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SUMMARY 

 

Photovoltaic manufacturing (PV) is material intensive with the cost of crystalline 

silicon wafer, used as the substrate, representing 40% to 60% of the solar cell cost. 

Consequently, there is a growing trend to reduce the silicon (Si) wafer thickness and to 

increase wafer size leading to new technical challenges related to manufacturing. 

Specifically, the breakage of thin Si wafers during handling and/or transfer is a 

significant issue. Therefore improved methods for breakage-free handling of thin and 

large Si wafers are needed to address this problem. 

An important pre-requisite for realizing such methods is the need for fundamental 

understanding of the effect of handling device variables on the deformation, stresses, and 

fracture of mono- and multi- crystalline silicon wafers. This knowledge is lacking for thin 

wafer handling devices including the Bernoulli gripper, which is an air flow nozzle based 

device. 

In this thesis, a computational fluid dynamics (CFD) model of the air flow 

generated by a Bernoulli gripper has been developed. This model predicts the air flow, 

pressure distribution and lifting force generated by the gripper. The model is 

experimentally verified for a rigid substrate through measurements of the air pressure 

distribution. For thin PV Si wafers (e.g. EFG and Cast silicon), the CFD model is 

combined with a finite element model (FE) of the wafer to analyze the effects of wafer 

flexibility on the equilibrium pressure distribution, lifting force and handling stresses. 

This model is also experimentally verified and shown to yield good results. Specifically, 

the effect of wafer flexibility on the air pressure distribution is found to be increasingly 



 xx

significant at higher air flow rates. The model also yields considerable insight into the 

relative effects of air flow induced vacuum and the direct impingement of air on the 

wafer on the air pressure distribution, lifting force, and handling stress. The latter effect is 

found to be especially significant when the wafer deformation is large such as for the thin 

EFG wafer studied. In addition to silicon wafers, the model can also be used to determine 

the lifting force and handling stress produced in other flexible materials. 

Finally, a systematic approach for the analysis of the total stress state (handling 

plus residual stresses) produced in crystalline Si wafers and its impact on wafer breakage 

during handling is presented. Results confirm the capability of the approach to predict 

wafer breakage during handling given the crack size, location and fracture toughness. 

This methodology is general and can be applied to other thin wafer handling devices 

besides the Bernoulli gripper. 

 



 

1 

CHAPTER I 

INTRODUCTION 

 

1.1  Photovoltaic Manufacturing 

The crystalline silicon based photovoltaic (PV) solar cell manufacturing industry 

is experiencing rapid growth due to greater emphasis on the development of renewable 

energy sources. Of the available PV technologies, single- and multi-crystalline silicon 

based solar cells make up over 80% of the commercial solar cells produced today [1]. 

Since the cost of silicon wafer can represent as high as 50% of the solar cell cost [2], PV 

manufacturers are actively pursuing the development of solar cells made of thinner (less 

than 200 μm) and larger (up to 210 mm x 210 mm) crystalline silicon wafers [3]. Efforts 

to decrease wafer thickness from the current values of ~200 μm are aimed at reducing 

material costs while the increase in wafer size from ~125 mm x 125 mm to 210 mm x 

210 mm targets reduction in solar panel/array assembly costs. However, given the 

inherent brittleness of silicon, reduction in wafer thickness has been found to 

significantly increase wafer/cell breakage rates, especially in the robotic handling and 

transfer steps used in solar cell processing, thereby significantly lowering solar cell yield 

and increasing material and manufacturing costs [4]. Figure 1.1 shows published data for 

the breakage rate of laser grooved buried grid solar cells as the wafer thickness is reduced 

from 270 μm to 250 μm [4]. Note that for proprietary reasons the units of the vertical axis 

are not specified. Analysis of the data shows that the fraction of cells that break during 

wafer/cell handling and/or transfer is approximately 26.6% and 28.9% for the 270 μm 

and 250 μm thick wafers, respectively. Assuming a 96% yield for the 270 μm wafer and 
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assuming conservatively that the breakage rate for each operation increases linearly with 

decrease in wafer thickness; the predicted yield for 150 μm thick wafers is ~73.6%. This 

is not an unreasonable number for very thin silicon wafers. The predicted fraction of 

breakage associated with wafer transfer/handling of 150 μm wafers is ~29.8%. 

 

 

  
Figure 1.1:  Breakage rate data for laser-grooved buried grid solar Cast Si solar cells [4] 

 

 

Although considerable work has been done in the Integrated Circuit (IC) industry 

on handling silicon wafers, practical use of IC handling techniques is limited in the PV 

industry because of their different requirements [5]. For instance, IC production deals 

almost exclusively with single crystal silicon (sc-Si) wafers of starting thickness typically 

in the 600-800 μm range whereas majority of crystalline silicon solar cells are made from 

significantly thinner (≤ 220 μm) multi-crystalline silicon (mc-Si) wafers. In addition, PV 
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manufacturing is material intensive as opposed to IC fabrication, which is process 

intensive thus driving the need for low-cost and high volume handling methods. 

Therefore, improved methods for breakage-free handling of thin and large silicon wafers 

are needed to address this problem.  

1.2  Limitations 

An important pre-requisite for the development of breakage-free handling 

methods is the need for improved fundamental understanding of the causes of wafer 

breakage during thin wafer handling and/or transport. This requires knowledge of the 

stress distribution produced in different types, thicknesses and sizes of PV silicon wafers 

as a function of the handling device variables and a systematic methodology to evaluate 

and analyze them relative to structural defects such as cracks present in the wafers. A 

systematic scientifically-based investigation of these issues is lacking today for wafer 

handling methods commonly used in the PV industry. These methods include Bernoulli 

gripping - a pneumatic gripping method - that is commonly used. The Bernoulli gripper 

consists of an air flow nozzle shown schematically in Figure 1.2. In this device, a lifting 

force is created between the gripper face and the wafer by a radially-diverging 

decelerating air flow, which produces a low pressure region or partial vacuum between 

the gripper and the wafer. In the geometry shown in Figure 1.2, the wafer weight is 

balanced by the lifting force. 
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Figure 1.2:  Schematic of a Bernoulli gripper 

 

While Bernoulli grippers are widely used in handling silicon wafers and solar 

cells, their mechanics are not well understood, particularly for handling thin crystalline 

silicon wafers (< 200 μm) that are inherently flexible. Consequently, ad-hoc methods are 

often used in practice to adjust the control variables of the gripper to prevent wafer 

breakage. When handling a very thin wafer, the suction force deforms the wafer 

significantly and generates stresses in it. These stresses along with pre-existing residual 

stresses in the wafer due to crystal growth and wafering (laser cutting/wire sawing) 

processes can lead to wafer fracture. In this context, a clear understanding of the effects 

of Bernoulli gripping variables on thin mono- and multi- crystalline silicon wafer 

deformation, stresses, and breakage is lacking. In addition, a systematic and model-based 

approach for guiding the selection of thin wafer gripping/handling parameters is also not 

available.  

Flifting 
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1.3  Research Questions and Objectives 

 In light of the aforementioned limitations in the knowledge pertaining to 

handling-induced wafer breakage in PV manufacturing, the following specific research 

questions are addressed in this thesis: 

• What is the distribution of stress produced in different types of thin crystalline 

silicon wafers during automated handling and how can it be determined? 

• What are the effects of wafer handling device variables on the deformation and 

stress produced in thin crystalline silicon wafers? 

• Can wafer breakage due to handling stresses be predicted and if so how? 

These research questions are answered in this thesis through modeling, analysis and 

experimentation with a focus on Bernoulli gripping of different types and thicknesses of 

crystalline silicon wafers used in solar cell manufacture.  

The specific research objectives formulated to address the research questions posed 

above are as follows: 

• Develop and experimentally verify a computational fluid dynamic (CFD) model 

of the air flow generated by a Bernoulli handling device when handling a rigid 

thick substrate. 

• Develop and experimentally verify an iterative fluid-structure interaction model 

of the Bernoulli thin wafer gripping process that accounts for the effects of wafer 

deformation on the lifting force and stress state produced in the wafer. 
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• Experimentally investigate the effects of wafer characteristics (type, thickness, 

size) and Bernoulli gripper variables on the deformation and total stress state 

produced in thin crystalline PV silicon wafers. 

• Develop and verify a method to predict wafer breakage/fracture from the total 

stress state produced in the wafer during Bernoulli handling.  

 

Realization of these research objectives will enable solar cell manufacturers to 

optimize their wafer handling methods to minimize wafer/cell breakage and associated 

material and manufacturing costs when using thinner (< 200 μm) wafers. In addition, this 

research will provide modeling tools for the optimization of the Bernoulli gripper design 

itself.  

Although the results discussed in the thesis are specific to Bernoulli gripping, the 

methodology and basic understanding of the factors influencing the breakage of thin 

silicon wafers during handling are general and applicable to other handling devices that 

induce deformation and stresses in the wafers, e.g. low pressure grippers. 

1.4  Thesis Outline 

This thesis is divided into six main chapters including introduction. Chapter 2 

reviews prior work that is relevant to the thesis topic and identifies its key contributions 

and limitations. Chapters 3 through 5 contain the main contributions of this thesis and are 

summarized in the flowchart shown in Figure 1.3. 

Chapter 3 presents the modeling and prediction of the air flow, radial air pressure 

distribution and lifting force produced by a non-contact Bernoulli gripper on a rigid 

substrate. A Reynolds stress model is implemented in a finite volume based segregated 
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Reynolds-Averaged Navier-Stokes computational fluid dynamics (CFD) solver. In 

addition, an experimental set up is designed to validate the predicted pressure distribution 

acting on a rigid substrate.  

Chapter 4 presents an iterative procedure that combines the CFD model of 

Bernoulli gripping developed in Chapter 3 with a non-linear finite element model of the 

thin silicon wafer to analyze the effect of wafer flexibility on the equilibrium wafer 

deformation, radial air pressure distribution and handling force. The distribution and 

magnitude of the handling stresses produced in two types of thin mc-Si PV wafers are 

also obtained and analyzed. The iterative approach is experimentally validated by 

comparing measured and predicted wafer deformation profiles.  

Chapter 5 presents a systematic approach to breakage analysis of crystalline 

silicon wafers during handling via analysis of the total stress state produced in the wafer. 

The total stress state is determined using a combination of wafer deformation 

measurements and non-linear finite element analysis. In addition, knowledge of the total 

stress state combined with the crack size and location enables determination of wafer 

breakage and the associated fracture stress. The use of linear elastic fracture mechanics to 

predict wafer breakage during Bernoulli handling is experimentally verified through 

wafer breakage tests. In addition, critical crack lengths that can lead to wafer fracture are 

also identified.  

Finally, the main conclusions of this thesis are drawn in Chapter 6 and 

suggestions for future work are given. 
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Figure 1.3:  Flowchart of the key thesis topics 
 

Study of wafer/solar cell deformation, stresses 
and breakage during handling  

Computational fluid dynamics (CFD) model for 
Bernoulli handling of rigid substrates (Chapter 3) 

Fluid-structure interaction model for Bernoulli 
handling of flexible substrates (Chapter 4) 

Study of breakage in silicon wafers during handling 
via analysis of the total stress state (Chapter 5) 

Experimental validation of the predicted 
pressure distribution 

Experimental validation of the predicted wafer 
deformation profiles 

Experimental validation using linear elastic 
fracture mechanics and breakage tests 

Evaluation of the critical crack sizes for given 
handling conditions using a Bernoulli gripper 

Evaluation of the lifting force 

Prediction of the pressure distribution, lifting 
force and applied stresses in thin silicon wafers 

Finite element model of the total stress state 
using measured deformation profiles 
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CHAPTER II 

LITERATURE REVIEW 

 

Automated handling of non-rigid parts is a challenging field of industrial 

automation. Research has been quite exhaustive in the development of handling devices 

for addressing the handling of compliant materials, especially for limp sheets such as 

fabrics [6-11]. Different gripping principles can be used to handle non-rigid materials as 

shown in Figure 2.1. Although silicon wafers were initially considered to be rigid, with 

the reduction in wafer thickness this assumption needs to be reconsidered for gripper 

design and operation. Handling needs to be more precisely controlled to avoid wafer 

breakage. Hence, this section reviews past work in the relevant areas of wafer handling, 

specifically those related to the Bernoulli gripper and finally the different silicon wafer 

types and their mechanical properties. 

 

 

 

Figure 2.1:  Technological principles for handling of non-rigid materials [9] 
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2.1  Wafer Handling 

 
Wafer handling was investigated first in the semiconductor (IC) industry 

particularly with the use of air bearings or air tracks to handle silicon wafers in the 1970’s 

[12-16]. These devices were developed to limit the contamination of the wafer by any 

contacting surface. In the 1980’s, an extension of the air track idea to robotic grippers 

was developed in [17-19]. In 1993, Tokisue and Inoue [20] designed and tested several 

handling devices: a non-contact handler (or Bernoulli gripper), a non-contact gas 

levitation track, a liquid levitation track for wet processes and finally an electrostatic 

chuck. Extensive work has been done on electrostatic grippers for wafer handling from 

1993 to 2000 [21-23]. Since then, with reduction in wafer thickness, automated handling 

was faced with new challenges [24] and novel technologies such as electrostatic grippers 

and bonding techniques were developed to address these challenges. Bonding techniques 

simplify the handling of thin silicon wafers by temporarily increasing the thickness with 

the use of a thicker substrate or carrier [25-30]. Finally, a simultaneous vacuum-Bernoulli 

gripper was developed in allowing the handling of very thin wafers (100 μm minimum 

thickness for 200 mm round wafers) and avoiding the use of tape/bonding [31, 32]. 

However, key differences between PV and IC applications limit the usefulness of the 

aforementioned techniques, particularly electrostatic grippers and bonding methods, in 

solar cell production. 

For instance, IC production deals almost exclusively with round single crystal 

silicon wafers of starting thickness in the ~600-800 μm range whereas majority of 

crystalline silicon solar cells are made from significantly thinner (≤ 200~250 μm) multi-
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crystalline silicon square wafers or single crystal pseudo-square Czochralski (Cz) wafers. 

Very thin wafers tend to bow easily during certain process steps (e.g. metallization) and 

are prone to failure when held in electrostatic chucks or vacuum gripper in the bowed 

state [31]. Additionally, the high cost of electrostatic chucks cannot be justified in solar 

cell production. Certain types of mc-Si wafers used in solar cell manufacture (e.g. Edge-

defined Film Growth or EFG) are quite non-uniform in thickness and are therefore not 

well-suited for handling by the wafer-to-substrate bonding method. Further, the bonding 

method is an expensive solution for the solar industry because of the need for one carrier 

per solar cell and the added cost of a de-bonding step. For these reasons, wafer handling 

methods used in the IC industry are not prevalent in solar cell manufacture. 

2.2  Radially Diverging Outflow Air Nozzle or Bernoulli Gripper 

Bernoulli gripper or radial air outflow nozzle was first patented and certified in 

1969 for lifting rigid circular semiconductor wafers [33, 34]. In this handling device, an 

axially directed air flow is diverged in the radial direction under proper flow and design 

conditions, creating a low pressure (vacuum) region between the gripper surface and the 

planar object (see Figure 2.1). This technique enables automated handling of many types 

of materials ranging from silicon wafers to woven fabrics. In the 1980s, Paivanas and 

Hassan [12, 17] extensively studied radially diverging air flow for contactless handling of 

rigid semiconductors wafers. Modifications of the initial design included the use of an 

end mill cone to avoid direct impingement of the wafer surface by the radial air flow 

[35]. Grutzeck and Kiesewetter [36] analyzed the use of the Bernoulli effect in micro-part 

handling. Erzincanli et al. [37, 38] extended the use of the Bernoulli gripper to other non-
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rigid materials such as food. Ozcelik et al. [8, 9, 39] did experimental work on handling 

woven fabrics and other materials using this type of non-contact end-effector. 

To the best of the author’s knowledge, analysis of applied stresses and relating it 

to wafer breakage during a handling step has not been studied in the literature thus far. 

Prediction of wafer breakage for a specified set of handling control parameters is also not 

available. In addition, the influence of flexibility of the handled object on the flow, 

pressure distribution and lifting force produced by a Bernoulli gripper has not been 

reported. 

2.3  Mechanical Properties of Silicon Wafers 

The majority of commercial solar cells are made from crystalline silicon. Either 

mono- or multi-crystalline silicon is used in the manufacture of solar cells. 

Multicrystalline silicon is grown by either ingot (cast wafers) or ribbon (e.g. Edge-

defined Film-fed Growth or EFG wafers) techniques leading to different material 

properties [2]. Figure 2.2 shows a schematic of the EFG growth process. In this case, 

wafers are laser cut from the tube; such cutting process usually induces cracks at the 

edges of the wafer, requiring some etching to reduce the laser cutting damage. 
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Figure 2.2:  Schematic of EFG growth process (edited from [40]) 
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2.3.1  Fracture Strength of Silicon Wafer 

At room temperature, silicon is a brittle material. When the applied stress exceeds 

a critical level (the fracture strength), breakage will occur [41]. The critical stress level 

depends on the size of cracks or defects present in the silicon. When using small wafers 

compared to full size wafers, larger wafer strengths are obtained since the probability of 

encountering a large defect in a small area is reduced [42]. In [43, 44], strengths in the 

range of 2-4 GPa for small plates (around 5 mm in diameter) of single crystal polished Si 

wafers have been measured using a ball-on-ring device. On the contrary, tests on full size 

polished single-crystal silicon revealed smaller strengths on the order of 120 MPa using a 

ring-on-ring test [45]. As wafers were thinned from as-sawn to etched and finally 

polished wafers, the fracture strength increased since the depth of damage was reduced 

[45]. A similar trend was noticed from biaxial flexure tests on small (111) Si wafers. An 

observed increase in the depth of damage led to a decrease in the fracture strength [46]. 

In all cases the Weibull statistical theory [47] is used to determine the probability of 

wafer failure at a given stress level. The influence of the thickness on failure stress was 

experimentally studied on small dies [48]. It was found that for thickness above a critical 

value, a decrease in thickness led to an increase in the failure stress. The trend was 

reversed for thicknesses below the critical value. 

In the PV industry, considerable variation in fracture strength as a function of 

manufacturing process steps was found for Gallium Arsenide (GaAs) substrates [49]. 

Different bending tests have been reported to measure the fracture strength of silicon 

wafers and are summarized in Table 2.1. The resulting fracture strength is seen to vary 

significantly. Note that the cast wafers are wire-sawn while EFG wafers are laser cut. 
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Table 2.1:  Fracture strength of mc-Si wafers 

Type Size Thickness Surface σmax Method Ref.
 (mm) (μm)  (MPa)   
Cast mc-Si 100x100 mm 330 As-sawn 83 Biaxial [50] 

Cast mc-Si 100x100 mm 310 Etch 10μm/side 234 Biaxial [50] 

Cast mc-Si 100x100 mm 290 Etch 20μm/side 299 Biaxial [50] 

Cast mc-Si 100x100 mm 290 Etch 20μm/side 520 Biaxial [50] 

Cast mc-Si 100x100 mm 290 Etch 20μm/side 363 Biaxial [50] 

Cast mc-Si 125x125 mm 195 As-sawn 560 Ring-on-ring [51] 

Cast mc-Si 125x125 mm 168 Saw damage etch 1500 Ring-on-ring [51] 

Cast mc-Si 125x125 mm 147 Polish etch 2400 Ring-on-ring [51] 

Cast mc-Si 156x156 mm Unspecified As-sawn 120 4 point bending [52] 

EFG mc-Si 100x100 mm 330 As-cut 404 Biaxial [50] 

EFG mc-Si 100x100 mm Unspecified As-cut 50 Twist test [53] 

 

 

In determining the wafer strength, the distribution of applied stresses, the 

distribution of residual stresses and the location of flaws will influence the fracture stress. 

The applied stress distribution for the twist test was evaluated using Finite Element (FE) 

simulations by Chao et al. [53]. When modeling thin wafers they found that geometric 

non-linearities were significant and needed to be accounted for in the simulations. 

Behnken et al. [54] reported on the applied stress distributions produced in different 

bending tests. . It is often assumed that wafers break at the location of the maximum 

tensile stress [2]. To avoid such an assumption, Sun et al. [55] considered the uniformity 
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of the stress field in the defect region in order to optimally select the test configuration. 

For example, a ground die sample resulted in randomly distributed flaws on the surface. 

The test configuration that generates a uniform stress field on the largest area of the 

tensile surface will be best since the location of the flaws is not known a priori. Finally, 

edge cracks and surface cracks can be separated using both ring-on-ring and four point 

bending tests [56] or using a ball-on-edge test [57]. 

In light of the above work, it is evident that there is a significant variation in the 

fracture strength of the mc-silicon wafers reported in the literature. Fracture strength 

being too dependent on the wafer type and structural defects, Weibull statistics are 

usually required to evaluate wafer breakage.  

2.3.2  Breakage of Silicon Wafers  

Fundamentally, breakage of Si wafers during processing or handling is due to the 

propagation of cracks present in the wafer. Knowledge of crack locations and sizes is 

therefore needed to predict wafer breakage. A few techniques have been developed to 

detect and quantify cracks in wafers [58-60]. A crack will propagate if a sufficiently large 

in-plane tensile stress is applied normal to the crack plane (assuming Mode I fracture). 

Thus, it is necessary to analyze the nature, magnitude and distribution of the total stress 

state generated in the wafer/cell during handling or processing. This includes the residual 

stress generated in a prior process step and stresses applied to the wafer/cell by the 

current process, and handling and/or transport methods used in solar cell manufacture. 

Different techniques can be used to evaluate the residual stresses present in the 

wafer. Of particular interest to the PV industry, non-destructive full-field techniques have 

been developed such as Shadow-Moiré [61] and near-infrared polariscope [40]. For the 
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Shadow-Moiré technique, the residual stresses are extracted from the out-of-plane 

deformation profile obtained after applying a concentrated load to the sample. The 

influence of the in-plane residual stress is captured by the measured out-of-plane 

deformation. This approach being not sensitive to local stress concentrations a near-

infrared polariscope technique was developed by He [40]. This technique measures the 

change in the polarization state of the transmitted light and allows characterization of the 

full-field through-thickness residual in-plane shear stress but not the complete residual 

stress state in the wafer. Hence, it is not yet possible to superpose the residual stresses on 

the handling stresses to evaluate the total stress state generated in the wafer for wafer 

breakage prediction. 

2.3.3  Elastic Properties of Silicon Wafers 

The generalized Hooke's law gives the relationship between the stress and strain 

tensors as: 

),,,,,( zyxlkjiC klijklij == εσ       (2.1) 

where x, y, z is an arbitrary rectangular coordinate system, ijklC is the tensor of elastic 

coefficients (also called elastic stiffness tensor). The Hooke’s law can also be written as: 

klijklij S σε =           (2.2) 

where ijklS is the compliance tensor. 

ijlkjiklijkl CCC ==          (2.3) 

The tensor of elastic coefficients or the compliance tensor has at most 81 

components but due to the symmetry in the stress tensor and strain tensor, as shown in 
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Equation 2.3, the number of distinct components reduces to 36 and can be written as a 6 x 

6 matrix when using index notation. Using this notation, the Generalized Hooke’s law 

defined by Equations (2.1) and (2.2) can be written as: 

ααββ

βαβα

σε

βαεσ

S
or

C

=

== )6,,2,1,( K

      (2.4) 

It can be shown that βααβ CC =  (i.e. the stiffness matrix is symmetric) 

consequently, the number of independent terms is reduced to at most 21. The same 

conclusion can be drawn for the compliance matrix. Note that the stiffness matrix is 

simply the inverse of the compliance matrix.  

A particular crystal symmetry or atomic arrangement can further reduce the 

number of independent constants. For a cubic crystal like silicon, when the crystal-axis 

coordinate system is used, the compliance matrix reduces to [62]: 
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A similar matrix can be written for the stiffness matrix, 'βαC . The presence of the 

prime indicates the use of the crystal coordinate system. The three independent 

components of the stiffness matrix and compliance matrix can be experimentally 

measured and are listed in Table 2.1. 
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Table 2.2:  Stiffness and compliance coefficients for silicon [63] 

s11 s12 s44 c11 c12 c44 
(1011 Pa)-1 (1011 Pa) 

0.7691 -0.2142 1.2577 1.6564 0.6394 0.7951 

 

 

The degree of anisotropy for cubic crystals can be measured via the Zener elastic-

anisotropy index defined as [61]: 

1211

442
cc

c
A

−
=           (2.6) 

where cij denote the three independent cubic-symmetry elastic-stiffness coefficients. The 

closer the index is to one the lower the degree of anisotropy. An isotropic material will 

have a Zener elastic-anisotropy index of 1. Silicon elastic anisotropy index being greater 

than 1, 56.1=SiA , the Young’s modulus, shear modulus and Poisson’s ratio are direction 

dependent.  

The influence of the direction on the Young's modulus can be represented in 3-D 

plots. Figure 2.3 shows the anisotropic behavior of the Young’s modulus for silicon. For 

an isotropic material the shape will be a sphere. The greater the degree of anisotropy, the 

more distorted the shape will be. 

A tensor transformation is needed to define the compliance matrix (or stiffness 

matrix) in an arbitrary coordinate system from the known values defined in the crystal 

coordinate system. The transformation rule for a fourth-order Cartesian tensor is given by 

[64, 65]: 

mnpqtqkpjnimijkl SaaaaS ='         (2.7) 
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where the indices of the direction cosines, sta , run over 1,2,3. 

 

 

 

Figure 2.3:  Young’s modulus (in Pa) as a function of direction for silicon 
 

 

As an example, the anisotropic material properties can be specified for EFG 

silicon wafers using the stiffness matrix defined in the wafer coordinate system (x, y, z), 

where x and y are the in-plane coordinates and z is the out-of-plane coordinate. The 

stiffness coefficients are obtained from the known stiffness coefficients for single cubic 

Si crystal with respect to the crystal coordinate system (x’, y’, z’). Although EFG wafers 

[001] 

[100] 
[010] 
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are multi-crystalline wafers, there are known to have predominant grain orientation due 

to the growth process. Specifically, EFG wafers are characterized by a {110} surface and 

a <112> growth direction [66]. Stiffness is specified using the (110) single crystal 

properties taking ]211[ , ]111[  and ]110[  orientations as the x, y and z axes. For the EFG 

wafer, using the transformation defined in Equation 2.7, the elastic stiffness matrix 

obtained is given by (GPa): 
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In light of the above work, it is evident that for crystalline silicon wafers, 

mechanical properties can be direction dependent. In this work, anisotropy of cubic single 

crystal silicon will be used when modeling Cz silicon wafers and EFG silicon wafers. For 

cast silicon wafers, isotropic mechanical properties will be assumed. 
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2.4  Summary 

It is clear from this literature survey that: 

 Very limited modeling and experimental work has been carried out on thin 

wafer handling. Particularly, knowledge of the handling stresses generated by 

different handling devices including the Bernoulli gripper for given handling 

control variables have not been reported in the literature.  

 When handling thin substrates with the Bernoulli gripper, the analysis of the 

influence of substrate flexibility on the equilibrium lifting force, pressure 

distribution and stresses is lacking. 

 A systematic approach to breakage analysis of crystalline silicon wafers 

during handling via analysis of the total stress state produced in the wafer is 

also not available in the literature. 

Therefore the rest of this thesis describes work aimed at the fundamental 

understanding and characterization of thin wafer handling with a particular focus on 

Bernoulli gripping and the analysis of wafer breakage during handling through both 

modeling and experimental approaches. 
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CHAPTER III 

MODELING OF THE PRESSURE AND LIFTING FORCE 

GENERATED BY A BERNOULLI GRIPPER ON A RIGID 

SUBSTRATE 

 

This chapter presents the modeling and prediction of the air flow, pressure and 

lifting force produced by a non-contact Bernoulli gripper on a rigid planar substrate. 

Previous studies have demonstrated the turbulent behavior of the flow and the presence 

of a flow separation region at the nozzle of the gripper. Here, a Reynolds stress model has 

been implemented in a finite volume based segregated Reynolds-Averaged Navier-Stokes 

solver. Compressible air is modeled to capture the effect of the high flow velocities 

generated by the nozzle. In addition an experimental set up is designed to validate the 

model. This model could be used to understand the influence of handling variables such 

as the stand-off distance and air flow rate on the suction pressure distribution and lifting 

force acting on the rigid planar object. 

3.1  Introduction 

This chapter focuses on a commonly used non-contact handling device, namely 

the Bernoulli gripper. Bernoulli gripper (also known as a radial air outflow nozzle) was 

first patented and certified for lifting rigid circular semiconductor wafers [33, 34]. In this 

handling device, an axially directed air flow is diverged in the radial direction under 

appropriate flow and design conditions, creating a low pressure (vacuum) region between 

the gripper surface and a planar object (see Figure 3.1). This technique enables automated 
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handling of many types of materials ranging from thin silicon wafers to woven fabrics. 

Paivanas and Hassan [12] studied the radially diverging air flow nozzle for contactless 

handling of rigid semiconductors wafers. Modifications of the initial design included the 

use of an end mill cone to avoid direct impingement of the wafer surface by the radial air 

flow [35]. Grutzeck and Kiesewetter [36] analyzed the use of the Bernoulli effect in 

micro-part handling. Erzincanli et al. [37, 38] extended the use of the Bernoulli gripper to 

other non-rigid materials such as food. Ozcelik et al. [9, 38, 39] did experimental work on 

handling woven fabrics and other materials using this type of non-contact end-effector. 

Brun and Melkote [67] evaluated the stresses from measured deformation profiles when 

handling thin silicon wafers used in the Photovoltaic (PV) industry. 

Modeling of the air pressure acting on the handled object due to radial air flow 

has been reported by Paivanas and Hassan [12, 17] for the initial Bernoulli gripper design 

without a mill cone. Their work assumes steady, laminar and incompressible flow 

conditions in order to solve the problem analytically. For their specific gripper geometry, 

they found that their model agreed reasonably well with their experimental pressure 

measurements results but was unable to capture the flow separation behavior near the 

nozzle opening due to the laminar assumption. A more accurate analysis requires that this 

assumption and others such as air incompressibility be relaxed. Furthermore, analysis of 

the flow generated by a Bernoulli gripper with a mill cone and the prediction of the 

pressure distribution and lifting force on the handled object has not been reported in the 

literature thus far. A model capable of such analysis is needed in order to understand the 

influence of different gripper variables on the pressure distribution and part handling 

force as well as for gripper design and handling process optimization. 
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This chapter addresses the aforementioned limitations of prior work on modeling 

and analysis of the Bernoulli handling device. Specifically, detailed computational fluid 

dynamics (CFD) modeling of the air pressure distribution and lifting force acting on a 

planar object is presented and experimentally verified. The model is used to study the 

influence of gripper variables such as air flow rate and stand-off distance on the pressure 

and force. The results obtained from this study can be used to optimize the gripper 

design. 

3.2  Modeling 

3.2.1  General Methodology 

The model described in this chapter is a steady state representation of the 

turbulent flow generated by the Bernoulli gripper involving one species (dry air). Due to 

the flow separation region (see Figure 3.1), an appropriate turbulent flow model needs to 

be used. A Reynolds Average Navier-Stokes (RANS) approach as opposed to a Large 

Eddy Simulation (LES) will be used to approximately solve the Navier Stokes equations 

for practical reasons and avoid lengthy and expensive calculations.  
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Figure 3.1:  Schematic of a Bernoulli gripper with end mill cone 

 
 
 

3.2.2  Governing Equations 

The governing equations of the fluid motion are derived from the three basic 

physical laws of conservation: mass conservation, momentum conservation and energy 

conservation. These laws yield the continuity equation, the Navier-Stokes equation and 

the energy equation, respectively. In the case of the RANS approach, those equations are 

ensemble averaged. In Cartesian tensor form, the continuity equation is given by [68]: 
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The Reynolds-averaged-Navier-Stokes equation is:  
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In order to solve these equations the Reynolds stress term jiuu ′′ , needs to be 

appropriately modeled. In order to capture accurately the flow separation region the 

Reynolds Stress Model (RSM) [69-71] approach was preferred to the isotropic dynamic 

viscosity assumption of the Bousinessq approach employed in the Spalart-Allmaras 

model, the k-ε models, and the k-ω models [72]. The RSM model closes the Reynolds-

averaged-Navier-Stokes equation by solving transport equations for each of the terms in 

the Reynolds stress tensor, together with an equation for the dissipation rate. This means 

that five additional transport equations are required in 2D flows [72]. The exact transport 

equations for the transport of the Reynolds stresses may be written as follows [72]:  
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Of the various terms in these exact equations, ijC , L
ijD  and ijP  do not require any 

modeling. However, T
ijD , ijφ , ijε  and ijF  need to be modeled to obtain closure. 

The turbulent kinetic energy, k, and its rate of dissipation, ε, are obtained from the 

following transport equations:  
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The turbulent heat transport is modeled using the concept of Reynolds' analogy to 

turbulent momentum transfer [72]. The energy equation is then:  
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where E is the total energy and effij )(τ  is the deviatoric stress tensor defined as [72]: 
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To solve these equations, initial and boundary conditions must be specified. These 

partial differential equations are highly non-linear and cannot be solved by explicit, 

closed-form analytical methods. A control volume approach is used to convert the 

governing equations to algebraic equations that can then be solved numerically. The 

model described above was implemented in the FLUENT® code, a general purpose 

commercial CFD software. The modeled fluid flow domain was divided into quadrilateral 

control volumes. 

3.2.3  Model Geometry 

Due to the axial symmetry of the gripper geometry, a 2D axi-symmetric model 

has been developed to reduce computing time. The domain geometry was simplified and 

is shown in Figure 3.2. Note that the handled object is assumed to be flat and rigid only 

for the ease of experimental validation. This assumption will be relaxed in the next 

chapter to account for elastic deformation effects of a non-rigid object (e.g. thin flexible 
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semiconductor wafer). The dimensions were determined from a commercially available 

gripper used for thin wafer handling in the photovoltaic Industry and are listed in Table 

3.1. The stand-off distance, H, is either fixed by equilibrium or mechanically imposed. In 

the current gripper  there are four rubber pads (mechanical stops) located radially around 

the gripper that are used as locators, thereby fixing the stand-off distance. Two grid 

geometries were developed to analyze the influence of the stand-off distance on flow 

characteristics. 

 
 

 

 

Figure 3.2:  (a) Simplified model geometry, (b) Fluid domain with boundary conditions 
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Table 3.1:  Geometric dimensions of the modeled gripper 

Gripper Geometry Value 
Inlet radius, ri 
Nozzle radius, rn 
Oultet radius, ro  
Nozzle flow height, hn 
Cone mill height, hc 
Stand-off distance, H 
Cone mill angle, φ 

2.0 mm 
18.0 mm 
40.0 mm 
0.1 mm 
1.4 mm 

2 mm, 3 mm 
45 º 

 

 
3.2.4  Boundary Conditions  

Figure 3.2 shows the circulation of air through the Bernoulli gripper. The 

boundary conditions are shown in Figure 3.2b. A mass flow inlet boundary condition is 

used to prescribe a mass flow rate and temperature of the air at the inlet. At the outlet, the 

pressure outlet boundary condition was preferred to the outflow boundary condition since 

it often results in a better rate of convergence when backflow occurs during iterations. 

The pressure outlet boundary condition was used to prescribe the static pressure at the 

flow outlet. An axis boundary condition was used to define the axis of symmetry of the 

model. All other boundary conditions consisted of wall boundary conditions with no heat 

flux. The prescribed values of the boundaries conditions are listed in Table 3.2.  

 
 

Table 3.2:  Boundary conditions specification 

Boundary type Value 
Mass flow inlet • Mass flow rates:  

1 g/s, 1.5 g/s, 2 g/s, 2.5 g/s, 3 g/s 
• Temperature: 300 K 

Pressure outlet • Gauge pressure: 0 Pa 
Wall • Heat flux: 0 W/m2 
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3.2.5  Material  

The single fluid material modeled is air. Except for the density, default properties 

of air from the FLUENT® Database have been used. The density of air is modeled with 

the ideal gas law for compressible flows as [72]:  

T
M
R

pp

w

op +=ρ           (3.8) 

where, p is the gauge pressure predicted and pop the operating pressure (pop=101325 Pa).  

At Mach numbers much less than 1.0, compressibility effects are negligible and 

the variation of the gas density with pressure can be safely ignored. The variation of the 

Mach number at the nozzle inlet as a function of the mass flow rate is shown in Figure 

3.3 and indicates that compressibility effects are important and need to be considered in 

the model. 

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1/10 1/5 3/10 2/5 1/2 3/5 7/10 4/5 9/10 1

Nozzle inlet fraction

M
ac

h 
N

um
be

r

M=1 g/s
M=1.5 g/s
M=2 g/s
M=2.5 g/s
M=3 g/s

 

Figure 3.3:  Mach number variation at the nozzle inlet as a function of the mass flow 
rate, M 
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3.2.6  Solution Method  

The governing equations in the present study are solved using the finite volume 

method. The governing equations include the continuity, momentum, energy, and the 

RSM equations. The steady segregated implicit scheme solver was used to numerically 

solve these equations for the axi-symmetric geometry case. In addition, the SIMPLE 

(Semi-Implicit Method for Pressure-Linked Equations) algorithm was chosen for the 

pressure velocity coupling. It uses a relationship between velocity and pressure 

corrections to enforce mass conservation and to obtain the pressure field [72]. 

When using a control volume based technique approach, the governing equations 

are integrated about each control volume yielding equations that conserve each quantity 

on a control volume basis. These quantities (e.g. density, pressure…) are stored at the cell 

centers. However the face values are needed for the convection terms and must be 

interpolated from the cell center values. This is accomplished using an upwind scheme in 

which the face value of a quantity is derived from quantities in the cell upstream, or 

“upwind" relative to the direction of the normal velocity. Several upwind schemes are 

available in FLUENT®. In this work, first order accuracy upwind schemes were chosen 

for density, momentum and turbulence kinetic energy. All the other variables were 

discretized using second order upwind schemes for high accuracy. For stability reasons, 

first order scheme solutions were first obtained before switching to a higher order 

scheme.  

Convergence was declared when the overall lifting force generated by the gripper 

was not changing between successive iterations. The lifting force was calculated as the 

surface integral of the gauge pressure acting on the handled object and is shown in Figure 
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3.4. In addition, as illustrated in Figure 3.5, the maximum scaled residuals were checked 

to be less than 10-4 for the continuity, velocity and temperature equations and less than 

10-5 for the turbulent kinetic energy, dissipation rate and all Reynolds stresses. The under 

relaxation factors for pressure and momentum were set to 0.4. These ensured numerical 

stability and faster convergence of the solution.  

3.2.7  Mesh and Grid Independence  

The mesh employed for the model solution is shown in Fig. 3.6. As seen, four 

node quadrilateral cells were used to define the 2D structured grid. The skewness of the 

cells was checked and was found to be less than 0.5. The grid resolution is very important 

to produce reasonable results. The grid should be especially fine along the air flow path. 

 
 
 

 

Figure 3.4:  Lifting force convergence monitoring (M=2 g/s, H=2 mm) 
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Figure 3.5:  Residuals convergence monitoring (M=2 g/s, H=2 mm) 

 

 

 

Figure 3.6:  Actual grid used in the model
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Figure 3.7:  Influence of the number of cells on the predicted radial gauge pressure 
generated by a Bernoulli gripper on the surface of the handled object 
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Figure 3.8:  Influence of the number of cells on the predicted lifting force and relative 
error compared to the dynamic adaptive grid solution 
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An important factor related to the quality of CFD simulations is the quality of the 

computational grid. Analysis of grid independence was performed. The sensitivity of the 

results to the grid resolution was tested for the computed radial pressure distribution and 

lifting force predicted for four different grids. The number of cells per flow passage Nf, 

was refined iteratively to obtain reliable results. Table 3.3 shows the number of 

quadrilateral cells, N, with respect to the number of elements per flow passage. The 

different computational grids were compared to a dynamic adaptive mesh solution (a 

feature available in FLUENT®). The predicted radial gauge pressure distribution 

generated by the gripper on the handled planar object is shown in Figure 3.7. As the 

number of quadrilateral cells is increased, the solution tends to converge to the adaptive 

mesh solution. In addition, Figure 3.8 shows the predicted lifting force generated by the 

gripper for the different meshes from which similar conclusions can be drawn; the 

predicted lifting force approaches the solution obtained for the adaptive mesh. The 

relative error of the predicted lifting force compared to the adapted mesh solution is also 

plotted as a function of the number of cells used and is seen to be less than 1.5% for the 

finest mesh. It is also important to note that the relative change in the predicted lifting 

force between the two finest grid models is small. Since the simulation time of these 

models is reasonable (2-4 hours on a single Pentium 2.8 GHz processor machine) the 

finest mesh with Nf = 42 is taken to be adequate to produce grid independent results. 
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Table 3.3: Different grids used for the grid independence check and corresponding 
number of cells  

Number of cells per flow passage, Nf 24 28 34 42 

Total number of quadrilateral cells, N 16522 20732 30666 46765
Number of nodes, n 17167 21434 31521 47821

 
 
 

3.3. Experimental Validation 

3.3.1  Experimental Procedure 

An experimental setup used to measure the pressure distribution imposed on the 

surface of the handled object by the Bernoulli gripper has been designed. It consists of a 

4-axis Adept® SCARA robot equipped with a Bernoulli gripper. Figure 3.9 shows a 

picture of the setup. An air flow sensor plus controller is used to monitor and adjust the 

air flow rate while pressure sensors mounted on a circuit board enable direct 

measurement of the air pressure between the gripper and the substrate surface 

representing the handled object.  

The air flow controller (OMEGA FMA-2610A) is mounted on the robot inline 

with the air flow as close to the gripper as possible to minimize the effect of pressure 

losses in the pipe from the controller to the gripper. The air flow controller allows precise 

measurement and control of the volumetric air flow rate. In addition, the mass flow rate, 

gage pressure and temperature are measured by the air flow sensor. The pressure sensor 

(Honeywell ASDX001D4) is used to measure the differential pressure. The sensor is 

connected to a flat rigid polymer substrate, representing the handled object. A small hole 

in the rigid substrate allows the gauge pressure on the top surface of the handled object to 

be measured. Note that the hole has been made as small as possible (0.5 mm) to make the 
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measurement less intrusive. The pressure sensor is connected to the robot controller via 

an analog I/O DeviceNet module (OMRON DRT2-AD04H) allowing simultaneous 

acquisition of the instantaneous robot location and the corresponding gauge pressure. 

 
 
 

  

Figure 3.9:  Experimental set-up 
 
 
 

The following measurement procedure is used. After stabilizing the air flow at a 

given rate, the robot moves the gripper along a programmed scanning path above the 

rigid instrumented substrate at the specified stand-off distance and continuously records 

the robot location and gauge pressure. In order to measure both positive and negative 

gauges pressures the scanning procedure needs to be repeated twice since the sensor is 

capable of measuring gauge pressure relative to the ambient pressure. Figure 3.10 shows 

a typical example of the measured gauge pressure distributions for the vacuum and 

positive pressure regions. The data is then collected and combined to generate the total 

Pressure sensor 

Polymer substrate 

Measurement 
location 

Bernoulli 
gripper 
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gauge pressure distribution contour maps for each test condition. Note that the air flow 

characteristics are measured during the scanning cycle and used to account for the 

variability of the flow during the measurement. 

A full factorial design of experiment was carried out. The factors studied are the 

stand-off distance and the volumetric air flow rate. The stand-off distance was set to two 

different levels, 2 mm and 3 mm. The volumetric air flow rate, V, was set to five different 

levels ranging from 30 to 40 l/min. The choice of this range for V is based on the fact that 

below 30 l/min the lifting force is too small to pick-up and transport the wafer. The 40 

l/min value is close to the maximum air flow rate for the Bernoulli gripper used in this 

study. 

3.3.2  Experimental Results 

Table 3.4 lists the volumetric air flow rate, temperature, inlet pressure and mass 

flow rate measured by the air flow controller for the different test cases. The influence of 

the volumetric air flow rate and stand-off distance on the pressure acting on the surface of 

the substrate is shown in Figure 3.11. As expected, the experimental result shows 

negative gauge pressure in the center of the gripper and positive pressure around the 

nozzle location. Also, for a given stand-off distance, the vacuum level (and therefore the 

resulting lifting force) is higher at higher values of the volumetric air flow rate. Similarly, 

for a given volumetric air flow rate, the vacuum level (and lifting force) is lower at higher 

stand-off distances. It is important to notice that the pressure distribution is not perfectly 

axi-symmetric, especially when looking at the positive gauge pressure regions. The 

positioning error of the mill cone in the gripper was adjusted in order to minimize the 

variation in the nozzle height hn and thus the non-symmetric behavior of the flow. 
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Figure 3.10:  Measured gauge vacuum distribution and corresponding gauge pressure 
distribution (kPa) (V=30 l/min, H=2mm) 
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Figure 3.11:  Gauge pressure distribution maps (kPa) for specific volumetric flow rate 
(V) and stand-off distance (H) pairs 
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Table 3.4: Average measured air flow characteristics for given volumetric flow rates and 
stand-off distances  

H 
(mm) 

Vset 
(L/min) 

Tave 
(ºC) 

pave 
(kPa) 

Mave 
(g/s) 

2 

30.0 
32.5 
35.0 
37.5 
40.0 

28.3 
27.6 
27.0 
26.5 
25.6 

196.6 
219.7 
257.2 
298.3 
352.9 

1.14 
1.38 
1.74 
2.16 
2.74 

3 

30.0 
32.5 
35.0 
37.5 
40.0 

28.0 
27.9 
27.1 
26.4 
25.7 

195.7 
219.8 
260.0 
297.0 
357.7 

1.13 
1.38 
1.76 
2.16 
2.78 

 
 
 

3.3.3  Model Validation 

Figure 3.12 shows the contour plot of the radial velocity at M=3 g/s and H=2mm. 

The flow behavior reveals interesting features such as the flow separation region and the 

recirculation around the nozzle exit. These features are also represented in Figure 3.13 

where path lines of the flow are plotted from the nozzle exit. Using the mean velocity of 

flow, the Reynolds number has been calculated for different radial locations and is 

indicated in the Figure 3.12 at three different locations. The Reynolds number ranges 

from around 7200 to 1300 suggesting a turbulent-to-laminar transition from the nozzle 

exit to the outer edge of the gripper. Similar trends were noted by Paivanas and Hassan 

[12] in their analysis of the direct impingement Bernoulli nozzle (which differs from the 

cone mill gripper modeled in this study). This confirms the necessity for a turbulent flow 

model in the simulations. 
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Figure 3.12:  Contour plot of the radial velocity and Reynolds number values (M=3 g/s, 
H=2 mm) 
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Figure 3.13:  Path lines of the flow colored by the magnitude of the velocity (m/s) (M=3 
g/s, H=2 mm) 
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Figure 3.14:  Measured vs. predicted radial gauge pressure on the surface of the handled 
object (V=35 l/min, H=3 mm) 
 
 
 
 

Figure 3.14 shows the comparison of the measured and the predicted radial gauge 

pressure on the surface of the substrate for H=3 mm and V=30 l/min. Since, unlike the 

model, the actual gripper is not perfectly axi-symmetric, the simulated radial pressure 

cannot be compared directly with the gauge pressure distribution maps obtained 

experimentally (cf. Figure 3.11). Due to imperfections in the gripper geometry, the 

measured gauge pressure distribution is not perfectly symmetric and is characterized by 

different gauge pressure values at a given radius. Consequently, the min-max envelope of 

the measured radial gauge pressure distribution is extracted and compared with the 

simulated pressure distribution as shown in Figure 3.14. It can be seen from Figure 3.14 
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that the model prediction falls mostly within the min-max envelope except in the vicinity 

of the nozzle exit. Note that the comparison is very good at the center of the gripper i.e. r 

= 0, where most of the lifting force is generated.  

A comparison of the experimental data and model simulations as a function of the 

mass flow rate is shown in Figure 3.15. The experimental lifting force was obtained by 

numerical integration of the measured gauge pressure distribution and compared to the 

lifting force predicted by the FLUENT® simulation. The variation in mass flow rate 

during measurement is indicated by the horizontal error bars. The model simulations for 

the two stand-off distances considered here are seen to predict the lifting force as a 

function of the mass flow rate reasonably well. The average relative errors are 8% and 

6% for the two stand-off distances, H=2 mm and H=3 mm, respectively. Note that the 

maximum relative error (18%) occurs at the maximum air flow rate and at the minimum 

stand-off distance. This is thought to be due to the intrusive nature of the pressure sensor 

used, which, when placed very close to the impinging flow can affect the air flow 

behavior. 
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Figure 3.15:  Predicted vs. calculated lifting force at two stand-off distances (H=2 mm 
and H=3 mm) 
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3.4  Summary  

This chapter presented a computational fluid dynamics model of a non-contact 

Bernoulli gripper used for low-force handling of small and large rigid and non-rigid 

materials. The model was used to compute and predict the air flow, pressure distribution 

and lifting force generated by the gripper. The handled object was assumed to be flat in 

order to experimentally validate the model. A turbulent Reynolds stress model was used 

in a finite volume Reynolds-Averaged Navier-Stokes solver implemented in the general 

purpose CFD software FLUENT®. The model explicitly considers the non-steady 

characteristics of the air flow generated in the gripper and represents an enhancement 

over prior work in this area. 

Comparison with experimental results showed that the model predictions of the 

pressure and lifting force agree favorably for the conditions examined. Specifically, the 

lifting force generated by the gripper was generally predicted within 12% of the 

measured values for most cases. The error was highest (18%) at the minimum stand-off 

distance and maximum flow rate. 

The results obtained from this study can be used to evaluate the lifting force and 

pressure distribution on the handled object as a function of gripper variables such has the 

volumetric air flow rate and stand-off distance. When handling thin brittle wafers for 

example, the output of this model could be used as an input to a wafer deformation/stress 

model to calculate the wafer handling stresses generated by the gripper. This approach is 

presented in the next chapter. 
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CHAPTER IV 

EFFECT OF SUBSTRATE FLEXIBILITY ON THE PRESSURE 

DISTRIBUTION AND LIFTING FORCE  

 

This chapter presents the modeling and analysis of the pressure distribution and 

lifting force generated by a Bernoulli gripper when handling flexible substrates such as 

thin silicon wafers. A Bernoulli gripper is essentially a radial airflow nozzle used to 

handle large and small, rigid and non-rigid materials by creating a low-pressure region or 

vacuum between the gripper and material. The previous chapter analyzed the pressure 

distribution and lifting force generated by a Bernoulli gripper for handling thick 

substrates that undergo negligible deformation. Since the lifting force produced by the 

gripper is a function of the gap between the handled object and the gripper, any 

deformation of the substrate will influence the gap and consequently the pressure 

distribution and lifting force. In this chapter, the effect of substrate (thin silicon wafer) 

flexibility on the equilibrium wafer deformation, radial pressure distribution and lifting 

force is modeled and analyzed using a combination of computational fluid dynamics 

(CFD) modeling and finite element analysis. The equilibrium wafer deformation for 

different air flow rates is compared with experimental data and is shown to be in good 

agreement. In addition, the effect of wafer deformation on the pressure and lifting force 

are shown to be significant at higher volumetric airflow rates. The modeling and analysis 

approach presented in this chapter is particularly useful for evaluating the effect of 

gripper variables on the handling stresses generated in thin silicon wafers. 
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4.1.  Introduction 

Breakage-free handling of flexible substrates such as thin large area silicon wafers 

is becoming increasingly important in semiconductor and photovoltaic (PV) 

manufacturing. This problem is particularly significant in the PV industry, which is trying 

to lower the cost of solar energy via the use of thin, and large area silicon substrates 

without compromising production yield [5]. Of the various wafer-handling methods used 

in the PV industry, the Bernoulli gripper, also known as a radial airflow nozzle, is of 

particular interest because of its ability to handle both rigid and non-rigid objects with 

low force application. 

This type of gripper was first patented and certified for handling thick rigid 

circular semiconductor wafers [33, 34]. In this handling device, an axially directed 

airflow is diverged in the radial direction under appropriate flow and design conditions, 

creating a low pressure region or partial vacuum between the gripper surface and the held 

object (see Figure 4.1). Paivanas and Hassan [12] studied the radially diverging airflow 

nozzle for contactless handling of thick semiconductor wafers. Note that the gripper 

design shown in Figure 4.1 has mechanical stops (rubber pads) to prevent lateral motion 

of the handled object. These stops are characteristic of the gripper design used in PV 

applications but are absent in the version considered by Paivanas and Hassan [4]. 

Modifications of the initial gripper design analyzed by Paivanas and Hassan included the 

use of a cone mill to avoid direct impingement of the wafer surface by the radial airflow 

[35]. Grutzeck and Kiesewetter [36] analyzed the use of the Bernoulli principle for 

micro-part handling. Erzincanli et al. [37, 38] extended the use of the Bernoulli gripper to 

other non-rigid materials such as food while Ozcelik et al. [8, 9, 11] reported 

experimental work on handling woven fabrics and other materials. 
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In their work, Paivanas and Hassan [12, 17] modeled the air pressure generated by 

a Bernoulli gripper without a cone mill. They assumed steady, laminar and 

incompressible airflow conditions in order to solve the problem analytically. Their model 

agreed reasonably well with their pressure measurements but was unable to capture the 

flow separation region near the nozzle opening due to the laminar flow assumption. More 

recently, Brun and Melkote [73] presented a computational fluid dynamics (CFD) model 

of the pressure distribution and lifting force generated by a Bernoulli gripper with a cone 

mill. Although the assumptions of laminar flow and incompressibility were relaxed in 

this work, the model did not consider the influence of substrate flexibility (deformation) 

on the resulting pressure and lifting force. When handling a flexible object such as a thin 

silicon wafer (thickness ≤ 250 μm), the low pressure created by the radially diverging 

airflow tends to deform the wafer as illustrated schematically in Figure 4.1 The 

deformation of the wafer in turn alters the air gap between the gripper and wafer, which 

in turn affects the airflow and the resulting air pressure distribution and handling force. It 

is of interest to model and analyze this effect of substrate flexure on the equilibrium 

wafer, radial air pressure distribution and lifting force generated by the Bernoulli gripper 

when handling thin flexible materials such as silicon wafers. 

Therefore, this chapter makes use of an iterative fluid-structure modeling 

approach to analyze the effect of substrate deformation on the resulting equilibrium air 

pressure distribution and lifting force. The modeling approach uses a combination of 

computational fluid dynamics (CFD) modeling and finite element (FE) analysis. The 

model is used to study the influence of gripper variables such as volumetric airflow rate 

on the equilibrium wafer deformation, radial air pressure distribution and lifting force. 

Note that although the analysis presented in this chapter is for a thin silicon wafer, the 
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approach is applicable to any air impermeable flexible substrate. For a given substrate 

material, the model can be used to optimize the Bernoulli gripper design and, in the case 

of thin silicon wafers, to minimize their breakage due to excessive deformation (and 

hence stresses) imposed on the wafer during handling. 

 
 
 

 
 

Figure 4.1:  Schematic of a Bernoulli gripper used for high-throughput handling of 
silicon wafers in the PV industry 
 
 
 

4.2  Modeling 

4.2.1  Approach 

Figure 4.2 shows a flowchart of the modeling and analysis approach used in this 

work. For a given wafer material and gripper geometry, the radial air pressure 

distribution acting on the initially undeformed wafer surface is determined from the 

solution of a CFD model of the Bernoulli gripper. This pressure distribution is then 

imposed as a boundary condition on a non-linear finite element model (FE) of the 

undeformed and stress-free wafer to obtain the wafer deformation due to the imposed 
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pressure. Since the air pressure between the gripper and wafer is a function of the gap and 

this gap is affected by the wafer deformation, an iterative process is necessary to obtain 

the equilibrium wafer deformation and the corresponding radial air pressure distribution. 

Convergence of the solution is declared when the difference between the wafer 

deformation profiles obtained in two consecutive iterations steps is less than a specified 

tolerance (ε). The equilibrium lifting force acting on the deformed wafer can be easily 

obtained by integrating the converged air pressure distribution. 

 

 

 
 

Figure 4.2:  Flowchart of the iterative approach used to analyze the effect of substrate 
deformation on the pressure distribution generated by a Bernoulli gripper 
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4.2.2  Pressure Distribution Modeling 

A detailed description of CFD modeling of the Bernoulli gripper to obtain the 

radial air pressure distribution was presented in the previous chapter. However, a few 

aspects of this model are briefly discussed here. Unlike the work of Paivanas and Hassan 

[17], the CFD model employed in this chapter considers the effects of turbulent and 

compressible flow. A turbulent Reynolds stress model is used in a finite volume 

Reynolds-Averaged Navier-Stokes solver implemented in the general purpose CFD 

software FLUENT®. As shown in Figure 3.12, this model is able to capture the flow 

separation region present in the gripper (see Figure 4.1) in addition to the predicted radial 

air pressure distribution being in good agreement with experimental results for a rigid 

substrate. A key difference between the earlier CFD model and the one used in this 

chapter is the use of a moving boundary to represent the wafer deformation as shown in 

Figure 4.3. Consequently, the influence of substrate flexure on the radial air pressure 

distribution is accounted for in the model. Note also that the gripper is assumed to be 

perfectly axi-symmetric. Although not entirely true, this assumption allows significant 

savings in computation time by not requiring a full 3-D model of the gripper. 

Additionally, as shown in the previous chapter, the radial pressure distribution and lifting 

force predictions obtained using this assumption are in good agreement with 

experimental results and consequently the assumption is retained here. 
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Figure 4.3:  Fluid domain used in the CFD simulations: (a) rigid substrate (b) flexible 
substrate 
 

 

4.2.3  Wafer Deformation Modeling 

The deformation of the silicon wafer due to the radial air pressure distribution 

exerted by the Bernoulli gripper is obtained by solving a finite element model of the thin 

wafer created in the ABAQUS® Standard software. 

4.2.3.1  Model Geometry 
 

The following two types of multi-crystalline PV silicon wafers are considered 

here: 125 mm x 125 mm 256 μm cast silicon wafers and 100 mm x 100 mm 180 μm 

Edge-defined Film-fed Growth (EFG) silicon wafers [2]. Each wafer is modeled as a 

plate of uniform thickness free of any residual stress. Thin shell elements (S4, 4-node 

general purpose shell element for finite strains) are used to capture the effects of the large 

deformation exhibited by the thin wafer. Because of the large deformation, a nonlinear 
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analysis is necessary to obtain accurate results since membrane effects cause some of the 

load to be carried by membrane action rather than by pure bending alone. Consequently, 

the wafer tends to stiffen. In addition, the pressure loading, which is always normal to the 

undeformed wafer surface, starts to have a component in the in-plane directions as the 

wafer deforms. The nonlinear analysis includes the effects of wafer stiffening and the 

changing direction of the pressure relative to the wafer surface while neither of these 

effects is included in a linear analysis. As plotted in Figure 4.4, the difference between 

the linear and nonlinear analyses is sufficiently large to indicate that a linear simulation is 

not adequate for these wafers under the loading conditions considered here. As far as 

model symmetry is concerned, even if the loading and wafer geometry could lead to a ¼ 

symmetric model, a full 3-D wafer deformation model is necessary because of the non-

symmetry in material properties (e.g. anisotropy of the EFG silicon wafers) and because 

of the geometric errors in the actual locations of the rubber pads in the gripper. 

4.2.3.2  Material Properties 
 

Both PV wafer types are assumed to be linearly elastic. The multi-crystalline 

silicon cast wafer is assumed to be isotropic and the following material properties 

reported in the literature [50] are used to model it: Young’s modulus, E=162.5 GPa, and 

Poisson ratio, υ=0.223. Although multi-crystalline in nature, the EFG silicon wafer is 

known to have a predominant grain orientation due to the wafer growth process. 

Specifically, it is mostly characterized by a {110} surface and a <112> growth direction 

[65]. Consequently, anisotropic material properties are specified for this wafer by using 

the stiffness matrix defined in the wafer coordinate system (x, y, z) [64]. The stiffness 

coefficients are obtained from the known compliance coefficients for a single cubic 

silicon crystal with respect to the crystal coordinate system (x’, y’, z’). Stiffness is 
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specified using the (110) single crystal properties taking ]211[ , ]111[  and ]110[  

orientations as the x, y and z axes. The resulting elastic stiffness matrix for the EFG wafer 

(in GPa) is given as: 
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Figure 4.4:  Influence of geometric non-linearity on the out-of-plane displacement (cast 
silicon wafer, V=40 l/min, converged solution) 
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4.2.3.3  Loading and Boundary Conditions 
 
The boundary conditions consist of zero out-of-plane displacements (Uz=0) at the 

points where the wafer contacts the rubber pads on the gripper. These locations were 

measured experimentally and are listed in Table 4.1 with respect to the center of the 

gripper in the x, y, z coordinate system. Also, in-plane wafer displacements were not 

restrained except for the center node of the wafer that was pinned (Ux=Uy=0) to prevent 

rigid body motion of the wafer. Note that there are no frictional constraints imposed at 

these contacts in the current model. The force acting on the wafer is modeled using the 

radial air pressure distribution obtained from the CFD model presented earlier. A 

Fortran® subroutine (DLOAD) was used to input the magnitudes of the radial non-

uniform air pressure distribution imposed on the top surface of the wafer at the center of 

all shell elements. For ease of implementation, a piecewise polynomial regression fit was 

made to the radial air pressure distribution predicted by the CFD model to obtain a 

smooth, continuous and well-defined curve. A good fit (R-squared ~ 1) was obtained 

using a third order polynomial as shown in Figure 4.5.  Using the polynomial fit also 

allowed easy determination of the pressure loads imposed on the finite element nodes. 

The pressure load was ramped linearly in five increments of 20% each. 

 
 
 

Table 4.1:  Boundary conditions specification (mm)  

Boundary conditions Location (x, y) Value 
Locators (-33.80, 34.66), (34.40, 34.95),  

(34.05, -34.15), (-34.70, -34.10)
• Uz = 0 

Center (0,0) • Ux = Uy = 0
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Figure 4.5:  Predicted radial air pressure distribution and corresponding polynomial fit 
 
 
 
 

4.2.3.4  Mesh Convergence 
 

The finite element meshes employed for the different wafer types are shown in 

Figure 4.6. Four node quadrilateral shells elements were used to define the 2-D structured 

grid. Due to the simple geometry, the aspect ratio of the elements was checked and was 

found to be adequate. An important factor related to the quality of finite element 

simulations is the quality of the computational grid. In the actual model, the accuracy of 

the pressure loading depends on the grid size. The pressure being fixed at every shell 

center, the resolution of the grid needs to be fine enough to account for the variation in 

pressure on the wafer surface. Consequently, an analysis of grid independence was 

performed. The sensitivity of the results to the grid resolution was tested for the 

computed displacements and stresses for ten different grids per wafer type. The number 
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of shell elements was refined iteratively by reducing the seed size to obtain reliable 

results. Table 4.2 shows the number of quadrilateral shell elements, N, with respect to the 

seed size. The different computational grids were compared to the finest mesh solution. 

The predicted out-of-plane displacement and the stress in the y direction (vertical 

direction) generated by the gripper on the top surface at the center node of the handled 

wafer are plotted as a function of the number of shell elements used in the models in 

Figure 4.7 and Figure 4.8, respectively. The relative error of the predicted values 

compared to the finest mesh solution is also plotted as a function of the number of shell 

elements. It can be seen that the relative change in the predicted stress between the three 

finest grid models is less than 0.2 %. Therefore, a mesh corresponding to 2.5 mm seed 

size is considered adequate to obtain grid independent results with less than 1% variation 

compared to the finest grid. The simulation times for these models are reasonable (less 

than 1 hour on a single Pentium 2.8 GHz processor machine). 

 
 
 

Table 4.2:  Computational grids used for grid independence check and corresponding 
number of elements (N) 

Seed Size (mm) 0.5 0.75 1 1.5 2 2.5 3 4 5 6 
N (EFG wafer) 40000 17556 10000 4422 2500 1600 1122 576 400 256
N (Cast wafer) 62500 27556 15500 6972 3844 2500 1764 992 576 400
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Figure 4.6:  Mesh for the different wafer types with 2mm seed size: (a) Cast wafer, (b) 
EFG wafer 
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Figure 4.7:  Center node displacement, )0,0(δ  as a function of the number of shell 
elements used in the different models (M=2 g/s) 
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Figure 4.8:  Total stress value, syy, at the center on the top surface of the wafer as a 
function of the number of shell elements used in the different models (M=2 g/s) 
 
 
 
 

4.3  Model Validation 

4.3.1  Experimental Procedure 

The experimental setup used to validate the foregoing modeling and analysis 

approach consists of a 4-axis Adept® SCARA robot equipped with a Bernoulli gripper. 

The setup has an airflow controller (OMEGA FMA-2610A) to enable precise monitoring 

and control of the volumetric flow rates, mass flow rates and temperature of the air going 

into the gripper. The setup also has a laser displacement sensor (Micro-Epsilon 

OptoNCDT 1700) to measure the shape of the deformed wafer held in the gripper.  

The full-field wafer deformation measurement procedure using the laser-based 

sensor is as follows. For a specified airflow rate and nominal wafer stand-off distance 

(determined by the height of the rubber pads), the robot scans the gripped wafer along a 
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specified grid path while the laser sensor measures the wafer deformation. Both the robot 

location and wafer deformation are recorded simultaneously at each point in the 

measurement grid. Once the scanning is complete, the heights of the four rubber pads on 

the Bernoulli gripper are measured and a least-squares reference plane is calculated using 

the pad heights. Thereafter, the full-field wafer deformation with respect to the least-

squares plane is obtained from the laser scanned data. The scanning procedure described 

above was applied to the two silicon wafer types referred to earlier. The wafer 

characteristics, number of wafers, and scan grid size used are listed in Table 4.3. Note 

that the average wafer thickness was estimated from weight measurements. The wafers 

used in the tests were as supplied by the wafer manufacturers and included some etching 

to remove surface damage resulting from wire sawing/laser cutting operations. The 

volumetric airflow rate in each test was varied from 30 to 40 liters/min similar to the tests 

reported in the previous chapter. The wafer stand-off distance between the gripper and 

the wafer, H, was initially fixed at 2 mm by adjusting the heights of the rubber pads at 40 

l/min. Due to the compliance of the rubber pads, these heights decrease with increasing 

air flow rate. Up to 10% variation of the stand-off distance was found in the experiments. 

Consequently, the actual stand-off distance was measured for every run by comparing the 

heights of the rubber pads to a least-squares plane fit to the gripper surface. The measured 

response consisted of the full-field wafer deformation from which the maximum wafer 

deformation could be easily extracted. For every run, the actual stand-off distance at the 

location of the rubber pads was determined from the laser scans. Table 4.4 lists the 

average temperature, Tave, and mass flow rate, Mave, measured by the air flow controller 

for the different volumetric air flow rates, Vset. 
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Table 4.3:  Wafer characteristics and scan grid spacing specification 

Wafer Type Size Average Thickness 
(μm) 

# Samples 
 

Grid Spacing 
(mm) 

Cast wafer  125 mm x 125 mm 256.5 ± 0.5 5 1.5 
EFG wafer 100 mm x 100 mm 179.6 ± 1.9 5 1.5 

 
 
 
 

Table 4.4:  Average measured air flow characteristics at different air flow rates 

Vset Tave Mave 
(l/min) (ºC) (g/s) 

30 28.3 1.14 
35 27.0 1.74 
40 25.6 2.74 

 
 
 
 

4.3.2  Experimental Results 

Table 4.5 summarizes the experimental results of wafer deformation obtained for 

each wafer type and airflow rate used. The average measured stand-off distances, Have, 

are also listed in Table 4.5 and were used in the CFD fluid simulations. As expected, due 

to the flexibility of the rubber pads, the stand-off distance decreases with an increase in 

the air flow rate.  
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Table 4.5:  Average measured stand-off distances and average (δave), minimum (δmin) 
and maximum (δmax) out-of-plane deformation at the center of the wafer as a function of 
volumetric air flow rate 

 V Have δave(0,0) δmin(0,0) δmax(0,0) 
 (l/min) (mm) (mm) (mm) (mm) 

30 2.131 0.177 0.165 0.203 
35 2.034 0.335 0.312 0.372 Cast wafer 
40 1.930 0.799 0.727 0.859 
30 2.259 0.428 0.368 0.521 
35 2.162 1.251 1.077 1.393 EFG wafer 
40 2.058 1.769 1.713 1.839 

 

 

The influence of volumetric airflow rate, V, on the deformation at the wafer center 

is plotted in Figure 4.9. It is clear from the figure that the maximum deformation 

increases with airflow rate and, for a given airflow rate, is greatest for the thin EFG 

wafer. When comparing the error bars for both wafer types, the influence of wafer 

thickness variation on the wafer deformation is seen to be larger for the EFG wafers than 

for the cast wafers. Also, the maximum deformation for the EFG wafer appears to be 

leveling off with increase in airflow rate in contrast to the cast wafer. This is largely a 

result of the wafer deformation approaching the maximum displacement permitted by the 

gripper geometry and is a function of the stand-off distance defined by the rubber pads. 

Another factor that contributes to the leveling of wafer deformation, especially at high air 

flow rates when the top surface of the deformed wafer approaches the gripper surface, is 

the effect of direct air impingement on the wafer around the cone mill (see Figure 4.1) 

This positive pressure on the wafer surface moderates the effect of the negative gauge air 

pressure (or vacuum) created by the radially diverging air flow. 

Figures 4.10 and 4.11 show the influence of volumetric airflow rate on the full-

field wafer deformation contours for the cast and EFG wafers, respectively. The 
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deformation contours in these figures yield similar conclusions to those derived from 

Figure 8. In addition, one can see that for both wafer types there is a preferred orientation 

of deformation (bending about the horizontal axis) as the airflow rate is increased. 

Material anisotropy cannot explain this preferred orientation since it appears to be the 

more or less the same for both wafer types, which are inherently different in their 

mechanical properties. Careful analysis of the gripper geometry shows that the preferred 

orientation is due to small errors in the actual location of the rubber pads. If the rubber 

pads were symmetrically located around the center of the gripper, a more or less 

symmetric deformation profile would be obtained (perfectly symmetric deformation 

profile would be obtained only if the wafer is round and is isotropic). The errors in the 

pad locations lead to differences in the moment arms and consequently a reversed U-

shape deformation pattern is obtained at high flow rates. For this reason, the actual 

location of the rubber pads was included in the finite element model. Note that although 

wafer deformation is not axi-symmetric in all the cases analyzed, for computational 

efficiency of the CFD model it was assumed that the wafer deformation is indeed axi-

symmetric and that the moving boundary condition representing the wafer deformation 

can be modeled using the average wafer deformation along the y-axis. The deformation 

along the y-direction was used because it is more axi-symmetric than along the x-

direction. In addition, the wafer deformation along the x-axis is generally greater than 

along any other direction. Consequently, the actual air gap between the deformed wafer 

and the gripper is smallest along the x-axis, which implies that the air from the nozzle 

will have a natural tendency to flow away from the x-axis toward the y-direction. . 
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Figure 4.9:  Influence of volumetric airflow rate on the out-of-plane deformation at the 
center of the wafer; the error bars represent the data range (for 5 samples)
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Figure 4.10:  Full-field measured out-of-plane deformation (in mm) as a function of 
airflow rate for cast silicon wafer 

 
 
 
 

 
 

Figure 4.11:  Full-field measured out-of-plane deformation (in mm) as a function of 
airflow rate for EFG silicon wafer 
 
 
 
 

4.3.3  Modeling Results and Validation 

The iterative procedure outlined in Figure 4.2 was found to typically converge in 

a few iterations. Figure 4.12 shows the convergence of the maximum out-of-plane wafer 

deformation for the cast silicon wafer. Only four iterations were needed for the iterations 

to converge with less than 1% difference. 

Comparing the measured wafer deformation for each wafer type and airflow rate 

with the predicted equilibrium wafer deformation enables the validation of the iterative 
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modeling procedure presented in Figure 4.2. Note that, unlike the rigid wafer case [17, 

72] it is not feasible to measure the radial air pressure distribution between the wafer and 

gripper in the presence of wafer deformation and consequently model validation requires 

comparison of predicted and measured wafer deformations. 

Table 4.7 presents a comparison of the model predicted versus experimental 

results. The measured average out-of plane displacement at the center of the wafer, 

δave(0,0), is compared with the predicted deformation at the wafer center obtained in the 

first (δinitial(0,0)) and final (δfinal(0,0)) iterations, where the result for the final iteration 

step is the predicted equilibrium wafer deformation.  Note that the wafer deformations 

are referenced to the mid-plane of the wafer. In addition, the number of iterations, Niter, 

needed to obtain less than 2% variation is specified. 
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Figure 4.12:  Convergence of the iterative approach (cast silicon wafer at V=40 l/min)  
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Table 4.6: Comparison of measured and predicted average out-of-plane deformations 
at the center of the wafer as a function of the volumetric air flow rate (result obtained in 
the first iteration is denoted as δinitial) 

 

 V δave(0,0) δinitial(0,0) δfinal(0,0) Niter 
 (l/min) (mm) (mm) (mm) (#) 

30 0.177 0.169 0.169 2 
35 0.335 0.298 0.314 3 Cast 

wafer 40 0.799 0.549 0.784 5 
30 0.428 0.433 0.477 3 
35 1.251 0.916 1.480 5 EFG 

wafer 40 1.769 1.945 2.023 3 
 
 
 
 

Figure 4.13 shows a comparison of the measured and predicted out-of plane 

deformations at the center of the wafer for the cast silicon wafer. Note that for the results 

for the initial iteration and the converged solution are both shown in the figure. It is clear 

that the iterative solution for the cast wafer is in very good agreement with the measured 

deformation at all airflow rates (relative errors < 7%). It can be seen from the figure (and 

table) that the effect of substrate flexibility on the equilibrium wafer deformation is 

significant at higher airflow rates while it is small at low airflow rates. The results for the 

cast silicon wafer also show that even though wafer deformation is not symmetric at high 

flow rates, the assumption of symmetry of the wafer deformation profile in the CFD 

model still yields good results. 

Similarly, Figure 4.14 shows a comparison of the measured and predicted 

maximum out-of plane deformations for the EFG wafers. Although the iterative solution 

for the EFG silicon wafer is seen to over-predict the deformation, the model captures the 

experimentally observed trends. Specifically, the experimental data reveals a leveling 

tendency with increase in the airflow rate, which is captured in the model predictions. 
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Figure 4.13:  Predicted vs. measured out-of-plane deformation at the center of the 
wafer, δ(0,0), for cast silicon wafer as a function of airflow rate 
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Figure 4.14:  Predicted vs. measured out-of-plane deformations at the center of the 
wafer, δ(0,0), for EFG silicon wafers as a function of airflow rate 
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Note that this leveling tendency was earlier attributed to the constraints imposed 

on the maximum wafer deformation by the gripper geometry and the influence of positive 

air pressure on the top surface of the wafer due to direct air impingement. It is evident 

from the figure that not accounting for the effect of wafer deformation on the pressure 

distribution does not result in the leveling trend observed in the test data (see curve for 

“first iteration” in Figure 4.14). As the out-of-plane displacement at the center of the 

wafer approaches the set stand-off distance with increasing airflow rate, the influence of 

wafer deformation on the pressure is reduced due to the direct impingement of air on the 

wafer and this causes the leveling-off effect.  

It is believed that over-prediction of the iterative model for EFG wafers is due to 

the assumed axis-symmetry of wafer deformation in the CFD model. Since the EFG 

wafer deformation profile along the y-axis is used in the CFD model and it is evident 

from Figure 4.11 that the variation in wafer deformation along the x-direction is far less 

than in the y-direction, the effect of direct air impingement on wafer deformation is 

actually more than the model accounts for. Consequently, the model predicts a higher 

deformation than observed in the experiment. Note that this was not observed in the cast 

silicon wafer case because the maximum deformation of the cast wafer was only about 

0.8 mm compared to the 2 mm stand-off distance set by the rubber pads. Whereas the 

EFG wafer deforms much more and is a lot closer to the gripper surface thereby 

enhancing the effect of air impingement and moderating the resulting wafer deformation. 

Accounting for the non-symmetric behavior of wafer deformation in the CFD model 

would require a computationally intensive 3-D model due to the fact that actual gripper 

used in this work has some inherent geometric imperfections. Nevertheless, the worst-

case prediction errors for the EFG silicon wafer are less than 20%.  
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Figure 4.15:  Full-field predicted out-of-plane deformation, δ, (m) as a function of 
volumetric air flow rate for cast silicon wafer 

 
 
 
 

 
Figure 4.16:  Full-field predicted out-of-plane deformation, δ, (m) as a function of 
volumetric air flow rate for EFG silicon wafer  
 
 
 
 

Figures 4.15 and 4.16 show the influence of volumetric air flow rate on the 

predicted full-field wafer deformation obtained from the iterative approach for the cast 

and EFG silicon wafers, respectively. When compared to the measured full-field 

deformations shown in Figures 4.10 and 4.11, a fairly good agreement is observed in the 

deformation patterns as far as the overall trends are concerned. In particular, almost 

symmetric deformation behavior is observed at 30 l/min and 35 l/min airflow rates for the 

cast wafer. In addition, the reversed U-shape pattern evident in the measured contours at 

higher airflow rates is also captured in the predictions. This confirms that the errors in the 
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location of the rubber pads (accounted for in the finite element model) are the primary 

cause of the non-symmetric deformation patterns. 

 

4.3.4  Effect on Radial Air Pressure Distribution 

After validating the iterative modeling procedure presented in Figure 4.2 by 

comparing the predicted equilibrium wafer deformation with the measured wafer 

deformation, the influence of substrate flexibility on the radial air pressure distribution 

generated by the gripper can be analyzed. Figures 4.17 and 4.18 show the predicted radial 

distribution profiles obtained at 40 l/min for the cast and EFG wafers, respectively. It can 

be seen in both figures that accounting for substrate deformation lead to a higher vacuum 

level in the center region of the gripper/wafer. This is explained by the reduction in 

airflow gap between the gripper surface and wafer when wafer deformation is accounted 

for in the model. Both figures also reveal a small region of positive pressure due to the 

direct impingement of air on the wafer surface as the air exits the vertical section of the 

nozzle near the cone mill. Note also that for the cast wafer (Figure 4.17), which 

experiences smaller deformation compared to the thinner EFG wafer, the angle of 

impingement of air exiting the nozzle near the cone mill, measured relative to the wafer 

surface normal, increases as the wafer deforms and this yields a lower force component 

normal to the wafer surface. In contrast, for the EFG wafer, which undergoes much larger 

deformation and therefore is closer to the gripper surface at equilibrium, the angle of 

impingement of air on the wafer surface is greater leading to a higher positive pressure 

peak relative to the cast wafer as well as to the EFG wafer when not considering the 

influence of wafer deformation (see Figure 4.18). In addition, notice that there is a shift in 

the location of the positive air pressure toward the center of the gripper when the effect of 
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wafer deformation is included. This radial shift is not captured when substrate flexibility 

is not accounted for in the model. 
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Figure 4.17:  Effect of wafer deformation on the predicted air pressure distribution for 
cast silicon wafer at V=40 l/min  
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Figure 4.18:  Effect of wafer deformation on the predicted pressure distribution for 
EFG silicon wafer at V=40 l/min 
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4.3.5  Effect on the Lifting Force 

The influence of wafer flexibility on the lifting force can also be evaluated by 

comparing the rigid substrate solution, represented by the first iteration solution, and the 

final equilibrium solution. Table 4.8 lists the lifting force obtained as a function of the 

volumetric airflow rate. These results are also plotted in Figures 4.19 and 4.20 for the cast 

and EFG wafers, respectively. For all cases, accounting for wafer flexibility leads to an 

increase in the lifting force. As mentioned earlier, the reduction in the airflow height due 

to wafer deformation generates higher vacuum levels and consequently an increase in the 

lifting force. For the cast silicon wafer (Figure 4.19), the effect of wafer deformation on 

the lifting force is absent at the lowest airflow rate of 30 l/min but increases with airflow 

rate to become quite significant at 40 l/min. In contrast, for the thinner EFG silicon wafer 

(see Figure 4.20), the effect of wafer deformation on the lifting force increases 

significantly with an increase in the airflow rate from 30 to 35 l/min and then decreases 

significantly at 40 l/min. This is due to the greater counteracting influence of the direct 

air impingement on the wafer surface, which is higher for the EFG wafer because it 

undergoes much larger deformation than the cast wafer and is closer to the nozzle exit 

near the cone mill. This is confirmed by looking at the results for the radial air pressure 

distribution in Figure 4.18. 
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Table 4.7:  Predicted lifting force as a function of the volumetric air flow rate (the rigid 
substrate solution is denoted by Finitial) 

 V Finitial Ffinal Flexibility influence 
 (l/min) (N) (N) (%) 

30 0.56 0.56 0 
35 1.25 1.36 8 Cast wafer 
40 2.74 4.01 32 
30 0.56 0.62 11 
35 1.25 2.05 39 EFG wafer 
40 2.74 2.79 2 
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Figure 4.19:  Predicted lifting force as a function of the volumetric air flow rate for cast 
silicon wafer 
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Figure 4.20:  Predicted lifting force as a function of the volumetric air flow rate for 
EFG silicon wafer 
 
 
 
 

4.3.6 Effect on the Handling Stresses 

The influence of wafer flexibility on the handling stresses can also be evaluated 

by comparing the rigid substrate solution, represented by the first iteration solution, and 

the final equilibrium solution. The stresses are obtained from the finite element model. In 

particular, it is the tensile stress generated in the wafer during handling that is of interest 

from a standpoint of wafer breakage. Since the maximum tensile stress is produced in the 

top surface of the wafer during Bernoulli gripping, the handling stresses on this surface of 

the wafer are analyzed here. Table 4.9 lists the maximum in-plane principal stress, which 

is tensile, is obtained from the center of the top surface of the wafer as a function of the 

volumetric airflow rate. These results are also plotted in Figures 4.21 and 4.22 for the cast 

and EFG wafers, respectively. For all cases, accounting for wafer flexibility leads to an 



 79

increase in the maximum in-plane principal stress. As expected, there is an increase in the 

magnitude of the stress with increasing wafer deformation. But at the highest airflow rate 

the counteracting influence of direct impingement of air on the wafer reduces the effect 

of wafer deformation on the handling stress. This is especially evident for the thin EFG 

wafer as seen in Figure 4.22  

 
 
Table 4.8: Predicted maximum in-plane stress at the center of the wafer as a function of 
the volumetric air flow rate 

 V σinitial(0,0) σfinal(0,0) Flexibility influence 
 (l/min) (mm) (mm) (%) 

30 7.0 7.1 1% 
35 12.9 13.7 6% Cast wafer 
40 27.6 40.2 31% 
30 11.9 13.5 11% 
35 26.6 43.7 39% EFG wafer 
40 53.2 60.2 12% 
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Figure 4.21:  Predicted maximum in-plane principal stress for cast silicon wafer at the 
center of the wafer top surface as a function of the volumetric airflow rate 
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Figure 4.22: Predicted maximum in-plane principal stress for EFG silicon wafer at the 
center of the wafer top surface as a function of the volumetric airflow rate 

 

 

Figures 4.23 and 4.24 show the maximum in-plane principal stress distribution as 

a function of the volumetric airflow rate for the cast and EFG wafers, respectively. It can 

be clearly seen from the figures that an increase in the airflow rate leads to an overall 

increase in the magnitude of the stresses everywhere. In addition, the location of the 

maximum in-plane principal tensile stress tends to shifts from the center of the wafer to 

the edge with an increase in the airflow rate. This change in location is due to the 

preferred orientation of wafer deformation resulting from the imperfections in the gripper 

geometry and more specifically to the differences in the location of the rubber pads. Note 

the presence of compressive stresses at the locations of the rubber pads. It is likely that 

the magnitude of these compressive stresses is somewhat over-predicted because of the 

boundary conditions used to model the locators (see Table 4.1). A more accurate model 

of the contact between the rubber pads and the wafer would require accounting for 
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friction at the interface. However, it is argued here that the effect of the boundary 

conditions used here is localized and does not influence the overall stress distribution 

significantly. Alternatively, the obtained wafer deformation profile could be used as a 

boundary condition to predict the stresses. This approach is presented in the next chapter, 

albeit using the measured wafer deformation profile instead of the predicted deformation 

profile to evaluate the total stress state generated in the wafer during handling. A 

comparison of the stress distributions shown in Figures 4.23 and 4.24 with the 

corresponding total stress states obtained in the next chapter (Figures 5.9 and 5.10) 

reveals several similarities. Note that an exact comparison cannot be made because the 

influence of the residual stress that is included in the total stress state. 

 
 
 

Figure 4.23: Influence of the airflow rate on the predicted maximum in-plane principal 
stress distribution on the top surface for cast silicon wafer 
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Figure 4.24: Influence of the airflow rate on the predicted maximum in-plane principal 
stress distribution on the top surface for the EFG silicon wafer 
 

 

4.4 Summary 

This chapter presented the modeling and analysis of the effect of substrate 

flexibility, and hence deformation, on the equilibrium radial air pressure distribution and 

lifting force generated by a Bernoulli gripper with a cone mill. An iterative fluid-structure 

interaction model developed using CFD and the finite element method was solved in 

order to elucidate the effects of substrate deformation. The model was analyzed and 

experimentally verified for Bernoulli handling of thin crystalline silicon wafers used as 

substrates in PV solar cell manufacture. The following specific conclusions are derived 

from this work: 

 The modeling approach is shown to yield predictions that are in good 

agreement with the measured equilibrium wafer deformations for both cast 

and EFG silicon wafers over a range of volumetric airflow rates. Specifically, 

prediction errors smaller than 7% were obtained for the cast silicon wafers 

while a larger average error of around 15% was obtained for the EFG wafers. 
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 At high airflow rates with the thin EFG wafer, the model was shown to 

accurately capture the leveling-off trend in the maximum wafer deformation 

due to the competing effects of low air pressure created by the radially 

diverging airflow and the direct impingement of air on the wafer surface in the 

vicinity of the cone mill. 

 The effect of substrate/wafer flexibility on the radial air pressure distribution 

and lifting force was found to be significant at higher volumetric airflow rates 

for both wafer types. Specifically, up to 32% difference in the predicted lifting 

force compared to the rigid substrate solution was found for the cast wafers at 

40 l/min airflow rate. For the EFG wafers, the maximum influence of wafer 

flexibility on the lifting force was 39% at 35 l/min. Overall, the effect of wafer 

deformation on the air pressure is to increase the vacuum level in the center 

region for both wafer types. For the thinner EFG wafer, the counteracting 

effect of direct air impingement is significant at the higher airflow rates. A 

similar effect is predicted for the lifting force and handling stresses. 

 It is shown that the airflow rate has a significant effect on the magnitude and 

distribution of the handling stresses. The magnitude of the maximum in-plane 

principal stress at the center of the wafer increases by 5.7 times and 4.5 times 

when going from 30 l/min to 40 l/min airflow rate for the cast wafer and EFG 

wafers, respectively.  

 In addition, a transition in the maximum in-plane principal tensile stress 

location from the center to the wafer edge is predicted by the model with 

increase in the air flow rate. 
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The results obtained from this study can be used to evaluate the lifting force 

acting on any air impermeable flexible substrate as a function of the gripper variables 

such as the volumetric airflow rate and stand-off distance. Also, optimization of the 

gripper design and especially the location of the rubber pads can be carried out to 

minimize wafer deformation and consequently the handling stresses when handling thin 

brittle materials such as silicon wafers. This optimization can help to reduce incidents of 

wafer breakage during wafer handling operations. In the next chapter, an approach to 

investigate why breakage occurs during handling is presented. 
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CHAPTER V 

ANALYSIS OF STRESSES AND BREAKAGE DURING HANDLING  

 

A significant challenge in using thinner and larger crystalline silicon wafers for 

solar cell manufacture is the reduced yield due to higher wafer breakage rates. At a given 

process step, wafer/cell breakage depends on the stresses produced in the wafer/cell due 

to prior processing, handling and/or transport and on the presence of structural defects 

such as cracks. Specifically, analysis of wafer breakage requires knowledge of the total 

in-plane stress state produced in the wafer due to handling and residual stresses from 

prior processing. The previous chapter presented a modeling approach to evaluate the 

handling stresses from the handling control variables in the case of a Bernoulli gripper. 

This chapter presents a systematic approach to breakage analysis of crystalline silicon 

wafers during handling via analysis of the total stress state produced in the wafer. The 

total stress state is determined using a combination of wafer deformation measurements 

and non-linear finite element analysis. This includes the residual stress generated in a 

prior process step and stresses applied to the wafer/cell by the current process, and 

handling and/or transport methods used in solar cell manufacture. Knowledge of the total 

stress state in conjunction with the crack size and location enables the determination of 

wafer breakage and the associated fracture stress. This approach is experimentally 

validated through breakage tests performed on EFG wafers with cracks introduced via 

indentation. The results show that the wafer breakage stress during handling is 

proportional to the inverse of the square root of the crack length, which is consistent with 

linear elastic fracture mechanics theory. The work also confirms the capability of the 
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proposed approach to determine the handling conditions under which wafer breakage will 

occur. 

5.1  Introduction 

The recent rise in the cost of silicon (Si) combined with the need to lower the cost 

of crystalline silicon based solar cells is contributing to the increasing use of thinner and 

larger wafers. However, a few studies have shown that the use of thinner wafers can lead 

to unacceptable yields arising from wafer breakage during handling, transport and/or 

processing [52]. Consequently, it is critical to understand the basics mechanics of wafer 

breakage [74]. Fundamentally, breakage of Si wafers during processing or handling is 

due to the propagation of cracks present in the wafer. Knowledge of crack locations and 

sizes is therefore needed to predict wafer breakage. A few techniques have been 

developed to detect and quantify cracks in wafers [58-60]. A crack will propagate if a 

sufficiently large in-plane tensile stress is applied normal to the crack plane (assuming 

Mode I fracture). Thus, it is necessary to analyze the nature, magnitude and distribution 

of the total stress state generated in the wafer/cell during handling or processing.  

This chapter presents a systematic approach to analyze the mechanical stresses 

and breakage of Si wafers of various types and thicknesses during automated handling. 

Although this work focuses specifically on wafer handling using the Bernoulli gripper 

(described later), the approach is general and applies to all handling methods that induce 

wafer deformation. The approach relies on a combination of full-field wafer deformation 

measurements and non-linear finite element analysis to determine the total stress state in 

the wafer/cell during handling. A detailed analysis of the handling induced stress state in 

Czochralski (Cz), Cast and Edge-defined Film-fed Growth (EFG) crystalline silicon 

wafers of different thicknesses is presented. Knowledge of crack location in the wafer 
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and its size enables the limiting wafer breakage stress to be determined from linear elastic 

fracture mechanics theory. Breakage experiments on notched EFG wafers are carried out 

to validate this approach to determine the wafer fracture stress during handling. The 

relationship between the experimentally obtained crack size and fracture stress is also 

analyzed. Finally, the relationship between the maximum in-plane tensile stress, the 

corresponding critical crack length and the likelihood of wafer breakage is also discussed.  

5.2  Handling Stresses 

As mentioned earlier, the breakage of crystalline Si wafers during solar cell 

production is a function of the stress applied to the wafer during processing, the residual 

stress generated in the wafer in prior processing steps, and structural defects such as 

cracks/micro-cracks. Wafer handling and transport is a process step that induces 

mechanical stresses in the wafer. Assuming that the principle of linear-elastic 

superposition of stress holds, the total stress in the wafer can be written as: 

residualappliedtotal σσσ +=         (5.1) 

The applied stress depends on the process and can be mechanical or thermal while 

the residual stress is the stress present in the wafer after removal of loads applied during 

the prior process step(s) (e.g. crystal growth, wire-sawing, etc.). 

In a handling operation, the applied stress is a function of the handling control 

variables. Mechanical, vacuum and Bernoulli based wafer handling devices are routinely 

used in the photovoltaic industry (PV). Of these, the Bernoulli gripper is widely used and 

because of its “low force” capability it is of particular interest when handling thin Si 

wafers. A typical Bernoulli gripper is shown schematically in Figure 4.1. The gripper is 

essentially an air nozzle that produces a suction force on the wafer by means of a radially 
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diverging decelerating air flow between the gripper and wafer. Generally, Bernoulli 

grippers are used as non-contact end effectors for “gentle handling” and the stand-off 

distance from the gripper to the handled object is fixed by equilibrium of the vacuum and 

the wafer weight [12, 17]. In high throughput PV applications, the Bernoulli gripper often 

consists of soft rubber pads that determine the stand-off distance. Friction between the 

wafer and pads enables faster transport speeds. When handling thin wafers (≤ 300 μm), 

the low pressure created by the radially diverging air flow tends to deform the wafer and 

generates stresses. The applied stresses are a function of the volumetric air flow rate and 

the stand-off distance imposed by the pads. 

As far as the residual stresses are concerned, in-plane residual stress 

measurements on Cz, EFG and Cast Si wafers have been reported in the literature [75, 

76]. At present however these measurements provide only the average through-thickness 

residual in-plane shear stress and not the complete residual stress state in the wafer. 

Hence, it is not yet possible to superpose the stresses as implied by Equation (5.1) and 

evaluate the relative significance of the residual stress and the applied handling stress. 

In the absence of the complete residual stress state in the wafer, experimentally 

determined full-field wafer deformation measurements can be used to determine the total 

stress state in the wafer via a two step procedure summarized in the flowchart shown in 

Figure 5.1. The first step involves fitting an analytical surface to the measured wafer 

deformation data in order to reduce measurement noise. The second step involves 

calculating the handling stress distribution by solving a non-linear finite element model 

of the wafer with the fitted analytical surface imposed as a displacement boundary 

condition. Since the influence of the in-plane residual stress is captured by the out-of-

plane wafer deformation, its effect on the total stress in the wafer is implicitly included in 
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the calculation. A similar approach is used in the Shadow- Moiré technique in [61] to 

extract the full-field residual stresses. These steps are detailed in the following sections. 

 

 

Figure 5.1:  Total stress state calculation procedure from measured wafer deformation 
profiles 
 

 

5.2.1  Wafer Deformation Measurement 

The experimental setup used to measure wafer deformation consists of a 4-axis 

Adept® SCARA robot equipped with a Bernoulli gripper for wafer pick up and transport 

(see Figure 5.2). Sensors used in the setup include an air flow controller (OMEGA FMA-

2610A) to measure and control the volumetric air flow rate in the gripper and a laser-

based wafer deformation measurement system (Micro-Epsilon OptoNCDT 1700). 
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Figure 5.2:  Experimental set-up 

 

 

Figure 5.3:  Bernoulli gripper handling a 156 mm cast wafer 
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The full-field wafer deformation measurement procedure using the laser-based 

sensor is as follows. The robot scans the gripped wafer (at a fixed air flow rate and stand-

off distance) along a path defined by a specified grid while the laser sensor measures the 

wafer deformation. Once scanning is complete, the height between the laser and each of 

the four rubber pads on the Bernoulli gripper is measured and a least-squares reference 

plane is calculated using the pad heights. Thereafter, the full-field wafer deformation with 

respect to the least-squares plane is obtained from the laser data. 

 
 
 

Table 5.1:  Wafer characteristics and scan grid spacing specification 

Wafer Type Size Average Thickness 
(μm) 

# Samples 
 

Grid Spacing 
(mm) 

Cz wafer <100> 125 mm x 125 mm 219.2 ± 1.2 5 1.5 
Cast wafer  125 mm x 125 mm 256.5 ± 0.5 5 1.5 
Cast wafer 156 mm x 156 mm 146.0 ± 8.0 5 1.5 
EFG wafer 100 mm x 100 mm 179.6 ± 1.9 5 1.5 

 

 

The foregoing scanning procedure was applied to several Si wafers of different 

types and thicknesses listed in Table 5.1. The average wafer thickness was estimated 

through wafer weight measurements. The wafers used were as provided by the suppliers 

and included some etching to remove surface damage from wire sawing/laser cutting 

operations. In each experiment with a given wafer type, the volumetric air flow rate was 

varied from 30 to 40 liters/min. The stand-off distance between the gripper and wafer, H, 

was fixed at 2 mm. The measured response was the full-field wafer deformation from 

which the maximum wafer deformation could be extracted.  
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The influence of volumetric air flow rate, V, on wafer deformation at the center of 

the wafer (maximum deformation) is shown in Figure 5.4. It is clear that the deformation 

increases with air flow rate and, for air flow rates greater than 37 l/min, is greatest in the 

thin 156 mm cast wafer and smallest in the thick 125 mm cast mc-Si wafer. It can be also 

seen that an upper limit of wafer deformation exists for the thin EFG wafers as the flow 

rate is increased. This is largely a result of the wafer deformation approaching the 

maximum displacement permitted by the gripper geometry and is a function of the stand-

off distance defined by the rubber pads. Another factor that contributes to the leveling of 

wafer deformation, especially at high air flow rates at which the top surface of the 

deformed wafer approaches the gripper surface, is the positive air pressure acting on the 

wafer around the cone mill (see Figure 4.1) as the air enters the gap between the gripper 

and wafer and directly impinges on the wafer surface. This positive pressure moderates 

the effect of negative air pressure (or vacuum) created by the radially diverging air flow. 

The influence of volumetric air flow rate and wafer type on the full-field wafer 

deformation is shown in Figure 5.5. The deformation contours in this figure yield 

conclusions similar to those derived from Figure 5.4. In addition, one can see that for all 

wafer types there is a preferred orientation of the deformation as the volumetric air flow 

rate is increased. Material anisotropy cannot explain this preferred orientation since it 

appears to be the more or less the same for all wafer types. Careful analysis of the gripper 

geometry shows that the preferred orientation is due to small errors in the actual location 

of the rubber pads. If the rubber pads were symmetrically located around the center of the 

gripper, a symmetric deformation profile would be obtained. The errors in the location of 

the pads lead to differences in moment arms and consequently a reversed U-shape 

deformation pattern is obtained at high flow rates. 
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An analytical surface is fit to the wafer deformation data using polynomial 

regression in order to represent the deformed wafer by a smooth, continuous and well-

defined surface. The following fourth-order polynomial regression model with two 

predictor variables is used for this purpose: 

4
2222

4
111112210 ...}{ yxxyyxE i ββββββδ ++++++=    (5.2) 

where x and y are the coordinates in the reference plane of the wafer (cf. Figure 5.5) and 

δi is the out-of-plane deformation. For all wafer types, the R-squared value of the surface 

fit obtained was close to 1 indicating a good fit (cf. Figure 5.6).  

 
 
 

 

Figure 5.4:  Influence of volumetric air flow rate on the out-of-plane deformation at the 
center of the wafer 
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Figure 5.5:  Wafer out-of-plane deformation (in mm) pattern as a function of 
volumetric air flow rate: (a) Cz wafer, (b) EFG wafer, (c) 125 mm cast wafer and (d) 156 
mm cast wafer 

(d) 

(c) 

(b) 

(a) 

30 l/min 40 l/min
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Figure 5.6:  Typical surface fit of the wafer deformation and corresponding 
experimental values (EFG silicon wafer, H=2mm, V=40 l/min) 
 
 
 

5.2.2  Determination of the Total Stress State 

The total stress state produced in the Si wafer due to handling forces exerted by 

the Bernoulli gripper plus any residual stresses present in the wafer from prior processing 

is determined from the full-field wafer deformation data via finite element analysis. 

Specifically, the measured wafer deformation is imposed as a displacement boundary 

condition on the finite element model of the Si wafer and the model is solved to obtain 

the corresponding stress distribution. The finite element model for each wafer type is 

built and solved using standard finite element software (in this case ABAQUS®) as 

described next. 
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5.2.2.1  Model Geometry 

The different Si wafer types considered in the previous experiments are modeled 

as thin plates of uniform thickness using 4-node general purpose thin shell elements for 

finite strains (type S4) in order to capture the large deformation exhibited by the wafers. 

The model and analysis account for the geometric non-linearity associated with large 

wafer deformation associated with thin wafers, which causes some of the load to be 

carried by membrane action rather than by bending alone. Preliminary analysis showed 

that the differences in the results obtained from linear and nonlinear simulations are 

sufficiently large to indicate that a linear simulation is not adequate for these wafers. 

Similar conclusions were derived in [53] when modeling the fracture twist test of Cz 

wafers using the finite element method. Because of the asymmetry in the wafer 

deformation (as seen in Figure 5.5), a full 3-D wafer model is employed. 

5.2.2.2  Material Properties 

The Cast mc-Si wafer is assumed to be elastic and isotropic. Values of the 

Young’s modulus and Poisson ratio for Cast silicon reported in the literature (E=162.5 

GPa; υ=0.223) are used [50]. For the other wafer types, anisotropic material properties 

are specified using the stiffness matrix defined in the proper coordinate system (x, y, z) 

[63]. The stiffness coefficients are obtained from known compliance coefficients for 

single cubic Si crystal with respect to the crystal coordinate system (x’, y’, z’). 

Although EFG wafers are multi-crystalline in nature, there are known to have a 

predominant grain orientation due to the growth process. Specifically, the EFG wafers are 

characterized by a {110} surface and a <112> growth direction [65]. Therefore, the 

stiffness is specified using the {110} single crystal properties with the ]211[ , ]111[  and 



 97

]110[  orientations representing the x, y and z axes. The resulting elastic stiffness matrix 

(in GPa) for the EFG wafer is given by: 
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A similar approach is used for the Cz wafers. Specifically, properties of the {100} 

crystallographic orientation of the single crystal are used, taking [001], [010] and [100] 

orientations as the x, y and z axes. Due to its cubic symmetry, the stiffness matrix is 

invariant to transformation and the resulting elastic stiffness matrix (units of GPa) is 

given by: 
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5.2.2.3  Boundary conditions 

The boundary conditions for the model are given in Table 5.2. A Fortran® 

subroutine (DISP) was used to define the magnitudes of the out-of-plane displacements 

(Uz) at all nodes. For a given wafer type, the displacements are obtained from the 

corresponding analytical surface fit to the measured wafer deformation (see Equation 

5.2). In-plane wafer displacements are not restrained except for the center node of the 

wafer that is pinned (Ux=Uy=0) to avoid rigid body motion of the wafer. 
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Table 5.2:  Boundary conditions specification 

Boundary conditions Location (x,y) Value 

Wafer surface (xs, ys) • Uz = ),( yxiδ  

Center (0,0) • Ux = Uy = 0 

 

 

5.2.2.4  Mesh grid independence 

The mesh employed for each wafer type is shown in Figure 5.7. Four node 

quadrilateral shell elements were used to define the two-dimensional structured grid. Due 

to the simple geometry, skewness of the cells was checked and was found to be adequate. 

An important factor governing the quality of finite element simulations is the 

computational grid quality. Analysis of grid independence was therefore performed. The 

sensitivity of the results to the grid resolution was tested for the computed stresses for 

eight different grids per wafer type. The number of shell elements was refined iteratively 

to obtain reliable results by reducing the seed size. Table 5.3 shows the number of 

quadrilateral shell elements, N, with respect to seed size. The different computational 

grids were compared to the finest mesh solution. The predicted stress in the y direction 

(as shown in Figure 5.5) generated by the gripper at the center node of the handled wafer 

on its top surface is plotted in Figure 5.8 as a function of the number of shell elements 

used. The relative error in the predicted stress values compared to the finest mesh 

solution is also plotted. It is important to note that the relative change in the predicted 

stress between the three finest grid models is small (less than 0.2 %). Since the simulation 

times for these models are reasonable (less than 1 hour on a single Pentium 2.8 GHz 
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processor machine) the mesh corresponding to the 2 mm seed size was considered to be 

adequate for all simulations. 

 
 
 

 

Figure 5.7:  Mesh for the different wafer types with 2mm seed size: (a)  Cz wafer, (b) 
EFG wafer, (c) Cast wafer 125mm and (d) Cast wafer 156mm 
 

 

Table 5.3:  Different grids used for the grid independence check and their 
corresponding number of elements 

Seed size (mm) 1 1.5 2 2.5 3 4 5 6 
N (Cz) (#) 15400 6770 3828 2484 1748 988 572 396

N (EFG) (#) 10000 4422 2500 1600 1122 576 400 256
N (Cast 125 mm) (#) 15500 6972 3844 2500 1764 992 576 400
N (Cast 156 mm) (#) 22500 10000 5476 3600 2500 1444 900 576

 

(a) (b)

(c) (d)
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Figure 5.8:  Total stress value, syy, at the center on the top surface of the wafer as a 
function of the number of shell elements used in the different models (V=40 l/min for Cz 
wafer and Cast wafers; V=37.5 l/min for the EFG wafer) 
 

 

5.2.3  Analysis of the Total Stress State 

The maximum in-plane principal tensile stresses acting on the top surface of the 

wafer, σmax, obtained from the finite element simulations are summarized in Table 5.4. 

The location in the table refers to the location of the maximum principal tensile stress in 

the wafer. As expected, irrespective of wafer type, an increase in the volumetric air flow 

rate leads to an increase in the tensile stress.  At the highest air flow rate, the principal 

tensile stress levels are quite high for all wafer types, with the thin EFG wafer exhibiting 

the highest value. 

In the absence of knowledge of the location and orientation of cracks in the wafer, 

σmax provides a metric based on which a conservative estimate of the limiting crack size 
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for fracture during handling can be determined from linear elastic fracture mechanics 

theory. In other words, breakage will not occur if the actual crack sizes are smaller than 

the critical crack size irrespective of their orientation and location. 

 
 
 

Table 5.4:  Max in-plane principal tensile stress 

V σmax 
(l/min) (Mpa) Location 

30 5.4 Center 
35 10.9 Cener Cz wafers 

(219 μm) 
40 41.9 Edge 
30 16.1 Center 
35 40.2 Center 

EFG wafers 
(180 μm) 

40 62.9 Edge 
30 4.5 Center 
35 9.1 Center 

Cast wafers 
125 mm x 125 mm 

(256 μm) 40 29.4 Edge 
30 14.5 Edge 
35 39.2 Edge 

Cast wafers 
156 mm x 156 mm 

(146 μm) 40 54.5 Edge 
 

 
 

Figures 5.9 and 5.10 show the maximum in-plane principal stress distribution on 

wafer surface as a function of volumetric air flow rate for the EFG and cast (125 mm), 

respectively. The tensile stress distribution is seen to change significantly with an 

increase in the air flow rate. Specifically, the location of σmax shifts from the center of the 

wafer to the edge. As demonstrated in the previous chapter this change in location is due 

to the preferred orientation of the wafer deformation resulting from imperfections in the 

gripper geometry and more specifically to the differences in the location of the rubber 

pads. 
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Figure 5.9:  Typical maximum in-plane principal stress distribution (Pa) for EFG wafer 
at 30 l/min and 40 l/min air volumetric flow rates 
 

 

 

 
Figure 5.10:  Typical maximum in-plane principal stress distribution (Pa) for cast (125 
mm) wafer at 30 l/min and 40 l/min air volumetric flow rates 
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5.3  Wafer Breakage Analysis 

Having determined the total stress state in the wafer during handling, it is of 

interest to determine if the wafer will break under the handling forces acting on the wafer. 

Alternatively, I would be useful to know the limiting crack size in the wafer that will lead 

to wafer breakage under the applied handling forces. Answers to these questions can be 

obtained from the application of linear elastic fracture mechanics theory as follows. 

Assuming that mode I fracture is the predominant mode and if a crack is located in an 

area of tensile stress, its propagation depends on the following factors: 

- magnitude of the far field tensile stress acting perpendicular to the crack plane, 

- crack geometry (size and shape), and 

- fracture toughness KC of the material. 

From linear elastic fracture mechanics theory, the stress intensity factor for an 

edge crack of length, l, under a far field tensile stress, ∞σ  , is given by [77]: 

lYK I πσ∞=          (5.5) 

where Y is the shape factor for an edge crack in a specimen with finite width, w, and is 

computed as: 
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A crack will propagate when the stress intensity factor KI equals the fracture 

toughness KC (also known as the Griffith criterion). The critical tensile (or fracture) stress 

is then given by: 

( ) 2/1−= l
Y

KC
f πσ          (5.7) 
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For single crystal silicon (sc-Si) and EFG wafers, inherent material anisotropy 

will lead to different values of KC depending on the crystal orientation. For Cast mc-Si 

wafers, anisotropy at the wafer level is absent and KC may be assumed to be independent 

of crystallographic orientation. Table 5.5 shows the fracture toughness values of Si 

wafers with different orientations (for sc-Si) reported in the literature. Note the large 

variation in the KC values for the {111} cleavage plane, mainly due to differences in the 

test methods employed. Chen and Leipold [78] used four-point bending to evaluate the 

effect of crystal orientation on the fracture toughness of silicon. More recently, Ebrahimi 

and Kalwani [79] have used indentation to analyze the anisotropic behavior of the 

fracture toughness in single crystal silicon. 

 
 
 

Table 5.5: Fracture toughness of silicon [79, 80] 

Material Cleavage Plane KC (MPa √m) Ref. 
sc-Si {100} 0.95 [78] 
sc-Si {110} 0.90 [78] 
sc-Si {111} 0.82 [78] 
  1.31±0.09 [79] 
mc-Si N/A 0.75±0.06 [78] 

 

 

5.3.1  Determination of Wafer Breakage Stress During Handling 

The approach used for determining the wafer breakage stress during Bernoulli 

gripping is summarized in Figure 5.11. The first step in the approach consists of 

experimentally characterizing the influence of volumetric air flow rate (V) on wafer 

deformation, δ. Equation (5.8) describes this influence for every wafer i and is 

established through full-field wafer deformation measurements described earlier.  
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)(),( Vfyx i
i =δ          (5.8) 

 

 

Figure 5.11:  Flowchart of the approach 
 
 
 
 

As discussed earlier and specified in Equation (5.2), for a given air flow rate, the 

function if  can be represented by a fourth order polynomial regression model. 

The second step consists of artificially introducing a crack in the Si wafers using 

micro indentation. As mentioned earlier, the EFG wafers are known to have a 

predominant {110} grain orientation and <112> growth direction due to the crystal 

growth process [66]. A Knoop indenter (elongated diamond pyramid) is used to generate 

a small notch on the wafer edge perpendicular to the growth direction and initiate a 

relatively straight through-thickness crack in the growth direction. Figure 5.12 illustrates 

schematically the location and orientation of the notch/crack produced in the wafer. The 

crack length, l, is not controlled and is measured using an optical microscope. A typical 

crack generated in this manner is shown in Figure 5.13. The notch size being much 

smaller than the crack length, its influence on wafer fracture is neglected. The specific 
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crack orientation is chosen to create {111} cleavage planes thus avoiding transgranular 

fracture of the wafer. 

 

Figure 5.12:  Schematic of the through-thickness crack in EFG wafer 

 

 
 

Figure 5.13:  Optical microscope picture of 0.60 mm crack (sample #4) 

 

 
Breakage experiments are then carried out using the Bernoulli gripper where it is 

important to keep the same wafer orientation as in the first step due to the asymmetry in 

wafer deformation (see Figure 5.5). The air flow rate is increased slowly at a rate of 0.2 

crack 
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L/min till wafer breakage occurs. From Equation (5.8) and the air flow rate at failure, Vf, 

the wafer deformation at fracture is obtained as follows: 

),,(),( fi
i

f Vyxfyx =δ         (5.9) 

Since the crack sizes are relatively small compared to the wafer width, it is 

assumed here that the presence of the crack does not affect significantly the wafer 

deformation profile obtained from the un-cracked wafer. Therefore, Equation 5.9 can be 

used to estimate the wafer deformation at fracture. 

 
 

 
Figure 5.14:  Wafer deformation profile at failure calculated using Equation 5.3  
(sample #4) 
 

 
 

Figure 5.14 shows an example of the wafer deformation at fracture. As 

mentioned before, it can be seen that the deformation is not perfectly symmetric due to 

imperfections in the gripper geometry. In addition, microscopic observation of the crack 

plane after fracture reveals that the EFG wafer is inherently thicker at the edges normal to 

the growth direction and thinner at the center.  



 108

 

Figure 5.15:  Total stress distribution, syy, on the wafer surface (sample #4) 
 

 
 

Finally, the total stress state at breakage is obtained from non-linear finite 

element analysis (FEA) with the wafer deformation at fracture (Equation 5.9) imposed as 

the displacement boundary condition on the model. Figure 5.15 shows a typical stress 

distribution obtained from FEA on the top surface of the wafer perpendicular to the crack 

plane. Note that the average tensile stress along the crack direction over the whole wafer 

width is extracted from the finite element simulation and used as an estimate of the far-

field stress acting on the crack plane at breakage. The resulting wafer breakage stress is 

denoted as follows:  

)( i
fi

i
f g δσ =           (5.10) 



 109

5.3.2  Validation of Wafer Breakage Stress Approach 

Wafer breakage experiments were carried out to validate the forgoing wafer 

breakage stress determination approach. As-received 100 mm x 100 mm EFG wafers 

were selected from the same batch for the experiments. The wafers were etched by the 

supplier in two groups to remove surface damage from laser cutting operations. The 

average thickness (t{111}) of these groups was determined from weight measurements and 

found to be 180 μm and 160 μm, respectively. The test setup shown earlier in Figure 5.2 

was used. As before, the wafer stand-off distance between the Bernoulli gripper and the 

EFG wafer was fixed at 2 mm. Before introducing a crack in each wafer, the full-field 

wafer deformation was obtained (Step 1 in Figure 5.11) by varying the volumetric air 

flow rate from 27.5 to 40 liters/min.  

Table 5.6 summarizes the results for the EFG wafers that survived the indentation 

process. This process yielded 14 unbroken wafers of which 3 wafers had crack sizes 

above 16 mm or were not properly oriented and were consequently not used in the 

breakage tests. As mentioned earlier, the thickness variation on the cleavage plane was 

measured after wafer fracture and found to exhibit an average total thickness variation 

(TTV) of ±13% in the wafer growth direction. The wafer thickness on the cleavage plane, 

t{111}, the crack size l, the volumetric air flow rate, Vf, and the failure stress, σf, are listed  

in Table 5.6 for the 11 wafers. The observed thickness variation is related to the control 

of the pulling rate during the EFG wafer growth process. The effect of this variation was 

accounted for in the finite element simulations by running three simulations for each 

wafer at the measured average, maximum, and minimum thickness of the cleavage plane 

(listed in Table 5.6). 
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Table 5.6: Calculated failure stress for EFG wafers 

Wafer t{111} l Vf σf 

(#) (μm) (mm) (l/min) (MPa) 
1 163 ± 21 0.33 39.1 44.3 
2 115 ± 21 0.40 34.0 33.6 
3 135 ± 13 0.45 33.0 30.9 
4 169 ± 16 0.60 35.5 32.6 
5 134 ± 19 1.15 31.4 18.1 
6 159 ± 26 1.70 34.3 24.5 
7 164 ± 30 2.62 30.1 6.5 
8 151 ± 20 2.95 31.6 16.0 
9 168 ± 12 3.13 32.1 10.1 
10 161 ± 19 4.11 31.8 6.5 
11 163 ± 23 6.19 30.6 11.9 

 
 
 
 

The wafer breakage stress determined from Equation (5.10) is plotted as a 

function of the crack length in Figure 5.16 (labeled as “Experiment”). The figure also 

contains a plot of the theoretical fracture stress determined from Eqs. (5.6)-(5.7) for two 

values of fracture toughness for sc-Si wafers along the {111} cleavage plane reported in 

the literature [78, 79]. The experimental breakage stress values are seen to be in fairly 

good agreement with the theoretical values. Although some scatter is evident in the 

experimental failure stress values, most of them fall within the range of the theoretical 

values. When the experimental breakage stress is plotted as a function of the inverse 

square root of the crack length as shown in Figure 5.17, a strong proportional relationship 

is found as indicated by linear elastic fracture mechanics theory (see Equation 5.7 which 

assumes a nearly constant shape factor). This further validates the breakage stress 

calculation using the FEA method outlined in Figure 5.11. 
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Figure 5.16:  Experimental and theoretical failure stresses as a function of the crack 
length 
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Figure 5.17:  Experimentally determined failure stress as a function of the (crack 
length)(-1/2) 
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Figure 5.18:  Experimental and theoretical failure stresses as a function of the crack 
length (half wafer width analysis) 
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Figure 5.19:  Experimentally determined failure stress as a function of the (crack 
length)(-1/2) (half wafer width analysis) 
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In Figures 5.16 and 5.17, the far-field stress was evaluated as the average tensile 

stress along the crack direction over the full wafer width (cf. Equation 5.10). A more 

localized approach has also been tried where only half the wafer width was used to 

determine the far-field stress. Figures 5.18 and 5.19 show the results obtained, which are 

found to be similar to those obtained previously.  

Since the widths of the different wafer types tested are much larger than the 

corresponding crack sizes, the shape factor, Y, is nearly constant. Consequently, the 

fracture toughness values can be obtained from the slopes in Figures 5.17 and 5.19. The 

calculated values thus obtained are 1.43 and 1.47 MPa √m, respectively. These values are 

large compared to the values for silicon reported in the literature (see Table 5.5). This can 

be explained by the influence of the sample thickness on the fracture toughness. It is well 

known that for thick samples the fracture toughness is thickness independent (plain strain 

situation). However, with decrease in sample thickness the fracture toughness tends to 

increase [80]. In addition, since the failure stress is predicted here from deformation 

profiles obtained from un-cracked wafers, this approach may be overestimating the 

failure stress. 

5.3.3  Practical Use of the Wafer Breakage Analysis 

5.3.3.1  When Measured Deformation Profiles are Available 
 

Note that the wafer breakage analysis approach presented in this chapter assumes 

prior knowledge of crack size, location and orientation in the wafer. If this information is 

available, for instance using one of the crack detection methods discussed in the literature 

[58-60, 74], then the approach can be used to determine if the selected handling device 

control variables (e.g. volumetric air flow rate and stand-off distance in the case of the 

Bernoulli gripper) will cause wafer breakage. The total stress state in the wafer can be 
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obtained from the full-field wafer deformation just before breakage and, using the 

approach outlined in step 4 of the breakage stress determination procedure (Figure 5.10), 

the breakage stress during handling can be compared to the theoretical fracture stress 

(Equation 5.7). This will allow determination of how close to wafer breakage the current 

handling conditions are. If the actual stress is close to the failure stress, handling control 

variables such as the air flow rate could be reduced to avoid breakage. 

Alternatively, the maximum in-plane principal tensile stress in the wafer extracted 

from the finite element simulation for a given volumetric air flow rate and stand-off 

distance can be used as an estimate of the wafer breakage stress and by combining it with 

Equation (5.7) a limiting crack length for breakage during handling under the chosen 

conditions can be established. This crack length value will be admittedly conservative but 

can still be useful for screening out defective wafers. Table 5.7 lists the critical crack 

lengths calculated using this approach for the samples listed in Table 5.1.  

 
 

Table 5.7. Calculated critical crack sizes from measured deformation profiles 

 KC V σmax lc 
 Mpa.m0.5 (L/min) (Mpa) (mm) 

30 5.4 7.14 
35 10.9 1.75 

Cz wafers 
0.82 

40 41.9 0.12 
30 16.1 0.80 
35 40.2 0.13 

EFG wafers 
0.82 

40 62.9 0.05 
Cast wafers 30 4.5 9.40 

125 mm x 125 mm 35 9.1 2.30 
 

0.75 
40 29.4 0.22 

Cast wafers 30 14.5 0.90 
156 mm x 156 mm 35 39.2 0.12 

 
0.75 

40 54.5 0.06 
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5.3.2.2  When Measured Deformation Profiles are Unavailable 
 

When wafer deformation measurements are not available, the modeling approach 

presented in Chapter 4 can be really useful for determining the critical crack lengths. If 

the full residual stress state in the wafer is known, the total stress state can be calculated 

by superposing the residual stress on the handling stresses predicted by the iterative 

approach presented in Chapter 4 (see Figure 4.2). The critical crack lengths can then be 

obtained in a manner similar to that used to obtain the results shown in Table 5.7.. 

Results obtained using this procedure are given in Table 5.8, where the residual stresses 

were assumed to be negligible compared to the handling stresses. The maximum in-plane 

principal stresses listed in the table are extracted from Figures 4.23 and 4.24 for cast and 

EFG silicon wafers, respectively. 

 
 

Table 5.8. Calculated critical crack sizes from predicted handling stresses 

 KC V σmax lc 
 Mpa.m0.5 (L/min) (Mpa) (mm) 

30 16.1 1.06 EFG wafers
0.82 

40 62.9 0.13 
Cast wafers 30 4.5 3.83 

 
0.75 

40 29.4 0.12 
 

 

In addition, if the crack location, size and orientation are known a priori, the 

handling stress prediction model presented in Chapter 4 can be used in conjunction with 

linear elastic fracture mechanics theory and knowledge of the residual stresses to 

determine the volumetric air flow rate and/or the stand-off distance that will prevent 

wafer breakage.  
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5.4  Summary 

This chapter presented a systematic approach for the analysis of the total stress 

state produced in sc-Si and mc-Si wafers during handling and the relationship to wafer 

breakage. Although the chapter focused on a specific wafer handling method, namely 

Bernoulli gripping, the overall approach is general and applicable to all handling devices 

that induce wafer deformation and consequently stresses. It is shown that the air flow 

rate, wafer type and thickness have a significant effect on the magnitude and distribution 

of handling stresses. For all wafer types, results showed a transition in the maximum in-

plane principal tensile stress location from the center to the wafer edge as the air flow rate 

is increased. Based on knowledge of the total stress state and crack size and location, an 

approach to determine the breakage stress was presented. The results showed that the 

proposed approach yields breakage stress values that are consistent with linear elastic 

fracture mechanics theory. The experimental results also show that the wafer breakage 

stress determined using the approach is proportional to the inverse square root of the 

crack length as expected from linear elastic fracture mechanics, hence validating the in-

plane tensile stress calculation. This work confirms the capability of predicting wafer 

breakage during handling using the total stress state provided the crack size, location and 

fracture toughness are known. Alternately, the approach can be used to determine a 

conservative estimate of the critical crack length for a given handling condition. Wafers 

with cracks less than the critical value will not break under the given handling condition. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes the main contributions and conclusions of this thesis, 

and suggests related areas for further exploration. 

6.1 Main Contributions 

The main contributions of this work can be summarized as follow: 

 Development of models for analysis of thin wafer handling using a Bernoulli 

device. 

 Fundamental understanding of the nature and magnitude of stresses generated 

by Bernoulli handling for different handling device variables. 

 Understanding of the influence of substrate flexibility on the equilibrium 

lifting force, pressure distribution and stresses. 

 A systematic approach to breakage analysis of crystalline silicon wafers 

during handling via analysis of the total stress state produced in the wafer is 

presented and demonstrated of being able to predict wafer breakage. 

6.2 Main Conclusions 

The main conclusions of this thesis are as follows: 

6.2.1  Modeling of the Air Flow Generated by a Bernoulli Gripper on a Rigid Flat Object 

A computational fluid dynamics model of the flow generated by a Bernoulli 

gripper used for low-force handling of small and large rigid and non-rigid materials has 

been developed. The model predicts the air flow, pressure distribution and lifting force 
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generated by the gripper on a rigid and flat substrate. A turbulent Reynolds stress model 

is used in a finite volume Reynolds-Averaged Navier-Stokes solver implemented in the 

general purpose CFD software FLUENT®. The following specific conclusions summarize 

this work: 

 The model explicitly considers the non-steady characteristics of the air flow 

generated in the gripper and represents an enhancement over prior work in this 

area. The flow behavior reveals interesting features such as the flow 

separation region and the recirculation around the nozzle exit.  

 A turbulent-to-laminar transition in the airflow was found with a Reynolds 

number of ~7200 close to the nozzle exit at the highest mass flow rate and 

laminar flow at the outer edge of the gripper. Therefore, a turbulent model is 

justified. 

 For the gripper modeled in this work, Mach numbers at the nozzle exit were 

found to increase from ~0.3 to ~0.8 with an increase in the mass flow rate 

from 1 to 3 g/s. Consequently compressibility effects are important and were 

considered in the model. 

 Even though the measured pressure deformation profiles were not perfectly 

symmetric due to imperfections in the actual gripper geometry, the axi-

symmetry fluid model was able to provide adequate predictions of the 

pressure distribution and lifting force. 

 The fluid model is shown to yield predictions of the pressure distribution on 

the handled object that are in good agreement with the measured envelope of 

the experimental pressure distribution measurements. 
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 The lifting force generated by the gripper was generally predicted within 12% 

of the measured values for most cases. The error was highest (18%) at the 

minimum stand-off distance and maximum flow rate (H=2mm, V=40 l/min). 

 From the experimental validation, the stand-off distance, H, and volumetric 

air flow rate, V, were found to have a significant influence on the pressure 

distribution and lifting force generated by the Bernoulli gripper. 

The model developed can be used to evaluate the lifting force and pressure 

distribution on the rigid and flat handled object as a function of the volumetric air flow 

rate and stand-off distance. When handling thin brittle wafers for example, the output of 

this model can be used as an input to a wafer deformation/stress model to calculate the 

wafer handling stresses generated by the gripper.  

6.2.2  Effect of Substrate Flexibility on the Air Pressure and Handling Stresses 

Modeling and analysis of the effect of substrate flexibility, and hence 

deformation, on the equilibrium pressure distribution and handling force generated by a 

Bernoulli gripper were developed. An iterative fluid-structure interaction model was 

solved using CFD and non-linear finite element analysis in order to elucidate the effect of 

substrate deformation. The model was analyzed and experimentally verified for Bernoulli 

handling of thin silicon wafers used as substrates in PV solar cell manufacture. The 

following specific conclusions summarize the work: 

 The modeling approach is shown to yield predictions that are in good 

agreement with the measured equilibrium wafer deformations for both cast 

and EFG silicon wafers over a range of volumetric airflow rates. Specifically, 
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prediction errors smaller than 7% were obtained for the cast silicon wafers 

while a larger average error of around 15% was obtained for the EFG wafers. 

 At high airflow rates with the 180 μm thick EFG wafer, the model was shown 

to accurately capture the leveling-off trend in the maximum wafer 

deformation due to the competing effects of low air pressure created by the 

radially diverging airflow and the direct impingement of air on the wafer 

surface in the vicinity of the nozzle. 

 The effect of substrate/wafer flexibility on the radial air pressure distribution 

and lifting force was found to be significant at higher volumetric airflow rates 

for both wafer types. Up to 32% difference in the predicted lifting force 

compared to the rigid substrate solution was found for the cast wafers at 40 

l/min airflow rate. For the EFG wafers, the maximum influence of wafer 

flexibility on the lifting force was 39% at 35 l/min. Overall the effect of wafer 

deformation on the air pressure is to increase the vacuum level in the center 

region for both wafer types. For the thinner EFG wafer, the counteracting 

effect of direct air impingement is significant at the higher airflow rates. A 

similar effect is predicted for the lifting force and handling stresses. 

 The model presented here is able to predict the handling stresses as a function 

of the handling control variables. It is shown that the airflow rate has a 

significant effect on the magnitude and distribution of the handling stresses. 

The magnitude of the maximum in-plane principal stress at the center of the 

wafer increases by 5.7 times and 4.5 times when going from 30 l/min to 40 

l/min airflow rate for the cast wafer and EFG wafers, respectively.  
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 In addition, a transition in the maximum in-plane principal tensile stress 

location from the center to the wafer edge is predicted by the model with 

increase in the air flow rate. 

The results obtained from this model can be used to evaluate the lifting force 

acting on any air impermeable flexible substrate as a function of the gripper variables 

such as the volumetric airflow rate and stand-off distance. Also, optimization of the 

gripper design and more particularly the location of the rubber pads can be carried out to 

minimize the wafer deformation and consequently the handling stresses when handling 

thin brittle materials such as silicon wafers. This optimization can help to reduce 

incidents of wafer breakage during handling operations.  

6.2.3  Analysis of the Total Stress State and Breakage of Crystalline Silicon Wafers 

during Handling 

A systematic approach for the analysis of the total stress state produced in sc-Si 

and mc-Si wafers during handling and the relationship to wafer breakage has been 

presented. The approach relies on a combination of full-field wafer deformation 

measurements and non-linear finite element analysis to determine the total stress state in 

the wafer/cell during handling Although the focus was on a specific wafer handling 

method, namely Bernoulli gripping, the overall approach is general and applicable to all 

handling devices that induce wafer deformation and consequently stresses. The specific 

conclusions are as follows: 

 It is shown that the air flow rate, wafer type and thickness have a significant 

effect on the magnitude and distribution of the handling stresses. For all wafer 

types, results showed a transition in the maximum in-plane principal tensile 
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stress location from the center to the wafer edge as the air flow rate is 

increased.  

 Based on knowledge of the total stress state and crack size and location, an 

approach to determine the breakage stress was presented. The results showed 

that the proposed approach yields breakage stress values that are consistent 

with linear elastic fracture mechanics theory. The experimental results also 

show that the wafer breakage stress determined using the approach is 

proportional to the inverse square root of the crack length as expected from 

linear elastic fracture mechanics, hence validating the in-plane tensile stress 

calculation. 

 Critical crack sizes can be estimated from the breakage analysis presented in 

this thesis. For given handling control variables, breakage free handling can 

be realized by sorting out wafers with crack sizes larger than the critical crack 

size. 

The results obtain from this work confirm the capability of predicting wafer 

breakage during handling using the total stress state provided the crack size, location and 

fracture toughness are known.  
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6.3  Further Investigations 

Related areas for further research include the following: 

  Prediction of the handling stresses generated by other handling devices from 

handling control variables is needed. This will allow comparison of different 

handling technologies. 

 In the case of Bernoulli handling, using the tools developed in this work, the 

actual geometry of the gripper and handling variables could be optimized for a 

specific wafer size and type, and knowledge of structural defects (crack size, 

preferred location, density). 

 Knowledge of the complete residual stress state in the wafer is needed to 

obtain the total stress state in the wafer. This will enable a first principle 

approach to the prediction of the total stress state, and therefore breakage, by 

superposing the handling stress distribution predicted by the iterative 

procedure developed in this thesis on the residual stress state. 
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