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ABSTRAcr 

A large experimental lightweight manipulator would be useful for 
material handling, for welding, or for ultrasonic inspection of a large 
structure such as an airframe. The flexible parallel link mechanism 
is designed for high rigidity without increasing weight . This 
constrained system is analyzed by singular value decomposition of . 
the constraint Jacobian matrix. This paper presents a verfication of 
the modeling using the assumed mode method. Eigenvalues and 
eigenvectors of the linearized model are compared to the measured 
system natural frequencies and their associated mode shapes. The 
modeling results for large motions are compared to the time 
response data from the experiments. The hydraulic actuator are also 
verified. 

1. Introduction 

A large, two link flexible manipulator designated RALF 
(Robotic Arm, Large and Flexible) that has been constructed in the 
Flexible Automation Laboratory at Georgia Institute of Technology 
is shown in Fig. 1.1. The structure consists of two ten foot long links 
II)ade of aluminum tubing actuated by hydraulic cylinders. The outer 
link is driven using a paraUel link mechanism. This large 
manipUlator can effectively reach a much larger workspace than 
traditional robots. Such a configuration would be useful for material 
handling, welding, or ultrasonic inspection of large structures such as 
airframes. Using lightweight design concepts, it is possible to 
construct large manipulators with low power consumption and high 
load to weight ratios. 

Figure 1.1 RALF 
(Robotic Arm, Large and Flexible) 

In a conventional serial link mechanism, the outer link is driven 
by a motor attached at the tip of the inner link. The weight of the 
second motor must be carried by the first link This increases the 
torque and power the first motor must provide. EspeciaUy 
noticeable in lightweight arms is the increased structural vibration 
due to the weight and reaction'torque of the second actuator. To 
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reduce these interactive effects, the rigidity of lower link should be 
increased. An alternative to serial link robot construction is 
utilization of a closed kinematic chain, such as a parallel mechanism. 
Although a variety of research topics on serial link mechanisms can 
be found in robotics literature, the research on constrained systems 
such as closed chain mechanisms is rare and is mostly concerned 
with rigid manipulators. The parallel mechanism with rigid links has 
,a simple relationship between its generalized coordinates. 
However, a parallel mechanism with flexible links has a complicated 
nonlinear algebraic constraint equation. To solve these mixed 
differential and nonlinear algebraic equations, an efficient and stable 
computational method should be used. 

The special case when the closed chains are parallelograms was 
,studied extensively by Asada [1]. Megahed [2] and Luh [3] derived 
the equations of motion by the Lagrange and Newton-Euler 
methods, respectively. However, a computationaUy efficient 
algorithm for inverse dynamics of closed chain mechanisms is 
required. Chung [4] derived the equations of motion of lightweight 
arms with flexible parallel links, but assumed that the actuating link 
and the inner link had the same mode shapes so that constraints 
need not be considered. 

Solving a mixed set of differential equations of motion 
(dimension n) and nonlinear algebraic equations of kinematic 
constraint (dimension m) is difficult and the methods are not yet 
fully understood. Nikravesh [5] reviewed three integration 
algorithms for this purpose. These are the direct integration 
method, the constraint violation stabilization method, and the 
generalized coordinate partitioning method. The first two methods 
are sensitive to initial conditions on the system. In the third method, 
the generalized coordinates are partitioned into independent 
(dimension n - m) and dependent (dimension m) sets. Numerical 
integration is carried out for independent generalized coordinates. 
Constraint equations are solved for dependent generalized 
coordinates. The choice of the correct initial conditions is not 
critical and the dimension of the equations of motion is minimum. 

When partitioning generalized coordinates, an important 
consideration is the choice of independent generalized coordinates. 
An arbitrary selection of independent genera1ized coordinates often 
results in ill-conditioned matrices. Wehage [6] identified 
independent generalized coordinates using LU partitioning of the 
constraint Jacobian matrix. Mani [7] and Singh [8] used singular 
value decomposition. Kim [9] used OR decomposition. A unique 
and accurate independent generalized coordinates can be obtained 
from the last two methods. Furthermore, singular value 
decomposition is a more robust algorithm than the OR method and 
has a variety of applications in linear control systems. 

This paper presents a verification of the modeling using the 
assumed mode method. First, the results from a linearization of the 
model about zero velocity are compared to measured system 
frequencies and their associated mode shapes. Next, the modeling 
results for large motions are compared to the time response data 
from the experiments. Finally, the hydraulic dynamics are also 
,verified. 

2. Derivation of constrained dYnamic equations 

2.1 Constrained Equations of Motion 



To analyze a closed kinematic chain system, one joint of the 
flexible parallel link is virtually cut to form an open tree structure. 
An equation describing the constraint force at the point where the 
cut was made is then required. For this manipulator, the cut is made 
at the joint between the actuating link and the upper link. 
Lagrange's equations and the assumed mode method is used for 
deriving the equations of motion of this open tree flexible structure. 
In order to describe the motion, the reference frame is defmed as 
shown in Figure 2.1. The absolute position vectors of an arbitrary 
point on each link are described by the following: 

.... .... .... .... 
r R + U + U (2.1) 

ri fi 

where Ri is the position vector of the origin of the reference body 
with respect to the global frame, Uri is the undeformed position 
vector, and ilfi is the elastic deflection vector. U Ii is composed of a 
linear combination of an admissible shape function, W ,multiplied by 
time dependant modal coordinates: 

.... n 

Ufi(x,t) =j~l Wij(x) qfij(t) (2.2) 

Assuming that the amplitude of the higher modes of flexible links 
are much smalIer than the amplitudes of the frrst two modes, the 
system can be truncated with n equal to 2. 

,-\, 

\ 
Figure 2.1 

Coordinate Systems of Assumed Modes Model 

The kinetic energy, Ti, of each element is ohtained from the 
velocity vector of the infinitesimal volume: 

T. 
1 

(2.3) 
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The strain energy, which is stored ·in the flexible mode, can be 
attributed to the elastic stiffness, Ki, which is evaluated by 
integration over the length of the beam: 

K. 
1 

(EI) . W. . dx J 
II 2 

1 lJ 
(2.4) 

The potential energy, Vi, of each element is composed of the strain 

energy and gravity force: 

V. 
1 

(2.5) 

where E is Young's modulus of elasticity, and I is the area moment 
of inertia. 

The governing dynamic equations for the 'system are derived 
through Lagrange's equations: 

dT dV 
-- +-

dq. dq 
J 

(2.6) 

The algebraic complexity in applying Lagrange's equation can be 
overcome using a symbolic manipulation program (11). The open 
tree system is constrained by a set of nonlinear algebraic constraint 
equations. These constraint relations can be adjoined to equations 
(2.6) using Lagrangian multipliers. The resulting dynamic equations 
can be rewritten in partitioned form in terms of the rigid and flexible 
coordinates: 

M f] 
M~f 

(2.7) 

where subscripts r and f denote rigid and flexible coordinates, 
q is the generaIized coordinates vector, M is the generalized mass 
matrix, K is the elastic stiffness matrix, q; is the constraint Jacobian 
matrix, ). is the unknown constraint (orce vector and Q is the 
generalized force vector including Coriolis, centrifugal and gravity 
forces. The m holonomic constraints are applied to the virtually cut 
joint as 

q; (q) • 0 (2.8) 

or 

q; (q) q = 0 (2.9) q 
where 

8q; q; = aq (2.10) q 

The initial condition must be consistent with system constraints. 
therefore: 

(2.ll.a) 

(2.11.b) 
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2.2 Sin!!ylar Value Decomposition 

for Constrained Dynamic Analysis 

The m x n constraint Jacobian matrix ~ with m < n can be 
decomposed into the form q 

~ u }; yT 
q (2.12) 

or with proper partitioning [101: 

(2.13) 

where Ui and Vi are orthonormal bases for four fundamental 
subspaces. The ~ is equal to dIag(O'1' O'z, .... O'm) where the O'j'S 
are called the singular values of matrix ~ • ordered . 
a1 ~ 0'2 ~ ... > O. The columns ofti are the orthonormal 
eigenvectors of the symmetric matrix ~qT~q and O'i2 are the 
corresponding eigenvalues. The columns of Vi are the orthonormal 
eigenvectors of the symmetric matrix ~q~q T. It is noticeable that 
\'2 is the null space of ~ q which satisfies the following relation: 

o 

and ~ q +. called the pseudo inverse of ~ q , is dermed as 

~ + = [Y Y l[ };-1] [uTj q 12m 1 

o U
T 
2 

(2.14) 

(2.15) 

Using the nullity of ~q V2, an algorithm which eliminates the 
constraint forces from the equations of motion can be developed. 
Premultiplication by V2T in equation (2.7) gives 

T .. T 
Y2 M q + Y2 K q (2.16) 

since ~q V2 = O. Because the dImension of equation (2.16) is (nom) 
x n, an additional equation is needed to get the solution. A new 
variable. Z, is dermed which is a constrained independent coordinate 
·.vith dImension' nom. Then V2 z is the homogeneous solution to 
equation (2.9). That is. 

q (2.17) 

Geometrically. equation (2.17) is the projection of the velocity 
vector. <i, onto the tangent hyperplane of the constraint surface. 
Similarly. the time derivative of equation (2.9) gives 

~ ., 
q q _(~) .2 

q q q (2.18) 

Due to the nullspace of ~ q' V 2 Z is also the homogeneous solution to 
equation (2.18). Then Ii can be written as 

q -~ +(~ ) q.2 + Y
2 

Z 
q q q 

(2.19) 

Physically. the first and second terms on the right hand side of 
equation (2.19) represent the normal and tangential accelerations. 
respectively. By integrating equation (2.17). q is expressed as 
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q (2.20) 

where the constant C is chosen as zero to satisfy the constraint 
equation. Hence. the following nom independent equations can be 
derived from equations (216), (217) and (2.19) 

(2.21) 

And q and q are calculated using equations (2.20) and (2.17). 
These equations are used for the nonlinear dynamic simulation. 

3. Natural Frequencies and Mode Shapes 

Natural frequencies and mode shapes can be derived from 3-

linearized equations of motion. Eigenvalues and eigenvectors arc 
obtained from the equations of motion of the reduced equations 
(2.21) linearized about zero velocity. 

o (3.1) 

Eigenvalues of (3.1) are the same as those of the constrained 
equation (27). Eigenvectors of the constrained system are derived 
by transforming those of (3.1) as 

q (3.2) 

For numerical analysis. selection of mode shape functions is 
necessary and may greatly influence the results. Clamped 0 mass 
boundary conditions are assumed for the lower link mode shape. 
Clamped 0 free boundary conditions are used for the upper link and 
pin 0 pin boundary conditions are used for the actuating link. 

In previous work [121. the natural frequencies were derived by 
flexible part of unconstrained equations: 

o (3.3) 

But, more accurate results were obtained by considering that the 
lower link bending is affected by the actuating link's rigid motion. 
The constrained dynamics ineluding the actuator link motion is 
needed. When the actuators are fIXed, velocities of 91, 92 are zero. 
New constraint equations between 93• 94 and the elastic coordinates 
are needed. The elements of the mass matrix related to 910 92 0 the 
first and second columns and rows 0 are deleted. The dynamic 
equation can be rewritten as 

o (3.4) 

From these equations, natural freq'!encies are calculated. 
Eigenvectors are obtained by transformation, V2 Z. As shown in 
Table 3.1, the frequencies including the constraint are closer to the 
FEM results. The second natural frequencies of each link do not 
match the FEM results because only two modes are included in the 
assumed mode method. 

The results derived by the assumed mode method are compared 
with FEM results 0 a simplified model and a detailed model 0 and 
experimental results in Fig. 3.1. 
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FEM CONSTRAINED UNCONSTRAINED 

7.8l 7.84 8.17 

15.90 16.90 17 .80 

lO.76 lO.70 lO.OO 

94.68 104.00 104.00 

119.50 120.00 120.00 

12l.2l 127.00 127.50 

Table 3.1 
Comparison of natural frequencies 

between constrained and unconstrained equations 
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Figure 3.1 
Comparison of mode shapes and 

natural frequencies 

experiment 

The differences between the simplified FEM model (model 1) and 
the detailed FEM model (model 2) are bracket offsets. These 
offsets make some discrepancies between the simplified models 
(assumed mode model and FEM model 1) and actual models (FEM 
model 2 and experiment). The results of the experiment and FEM 
model 2 have similar mode shapes, but the frequencies are different 
because the damping in the actual system changes the boundary 
conditions of each link. To get more accurate results, the mode 
shape function of the assumed mode method should be computed 
from the FEM model. 
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4. Verification of Nonlinear Dynamics 

4.1 Hydraulic Actuators: As a more detailed model of the 
manipulator was developed, a more accurate model of the hydraulic 
actuators was needed in order to accurately simulate the time 
response of the manipulator. Texts on modeling suggest that a third 
order model of hydraulic actuators is sufficient to describe their 
response up to their bandwidth even though the actual order is 
considerably higher. Two series of tests were made to measure the 
response of the cylinder position to a swept sine input. The tests 
included the open loop response, the closed loop response, and the 
closed loop stiffness response. The procedures used closely follow 
test methods outlined in Merritt [13]. 

The first series of tests were made with the actuator detached 
from the structure. A second series of tests were made with the 
actuators attached to the structure. A simple proportional only 
analog controller was used for the position loop control. A gain was 
chosen that would give a margin of stability and an appropriate 
bandwidth. This same gain was then used for all subsequent tests. 
When the digital controller was implemented on a Microvax II 
computer, an equivalent gain was chosen so that experimental 
results could be directly compared to the simulation results. Table 
4.1 summarizes the results of these tests of the actuator. 

Joi nt 1 ActUator Joint 2 Actuator 

detached attached detached attached 

Open Loop 
Gain 127.8 79.6 72.2 

Closed Loop 
Bandwidth 18.6 Hz 17.8 Hz 18.8 Hz 

Gain Margin 8.6 db 10.6 db 7.5 db 

Phase Margin 41.1 deg. ll.l deg. 59.8 deg. 

Table4.~_ 
Acutator frequency response data when 

attached to and detached from the structure 

51.7 

17.2 Hz 

14.6 db 

64.9 dog. 

FIgUI'e 4.1 shows the closed ioop Bode plots of the response of 
the Joint 1 actuator to the swept sine input both when attached to 
and when detached from the structure. The similarity of these plots 
shows that the structure's influence on the response of the cylinder is 
small. That is, at the point of attachment, the manipulator follows 
the movement of the actuator very closely. Figure 4.2 shows the 
actual response of the cylinder verses the response computed from a 
third order curve fit. Again, the plots are very similar up to the 
bandwidth of the actuator. The Bode plots for the second joint 
actuators also show good agreement. The graphs are not included 
here for the sake of brevity. 

. 4.2 Simulation Results vs. EXlJerimental Resl!.!1§ 

Because the rigid body motion of th(~ arm is dominated by 
hydraulic actuator dynamics, the time response of the rigid body 
motion of the arm can be derived from the frequency response of 
hydraulic actuator. From Bode plot curve fitting, hydraulic actuator 
dynamics can be approximated by a 3rd order system. 

HI (s) = --;-::( S:--+ -=3-=-0 -::. 3:-=77") -:(-=-S -+-g=-.-=-O-±---:-j -=1-=-6 -::. 5:7"") (4.La) 

1 
H 2 ( 2 ) = ---:--:( S=--+ """3-=-3 .-=5---7):--:-( S=--+ =-2-1-±-J-' -23-.-0-7) (4. Lb) 

The calculated time response of this transfer function for a sine 
input and an arbitrary input function match with the measured 



actual path as shown Fig. 4.3. The flexible motion of the arm is 
excited by acceleration of the rigid body. Flexible dynamics are 
derived from (2.16) 

q + q Q (2.16) 

or 

f
M . 
~rr 
-fr 

Mj["J [0 K l[J -rf qr -rf qr 
+ 

~ff qf 0 ~ff qf 

(4.2) 

Flexible motion can be derived as 

(4.3.a) 

or 

(4.3.b) 

where iir are chosen from desired the acceleration path function. 
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FIgure 4.1 
Closed loop 130de plots 

A variety of movements of the manipulator were used for 
verification. FIrst, a single link was moved while holding the other 
link fIXed. Then both links were moved simultaneously. The desired 
path of the links was sinusoidal in joint space. All of the tests were 
made with no payload because the first two system modes are more 
clearly separated with no loading. Both the amplitude and the 
frequency of the movements were varied in order to compare the 
experimental results with the predicted results. During the 
movements of the manipulator, the following measurements were 
made: 

1025 

)-CURVE ~JT 
". C 

.. 

Cylinder 1 1. measured data 
2. curve fit 

,",iII'lIt£Q RE.,. Cylinder 2 . L measured data 
2. cuncfil 

I-CU"'V ill'JT 
•• C 

•• C 

":'0.0 

-ao.o 
F •• XY ,-;,o;CCo::_~ ............... '-I.LL--';:"".;;.;"';t,M,,,,,,,u.J...-............. ~tif 

rJgUre4.2 
3rd order curve fit of actual Bode plot 

: des I red ang I e 
: Simulated angle 
: measured angle 

CI'1..NlERl 

~4 ci .. k i-
ll€: (Sa:.) 

i.. i. 

desired angle 
Simulated angle 
measured angle 
C,'!.Nl:R 2 

ct. oa i;~""""'---;:.~ 
1),£ (Sa:.) 

Figure 43 
Time response of the rigid body motion 



1. Joint angles 
2. Displacement of the cylinders (L VDT) 
3. Differential pressure in the cylinder 
4. Strain at the midpoint in each link 

Due to the high gains required to increase the closed loop 
bandwidth, small disturbances had a large effect on the movement 
and measurements made. The analytical model assumes that there 
are no disturbances and that the structure is ideal. This is never the 
case with actual systems. The effect of each disturbance can be seen 
in the measurement of the bending strain. In this section these 
discrepancies will be examined and their causes explained. The 
agre~ment of the model with the experimental results will also be 
exammed. 

To compare the actual movements with the simulated results 
the primary ~easurements were the displacements of the CYlinder~ 
and the stram measurements. The displacement measurements 
show the rigid body motion. The strain measurements show the 
flexible motion. Figure 4.4 shows a typical plot of the experimental 
measurement of strain in the lower link in which the effects of the 
flexible motion can be clearly seen. 

. . Figure 4.4 
TypIcal stram measurement in lower beam 

In the following figures, a comparison of the results is shown for 
one cycle of motion. As might be expected, there were some 
discrepancies between actual and predicted results. However, the 
results showed similar trends and the discrepancies can be explained. 
Generally, the measured strain in the lower link matches the strain 
predicted. The results for the upper link do not match as closely 
because there are no simple theoretical boundary conditions that 
match the actual boundary conditions and because only two mode 
shapes are used. Figure 4.5 shows the strain in links when both links 
are moving. 

In Figures 4.5a and 4.5b the strain in the lower link has the 
same general shape in both the experimental and theoretical results 
except for the disturbance at the peak of the movement. Both plots 
show that there is little damping in the lower link and that the 
vibration of the upper link has little effect on the vibration of the 
lower link. The disturbance in the measured strain was found to be 

caused b~ a w~m bearing. in the actuator cross support (82 in Fig. 
2.1). A Jump m the stram measurements occurs everv time the 
upper link changes direction. The jump is most clearly ~een in the 
strain of the lower link when only the upper link is in motion as is 
shown in Figure 4.6a, but is noticeable in every measurement: For 
example, Figure 4.5c shows a disturbance in the strain in the upper 
beam, at the same time that the disturbance occurs in the lower 
beam. 

Fig~re 4.6 shows the strain measurements in the upper and 
lower lInks when only the upper link is moving. The first 

1026 

dJscrepancy noticed is the jump in sttain. Again, this was caused by 
the mechanical looseness in the actuator cross support. The 
similarity in the strain in the lower link, Figures 4.6a and 4.6b, is 
that both plots show little damping for the cycle of motion. Figure 
4.6a shows more effect of the upper link's vibration than is predicted 
by the mode~ Fig. 4.6b. Figures 4.6c and 4.6d show the strain in the 
upper beam. The measured strain in the upper beam clearly shows 
the effect of two disturbances. The first disturbance has already 
been discussed. The second disturbance, point A in Figure 4.6c, 
occurs at the maximum velocity and zero acceleration. A pure 
inertia load would display lost motion (bacldash) at this point in the 
motion cycle. The reversal of differential pressure in the cylinder is 
another possible explanation for the observed disturbance. The seal 
deflection can result in behavior similar to backlash. Fig. 4.7 shows 
th: contrOl. ~ignal, strain, desired cylinder position, and actual 
cylinder poSItion for 92 motions. The timing of the events is more 
obvious on this plot. Measurements of the differential pressure in 
the cylinder show that there is a 150 psi pressure variation 
conc~rrent ~th the disturbance. This may seem insignificant, but 
expenence With the structure has shown that- any disturbance seems 
large. be~use of the lar~e s~ of the struct~e and the use of large 
amplification of the stram SIgnals. Without the effect of these two 
disturbances, the decrement of the amplitude of the strain in the 
experimental results would match fairly well with the decrement of 
the predicted strain as shown in Fig 4.6c and 4.6d. 

It is obvious from these experiments that the experimental 
results do not exactly match the theoretical results. However, there 
is enough agreement in the general trend of the vibrations and their 
amplitudes when the disturbances are ignored to realize that the 
experimental results and the theoretical results can match if further 
efforts are made to reduce the disturbance in the experimental data. 
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Figure 4.7 
The composite plot of .. 

control signa1,strain, and positions 

. 1. control signal 
2. upper link strain 
3. desired cylinder positioD 
4. actual cylinder positioD 
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