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Summary

A reliable large-scale quantum computer would be able to solve problems in physics

and chemistry exponentially faster than current classical processors. A large-scale

quantum device has not been built because quantum systems are naturally sensi-

tive to environmental influences which manifest as errors in memory and opera-

tions during computation. For a large-scale device to become a reality, protocols

must be developed that reduce the influence of errors during computation in a

manner that maintains scalability of the device. This scalability criteria requires

the protocols developed to handle errors must be implemented in a way such that

the size of the quantum system and number of operations grows in a tractable

manner. Furthermore, the sources of errors must be modeled accurately for true

assessments of the viability of these protocols.

In this dissertation, we present an investigation into methods of performing

reliable quantum computation in the presence of errors in small quantum systems

(≤ 50 qubits). These methods should be considered as software primitives used

to built reliable large-scale quantum algorithms and quantum memories. These

methods occur in two flavors: quantum error correction and fault-tolerant oper-

ations. For quantum error correction, we perform assessments of error correction

in the presence of error sources indicative of ion trap quantum computers. For

fault-tolerant operations, we investigate the quantum resource cost and efficacy

of implementing various techniques for performing reliable operations that would

allow for a quantum advantange in a large-scale device.
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Chapter 1

Introduction

A quantum computer is a device engineered to utilize the complexity of a many-

particle wavefunction for the purpose of solving computational problems [3–6].

Quantum algorithms are predicted to solve computational problems that are in-

tractable classically (scale exponentially in time of and memory for computation)

in polynomial time such as integer factorization [7], computing molecular energies

in the full configuration interaction [8], solving linear systems of equations [9–11],

boson sampling [12], and solving scattering probabilities in quantum field theo-

ries [13]. Other quantum algorithms show a non-exponential speedup over their

classical counterparts solving problems such as unstructured database search [14]

and numerical integration using Monte Carlo methods [15]. The computational

space solvable by quantum algorithms has yet to be rigorously explored due to the

absence of a working physical architecture.

Experimental implementations of small quantum algorithms in systems con-

taining under 10 qubits have been exhibited in a variety of architectures [16–26].

However, realization of a large-scale algorithm showing a distinct quantum ad-

vantage would consist of hundreds or thousands of qubits. Implementing such an

algorithm will require protocols that protect the quantum states from sources of

decoherence and are robust to faulty operations during the computation. Quan-

tum error correction is a viable method for protecting of quantum states from

sources of decoherence and fault-tolerant operations are robust to faulty opera-

tions [27–30]. Error correction routines embed logical qubits into subspaces of a

multi-qubit Hilbert space and uses active feedback to remove entropy from the

system. Fault-tolerant operations bound the influence of errors during computa-

tion.

To achieve a clear path towards implementation of a quantum algorithm dis-
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playing a quantum advantage, we must answer the question: how do we realize

error correction and fault-tolerance in near-term physical architectures? To realize

error correction experimentally, one must implement protocols that demonstrate

an encoded system with a decoherence time longer than that of the individual

qubits composing the system. A variety of error correction protocols have been

developed, but the success of such protocols completely rely on the efficacy of

simulating the underlying physics of the experimental architecture, which is com-

putationally hard classically. Because of this, approximations of the error sources

that make the simulation tractable classically have been typically implemented.

However, we are on the verge of controlling quantum systems consisting of 10−20

qubits which will allow for the implementation of quantum error correction. The

intricate connection between the modeling of physical error sources and the success

of error correction has never been more paramount. Constructing physically rep-

resentative error models and testing error correction protocols under the influence

of such errors is the major focus of this thesis.

Unfortunately, error correction is not enough for a quantum advantage. Fault-

tolerant operations must be employed to make the computation robust to sources

of decoherence that allow for full control of the quantum space of the encoded

information. Both error correction and fault-tolerance require additional quantum

overhead, both in the number of operations and qubits. Therefore, implementing

the hundreds or thousands of qubits required to achieve a quantum advantage

reliably will require control over a substantially larger quantum system than just

the hundreds or thousands of physical qubits. Showing a quantum advantage

with a small fault-tolerant algorithm that requires billions of qubits is not useful

practically. Near-term devices must be able to implement small-scale algorithms

in a manner that maintains scalability. Therefore, protocols must be developed

and resources assessments must be performed to assess the quantum resource cost

of error correction and fault-tolerance. The goal is to show that fault-tolerant
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computation is practically feasible; an additional focus of this thesis.

This thesis is organized in the following manner. In chapter 2, we provide

all of the relevant background in quantum error correction and fault-tolerance

to proceed. In chapter 3, we discuss the modeling of ion trap error sources

to assess the implementation of the surface code on a linear chain of atomic

ions. In chapter 4, we discuss progress in reducing the quantum resource cost

of achieving universal computation fault-tolerantly. The output distributions of

error-correcting/detecting code success criteria for codes under influence of inco-

herent and coherent error sources are investigated in chapter 5. The thresholds for

two topological quantum error-correcting codes, topological color codes and dou-

bled color codes, are provided in chapter 6. A conclusion and outlook is provided

in chapter 7.
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Chapter 2

Quantum Information Background

2.1 Qubits and Quantum Gates

In classical computers, the elementary unit of information is a bit which can be

in one of two states: 0 or 1. For a quantum computer, the rudimentary unit of

information is a qubit which can be represented as the state of a spin-1/2 particle.

Mathematically, a qubit is a normalized vector in C2 which, in the computational

basis, is represented by the state:

|ψ〉 = α|0〉+ β|1〉 (2.1)

where |α|2 + |β|2 = 1 and the computational basis states are |0〉 = [1 0]ᵀ and

|1〉 = [0 1]ᵀ. The measurement of a quantum bit, |ψ〉, in the computational basis

results in a classical bit value, 0 or 1, with probability |α|2 or |β|2, respectively.

One qubit can be in a superposition of 2 states (|0〉 or |1〉). Two qubits can be

in a superposition of 4 states (|00〉, |01〉, |10〉, and |11〉) where |01〉 represents the

tensor product between two basis states: |0〉 ⊗ |1〉. An n-qubit system can be in

a superposition 2n states. The ability of quantum bits to be in a superposition

of an exponential number of corresponding classical states, where each state has

an amplitude and a phase, is at the core of why quantum algorithms have shown

speedup over classical algorithms.

In the circuit model of quantum computation, the operations are unitary trans-

formations and qubit measurements which can be represented by quantum circuits.

Quantum circuits are pictorial representations of quantum logic, consisting of uni-

tary gates and measurement, performed on a set of qubits. Quantum circuits are

the quantum analogue to classical circuit diagrams. The state of quantum system

is altered using gates. Some common single-qubit gates are the Pauli spin matrices:
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I I ≡ σ0 =

 1 0

0 1

 X X ≡ σ1 =

 0 1

1 0



Y Y ≡ σ2 =

 0 −i

i 0

 Z Z ≡ σ3 =

 1 0

0 −1


where the symbols on the left are the circuit model representations. More gen-

erally, quantum gates are unitary operators, U †U = I⊗n, where † indicates the

Hermetian adjoint of the matrix U and I⊗n is the n-fold tensor product of the

single-qubit identity matrix I (above). In quantum algorithms, general unitary

operations, U , acting on n qubits can be approximated up to any tolerance (δ)

using a bound number of elementary gates known as a gate set [31]. A pure single-

qubit state (ignoring the global phase which irrelevant), can be represented as a

point on the Bloch sphere (figure 2.1a):

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (2.2)

where a single-qubit unitary gate, U , can be interpreted as a transformation from

any point on the Bloch sphere to any other point on the Bloch sphere: U : θ, φ→

θ′, φ′. This transformation can be efficiently approximated to arbitrary accuracy

using a sequence of H (Hadamard) and T gates [31], which are of the form:

ψ

ϕ

θ

(a) The Bloch sphere (b) Clifford transformations

Figure 2.1: Visual representation of unitary transformations of a single-qubit state.
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H H ≡ 1√
2

 1 1

1 −1

 T T ≡

 1 0

0
√
i


which is considered a universal gate set for constructing single-qubit unitary oper-

ations. While this is not the only single-qubit gate set that is universal, some gate

sets cannot construct a general unitary transformation. Consider the single-qubit

gates H and S (Phase):

H H ≡ 1√
2

 1 1

1 −1

 S S ≡

 1 0

0 i


which constructs the single-qubit Clifford group but cannot approximate a gen-

eral single-qubit unitary transformation. The single-qubit Clifford operations are

restricted to transformations about the chiral octahedron within the Bloch sphere

[32] as shown in figure 2.1b. The Clifford group is of interest because many

quantum error-correcting codes have “protected” unitary gates that correspond

to Clifford transformations on the “protected” quantum states known as transver-

sal gates (see section 2.4.1). Generating an n-qubit gate set performing universal

and Clifford transformations on an n-qubit system requires one additional gate for

each set, respectively: the controlled-NOT or controlled-X (termed CNOT ) gate.

•
CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗X =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


where |0〉〈0| indicates the outer product between the basis vectors: |0〉 and 〈0| =

(|0〉)† . The first qubit is the control qubit and the second qubit is the target qubit

which is flipped in the computational basis |0〉 ↔ |1〉 if the control qubit is in the

|1〉 state. This two-qubit gate can generate entanglement between two qubits if

the control qubit is in a superposition of the computational basis vectors. CNOT

operations between pairs of qubits in an n-qubit system and the application of
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|0〉 H • . . . |ψ∗〉

|0〉 . . .

Figure 2.2: Quantum circuit generating entanglement between two qubits (left). Entangled
qubits allow for completely correlated outcomes conditioned on measurement (right).

elements of the single-qubit universal/Clifford gate set on the n qubits generates

a set of universal/Clifford gates over the 2n dimensional state space of the qubits.

In addition to unitary gates, measurement serves as the information “read-

out” during computation. We will adhere to a circuit model that implements

strong projective measurement which projects a general quantum state into one

state within a set of orthogonal states. Our choice will be the computational

basis states and their associated projectors P0 = |0〉〈0| and P1 = |1〉〈1| which

constructs a complete measurement basis (
∑

a Pa = I). For a quantum state |φ〉,

the probability of measuring an outcome a and projecting into the state a is given

by 〈φ|Pa|φ〉. For example, the probability of measuring a general single-qubit in

the 0 state is 〈ψ|0〉〈0|ψ〉 = |α|2 where 〈0|ψ〉 is the inner product. The resulting

state after the projective measurement is:

|φ′〉 = eiφ
Pa|φ〉√
〈φ|Pa|φ〉

(2.3)

where the complex phase (again) is not of interest. This is known as the projection

postulate of quantum mechanics.

An example quantum circuit constructed from elements above is shown in fig-

ure 2.2 that generates entanglement between two qubits followed by a measurement

on the second qubit. Circuit diagrams are read from left to right starting with the

input qubit state: |00〉. As shown above, single- and two-qubit gates have distinct

representations which transform the input state: H : |00〉 → 1√
2

(|0〉+ |1〉) ⊗ |0〉

then CNOT : 1√
2

(|0〉+ |1〉) ⊗ |0〉 → 1√
2

(|00〉+ |11〉). The meter indicates mea-

surement and, in our case, it will always indicate measurement in the computa-

tional basis unless otherwise specified. The measurement of the second qubit will
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project the first qubit output state, |ψ∗〉, into one of two states, |0〉 or |1〉, condi-

tioned on the measurement outcome of the second qubit. The output state |ψ∗〉

will have a 50% probability of being projected through measurement into either

the |0〉 or |1〉 state.

2.2 Noise Models for Quantum Error Correction

Errors during quantum computation occur due to interactions between the com-

putational quantum system and the environment. These errors can generate a

non-unitary evolution on the quantum system’s state [33] so it is more convenient

to represent the quantum states in this context with density matrices, ρ. A general

qubit state that is not necessarily pure (|α|2 + |β|2 ≤ 1), can be represented by a

sum of the identity matrix and the Pauli matrices:

ρ =
1

2
(I + ~r · ~σ) =

1

2
(I + rxX + ryY + rzZ) (2.4)

where ~r is a real-valued vector indicating the degree of mixing of the qubit. For

pure states described above, |r| = 1 and, for mixed states, |r| < 1. Returning

to the Bloch sphere representation of a single-qubit state, pure states can be

uniquely defined as a point on surface of the Bloch sphere and mixed states can

be represented as points within the surface of the Bloch sphere. A general qubit

state can be defined by the vector ~r.

Because a quantum computer is not perfectly isolated, it is an open quan-

tum system. Therefore, a useful perspective is to consider the composite system

constructed by the quantum computer and it’s environment. With a proper def-

inition of the environment, the composite system can always be defined as an

isolated system. The isolated composite system at time t is given by:

ρCE = UCE(t) ρCE(0)U †CE(t) (2.5)

where ρCE(0) is the initial state of the composite system and UCE(t) is the unitary
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time propagator of the system. After the time evolution, the quantum computer

will generally become entangled with the environment. Therefore, the final state of

the quantum computer is obtained by applying the partial trace over the degrees

of freedom of the environment. If we assume that the initial state of quantum

computer-environmental system is separable, that is ρCE(0) = ρC(0)⊗ρE(0), then

the initial state of the environment can be expressed as
∑

k λk|φk〉〈φk|. The state

of the quantum computer as time t is then:

ρC(t) = TrE(ρCE) =
∑
i,k

λk〈i|UCE(t)|φk〉 ρCE(0) 〈φk|U †CE(t)|i〉 (2.6)

where {|i〉} is an orthonormal basis for the environmental system. By defining

Ei(t) =
∑

k

√
λk〈i|UCE(t)|φk〉 the state of the quantum computer can be repre-

sented concisely as:

ρC(t) =
∑
i

Ei(t) ρC(0)E†i (t) (2.7)

where {Ei} are called Kraus operators. The above equation is known as the Kraus

or operator-sum representation [33] of the quantum error channel. Dropping the

time variables and the label C (from this point forward we will exclusively be

considering the computational quantum system) gives the concise representation

transformed computational state:

ε(ρ) =
∑
i

Ei ρE
†
i (2.8)

where the operators {Ei} are not necessarily unitary. However, if
∑

iE
†
iEi = I

then the final state of the system and the environment can be represented by

density matrices (positive semi-definite matrices with trace 1).

An example of a quantum error channel that can be represented with Kraus

operators is the symmetric depolarizing error channel. The channel can be repre-

sented in the following manner:
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ε =


E0 =

√
1− p I

E1 =
√
p/3X

E2 =
√
p/3Y

E3 =
√
p/3Z

(2.9)

This channel has an interpretation that, when applied to a single qubit, one of the

Pauli matrices is applied to the state, each with a probability of p/3, and the state

remains unchanged with probability 1− p. Formally, this channel transforms the

single-qubit density matrix like so:

ε(ρ) = (1− p) ρ+
p

3
XρX +

p

3
Y ρY +

p

3
ZρZ (2.10)

This probabilistic interpretation of error channels has been traditionally used in

many studies of quantum error-correcting codes. These error models have been

a focus due to the ability to simulate many error channels of this type efficiently

classically [34] and these error channels are exact when the an environmental state

entangled with the computational system is orthogonal to all other states in the

environment [35, 36]. This also serves as an accurate model for cases where the

dynamics of the environment are faster than the dynamics of the computation.

Not all error channels admit the probabilistic interpretation defined above. A

pertinent example of this is when the error results in a unitary evolution of the

computational quantum state. These errors are often referred to as coherent errors

are of particular interest due to their severe effect on error correction [37, 38]. An

example of such an error is a coherent rotation of the qubit about the X axis by

an angle θ:

RXC(θ) = exp(−i θX/2) (2.11)

This error transforms the computational state as so:

ρ
RXC(θ)−−−−→ e−i

θ
2
Xρ e+i θ

2
X (2.12)

Simulating errors of this type generally cannot be performed efficiently classically

10



because they require tracking the evolution of the full computational Hilbert space

(2n states).

2.3 Classical Error Correcting Codes

To motivate quantum error correction, we will start will the concept of classical

error correction. Error correction, both quantum and classical, uses some notion

of redundancy to make the information more robust to errors. A simple classical

error-correcting code is the classical bit-flip code. The code encodes the classical

states, 0 and 1, into three copies of their respective states: 0 = 000 and 1 = 111

where the overline indicates an encoded state. This code is robust to classical

noise that flips each bit independently with some probability p (0 ≤ p ≤ 1): the

bit-flip channel [39]. If a single bit is under the influence of the bit-flip channel,

then the information would be lost at a rate of p. Now consider a bit with bit-flip

encoding under the influence of the same channel. Given the output state of 100

after application of the channel, we are faced with two choices of the initial state:

0 or 1 which would occur with probabilities p (1− p)2 and p2(1− p), respectively.

Choosing the outcome 0 given an output bit string s with |s| = 1, our choice

will be incorrect at a rate of 3p2(1 − p). The total failure rate of the code from

all outcomes is 3p2(1 − p) + p3 which suppresses the error rate of the encoded

information relative to the unencoded information for this error channel below a

certain error rate. This critical error rate, pth, for the bit-flip channel and the bit-

flip code is 1/2. Below this critical rate, the bit-flip code has a lower failure rate

than that of a single bit put through the same channel. Above this rate, encoding

information with the bit-flip code fails at a higher rate than an unencoded bit.

Note that this rate is completely dependent on the error-correcting code and the

noise channel.

Formally, classical error correction can be viewed as embedding information

into vectors within vector spaces constructed over the binary field F2 in a manner
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where the vectors embedding the information are sufficiently orthogonal that they

remain distinguishable even in the presence of certain local transformations (single-

bit errors for example). For the bit-flip code, the encoded states are vectors,

0 = (0 0 0)T and 1 = (1 1 1)T , which are in the space F3
2. We will expand on

this notion below.

2.3.1 Classical Linear Codes

A classical linear code can be defined as the null-space of an (n − k) × n parity-

check matrix, H, or equivalently C = {x ∈ Fn2 | Hx = 0}. The distance d of the

code is the number of bit-flip errors required to map one codeword to another.

For example given a bit string under the influence of an error x′ = x+ e, we may

determine the error syndrome by applying the parity-check matrix to the string

giving s = Hx′ = He. If the Hamming Weight of e is less than (d−1)/2, then map

H between error configurations and syndromes is bijective and we can confidently

apply a set of correction bit flips. Otherwise, faulty correction will be applied and

the computation is corrupted. Equivalently, we may define a linear code as the

row-space of an k × n generator matrix G such that C = row(G). Note that G is

the dual of H which means that is the matrix of largest rank that obeys HGT = 0

or, equivalently, G = Ker (H).

An example of a classical error-correcting code is the Hamming [7, 4, 3] code

[40]. This code is an [n, k, d] code encoding k bits of information into n classical

bits with a distance of d between each of the k codewords. Therefore, this code

can correct against single bit flips. The corresponding parity check and generator

matrices for this code are:

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 (2.13)
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Each row of the generator matrix is a codeword (xi) for the classically encoded

information. Error correction is performed utilizing the parity check matrix. For

all codewords, HxTi = (0 0 0)T . Given an single bit flip error (on bit 2 for

instance), e2 = (0 1 0 0 0 0 0)T and will transform the first codeword (for

example) in the following manner y1 = x1 + e2 = (1 1 0 0 0 1 1)T . The

application of the parity check matrix gives Hy1 = H(x1 + e2) = (0 1 0)T

which is known as the error syndrome. Because the Hamming weight of the error

is ≤ (d − 1)/2, the syndrome can be used to reliably correct the error. For the

Hamming code, the syndrome in this example corresponds to the second column

of the parity check matrix, which is the bit requiring correction. The process of

using the error syndrome to infer the underlying error in the encoded information

and choosing a correction operation based on this inference is known as decoding.

Finally we need to introduce the concept of a dual code corresponding to

classical linear error-correcting codes. Given the linear space of codewords for

a classical error-correcting code C ∈ Fn2 , the associated codewords of the dual

code linear code are C⊥ = {x ∈ Fn2 | 〈x|c〉 = 0 | c ∈ C}. The generator and parity

check matrices for the original code, C, construct the parity check and generator

matrices, respectively, for the dual code.

2.4 Quantum Error Correcting Codes

Now, we shift focus on how to encode quantum information. Much like classical

information can be seen as a choice of protected vectors within an n-bit vector

space Fn2 , quantum error correction can be viewed as embedding information within

complex vectors spaces (known as Hilbert spaces in quantum mechanics) over an

n-qubit space Cn
2 . While classical codes can be defined by the row space of binary

matrices, quantum codes can compactly be defined by a set of mutually commuting

observables (operators). The quantum code space is the space spanned by the

eigenvectors of this set of observables; these codes are called subspace stabilizer
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codes. A canonical choice of operators are ones constructed from n-fold tensor

products of the Pauli matrices (form a basis for all 2× 2 complex matrices) which

form a basis of 2n × 2n complex matrices over the Hilbert space of the n qubits.

The choice of observables is dictated by the stabilizer formalism [41], which utilizes

group theory to compactly represent quantum states. It states that a subgroup

Sn of the n-fold Pauli group over n qubits can uniquely represent a quantum state

given that it satisfies the following conditions: 1.) Sn is an abelian group 2.)

−I is not an element of Sn. The elements of Sn are known as the stabilizers of

the code and the quantum code space C (C ⊂ Cn
2 ) is the +1 eigenspace of the

stabilizer group: C = {span({ |ψi〉 }) | s|ψi〉 = +1|ψi〉 ∀ s ∈ Sn} where the linear

span is over all complex amplitudes (λi ∈ C). The representation of the stabilizer

group can be compact with the use of group theory in that (for groups constructed

with elements of the Pauli group), only log2(|Sn|) group generators are required

to represent a stabilizer group of size |Sn|.

For example, consider the quantum analogue to the classical bit-flip code. In

this code, the encoded basis states are
∣∣0〉 = |000〉 and

∣∣1〉 = |111〉 which form

the basis vectors of the code space C: |ψ〉L = α
∣∣0〉 + β

∣∣1〉. The stabilizer group

for this code is S3 ≡ {III, ZZI, IZZ, ZIZ} which can be represented by the

group generators 〈ZZI, IZZ〉. Therefore, an n-qubit code has been compactly

represented by a generating set of n−1 mutually commuting observables. Further-

more, it is sufficient to measure the generators of the stabilizer group to perform

error correction. Errors that anticommute with the stabilizers will be detected

by the stabilizer measurement and give insight into the correction required. To

differentiate the encoded basis vectors within the code space, one more observable

is necessary. This operator must commute with the stabilizer group but does not

necessarily commute with every element of the group independently. Formally,

this operator is within the normalizer of the stabilizer group N (Sn) and mea-

surement of such an operator will differentiate the logical basis states. For the
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quantum bit-flip code, this operator is ZZZ which is known as the logical op-

erator where
∣∣0〉 and

∣∣1〉 are the +1 and −1 eigenstates of the logical operator,

respectively. Note that this example encoded one logical qubit into three qubits

giving a 2 dimensional code space but denser encoded schemes exist allowing for

a code space of 2n−k dimensions which would be stabilized by a generating group

of size k. Constructing subspace stabilizer codes builds from the construction of

classical linear error-correcting codes and is outlined below.

2.4.1 Calderbank-Shor-Steane Code Construction

There is a family of quantum error-correcting codes that are constructed from

classical linear error-correcting codes known as Calderbank-Shor-Steane codes [42,

43]. This construction requires two classical linear error-correcting codes: C1 with

n, k1, d1 and C2 with n, k2, d2. Given the condition that C2 is a subcode of C1

(C2 ⊆ C1 so k2 < k1), then the codes C1 and C⊥2 can be used can be used to

construct an Jn, k1 − k2, tK quantum error-correcting code where t = min(d1, d2).

The double brackets indicate that this is a quantum error-correcting code. The

parity check matrices for C1 and C⊥2 dictate the form of the Z-type and X-type

stabilizers, respectively.

As an example, we will show how the [7, 4, 3] Hamming code can be used to

construct an error-correcting code known as the Steane code. The [7, 4, 3] Ham-

ming code will be the choice for C1 and the dual code of the Hamming code, the

[7, 3, 4] code, will be chosen as C2. However, C⊥2 = C1 which is again the [7, 4, 3]

code. A code with this property is called self-dual. These two classical linear codes

are used to construct a J7, 1, 3K quantum error-correcting code. The parity check

matrices for both codes is the parity check matrix for the classical Hamming code

(equation 2.13) which construct the stabilizer generators of the stabilizer group of

the code:
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H(C1)→ 〈Sz〉 =

 Z I Z I Z I Z
I Z Z I I Z Z
I I I Z Z Z Z


H(C⊥2 )→ 〈Sx〉 =

 X I X I X I X
I X X I I X X
I I I X X X X

 (2.14)

Generating the code space for the quantum error-correcting code can be done by

the application of the elements of X-type stabilizer group (Sx) to n = 7 qubits in

the computational basis:

|0〉L =
1√
|Sx|

∑
S∈Sx

S|0〉⊗n =
1√
|Sx|

∑
x∈row(H(C⊥

2 ))

|x〉 (2.15)

where the subscript L denotes the logical qubit and |Sx| denotes the size of the

stabilizer group. This results in the codeword:

|0〉L =
1
√

2
3 (|0000000〉+ |0001111〉+ |0111100〉+ |1101001〉+

|1010101〉+ |1011010〉+ |0110011〉+ |1100110〉)
(2.16)

and |1〉L = 1/
√
|Sx|

∑
x∈row(H(C⊥

2 )) |x⊕ (2n − 1)〉 where ⊕ is the bitwise XOR. The

lowest weight Pauli operator that changes the encoded computational basis state,

|0〉L ↔ |1〉L, is the X logical operator XL = X1X2X3. The Z logical operator is

ZL = Z1Z2Z3 and YL is (up to a global phase) obtained by the relation YL = XLZL.

Moving forward, any time we refer to error-correcting codes we will be referring

to quantum error-correcting codes unless specified otherwise.

In addition to encoded Pauli operations, there are additional encoded oper-

ations that preserve the encoding of the Steane code, known as transversal op-

erations. Because the Steane code was constructed from a self-dual linear error-

correcting code, the X-type and Z-type stabilizer generators have the same struc-

ture. Therefore, the application of the operator H⊗7 preserves the stabilizer group

of the code under this Clifford transformation, H⊗7Sx(H⊗7)† = Sz, which natu-
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rally preserves the encoded and is there a transversal operation. This is the case

for all self-dual quantum error-correcting codes. The Phase gate:

S = Rz

(π
2

)
=

(
e−i

π
4 0

0 ei
π
4

)
= e−i

π
4

(
1 0
0 ei

π
2

)
(2.17)

is also a transversal gate. Consider the action of the gate on the logical state |0〉L:

S⊗7|0〉L =
∑

x∈row(H(C⊥
2 ))

S⊗7|x〉 =
∑

x∈row(H(C⊥
2 ))

ei
π
2
|x||x〉 = |0〉L (2.18)

where |x| is the Hamming weight of the binary string. Note that this occurs

because, for the elements of the logical state, |x|mod 4 = 0. Codes with this

property are known as doubly even codes and admit a transversal phase gate. The

final transversal operation is the CNOT gate. Again, we will use the structure

of the stabilizer group to understand why. Consider the product space between

two logical qubits encoded with the Steane code (a Hilbert space over 14 qubits).

Then a generating set for the stabilizer group for the product space is the following:

〈Sx ⊗ I⊗7,Sz ⊗ I⊗7, I⊗7 ⊗ Sx, I⊗7 ⊗ Sz〉. The CNOT transforms the elements of

the stabilizer group according to the Clifford transformation {XI, IX,ZI, IZ} →

{XX, IX,ZI, ZZ}. The transversal CNOT is

CNOT =
n⊗
i=1

CNOT (i, i+ n) (2.19)

where the line over the operator indicates an encoded operation and n is the num-

ber of qubits in one of the encoded states (n = 7 in this example). This operator

will transform the stabilizer group of the product system as 〈Sx⊗Sx,Sz⊗I⊗7, I⊗7⊗

Sx,Sz ⊗ Sz〉 which is an equivalent generating group for the two-encoded qubit

stabilizer group. Given that all CSS codes have a stabilizer groups with this struc-

ture, this family of codes admits a transversal CNOT . Note that the transversal

gates allowed for the Steane code correspond to the Clifford group, which is not

a universal gate set. Any subspace stabilizer code that has geometrically local

stabilizer generators cannot admit a transversal, universal gate set [34]. To ob-
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Figure 2.3: Circuits implementing the measurement of the XIXIXIX stabilizer of a Steane
encoded qubit,

∣∣ψ̄〉. (a) Circuit implementing a non fault-tolerant stabilizer measurement as a
single X error on the ancilla will propagate to an uncorrectable error on the data for a distance-3
code. (b) Shor style syndrome measurement [1] that is robust to the hook error.

tain universality in subspace stabilizer codes, other methods must be implemented

which is the topic of chapters 4 and 6.4.

To conclude this section, we need to discuss how to perform error correction.

We cannot directly measure the state of encoded information without collapsing

it to a classical state, which removes the quantum-ness of the information. In-

stead, we must use entangling gates and additional qubits (called ancillary or

ancilla qubits) to measure specific degrees of freedom of the information in a

manner that does not collapse the wavefunction. Errors are detected due to the

manner which the CNOT gate transforms the error. As we have seen above

CNOT : {XI, IX,ZI, IZ} → {XX, IX,ZI, ZZ} so the entangling gate can be

used to propagate the error to the ancillary state for measurement. The wiring of

the control and target qubit indicates whether an X-type or Z-type error will prop-

agate to an ancillary qubit which can then be measured. The relation Y = iXZ

allows for Y -type errors to be corrected as well. Measurements must be performed

in a manner that preserves the logical state, which indicates that it must be an

eigenstate of any operator measured. Therefore, the operators that will be mea-
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sured will be the stabilizers themselves. Figure 2.3a shows how to measure the

XIXIXIX stabilizer of the Steane code which will be read out as a classical bit,

1, if there is a Z-type error that anticommutes with the stabilizer; otherwise, 0

is read out. The Z-type stabilizer with this form is measured with a similar cir-

cuit with the direction of the CNOT s flipped and removing the Hadamard (H)

gates from the ancillary bit (|0〉). The collection of stabilizer measurements gives

again the error syndrome that (similar to the classical codes used to construct

the quantum code) is used to decipher a correction operation. For the quantum

code, there are two parity check matrices H(C1) and H(C⊥2 ) which can be used

to correct X and Z errors, respectively.

For error correction to prevail, errors that occur must not spread in a malignant

manner; i.e. do not create logical errors during computation. If a code prevents

this malignant spreading of errors during computation, the computation is said to

be fault-tolerant which will reflect in the lower error rate of the encoded operations

relative to an unencoded operations at low enough physical error rates, pL < pth

[44–49]. This critical error rate, pth is known as the error threshold. Similar to the

classical bit flip code example, encoding information in a quantum error-correcting

code fails a lower rate relative to an unencoded qubit only below this threshold;

otherwise, encoded information fails at a higher rate than a single qubit. Again,

this threshold is completely dependent on the error-correcting code and noise

model. To illustrate what is meant by a malignant error, consider the case in

figure 2.3a where an X error occurs on the ancillary qubit that propagates to two

X errors on the data; known as a “hook error”. This error will not be detected

by the stabilizer measurement but it will also be detected by the other two Z

stabilizers indicating a correction operation of X6. In this case, a single-qubit

error has now become three errors in the code, which (modulo stabilizers) has

actually applied a logical operator to the code: a logical error. At this time, the

user has lost track of the state of the encoded information and so the computation
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is ruined. This error has the encoded information failing at a rate equivalent

to an unencoded qubit and is therefore not fault-tolerant so a protocol must be

developed to make the computation robust to these errors. One method is to use

a many-qubit ancillary state in a superposition state (known as a cat state) to

control hook errors; an implementation of Shor style ancilla [1]. Verification of the

cat state with a fifth ancillary qubit and measurements of the many-qubit state

can be used to decipher when hook errors occur and allow for them to be corrected.

The Shor method of stabilizer measurement is one of many fault-tolerant methods

of measuring stabilizers [1, 50–53]. They all share one trait: implementation

requires an increase in the number of ancillary qubits/gates necessary to perform

robust computation. The trade off between implementing robust routines versus

quantum resource (qubits in this case) efficiency is discussed in part in chapter 4.

2.4.2 Topological Quantum Error Correcting Codes

A class of quantum error-correcting codes of interest due to their high error thresh-

olds are topological quantum error-correcting codes. These codes are constructed

by a cellulation of a surface. The choice of cellulation is a representation of the sta-

bilizer group and properties of the surface dictate the density of encoding (number

of logical qubits per surface) of the code. Formally, boundary maps of the homol-

ogy and cohomology groups of the surface cellulation define the qubits, stabilizer

group, and logical operators. The number of logical operators (density of encod-

ing) is dictated by the genus of the surface. An example of such a code is the

surface code, which is constructed from a square lattice cellulation of a plane with

2 types of boundaries as shown in figure 2.4. Edges represent qubits. Vertices and

faces represent stabilizer generators of the code. The parity check matrix of the

classical code C1 (C⊥2 ) constructing the surface code can be generated by an n×m

matrix where the columns correspond to edge labels and the rows correspond to

face (vertex) labels where 1 values occur when an edge is contained with the face
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d=3 d=5

= data
= ancilla

= X stabilizer

= Z stabilizer
XL

ZL

Figure 2.4: Representation of two members of the surface code family. (a) The distance-3 surface
code fully labeled. (b) Equivalent representation of a distance-5 surface code where the labels
and ancilla are implied. The logical operators highlighted are any weight d string (modulo
stabilizers) spanning from two equivalent boundary types.

(vertex). The construction of the code space then naturally follows from section

2.4.1. The normalizer of the stabilizer group (the logical operators) for surface

codes has an intuitive representation as the minimum weight Pauli operator that

spans from two different boundaries of the same type; that is, boundaries that

terminate with the same stabilizer type as shown in figure 2.4. Therefore, the

distance of the code (for a square lattice) is the number of data qubits spanning

across a boundary.

To understand error correction on the surface code, we will introduce the con-

cept of error chains. Errors will accumulate on the surface code. Due to the

regular tiling of the stabilizer generators on the lattice, the endpoints of the error

strings are all that is detected by the stabilizer measurements; giving the error

syndrome. The error strings can have endpoints at two stabilizers or endpoints at

a stabilizer and a boundary of the same type (X-type or Z-type). Error chains

must be undone or converted into loops within the lattice, which are products

of stabilizer generators, for error correction. If an error chain plus the correction

operation results in an error string connecting the boundaries, then a logical error

occurs and the computation is corrupted. Intuitively, a string of (d− 1)/2 errors

from a boundary can be reliably corrected back to the string-terminating bound-

ary, but a (d−1)/2 + 1 error chain would be inferred an a (d−1)/2 error from the
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opposing boundary invoking a logical error after correction. Similarly, a length

(d−1)/2 internal string will be corrected, but a (d−1)/2+1 internal string would

be corrected as two correction strings from each boundary with a total distance

of (d − 1)/2 between both correction strings. Classical decoding algorithms have

been developed to infer the underlying error chains given the syndrome ranging

between optimal and computationally efficient.

2.5 Monte Carlo Sampling of Clifford Circuits

Due to the exponential scaling of classical variables required to track the time

evolution of a full quantum state, classical simulations of quantum algorithms ex-

tending beyond around 20 qubits is difficult. However, most quantum algorithms

and error correction routines require ≥ 20 qubits. Luckily, there is a subclass of

quantum circuits that are efficiently simulable classically allowing for assessment

of larger scale algorithms and error correction protocols; given by the Gottesman-

Knill theorem [34]. This subclass of quantum circuits contain Clifford gates and

Pauli basis measurements, often known as stabilizer simulations because they re-

strict to transformations from/to elements within the Pauli group. For a majority

of this thesis, we relied on Monte Carlo sampling of Clifford circuits to obtain

error rates for various quantum error-correcting codes.
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Chapter 3

Simulating the performance of a distance-3 surface code in

a linear ion trap

This chapter contains results from:

Colin J. Trout, Muyuan Li, Mauricio Gutierrez, Yukai Wu, Sheng-Tao Wang,

Luming Duan, Kenneth R Brown, ”Simulating the performance of a distance-3

surface code in a linear ion trap”, (submitted: NJP-107838).

Experimental implementations of small quantum algorithms in systems con-

taining under 10 qubits have been exhibited in a variety of architectures [16–26].

However, quantum error correction requires 10-20 qubits for encoding schemes

with depolarizing error thresholds are on the order of experimental error rates

obtainable in the foreseeable future. An enticing selection for an error correction

protocol is the surface code [54] which exhibits an error correction threshold in

the circuit model between 0.5% − 1% for depolarizing Pauli noise [55–58]. Here

we examine the distance-3 surface code implemented with nine data qubits and

eight ancilla qubits, known as surface-17 [2, 59, 60]. In principle only a single

ancilla qubit could be used over and over, but the gains from parallelism are even

apparent in studies comparing 8 ancilla qubits to 6 ancilla qubits [2]. With 10-

20 qubits, a number of QEC codes can be implemented fault-tolerantly including

the 5-qubit code [61], Steane [[7,1,3]] [62, 63], Bare [[7,1,3]] [64], the Bacon-Shor

[[9,1,3]] [65, 66], or the twisted surface [67] code. We chose to study the surface

code because the memory pseudothreshold is superior to the 5-qubit code, the

Steane code, and the Bare code and comparable to the Bacon-Shor and twisted

surface code [67].

Our choice of a physical architecture is a linear chain of ultracold trapped

atomic ions. Atomic ions have proven to be high-fidelity qubits for quantum

information processing. Single-qubit gates are performed by the application of

23



electromagnetic radiation with lasers [68] or microwaves [69, 70]. Two-qubit gates

are performed by conditionally exciting the coupled motion of ions in the chain

dependent on the ion’s internal states [71–74]. These normal modes of motion are

nonlocal allowing interactions between any ions in the chain without requiring ad-

ditional overhead from moving information through local couplings [75] or storing

qubits in auxiliary states [76]. This arbitrary connectivity without altering the

intrinsic nature of the qubit adds modularity at the hardware level which relaxes

software constraints on compilation when building up high-level algorithms from

the hardware primitives [26, 77].

Atomic ion experiments have already demonstrated classical error correction

[78, 79], encoding logical states for quantum error correction [80], and fault-

tolerant quantum error detection [81]. Single-qubit operations in this system have

displayed error rates below the surface code pseudothreshold [82, 83] reported from

Tomita and Svore [2]. Two-qubit gate fidelities are limited by a number of factors

including spontaneous Raman scattering during gates and residual entanglement

between the internal state and the motional modes of the ion. Compensation

pulses have been developed with a predicted error rate due to scattering of 10−4

[84] and control sequences have been implemented exhibiting single- and two-qubit

gate fidelities of 99.9% using the hyperfine ground states of trapped 9Be+ [85] and

43Ca+ [86] ions, respectively. However, quantum control applied to a scaled-up

five-ion chain consisting of 171Yb+ qubits currently exhibits two-qubit error rates

of 2% [26].

This study provides an assessment of the feasibility of implementing the surface-

17 error-correcting code on a linear trap holding a chain of 171Yb+ ions. Fur-

thermore, this study provides target fidelities for experimentalists to realize error

correction with the 17-qubit surface code. This chapter is structured in the fol-

lowing manner. First, we explain the 17-qubit surface code and how atomic ions

are implemented as qubits. Following that, the ion trap architecture will be de-
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fined and a map between the linear ion chain and the two-dimensional surface

code is provided. The remainder of the paper will focus on error correction. Effi-

ciently simulable models of ion trap error sources will be outlined followed by an

examination of results from decoding methods tailored for such errors.

3.1 The 17-Qubit Surface Code

The 17-qubit surface code is shown in figure 3.1a [60]. It is a distance-3 surface

code that can be implemented in parallel with less qubits (n = 17) than the

standard surface code (n = 25). It is constructed from removing the corner data

qubits and stabilizers that act upon them from the original surface code shown

in figure 2.4. The white (black) circles represent data (ancilla) qubits and the

dark (light) faces of the lattice dictate the X-type (Z-type) stabilizer generators

of the code. These codes use single-qubit ancilla for fault-tolerant measurement of

the stabilizer generators, which reduces resource requirements compared to other

fault-tolerant protocols. The scheduling of the two-qubit gates following an N-like

pattern about the face of a weight-4 Z stabilizer directs hook errors in a direction

perpendicular to the direction of logical Z operator as shown in figures 3.1b and

3.1c. This error is equivalent to a single-qubit error from the perspective of the

Z logical operator, thus retaining fault-tolerance during syndrome measurement.
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Figure 3.1: (a) The 17-qubit surface code. (b) Typically nonfault-tolerant stabilizer measure-
ment. (c) The ancillary error from (b) propagates in a direction perpendicular to the direction of
the logical operator which is equivalent to a single-qubit error from the perspective of the logical
operator providing fault-tolerance. All images were adapted from Tomita and Svore [2].
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Many other error correction routines require the use of many-qubit ancillary states

to ensure fault-tolerance, which increases the number of qubits required for error

correction [1, 50–53].

3.2 Atomic Ions as Qubits

Qubits can be encoded into either optical states [87], Zeeman states [88, 89], or

hyperfine states of ions [85, 86, 90]. For this study, information was stored in

the hyperfine “clock” states of 171Yb+. Single-qubit gates are performed by the

application of laser fields [68] or microwave radiation [69, 70] to manipulate the

hyperfine states of trapped 171Yb+ (2S1/2|F = 0;mF = 0〉 ↔ 2S1/2|F = 1;mF = 0〉

transition) which can drive arbitrary single-qubit rotation gates. High-fidelity,

fast two-qubit gates are performed by the application of counter-propagating laser

fields achieving entanglement through the coupling of the internal states with

the motional modes of the ion crystal through a method known as the Mølmer-

Sørensen gate which engineers an XX entangling gate [26, 91, 92]. Controlled-

NOT (CNOT ) gates can be built from Mølmer-Sørensen gates and available

single-qubit rotations [93]. State initialization and measurement are performed

by applying laser beams resonant with the 2S1/2 ↔ 2P1/2 transition. For |0〉

state preparation, qubits are optically pumped out of the 2S1/2|F = 1〉 state into

the 2P1/2|F = 1〉 manifold which, with high probability, falls into the 2S1/2|F = 0〉

state [94–96]. For measurement in the Z-basis, a 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 cy-

cling transition is induced where the discrepancy between scattered photon counts

of the qubit states serves as readout [94–96].

To perform error correction with the surface code, the required operations are

single-qubit gates (H), two-qubit gates (CNOT ), state initialization (|0〉 state),

and measurement (Z-basis). Note that the state preparation and measurement

processes scatter photons that should not interact with surrounding ions. This

requirement introduces an additional operation, ion shuttling [97–102], which will
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Logic SPAM Storage

Figure 3.2: Ion trap architecture and syndrome measurement operations. Ions are trapped in
a mixed data/ancilla qubit arrangement labeled by white/black dots (see figure 3.1a). There
are three zones: a Logic, SPAM, and Storage zone. (Top) The Logic zone where qubit gates
are applied. (Bottom) The SPAM zone where state preparation and measurement is performed,
scattering photons. The Storage zone serves to sufficiently distance qubits from the SPAM zone.

be used to separate qubits in memory from the scattered photons during measure-

ment/preparation.

3.3 Mapping the Surface Code to an Ion Chain

For a first generation implementation of a logical qubit consisting of atomic ions,

a trapped linear chain of ions was favored over two-dimensional architectures due

to technological challenges in the latter that result in issues such as additional ion

heating through shuttling junctions in traps [97, 98, 101, 102], high idle ion heat-

ing rates [103], and single-ion addressing/readout issues in two-dimensional trap

layouts. The linear trap is composed of at least three zones: a Logic, State Prepa-

ration and Measurement (SPAM), and Storage zone (figure 3.2). Ion shuttling

across the axial direction of the trap allows for the 17-ion chain to be arbitrarily

split into three separate linear chains of ions inhabiting each of the three zones.

The Logic zone is where all single- and two-qubit gates are applied. The central

SPAM zone is where state preparation and measurement operations are performed.

The Storage zone serves the purpose that its name implies and is required due to

the geometric constraint of having the ions confined in a linear chain. Such an

implementation begs the question: how should the qubits in the surface code be
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assigned to the linear chain of ions? We are particularly interested in configu-

rations that minimize the gate times (errors) of the error correction circuit. To

proceed, we must first discuss two-qubit gates.

For computation of the two-qubit gate times, current gate protocols [26] and

motional decoupling techniques [104] were modeled; the latter of which contributes

significantly to the distance dependence of the gate times. The calculation of the

gate time of an ion pair is outlined below. In the weak trap limit, a Paul trap can

be well approximated by a pseudo-harmonic potential (see e.g. Ref. [105]). Here

we consider ions in a linear Paul trap along the z direction (ωz � ωx, ωy). With a

harmonic trap potential, the spacing between ions in the chain will be nonuniform,

which can lead to undesired transition into a zigzag shape [106, 107], as well as

the difficulty in cooling many low frequency modes. To overcome this problem, an

additional quartic potential can be added to the z direction [108] giving the total

potential energy:

V =
∑
i

(
−1

2
α2 z

2
i +

1

4
α4 z

4
i

)
+
∑
i<j

e2

4πε0 |zi − zj|
(3.1)

where α2, α4 > 0 are two parameters characterizing the strength of the quadratic

and the quartic potentials. The ion configuration is then fully determined by

a length unit l0 ≡ (e2/4πε0α2)
1/3

and a dimensionless parameter γ4 ≡ α4l
2
0/α2.

For N = 17 171Yb+ ions, we choose γ4 = 0.86 to minimize the relative standard

deviation of the ion spacings. An average ion distance of about 8.2µm can then

be realized by setting l0 = 25µm.

The two-qubit entangling gate is implemented with a spin-dependent force on

the two ions via the transverse collective modes. For example, we can use the trans-

verse modes in the x direction whose k-th normalized mode vector is denoted as bkj

with a mode frequency ωk where the index j runs over all ions (j = 1, 2, · · · , N).

The creation and annihilation operators corresponding to this collective mode are

denoted as â†k and âk respectively. The transverse trap frequency is set to a typ-
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ical value ωx = 2π × 3 MHz and the temperature is set to kBT = ~ωx giving an

average phonon number of n̄ ≈ 0.5 for each transverse mode. This can be easily

achieved with a Raman sideband cooling. The spin-dependent forces are generated

by counter-propagating laser beams on the two ions that we choose to entangle.

The Hamiltonian, in the interaction picture, can be represented as:

HI = ~
∑
j

Ω̃j

∑
k

ηkb
k
j sinµt

(
âke
−iωkt + â†ke

iωkt
)
σ̂xj (3.2)

where we further define the Lamb-Dicke parameter ηk ≡ ∆k
√
~/2mωk, ∆k is the

difference in the wavevectors of the counter-propagating Raman beams, µ is the

two-photon detuning, and σ̂xj is the σ̂x Pauli matrix on ion j. For the 171Yb+ qubit

transitions, the laser beams have wavelengths around λ = 355 nm [109] and for

counter-propagating pairs ∆k = 2k, hence the Lamb-Dicke parameter ηk ≈ 0.111.

In the above equation, Ω̃j is the effective Rabi frequency of the Raman transition

pairs (Ω̃j ≈ Ω1Ω3/∆ = Ω1Ω2/∆ where ∆ is the single-photon detuning from the

excited state). From now on we will drop the tilde notation for simplicity. Note

that one of the laser beams contains two frequency components and we assume

that the two Raman transition pairs have the same effective Rabi frequency Ωj,

opposite detunings ±µ, and opposite wavevector differences ±∆k. This is known

as the phase-insensitive geometry [110].

The time evolution under the above Hamiltonian can be written as [108, 110]:

ÛI(τ) = exp

(
i
∑
j

φ̂j(τ)σ̂xj + i
∑
i<j

Θij(τ)σ̂xi σ̂
x
j

)
(3.3)

where φ̂j(τ) = −i
∑

k[α
k
j (τ)â†k −αkj

∗
(τ)âk]. The parameters αkj and Θij are purely

numbers related to the phase space displacement of the motional states after the

gate and angle of the entanglement gate, respectively. For the following calcula-

tions, we assume that Ωj is the same for both ions and we divide it into segments

with equal durations; that is, a piecewise constant Ω(t). With a suitable choice of

29



detuning µ, gate time τ , and Rabi frequency Ω(t), we can suppress all the αkj (τ)

terms and realize an ideal entangling gate e±iπσ̂
x
i σ̂

x
j /4 with high fidelity. Here, we

focus on the intrinsic gate infidelity caused by the residual coupling to multi-

ple phonon modes after the entangling gate. Other noise sources from technical

control errors are not included for this calculation.

We fit the two-qubit gate times as a result of the ion distance (figure 3.3a) to

a linear function yielding:

tg = 10 + 38d (3.4)

where tg is the gate time (µs) and d is the ion distance. Single-qubit gates can be

performed in parallel with a gate time of 10µs. The ion splitting time was assigned

to be 100µs between neighboring zones [99, 100, 111]. This time is built from an

assumption of a 200 kHz lowest axial frequency implying that splitting/merging

of subsets of ions in the ion chain can occur at a rate almost at this frequency.

The remaining 95µs allows for the chains to be separated by a distance of 665µm

assuming a 50 kHz update rate in the transport waveforms [102], which is excellent

separation between the detection lasers and the data qubits. We assume operations

can happen in parallel allowing subchains to be shuttled away from the detection
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Figure 3.3: (a) Two-qubit gate times calculated as a function of the ion distance in the linear
chain. Extrapolation of this data was used to calculate the time required to measure the error
syndrome. (b) Ion chains mapped to a circle. The nodes correspond to the qubit numbers in
figure 3.1a. The labels refer to different optimizations with configurations shown in figure 3.1.

30



Table 3.1: Trap operation times and ion arrangements optimized for an array of parameters.
The first letter of the label refers to S=separate and M=mixed arrangements of data and ancilla
qubits. The second letter of the label refers to the parameter minimized with M=maximum
distance between entangled ions, A=average distance between entangled ions, and T=parallel
total gate time. All values are reported in microseconds and the numbers in roman and italics
refer to the gate time of the operations performed in serial and parallel, respectively. Parallel
operations allow for two simultaneous two-qubit gates exciting the independent x and y radial
modes and fully parallel single-ion operations. Single-qubit gates, parallel measurement/state
preparation, and shuttling between neighboring zones require 10 µs, 100 µs, and 100 µs (5 µs
split and 95 µs shuttle time), respectively.

Label Logic Shuttle SPAM Total Ion Ordering

SM
7650

200 100
7950

1 2 5 8 0 4 3 6 7 9 12 11 14 15 13 10 163920 4220

SA
7240

200 100
7640

0 2 6 8 1 4 3 7 5 11 12 10 15 13 14 9 164140 4440

MM
3080

1200 500
4780

5 15 2 12 14 9 8 1 4 7 11 3 13 16 0 10 61690 3390

MA
2300

1800 800
4900

2 9 1 12 5 15 8 14 4 11 0 10 3 13 7 16 61170 3770

MT
4300

700 300
5300

10 15 9 5 0 1 11 12 14 7 4 3 8 2 6 13 162320 3320

zone, parallel joining and splitting operations, and three way ion chain splitting.

The measurement time was also fixed to 100µs which is a lax requirement on the

experimental apparatus and will allow for high fidelity state detection [83].

The underlying connection graph of a trapped linear ion chain is a fully con-

nected graph [112]. Therefore, there are many ways to map the surface-17 code to

the linear ion chain. With this relationship between ion distance and gate times,

we screened for the optimal ion chain configurations using a simulated annealing

algorithm that minimized several parameters of interest. Three parameters were

minimized: the maximum ion distance between entangled ions (M), the average

ion distance between entangled ions (A), and the total time for one round of syn-

drome measurement in parallel (T) corresponding to the second letter in the labels

in figure 3.1. In addition, the optimizations were performed with constraint that

the data and ancilla qubits are separate (S) and are allowed to be mixed together

(M) corresponding to the first letter in the labels in figure 3.1. The corresponding

connection graphs for two optimized chains (SM and MT) are shown in figure 3.3b.

The time required to measure the error syndrome for different optimized configu-

rations are shown in figure 3.1. The parallel operation times are shown in italics in

figure 3.1 allowing two simultaneous entanglement gates to be performed on two
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independent pairs of ions by exciting the x and y radial modes, respectively, for

each pair. For the calculations below, we chose the ion chain configuration that

gives the minimal total syndrome measurement time (serial or parallel), MT.

3.4 Modeling Ion Trap Error Sources

This section provides the components for building up a noise model representative

of an ion trap architecture. A graphical representation of the full ion trap error

model is shown in figure 3.4.

3.4.1 Circuit-Level Depolarizing Error Model

The depolarizing error model is a standard error model used in simulations of

quantum error-correcting codes. After the application of each gate in the quan-

tum circuit implemented to measure the stabilizers, an element is sampled from

the one-qubit (two-qubit) Pauli group and applied after each single-qubit (two-

qubit) gate. The one- and two-qubit Kraus channels are of the form:

E1,d =

{√
1− p I,

√
p

3
X,

√
p

3
Y,

√
p

3
Z

}
E2,d =

{√
1− p II,

√
p

15
IX,

√
p

15
IY,

√
p

15
IZ,

√
p

15
XX, ...,

√
p

15
ZZ

} (3.5)

where p is the error rate of the error channel. The stabilizer circuits in this

work are built using only the CNOT as the two-qubit gate. The circuit-level

implementation of this error model allows for errors on both the data and ancilla

qubits, which translate into errors in the measurement of stabilizers during syn-

drome extraction. Furthermore, preparation and measurement errors are modeled

by the application of a single-qubit depolarizing error channel after preparation

gates and before measurement. This model will serve as a baseline error model

for assessment of error correction.
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3.4.2 Coherent Over-Rotation of the Mølmer-Sørensen Gate

The Mølmer-Sørensen (MS) gate [91, 92] was chosen as the entangling gate due

to its faster gate times and higher gate fidelities relative to other entangling gate

schemes [26]. The MS gate uses a bichromatic laser field to induce a two-photon

transition that couples the |00〉 ↔ |11〉 and |10〉 ↔ |01〉 qubit states. The MS gate

induces a transition with a bichromatic laser tuned close to the upper and lower

motional sideband of a qubit transition [91, 92]. In the computational basis, the

unitary operator associated with the Mølmer-Sørensen gate is:

XX (χ) =


cos (χ) 0 0 −i sin (χ)

0 cos (χ) −i sin (χ) 0
0 −i sin (χ) cos (χ) 0

−i sin (χ) 0 0 cos (χ)

 (3.6)

where the parameter χ depends on the gate time applied to the specific ion pair

[26]. The absolute value of the angle, |χ|, may be set to any real number between

0 and π/2 by varying the power of the laser in the experiment [26]. The sign of

χ is dependent on the laser detuning which is chosen from normal modes of the

ion pair [26]. The Mølmer-Sørensen unitary implemented during the CNOT can

equivalently be written as:

XX (χ) = exp (−i χXX) = cos (χ) II − i sin (χ) XX (3.7)

where we attempt to assign χ as π/4 with the laser field. However due to experi-

mental error, a small over-rotation (with angle α) may be applied about the XX

axis with the real gate applied in equation 3.7 having an angle of χ+α. This error

will be simulated by a probabilistic error channel of the form:

E2,xx =
{√

1− pxx II,
√
pxxXX

}
(3.8)

where the probability of the channel above is a function of the over-rotation angle.

For example, one possible relation between pxx and α is obtained by the Pauli

twirled approximation, which results in pxx = sin2 (α) [113]. It is also possible to

33



choose pxx such that the Pauli approximation to the over-rotation satisfies addi-

tional constraints [114, 115]. Furthermore, the single-qubit rotation gates in the

circuit can also suffer over-rotations typically to a much less degree. The over-

rotations can be modeled in an analogous way giving three distinct gate-dependent

error channels:

E1,x =
{√

1− px I,
√
pxX

}
E1,y =

{√
1− py I,

√
py Y

}
E1,z =

{√
1− pz I,

√
pz Z

} (3.9)

which are applied after every single-qubit rotation gate RX(θ), RY (θ), and RZ(θ),

respectively. For simulations, the error rates for the single-qubit gates are a factor

of 10 lower than those corresponding to two-qubit gates; representing observed

single- and two-qubit gate fidelities [85, 86].

3.4.3 Motional Mode Heating

In addition to control errors, the applied field from the Mølmer-Sørensen gate

can result in motional heating of the ions, which impacts the fidelity of the two-

qubit gate. Modeling heating as a coupling of the motional states of the ions to

an infinite temperature bath [116], Ballance et al. characterized the impact of

motional heating on the error rate of a two-qubit entangling gate, εh, giving:

εh =
˙̄ntg
2K

(3.10)

where ˙̄n is the average change in thermal occupation number of the gate mode,

tg is the gate time, and K is the number of loops in phase space traversed by

the ions during the gate [86]. We chose to study the low K limit (K = 1, 2) of

equation 3.10 modeling heating errors with the Kraus operators which are applied

after every MS gate:

E2,h =
{√

1− ph II,
√
phXX

}
(3.11)
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where the probabilities are ion-dependent: ph = (rheat) × (tMS) where rh is the

heating rate and tMS is the time of the Mølmer-Sørensen gate. It is important

to note that this model is pessimistic with respect to ion heating, even in the

low K limit, and the choice of coupling modes can increase K by 1− 2 orders of

magnitude [117, 118].

3.4.4 Background Depolarizing Noise

For the stable “clock” states of the hyperfine qubits, errors arise from the ap-

plication of gates. In addition to systematic over/under-rotations of the applied

laser field, instabilities in the control of the qubits (laser field drifts, magnetic field

fluctuations, etc.) can lead to stochastic error processes that we will model with

a depolarizing error channel. One such natural stochastic process that has shown

to be a contributing source of error is scattering during the application of the

gate [84, 119]. To model the effects of spontaneous Raman and Rayleigh photon

scattering, we will apply a single-qubit depolarizing channel (equation 3.5) after

every qubit involved in a gate (single- or two-qubit gates).

3.4.5 Dephasing Errors

While the ions are located in the trap where the DC electric fields vanish, the ions

may still be exposed to oscillating electric fields from blackbody radiation, laser

fields, or motion around the field free point in the oscillating trap field [120]. The

application of the oscillating electric field shifts the energy each of the states of the

two-level qubit system by the AC Stark effect, which introduces dephasing errors

in the applied gates. This effect is observed for both single- and two-qubit gates.

We choose to model these dephasing errors as a single qubit channel of the form:

Ed =
{√

1− pd I,
√
pd Z

}
(3.12)

where each channel is applied to each qubit involved in single- and two-qubit
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Figure 3.4: The ion trap error model implemented for the 17-qubit surface code simulations.
Gate over-rotations about the applied gate axis and depolarizing errors have static error rates.
Motional mode heating (XX errors) and single-qubit dephasing have error rates proportional to
the gate time of the applied gate.

gates and pd = rd × tg for each gate where rd is the dephasing rate and tg is the

time of the applied gate. We make the approximation that single- and two-qubit

dephasing errors occur at a constant rate. This is certainly not true in that the

dephasing rates will be gate dependent between two-qubit gates and will likely

not be at the same rate of single-qubit dephasing but, taking that single-qubit

gates have higher fidelities relative to two-qubit gates, this serves as a pessimistic

approximation which is consistent with our level of abstraction.

3.4.6 Ancilla Preparation and Measurement Errors

For the ion trap error model, measurement errors were modeled by a single-qubit

depolarizing channel applied before the measurement with a probability equiv-

alent to that of the single-qubit over-rotation errors of the single-qubit gates.

Preparation errors were modeled with a single-qubit depolarizing channel applied

immediately after the preparation of the state but with a probability equivalent

to the background depolarizing channel. All states are prepared and measured

in the +Z basis, which can be performed with high-fidelity [121]. Note that this

implementation is not ideal given that both state preparation and state readout

rely on the same scattering processes. However, the preparation and measurement

errors should not be the dominant source of failure in the simulations consistent

with single-qubit gate, preparation, and readout fidelities of ≥ 99.9 % [121]. Fur-

thermore, state preparation/measurement is a high-fidelity operation (relative to
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two-qubit gates) so the inflated state preparation errors will give a pessimistic

simulation of the fault-tolerance of the surface code on ion traps relative to the

physical architecture. These claims are reinforced in section 3.5.4.

3.5 Error Correction for Ion Trap Errors

To perform error correction on the surface code, classical decoding algorithms

have been developed to determine the most appropriate correction operation to

perform given the limited information about the encoded state from the syndrome.

Various decoders are available that trade-off classical efficiency and observed error

threshold. We apply a few decoders for error correction on the surface code below

and discuss their performance. For all simulations, we implemented a Monte Carlo

simulation of the surface code using an importance sampling method described in

Ref. [64].

3.5.1 Integration into Ion Trap Hardware

When choosing a decoding method to integrate into a physical architecture, there

is much to consider that extends beyond the (pseudo)threshold. Processing, mem-

ory, and runtime requirements of the decoder play a role in the feasibility of im-

plementing error correction with an experimental control system.

Lookup Table Decoder

The simplest decoder is a lookup table that maps a syndrome configuration to the

lowest weight Pauli error corresponding to the syndrome. We may represent an

error configuration e as a binary (row) vector F18
2 where the first/last 9 elements

of the vector correspond to X-type/Z-type errors on the data qubits; for instance:

e(2563) = [0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1] = X6Z7Y8 (3.13)

Given two matrices, H(C1) and H(C⊥2 ), that correspond to the binary representa-
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tion of the Z-type and X-type stabilizers, respectively; one may define a mapping

matrix T between error configurations e and binary syndrome (column) vectors s:

T =

(
H(C1) 0

0 H(C⊥2 )

)
(3.14)

Iterating over all elements of F18
2 and applying T , we constructed a lookup table

Tab[s] = bec where bec = mins (|e|) is the minimum weight error configuration

corresponding to the syndrome string s. With a slight abuse of notation, we denote

| · | as the hamming weight of the error string e with the caveat that Y -type errors

are evaluated as the same weight as X and Z-type errors. All of the rules of

the full lookup table (Tab[s]) can be constructed with two 16-element tables,

each with keys corresponding to the X-type and Z-type stabilizer measurements,

respectively.

For circuit-level noise, the lookup table above is not sufficient for fault-tolerance.

A set of syndrome processing rules must be imposed to ensure that measurement

errors do not result in faulty corrections that introduce errors onto the data qubits.

An example of a typical set of rules is shown below (a, b, and c are syndrome out-

come strings):

a b a 6= b : c a b a 6= b : c . . .

where two rounds of stabilizer measurement are performed and, if the first two

measurement outcomes disagree, a third round of stabilizer measurement is per-

formed. Correction is applied based upon the final measurement performed. We

chose to employ a different set of fault-tolerant syndrome processing rules that can,

on average, reduce the depth of the circuit required to perform a fault-tolerant

correction by one round of stabilizer measurement. The routine:

a a 6= 0 : b a a 6= 0 : b . . .

performs one round of stabilizer measurements and performs a correction based
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on the following round of stabilizer measurements (b) only if the first round was

non-trivial (a 6= 0). These two sets of rules yield equivalent results for the 17-qubit

surface code under circuit-level depolarizing noise.

Minimum Weight Perfect Matching

For topological codes, minimum weight matching algorithms have been shown

to be a useful heuristic technique for performing error correction [122–124]. For

the distance-3 surface code, the minimum weight perfect matching rules can be

encoded into a lookup table that presents a correction operation based on three

rounds of syndrome measurement (for circuit-level depolarizing noise) [2].

Decoder Performances

Figure 3.2 shows the performance of the two lookup table style decoders, standard

lookup and matching rule derived lookup, considered for implementation in a near-

term experimental quantum error correction routine. Lookup table decoders were

chosen for their easy integration into existing ion trap experimental controls which

have restricted logic/memory available versus other techniques, such as maximum

likelihood [125, 126] or deeper memory step matching algorithms [122–124] for ex-

ample, which would require additional processing power to implement/integrate

into an experiment. The lookup table decoder was favored over the matching

table because of its requirement for one less round of stabilizer measurement to

perform fault-tolerant error correction with a comparable level-1 pseudothreshold

to the matching table (figure 3.2). Because current estimates of the syndrome ex-

traction indicate it is relatively slow (figure 3.1), the ability to choose a correction

fault-tolerantly from a minimal number of experimental operations is important

to maintain coherence of the encoded information. The lookup table was im-

plemented in all further simulations because of ease of integration into ion trap

controls while requiring at most two syndrome measurements to fault-tolerantly
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Table 3.2: Performance of the two lookup table style decoders considered for implementation
into a near-term quantum error correction experiment. Lookup table style decoders were chosen
due to their easy integration into the control software of an ion trap system.

Decoder Level-1 Pseudothreshold Computational Time (s)
Lookup Table 3.0× 10−3 1.1× 10−7

Matching (table) 5.5× 10−3 1.43× 10−6

perform error correction.

3.5.2 Error Correction on Ion Traps

Now that a fast, light memory, high-performance decoder has been identified, we

will switch attention to using such a method to apply error correction on the

17-qubit surface code under the influence of ion trap errors. First, we must map

the abstract quantum circuit used for error correction in the surface code to a

circuit that implements gates that would be available in an ion trap quantum

computer; specifically single-qubit rotations and Mølmer-Sørensen gates. Next,

we will discuss the influence of the individual ion trap error sources (outlined

in section 3.4) on the fault-tolerance of the surface code mapped to a linear ion

chain highlighting the experimental parameter regimes which would allow for fault-

tolerance for the surface code implementation. Finally, we analyze the error subset

probabilities from the importance sampling simulations to understand the roles of

the competing error sources and gain insight into the error sources that are most

influential/detrimental to the error-correcting properties of the code.

3.5.3 Surface-17 Syndrome Extraction Circuit Gate Compilation

The two-qubit gates in the syndrome extraction circuit for the 17-qubit surface

code must be decomposed into single-qubit rotation gates and two-qubit Mølmer-

Sørensen gates. In addition, Hadamard gates are required during the measurement

of the X-type stabilizers which can be decomposed into rotation gates in two

equivalent ways: H ≡ RY

(
−π

2

)
RX (π) or H ≡ RX (−π)RY

(
π
2

)
. Note that the
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0

MS(X)

RX(−π2 )

1

2 RX(+π
2 )

3 RX(−π2 )

4

5 RX(+π
2 )

6 RX(−π2 )

7

8 RX(+π
2 )

(a) X-type stabilizers

0 RY (+π
2 )

MS(Z)

RX(+π
2 ) RY (−π2 )

1 RY (+π
2 ) RX(+π

2 ) RY (−π2 )

2 RY (+π
2 ) RX(+π

2 ) RY (−π2 )

3 RY (+π
2 ) RY (−π2 )

4 RY (+π
2 ) RY (−π2 )

5 RY (+π
2 ) RY (−π2 )

6 RY (+π
2 ) RX(−π2 ) RY (−π2 )

7 RY (+π
2 ) RX(−π2 ) RY (−π2 )

8 RY (+π
2 ) RX(−π2 ) RY (−π2 )

(b) Z-type stabilizers

MS(X) MS(Z)
GATE s ID1 ID2 GATE s ID1 ID2
PREP 16 PREP 10
XX + 6 16 XX − 0 10
XX − 7 16 XX + 3 10
MEAS 16 MEAS 10

PREP 11 PREP 12
XX + 0 11 XX − 1 12
XX − 1 11 XX − 4 12
XX + 3 11 XX + 2 12
XX − 4 11 XX + 5 12
MEAS 11 MEAS 12

PREP 14 PREP 13
XX + 4 14 XX − 3 13
XX − 5 14 XX − 6 13
XX + 7 14 XX + 4 13
XX − 8 14 XX + 7 13
MEAS 14 MEAS 13

PREP 9 PREP 15
XX + 1 9 XX − 5 15
XX − 2 9 XX + 8 15
MEAS 9 MEAS 15

Figure 3.5: (Top) The syndrome extraction circuit for the 17-qubit surface code compiled with
Mølmer-Sørensen entangling gates and single-qubit ion trap operations where the ancillary qubit
wires have been suppressed. (Bottom) The primitive gate operations compiling the MS(X) and
MS(Z) gates above. The values ID1 and ID2 correspond to the qubit indices to which the gate is
applied defined in figure 3.1a. The PREP gate projects ancillary qubits into the |0〉 state and all
MEAS gates are Z-basis measurements (see section 3.4.6). The XX gates are Mølmer-Sørensen
gates. The parameter s which is dictated by the sign experimental interaction parameter was
taken as a free parameter during compilation which we show explicitly.
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implementation of the rotation gates constructing the CNOT gate allows for some

freedom in the direction of the rotation which can be used to reduce the number

of primitive gates (an outline of the ion trap compilation techniques can be found

in [93]). The parameter s ∈ {+1, −1} in the circuit dictated by the sign of the

interaction parameter χ between two ions which is determined by the experimental

apparatus. At our layer of abstraction, the value of s is left as a free parameter.

Applying such a compilation method allowed for the reduction of the number

of single-qubit gates from 48 in the naive implementation to 30 in the compiled

circuit; the number of entangling gates cannot be reduced in the error correction

routine leaving 24 Mølmer-Sørensen gates as well. A representation of the compiled

syndrome extraction circuit is shown in figure 3.5 where the ancillary wires have

been suppressed. This circuit was used for all further results.

3.5.4 Single Error Source Dominant Effects

In this section, we characterize the influence of the error sources in the limit where

each error type is the dominant source of the error. Therefore the simulations

that generate the following pseudothresholds will have varying single- and two-

qubit error rates (remember that px = py = pz = pxx/10) and constant heating,

depolarizing, or spin dephasing error rates during simulations. Our goal is to find a

parameter range under which, again in this limit of a dominant error source, fault-

tolerant retention of the encoded information would be possible. In all instances,

a two-qubit gate fidelity of ≥ 99.9% and an error source error rate below a critical

rate is necessary to allow for fault-tolerance (see figure 3.6). We discuss those

critical rates for each error source below.

Ion heating was characterized by a parameterized representation of the heating

rate ˙̄n/2K where ˙̄n is the heating (in quanta/s) of the gate motional mode and

K is the number of loops in phase space traversed by the Mølmer-Sørensen gate.

As shown in figure 3.6a, fault-tolerance is not achieved at a heating rate above 25
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(a) Ion heating (b) Depolarizing Noise (c) Spin dephasing

Figure 3.6: The influence of ion trap error sources on the fault-tolerance of the 17-qubit surface
code. For each plot, only the labeled error source was introduced in the simulation in addition
to gate errors. To achieve fault-tolerance, a two-qubit gate fidelity of ≥ 99.9% and an error in
the gate from the specific error source below a critical value (green curves) is required.

quanta/s which corresponds to a motional mode heating rate during the gate of

100 and 200 quanta/s for K = 2 and K = 4, respectively. A heating rate ( ˙̄n) of

about 58 quanta/s has been observed for a single 9Be+ ion on a room temperature

surface trap [127] and a silicon based trap in a cryogenic environment used to

trap individual 40Ca+ ions exhibited heating rates as low as 0.33 quanta/s (0.6(2)

quanta/s on average) [128]. Note that macroscopic traps exhibit significantly lower

heating rates relative to surface traps; for instance a single trapped 111Cd+ ion

exhibited a heating rate of 2.48 quant/s for a room temperature macroscopic trap

[129]. However, additional difficulties arise for macroscopic traps in engineering a

system that allows for ion separation, addressing, and detection required for an

error correction protocol. Also, the use of sympathetic cooling ions has been shown

to reduce motional mode heating effects on T ∗2 [130]; a method which could reduce

the heating rates of the idle computational qubits during the error correction

routine.

The depolarizing error channel was applied to simulate stochastic error pro-

cesses. One such process of interest is spontaneous Raman and Rayleigh scattering,

which result in single- and two-qubit gate errors. Figure 3.6b displays an upper

limit on the scattering rate (per-gate) of 8×10−4 to allow for fault-tolerance when
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scattering errors dominate. Ozeri et al. have shown that gate errors due to Raman

scattering to occur at a rate less than 10−4 for single-qubit gates but two-qubit

gates have scattering rates on the order of 10−2 for their experimental setup for

various species of trapped ions [84]. These achieved scattering rates are still above

theoretical lower bound on the scattering rates for single- and two-qubit gates

for 171Yb+ by 3 and 7 orders of magnitude, respectively [84], showing potential

for improvement especially in the two-qubit scattering case. Rayleigh scattering

errors are less substantial, resulting in error rates per gate orders of magnitude

below the Raman scattering error rates for heavy ions such as 171Yb+ [84].

Spin dephasing was modeled using a model that assumed a constant dephasing

rate that scaled linearly with the time of the applied gate. The upper bound

on the error rate (figure 3.6c) corresponds to a dephasing rate of 15 s−1. These

values are related to T ∗2 [130]. Note that the use of magnetic clock transitions

[121, 131], decoherence free subspaces [132], or sympathetic cooling ions [130]

during computation has been observed to increase the T2 coherence times of the

qubits to the order of seconds. A 5-qubit system that has implemented small

quantum algorithms [26] and the J4, 2, 2K error detection code [81] with hyperfine

qubits exhibits a T ∗2 of ≈ 0.5 s [77], but further magnetic field stabilization could

improve this as shown in [130] which exhibits over a 10 minute coherence time for

trapped 171Yb+ ions.

3.5.5 Competing Error Sources: Dominant Errors

To characterize the dominant error sources contributing to the logical error rate in

the 17-qubit surface code in the case where multiple error sources are competing,

we take advantage of the importance sampling technique. We will briefly outline

the importance sampling method; highlighting the use of error subsets that will

be independently analyzed to gain insight into the effect of the error source on the

logical error rate of the encoded state. This will then be followed by an analysis
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of the statistically significant error subsets, which will be used to characterize

the most malignant errors contributing to the failure rate of the error-correcting

circuit.

Importance Sampling

This method is an adaptation of the method from [64] but extended to the case

where multiple error sources are available during the simulation. The method

relies on approximating the logical error rate as a sum of statistically weighted

logical error rates of error subsets. For low enough physical error rates, few subsets

need to be sampled in order to obtain an accurate approximation, which makes

the approach considerably more efficient than the standard direct Monte Carlo

sampling. The subsets are indexed according to the number of errors present in

the circuit. For instance for the standard depolarizing error model, the subsets

would be indexed according to the number of single- and two-qubit errors present

in the circuit. Sampling error configurations corresponding to the number of errors

for this subset and calculating the fraction of configurations resulting in a logical

error gives an effective subset error rate As,t. Multiplying this subset logical error

rate by the total statistical weight of the error subset will provide the subset’s

contribution to the total logical error rate. Computing the statistical weight is

done as so:

Ws,t =

(
ns
s

)
p|e|s (1− ps)ns−|e|

(
nt
t

)
p
|e|
t (1− pt)nt−|e| (3.15)

where s and t are the number of single- and two-qubit errors in the circuit being

considered, respectively. These are also the indices of the subset. The values

ns and nt are the number of single- and two-qubit fault-points in the circuit,

respectively. The values ps and pt are the single- and two-qubit error channel

probabilities and |e| denotes the weight of the error. Estimating the logical error

rate then constitutes calculating the following sum:
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a b c

Figure 3.7: Circuit containing three two-qubit gates, labeled a, b, and c, with error rates pa, pb,
and pc, respectively.

pL ≈
Ws,t<bW c∑

(s,t)

Ws,tAs,t (3.16)

where subsets with statistical weights below a chosen cutoff value, bW c, are omit-

ted from the sum. Note that, with this method, the sampling of each error subset

only needs to be performed once to generate a logical error curve.

We altered the method above to handle situations where errors of equivalent

types have different error rates; such is the situation for our ion heating and

dephasing error models with ion dependent gate times, which influence the error

rate per qubit. To motivate this point, consider the quantum circuit in figure 3.7.

This circuit contains three two-qubit gates, a, b, and c, with different error rates

pa, pb, and pc, respectively. The weight of the (0, 2) subset would then be:

papb(1− pc) + papc(1− pb) + pbpc(1− pa) (3.17)

so the two-qubit subset calculation requires one more ingredient: we need to sum

over all n-tuple error configurations (fn) during the subset weight calculation:

Wn =

e∈fn∑
n=|e|

∏
k∈e

pk
∏
j 6∈e

(1− pj) (3.18)

When we adapt this approach to heating errors in an ion trap circuit, we get the

following calculation of the subset weight:

(
ns
s

)
p|e|s (1− ps)ns−|e|

(
nt
t

)
p
|e|
t (1− pt)nt−|e|

e∈fn∑
n=|e|

∏
h∈e

ph
∏
6h6∈e

(1− p 6h) (3.19)

where ph and p 6h are the individual error rates of the heating error channels for

each two-qubit configuration on which an heating error is and is not applied in the
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simulation, respectively. We have taken into account the influence of the different

rates for the calculation of the subset weights, but this also has an influence on

the sampled subset logical error rates as certain error configurations will be more

probable than others. Because the heating error rates are linearly proportional

to the gate times in our error model, we have chosen to sample heating error

configurations from a gate time weighted distribution of error configurations giving

a corresponding logical error rate of As,t,h. With the new subset weights and subset

logical error rates, the estimation of the total logical error rate naturally extends

from equation 3.16. Note that heating adds an extra subset label: (s,t,h). The

indices s, t, and h represent the number of single-qubit gate, two-qubit gate, and

heating errors sampled, respectively.

Recall that the ion trap error model from section 3.4 contains 5 distinct error

sources. Therefore, we extended the concepts from equations 3.16 and 3.19 to

calculate the logical error rate of the 17-qubit surface code under the influence

of single-qubit gate, two-qubit gate, ion heating, background depolarization, and

dephasing errors. The analysis below will include 5 index subsets ordered with the

indices listing the number of single-qubit gate, two-qubit gate, heating, background

depolarization, and dephasing errors sampled in the circuit; in that order.

Competing Error Sources: Sampling Subset Analysis

For the importance sampling simulations of the 17-qubit surface code, a subset

weight cutoff of bW c > 10−6 was used and 30, 000 samples were collected for the

calculation of each subset’s logical error rate As,t,h,dep,z. This weight cutoff corre-

sponds to events expected to be sampled at least once out of a million randomly

sampled events, which is sufficient for near-term error correction experiments.

To calculate the statistical weights of the subsets, a single-qubit gate error rate

(py = px = pz), two-qubit gate error rate (pxx), rate of heating (rheat), background

depolarizing noise error rate (pdep), and rate of dephasing (rd) of 10−4, 10−3, 25
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(b) 10−4 ≤W < 10−3
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(c) 10−5 ≤W < 10−4
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(d) 10−6 ≤W < 10−5

Figure 3.8: The subset logical error rates and subset statistical weights above the cutoff of 10−6.
The data is separated into four plots according to the order of magnitude of the subset statistical
weights, which are plotted in red. The logical error rates for the subsets are plotted in blue.
Note that the product of the subset weight and its corresponding logical error rate dictates the
subset’s contribution to the total logical error rate of the code. For calculation of the statistical
weights of the subsets, the error rates for single-qubit gates (py = px = pz), two-qubit gates
error (pxx), ion heating (rheat), depolarizing noise (pdep), and dephasing (rd) were 10−4, 10−3,
25 quanta/s, 8× 10−4, and 15 s−1, respectively.

quanta/s, 8 × 10−4, and 15 s−1 was chosen, respectively, which corresponds to

the error rates that exhibit a logical error rate equal to the two-qubit gate error

rate (see the green curves in figure 3.6). The logical error rates and statistical

error weights calculated for each subset are presented in figure 3.8. The goal of

this analysis is to parse out situations where certain error sources show dominant

contribution to the failure rate of the quantum error-correcting circuit.

The logical error rates for each of the subsets sampled are shown in blue in

figure 3.8. The error subsets containing two-qubit gate or heating errors tend to
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have higher logical error rates than other subsets containing comparable number

of errors. This occurs due to the ability of errors of this type to generate measure-

ment faults in the circuit. The Mølmer-Sørensen gate transforms single-qubit data

errors in the following manner: ZI ↔ Y X and Y I ↔ −ZX where the data and

ancilla qubit errors are the first and second elements, respectively. A two-qubit

gate or heating error makes preexisting errors undetectable which is a particu-

larly malignant case. The tendency towards measurement errors in the ion trap

error model indicates that implementing a decoder that makes a correction based

on more syndrome measurement rounds may show an above average performance

boost in error correction. Error subsets containing single-qubit gate errors tend to

have lower logical error rates that other subsets with comparable number of errors.

To understand why this is the case, we explore the effect the errors have on error

correction. Figure 3.9 shows how single-qubit gate errors transform preexisting

|ψ〉
MS

|0〉
⇒ E2 ⇒

RX(±π
2
) RY (±π

2
)

⇒ E ′2

(a) Entanglement gate faults are transformed by single-qubit rotations gates and their
errors.

E2 E ′2
II → ZI
XI → II
Y I → Y I
ZI → XI
XX → IX
XY → IY
XZ → IZ
Y X → Y X

E2 E ′2
Y Y → Y Y
Y Z → Y Z
ZX → XX
ZY → XY
ZZ → XZ
IX → ZX
IY → ZY
IZ → ZZ

(b) RX
(
±π

2

)
Gate Error: X

E2 E ′2
II → Y I
XI → XI
Y I → ZI
ZI → II
XX → XX
XY → XY
XZ → XZ
YX → ZX

E2 E ′2
Y Y → ZY
Y Z → ZZ
ZX → IX
ZY → IY
ZZ → IZ
IX → Y X
IY → Y Y
IZ → Y Z

(c) RY
(
±π

2

)
Gate Error: Y

• Corrected • Single Data Error • Flagged Error • Measurement Error

Figure 3.9: The transformation of an existing two-qubit Pauli error (ignoring the phase) after a
single-qubit gate error on wires that contain an RX

(
±π2
)

and an RY
(
±π2
)

gate is shown in (b)
and (c). The first and second element of the Pauli error corresponds to the error on the data and
ancilla qubit, respectively. There are two types of single-qubit over-rotation errors, X and Y ,
which transform Pauli errors according to (b) and (c), respectively. Applying the transformation
II ↔ ZI on the E′2 values in (c) give the resulting error on wires containing only RY

(
±π2
)

gate
errors.
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errors in the circuit. The particularly malignant case in when there is a measure-

ment error, which can introduce errors into the code. For each single-qubit fault

point, there are only two elements of the two-qubit Pauli group that are trans-

formed in a manner that would result in a measurement error. Actually, half of

the elements of this group result in single-qubit errors (or no errors) on data that

can be readily decoded in the following step of stabilizer measurement (see figure

3.9). The remaining errors are detectable but not necessarily corrected properly

(this depends on the location that the fault occurs). However, these errors do

alert the decoder to the location of an error on the code which is favorable and the

faulty correction on these qubits will not propagate errors in a malignant manner

given the next round of stabilizer measurement is correct. Take note that one of

the malignant errors transformed in figure 3.9b (RX(±π
2
) gate error) is XX which

is the form of the two-qubit gate and heating errors. Therefore, compiling out the

single-qubit gates RX(±π
2
) gates seems to have also boosted the efficiency of the

decoder to decode two-qubit gate and heating errors in addition to the obvious

performance boost from less fault points in the compiled circuit. Another alarm-

ing malignant configuration in figure 3.9c is the ZX error which is the result of

the Mølmer-Sørensen transformation of Y I (a single-qubit data error). However,

this fault requires two single-qubit Y errors which has a low statistical weight of

occurrence (see figure 3.8).

The subset statistical weights (probabilities of occurrence) are shown in red in

figure 3.8. These statistical weights give insight into the likelihood of sampling par-

ticular error events. Recall that the subset’s contribution to the total logical error

rate of the code (used to generate the pseudothreshold plots in 3.6) is the product

of the subset weight and subset logical error rate (see section 3.5.5). Only ten

points above the subset weight of 10−3 (figure 3.8a) have significant contribution

to the total logical error rate; that is, this small collection of subsets can be used

to completely recreate the pseudothreshold plots in 3.6. Actually, the two subsets,
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(0, 0, 1, 0, 1) and (0, 0, 1, 1, 0), have the largest contribution to the encoded logical

error rate and bound the logical error rate to pL ≈
∑
As,t,h,dep,z ×W ≈ 1× 10−3,

which corresponds to a two-qubit gate fidelity of 99.9% (recall that the gate error

rate for calculation of the subset weights was 10−3). This essentially recreates our

calculation of a 99.9% two-qubit gate fidelity for fault-tolerance that used more

subsets. Therefore, changes in the statistics of the dominating subsets have signif-

icant influence on the observed pseudothreshold of the quantum error-correcting

code and can be considered when implementing a decoding algorithm. This also

illustrates the concern that a success metric such as the (pseudo)threshold only

represents the mean statistics of an underlying error model [133].
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Chapter 4

Magic state distillation and gate compilation in quantum

algorithms

This chapter contains results from:

Colin J. Trout and Kenneth R. Brown. Int. J. Quantum Chem. 115 (19),

12961304.

Transversal operations are inherently fault-tolerant and robust to the faulty

operations constituting the computation at physical error rates below their fault-

tolerant threshold. Furthermore, the qubit resource cost for transversal operations

is simply the cost of encoding. However, the Eastin-Knill theorem states that no

subspace stabilizer code with local stabilizer generators can admit a universal

transversal gate set [134]. This is significant because quantum computation with

a non-universal gate shows no advantage over the classical model of computation.

An example of this is the Gottesman-Knill theorem that shows that Clifford cir-

cuits can be simulated efficiently on classical computers [34]. To obtain universal

fault-tolerant operations, additional protocols are required that require the use of

ancillary encoded states.

Traditionally, the quantum resource cost of such protocols is large. Distillation

of the surface code requires between 106 − 1013 qubits, depending on the desired

precision, to generate one non-transveral fault-tolerant gate [135], which is not fea-

sible practically. Substantial progress in reducing this overhead has been achieved

over the past decade. This progress comes in two flavors: more qubit-efficient gen-

eration of non-transversal fault-tolerant encoded gates and more non-transversal

gate efficient approximations of general unitary transformations. We outline this

recent progress in this chapter and show the resource reduction of these techniques.

The chapter is outlined as follows. First, we discuss the machinery required to

understand how to obtain universal fault-tolerant operations. Then, we discuss
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methods of obtaining a non-transversal gate for many quantum error correction

routines, the T gate. A discussion of obtaining T gate efficient decompositions of

general unitary gates follows. Finally, hybrid techniques of using an expanded the

gate set to loosen restrictions on gate decomposition is examined.

4.1 Quantum Gates and Teleportation

Two important groups of unitary operations are the Pauli group and the Clifford

group. The Pauli group, P , is generated by multiplication of individual Pauli

matrices on each qubit. The Clifford group, C, is the group of unitary transforma-

tions that maps the Pauli group to itself; for ĝ ∈ C, ĝP ĝ† = P . On a single-qubit,

the Clifford transformations correspond to the symmetry elements of the chiral

octahedron (the point group O) [32] shown in figure 2.1b. The Clifford group

can be generated by the single-qubit operators H, S, and the two-qubit operator

CNOT . To obtain an arbitrary qubit rotation (a universal gate set), an additional

single-qubit gate is required. Almost any pair of rotations will work with the ex-

ception of two rotations that are symmetry elements of the same point group. The

canonical choice in quantum information is H and T = RZ(π/4) also referred to

as the π/8 gate. The T gate, which does not preserve the chiral octahedron, plus

the Clifford gates is a common universal gate set. Note that T 4 = S2 = Z. It has

long been known that any rotation can be efficiently simulated using these gates

[31] but, as we discuss in this chapter, recent work has drastically reduced the

cost.

Imagine a situation where qubit 1 can only have Clifford gates act on it (in-

cluding the ˆCNOT) and qubit 2 can have Clifford gates and rotations around the

z-axis by an arbitrary angle RZ(θ). We can effectively perform RZ(θ) on the first

qubit by using the important quantum primitive of gate teleportation [136]. The

procedure, depicted in figure 4.1a, works as follows: qubit 1 is in an arbitrary

state. Qubit 2 is prepared in the state |+〉 = 1/
√

2 (|0〉+ |1〉) and the rotation
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RZ(θ) is applied. We will refer to this state as |A(θ)〉 = (e−i
θ
2 |0〉 + ei

θ
2 |1〉). Next

ˆCNOT(1, 2) is applied and then qubit 2 is measured in the computational basis.

The net effect is as follows: if qubit two is measured in state |0〉, then RZ (θ) was

applied to qubit 1. If qubit two is measured in state |1〉, then RZ (−θ) was applied

to qubit 2. In this case, we can gamble and attempt to apply RZ(2θ) and continue

this procedure until success [137].

If θ = π/4, we do not have to gamble: |A(π/4)〉 = 1/
√

2(e−i
π
8 |0〉 + ei

π
8 |1〉).

If we measure qubit 2 to be in the state 1, we have performed the undesired

rotation Rz(−π/4): |ψ〉 = 1/
√

2(e+iπ
8α|0〉 + e−i

π
8 β|1〉). This can be corrected

deterministically by applying the Clifford group operator RZ(π/2) = S to the first

qubit (see figure 4.1b). We can then use our ability to perform RZ(π/4) to create

a deterministic circuit for implementing RZ(π/8). This process can continue and

it is often useful to consider gates that are of the form RZ(π/2k) as well.

Figure 4.1: Gate teleportation for the implementation of general rotations, RZ(θ), and the
deterministic implementation of the rotation RZ(π/4). Horizontal double black lines indicate
classical bits. Vertical lines represent control with a black (white) dot signifying control on the
bit being 0 (1). (a) Circuit for the implementation of the gate RZ(θ). If the measurement
outcome is 0, then the desired gate was applied and the circuit terminates. If the outcome of
the measurement is 1, the rotation was applied in opposite direction and a correction rotation,
RZ(2θ) , may be attempted in a similar manner. We may continue to apply these corrections
until we get the desired measurement. (b) Deterministic teleportation of the rotation, RZ(π/4),
to the input register |ψ〉 from the utilization of magic state, |A〉. The first circuit (top left) is
the teleportation circuit. Through quantum circuit identities, we show how this circuit results
in a deterministic gate teleportation.
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4.2 Fault-Tolerant Universal Gate Sets

For an important family of codes the Clifford gates are transversal and the costly

gate is the T gate [138]. This gate can be implemented by teleportation if the magic

state |A(π/4)〉 = T |+〉 can be prepared following figure 4.1b. At first glance this

seems like an avoidance of the problem. Clearly to generate |A(π/4)〉, we need to

apply T . However, we can use a different code family to build a distillation circuit

that allows us to efficiently generate high-quality |A(π/4)〉 states from multiple

noisy copies.

4.2.1 T Gate Distillation

Bravyi and Kitaev developed the first method for T gate distillation based on the

J15, 1, 3K quantum Reed-Muller code to distill the magic state |A(π/4)〉 [139]. This

family of codes are triply even codes which admit a transversal T gate. This code

takes 15 noisy ancillary magic states, with error rate p, and encodes them into 1

qubit of information with a failure in the distillation circuit when 3 or more errors

occur during the encoding. By performing the error check measurements and

corrections in the quantum error-correcting routine, one may iteratively project

the noisy set of magic states onto one higher fidelity magic state, with an output

error rate O (p3), resulting in a noisy to distilled state ratio of 15-to-1 [139].

The distillation circuit for this protocol is depicted in figure 4.2. Notice the

circuit employs only Clifford operations except for the input magic states used for

deterministic T gate teleportation as in Fig. 4.1b. Further rounds of distillation

can be performed on distilled states to suppress error rates up to an arbitrary

precision and, thus, allows for fault-tolerant implementation of the non-Clifford T

gate.

Meier, Eastin, and Knill (MEK) utilized a J10, 2, 2K error detection routine

within the distillation circuit [140]. This code has a higher ratio of noisy to
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Figure 4.2: The Bravyi-Kitaev 15-to-1 magic state distillation protocol. The input to the circuit
is 16 easy to prepare input states, |0〉 and |+〉, and 15 low-quality magic states with error p, and
the output is 1 magic state with an output error rate of O

(
p3
)
. It implements 15 deterministic

T gate teleportations (figure 4.1b).

distilled states of 10-to-2 at the cost of a reduction in error suppression of the

distilled states of O (p2). Dependent on the target error rate for the distilled

state, the 10-to-2 technique can more efficiently produce distilled states than the

15-to-1 protocol. There is a regime of low input error rates for which the quadratic

suppression of errors from 10-to-2 technique is sufficient and extra resource cost for

cubic error suppression via the Bravyi-Kitaev distillation is deemed unnecessary.

For high-initial errors and low target errors, initial implementation of the 15-to-

1 protocol for maximum error suppression followed by the 10-to-2 protocol to

minimize ancilla overhead can result in a favorable resource scaling relative to

using a single protocol [140].
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Bravyi and Haah introduced a method with a ratio of noisy to distilled states

of 3k + 8 to k for |A(π/4)〉 with output error rates comparable to that of Meier-

Eastin-Knill, O (p2) [141]. Furthermore, they introduced a systematic method

of generating distillation protocols by realizing an equivalence between a set of

quantum error-correcting codes that admit a transversal T gate and a family of

matrices known as triorthogonal matrices. The triorthgonal matrix G defines

a classical linear error correcting code space G where, adhering to a CSS-like

construction of stabilizer codes, the X stabilizer generators are defined by the

even weight rows of G, G0, and the Z stabilizer generators are constructed from

G⊥. Therefore, generating new distillation routines translates into generating new

triorthogonal matrices. As with the 10-to-2 distillation, the utility of this technique

is substantial at lower error rates and, therefore, admits serial use of distillation

protocols due to constraints on the input error regime in which the resource gains

of this technique outweighs the gain in output state precision [141].

4.3 Gate Decomposition Techniques and Minimizing Non-Clifford Ro-

tations

We will now present three general methods for generating fault-tolerant arbitrary

unitary transformations. The first method uses a minimal, universal, elementary

gate set (typically Clifford operations and T gates) and approximates arbitrary

rotations through successive application of gates from this set. These methods

minimize the number of T gates to reduce the overhead due to distillation. The

second method, known as complex distillation, incorporates an overcomplete gate

set which is composed of Clifford operations and incremental rotations about the x,

y, or z axis on the Bloch sphere to construct arbitrary rotations. The third method

is sequential probabilistic application of gates through teleportation. Table 4.1

illustrates the decrease is resource costs from the progress in these techniques.
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4.3.1 Optimization with a Minimal Gate Set

Gate decomposition techniques critically rely on a fundamental result in quantum

computing known as the Solovay-Kitaev theorem. Given a set of single-qubit gates

(e.g., H, T , and T †) that generate a dense set of unitary gates (i.e. compose a

symmetry group isomorphic to SO(3)), it is possible to approximate any unitary

gate to an arbitrary precision (δ), by an efficient number of operations, ∝ logc(1/δ)

where c is a constant [33]. The challenge is how to compile these elementary gates

into accurate approximations of arbitrary unitary operations.

We will now outline the progress in methods of approximating arbitrary uni-

tary rotations from a set of Clifford and T gates. The Solovay-Kitaev algorithm

presents a step-wise procedure for generating arbitrary gates [142]. First, a library

is generated of all rotations up to a sequence length of elementary gates l. The

target rotation is compared to the closest rotation in the library. The difference

between these rotations is a small rotation that can be generated from the library

taking advantage of the non-commutivity of rotations. This can be done in a

recursive manner to generate arbitrarily accurate gates without ancillary qubits.

Further optimization methods have been implemented to the Solovay-Kitaev al-

gorithm with improvements that reduce the level of recursion required for the

calculation of the sequences [143]. The final elementary gate count also depends

critically on the size of the library as demonstrated by Bocharov and Svore [144].

The best gate counts will occur for infinitely large libraries. However, this

approach becomes impractical for high-precision approximations. For moderate

precision, Fowler found optimal sequences by a “brute force” space search that

utilizes information about previously applied gate sequences to selectively screen

for the next gate sequence [143, 145]. The precision at which this method can

approximate gates is limited as the space search is exponential in gate sequence

length, but this result was nevertheless incredibly insightful as it illuminated the
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significant gap in gate sequence length between optimal decompositions and the

Solovay-Kitaev result.

An alternate approach for developing an optimal decomposition required the

use of ancillary states that could offer small corrections to the approximated state

through a method known as phase kickback [146]. From these methods, a repre-

sentation developed where the problem is mapped to a unit field and optimal gate

sequences that can be obtained without the use of ancillary states [146–149]. Non-

deterministic methods of approximating such rotations have also been developed

which make use of a minimal set of gates and ancillary states which are measured

to iteratively project the input state to the required state within a given precision

[150–153].

Significant progress has recently been sparked by work performed by Kluich-

nikov, Maslov, and Mosca (KMM) [154]. This work presented a rigorous proof

that any single-qubit unitary operator can be exactly decomposed into a set of

single-qubit Clifford and T gates, with one |0〉 ancilla state, if and only if the ma-

trix elements of the unitary operator belong to a special algebraic group and fulfill

constraints on the assignment of the matrix elements to guarantee unitarity. Fur-

thermore, it was shown that this decomposition was efficient. Giles and Selinger

extended this proof to include n-qubit unitary transformations and eliminated the

need for ancillary qubits in the exact decompositions [155]. This result is power-

ful as it added intuition into the search space of potential circuits resulting in a

deviation from random circuit search methods.

The question remained: given a desired rotation within a given precision, how

does one find a rotation with an exact decomposition that lies within that pre-

cision? Furthermore, can one find an exact unitary decomposition, within that

precision, which is minimal in the use of the costly T gate? Various algorithms for

searching the space of unitaries with exact decompositions have been implemented

for the generation of these circuits [146–149]. These methods differ from the search
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methods implemented by Fowler in that, instead of searching over gate sequences,

they search for the entries in the single-qubit unitary that simultaneously satisfy

the norm equation to guarantee unitarity and are members of an algebraic ring,

the cyclotomic integers, to ensure the existence of an exact decomposition. Initial

attempts at these optimizations resulted in decompositions that did [146] and did

not [147] require the use of a few ancillary |0〉 states in the circuit. Additional

algorithms resulted in an optimal solution in the number of T gates with ancilla

[148], and Ross and Selinger recently showed optimal solutions in gate decomposi-

tions that are exact and require no ancillary qubits [149]. Ironically, the efficiency

of the decomposition depends on the ability to factor numbers, a task at which

quantum computers excel [156]. Fortunately, probabilistic versions of this search

algorithm can be implemented in polynomial classical runtime and can achieve

the third-to-optimal decomposition sequence, with T gate counts comparable to

the optimal solution [149].

4.3.2 The Utility of an Expanded Gate Set from Complex State Dis-

tillation

Complex distillation protocols [157–159] utilize an overcomplete elementary gate

set consisting of Clifford operations and a set of rotational states about a given

axis. These rotations about an axis are produced by a distillation protocol that

takes magic states, such as those constructed from the routines above, as an input

and generates a “harder” rotation. While employing subsequent distillation pro-

cedures on distilled states appears to lower efficiency, the rationale behind these

techniques is founded in the fact that the minimization of the number of ancilla

required per magic state does not necessarily imply more cost-efficient computa-

tion as the above protocols are ignorant to the compiling cost of the computation;

an issue addressed by these complex distillation techniques. Indeed, there is gate

number threshold above which generating a “difficult” rotation directly may bene-
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fit over successive applications of a set of cheaper rotations when approximating an

arbitrary rotation. As an example of how this may reduce a gate sequence length

for an arbitrary desired rotation, if one has access to the rotations RZ(π/2k), one

can approximate any arbitrary RZ(θ) by digital compilation. This can be espe-

cially useful for algorithms that require on-the-fly compilation of unitary gates

based on measurement of qubits [159, 160].

These protocols differ in the expanded gate set used and the distillation used

to generate the expanded magic states. What they do hold in common is that

the expanded set of rotations about an axis are generated recursively, (R(θ1) →

R(θ2) → ... → RZ(θk) ), with finer rotations requiring more distillation steps for

all techniques and these rotations are applied to data via gate teleportation.

Duclos-Cianci and Svore [157] use an elementary gate set that includes Clif-

ford gates and RY rotations. The resource states used in the teleportation were

constructed from distillation of |Hi〉 magic states, |Hi〉 = RY (2θi)|0〉 where θi is

defined by cot θi = coti+1(π/8). Note that |H0〉 = |+〉). An additional routine

Table 4.1: Resource states required for non-Clifford gates for the various methods discussed.
Two target gate precisions (δ) are provided: 10−2 (left) and δ = 10−20 (right) except for the
Fowler (†), PARs (††), and KMM (†††) which are evaluated at a precision of 10−6, 10−5, and
10−15, respectively. Lower bounds on the floating-point method are given as the T gate costs
are angle dependent (θ = a × 10−γ). The superscripts denote the categories (a), (b), and (c)
corresponding to sections 4.3.1, 4.3.3, and, 4.3.2, respectively. The estimates above assume
the availability of sufficiently precise magic states. This assumption increases the advantage of
complex distillation techniques. The Ladder State value relative to CISC and DCP is inflated
as the number includes the error-free distillation cost of the higher-order states. The advantage
of DCP over CISC is in the distillation procedures for noisy magic states (see text). The scaling
factors s1 and s2 depend on the specific algorithm but are & 1.

Method T̂ Gate Count Non-Clifford States

Solovay-Kitaeva [142] s1
(
log3.97 (1/δ)

)
86 8.0× 105

Fowler Searcha [144, 145] 2.95 log2 (1/δ) + 3.75 1.3× 102 3.4× 102 †

PARsb [150] s2 (log (1/δ)) 6.0× 102 1.4× 103 ††

KMMa [148] 3.067 log10 (1/δ)− 4.322 88 8.2× 102 †††

Floating-Pointb [151] 8 log2 (1/δ) + 1.14 log2 (10γ) > 2.9× 102 > 2.9× 103

Ladder Statesc [157] - 1.1× 102 4.3× 103

CISCc [158] - 7 34
RSa [149] 3 log2 (1/δ) + log2 (log10 (1/δ)) 1.1× 102 1.1× 103

RUSb [137, 152] 1.15 log2 (1/δ) 42 4.2× 102

DCPc [159] - 7 34
PQFb [153] log2 (1/δ) + log10 (log10 (1/δ)) 38 3.7× 102
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utilizing a set of additional rotations {|ψ0
i 〉, |ψ1

i 〉, |ψ2
i 〉} generated Clifford circuits

with |Hi〉’s as an input creates a larger, denser set of rotations partitioning the xz

plane. The work presented a systematic method of generating dense states about

a plane on the Bloch sphere. The rotations generated by the magic states are not

uniformly partitioned and although they can be combined to generate any angle,

there is no natural decomposition.

Landahl and Cesare modified the previous approach to complex distillation

techniques in two ways: first they addressed the non-uniform partitioning of the

yz plane by performing RZ

(
π/2k

)
rotations and also implemented a distillation

routine with a “top down” recursion [158]. In the “top down” recursion method,

additional RZ

(
π/2k−1

)
input states are needed if the RZ

(
π/2k

)
teleportation is

faulty and even less RZ

(
π/2k−2

)
states are required as they are applied upon con-

secutive failures of the previous two teleportation attempts which probabilistically

reduces the number of traditionally distilled states required for gate teleportation

because the teleportation must fail k− 3 times before a T |+〉 magic state must be

prepared [157, 158]. The technique used shortened Reed-Muller codes that require

input magic states of increasing quality to achieve the smallest rotations.

Duclos-Cianci and Poulin overcame the limits of using Reed-Muller codes by

the implementation of a modified 10-to-2 distillation circuit [140] to generate magic

states |Yk〉 = ZSH
∣∣A(2π/2k)

〉
for RY

(
π/2k

)
rotations. Conditional on the mea-

surement, the distillation procedure transforms two noisy |Yk〉 states into two

quadratically improved |Yk〉 states. The method requires Clifford operations and

the application of a parity measurement, which consumes 16 magic states of the

type |Y3〉 and 1 magic state of the type |Yk−1〉 [159]. The similarity of the distil-

lation for all k allows the procedure to work with magic states of a fixed initial

accuracy regardless of k. For an input accuracy of 1%, |0〉, a Clifford state, serves

as a sufficiently accurate input state. The authors find a slightly lower resource

overhead in terms of non-Clifford input states when substituting |0〉 for input |Yk〉
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when k > 8 than for k > 3. This method has comparable resource costs relative to

T gate only compilation methods for arbitrary rotations, but substantial savings

for rotations by angles 2π/2k.

4.3.3 Non-Deterministic Application of Rotations

The third set of methods can be thought as random-walk with correction tele-

portation techniques. Teleportation is attempted with ancillary states that are

measured to detect the success of the application of the gate, similar to the tele-

portation scheme shown in figure 4.1a. If the gate fails, recursive corrections, such

as those we have seen from complex distillation techniques, can be applied until

the desired gate is applied. An early example of this technique was shown by

Jones et al., which implemented programmable ancilla rotations (PARS) [150].

This method required non-Clifford ancillary states that were expensive to gener-

ate. Recent methods have eliminated the need for these difficult ancillary states

to non-deterministically achieve arbitrary rotations [151, 152]. The most recent

non-deterministic technique by Bacharov et al. utilizes the knowledge of previous

rotation attempts in a manner that probabilistically guarantees the termination

of the circuit after a finite set of gates [153].
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Chapter 5

Quantum error correction failure distributions: Compari-

son of coherent and stochastic error models

This chapter contains results from:

Jeff P. Barnes, Colin J. Trout, Dennis Lucarelli, and B. D. Clader, Phys. Rev.

A 95, 062338 and unpublished work performed during an internship at the Johns

Hopkins Applied Physics Laboratory.

Coherent errors are of interest due to their deleterious affect on quantum error

correction [37, 38]. They are errors that act as unitary evolutions on the compu-

tational quantum state. These errors cannot map to a stochastic error channel

because they require the coherent evolution of multiple interfering error path-

ways. At the physical level, incoherent approximations to coherent channels can

be simulated efficiently classically [34] but cannot capture the full dynamics of

the coherent evolution [113]. This is significant because threshold theorems for

general noise sources require a grasp on the error spread during computation [44].

The study of the extent of the influence of coherent errors on fault-tolerance is

ongoing [113, 161] partially due to the difficulty in simulating such error channels

for large systems.

An additional difficultly arises when attempting to determine fault-tolerance

experimentally for coherent errors. Typically, the figure of merit measured in ex-

periments is the average gate fidelity, which can be used to calculate an average

error rate for the process. However, difficulties can arise when relating the er-

ror rate to the Diamond distance; a metric useful for determining fault-tolerance

[37, 38, 162]. For incoherent errors, the average error rate and the Diamond dis-

tance are nearly equivalent allowing for fault-tolerant thresholds to be calculated

straightforwardly. For coherent errors, this is not the case because the average

error rate only loosely bounds the value of Diamond distance [37]. Therefore if
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one was given gate infidelities from processes containing coherent errors, the in-

ferred fault-tolerance threshold for the computation may range over several orders

of magnitude.

In this chapter, we explore the output statistics of certain failure metrics of

error detection/correction codes under the influence of stochastic Pauli and the

coherent pulse-area error channels. This chapter is different than the other sections

in that we performed a full density matrix simulations of the quantum codes for

the following analysis. Two codes were examined: the J4, 2, 2K error detection and

13-qubit rotated surface code. First, the error models are outlined. Then, the

failure metrics and results for the error detection code and 13-qubit surface code

are examined.

5.1 The Pulse Area Error Model

First, we introduce the pulse area noise model. This model emulates control errors

that arise from imperfect unitary gates during computation. A perfect unitary gate

is transformed into an imperfect gate by the following:

U = exp

(
− i
~

[~ωG]
π

2ω

)
→ U ′ = exp

(
− i
~

[~(1 + r)G]
π

2

)
(5.1)

where r ∈ [−1, 1] indicates the degree of under/over-rotation of the gate and is

sampled from a uniform distribution. An example of such a control error is a jitter

in the field amplitude during the application of a gate to a trapped atomic ion.

The time integrated field amplitude applied the trapped atomic ion will therefore

deviate from its target value resulting in a coherent over/under-rotation of the

applied gate where the imprecision angle is random.
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5.2 Failure Metrics for Quantum Error Correction

The following analysis relies on calculating the output wavefunctions overlap with

the the Hilbert space of correctable/detectable errors for the quantum codes. The

correctable spaces are built from codeword space and the correctable space relative

to the input wavefunction. Generally, the space build from the logical codewords

for a distance-3 code is:

SL = {|0〉L, |1〉L}
SL+1 = SL ∪ {Xi|0〉L, Xi|1〉L, Yj|0〉L, Yj|1〉L, Zk|0〉L, Zk|1〉L}

(5.2)

and the spaces built from the initial wavefunction is of the form:

Sψ = {|Ψ0〉}
Sψ+1 = Sψ ∪ {Xi|Ψ0〉, Yj|Ψ0〉, Zk|Ψ0〉}
Sψ+2 = Sψ+1 ∪ {XiZk|Ψ0〉} ∀ i 6= k

(5.3)

where ψ+2 is the full spaces of correctable errors for a distance-3 code. Note that

an L+2 space would span the whole Hilbert space for a distance-3 code. Therefore,

the codeword criteria is pessimistic because SL+1 does not include correctableXiZk

(i 6= k) errors. We are interested in the failure of the error correction routine. We

will provide six failure metrics for analysis:

P f
fail = 1−

∑
s∈Sf

|〈s|Ψ(t)〉|2

Pcode =
∑
s∈SL

|〈s|Ψ(t)〉|2

F2 = |〈Ψ(t)|Ψ0〉|2

(5.4)

where f is an element of {L+ 1, ψ + 1, ψ + 2}. Pcode is the projection onto the

codeword space and F is the fidelity of the process. It will be useful to consider

cases where the error rotates the code partially outside the codespace. This is an

incorrectable error. The metric:

F2/Pcode =
|〈Ψ0|Ψ(t)〉|2

|〈0L|Ψ(t)〉|2 + |〈1L|Ψ(t)〉|2
(5.5)
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normalizes the part of the output wavefunction that remains in the codespace.

If this value is < 1, then the Pauli correction used in standard error correction

will never fix the state. We will discuss the error spaces of the quantum error

correcting codes in detail below.

5.3 The J4, 2, 2K Error Detection Code

The four-qubit code is a quantum error detection code where the logical subspace

is defined by the stabilizer generators:

S = 〈XXXX, ZZZZ〉 (5.6)

This leaves two quantum degrees of freedom that are used to define two logical

qubits with logical operators exhibiting appropriate commutation relations with

respect to the stabilizer group and one another:

X̄a = XXII X̄b = XIIX
Z̄a = ZIIZ Z̄b = ZZII

(5.7)

Note that only one of the qubits can be prepared fault-tolerantly and will hold

information and the second qubit will be an extra degree of freedom or “gauge

qubit”. This is sufficient information to construct the logical states. A quick

inspection of the stabilizer group and one may notice that a state stabilized by

this group is a four-qubit cat state which is our effective |0〉L state. A basis for

the logical subspace is the following:

|0, 0〉L = 1√
2

(|0000〉+ |1111〉)

|1, 0〉L = 1√
2

(|1100〉+ |0011〉)

|0, 1〉L = 1√
2

(|1001〉+ |0110〉)

|1, 1〉L = 1√
2

(|0101〉+ |1010〉)

(5.8)

where the two values separated by commas refer to the state of the first (logical)

and second (gauge) encoded qubits, respectively. We will choose to make the first
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Figure 5.1: Fault-tolerant preparation of the |0, 0〉1L logical state. In this
scheme, only the first logical qubit (qubit a) is fault-tolerantly prepared.

logical qubit fault-tolerant with the encoding circuit shown in figure 5.1. Note that

no single X error scheduled at any time in the circuit will propagate malignantly

from the perspective of logical qubit a and propagating Z errors act upon pairs

of qubits in the |0, 0〉L state which does nothing to the encoded state giving us a

fault tolerant encoding scheme.

The four-qubit code is a distance-2 code so it cannot correct errors but we

can detect when an error occurs. We can see this clearly both my examination

of the logical operations (eqn. 5.7) and the logical states (eqn. 5.8) of the four-

qubit code. The action of single qubit X errors may scramble the information just

enough to lose distinction between the X̄1 and X̄2 operators or, equivalently, lose

distinction between two logical basis states.

5.3.1 Success Criteria for the J4, 2, 2K Error Detection Code

We will now discuss the success criteria for an error detection code. Because the

role of the code is to detect errors, a failure is a case where errors occur that were

not detected by the code. This perspective adapts itself well to a failure criteria

where we compute the probabilities of falling into an undetectable error subspace.

For the Steane Code two subspaces of interest would be:

SL = {|0〉L, |1〉L}

SL+1 =
{
P |Φ〉

∣∣∣|Φ〉 ∈ SL, P ∈ Pn s.t. |P | ≤ 1
} (5.9)

where Pn denotes the Pauli group of size n and |P | is the weight of the operator, i.e.

number of non-identity elements composing the operator. This is a common metric

used for CHP-like simulations of quantum codes. For wavefunction simulations,
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the codespace in SL is replaced by an initial wavefunction |Ψ0〉 giving the following

criteria:

Sψ = {|Ψ0〉}

Sψ+1 =
{
P |Ψ0〉

∣∣∣P ∈ Pn s.t. |P | ≤ 1
} (5.10)

for partitioning of the error space. Error subspace degeneracy is relevant for the

J4, 2, 2K code. We therefore deviate from the natural partitioning of the space

shown above in equations 5.9 and 5.10 for assessment of the J4, 2, 2K error detec-

tion routine. The four-qubit detection code is small enough (24 = 16 degrees of

freedom) that we can illustrate this in full detail. Our logical space will consist of

the qubit that we have chosen to be fault tolerant:

SL =

{
|0, 0〉L =

1√
2

(|0000〉+ |1111〉) , |1, 0〉L =
1√
2

(|1100〉+ |0011〉)
}

(5.11)

where, naturally, |SL| = 2. Through symmetry of the codewords, there is a equiv-

alence between the states generated by the set of errors {X0, X2} and {X1, X3}.

Furthermore, the set of Z errors is fully degenerate: that is, a Z error acting on

any qubit results in the same final state. A comprehensive list of the detectable

error states is:

X0|0, 0〉L =
1√
2

(|0001〉+ |1110〉) X0|1, 0〉L =
1√
2

(|1101〉+ |0010〉)

X2|0, 0〉L =
1√
2

(|0100〉+ |1011〉) X2|1, 0〉L =
1√
2

(|1000〉+ |0111〉)

Z0|0, 0〉L =
1√
2

(|0000〉 − |1111〉) Z0|1, 0〉L =
1√
2

(|1100〉 − |0011〉)

X0Z0|0, 0〉L =
1√
2

(|0001〉 − |1110〉) X0Z0|1, 0〉L =
1√
2

(|1101〉 − |0010〉)

X2Z0|0, 0〉L =
1√
2

(|0100〉 − |1011〉) X2Z0|1, 0〉L =
1√
2

(|1000〉 − |0111〉)

(5.12)

leaving only 4 states outside of the detectable error space. A quick observation

shows that the remaining states are those where we have flipped the gauge degree
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(a) Code Capacity Pauli Error Model
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(b) Pulse Area Error Model

Figure 5.2: Fault-tolerant measurement of the Z (X) stabilizer in the J4, 2, 2K error detection
code under the influence of the code capacity Pauli (pulse area) noise model in (a) ((b)).

of freedom. From the perspective of the fault-tolerant qubit, this is equivalent to an

error but it is not detected because the logical operator X̄b = X0X3 commutes with

the stabilizers. We can now build up the four malignant states as the following:

X̄b|0, 0〉L =
1√
2

(|1001〉+ |0110〉) X̄b|1, 0〉L =
1√
2

(|0101〉+ |1010〉)

X̄bZ0|0, 0〉L =
1√
2

(|1001〉 − |0110〉) X̄bZ0|1, 0〉L =
1√
2

(|0101〉 − |1010〉)

(5.13)

where our failure is measured by the overlap of the wavefunction, after an error

detection round, with these four undetectable error states. We will follow the

previous convention of referring to the failure probabilities as PL+1
fail and Pψ+1

fail

but with the knowledge that we are considering the aforementioned degenerate

subspaces, respectively. Also, note that since there is no correction step in the

error detection circuit, the quantities Pcode and F2 provide us only the information

of whether our noise model sampled an error configuration or not which is not

useful to us.
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(a) Pauli error model
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(b) Pulse area error model

Figure 5.3: Failure criteria distributions for the J4, 2, 2K error detection code under the influence
of the Pauli (a) and pulse area (b) noise models. Each distribution contains 3 × 106 samples
per error rate. (a) Error rates of p = 0.0001, 0.00025, 0.0005, 0.00075 0.001, 0.002, 0.004, 0.006,
0.008, 0.01, 0.02, 0.03 were run. (b) Noise strengths of σ = 0.0025, 0.005, 0.0075, 0.01, 0.02,
0.03, 0.04, 0.05 were simulated.

5.3.2 Simulation of the J4, 2, 2K Error Detection Code

We implemented a fault-tolerant syndrome extraction routine for error detection

implementing measurements shown in figure 5.2. Fault-tolerance required repeated

stabilizer measurements until the syndrome in consecutive steps were in agreement

and the use of Shor ancilla [1]. At the beginning of each run, a random vector

of the form α|0〉L + β|1〉L (where α, β ∈ C) is chosen as the initial state and, for

this code, a four-qubit cat state is perfectly prepared (no ancilla verification or

decoding required). For simulations with the Pauli error model, a random Pauli

error was inserted at each of the data qubits (figure 5.2a) before the measurement

of each stabilizer and all operations on the ancilla are perfect. In the simulations

under the influence of the pulse area error model, a sampled over/under-rotation

is applied to all data-ancilla entangling gates and pre-measurement gates applied

to the cat states (figure 5.2b). Histograms of the failure criteria (section 5.2) for

different error rates/strengths were accumulated and are shown below.
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The Pauli Error Model

A circuit implementing fault-tolerant error detection was run 3 × 106 times for

each value of the error rate, p: 0.0001, 0.00025, 0.0005, 0.00075 0.001, 0.002,

0.004, 0.006, 0.008, 0.01, 0.02, and 0.03. The histograms generated for both failure

criteria are shown in Fig. 5.3a. The P
(L+1)
fail (p) criteria is binomially distributed

(float64 accuracy). By plotting the fraction of trials with P
(L+1)
fail (p) = 1, an error

detection pseudothreshold of pth ≈ 0.003 was observed (Figure 5.4). Note that the

detection pseudothreshold does not represent the probability that the data stays

within the logical codeword space, it represents the success of the error detection

circuit: the probability that errors have occurred on the data qubits that were not

detected by the syndrome measurement.

We observe a spread in the failure metric P
(ψ+1)
fail > 10−8 similar to that of the

Steane code [133] but with a smaller tail in the distribution relative to the Steane

results. We claim that the tighter distribution of P
(ψ+1)
fail criteria is a consequence

of the degeneracy of the error space of the code. Recall that the error detection

code takes no action to return the wavefunction back to the logical space. One

may then expect that the action of the error model should allow the uncorrected

wavefunction to freely sample a larger span of Hilbert space relative to a code

that implements active error correction translating into a larger degree of varia-

tion in the computed overlap of the output state with the error subspaces; yet,

the converse is true. This appears to be a consequence of the degenerate structure

of the error subspace Sψ+1 where Pauli errors on different data qubits tend to

transform the codewords in an equivalent manner. An intuitive interpretation of

this phenomena can be formulated in terms of diffusion of the complex vector rep-

resenting the wavefunction throughout Hilbert space. Given some initial position

of the complex vector within the codeword space, the action of the error model

serves to drive the vector outside of the regime of the codeword space. Sometimes,
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the vector is driven outside of the codeword space but into the space (Sψ+1) (a

successful error detection), but other times it does not giving a failure in the error

detection routine. For the Steane code, all single-qubit Pauli errors have a distinct

action on the codeword qubits; each of which can be viewed as a distinct diffusion

pathway away from the codespace. However, the degenerate space of the J4, 2, 2K

codespace under the action of single-qubit Pauli errors decreases the number of

diffusion pathways away from the codespace; a funneling behavior of sorts. It is

therefore the symmetry of the codeword space under the influence of errors that

acts to localize the distribution of output wavefunctions (for the Pauli error model)

relative to a code devoid of such symmetries. We will provide further evidence of

this claim in section 5.5.2 and discount this behavior as simply a consequence of

the smaller Hilbert space of the J4, 2, 2K code.

An unexpected result of the four-qubit detection code is that the metric P
(ψ+1)
fail

is binomially distributed with a sharp peak at P
(ψ+1)
fail ≤ 10−16 similar to the

behavior of the P(L+1)
fail = 1 peak. This is a consequence of the small size of the

undetectable error subspace (the complement of S(ψ+1)) relative to the detectable

error subspace, S(ψ+1). Recall from section 5.3.1 that the overlap of only four

states (equation 5.13) contribute to the P
(ψ+1)
fail . The large span of the detectable

error space relative to the undetectable space results in an “on-off” success criteria

of the code similar to the failure criteria for P
(L+1)
fail which fails only if the output

state is a non-stabilizer state. This claim is supported by then overlap of the

thresholds generated from the failure metrics SL+1 and Sψ+1. One may view this

case as approaching the limit where |S(ψ+1)| → |Hn| where Hn is the total Hilbert

space of the data qubits.

The Pulse Area Noise Model

For the assessment of the four-qubit error detection code under the influence of

pulse area errors, 3×106 simulations of the error detection routine were performed
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Figure 5.4: Error detection thresholds for the J4, 2, 2K error detection code for Pauli (left) and

pulse area (right) errors. A logical failure was counted when PL+1
fail = 1 or Pψ+1

fail > 10−6 for the
respective curves. The red line is the Pfail = p curve.

at each error strength, σ: 0.0025, 0.005, 0.0075, 0.01, 0.02, 0.03, 0.04, and 0.05.

The two failure metric distributions are shown in figure 5.3b. The distributions of

the failure criteria are again quite broad, particularly at high error rates. Many of

the trials appear to follow a log-normal distribution with some tailing, especially

at higher error strengths, that deviates from such a curve. Setting a P
(ψ+1)
fail > 10−6

failure criteria allowed for a pseudothreshold to be generated for the four-qubit

detection code under the influence of the pulse area error model. A threshold

value of σth ≈ 0.2 was obtained. Again, a more sigmoidal shape to the pulse-area

threshold was observed relative to the Pauli error model.

An interesting aspect of the histograms is the consistency between the two

failure criteria; up to some discrepancies in the tailing behavior near the floating

point precision of the calculation. Recall that the histograms for the Steane code

showed distinctly different properties between the two types of failure criteria,

P
(L+1)
fail and P

(ψ+1)
fail /P

(ψ+2)
fail , including peak center location, distribution breadth,

and even general distribution shape for certain cases. It is shown later that this

behavior is not a consequence of the peculiarities of the J4, 2, 2K code but, again,

attributed to the codeword/space symmetries. It is also important to note that

this consistency between the failure metrics occurs at large sample sizes (a large

sampling of initial logical states). The output wavefunction of the error detection
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routine has the ability to report quite different P
(L+1)
fail and P

(ψ+1)
fail /P

(ψ+2)
fail with a

difference up to an order of magnitude. Why this consistency in failure criteria for

pulse-area errors occurs in codes with degenerate error spaces but not for a code

such as the Steane code is still an open question.

5.4 Concatenation of the J4, 2, 2K Code

Now, we will discuss a fault-tolerant concatenation protocol for encoding the four-

qubit code error detection code. The goal is to have the logical state at the higher

level of encoding to be of the following form:

|0, 0; 0, 0〉2L =
1√
2

(
(|0, 0〉1L)⊗4 + (|1, 1〉1L)⊗4

)
(5.14)

where the superscript on the kets denotes the level of encoding. The first and

second labels, separated by a semicolon, in |0, 0; 0, 0〉2L refer to the collective state of

fault-tolerant and gauge qubits of the lower level code, respectively. This labeling

is made clearer with an example using the logical operators below. To show the

full logical state, we will use an abbreviated version of the level-1 encoded states:

|0, 0〉L = 1√
2

(|0̄〉+ |1̄5〉)

|1, 0〉L = 1√
2

(|1̄2〉+ |3̄〉)

|0, 1〉L = 1√
2

(|9̄〉+ |6̄〉)

|1, 1〉L = 1√
2

(|5̄〉+ |1̄0〉)

(5.15)

where the values within the kets are the integer representations of the binary

strings that represent the original basis states (equation 5.8). The second level

logical state is therefore:

|0, 0; 0, 0〉2L =
1
√

2
5 [(|0̄ 0̄ 0̄ 0̄〉+ |0̄ 0̄ 0̄ 1̄5〉+ |0̄ 0̄ 1̄5 0̄〉+ ...+ |1̄5 1̄5 1̄5 1̄5〉)

+ (|5̄ 5̄ 5̄ 5̄〉+ |5̄ 5̄ 5̄ 1̄0〉+ |5̄ 5̄ 1̄0 5̄〉+ ...+ |1̄0 1̄0 1̄0 1̄0〉)]
(5.16)

the sequences in the logical states can be viewed as the group of all length 4 binary

75



strings where we map 0→ 0̄ and 1→ 1̄5 for the term in the first set of parentheses

and define a similar map for the states 5̄ and 1̄0 for the states in the second set of

parentheses.

We can define the stabilizer group and corresponding logical operators recur-

sively. The stabilizer generators for the level two code are the following weight 16

operators:

S2 =
〈
S1
X ⊗ Ī ⊗ Ī ⊗ Ī , Ī ⊗ S1

X ⊗ Ī ⊗ Ī , Ī ⊗ Ī ⊗ S1
X ⊗ Ī , Ī ⊗ Ī ⊗ Ī ⊗ S1

X ,

S1
Z ⊗ Ī ⊗ Ī ⊗ Ī , Ī ⊗ S1

Z ⊗ Ī ⊗ Ī , Ī ⊗ Ī ⊗ S1
Z ⊗ Ī , Ī ⊗ Ī ⊗ Ī ⊗ S1

Z

〉 (5.17)

where Ī = I⊗4 and the X and Z stabilizers for the level-1 encoding are depicted

above as S1
X and S1

Z , respectively. Note that we have increased our degrees of

freedom and therefore need a larger number of logical operators that act upon the

space. This code incorporates 16 qubits and contains 8 stabilizers, leaving 8 logical

degrees of freedom that can be controlled with logical operators. The total group

of logical operators, written in a suggestive manner, is shown in figure 5.5. The

first four operators are written in a recursive form shown by the labels X̄2
A,a where

capital A denotes the pattern of the operator (a→ X⊗X⊗Ī⊗Ī , Z⊗Ī⊗Ī⊗Z) and

lowercase a dictates the type of operator place within that pattern. For instance,

X̄2
A,b = X̄1

b ⊗ X̄1
b ⊗ Ī ⊗ Ī using the b-type logical operators in the pattern of the

a-type operators in equation 5.7. Note that only the level-1 logical qubit a is

fault-tolerant in our procedure. This means that only operators that incorporate

a-type level-1 logical operators are fault tolerant. The fault tolerant operators are

shown above the dashed line in figure 5.5. With these operators, we can obtain

any of the logical basis states. For instance, we can obtain the state |1, 0; 0, 1〉 by

the application of X̄2
A,a and X̄2

B,b to the state |0, 0; 0, 0〉2L giving:

|1, 0; 0, 1〉 =
1√
2

(
|1, 1〉1L ⊗ |1, 0〉

1
L ⊗ |0, 0〉

1
L ⊗ |0, 1〉

1
L

+|0, 0〉1L ⊗ |0, 1〉
1
L ⊗ |1, 1〉

1
L ⊗ |1, 0〉

1
L

) (5.18)
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X̄2
A,a = X̄1

a ⊗ X̄1
a ⊗ Ī ⊗ Ī X̄2

B,a = X̄1
a ⊗ Ī ⊗ Ī ⊗ X̄1

a

Z̄2
A,a = Z̄1

a ⊗ Ī ⊗ Ī ⊗ Z̄1
a Z̄2

B,a = Z̄1
a ⊗ Z̄1

a ⊗ Ī ⊗ Ī

X̄2
C = X̄1

a ⊗ Ī ⊗ Ī ⊗ Ī X̄2
D = Ī ⊗ Ī ⊗ X̄1

a ⊗ Ī

Z̄2
C = Z̄1

a ⊗ Ī ⊗ Ī ⊗ Ī Z̄2
D = Ī ⊗ Ī ⊗ Z̄1

a ⊗ Ī

X̄2
A,b = X̄1

b ⊗ X̄1
b ⊗ Ī ⊗ Ī X̄2

B,b = X̄1
b ⊗ Ī ⊗ Ī ⊗ X̄1

b

Z̄2
A,b = Z̄1

b ⊗ Ī ⊗ Ī ⊗ Z̄1
b Z̄2

B,b = Z̄1
b ⊗ Z̄1

b ⊗ Ī ⊗ Ī

X̄2
C = X̄1

b ⊗ Ī ⊗ Ī ⊗ Ī X̄2
D = Ī ⊗ Ī ⊗ X̄1

b ⊗ Ī

Z̄2
C = Z̄1

b ⊗ Ī ⊗ Ī ⊗ Ī Z̄2
D = Ī ⊗ Ī ⊗ Z̄1

b ⊗ Ī

(5.19)

Figure 5.5: Logical operators for the second level of encoding for the four-
qubit error detection code. The four logical qubits with double subscript
labels are defined recursively from the forms of the level-1 logical operators
(figure 5.7). Note that only the qubits above the dashed line have been
prepared fault-tolerantly.

and one can see that the product state of the fault-tolerant qubits of the level-1

code mimic that of the |1, 0〉1L (equation 5.8) state (first label before the semicolon)

and similarly for the gauge qubits which are represented by the second label.

We now have a 16-qubit error detection code. A quick inspection of equa-

tion 5.16 shows that the minimum distance between codewords is still 2 as we

cannot reliably decode two-qubit errors within a given code block. Therefore,

the concatenated four-qubit code is a J16, 8, 2K error detection code where only

four logical qubits are fault-tolerant. However, we have gained the ability to de-

tect some multi-qubit error configurations across separate code blocks through the

concatenation so our space of detectable errors has grown relative to the level-1

encoding.

5.4.1 Fault-Tolerant Level-2 Encoding

We now outline a fault-tolerant scheme for encoding a level-2 four-qubit error de-

tection code. To move foreward, we must note that the J4, 2, 2K is a self-dual CSS

code; allowing for transversal Hadamard and CNOT gates. We show how to gen-
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|0〉

(a) Preparation of 1√
2

(
|0, 0〉1L + |1, 1〉1L

)

|0, 0〉1L + |1, 1〉1L / • • •
|0, 0〉1L /

|0, 0〉1L /

|0, 0〉1L /

(b) Fault-tolerant preparation of |0, 0〉2L

Figure 5.6: Machinery required for the fault-tolerantly encode a second level error detection code.
(a) First, a plus-like state must be produced by a transversal Hadamard and measurement-based

correction. (b) Transversal CNOTs can then be used to encode the |0, 0〉2L state (eqn. 5.14) using

the plus-like state and three |0, 0〉1L states.

erate a level-2 fault-tolerant encoding circuit using the aforementioned transversal

gates and measurement below.

There are two parts to the encoding circuit: generating a plus-like logical

state and entangling the plus-like state with ancillary states to generate |0, 0〉2L

which must be performed fault-tolerantly. The plus-like state is of the form:

1/
√

2(|0, 0〉1L + |1, 1〉1L). We will start with the creation of the plus-like logical

state. I’ve referred to this as a “plus-like” state because it would be misleading to

refer to it as the |+,+〉1L state. This is illustrated by the action of the transversal

Hadamard gate on the |0, 0〉1L:

|+,+〉1L = H⊗4|0, 0〉1L =
1

2

(
|0, 0〉1L + |0, 1〉1L + |1, 0〉1L + |1, 1〉1L

)
(5.20)

which shows the true plus state of the encoded four-qubit code. However, given

|+,+〉1L we can use measurement to probabilistically project to the appropriate

subspace to obtain the plus-like state. Specifically, the operator X̄1
aX̄

1
b = IXIX

allows us to discriminate between the even and odd parity states in equation

5.20. So, to generate the state 1/
√

2(|0, 0〉1L + |1, 1〉1L) we simply encode four

physical qubits into the |0, 0〉1L state (figure 5.1), apply a transversal Hadamard

gate to this state, and then apply a measurement-based correction if M̂X̄1
aX̄

1
b

= 1.

This measurement outcome requires us to flip either the gauge or logical qubit
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to get the desired state. This process is illustrated in figure 5.6a. The second

step is to entangle the plus-like state with three |0, 0〉1L states using an encoding

circuit analogous to the |0, 0〉1L state preparation circuit except all gates are now

transversal in the level-2 encoding circuit (figure 5.6b). We will now show one

step of the entanglement circuit: the first CNOT operation. At the beginning of

the circuit, the two qubit logical space looks like the following:

1√
2

(
|0, 0〉1L + |1, 1〉1L

)
⊗ |0, 0〉1L =

1
√

2
3 (|0̄〉+ |1̄5〉+ |5̄〉+ |1̄0〉)⊗ (|0̄〉+ |1̄5〉) (5.21)

The simplest way to understand the action of the transversal CNOT is to define

it’s mapping of the basis states of the two qubit logical space. The mapping is the

following:

CNOT(1, 2) [|̄i〉 ⊗ |j̄〉] =

 |̄i〉 ⊗ |j̄〉 if ī = 0̄

|̄i〉 ⊗ |j̄ ⊕ 1̄5〉 if ī 6= 0̄
(5.22)

which, regarding the state in equation 5.21, shows that the action of the transversal

NOT simply maps the basis states in the following way: |0̄〉 ↔ |1̄5〉 and |5̄〉 ↔ |1̄0〉.
Applying this map to the initial state two logical qubit state, we get:

CNOT(1, 2)

[
1√
2

(
|0, 0〉1L + |1, 1〉1L

)
⊗ |0, 0〉1L

]
=

1
√

2
3 (|0̄ 0̄〉+ |0̄ 1̄5〉+ |1̄5 1̄5〉+ |1̄5 0̄〉

+|5̄ 5̄〉+ |5̄ 1̄0〉+ |1̄0 1̄0〉+ |1̄0 5̄〉)
(5.23)

from this, it should be fairly clear how we are able to generate the state |0, 0〉2L

shown in equation 5.16 . Because we generated states labeled by all permutations

of pairs of {0̄, 1̄5} and {5̄, 1̄0}, any additional |0, 0〉1L state transversally entangled

(CNOT) with the first logical qubit will generate states represented by labels of

all triples, quadruples, ect. of {0̄, 1̄5} and {5̄, 1̄0} which is exactly what we need

in equation 5.16.

Now, let us recap the whole process. First, one fault-tolerantly prepares four

|0, 0〉1L states. A transversal Hadamard is applied to one of the logical qubits and

correction is applied fault-tolerantly based on the measurement outcome of X̄1
aX̄

1
b
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|0〉

|0〉

|0〉
Figure 5.7: Total circuit encoding the level-2 error detection code. The dashed box indicates
a fault-tolerant measurement (which implies multiple measurements) of the gauge operator
which will be used for correction.

generating a plus-like state. The plus-like state and the other three |0, 0〉1L states

are run through an encoding circuit similar to a transversal cat state preparation

resulting in a level-2 encoded four-qubit error detecting code. The full encoding

circuit is show in figure 5.7.

5.5 The Tilted 13-Qubit Surface Code

The 13-qubit surface code is shown in figure 5.8. It has the same stabilizer gen-

erators and code space as the 17-qubit rotate surface code (shown in figure 3.1a).

It differs from the 17-qubit code in that it only uses 4 ancilla qubits to measure
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Figure 5.8: The rotated-13 (distance-3) surface code. Labels are consistent
with figures 2.4 and 3.1a.

the stabilizers. Therefore, each ancilla qubit is used to measure two stabilizers:

one weight-4 stabilizer and one weight-2 stabilizer. The larger depth circuit for

measuring the stabilizer generators results in a lower pseudothreshold than the

17-qubit code for circuit-level depolarizing noise [2].

5.5.1 The Space Degeneracy of the Tilted 13-Qubit Surface Code

Now to discuss the degeneracy of the spaces S(L+1), S(ψ+1), and S(ψ+2) for the

13-qubit surface code. First, the logical state is generated utilizing the H(C⊥2 )

parity-check matrix constructing the X stabilizers of the surface code resulting in

the basis states:

|0〉L =
1
√

2
4

(
|000000000〉+ |110110000〉+ |011000000〉+ |101110000〉+
|000000110〉+ |110110110〉+ |011000110〉+ |101110110〉+
|000011011〉+ |110101011〉+ |011011011〉+ |101101011〉+
|000011101〉+ |110101101〉+ |011011101〉+ |101101101〉

)
|1〉L = X⊗9|0〉L

(5.24)

which we can again use to construct our logical code space as in equation 5.9. Note

that state |1〉L is the |0〉L state under the action of the bitwise-NOT on every binary

string within it’s sum. Due to this relation, there is an equivalence in the action

of single-qubit errors to both |0〉L and |1〉L with respect to the degeneracy of the

single-error spaces. For single-qubit errors, there is equivalence of the action of X

errors, X1|0〉L = X2|0〉L and X6|0〉L = X7|0〉L, and also degeneracies for Z errors,

Z0|0〉L = Z3|0〉L and Z5|0〉L = Z8|0〉L. Y errors are completely non-degenerate.
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We can therefore construct the failure criteria pertaining to the logical codeword

space in the following manner:

SL = {|0〉L, |1〉L}
SL+1 = SL ∪ {Xi|0〉L, Xi|1〉L, Yj|0〉L, Yj|1〉L, Zk|0〉L, Zk|1〉L}

(5.25)

where the indices i, j, k run over all data qubit indices except for the cases where

i = 2, 7 and k = 3, 8. Similarly, for the criteria more natural for the purpose of

wavefunction simulations the spaces can be constructed like so:

Sψ = {|Ψ0〉}
Sψ+1 = Sψ ∪ {Xi|Ψ0〉, Yj|Ψ0〉, Zk|Ψ0〉}
Sψ+2 = Sψ ∪ {Xi|Ψ0〉, Zk|Ψ0〉, XiZk|Ψ0〉} s.t. i 6= 2, 7; k 6= 3, 8

(5.26)

where, again, the indices run over all qubits except for special cases. The as-

sessment of the surface code will incorporate computing the overlap of output

wavefunctions with the aforementioned correctable error spaces. Because the sur-

face code is an error correcting code, the success criteria Pcode and fidelity (F2)

will be of interest as well.

5.5.2 Simulation of the 13-Qubit Tilted Surface Code

There is some freedom to how one can schedule the syndrome extraction routine.

Because of this, nine variations in the schedule of stabilizer measurement have

been simulated, labeled A-D. These routines (A-D) are “single-shot” detection

and correction cycles where three rounds of stabilizer measurement are performed

and decoding/correction is performed once which are shown schematically in figure

5.9 under the appropriate labels. The first three of these are different permutations

of X and Z stabilizer measurement (labeled MX and MZ) and error correction, CX

and CZ . Note that MX (MZ) denotes the measurement of all X (Z) stabilizers

at the given time step. Schedule D is unique in that the circuit is scheduled

according to the ancilla measured and not the stabilizer type. Equivalently, this
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A.) MX MX MX MZ MZ MZ CZ CX

B.) MX MX MX CZ MZ MZ MZ CX

MX MZ MX MZ MX MZ CZ CXC.)

D.) MX MZMX MZ

a=9

MX MZMX MZ

a=10

MX MZMX MZ

a=11

MX MZMX MZ

a=12

(x3)

CZ CX

Figure 5.9: Stabilizer measurement schedules studied. The symbols M and C denote stabi-
lizer measurement and error correction, respectively, of the type indicated by their subscripts.
Schedules A-D were implemented in “single-shot” error correction routines which were used to
generate the data in figures 5.10, 5.14, 5.12, and 5.15.

can be viewed as measurement scheduled by the four quadrants of the surface

code with quadrant scheduling dictated by the ancillary qubit labels. A variety

of syndrome extraction routines were incorporated to gain insight into the role of

the circuit schedule on the effect of the error model, particularly in the presence

of coherent errors. For simulation, a logical input state is generated, stabilizer

measurement is performed with perfect ancilla preparation, and the failure metrics

of the error-corrected state are calculated.

The Pauli Error Model

The “single-shot” error correction routines were each run 1×106 times at each error

rate p = 0.000001, 0.0000025, 0.000005, 0.0000075, 0.00001, 0.000025, 0.00005,

0.000075, 0.0001, 0.0002, 0.0004, 0.0006, 0.0008. The histograms generated from

the surface code simulations, in figure 5.10, contain the same properties as the

four-qubit error detection code in figure 5.3. Because this circuit implements error

correction, the tail in the distributions of P
(ψ+1)
fail /P

(ψ+2)
fail > 10−8 for the surface are

smaller than those of four-qubit error detection code and the Steane code. This

smaller spread in criteria is due to the aforementioned “funneling” behavior of

the degenerate space plus the correction operations that drive the wavefunction

to specific regimes of the Hilbert space.

Also note that there is no noticeable discrepancy between the distributions of

P
(ψ+1)
fail and P

(ψ+2)
fail which is due to the fact that the surface code is a CSS code,

i.e. a code that partitions the subspaces stabilized by the X and Z stabilizers
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(d) Schedule B - Pulse area error model.
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(f) Schedule C - Pulse area error model.
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(g) Schedule D - Pauli error model.
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(h) Schedule D - Pulse area error model.

Figure 5.10: Histograms of the failure criteria for the four “single shot” error correction schedules.
1 × 106 samples were accumulated per error rate. Pauli error rates: p = 0.000001, 0.0000025,
0.000005, 0.0000075, 0.00001, 0.000025, 0.00005, 0.000075, 0.0001, 0.0002, 0.0004, 0.0006, 0.0008.
Pulse area error strengths: σ = 0.0025, 0.005, 0.0075, 0.01, 0.02, 0.03, 0.04, 0.05.
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Figure 5.11: Threshold obtained when only the |0〉L state is generated as
the initial state of the quantum circuit simulation using Schedule C. The
threshold of ≈ 4 × 10−5 is equivalent to a reported threshold value of ≈
1.2× 10−4 in the language of [2].

independently, and Sψ+1 ⊂ Sψ+2. There are no noticeable discrepancies in the

histograms between the four different error correction schedules when correcting

Pauli errors (figure 5.10). Figure 5.14 shows the deviation between the two types

of failure criteria, P
(L+1)
fail and P

(ψ+1)
fail /P

(ψ+2)
fail on a per-run basis. The distributions

have a similar profile for all circuit schedules (A-D) for the Pauli error model.

It also clearly shows that the success criteria P
(L+1)
fail has more of a tendency to

overestimate the failure value of the wavefunction simulation relative to the wave-

function criteria in the cases when the two types of failure criteria disagree. Note,

however, that the codeword criterion records a higher threshold relative to the

wavefunction failure metric (Figure 5.12) indicating that this overestimate occurs

in a statistically small number of cases relative to the entire sample.

A pseudothreshold of ≈ 3 × 105 was observed for all four “single-shot” error

detection routines by plotting the logical error rate versus the physical error rate.

All thresholds for the surface code are shown in figure 5.12. Note that our re-

ported pseudothresholds appear to be below the value reported in [2] of 3× 10−4.

The simulations in [2] implement |0〉L as in input wavefunction always while the

simulations in figure 5.12 randomly sample a vector in the logical codeword space

1/
√

2 (α|0〉L + β|1〉L) which is taken as the input wavefunction in the simulations.

Also, there is a discrepancy between the labeling of the error rates between this

study and the study in [2] where our recorded values of p is equivalent to p/3 in [2].
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Figure 5.11 provides the threshold (schedule C) for all three failure criteria for sim-

ulations where the initial state was always initialized in |0〉L. The pseudothreshold

obtained using the P
(L+1)
fail criteria resulted in value of ≈ 4 × 10−5 which, in the

language of [2], is reported as pth ≈ 1.2× 10−4; a comparable threshold value. As

observed for the Steane code, there is a deviation between the thresholds obtained

between the two types of failure metrics: P
(L+1)
fail and P

(ψ+1)
fail /P

(ψ+2)
fail . However, the

deviation in thresholds for the Steane code spanned over an order of magnitude

while the surface code deviations are smaller.

For completeness, the fidelity squared, Pcode, and F2/Pcode criteria for all of

the “single-shot” error correction routines are shown in figure 5.15. The overlap

with the logical basis states, Pcode, is binomially distributed (up to floating point

precision) between two values: 0 and 1. The fidelity (F2) is binomially distributed

as well but a distribution of values at 0 ≤ F2 < 0.999 is observed while F2 = 1

exhibits a sharp peak. The distribution in the regime 0 < F2 < 0.999 can be

attributed to cases where either three-qubit errors have occurred or where a two-

qubit error was incorrectly decoded and corrected leading to a logical error. In

these cases, there is a swapping between codewords in the |0〉L and |1〉L states

in |Ψ (t)〉 resulting in a contribution of α ∗ β cross-terms in the calculations of

F2 which generates a distribution of fidelity values because α and β values are

drawn from a random distribution. The metric Pcode/F2 corroborates this claim,

recording values < 1.0, indicating that the output wavefunctions of the simulations

are rotated versions (in those cases there is an angle swap α↔ β) of |Ψ (0)〉 within

the codeword space.

5.5.3 The Pulse Area Model

Surface code simulations using schedules A-D performed at the following error

strengths, σ: 0.0025, 0.005, 0.0075, 0.01, 0.02, 0.03, 0.04, 0.05 (1 × 106 samples

per error rate). Broad distributions for the failure criteria are again observed as
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(f) Schedule C - Pulse area error model.
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(g) Schedule D - Pauli error model.
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(h) Schedule D - Pulse area error model.

Figure 5.12: Pseudothresholds for the “single shot” error correction schedules. Pauli error rates:
p = 0.000001, 0.0000025, 0.000005, 0.0000075, 0.00001, 0.000025, 0.00005, 0.000075, 0.0001,
0.0002, 0.0004, 0.0006, 0.0008. Pulse area error strengths: σ = 0.0025, 0.005, 0.0075, 0.01, 0.02,
0.03, 0.04, 0.05.
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(b) The effect of measurement on the coherent errors

Figure 5.13: a.) Visualization of the action of both the Pauli and pulse area model
on the input wavefunction. (left) One may use a set of planes the represent the Pauli
operator distance away from applying a logical operator to the initial state defined
by P1|Ψ0〉(=Sψ+1), P1|Ψ0〉(⊂ Sψ+1), and PL|Ψ0〉 (logical failure). The action a Pauli
error (middle) serves as a direct map between the states defined by the aforementioned
planes. Coherent errors (right) however do not necessarily map directly between planes
but can generate a superposition between the states contained within two separate
planes, which can be visualized as a rotation out of the plane of the initial state. b.) The
action of measurement after application of the coherent error serves as a projector on
any element of the codewords that is in the aforementioned superposition state between
the two planes. Sampling of the output states will provide the relative amplitudes of
superposition states dependent on the strength of coherent error represented by the
angle of rotation outside of a given plane in our visualization, which can serve to explain
the emerging bimodal behavior of the data with increasing error strength.

shown in figure 5.10 and appear to follow a log-normal distribution in a majority

of the cases. Circuit schedules A and B separate the measurement of the X and

Z stabilizers (figure 5.9) and circuit schedules C and D interleave the X and Z

stabilizer measurement; these two types of syndrome extraction provide different

behaviors outside the log-normal distribution-like regime of the histograms. For

schedules A and B, there is a discrepancy between the histograms utilizing the fail-

ure criteria P
(L+1)
fail and P

(ψ+2)
fail or P

(ψ+1)
fail (figure 5.10). The interleaved syndrome

extraction routines (C and D) show consistency in the histograms for all three fail-

ure criteria. Regardless of the syndrome extraction routine, the bulk of the samples

do not incur a logical error, i.e. the output wavefunction is not a state completely

orthogonal to the input wavefunction. Furthermore, the profiles of the histograms

follow a 2-3 peak behavior depending on the syndrome extraction routine. Figure
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5.13 contains a schematic explanation of this multi-peak behavior observed by

the pulse area model. If one views the space spanned by the initial basis vectors

and each of the spaces spanned by the application of one (P1|Ψ0〉/Sψ+1), two (

P2|Ψ0〉 ⊂ Sψ+2), and three Pauli operators (PL|Ψ0〉, logical operator applied mod

stabilizers) to the initial basis space as stacked planes with some defined distance

from one another defined by the weight of the Pauli operator required to map

from one plane to another (Figure 5.13a), we can view action of both the Pauli

and pulse area noise model on the codespace in an intuitive way. The action of a

Pauli error serves as a direct map between the aforementioned planes. The pulse

area model (and coherent errors for that matter) can be visualized as a rotation of

the state off of the current plane towards another plane with the magnitude of the

angle off the plane being defined by the strength of the coherent error as shown in

figure 5.13a which signifies the generation a superposition between the elements

of the two planes. The magnitude of the angle off of the plane is representative of

the strength of the coherent error. Measurement of the ancillary state (stabilizer)

then serves to project the kets in the superposition constructing the basis states to

one of the planes that the state is rotated between with a probability proportional

to the distance of the state/magnitude of the angle off of one of the planes. This

appears to the be the cause of the emergence of the multi-peak behavior with

increasing error strength in the histograms for the coherent errors in figure 5.10.

The histograms are sampling outputs from projections of the kets in the superpo-

sition of the codewords to separate planes giving the multi-peak behavior (figure

5.13b) with the relative magnitude of these peaks containing an error strength

dependence that trends to higher failure values at higher error strengths (a larger

angle of rotation away from the “no error plane”).

The plot of the deviations between P
(L+1)
fail and P

(ψ+1)
fail /P

(ψ+2)
fail (per-run) in fig-

ure 5.14 provides some insight into this behavior. The deviations in the schedules

A and B are weighted more heavily towards the regime P
(ψ+1)
fail /P

(ψ+2)
fail > P

(L+1)
fail
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(b) Schedule A - Pulse area error model.
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(c) Schedule B - Pauli error model.
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(d) Schedule B - Pulse area error model.
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(e) Schedule C - Pauli error model.
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(f) Schedule C - Pulse area error model.
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(g) Schedule D - Pauli error model.
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(h) Schedule D - Pulse area error model.

Figure 5.14: Histograms of the deviation between the two types of failure criteria for the four
“single shot” error correction schedules. 1× 106 samples were accumulated per error rate. Pauli
error rates: p = 0.000001, 0.0000025, 0.000005, 0.0000075, 0.00001, 0.000025, 0.00005, 0.000075,
0.0001, 0.0002, 0.0004, 0.0006, 0.0008. Pulse area error strengths: σ = 0.0025, 0.005, 0.0075,
0.01, 0.02, 0.03, 0.04, 0.05.
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resulting in the noticeable deviations between the histograms for the two types

of failure criteria. In comparison, the deviations for schedules C and D are more

symmetrically distributed about P
(ψ+1)
fail /P

(ψ+2)
fail = P

(L+1)
fail . Furthermore, the devi-

ation distributions for schedules C and D have remarkably similar profiles to the

deviations obtained from the same circuits under the influence of the Pauli error

model, which provides small evidence that the interleaved syndrome extraction

routines exhibit more Pauli-like output statistics relative to the non-interleaved

techniques. This is quite intuitive as the interleaved measurement does no allow

for one type of coherence to commute through the first three rounds of syndrome

extraction like it can for the non-interleaved techniques. These coherences can

slowly build up after syndrome extraction rounds and, in such cases, increase the

error in the output wavefunction (Pfail > 10−3 regime) which is illustrated by the

additional bump in sampling of histograms in figure 5.10b and d relative to the

histograms from 5.10f and h.

By defining a failure criteria of P
(ψ+1)
fail > 10−6, pseudothresholds were obtained

for the surface code under the influence of the pulse-area error model as shown in

figure 5.12. Consistent pseudothresholds in the range 8× 10−3 < pth < 0.5× 10−2

were obtained for all circuit schedules. The sigmoidal shape of the threshold was

again observed. It is particularly interesting that the pseudothresholds for the

pulse-area noise model appear to be insensitive to the type of error correction

routine implemented for this criteria with reported pseudothreshold values near

1×10−2 for the Steane, J4, 2, 2K, and surface code simulations. This may hint that

the criteria P
(ψ+1)
fail > 10−6 is not appropriate for assessment of the failure of an

error correction/detection routine. This metric appears to be similar to a “fidelity-

like” assessment (a metric like 〈1 − F〉 of the success of a code, which has been

shown to deviate greatly from standard metrics implemented for unitary errors

such as the diamond distance, D♦, and the trace distance, Dtr [37, 38, 113, 162].

Figure 5.15 displays the histograms of the failure metrics Pcode, F2, and Pcode/F2
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(b) Schedule A - Pulse area error model.
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(c) Schedule B - Pauli error model.
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(d) Schedule B - Pulse area error model.
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(e) Schedule C - Pauli error model.
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(f) Schedule C - Pulse area error model.
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(g) Schedule D - Pauli error model.
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Figure 5.15: Histograms of the code space failure criteria for the four “single shot” error cor-
rection schedules. 1 × 106 samples were accumulated per error rate. Pauli error rates: p =
0.000001, 0.0000025, 0.000005, 0.0000075, 0.00001, 0.000025, 0.00005, 0.000075, 0.0001, 0.0002,
0.0004, 0.0006, 0.0008. Pulse area error strengths: σ = 0.0025, 0.005, 0.0075, 0.01, 0.02, 0.03,
0.04, 0.05.
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for the pulse-area noise model applied to the surface code. Note that no output

wavefunction landed completely back into the codeword space, i.e. Pcode = F2 6= 1

for all simulations. Again, there are noticeable differences in the results of the cir-

cuits implementing schedules A and B versus C and D. All schedules have similar

profiles in the “log-normal-like” sections of the distributions but with a noticeable

shift to higher fidelity/Pcode values for the center of the distributions with sched-

ules C and D. This may be due an ability of the interleaved measurement routines

to break up coherences more effectively than a syndrome extraction routine that

repeats one type of stabilizer measurement allowing for coherent errors of certain

types to commute and potentially build in amplitude through the successive steps

of syndrome extraction but this is simply conjecture. The distinction in the shape

of the distributions for the two types of stabilizer measurement routines occurs

outside of the log-normal-like regime of the distributions. For schedules A and B,

there is a noticeable spike in the number of samples with F2/Pcode ≈ 0.95 and

a drop in output wavefunctions with F2/Pcode ≈ 0.90. As shown by the devia-

tions in figure 5.14, schedules A and B result in output wavefunctions that don’t

appear to symmetrically sample about the codeword space which appears to man-

ifest itself in the non-uniform distribution of the computed fidelity and codeword

overlap metrics. For the interleaved stabilizer measurement routines, there is a

generally flat distribution of F2/Pcode values in the equivalent regime much like

the results of the Steane code. This my be attributed to the symmetry of the

output wavefunction sampling about the codeword space as shown in figure 5.14.

It would be particularly interesting to be able to determine which output states

are not sampled by schedules A and B to gain insight into how the error correction

routine influences the action of the coherent error on the input wavefunction.
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Chapter 6

Maximum Likelihood Decoding of Topological Codes

The following chapter contains unpublished work that was performed at Georgia

Institute of Technology and the T.J. Watson Research Center (IBM) during an

internship for the 4.6.12 color code and doubled color code work, respectively.

While the surface code has been shown to be a robust platform for error correc-

tion. Universal fault-tolerant quantum computation with the surface code encoun-

ters some difficulties. Particularly, the restricted transversal gate set of the surface

code requires magic state distillation for both the S and T gate for universality

which, as we have seen in chapter 4, is costly in quantum resources. Therefore,

other error-correcting codes may be a better platforms for fault-tolerant compu-

tation in practice.

Color codes are an intriguing alternative to surface codes. They have error

thresholds for depolarizing noise near the surface code thresholds but also allow

a transversal implementation of the Clifford group. Note that not all members of

the family of color codes have been investigated; the 4.6.12 family of color codes

remained to be studied. In this work, we build up tools to perform such a study.

In additional to standard color codes, a family of subsystem codes built from color

codes, known as doubled color codes, was investigated as well. This subsystem

code is of interest due to its ability to achieve a universal fault-tolerant gate set

with gauge fixing opposed to magic state distillation.

The outline of this chapter is the following. First, we discuss the error model

for computation. We discuss the decoding technique used: the optimal Maximum

Likelihood Decoding algorithm. Finally, thresholds for the 4.6.12 color code and

doubled color codes are provided.
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6.1 Error Model

We enforce the following conditions for the simulations:

• Syndromes are measured at integer time steps t = 1, 2, ..., L.

• Each measurement results in a wrong outcome with probability pmeas.

• Memory errors occur at half-integer time steps t− 1/2.

• Only X-type errors with error rate pmem.

• The initial state, t = 0, has no errors.

• The final state, t = L, has no syndrome errors.

The perfect measurement of the final state is required to evaluate the success of

decoding at time t = L and can be justified as the measurement of every qubit

in the code after some memory time t = 0 to t = L − 1. The restriction to only

X-type errors is justified because color codes are CSS codes and, therefore, X and

Z errors may be detected and corrected independently. Note that this error model

differs slightly to the standard depolarizing channel in that Y errors occur with

probability p2. For simulations where pmeas = 0, the error model applied is the

code capacity error model. Otherwise, the model applied is the phenomenological

error model where measurement errors occur but ignore circuit error propagation.

6.2 Maximum Likelihood Decoding

6.2.1 Background and Notation

The ML decoder takes the measured stabilizer syndromes as an input and outputs

a candidate error C such that (i) C agrees with the final measured syndrome

and (ii) the probability that C is equivalent (modulo some stabilizer operators)

to the actual accumulated error is maximal, conditional on the observed stabilizer
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syndrome. This decoder relies on tracking error coset probabilities during the

computation. We discuss an implementation of the ML decoder below.

Let E ∈ Fn2 be an arbitrary X-type error where the error is represented by

a binary vector where 1’s represent the application of the error to the qubit i,

indexed by the bit Ei in E. The goal is to show that there is a stabilizer S exists

such that an error E ′ = E + S has support only on a subset of c bits representing

the code. The error E ′ shall be referred to as the reduced error corresponding to

the full error configuration E and corresponds to an error coset formally. Note

that any additions involving binary vectors, such as E, with be assumed to be

additions modulo two throughout the document.

Define a binary matrix R of size n× c such that the b-th column of the matrix

corresponds to the reduced error corresponding to the single error with support

on the b-th bit of the full error. By assumption above, a full error E appears with

probability p
|E|
mem (1− pmem)n−|E|, where pmem is the memory error rate. The re-

duced errors are pulled from a full error distribution, π(e) in the following manner:

P [E ′] =
∑

E:ER=E′

p|E|mem (1− pmem)n−|E| , where E ′ ∈ Fc2 (6.1)

where E and E ′ are row vectors. Because the reduced errors are equivalent modulo

some set of stabilizer operators, they have the same syndromes and result in the

same decoding outcome. From this point on, we will consider only the reduced

error model such that errors only occur on a subset of c qubits of the code with

error E ∈ Fc2 that occurs with probability P [E].

Consider a given time step t. Let sa ∈ F2 be the stabilizer syndrome of stabi-

lizer Sa at the given time step. The stabilizer syndrome is s = (s1, s2, ..., sN) ∈ FN2

where N is the number of stabilizers of the code. Define a mapping matrix Q which

maps the stabilizers to a subset of the stabilizer group that properly decodes er-

rors on the subset of qubits (the reduced errors) of the color code or, equivalently

s = s′Q where s′ is the new set of stabilizers. As listed above, each syndrome error
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occurs with probability p
|e|
meas (1− pmeas)N−|e| where, in this case, e ∈ FN2 is the

syndrome measurement error. Then, a syndrome measurement error, e′, occurs

with probability:

Psyn[e′] =
∑

e:eQ=e′

p|e|meas (1− pmeas)N−|e| (6.2)

We now have sufficient information to describe the maximum likelihood decoding

algorithm

6.2.2 Maximum Likelihood Decoding Algorithm

Below we will discuss the decoding algorithm and then finish with a workflow of

the algorithm. Let E ′(t) be the reduced error that occurs at time step t − 1/2

where t ∈ {1, 2, ..., L}. We define a full error history as:

Ê ′ = {E ′(1), E ′(2), ...., E ′(L)} (6.3)

Then, define the accumulated reduced error at time step t in the following manner:

F (t) =
t∑

u=1

E ′(u) (6.4)

Note that, by assumption, t = 0 contains no errors and the final syndrome mea-

surement provides the final syndrome F (L) with perfect measurements. Let O

and E be the sets of the odd-weight and even-weight reduced errors. Each set O

and E contains a unique reduced error with a given syndrome. Therefore, it is our

job to infer whether F (L) ∈ O or F (L) ∈ E .

Let s(t) be the syndrome at time t and Ŝ = {s(1), s(2), ..., s(L)} be the full

syndrome history. Now, define a c×N ′ binary matrix, A, such that the i-th row

of A is the stabilizer syndrome caused by a single-qubit X error on qubit i of the

reduced set of qubits, i = 1, 2, ..., c. If the syndrome measurements were noiseless,

then the stabilizer syndrome observed at time step t would be F (t)A. So, a pair

of Ê, Ŝ occur with the following conditional probabilities:
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Pr
[
Ê|Ŝ

]
=

L∏
t=1

P [E(t)]
L∏
t=1

Psyn [s(t) + F (t)A] (6.5)

Then define the probabilities:

Podd(Ŝ) =
∑

Ê:F (L)∈O

Pr
[
Ê|Ŝ

]
and Peven(Ŝ) =

∑
Ê:F (L)∈E

Pr
[
Ê|Ŝ

]
(6.6)

The decoder then decides the F (L) ∈ O if Podd ≥ Peven and F (L) ∈ E otherwise.

To show how to compute the probabilities in Eqn. (6.6), we substitute E(t) =

F (t) + F (t− 1) in Eqs. (6.5,6.6) to get:

Podd(Ŝ) =
∑

F (1),...,F (L):F (L)∈O

P [F (t) + F (t− 1)]
L∏
t=1

Psyn [s(t) + F (t)A] (6.7)

where the sum runs over all L-tuples of binary vectors F (t) ∈ Fc2 such that F (0) =

0c and F (L) ∈ O. Define a real-valued matrix Γ of size 2c× 2c such that the rows

and columns of Γ are labeled by the binary vectors f, g ∈ Fc2 and

Γf,g = P [f + g] (6.8)

Define an additional binary matrix ∆(t) of size 2c × 2c such that

∆
(t)
f,f = Psyn [s(t) + fA] (6.9)

this results in the following probabilities

Podd(Ŝ) =
〈
O|Γ∆(L−1)Γ...Γ∆(2)Γ∆(1)Γ

∣∣0c〉
Peven(Ŝ) =

〈
E|Γ∆(L−1)Γ...Γ∆(2)Γ∆(1)Γ

∣∣0c〉 (6.10)

where

|O〉 ≡
∑
x∈O

|x〉 and |E〉 ≡
∑
x∈E

|x〉 (6.11)

At this point, computation of Podd and Peven required matrix-vector multiplications
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distance=3 distance=5

Figure 6.1: First two members of the 4.6.12 topological color code family.

for matrices of size 2c×2c and, therefore, would require 22cL arithmetic operations.

The application of Walsh-Hadamard transform, H, on Γ such that we replace Γ

with Γ̂ = HΓH which is diagonal (just like ∆) and can be represented as a vectors

altering the computation of the probabilities:

Podd(Ŝ) =
〈
O|HΓ̂H∆(L−1)HΓ̂H...HΓ̂H∆(2)HΓ̂H∆(1)HΓ̂H

∣∣∣0c〉 (6.12)

where Peven is calculated analogously. This alters the computation from matrix-

vector operations to vector-vector operations with running time O(Lc2c).

The logical error rate is the probability of a decoding failure per time step.

More formally, imagine that one could generate random errors and collect noisy

syndrome for an infinite time interval. Let τ be the first time step where the

MLD would fail to correct the error if it were applied over the interval [0, τ ].

Here, we assume that the decoder has knowledge of the noiseless syndrome of the

accumulated error. The random variable τ can be interpreted as the memory time

of reliable computation. One expects an exponential decay

Pr [τ ≥ t] ∼ exp(−ct) (6.13)

for some constant c > 0. The formal definition of the logical error rate, pl, is then

pl = − lim
t→∞

log [Pr [τ ≥ t]]

t
(6.14)
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In our case for the MLD, we run the simulation for a number of steps τ = L where

L is the first instance of failed decoding. We repeat this process to obtain a set of

memory times which are fit to the exponential distribution to obtain the logical

error rate, c from (6.13).

6.3 The 4.6.12 Color Code

Up until this point, we have discussed only the surface code when referring to

topological quantum computation. Another class of topological subspace stabi-

lizer codes are topological color codes. These codes are constructed from regular

or semi-regular cellulations of the surface that are represented as trivalent graphs

[163]. In this cellulation, all vertices represent qubits. Again, the cellulation de-

fines the stabilizer group but these codes are self-dual so the faces of the cellulation

define both the Z-type and X-type stabilizer generators. See figure 6.1 for the first

two members of the 4.6.12 color code family. Now that we have a three-colorable

graph, a planar layout of the code will be a triangle with the three corners of the

triangle terminating each at a stabilizer of a different color (red, green, and blue

in our case). An edge of the code has a boundary color type of the stabilizers

that do not terminate at the boundary. The length of each boundary (in number

of qubits) again has the intuitive representation of the distance of the code. The

X and Z logical operators span from any two corners of different color types or

from one corner to a boundary of equivalent color type. These codes are of interest

because they can implement the full Clifford group transversally which the surface

code cannot do. Indeed, upon inspection you will notice that the distance-3 code

is simply a graphical representation of the stabilizer group for the Steane code

(see equation 2.14).
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Figure 6.2: Error thresholds for the 4.6.12 topological color code.

6.3.1 Error Thresholds for the 4.6.12 Color Code

The error threshold for the 4.6.12 topological color code was 10.3% and 3.1% for

the code capacity and phenomenological error models, respectively. Note that

these values are consistent with code capacity [164–167] and phenomenological

error thresholds [167, 168] of color codes built from the 4.8.8 and 6.6.6 cellulations

of the surface. The code capacity threshold for the 4.6.12 color code is slightly

lower than the threshold for the surface code of 10.9% [125]. The phenomenological

threshold is also slightly lower than the surface code threshold of 3.3% [169].

6.4 Doubled Color Codes

Doubled color codes are subsystem stabilizer codes that allow for universal, fault-

tolerant quantum computation through a method known as gauge-fixing. This

method uses the gauge degrees of freedom of the subsystem code to fault-tolerantly

convert between the code spaces of two codes which, together, have a universal gate

set. We will start with discussing subsystem codes building from the background

of subspace stabilizer codes. Then we will discuss the doubled color code family

of codes followed by the phenomenological error threshold for the doubled color

code.
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6.4.1 Subsystem Codes

Subsystem codes perform quantum error correction through the use of quan-

tum error-correcting subsystems. Consider a CSS code with a given stabilizer

group S and a set of logical operators L. Now consider a case where the struc-

ture of the stabilizer group over the n-qubit Hilbert space allowed for the ex-

istence of a set of Pauli operators that commute with the elements of the sta-

bilizer group and the logical operators. These operators are called gauge op-

erators and which form a group G; the gauge group. The eigenspace of the

gauge operators form a subspace of the n-qubit Hilbert space similar to that

of subspace codes but not necessarily the +1 eigenspace of all gauge operators:

CG = {span({ |ψi〉 }) | g|ψi〉 = ±1|ψi〉 ∀ g ∈ G} where again we are dealing with

complex values in the linear span. The code space is a subsystem of this gauge

subspace where the stabilizers are constructed from tensor products of the gauge

generators: CS = {span({|ψi〉}) | s|ψi〉 = +1|ψi〉 ∀
⊗

i gi = s ∈ S}. To perform

error correction, the gauge generators are measured and the syndrome for the

stabilizers is inferred from these measurements. This can reduce the number mea-

surements required to perform error correction [170–172]. Furthermore, any error

in the code that is a product of gauge generators acts trivially on the code space

so these degrees of freedom are protected.

Furthermore, these gauge degrees of freedom have been utilized to fault-tolerantly

convert between code spaces of two types of quantum error-correcting codes (given

both codes satisfy certain properties) allowing for universal fault-tolerant quan-

tum computation. The process of projectively measuring out of and reinitializing

these gauge degrees of freedom into and out of the code space is a process known

as gauge fixing. One such family of codes that perform this operations are doubled

color codes.
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Figure 6.3: Graphical and matrix representation of doubled color codes.

6.4.2 Doubled Color Code Family

Doubled color codes were constructed by Bravyi and Cross [173]. They are con-

structed from 3 codes: two color codes (4.8.8 color codes in our case) and a

subsystem code. The doubled color code can be viewed as a set of stacked color

codes (A and B) where the bottom color code shares a stabilizer with the sub-

system code (C) as shown in figure 6.3a. The stabilizer groups and gauge groups

for the family of doubled color codes can be defined recursively. The base code

is the J15, 1, 3K code which is constructed from two distance-3 color codes stacked

upon each other and the subsystem code is a bare qubit. The stabilizer group is

constructed from the two stabilizer groups of color codes (Si ⊗ Si for i ∈ S of the

color code), a parity operator between color code A (the “bottom” code) and code

C (
⊗

q Zq for q ∈ A,C), and the stabilizer group of the subsystem code S0 shown

in figure 6.3b. Note that, up to a permutation of qubit labels, this base code is

equivalent to the Reed-Muller J15, 1, 3K quantum error-correcting code which is a

triply even code that admits a transversal T gate. The gauge group is constructed

from the stabilizer group on code A, logical operators (L and L0), the gauge

group of the subsystem code G0, and a set of operators labeled Even. This even

set of operators are weight-4 Pauli operators connecting the edges of the “stacked”
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qubits in the doubled color code. The stacked qubits are labeled in black in figure

6.3a. This gauge group allows for fault-tolerant conversion between the doubled

color code (transversal T ) and a single color code (transversal Clifford) allowing

for a universal gate set. A similar result was obtained by Poulin et al. where

they fault-tolerantly converted between Steane and Reed-Muller codes [174] and

O’Connor et al. proposed a similar stacked code construction independently [175].

The distance-5 color code is constructed from two stacked for distance-5 4.8.8 color

codes and using the distance-3 doubled color code as the subsystem code.

6.4.3 Error Threshold for Doubled Color Codes

The error threshold for the doubled color code under phenomenological depolar-

izing noise was found to be 0.98%. As we have seen above, this value is a bit

lower than standard color codes and the surface code. This is due to the number

of gauge measurements required for this code relative to the standard color code.

Bravyi et al. have since obtained an error rate in gauge fixing to fault-tolerantly

apply Clifford and T gate circuits and have found a rate of 0.55% for the phe-

nomenological noise model. While this value is an about an order of magnitude

below that of the surface code, the resource cost of universality for the surface

code is larger since it requires distillation.
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Figure 6.4: Phenomenological depolarizing threshold for the doubled color code.
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Chapter 7

Future Directions

There are a plethora of extensions to the work provided above. Below is a non-

exhaustive list.

7.1 Simulating the performance of a distance-3 surface code in a linear

ion trap

A natural extension of this work is to build up a more experimentally accurate

error model. This contains two components: constructing a physically representa-

tive error model as possible and modeling additional experimental sources of er-

ror. Many errors introduced during computation will have some coherent nature,

which requires a full quantum simulation of the error correction routine. There-

fore, removing the incoherent approximation to these error sources would provide

a more accurate assessment of error correction. Simulation of the 17-qubit system

would be computationally demanding, but quantum trajectory calculations of the

17-qubit surface code have been performed which, due to a clever circuit represen-

tation, allows for modeling with only 10 active qubits [176]. Additional sources of

errors must be accurately modeled. Two particularly relevant error sources come

to mind: ion heating due to shuttling and ion addressing errors. In our current

error model, errors come strictly from gates and the ion chain has been optimized

according to gate times. Indeed once errors from shuttling come into play, the

ion chain optimization may change due to the interplay between the shuttling and

gate errors. This gives an opportunity to reassess the ion chain optimization pa-

rameters as well. Indeed if the goal is to create a high fidelity logical qubit, then

perhaps the ion chain optimization should involve a metric that reflects this goal.

Furthermore, subset information from the importance sampling method may

be of use to improve error correction. For instance, this information about the
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failure rates at the logical level may be used to bias transition matrix elements

of a maximum likelihood decoder to include information about the influence of

error cosets on the code’s performance instead of only considering the statistical

weights of the error cosets [177]. Code considerations when optimizing the ion

chain layout could serve to bound the effects of the most malignant error sources.

Specifically, optimizing the ion chain to assign the most error-prone qubits to

weight-2 stabilizers can reduce the influence of anisotropic incoherent error sources.

7.2 Magic state distillation and gate compilation in quantum algo-

rithms

Since the assessment of distillation and gate compilation techniques; new methods

have been developed. Two new techniques that should be appended to this analy-

sis were developed by Campbell et al. [178, 179] and Haah et al. [180]. Campbell et

al. constructed a composite gate synthesis-distillation routine (termed “synthilla-

tion”) that effectively removes the T cost of gate synthesis relative to traditional

distillation then synthesize techniques [178, 179]. Haah et al. constructed a new

set of distillation protocols that approaches the (conjectured) asymptotically opti-

mal resource counts for distillation using operations between clever choices of CSS

codes with particular transversal gates [180]. This two-code distillation method re-

moves the need to concatenate distillation protocols to achieve target error rates in

T synthesis which substantially reduces resource costs. Also, similar assessments

of the ancillary resource efficient flag-qubit method of fault-tolerantly measuring

stabilizers [52, 53] should be performed to understand the overhead gain from such

a technique.

An alternative to magic state distillation for obtaining a universal fault-tolerant

gate set is gauge fixing. An understanding of the resource cost of gauge fixing rel-

ative to magic state distillation is an open question. Fair metrics for comparison

of the techniques are required. Indeed, there is an interplay between the code
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implemented, the method used to obtain universality, and the error rates of the

underlying operations. Distillation failure influences states ancillary to the en-

coded information while gauge fixing relies on successful error correction for the

encoded gate to succeed. The efficacy of these two methodologies in different error

rate regimes is particularly interesting.

7.3 Quantum error-correction failure distributions: Comparisons of

coherent and stochastic error models

An open question remains of how the wavefunction failure criteria compares to

other failure metrics such as the fidelity, trace distance, or diamond distance. Also,

we have shown than the schedule of the syndrome extraction routine influences

on the fringe statistics of the wavefunction failure criteria for the pulse area error

model. Certain data even suggests that a X-type/Z-type interleaved measurement

schedule can emulate Pauli-like error output statistics. An investigation into the

effects of the syndrome schedule on the coherence of the error channel at the

logical level is a particularly interesting direction due to the malignant effect of

coherent errors on quantum error correction. The use of measurement as an avenue

to bound the spread of the coherent error may also provide an avenue to apply

proven threshold theorems to coherent error channels [44]. Bounding the coherence

of the error may also provide tighter bounds for relating the diamond distance and

the error rate for these cases as well [37, 162].

Non-Markovian noise models for quantum error correction are few an far be-

tween. By tweaking the sampling of the over/under-rotation parameter r, the pulse

area error model could be used to model low-frequency time-dependent drifts in

field amplitudes of applied gates; r = A sin(ωt) for instance. Fitting these time-

dependent errors within a circuit model formalism (opposed to a Hamiltonian

simulation perspective) gives a straightforward path for assessing the effect of

these control errors on quantum algorithms and understanding how compensation
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sequences can improve the computation at the algorithmic level.

The error detection routine implemented by Meier et al. [140] implements a

subspace error detection code routine with a subspace that is a subsystem of the

level-2 encoded subspace. With a proper choice of gauge and the use of additonal

ancillary qubits to prepare both encoded qubits fault-tolerantly [181], gauge fixing

techniques similar to those implemented in [174] could be used to fix between

self-dual, doubly even, and triply even subsystems of the code space in equation

5.22. Therefore, level-2 error detection circuit could serve as a general purpose

distillation circuit for H-type, S-type, and T -type magic states depending on the

choice of gauge.

Finally, it’s becoming more apparent that a single-valued metric for assessment

of quantum processes may not be enough to fully characterize the underlying

physics. The use of output statistics of the process may be useful due to the

its natural overlap with how data is gathered experimentally. The comparison of

output statistics of theoretically modeled and experimentally measured quantities

can serve as a method of validating the accuracy of theoretical error model of

the experimental apparatus. Finding connections between the output statistics

of both methods could provide means of systematically constructing error models

from experimental measurements as well.

7.4 Maximum likelihood decoding of topological codes

An obvious next step is to obtain an circuit-level depolarizing error threshold

for the 4.6.12 topological color code. Tensor network representation of circuits

may be used to compute the transition matrix elements efficiently for Maximum

Likelihood Decoding. Unlike the surface code, color codes do not allow for fault-

tolerant syndrome measurement with the use of single-qubit ancilla for small dis-

tance codes. Implementing a flag qubit method of syndrome extraction [52, 53]

reduces the number ancillary resources required for fault-tolerant measurement
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of the stabilizers for the color code. Similar to a study performed by Tomita et

al. [182], comparisons of the flag qubit technique to preexisting techniques to

fault-tolerantly measure the stabilizers has been performed in [183] with the color

code. Their results indicate a strong dependence of the error correction threshold

on the error model of the idle qubits. Performing a full quantum simulation of

a small distance color code under the influence idle-qubit error models indicative

of ion trap and superconducting systems would shed light on the influence of the

underlying physical system on the fault-tolerance of the flag-qubit technique.
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