
Figure 1. Concept sketch of a square solar sail. 

Presented at the AMA Guidance, Navigation and Controls Conference, Keystone Colorado, August 21-24, 2006 
Paper AIAA 2006-6336 

Deployment Modeling of an Inflatable Solar Sail Spacecraft 

Nathan W. Graybeal l  and James I. Craig2  
Georgia Institute of Technology, Atlanta, GA, 30332 

and 

Mark S. Whorton 3  
Guidance, Navigation and Mission Analysis, NASA Marshall Space Flight Center 

A simple model for the dynamic response of an inflatable solar sailcraft during 
deployment has been developed and tested for several distinct scenarios. The basic 
kinematics for the model were formulated in a deliberate manner that in future studies will 
allow systematic increases in model fidelity (and complexity) while at the same time leading 
to a straightforward implementation as a state space model in Matlab/Simulink. Despite the 
low order of the current model, clear trends were evident. The results expose the existence of 
deployment conditions that have a destabilizing effect on a flexible sailcraft which is not seen 
in a similar rigid-body spacecraft. Future work with higher order models will provide 
further insight into these conditions so that, ultimately, a robust deployment can be 
guaranteed. 

I. Introduction 
While the modern notion of solar sailing has been in the consciousness of the scientific community since the 

early part of the twentieth century, it was not until the 1970's that any substantial engineering efforts were applied 
to the problem. At that time, the uncertainties surrounding the high :risk deployment of square solar sails removed 
them from popularity when compared to the simpler heliogyro. With more than three decades of gradual 
development, no solar sail has yet been flown but new materials technologies have stimulated renewed interest in 
the larger sails and tighter turning performance made possible by a square configuration.' Recent competition for 
funding in the area of solar sail spacecraft technology has led to the development of a new breed of advanced 
concepts coming closer in line to practical application than past efforts have achieved. 

With current mission specifications mandating 10,000-m 2  of reflective area on a square sail for a nominal 1 AU 
mission, the scope of the new designs also far surpasses the size limitations of earlier efforts due to rapid advances 
in manufacture and strength of composite materials. A particular desi of interest is under develo .ment b L' arde 
Inc, and stems from their company origin as a developer of 
inflatable modules for space missions. An inflatable 
structure presents unique challenges in the development of a 
functional solar sail spacecraft, due not only to the scaling of 
manufacturing efforts, but also the potential difficulties 
associated with the deployment of such a large vehicle. 
Additionally, the presence of large-scale inflatable 
components combined with the even larger gossamer sail 
introduces a daunting level of uncertainty in potential 
deployment models. 

Over the last several years numerous researchers have 
considered the complexities of inflatable structures from 
various standpoints. Clem, Smith, and Main 2'3  studied z-
folded accordion-style deployment mechanisms of purely 
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inflated (i.e., not rigidized) tubular beams. This work provided perspective on the nonlinear stiffness properties of 
inflatables under different inflation pressures, and is an excellent reference into the complexity of the problem, while 
focusing mostly on laboratory validation of a model for an inflated Kapton bladder. 

Research by Smalley and Tinker4  has also focused on the nonlinear phenomenon of inflated boom structural 
dynamics. While their work was limited to fully deployed structures, it did provide a powerful case for the accuracy 
of detailed finite-element analysis tools in attacking the problem of uncertainty in the analytical models for inflated 
structures. Additionally, this work was able to consider the effects of axial forces inside the strut due to inflation 
pressure. More recent work by JPL 5  has provided a characterization of the deployment of an aluminum laminate 
tube that is rolled around a tip mandrel for packing. During deployment the tube is inflated with gas causing it to 
unroll. Once extended, the tube is exposed to an increased internal pressure, removing any wrinkles from the 
aluminum and causing it to become a uniform rigid cylinder. This effort provided further insight into the severity of 
expected tip-mandrel vibration during an inflated deployment, but unfortunately it focused on a much less common 
concept of inflated aluminum tubing. In all, there is considerable evidence of the progress in the field, but at the 
same time, the presence of numerous concepts and a vast multitude of possible configurations does not lend well to 
the development of a "catch-all" solution for deployment. 

As a practical example, the concept examined in this paper utilizes inflatable booms that are extruded, rather than 
unfolded, and contain a composite isogrid substructure that is impregnated with a sub-T, resin that is rigidized after 
deployment. This system encapsulates the complexity of all of the previously discussed systems, with the additional 
difficulties of uncertain resistance during deployment due to friction in the folds (the folding method was chosen for 
its extremely high packing factor, not for its simplicity) and the fact that the booms must be heated during launch 
and deployment to allow them to remain soft until fully extruded. Possible failures run the gamut from physical 
asymmetry due to uncertain deployment methods, tears in the sail caused by entanglement due to packing 
tolerances, and loss of heating or pressure systems required for deployment. Careful ground testing in a vacuum with 
10-m and 20-m systems has provided strong evidence that the concept is feasible, but they have also pointed out the 
likelihood of deployment anomalies. And despite evidence of regarding the predictability of the spacecraft's 
structural dynamics after deployment•, a gap exists in the published work regarding the predictability of the 
structure during deployment. 

While the difficulties of modeling the complete system developed by L'garde would be prohibitive due both to 
the complexity of the system and the proprietary nature of its specifications, it is certainly feasible to simplify the 
system in order to obtain an approximation of how severe certain failures can be. Thrust asymmetry is the most 
likely off-nominal condition to occur during even the best circumstances. This condition can stem from many 
causes, such as the four booms in a square sail not deploying at the same rate, tears forming in the sail, or unpacking 
difficulties, but the result is the same, i.e. the sail center of pressure becomes offset from the spacecraft center of 
mass. Fortunately, the possibility for overcoming this type of failure is strong if proper deployment procedures are in 
place to ensure a robust deployment event. The solutions can range from altering the method of deployment 
regulation to spin stabilization and each has unique benefits and pitfalls. 

The purpose of this paper is to present a simplified model for the deployment dynamics of a square solar sail 
spacecraft, with an intent that is two-fold. Measures will be taken to show the effects of flexibility on the 
deployment sequence by comparing a rigid spacecraft model with a first-order flexible model. Additionally, 
different asymmetric configurations will be analyzed to determine the conditions surrounding a stable deployment. 
This simplified approach does not claim to provide all of the answers to the full-scale problem, but will provide 
insight into the trends associated with deployment failure, and it will identify conditions of interest for further 
evaluation with higher-order analysis. 

H. Model Development 
The goal of this work is to develop a model that simulates the inflation deployment of an extruding square solar 

sail spacecraft. It was clear from the beginning that large simplifications were required to start the groundwork for 
such a project, and a deliberate approach was taken to gradually employ higher levels of model fidelity. The 
primary focus of this paper is to describe the development of a low-order flexible dynamic model for the deploying 
spacecraft and compare the results with an earlier rigid-body deployment model. This comparison will demonstrate 
the trends behind a successful and robust deployment, while noting phenomenon unique to the flexible model. 

A. Simplifications from the Actual System 
The model simplifications fall into four major categories: simplifications to (1) the dynamic equations, (2) the 

physical geometry and inertia, (3) the thrust model, and (4) the flexibility model. 
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Figure 2. Yaw-pitch-roll (3-2-1) Euler angles. 
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I. Dynamic Equations 
The foremost assumption in the present model is placing 

the spacecraft in inertial space. At this point in the 
development process, it has allowed us to neglect definition of 
a clear orbit, the effects of gravity gradient and other effects 
imposed by orbital dynamics. The modularity of the model 
makes the supplemental introduction of any of these effects a 
relatively simple addition, but it was deemed appropriate to 
maintain as much clarity as possible in early work as to why 
certain outcomes are reached. Yaw-pitch-roll (3-2-1) Euler 
angles were used to represent the orientation of the spacecraft 
in the inertial frame of reference. The chosen orientation is 
depicted in Figure 2 with yaw (v i ) occurring first around the 
i3-axis, pitch (tv2) occurring second around an intermediate i2  -
axis, and roll (y3) occurring third around the -axis 
(coincident with the orientation of the b,-axis of the body). 
While this transformation reaches a singularity at 90° of pitch, 
it is a trivial case because spacecraft failure due to extreme 
attitude is considered to occur at 45° of either pitch or roll. 
This failure condition is derived from physical limitations to 
produce correcting torques due to the rapid decline in solar 
pressure at such high angles of attack. 

2. Physical Geometry and Inertia 
Given the scope of the system proposed by L'garde, some generalizations were necessary to capture the 

approximate geometry of the spacecraft. Care was taken to incorporate as many of the actual physical properties as 
possible during the process, though the geometry was simplified to the greatest extent possible for the purposes of 
expedient mass-moment-of-inertia calculations. The central bus was considered to have inertial properties 
reasonable for the mass given by the system specifications at a radius of gyration considered reasonable for the 
geometry of the actual system. 

The deployed region of each of the four booms, running the semi-diagonal of the square sail, is approximated as 
a uniform cylindrical tube with the mass computed by utilizing the published linear density for the proposed 
spacecraft. This approximation should represent with reasonable accuracy the mass distribution of the internal 
Kapton bladder and external Mylar skin, although it clearly neglects certain aspects of the internal isogrid, a 
component with a proprietary layout that would be difficult to account for completely, in any case. Additionally, the 
external truss system commonly depicted on concept sketches' of this type of square solar sail is neglected for 
simplicity at this stage of the process, as it is hoped by some that a system that contributes so heavily to deployment 
failure would ultimately not be required by the final mission design. 

The deployed portion of each sail quadrant is approximated as a :2-1.un thick triangular plate for the purposes of 
determining mass distribution. The published areal density of the sail material (a film of Mylar, coated on one side 
with aluminum and coated with black chrome on the other) was utilized for maximum coherence to the final 
configuration. Possible in-plane deformation of the sail quadrant is neglected for simplicity, with this assertion 
supported by the relatively low mass of the sail when compared to the rest of the spacecraft and the very high 
tension in the sail plane. 

The internal deployment mandrel, undeployed boom material, and some portion of the undeployed sail 
membrane adjacent to each boom is assumed to be consolidated at the tip of each boom. The conglomerate is 
approximated to be contained in a solid cylindrical volume, similar in radius to the tubular approximation for the 
deployed structure. The mandrel mass was approximated with a similar linear density to the booms due to its 
makeup as a simple inflatable bladder, while published values were, once again, used for the sail and boom 
materials. Tip vanes, another common feature of the aforementioned concepts', were also neglected, again, due to 
their hopeful removal from a final design. It would be relatively simple to account for such a feature in the current 
model by simply increasing the mandrel mass appropriately to attribute the inertia associated with such a system 
properly. 

Finally, the undeployed sail material folded at the edge of the sail quadrant was approximated as a thin 
rectangular plate with a thickness similar to the deployed sail, a width of the tip mandrel, and a length of the 
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deployed sail edge. Such an approximation of shape makes a negligible difference in the computed mass-moment-
of-inertia when compared to the actual trapezoidal shape of the stowed section. 

In total, while the model developed for the spacecraft mass distribution is just an approximation, it should remain 
accurate to within a reasonable tolerance, due to the clean geometric shapes prevalent in the spacecraft 
configuration. Additionally, for the overall fidelity of the final model to be weighted so heavily towards the 
calculation of mass-moments-of-inertia would artificially bottleneck the process when compared with the altogether 
cruder approximations associated with the low-order flexibility currently taken into account. 

3. Thrust Model 
For the purpose of thrust calculation, the sail quadrants are considered to be perfectly flat and completely 

reflective. This removes the need to consider the loss of thrust due to wrinkles which can lead to reduction in actual 
sail performance. The flat quadrants are of identical geometry to that used for the calculation of mass properties, and 
solar pressure is assumed to be uniform across their surface, with a center of pressure collocated with the quadrant 
center of mass. The solar pressure (approximately 9-111\l/m 2) is based on largely accepted values for thrust producible 
by an optimal sail design' at a distance from the Sun of 1 AU. Only the component of thrust normal to a sail 
quadrant is considered (reference Fig. 3). This assumption neglects the tangential forces due to electromagnetic 
effects'. Finally, the tip vanes are once again neglected for the purpose of thrust calculation to be consistent with the 
mass calculation and because they would only contribute thrust after a complete deployment, were they 
incorporated. 

Figure 3. Direction of body-oriented component of solar pressure. 

4. Flexibility Model 
A first-order approximation of flexibility has been introduced into the model by allowing the booms to rotate 

with a single degree-of-freedom at their respective roots and by providing a reaction moment with a rotational 
spring. The resulting motion can be envisioned as a set of flapping rotor blades with lead-lag motion not allowed. 
The omission of lead-lag motion in the current flexibility model is supported by preliminary finite element analyses 
that show the majority of motion (greater than 95%) to be in the direction of flapping deformation. This suppression 
of lead-lag deflection is thought to come from the presence of restraining tensile forces in the sail supports that 
effectively maintain the position of the booms in that plane of motion. By using the equations of motion with a 
similar derivation to a spinning rotor, it will be a relatively straightforward exercise to later add lead-lag motion 
once a higher fidelity flexible model is implemented. 

B. Equations of Motion 
A modular approach was taken for the development of the equations of motion describing the deployment of a 

square solar sail spacecraft. Initial work involved the development of a 2-D deployment model capable of capturing 
rotation around a single axis and with the capacity to describe the extrusion process with a single described 
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asymmetry. While this initial step was useful for gaining confidence in the available software tools, it was evident 
from the beginning that numerous phenomena could not be captured by such a model. The expansion to a full 3-D 
deployment model allowed for the introduction of effects such as spin stabilization, and the more complicated 
effects of the rotor-like boom structure. The modularity of the 3-D model stems from the original derivation of the 
spacecraft dynamics as rigid-body rotating in inertial space. It is then possible to add flexible modes to the overall 
dynamic model by appending a new set of equations, coupled to the first by certain terms inherent to a spinning 
rotor. With careful consideration it should be possible to expand the existing model in this fashion until a desired 
number of flexible modes are ultimately reached, although the associated level of complexity would balloon rapidly. 
Current research is focused on the initial rigid-body model and a single flexible mode associated with each boom. 

I. Rigid-Body Dynamics 
An unusual feature of the deployment problem is the existence of time-varying mass-moments-of-inertia in the 

body-fixed frame. Additionally, with the possibility of asymmetric deployment, the center of mass of the spacecraft 
will drift. Beginning from the textbook definition s  for the rotational motion of a body: 

WI= c {H}  
'd 

(1) 

where {M} is the externally applied moment and {H} is the angular momentum of the spacecraft, each about the 
center of mass in the body-fixed frame. Substituting for the angular moment, the rotational motion of the body can 
be described by: 

{m}=kbitthbi}±[iblicob'}±{0) 	fiblico 
	 (2) 

Equation (2) introduces [t] as the mass-moment-of-inertia of the spacecraft at the center of mass and {con as the 
angular velocity described in the body-fixed frame of the spacecraft, where "dot" terms refer to derivatives with 
respect to time. 

The spacecraft is shown relative to the 
body-fixed frame in Figure 4, with the 
spacecraft axes defined by the plane of the 	 to, 
undeformed booms and inline with the 
cruciform booms. The third body axis is 
fixed perpendicular to the undeformed sail-
plane, with the origin of all three axes set at 
the spacecraft center-of-mass. An 
unfortunate side effect of this axis definition 
is that a principal axis system is no longer 
used, but the collocation with the center of 
mass is still captured. The reason for --
abandoning the principal axis orientation is 
to maintain a simple geometric orientation of 
every component in the body, so that 
properties can be readily computed. 
Additionally, this poses no compromise to 
Equation (2) as long as [t] and its time 
derivative are correctly calculated in the 
chosen body-fixed frame. 

The force acting on the sail is computed directly by consolidating the solar pressure on each quadrant as a total 
applied force acting through the center of pressure and normal to the plane of the individual sail quadrant (reference 
Fig. 4). This is converted to the moment contributed by each quadrant by then taking the cross product with the 
distance between the quadrant center of pressure and the sail center of mass, and then summing the result for the 
total externally applied moment, A in Equation (2). The labeling of quadrants (reference Fig. 4) follows a standard 
Cartesian system for the given body axes. 
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2. Flexible Dynamics 
The introduction of flexible dynamics, presents a considerable challenge, and the approach taken follows that 

used for a helicopter rotor. Equation (1) is once again utilized, this time with (11} representing the momentum vector 
of the individual booms and {M} representing the sum of the moments at the pivot point of each boom. This 
approach yields three equations for each boom, although due to the hinge conditions imposed on the pivot point only 
one is necessary for each. An unfortunate complication in the model formulation is the need to consider the relative 
motion of the bus and the center-of-mass, and this introduces a coupling between the flexibility of the booms, that is 
represented by the time-derivative of the bus angular velocity with respect to the center-of-mass. Analysis of the 
rigid model's behavior showed that the rate of drift in center of mass, even with a large twin-asymmetry, was 
extremely small and as a result the associated coupling terms in the flexible equations are multiple orders of 
magnitude smaller than the dominant relationship. Additionally, the decay of co 3  due to extrusion was observed to be 
quite small in comparison to its magnitude. It would seem, then, that it is reasonable, in the first-order model, to 
neglect the two features that make this problem unlike a flapping rotor, and simply use the decoupled flapping rotor 
equations for each boom given by: 

M  A ± MCF MCOR + MI + M M BA + MBL =0 
	

(3 ) 

Where MA is the applied moment on each boom due to solar pressure transferred from the adjacent sail quadrants, 
McF is the moment due to centrifugal force, MCOR  is the moment due to Coriolis acceleration, M1  is the moment due 
to boom inertia, MR is the moment due to the restraint at the pivot, MBA is the moment due to body angular 
acceleration, MBL is the moment due to body normal acceleration. For a given boom by substituting the general 
equations for each constituent moment and simplifying, Equation (3) becomes: 

,  • 6 = 2 1 Li _ -1(' i ' + =81'n  (W — Uco2  + Vo), )— 0)3 2  COS fl sin fl 

	

I 	I 	I 

	

# 	# 	# 
+ (th2  + 2co i c03 ) cos P + (th l  — 2co2 co3 ) sin 'P 

(4) 

The new terms seen in Equation (4) are defined by the subscripted I, m, and K terms and refer to the mass-moment-
of-inertia, mass, and restraint stiffness respectively of the particular flapping boom (deployed boom and tip are 
included in this calculation). The angle p is defined as the deflection angle due to flapping, positive downward, and 
4' is the azimuth angle of the boom with respect to the defined x-axis of the spacecraft. The U, V, and W terms come 
from the need to describe the motion of the body as a whole and are defined as the velocity vector of the spacecraft 
relative to the inertial origin. The need for these terms requires a modest addition to the previously defined rigid-
body model, as it is now necessary to know the acceleration and velocity due to solar pressure, where before only 
pure rotation was required. It should be noted, that while the azimuth angle in a typical rotor problem is changing for 
the case of a spinning blade, the four booms comprising the square solar sail each have a fixed azimuth that is well 
known in the problem formulation, further simplifying Equation (4) as it is used specifically for each boom. 
Additionally, the eccentricity of the pivot point with respect to the rotating center-of-mass has been neglected, to 
remove the need for a reformulation of Equation (4) with the consideration of a 3-D eccentricity. This omission is a 
clear candidate for revision in future work. 

While it is necessary to make numerous simplifications to describe the flexible solar sail as a flapping rotor 
blade, the benefit of abstracting a relatively unique spacecraft into the realm of well-known rotor mechanics 
solutions is clear. Additionally, with the derivations behind the equations readily available, additions to the 
complexity of the problem should be feasible, and while tedious and time consuming, a modest level of model 
fidelity can be reached. 

C. State-space Representation 
The computational capabilities of the Matlab software naturally led to the use of the state-space method to 

convert the equations of motion to a set of first-order differential equations that could be integrated in Simulink. 9  
Just as it was possible to derive a modular system of dynamic equations, it is equally useful to develop a state-space 
representation of the system readily capable of expansion or truncation as desired. 
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1. Rigid-Body States 
Choosing state variables for the rigid-body equations of motion follows naturally from the need to find the 

angular velocity of the body and the desire to know the attitude in the inertial-frame. Due to the relative motion 
between two frames of reference, {ca b'} is not directly given by the first time-derivative of the attitude provided by 
the Euler angles. Consequently a transformation must be determined using the Euler angles themselves. 

— sin y.f, 
cos y, sin y3 

 cos y, cos y3  

0 
cos y3  0 

— sin y3  0 
Iv/I=V1{0 (7) 

    

The column matrix Opl is made up of Euler angles with 1, 2, and 3 subscripts referring to yaw, pitch, and roll 
angles, respectively (reference Fig. 2). Equation (7) provides a useful relationship between two desired quantities 
and makes it clear how the desired state variables will actually be defined: 

= {cm} 
(8) 

X2  = {Whl  

The first derivatives of the state vectors are given by: 

[Trx2 

(9) 

zZ = kb1 1 {{m}—[ih]{x ,}— Ix21x kix2}} 

The second portion of Equation (9) is provided by substituting Equation (8) into Equation (2) and solving for the 
desired variable. It is now possible to compute the first-derivatives of the state variables directly and simply 
integrate them numerically in Matlab. For these equations a fixed-step fourth-order Runge-Kutta integration method 
was utilized, with very stable results. 

2. Flexible States 
The inclusion of a flexible mode involves the addition of three additional states in order to reduce Equation (4) to 

a set of first order equations, with the additional states involving the velocity relative to the inertial frame. The states 
are written as: 

 

UV } 

x3  = 

 

X4 = 

5 X = 

and the first-order differential equations become: 
. 	1 	r, 

= 	tutor I 
mum 

xa = x5 

X5 = 
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with the first-order equation for x 5  based on Equation (4), with individual boom values substituted appropriately, and 
with azimuth specified as follows: 

= 0 °  

= 90°  
(12) 

1113  = 180 °  

= 270 °  

the resulting set of five first-order differential equations provided by Equations (9) and (1 1) lend themselves to 
convenient integration in Matlab, again using a fourth-order Runge-Kutta integration algorithm with satisfactory 
numerical stability. 

III. Simulation 
The simulation consisted of the implementation of Equations (9) and (11) in Matlab m-files with integration 

performed using Simulink. This structure lent itself well to the expansion from a rigid-body model, utilizing 
Equation (9) exclusively, to a first-order flexible-body model involving all of the equations described thus far (seen 
in Figure 5). The use of a powerful interpreted language like Matlab was appealing, but an unfortunate consequence 
of the use interpretive programming languages is the long execution time. 

Figure 5. SIMULINK diagram for flexible solar sail deployment model. 

A. Model Verification 
The modular approach to the problem, depicted in Figure 5, allowed for extensive verification throughout the 

development process. As individual modules were developed, they were each tested to verify that they produced the 
expected outcome for a given set of circumstances. Specifically, all mass-moment-of-inertia functions were shown 
to return positive-definite matrix outputs. The function computing center-of-mass offset was verified to provide the 
correct offset for a given asymmetric geometry due to the complex assortment of constituent components. 
Additionally, sign conventions were checked for validity, ensuring that a given applied moment provided the 
expected changes in orientation. 

After the internal components had been verified, it was possible to check the validity of the larger model. Initial 
validation was performed on the rigid-body model by first ensuring that a symmetric deployment did not develop a 
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moment due to center-of-pressure offset for the center-of-mass (would be zero for true symmetry) and that it did not 
alter its orientation at all as a result. Additionally, the zero asymmetry condition was given an initial spin (co 3 , 
reference Fig. 4) to verify that this spin would simply deteriorate due to extrusion without causing spin about any 
other axis. It was then prudent to verify that the outcome of a given single asymmetry would be identical no matter 
which boom was chosen to be different. Verifying that the roll induced around the b 1-axis was identical to the pitch 
induced about the b 2-axis was important not only for verifying that the Euler angles commuted in the presence of a 
single rotation, but also the direction of asymmetry did not affect the fmal result. If the opposite were true it would 
be tantamount to a flight dynamics problem where the heading was of consequence, a conclusion that would clearly 
be incorrect. A twin asymmetry was also tested to demonstrate that the presence of two moments will cause spin 
around all three axes. All of the above results confirmed the validity of the rigid-body model when verified against 
the expected outcome of the expansion of Equation (2), where it is easy to recognize what conditions cause changes 
in the spin about each axis. 

The verification of the flexible model was slightly more involved. With so many components to Equation (4) it 
was necessary to test situations that would involve as few pieces as possible until confidence was gained that the 
appropriate outcome occurred. The first step was to verify that expected outcome of the applied moment at the 
reaction of the spring at the root used as an approximation for the first degree of boom flexibility. This was 
accomplished by testing a situation where all values for angular velocity were set to zero, and the expected result of 
an oscillator with no damping was seen. Next, the effect of body-normal acceleration was checked by removing the 
MBL term from Equation (3) and observing the result. As expected the absence of this moment showed an increase in 
boom deflection, reflecting the fact that as the spacecraft accelerates due to the continuously applied load the 
moment seen at the pivot point is effectively reduced. 

The effects of the moment induced by centrifugal force were observed by spinning a symmetrically deployed 
spacecraft and noting that the deflection of the boom was reduced throughout the deployment process, with the final 
oscillation occurring around a lower average value. The result is shown in Figure 6 where the anticipated result is 
clearly depicted. The effect of Coriolis forces were difficult to evaluate but were present while the spacecraft was 
under the influence of rotation around multiple axes simultaneously. Additionally, the effects of the moment due to 
body angular acceleration were observed to produce satisfactory results. 

	 No Spin 

	

0.25 	 — India/ Spin )0.1 Hz) 	 J 	L' 
• D.2 	  4,  

	

0.15 	  

	

1 0.1 	 J 	 _L  

• 0 05 	 I 	 I 	 J 	 1  

—f--  
500 	 1000 	 1500 	 2000 	 2500 

	
3000 
	

3500 
	

4000 
	

4500 
Deployment Tone, , 

Figure 6. Effect of centrifugal forces on boom deflection of a symmetrically deployed solar sail. 

B. Simulation Results 
The desired outcome of the research effort is to define the conditions necessary for a successful deployment 

while taking into consideration a range of possible deployment problems. For the purposes of initial data gathering 
and analysis, nominal deployment criteria were required because an open-ended range of configurations were 
available to choose from. The nominal deployment time chosen for all work was 3600 seconds. The mission 
requirement for this style of spacecraft has a hard upper limit of two hours for a completed successful deployment 
due to the heating and pressurization requirements. This implies that the portion of deployment involving unpacking 
and extrusion must be achieved significantly sooner, allowing the verification of success and the eventual 
dissipation of any structural excitations induced by extrusion and external forces. To provide an ample window for 
such opportunities a nominal deployment time of one hour (3600-s) was chosen, as this was seen as a reasonable 
compromise between the upper limit and the potentially faster deployments possible if higher levels of 
pressurization were used to induce more rapid extrusion. Clearly, it is beneficial to deploy as quickly as possible to 
reduce the window of time in which the spacecraft can be affected by asymmetry. As such, one hour also presents a 
"worst-case" when compared to the faster rates that might be possible. 

Boom 1, shown in Figure 7, was chosen to possess the nominal boom length at all times with extrusion 
asymmetries possible in the other booms. This choice is, of course, arbitrary as the earlier validation showed that 
any occurrences are ultimately free from bias as to which boom was asymmetric. Another important distinction is 
that, while any set of asymmetries can be chosen for use in the simulation, only two classes of asymmetry were 
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studied. The first is the choice of boom 2 (reference Fig. 7) as a single asymmetric boom with the length of 
asymmetry defined as A and taken to be longer than the other three booms. This type of asymmetry develops a 
single moment, about the b,-axis (reference Fig. 4) and, if no initial spin is present, only causes rotation about one 
axis. The second configuration chosen for analysis is that of a twin asymmetry in which booms 2 and 3 are both 
longer than boom 1 by length A (reference Fig. 7). While this does present a plane of symmetry on one diagonal of 
the body, it was a more natural first step than introducing further parameters at this point of the research. 
Additionally, choosing the two booms at the same length, means that the moment developed around each axis will 
be maximized, enforcing the "worst-case" approach desired in this type of analysis. 

Figure 7. Definition of chosen asymmetries. 

It should additionally be noted that a given asymmetry during the simulation was fixed for the entire deployment 
process, i.e. all four booms were given an identical rate of extrusion, with the chosen initial asymmetry present for 
the full length of deployment. This process assumes that as the boom pressurizes following initial unpacking it is 
subjected to a step asymmetry that is then maintained. While othertypes of asymmetry are possible (i.e. different 
extrusion rates), all will produce a change in the offset between the center of pressure and center of mass. Since the 
focus of current research is on the development of trends associated with this offset, the end result of any type of 
asymmetry should all lead to the same conclusion, allowing for the chosen conventions to provide general results for 
the given problem. 

It was necessary to find a useful value for stiffness in the flexible model. A trade study (reference Fig. 8) was 
performed for the deployment of the flexible model with no asymmetry present with Bending Failure defined by the 
bending slope exceeding 12°, effectively placing the current model outside the limitations imposed by its defining 
assumptions. It was noted that acceptable levels of bending were present in the steady-state solution for the stiffness 
value of K = 2.9619 N-m/rad. With the stipulation that the boom is only 1-m long, this value lies very close to the 
initial computed stiffness using the approximation for flexural rigidity of the boom based on the modulus of the 
lining material and the area-moment-of-inertia of the boom cross section. Clearly, though, if such a value were 
mandated as a permanent flexural rigidity of an equivalent beam, once the boom has extruded to a full length of 
70.7-m it would be very soft indeed. To mitigate this effect, the trade study yielded a value for K (shown in Fig. 8) 
that ensures the maintenance of a linear bending condition in the steady-state. 
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Figure 9. Deployment failure time due to asymmetry with no initial spin. 
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IV. Discussion of Results 
Given the trends of Figure 9 and 10 it is worth investigating other aspects of deployment in order to determine 

the underlying causes. Two cases were considered in this more in-depth analysis, one providing a more conclusive 
result for the effects of spin stabilization on the rigid model, and a second delving further into the effects of spin 
stabilization on the flexible body. 

In the first case, a 2-m twin asymmetry was considered in order to provide a condition under which a moment 
was applied around two of the three body axes, with 2-m considered to be a realistic level of deployment asymmetry 
in practical application. With no initial spin the rigid spacecraft was consistently seen to gradually increase roll and 
pitch attitude until orientation failure of 45° in either Euler angle of interest was reached. This is expected due to the 
similarly gradual increase in the applied moment, and, in and of itself, provides no new insight. 

The more interesting result stems from the behavior of the spacecraft when spin stabilization is provided. As 
expected from Equation (2), oscillations in both pitch and roll angle are seen, with a gradual drift toward failure at a 
much later time than if no spin were present. Figure 11 graphically displays the benefits of spin stabilization on the 
rigid spacecraft, but it is interesting to note that the roll angle varies by more than 20° peak to peak, implying that 
less spin may provide a satisfactory steady state outcome if transiently passing through the defined critical angle 
were not problematic and if the final orientation was still considered acceptable. 
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Figure 11. Evolution of orientation of spacecraft with 2-m twin asymmetry, with and without initial spin. 
With assertions regarding the rigid-body model confirmed and explained, it is now possible to apply this to 

expand the understanding of the flexible model. Figure 12 displays the effect of spin stabilization on the attitude of 
the flexible spacecraft with a 2-m twin asymmetry. While nothing should lead one to believe that the body-
orientation conserving effects of spin stabilization would be entirely lost on a flexible body, it is useful to make a 
note of it, nonetheless. It is worthy of note, as well, the considerable attenuation achieved by even a modest initial 
spin such as 0.01 Hz, with very little degradation in attitude seen, even two-thirds of the way through the 
deployment process. 

Figure 12. Roll angle of flexible spacecraft with 2-m twin asymmetry, with and without initial spin. 
Figure 13 depicts the consequences of spin stabilization on the flexible asymmetric model. Unlike the symmetric 

case shown in Figure 6, in which the effects of spin were modestly beneficial, in the presence of asymmetry the 
moments due to Coriolis forces and body angular momentum come into play. A clear trend was seen that as initial 
angular velocity was increased, for large enough asymmetries, the magnitude of rotation exceeded the value defined 
for bending failure. It might be tempting to draw a correlation between the depicted increasing oscillation and the 
excitation of the natural frequency of the boom, but it should be recalled that the boom is evolving, continually 
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increasing the applied load and sustaining no oscillatory disturbances. Additionally, one of the interesting features of 
an evolving structure is the fact that the natural frequencies will evolve as well. This reduces the possibility of 
extended interaction between a disturbance and a given mode, but ultimately increases the likelihood that 
disturbances could coincide with a natural frequency at some point in the deployment process, if for however brief a 
moment. One clear aim in future work is to assess the effect of the deployment rate itself on stability of the flexible 
model to see if it is necessary to move quickly through certain deployment regimes to guarantee a safe deployment. 
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Figure 13. Boom deflection of flexible spacecraft with 2-m twin asymmetry, with and without initial spin. 
The result of the comparison between Figures 12 and 13 is that, at this point, it cannot be stated conclusively 

that spin stabilization would be beneficial. In fact, the obvious potential exists for initial spin to become problematic 
to model stability. This is due to the consistent presence of potentially undesirable moments that arise from the spin 
about multiple axes if an asymmetry occurs. This unique feature of an evolving structure is clearly a topic for further 
analysis with higher order models to discover how pervasive the effects really are. It is entirely possible, however, 
that with this type of problem spin stabilization is not a viable option due to the fact that it consistently excites the 
structure in the presence of exactly the conditions it was trying to alleviate. 

V. Conclusion 
A simple model for the dynamic response of an inflatable solar sailcraft during deployment has been developed 

and tested for several distinct scenarios. The basic kinematics for the model were formulated in a deliberate manner 
that in future studies will allow systematic increases in model fidelity (and complexity) while at the same time 
leading to a straightforward implementation as a state space model in Matlab/Simulink. Despite the low order of the 
current model, clear trends were evident. It was shown that including flexibility in the form of rotational springs at 
the boom-bus interface was detrimental to the overall robustness of deployment. This suggests the need for higher 
order models to discover how problematic such effects could actually be. It was shown that spin stabilization, while 
beneficial to the rigid-body dynamics in every case, seemed to be detrimental to the flexible dynamics when angular 
velocity was increased above a certain initial magnitude. Again, this presents a clear path for future development 
and the need to investigate further what effects may contribute to the excitation of the flexible modes. Other areas to 
consider include orbital or gravity gradient effects to the rigid-body dynamics. Each step of the way it will be 
important to continually revisit these initial trends to reassess later developments as well as actively relaxing the 
assumptions in place to always ensure an increasing level of model fidelity. 
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