difference in the
coefficient of thermal expansion (CTE) between the silicon chip
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(CTE = 3 ppm/K) and the substrate (typically 18 ppm/K for
FR4 board material). This is illustrated in Fig. 3. This causes
stress to be induced in the interconnections which, if excessive,
can result in structural failure which leads eventually to elec-
trical failure of the chip. This is considered the single biggest
barrier to fine-pitch interconnections, requiring novel designs.

Two broad classes of interconnections have been proposed
in this program, namely, compliant and rigid interconnections.
With a compliant interconnection, the mechanical stress in the
interconnection for the same CTE mismatch is reduced. How-
ever, compliant interconnections are usually accompanied by
higher values of electrical resistance and inductance. With a
rigid interconnection, on the other hand, electrical resistance
and inductance can be lowered but stresses will be increased.
Thus, electrical and mechanical design requirements are often
conflicting and the final design is a tradeoff between the two.

Thus, before the three types of 100-pm-pitch interconnec-
tions were fabricated, extensive electrical and mechanical mod-
eling and simulations were carried out to optimize the geom-
etry of the interconnections. The final dimensions of the in-
terconnections are a tradeoff between the satisfaction of the
electrical performance requirements and the mechanical perfor-
mance requirements. Details of these simulations are given in
Sections II-VI. This will be followed by descriptions of fabri-
cation methods and discussion of the results.
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Fig. 7. Micromodels used in fatigue life estimation. (a) BON. (b) SSC. (c) SB.

Silicon Chip
II. ELECTRICAL MODELING OF PROPOSED Un der Bump Metallurgy Copper Pad
INTERCONNECTION SCHEMES (TiCrMNifAu)
The interconnection schemes presented in Section I-C had o ~ — \
to fulfill stringent electrical requirements. These requirements Polyimide/8 CB
. . Passivation
were based on the fact that the package using such intercon-
nects had to support high frequency performance applications o Rpm
. . . . . Hae:
(e.g., microprocessors, high pin count logic devices, etc.). The
ITRS road map [1] stated that in 2005 the high end micropro- §n35A205Cu &
cessor would have a 5-GHz clock frequency, consume 170 W & Sn3SAg y

of power and the operating voltage would be 0.9 V. It had been
shown [2] that to support the requirements given by the ITRS FR4 Substrate
road map the interconnection of the package had to fulfill some Substrate Pad

basic electrical properties such as dc resistance <25 mf?2, induc-
tance <50 pH, and capacitance <10-15 fF. These valued were  Fig. 8. Solder bump specifications for 100-gn pitch.
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Fig. 9. 100-pm-pitch lead-free solder bumps.

set as targets for the interconnection schemes described in this
paper.

The basic electrical characteristics of interconnects under
study had been modeled using three-dimensional (3-D)
full-wave solver, high-frequency structure simulator (HFSS)
[3]. The models developed are shown in Fig. 4. The assump-
tions made in the 3-D models are that all the dielectric materials
in the models are considered to be lossless and the signal traces
are considered perfect conductors. With these assumptions, the
S-parameters of the models were extracted with the signal lines
deembedded and thereafter an impedance parameter extraction
was done. An equivalent circuit model for each interconnection
was then obtained through a parameter fitting using the circuit
simulation software -ADS.

Furthermore, to achieve the targeted values for the resistance,
inductance and capacitance an optimization was done. Through
geometrical variation (height, width, diameter, etc.) an optimum
design for each of the interconnection schemes was obtained.
The following table summarizes the geometrical parameters
and electrical characteristics of the optimized interconnection
schemes.

III. MECHANICAL MODELING OF PROPOSED
INTERCONNECTION SCHEMES

For a 20 mm x 20 mm package with 100-um pitch, there
would be 40000 interconnectiions. Even after taking advan-
tage of symmetry, it would be computationally impractical to
perform 3-D simulations using adequately-sized elements for
all the solder joints. Hence, a macro—micro modeling approach
was adopted [5], [6] which used the displacement results from
a coarse mesh of the entire structure (i.e., the macromodel) as
boundary conditions of a fine mesh of the region of interest (i.e.,
the micromodel). The response of the region of interest might
then be studied using small 3-D solid elements without poten-
tially prohibitive computational requirements.

Two approaches had been taken for the macromodels. In the
macromodels of packages with either BON interconnections or
SSC interconnections, the interconnections were modeled by
equivalent beams [5] while the chip and substrate were modeled
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Fig. 10. Underfill coated on the bumped wafer.

as shell elements. An equivalent beam is one which gives ap-
proximately the same compliance in the z, y and z directions as
the actual interconnection. As the compliance of the BON was
not isotropic, the orientation of the BON (illustrated in Fig. 5)
is expected to have a significant effect. The equivalent beam
model is ideal for this situation, since the beam can easily be
rotated without affecting the mesh thus obviating creation of dif-
ferent meshes for different orientations of the BON. However,
for packages with underfill, this approach would not be possible.
Hence, a second approach was adopted for the macromodel of
packages with SB interconnections, where a very slim sector of
the package was modeled using 3-D solid elements (Fig. 6) [6].
This was possible since it would be reasonable to assume that
as the number of interconnections became very large, the dis-
placement of points on the chip and substrate would tend to be
directed radially. This fact had also been confirmed by 3-D finite
element analysis of WLPs. The macromodel of a package with
SSC interconnections only modeled an eighth of the package,
while that of the BON interconnections modeled a quarter. The
prerequisite planes of symmetry were assumed. Typical BON,
SSC, and SB micromodels, built using 3-D solid elements, are
illustrated in Fig. 7.
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Fig. 11.  Process flow of BON interconnections.

The efforts to date had been focused on predicting the fatigue  estimated under thermal cycling between 150 and —40 °C
lives of the interconnections with 100-pm pitch. The 20 mm  with the stress-free temperature being 150 °C. To predict the
x 20 mm package with 100 pm pitch was assumed to be fatigue life of the interconnections, a relatively simple corre-
fully populated with interconnections. Fatigue life had been lation by Solomon [7] based on maximum strain range was
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used. Solomon’s correlation relate fatigue life N to applied
maximum plastic shear strain range Ay,

Ay NPt =1.14. )

Ay, was obtained from a finite element simulation of the tem-
perature cycling process.

IV. FABRICATION OF PROPOSED INTERCONNECTION SCHEMES

Lead-Free SB With No-Flow Underfill: The detailed
specifications of the solder bump is illustrated in Fig. 8. A
100-pm-pitch lead-free solder (Sn3.5Ag0.7Cu and Sn3.5Ag)
bumping process was developed using Harima Chemical’s
Super Solder process as shown in Fig. 8. An extensive testbed
was designed and fabricated to study different pad metallurgies
and passivations for the Super Solder bumping process. The
results suggest that Ti/Ni/Cr/Au was the optimal under bump
metallurgy (UBM) and that polyimide was an ideal wafer
passivation. (See Fig. 9.)

A unique wafer level underfill material was developed for this
lead-free application. It contains an epoxy resin mix, a phenolic
hardener, and a latent catalyst. The curing behavior of the under-
fill was characterized using a modulated differential scanning
calorimeter (DSC). One important requirement for a successful
wafer level underfill process was that the underfill should not
gel before the solder melted and wetted the substrate. In order
to identify the gel point of the underfill, the time to gel was ob-
tained in the isothermal curing experiments performed using the
stress theometer. Compared to the degree of cure (DOC) change
in the isothermal curing experiments from the DSC measure-
ment, the DOC at gelation at different curing temperatures was
calculated. It was found that the DOC at gelation for the under-
fill is around 0.85. Therefore, the underfill can be B-stage cured
to DOC of 0.7 without pre-gel in the reflow process.

The unique process of the wafer level underfill required the
T, of the B-staged underfill to be around or above room temper-
ature, so that the material would be sufficiently solid to facilitate
dicing and prevent further reaction at room temperature storage.
The T, and the DOC of the underfill after B-stage at 130 °C for
different times were determined using the DSC.

The assembly of WLP with wafer level underfill was carried
out on a 6” wafer. The underfill was spin-coated on the wafer
and B-stage cured at 130 °C for 30 min. Then the wafer was
diced into 5 mm x 5 mm individual chips. Fig. 10 shows
the bumped wafer with B-staged underfill after dicing. The
B-staged underfill did not show any cracking or delamination
after dicing. The thickness of the underfill was about the height
of the bumps (i.e., around 50 pm). The chip with wafer level
underfill could be considered as a WLP, since no additional
underfilling step was needed in the assembly process.

BON Interconnections: The BON interconnection is a novel
compliant interconnect, extending beyond compliant intercon-
nects previously reported. Two variations are being pursued: a
single layer and a three layer structure. Their geometry and the
process flow for fabricating the BON interconnections are il-
lustrated in Fig. 11. Since a higher column height would re-
sult in higher compliance, lower stress, and hence, longer fa-
tigue life, interconnections as high as 50 pum were developed.
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TABLE 1
ELECTRICAL CHARACTERISTICS OF OPTIMIZED INTERCONNECTION SCHEME
Interconnection scheme DC resistance | Inductance Capacitance (fF)
(mQ) (pH)

Solder Bump 5 32 17

(diameter = 50 pm)

Bed of Nails 28 46 18

(diameter = 15 um, total

height = 50 um)

Stretched solder column 33 51 21

(diameter = 30 um, height =

100 pm)

A single layer BON wafer level interconnection had been suc-
cessfully fabricated with a nail height of 50 pm. The thick pho-
toresist process with high aspect ratio and good vertical profile
was developed after analyzing various commercially available
photoresist materials. Copper columns of 50 ym were electro-
plated, followed by Sn/Pb solder plating to 15 pm thickness.
The plating process was optimized for copper nail plating in
12 min and solder plating in 4 min, achieving a coplanarity of
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TABLE 1I
FATIGUE LIFE OF SB JOINT
Cases Bump  Height | Ball Diameter (um) | Substrate CTE | With Underfill | Fatigue Life
(um) (ppm/K)
Case 1 50 70 5 Yes 2108
Case 2 50 70 10 Yes 1749
Case 3 32 45 10 Yes 1597
Case 4 50 70 5 No 741
Case 5 50 70 10 No 138
TABLE III TABLE IV
FATIGUE LIFE ESTIMATES OF BON USING SOLOMON’S CORRELATION FATIGUE LIFE ESTIMATES OF SSC INTERCONNECTIONS
chip thickness (um) 250 640 640 640 Chip thickness (pm) 250 640 640 640
substrate CTE (ppm/K) 18 18 10 5 substrate CTE (ppm/K) 18 18 10 5
orientation = 0° 10 21 60 1575 Height=50 pm 81 R 171 3237
orientation = 45° 16 41 71 1228 Height=100 pm 97 27 276 3124
orientation = 135° 200 11 348 4037 Height=150 pm 34 31 313 2405
Height=200 pum 74 38 273 5772
Viewport:: 1 ODB: Aartmp/aS&mhour200/hao ur200_640.adb
IE, Max. Principal
(Ave. c;—itf;n?sg? _/—\_/—\_
Ty S
-1 Sgge-gi source termination
A -
+9.501e- tr = tf = 20ps
181589563 Rs = 50 ohm
+5.429e-02
+4.072e-02
+2.715e-02
+1.357e-02
+0.000e+00
Max +1.628e-01
at elem 6844 node 7255
Min +0.000e+00
at elem 449 node 376
High resistivity silicon
1 mm
Solder Ball ¥ (2kQ-em)
(p=50um) _ ;copp"
dielectric
Sem Scm
Fig. 15. Test vehicle developed for electrical measurements.
process cannot be given as the process is being patented. To
. demonstrate the process, a full array of 2000 SSC eutectic solder
X interconnections on a 10 x 10 mm test die at 200-pm pitch and
sl e ————— die-pad diameter of 100 ;m, was developed. This is shown in
Primary Var: IE, Max. Prinecipal .
Daformed Var: U Deformation Scale Factor: +1.000e+00 F]g 13

Fig. 14. Typical strain distribution in SSC of high aspect ratio.

+2-3 pm. For this process optimization study, a 10 X 10 mm
test chip with 3332 1/Os, as shown in Fig. 12, was designed and
fabricated.

SSC Interconnections: In terms of mechanical compliance,
the SSC interconnection is somewhere between the rigid SB and
the compliant BON, and may be regarded as a semicompliant
interconnection. In this interconnection design, an amount of
high-lead solder is first deposited on all the die-pads on wafers.
The solder is then melted, stretched, and cooled to form a unique
hourglass shape (Fig. 13) on the entire wafer. Details of the

V. RESULTS AND DISCUSSION
A. Thermomechanical Simulations

SB Interconnections: The chip thickness was kept constant
at 640 pm while the height and width of the SB were varied.
Estimates of the fatigue life based on the finite element simula-
tions using the slim sector model are given in Table II. It can be
seen that increasing solder height and decreasing substrate CTE
will increase the fatigue life. The use of underfill also increases
fatigue life dramatically.

BON Interconnections: The cross section of the BON was
fixed at 20 pm square and the pad at 40 pm square. The equiva-
lent beam macro model was employed and it was assumed that
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C = 171{F, R = 5 mf2. (¢) Stretched solder L = 51 pH, C' = 21 fF, R = 33 mf2.

failure of the interconnection occurred at the solder joining the
interconnection to the substrate. The results of fatigue life es-
timates based on the finite element simulations of some BON
with various heights and lengths were obtained and those for
the “best” BON are given in Table III. As can be seen, a BON
oriented at 135° usually has a higher fatigue life than one ori-
ented at 0 or 45°. This is probably due to the fact that the BON is
most compliant when oriented at 135° and stiffest at 0°. The ef-
fect of chip thickness is not so clear. As expected, smaller values
of substrate CTE give longer fatigue lives due to smaller CTE
mismatch between chip and substrate. The fatigue lives with a
FR4 substrate are very short suggesting that it might not be suit-
able for use with BON interconnections at 100-xm pitch.

SSC Interconnections: The effect of the height of the SSC
was studied. The volume was kept constant at 1.63 x 1073 m3
and the pad diameter at 50 pm. The distribution of the maximum
principal strain in the SSC of height 200 pm is shown in Fig. 14.
A significant finding is that, with the proposed unique shape of
the SSC and for high aspect ratios, the location of maximum
strain, and hence, the failure site, is shifted away from the usual
location at the solder/pad interface toward the center of the inter-
connection. This can be seen in Fig. 14. This is also confirmed
by fatigue experiments conducted on the SSC interconnection
which will be described in Section VI.

The results of fatigue life estimates based on the simulations
are given in the Table IV. For these simulations, no underfill
is considered. As expected, fatigue life increases with height.
Reducing either board CTE or chip thickness is beneficial to
fatigue life, with board CTE having a greater effect.

B. Electrical Testing

As shown earlier the interconnection schemes had promising
electrical parameters, but to demonstrate further their ability to
support very high speed signals with minimum deterioration and
to provide adequate power supply, a more complex test vehicle
and test methodology were needed. The board, the chip, and the
interface between them were studied and the electrical perfor-
mance of the wafer level interconnect schemes were evaluated
through the proposed test methodology.

As the ultimate goal of this paper was to demonstrate the
ability of the wafer level off-chip interconnections to support
speeds and power comparable with that on-chip, this required
careful design of the test structure. The test vehicle consisted of
coplanar wave guided (CPW) lines on high resistive silicon sub-
strate interfaced with a CPW line on a low dielectric constant
and low dielectric loss board [2], [4]. The transition between
the chip and the board was completed through the interconnect
schemes proposed earlier (BON, SSC, SB), as shown in Fig. 15.
Both of the CPW lines had been characterized using time do-
main reflectometry (TDR) and vector network analyzer (VNA)
based measurements.

The synthesized models extracted from the measurement re-
sults were used together with the equivalent circuit extracted
for the interconnect schemes and a data transmission at 5-GHz
speed had been simulated. The methodologies used for model
extraction was as described in [2]. The data transmission at
5 GHz was simulated using HSPICE model. A random pulse
source with 200 ps period and a rise time of 20 ps was used.
The output impedance of the pulse source was 50 €2 and the
high-level and low level voltages of the pulse were 2 and 0 V,
respectively. The transient signal at the far end termination was
simulated from 50 to 100 ns, and converted to the eye diagrams
(Fig. 16). All the combinations used for the simulations showed
clean and wide open eyes demonstrating that high-speed signal
transmission could be achieved off chip through this kind of in-
terconnection. It must be mentioned here that the choice of the
board, the design of CPW lines, as well as the design of the
chip /interconnect/ board interfaces were very important for the
overall system performance.

C. Mechanical Testing

Static tensile tests, as well as mechanical cyclic loading fa-
tigue tests, had been conducted on the SSC interconnection to
determine its strength and fatigue life at room temperature [8].
The SSC specimens had base diameters of 100 ym and had been
stretched to varying heights (aspect ratios) between two silicon
pieces. The experimental setup for the fatigue tests is shown in
Fig. 17. The specimen was attached to a specially designed fix-
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Fig. 17. Experimental setup of mechanical cyclic loading fatigue test.

ture which allowed a sinusoidal cyclic lateral displacement to
be applied as shown in Fig. 17.

The experimental test results are given in Table V. In the fa-
tigue tests, specimens were subjected to a cyclic lateral sinu-
soidal displacement of amplitude of 2.8 pm and frequency 5
Hz. As can be seen from Table V, as the aspect ratio is increased
the static strength decreased. This is expected since the solder
volume was kept constant and a higher aspect ratio will result in
a smaller minimum cross-sectional area of the interconnection
and hence, a smaller axial strength. On the other hand, the fa-
tigue life of the interconnections increased with the aspect ratio
(height) of the solder column. This is expected as a higher as-
pect ratio leads to lower shear strains in the interconnection and,
hence, a higher fatigue life. Another interesting finding is that
at low aspect ratios the site of the fatigue failure is located at the
solder/pad interface as is usually the case. However, as the as-
pect ratio is increased, the failure site moves toward the middle
of the interconnection. Fig. 18(a) shows a specimen of aspect
ratio 2.2 where the failure occurred at the UBM while Fig. 18(b)
shows a specimen of aspect ratio 3.9 where the fatigue failure
occurred near the mid-height of the interconnection. This ex-
perimental result is consistent with the numerical simulation
described earlier (Fig. 14). A significant advantage of shifting
the failure location away from the solder/substrate interface to
within the bulk material is that fatigue failure should be more
consistent and, hence, a more consistent fatigue model should
be possible.
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(b)

Fig. 18. Fatigue failure mode for SSC at aspect ratios of (a) 2.2—intermetallic
failure at UBM and (b) 3.9—bulk solder failure at midlength.

VI. EVALUATION OF PROPOSED INTERCONNECTION SCHEMES

The main objective of the electrical and mechanical simula-
tions described above is to optimize each of the three proposed
100-pm-pitch interconnections and compare them in terms of
how well they satisfy the electrical and mechanical require-
ments. From the aforementioned electrical and mechanical sim-
ulations, the best tradeoffs for SB, BON, and SSC interconnec-
tions were determined.

A template has been constructed to perform a comparative
evaluation of the three proposed interconnections. This is shown
in Table VI. As can be seen, all the three interconnections are
generally able to meet the electrical requirements. Without un-
derfilling, the SSC has the highest fatigue life followed by the
SB and the BON. Assuming Solomon’s correlation is correct
and without underfilling, all three interconnections are expected
to fail to meet a fatigue life of 1000 cycles even with the most ad-
vanced organic substrates having a CTE of 10 ppm/K which are
commercially available presently. However, with underfilling
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TABLE V
MEASURED FATIGUE LIFE AND STATIC STRENGTH OF SSC INTERCONNECTIONS
Aspect ratio 0.9 1.8 2.2 2.8 3.9
Static strength (N) 35 23 17 12 8
Fatigue life (cycles) 600 1,800 2,700 3,600 8,600
Fatigue failure mode Solder near | UBM UBM UBM Solder at mid-
end height
TABLE VI

COMPARISON OF THREE 100 p#m PITCH INTERCONNECTION SCHEMES

Mechanical Requirements
Electrical Fatigue Life without | Fatigue Life with
EVALUATION Requirements Underfill (cycles) | Underfill (cycles) [1000]"
TEMPLATE [1000]"
C L R CTE  of  substrate | CTE of substrate
100 pm  pitch [ (fF) [ (pH) | (M) | (ppm/K) (ppm/K)
interconnection scheme | [15] | [50]' | [25]'
18 10 5 18 10 5
Solder Ball (height 50 | 17 32 5 - 417 | 2223 1320 1749 | 2108
wm, diameter 70 pwm)
BON (height 100 um,
length 50 um) 18 46 28 11 348 | 4037 - - -
SSC (height 150 um,
diameter 50 um) 21 51 33 31 518 | 4405 1484 3328 6886

" Target values

both SSC and SB can meet mechanical requirements with a sub-
strate CTE of 10 ppm/K. Again, it must be emphasized that the
above conclusions are dependent on the accuracy of Solomon’s
correlation. Also, the solder material currently used in the simu-
lations is eutectic solder. In actual interconnections to be devel-
oped eventually, the solder to be used for the SB will be lead-free
solder while that used for the SSC will be high-lead solder. Fur-
thermore, the upper limit of the temperature cycling range of
150 °C is more extreme than the usual limit of 125 °C. Relia-
bility tests which are currently being conducted will determine
if acceptable fatigue lives will be achieved. However, the simu-
lations do provide a good indication of the relative merits of the
three proposed interconnection schemes in terms of mechanical
reliability.

VII. CONCLUSION

A Nano Wafer Level Packaging program has been initiated to
demonstrate future IC-package interconnections that meet the
electrical, mechanical, cost, and pitch requirements. The initial
focus, however, has been on 100-ym pitch. Three interconnec-
tion designs and technologies at 100 pm pitch such as rigid
lead-free SB with no-flow underfill, compliant BON and semi-
compliant SSC interconnection have been developed. It was
noted that the optimum geometry for electrical requirements
often conflict with that for mechanical requirements. Hence, ex-
tensive electrical and mechanical simulations have been carried
out to optimize their designs in order to satisfy both the elec-

trical and mechanical design parameters. The results indicate
that the electrical requirements can be met but for meeting the
mechanical requirements, it is necessary to use organic boards
with a CTE of 10 ppm/K or lower. Of the three interconnection
schemes proposed, the scheme which best meets the electrical
requirements is the SB interconnection while the scheme which
best meets the mechanical requirements is the SSC.
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