
PERIODIC-REVIEW POLICIES FOR A SYSTEM WITH
EMERGENCY ORDERS

A Thesis
Presented to

The Academic Faculty

by

Francisco Javier Hederra

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2008

PERIODIC-REVIEW POLICIES FOR A SYSTEM WITH
EMERGENCY ORDERS

Approved by:

Professor Christos Alexopoulos, Advisor
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Professor David M. Goldsman
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Professor Mark E. Ferguson, Co-Advisor
College of Management
Georgia Institute of Technology

Professor Paul M. Griffin
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Professor Hayriye Ayhan
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Date Approved: December 2008

I dedicate this work to those who are the essence of my life: Soledad, Joaquin, and

Maximiliano.

iii

ACKNOWLEDGEMENTS

This doctoral dissertation is the result of almost four years of hard work, with invaluable

help from my advisor Doctor Christos Alexopoulos, who patiently went over many revisions,

and my co-advisor Doctor Mark Ferguson, who provided valuable insights, motivation, and

reality checks.

I would also like to extend my gratitude to Doctors Hayriye Ayhan, David Goldsman,

and Paul M. Griffin. I appreciate their time and effort in serving on my Ph.D. committee.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . x

SUMMARY . xi

I INTRODUCTION . 1

II OPTIMAL INVENTORY POLICY . 6

2.1 Literature Review . 6

2.2 System Description and Key Model Assumptions 9

2.3 Notation . 11

2.4 Optimal Inventory Policy . 14

2.5 Optimality Equations and Dynamic Programming Model 16

2.5.1 Optimality Equations . 17

2.5.2 Dynamic Programming Model . 18

2.6 K-Convexity of Ck(x, z, j) . 19

2.7 Existence and Structure of C∞(x, z, j) 36

2.7.1 Structure of the Optimal Inventory Policy 36

2.7.2 Extension of the Optimality Proof 37

2.8 Characteristics of the Optimal Regular Orders 39

2.9 Computing Parameter Values for the Optimal Policy 44

2.9.1 Stopping Criterion . 44

2.9.2 Algorithm . 47

2.9.3 Numerical Computations . 48

2.10 Concluding Remarks . 49

III APPROXIMATE POLICIES . 51

3.1 Literature Review . 51

3.2 Inventory-Policy Heuristics . 54

3.2.1 Extension of Definitions . 54

v

3.2.2 Deterministic Model . 55

3.2.3 Heuristic Policy 1 (HP1) . 55

3.2.4 Heuristic Policy 2 (HP2) . 55

3.2.5 Optimization Model for HP2 . 57

3.2.6 Relaxed Model Formulation . 63

3.3 Comparisons of Heuristics . 65

3.3.1 Implementation Difficulty . 65

3.3.2 Speed . 65

3.3.3 Accuracy . 66

3.4 Concluding Remarks . 67

IV INVENTORY SYSTEM SIMULATOR . 68

4.1 User’s Guide . 68

4.1.1 Introduction . 68

4.1.2 Acknowledgements . 69

4.1.3 Copyright . 69

4.1.4 Installation and System Requirements 69

4.1.5 Quick Start . 69

4.1.6 The Workbench Menus . 71

4.1.7 The Inventory Model . 73

4.1.8 The Simulation Model . 83

4.1.9 Measures of Performance . 84

4.1.10 Building a Model . 84

4.1.11 Running the Model and Viewing Results 89

4.1.12 Tutorial Examples . 89

4.1.13 Expanding the Workbench . 89

4.2 Validation . 91

4.2.1 Single Echelon Warehouse Policies 91

4.2.2 Multi-echelon Policies . 93

4.2.3 Validation Conclusion . 95

4.3 Documentation . 97

4.3.1 Class Diagrams . 97

vi

4.3.2 Activity Diagrams . 106

V CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 109

APPENDIX A PREVIOUS RESULTS . 111

APPENDIX B NUMERICAL RESULTS . 113

REFERENCES . 118

VITA . 123

vii

LIST OF TABLES

1 Parameters for Case Study in Example 1 . 3

2 Maximum Differences for the Optimal Costs for the Designs in Table 1 . . 4

3 Policy Parameters for the Designs in Table 1 15

4 Experimental Design . 49

5 Maximum, Minimum, and Average Time Required for the Experimental De-
sign in Table 4 when τ = 2 . 66

6 Maximum, Minimum, and Average Time Required for the Experimental De-
sign in Table 4 when τ = 3, 4 . 66

7 Maximum, Minimum, Average and Histogram for the Largest Differences
Between the Heuristics and the Optimal Policy when τ = 2 66

8 Maximum, Minimum, Average and Histogram for the Largest Differences
Between the Heuristics and the Optimal Policy when τ = 3, 4 67

9 Parameters for the EOQ Inventory and (s, S) Policy Simulations 91

10 EOQ Inventory Simulation Results . 92

11 (s, S) Policy Simulation Results . 92

12 Parameters for the Base-Stock and (r,Q) Policy Simulations 92

13 Results for the Base-Stock Policy Simulation 93

14 Results for the (r,Q) Policy Simulation . 93

15 Parameters for the Serial Supply Chain Simulation 94

16 Results for the Serial Supply Chain Simulation 95

17 Parameters for the Distribution Policy Simulation 96

18 Results for the Distribution Policy Simulation 96

19 Results for the Poisson Distribution with λ = 2 , τ = 2, Backorder Cost =
15, Regular Review Cycle Length = 5, and Emergency Variable Cost = 5. . 113

20 Results for the Poisson Distribution with λ = 2 , τ = 2, Backorder Cost =
15, Regular Review Cycle Length = 5, and Emergency Variable Cost = 5. . 114

21 Results for the Poisson Distribution with λ = 4 , τ = 2, Backorder Cost =
15, Regular Review Cycle Length = 5, and Emergency Variable Cost = 5. . 114

22 Results for the Poisson Distribution with λ = 4 , τ = 2, Backorder Cost =
15, Regular Review Cycle Length = 5, and Emergency Variable Cost = 5. . 115

23 Results for the Poisson Distribution with λ = 8 , τ = 2, Backorder Cost =
15, Regular Review Cycle Length = 5, and Emergency Variable Cost = 5. . 115

viii

24 Results for the Poisson Distribution with λ = 8 , τ = 2, Backorder Cost =
15, Regular Review Cycle Length = 5, and Emergency Variable Cost = 5. . 116

25 Results for the Negative Binomial Distribution with p = 1/3 and r = 1 , τ =
2, Backorder Cost = 15, Regular Review Cycle Length = 5, and Emergency
Variable Cost = 5. 116

26 Results for the Negative Binomial Distribution with p = 1/3 and r = 1 , τ =
2, Backorder Cost = 15, Regular Review Cycle Length = 5, and Emergency
Variable Cost = 5. 117

ix

LIST OF FIGURES

1 Comparison of Cost Functions in Terms of the Initial Inventory x 4

2 Timeline of Events within a Regular Review Cycle 13

3 Convergence of the Functions Ck(x, 0, 0) for Example 1 16

4 Descriptive Graph for Case 2. Displayed are Hk(x), g1(x), g2(x), and
EξCk(x− ξ, 0, 1) for x1 = 2, x2 = 17. Note that wk(x1) = 11 and wk(x2) = 17. 30

5 ISW Main Window . 70

6 Statistics WIndow . 72

7 (s, S) Inventory Network . 85

8 Demand Node Editor . 86

9 Node Manager Editor . 87

10 Supplier Editor . 88

11 Serial Supply Chain Network . 94

12 Distribution Chain Network . 95

13 Class Diagram for the Order Package . 98

14 Class Diagram for the Production Package 99

15 Class Diagram for the Cost Package . 100

16 Class Diagram for the Allocation Package 101

17 Class Diagram for the Reorder Package . 102

18 Class Diagram for the Inventory Package . 103

19 Class Diagram for the Transport Package 104

20 Class Diagram for the Manager Package . 105

21 Demand Activity Diagram . 107

22 Resupply Activity Diagram . 108

23 Inventory Review Activity Diagram . 108

x

SUMMARY

Most major modern manufacturers use some combination of transportation modes

to source parts from overseas facilities. Often, they use ocean freight as a regular mode to

meet their more predictable requirements and air freight as an emergency mode to meet

unexpected imbalances between supply and demand. The vast majority of publications in

the literature assume that both supply modes are available in every period or that the times

between regular order placement opportunities are equal to the regular order lead-time. The

restriction that regular orders can be placed at a lower frequency than emergency orders

results in a periodic Markov decision process that is significantly more complex to optimize

than when both modes are available at every period. The inclusion of a setup cost for the

emergency mode further increases the difficulty as it is necessary to optimize functions that

are not convex.

This thesis achieves two goals. The first goal is to close the aforementioned gap in the

literature by studying an inventory system with two potential supply modes having different

frequencies for order placement opportunities and a setup cost for emergency orders. For

a regular order lead-time equal to two periods, we derive an optimal policy that minimizes

the expected total discounted cost, and provide a value iteration algorithm for computing

the parameters of the optimal policy. Computational experience indicates that this policy

remains optimal for lead-times exceeding two periods. Since the algorithm for computing

the optimal policy requires significant computational effort, we also develop and evaluate

two heuristic policies whose operational parameters can be computed with relatively small

computational effort.

The second goal is the development of a multi-echelon inventory system simulator with

the flexibility to model and evaluate various inventory related decisions such as inventory

allocation policies or reorder policies of the type depicted in this thesis. We achieve this goal

with the Inventory Simulator Workbench, ISW. This simulator includes a graphical user

xi

interface to draw inventory networks and specify inventory policies and parameters. Since

the simulator is developed in Java, we further achieve the goal of providing a multiplatform

simulator that can be expanded following the rules of Object-oriented Programming.

xii

CHAPTER I

INTRODUCTION

Manufacturers and assemblers in the U.S.A. and Europe are increasingly sourcing parts

from overseas facilities, as the lower purchase costs more than compensate for the increased

transportation costs of changing from a local sourced part to a part sourced from overseas.

Transportation of overseas parts often takes two forms: ocean freight which incurs a lower

transportation cost, but is slower and more restrictive, or air freight which incurs a higher

transportation cost, but is faster and more flexible in terms of delivery times. Most ma-

jor modern manufacturers use some combination of both modes, shipping parts via ocean

freight to meet their more predictable requirements and using air freight to meet unexpected

imbalances between supply and demand.

Ocean freight places strong restrictions on a firm in terms of when an order can be

placed and expected at the destination. Contracts with ocean freight carriers often require

the cargo to be at the dock and ready to load by a certain day of the week, or month,

when the vessel is scheduled to embark. After a long intercontinental trip, ship arrivals are

arranged: this forces vessels to spend a minimum amount of time at ports, adding up to a

very restrictive schedule for goods shipped in this mode. For example, Ormeci [43] reports

that 90% of the fastest 30% of ocean freight services from Hamburg to Charleston, SC and

80% of the fastest 30% of services between Hong Kong and Long Beach, CA are scheduled

to arrive between Friday and Sunday. With regard to travel times, a freight trip between

Hong Kong and Long Beach takes about 11 to 15 days, while a trip from Hamburg to

Savannah, GA takes about 11 days. Air freight, on the other hand, often has the advantage

of offering one or more flights within a day and travel times less than 24 hours between

destinations mentioned above.

Ocean freight costs are commonly computed as a function of consolidated volume units

(container size). Since deliveries occur on a regular cycle and shipment quantities are

1

usually very large, a distribution system typically exists to transport the parts from the

port to the factory(ies). Hence, the transportation cost for ocean freight is often viewed as

variable (per unit) in nature. In the absence of emergency shipment options (air freight is

not considered), a base-stock policy would be optimal. Shipping parts by air, on the other

hand, not only incurs variable costs computed according to the weight of the pallets, but

often also includes additional fixed costs such as the cost of sending dedicated trucks to the

airport and the cost of expediting the shipment through customs (these costs usually do

not depend on the actual quantity of parts that was ordered; see Ormeci [43]). The total

costs associated with these two transportation modes differ significantly, with the variable

per pound cost for air freight typically being about five times the variable per pound cost

of ocean freight (Beyer and Ward [7]).

Because of the aforementioned restrictions, many firms face an ordering problem with

two delivery modes: a low cost mode with long lead-times and even longer time intervals

between orders, and a high cost mode with short lead-times, short ordering intervals, and

a fixed plus variable order cost. In the automobile industry, for example, Chiang [13]

reports that Hotai Motor Co. Ltd., the distributor of Toyota Motor Co. products in Taiwan,

replenishes the inventory of auto parts by ocean freight as well as by air. In the former case,

Hotai places orders for thousands of auto parts once per week (there is an order-up-to level

for each part) from Toyota Motor Co. in Japan. In the latter case, if the inventory level

of a part falls below a “warning” point, Hotai has the opportunity to place an emergency

order to be shipped via air freight every day. In the computer industry, Hewlett-Packard

Corp. manufactures a major subassembly for network servers in Singapore and ships it to

four distribution centers worldwide, where the assembly is completed based on customer

specifications. Again, HP uses two modes of transportation (air and ocean) between the

factory and the distribution centers (Beyer and Ward [7]).

This research derives an optimal inventory policy for a system that can only place regular

orders at a fixed frequency but can always resort to an emergency mode with variable (per

unit) cost and a setup cost.

Example 1 To understand the cost benefits of such an optimal policy, consider a system

2

Table 1: Parameters for Case Study in Example 1

Demand Distribution Poisson(2)
Regular Order Lead-time 2
Regular Review Cycle Regular Order Lead-time + 3
Emergency Order Variable Cost 5
Emergency Order Fixed Cost 2, 5, 50
Regular Order Variable Cost 1
Backorder Penalty Cost 10
Holding Cost 1
Discount Factor 0.99

with the parameters listed in Table 1. Specifically, we compare the expected total discounted

cost under the optimal policy described in Section 2.4 against the expected cost associated

with two different heuristics. The first heuristic combines two policies, one for the regular

mode and another for the emergency mode. In particular, we use an order-up-to-R policy

to control orders under the regular mode with parameters obtained under the assumption

that the emergency mode is not available. The policy of choice for the emergency mode is

an (s, S) policy with parameters computed assuming that the regular mode is not available.

The parameters for this first heuristic can be obtained from the literature or there exist

easy to compute methods to estimate them. The second heuristic uses the order-up-to-R

policies presented in Chiang and Gutierrez [13], and would be optimal if orders placed using

the emergency mode had no fixed costs.

Using stochastic dynamic programming, we computed the expected total cost functions

for the optimal policy and the two heuristics using the set of parameters shown in Table

1. Table 2 displays the maximum percentage difference between the optimal cost and the

optimal costs obtained by the heuristics when the initial inventory takes values from the

interval [−40, 40]. Figure 1 displays the three cost functions in terms of the initial inventory

x for a fixed cost of K = 50.

The economic benefits displayed in this example, and further shown later in this thesis,

could be surpassed by the computational burden of implementing the algorithms required

to obtain the optimal policy parameters. This motivates the development of two heuristic

3

Table 2: Maximum Differences for the Optimal Costs for the Designs in Table 1

Maximum Difference Maximum Difference
Optimal versus First Heuristic Optimal versus Second Heuristic

K = 2 13.6% 1.1%
K = 5 12.7% 5.3%
K = 50 32.8% 91.5%

Figure 1: Comparison of Cost Functions in Terms of the Initial Inventory x

Optimal Heuristic 1 Heuristic 2

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40

x

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1,700

1,800

1,900

2,000

2,100

policies (that are more effective than the heuristics of Example 1) along with a study for

comparing them versus the optimal policy.

The need for evaluation of the proposed optimal policy and the heuristics via simulation

and the lack of public-domain, user-friendly simulation suites tailored for multi-echelon

inventory systems motivated the development of the Inventory Simulator Workbench (ISW).

The ISW is a flexible tool because it allows the user to draw networks of supplier and

demand nodes, while its graphical user interface (GUI) and editing tools facilitate the

4

implementation of complicated inventory policies.

This thesis proceeds as follows: Chapter II provides an optimal policy for the system

under study and Chapter III develops and analyzes two heuristics. Chapter IV describes

the development the ISW in Java. Chapter V ends with conclusions and future research

directions.

5

CHAPTER II

OPTIMAL INVENTORY POLICY

The goal of this chapter is to obtain an optimal policy for the system described in Chapter

I. We proceed as follows: In Section 2.1 we review the related literature, in Section 2.2

we provide the key assumptions used in this research, and in Section 2.3 we define the

necessary notation. In Section 2.4 we state (without proof) the optimal inventory policy

for the system under study for a regular-order lead-time equal to two periods and present

numerical evidence for the extension of the result to longer lead-times. In Section 2.5 we

define the set of optimality equations for the dynamic program based on the underlying

Markov decision process. In Sections 2.6 and 2.7 we establish the optimality of the policy

described in Section 2.4 for a regular-order lead-time of two periods. In Section 2.8 we

provide characteristics of the optimal policy. In Section 2.9 we demonstrate a stopping

criterion, we state an algorithm to compute the optimal parameters, and we define an

experimental design. In Section 2.10 we draw conclusions for this chapter. The appendices

include auxiliary results from the literature.

2.1 Literature Review

The problem of using multiple supply modes efficiently is complex and has been studied by

several authors; see Minner [38] for a recent review. We classify the relevant literature in

two groups. The first group includes algorithms for computing the parameters of heuris-

tic inventory control policies. This group starts with the publication of Moinzadeh and

Nahmias [39], who develop an approximate model of an inventory control system with two

options for resupply on every period, one of them with a shorter lead-time. They study

the application of two (r,Q) simultaneous ordering policies based on the current inventory

position. Whenever the reorder point r1 for the regular mode is reached, an order of size Q1

is placed. If the emergency reorder point r2 is reached within the replenishment lead-time

of the regular order, an order of size Q2 is placed, but only if this order will arrive before the

6

delivery of the outstanding regular order. Moinzadeh and Schmidt [40] study a continuous-

review inventory control policy for a system with two supply modes available at any time.

Orders are placed whenever the inventory position is below a target value of R. This study

covers a lost sales case and a backlogging case, modeling systems with an ordering process

that allows up to R outstanding orders in the first case and an unlimited number in the

second case. The proposed approximate policy is based not only on the inventory position,

but also considers the arrival time of an order to determine the amount and type of order

to place.

Johansen and Thortenson [33] study a continuous-review inventory system with an emer-

gency supply mode to hedge against demand uncertainty during a regular mode replenish-

ment lead-time. The demand is modelled as a stationary Poisson process and a standard

(r,Q) policy is used for controlling the regular replenishment orders, which are assumed to

have a relatively long and constant lead-time. On the other hand, emergency orders also

have a constant but shorter lead-time. They assume that only one regular order may be

outstanding at any time and that, during that time period, emergency orders are issued ac-

cording to reorder points and order-up-to levels depending on the time remaining until the

regular order is delivered. Two algorithms are provided, the first to minimize the expected

total inventory cost rate with state-dependent emergency orders and the second to find the

best state-independent emergency order policy.

Tagaras and Vlachos [59] consider a periodic-review inventory system with two replen-

ishment modes. Regular orders are placed periodically following a base-stock policy based

on the inventory position. The system also has the option of placing emergency orders,

characterized by a shorter lead-time but higher acquisition cost. During a regular replen-

ishment cycle, the necessity and size of an emergency order is determined according to a

base-stock policy based on the net inventory. The timing of an emergency order is such

that this order arrives and can be used to satisfy the demand in the time period just before

the arrival of a regular order. Axsäter [1] models a continuous-review system which at any

time has the possibility to place regular or emergency orders, the latest with an additional

cost but shorter lead-times. He also proposes a heuristic to determine the timing and size

7

of an emergency order while keeping an (r,Q) policy for regular orders that is optimal in

the absence of the emergency mode.

The second literature group includes publications that derive optimal inventory policies.

This body of knowledge starts with Barankin [2], who studies a single-period inventory

model with two potential supply modes, with lead-times equal to one and zero periods

and linear ordering costs. Daniel [16] treats an extension of Barankin’s model to multiple

planning periods and derives the form of an optimal policy assuming that the size of an

emergency order is bounded from above by a given constant. Fukuda [24] considers an

inventory model with two or three supply modes available in every period and both variable

and fixed plus variable acquisition cost structures. The modes have delivery lead-times that

differ by one period. Chiang and Gutierrez [13] consider two supply modes, namely a regular

and an emergency mode. The emergency mode can be used during any period, but regular-

mode orders can be placed only at a frequency that is lower than the emergency mode

frequency. The authors state that order-up-to-R policies are optimal at both emergency

and regular review periods, with the size of a regular order depending on the size of the

emergency order. They also derive a stopping rule for a value iteration algorithm to compute

the optimal parameters. Chiang [11] further restricts the last model assuming that regular

and emergency mode lead-times differ by one period and devises a simple algorithm to

compute the optimal policy parameters.

Sethi, Yan and Zhang [53] study a periodic-review inventory system with fast and slow

delivery modes, setup cost, and regular demand forecast updates. At the start of each

period, on-hand inventory and demand information are updated. At the same time, deci-

sions on how much to order using fast and slow delivery modes are made. Those orders are

delivered at the end of the current period and at the end of the next period, respectively.

A forecast-update-dependent (s, S) type policy is shown to be optimal.

Bylka [9] presents a periodic-review capacitated lot sizing model with limited backlogging

and a possibility of emergency orders at every review period with no time lag. He models

this system as a discrete-time Markov decision process, and describes a simple and efficient

value iteration algorithm for finding an optimal policy.

8

Most of the aforementioned papers assume that both supply modes, emergency and

regular, are available in every period and that the times between regular order placement

opportunities are equal to the regular order lead-time. The exceptions include Chiang and

Gutierrez [12] and Chiang [11] who also assume that the regular supply mode is not always

available but they consider only a variable cost for both modes. The restriction that regular

orders can be placed at a lower frequency than emergency orders results in a periodic Markov

decision process that is more complex to optimize than when both modes are available at

every period. The inclusion of a setup cost for the emergency mode further increases the

difficulty as it is necessary to optimize functions that are not convex. In this chapter we

obtain an optimal policy for this inventory system when the regular mode lead-time equals

two periods and provide a value iteration algorithm to compute its optimal parameters.

2.2 System Description and Key Model Assumptions

Our major assumptions are as follows.

Assumption 1 The lead-time of regular orders is larger than the lead-time of emergency

orders.

The case where the lead-times of the regular and emergency orders are equal corresponds

to a system where the decision is between two modes that differ only in their cost structure.

We do not consider this possibility because it does not conform with our motivation. On

the other hand, if the lead-time of a regular order is shorter than that of an emergency

order, there would be no reason to use a slower and more expensive emergency mode.

Assumption 2 On any period, at most one emergency order can be outstanding. Similarly,

there can be only one regular order outstanding during a regular review cycle.

Specifically, regular orders have a lead-time of τ periods and can be placed every m

periods (m > τ). The respective time periods are named regular review periods while

the elapsed time between successive regular review periods is called a regular review cycle.

Emergency orders also have a lead-time that is shorter than the time interval between the

respective placement opportunity epochs.

9

This assumption may represent a decision maker who will observe the result of previous

similar decisions before making a new purchase commitment. Furthermore, the case where

more than one order of the same kind can be outstanding during a period or regular order

cycle requires a substantially different model than the one under consideration and is left

for future research.

Assumption 3 Regular and emergency order opportunities exist at a fixed frequency. Fur-

ther, the length of the regular review cycle and the lead-time for regular orders are multiples

of the emergency lead-time.

Under these assumptions, we define emergency lead-times to be one period and, there-

fore, a regular review occurs every m emergency review periods. We consider an infinite

planning horizon and set the first period as a regular review period.

As mentioned in Porteus [47], this type of periodic-review is characteristic of systems

that can only place orders to suppliers at a fixed frequency (e.g., once a day or once a

week) or the supplier’s transportation system has a fixed schedule. In either case, even

systems that have online recording of transactions, which could motivate a continuous-

review argument, must be modelled with periodic-review intervals.

Note that air freight transportation for emergency orders can be achieved within one

or two days, and inventory review cycles as well as regular order lead-times are usually

measured in days or weeks. Thus, restricting regular review cycle lengths and regular order

lead-times to be multiples of the emergency lead-time simplifies notation and clarifies the

model without a loss of generality.

Assumption 4 Unsatisfied demand is fully backlogged.

We assume that demand that cannot be satisfied with inventory on hand is fulfilled later

with a penalty or backorder cost. In the case of overseas suppliers, the term “demand” refers

to distributors or assembly plants that, in the absence of parts provided by their supply

chain, would wait for a future arrival (usually at the cost of altering production plans or

not having inventory to satisfy customers) and would not seek alternative providers.

10

Assumption 5 The cost to place a regular order has only a variable component while

emergency orders have a fixed (setup) and a variable (unit cost)component.

This assumption is dictated by our motivational setting in Chapter I and differentiates

this work from Chiang and Gutierrez [12]. We do not assume any relationship between the

magnitude of the regular and emergency variable costs.

2.3 Notation

We adopt the following notation.

• Periods: (i, j) where i ∈ {1, 2, . . .} denotes the regular review cycle and j ∈ {0, . . . ,m−
1} is the number of periods elapsed after the last regular review period. Using the

modulus function “mod”, we define

j+ := (j + 1) mod m

j− := (j − 1) mod m

so that period 0 follows period m− 1.

• Inventory state variables: The state of the system is described with the following

variables:

– x: Inventory on hand (or net inventory) at the beginning of a period.

– z: Emergency inventory-position after an emergency order is placed. This vari-

able does not include outstanding regular orders.

– r: Size of a regular order in transit at the start of a period.

– x := (x, r, j): The vector corresponding to the inventory state (net inventory

and amount of regular order on transit) augmented with the period j within the

regular review cycle.

– X : The state space of the system.

• Decision variables:

11

– ye: Size of the emergency order placed during an emergency review opportunity.

Note that z = x + ye.

– y: Size of the regular order placed during a regular order placement opportunity.

We have y = 0 for j 6= 0.

– d: The vector containing the decision variables. We have d := (z, y) = (x+ye, y).

• D(x): The decision space as a function of the state of the system.

D(x) =





[x,∞)× [0,∞) for j = 0

[x,∞)× {0} for j 6= 0

• Indicator function: δ(u) = 1 if u > 0 and 0 otherwise.

The following costs are involved:

• Inventory cost L(x): Holding and shortage cost per period when the inventory on

hand at the beginning of the period is x.

• Acquisition costs: The acquisition cost for ye units in emergency mode is Kδ(ye)+ceye.

The acquisition cost for y units in regular mode is cry.

• Single-period discount factor: α ∈ (0, 1).

12

Figure 2: Timeline of Events within a Regular Review Cycle

Regular
Review Period

Place
Order(s)?

Observe
Demand

Order(s)
Arrive?

Compute
Inventory

Costs

m periods � = 2 periods

Regular
Review Cycle

Regular
Review Period

We also make the following common assumptions.

Assumption 6 .

(a) The expected inventory cost during a single period, EξL(x− ξ), is a convex function.

(b) The following events happen sequentially in every period (see Figure 2):

– Inventory costs for the period are computed according to the amount of inventory

on hand at the beginning of the period.

– The inventory policy is applied (i.e., the inventory position is observed and orders

are placed), and acquisition costs are computed.

– Demand is observed and fulfilled with available inventory.

– At the end of the period, outstanding orders (emergency orders placed on the

same period and, if applicable, regular orders placed τ − 1 periods ago) arrive.

(c) The demands observed in successive periods form an independent and identically

distributed (i.i.d.) sequence of nonnegative random variables with a discrete distri-

bution having a finite first moment. Let ξ(i,j) be the demand in period (i, j) with

E[ξ(i,j)] := µξ < ∞.

13

Assumption 7 We assume the following limiting properties:

cex + αEξL(x− ξ) →∞ as x → −∞ (1)

and

EξL(x− ξ) →∞ as |x| → ∞ (2)

This is a common assumption required to prove the existence of the minimum on the

cost functions that we define later (see for example Heyman and Sobel [29, p. 311]). On any

period, the inventory cost function L(x), as a function of the initial inventory x, includes

both holding and backorder costs. Equation (1) requires that the rate of backorder cost

be larger than that of the emergency order variable cost. This should be the case in a

real-world system; otherwise, there would be no monetary justification for the emergency

mode. Equation (2) requires that holding and backorder costs increase without bound

as the inventory or backorder levels increase. In our setting, we expect large amounts of

items shipped by slow freight, hence we can assume an unbounded storage capacity and,

consequently, unbounded holding costs. Similarly, since we have not assumed bounded

demands, we could observe large amounts of backorders.

The goal is to find an inventory policy that minimizes the infinite horizon expected total

discounted cost.

2.4 Optimal Inventory Policy

The main result is the structure of the optimal inventory policy stated by the following

theorem for τ = 2. The proof of this theorem is given in Section 2.7.1. Its validity for the

general case τ > 2 is discussed in Section 2.7.2.

Theorem 1 For τ = 2, there exist constants (sj , Sj) for j ∈ {0, . . . ,m− 1} and a function

Q(z) such that the following inventory policy is optimal in state (x, r, j).

(a) For j = 0: if x < s0, place an emergency order for ye = S0 − x units; otherwise, do

not order (ye = 0). Further, place a regular order of size Q(ye + x).

14

(b) For j = 1: if x + r < s1, place an emergency order for S1 − (x + r) units; otherwise,

do not order.

(c) For j ∈ {2, . . . ,m−1}: if x < sj place an emergency order for Sj−x units; otherwise,

do not order.

Example 1 (continued) Table 3 shows the parameters for the optimal policy and the

two heuristics described in Example 1. Recall that under the first heuristic, the policy for

regular orders at regular review periods is an order-up-to-R policy with parameters obtained

under the assumption that the emergency mode is not available. Similarly, the emergency

mode uses an (s, S) policy with parameters computed assuming that the regular mode is

not available. The second heuristic uses the order-up-to-R policies presented in Chiang

and Gutierrez [13]. As expected, the parameters of the optimal policy and those of the

second heuristic differ for every period within a regular review cycle. This is illustrated in

Table 3 where we use the auxiliary variable w1 to specify the regular order size function

Q(z) = max{w1 − z, 0}.

Table 3: Policy Parameters for the Designs in Table 1

Optimal Policy
w1 (s0, S0) (s1, S1) (s2, S2) (s3, S3) (s4, S4)

K = 2 12 (0.8, 2.0) (2.6, 5.0) (2.6, 5.0) (2.6, 4.0) (2.3, 4.0)
K = 5 12 (0.2, 2.0) (2.0, 6.0) (2.0, 6.0) (2.1, 5.0) (1.8, 4.0)
K = 50 13 (-7.5, 2.0) (0.9, 9.0) (1.0, 8.0) (0.5, 6.0) (-1.2, 4.0)

First Heuristic
R (s, S)

K = 2 14 (2.6, 5.0)
K = 5 14 (2.0, 6.0)
K = 50 14 (0.6, 14.0)

Second Heuristic
w1 R0 R1 R2 R3 R4

K = 2, 5, 50 11 2 4 4 4 3

To compute the parameters of the optimal policy for this example we used the algorithm

described later in Section 2.9.2. Figure 3 shows the sequence of optimal cost-to-go functions

Ck(x, 0, 0) (to be defined formally in Section 2.5.1) for Example 1 with an emergency order

15

fixed cost K = 50. Recall that the cost savings are illustrated in Table 2 and Figure 1.

Figure 3: Convergence of the Functions Ck(x, 0, 0) for Example 1

C[k](x,0,0)

C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] C[11] C[12] C[13] C[14] C[15]

C[16] C[17] C[18] C[19] C[20]

-15 -10 -5 0 5 10 15 20 25 30

x

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

2.5 Optimality Equations and Dynamic Programming Model

The (random) total discounted cost for a finite horizon of N regular review cycles, say

TN (x(1,0)), when the net inventory at the beginning of the first cycle is x(1,0), can be

expressed as

TN (x(1,0)) :=
N∑

i=1

[m−1∑

j=0

α(i−1)m+jKδ(z(i,j) − x(i,j)) + ce(z(i,j) − x(i,j))

+α(i−1)mcry(i,0)

+
m−1∑

j=0,j 6=τ−1

α(i−1)m+j+1L(z(i,j) − ξ(i,j))

+α(i−1)m+τL(z(i,τ−1) + r(i,τ−1) − ξ(i,τ−1))
]

(3)

16

where z(i,j) ≥ x(i,j) and y(i,0) ≥ 0. The expression for TN (x(1,0)) does not include the

first period’s inventory cost L(x(1,0)) since it is only a function of the initial inventory,

thus a constant for this decision problem. The objective is to minimize the expected total

discounted cost E[limN→∞ TN (x(1,0))].

Note that our system can be formulated as a periodic Markov reward process, where

the undiscounted single-period cost function, denoted by c(x,d, ξ), depends not only on

the state of the inventory, the decision variables and the demand ξ, but also on the period

within the regular cycle. This motivates the inclusion of the variable j in the state x. From

the terms of equation (3) we have:

c[(x, r, 0), (z, y), ξ] := Kδ(z − x) + ce(z − x) + cry + αL(z − ξ)

c[(x, r, j), (z, y), ξ] := Kδ(z − x) + ce(z − x) + αL(z − ξ)

for j ∈ {1, . . . ,m− 1} \ {τ − 1}

c[(x, r, τ − 1), (z, y), ξ] := Kδ(z − x) + ce(z − x) + αL(z + r − ξ)

2.5.1 Optimality Equations

Let C(x, r, j) be the optimal expected total discounted cost-to-go (current single-stage cost

plus the discounted total cost from next period and onwards) when we start at an arbitrary

period j ∈ {0, . . . , m − 1} with x units on hand and r outstanding units from a regular

order. Clearly, C(x, r, j) = C(x, 0, j) for j ∈ {τ, . . . , m− 1}.
In the definitions of the optimality equations as well as in the definitions of the cost to

go functions of the dynamic program we use “ min ” instead of “ inf ” because we prove that

for all x there exists a decision d in D(x) that achieves the infimum.

Based on the single-stage costs c(x,d, ξ) and the transition function f(x,d, ξ), which

describes the evolution of the system, the optimality equations (see Bertsekas [5, Proposition

3.6.1]) are

C(x) = min
d∈D(x)

Eξ[c(x,d, ξ) + αC(f(x,d, ξ))]

where the expectation is taken with respect to the random demand ξ. These functions are

the same as to those presented in Section 2.5.2, but without the subindex k.

17

2.5.2 Dynamic Programming Model

To establish the structural properties of the optimal policy, we use the value iteration

approach. Here Ck(x, r, j) is the optimal expected discounted cost-to-go for a finite horizon

problem with k stages, when we start at an arbitrary period j ∈ {0, . . . , m − 1} with x

units on hand and r outstanding units of regular order. In Section 2.7 we will prove that

Ck(x) → C(x) as k →∞ for all x = (x, r, j).

We use the following indexed auxiliary functions (the last two are indexed in k):

G(z) := cez + αEξL(z − ξ) (4)

Vk(z, r, j) := G(z) + αEξCk−1(z − ξ, r, j+) (5)

Hk(z) := min
y≥0

{cry + αEξCk−1(z − ξ, y, 1)} (6)

We define C0(x, z, j) := 0 for all j. For k ≥ 1, the cost functions Ck(x) are computed

recursively as follows. For j = 0:

Ck(x, r, 0) := min
y≥0,z≥x

{Kδ(z − x) + ce(z − x) + cry + αEξL(z − ξ) + αEξCk−1(z − ξ, y, 1)}

= min
z≥x

{Kδ(z − x) + G(z) + Hk(z)} − cex

For j ∈ {1, . . . , τ − 2}:

Ck(x, r, j) := min
z≥x

{Kδ(z − x) + ce(z − x) + αEξL(z − ξ) + αEξCk−1(z − ξ, r, j+)}

= min
z≥x

{Kδ(z − x) + Vk(z, r, j)} − cex

For j = τ − 1:

Ck(x, r, τ − 1) := min
z≥x

{Kδ(z − x) + ce(z − x) + αEξL(z + r − ξ) + αEξCk−1(z + r − ξ, 0, τ)}

= min
z≥x

{Kδ(z − x) + Vk(z + r, 0, τ − 1)} − ce(x + r)

For j ∈ {τ, . . . ,m− 1}:

Ck(x, r, j) := min
z≥x

{Kδ(z − x) + ce(z − x) + αEξL(z − ξ) + αEξCk−1(z − ξ, 0, j+)}

= min
z≥x

{Kδ(z − x) + Vk(z, 0, j)} − cex

18

2.6 K-Convexity of Ck(x, z, j)

The goal of this section is to show that Ck(x, z, j) is K-convex with respect to x. To

achieve this, we first consider some auxiliary lemmas. Lemmas 5–7 will be proved under

the additional assumption τ = 2. The proofs refer to various definitions and lemmas from

the literature delegated to Appendix A.

Lemma 2 For k > l, (j + l) ∈ {1, . . . , τ − 1}, and a function ρ : R2
+ → R+, we have:

(a) If for all x and l ≥ 1

EξCk−l(x− ξ, r1, j + l)− EξCk−l(x− ξ, r2, j + l) ≤ ρ(r1, r2)

then

Ck(x, r1, j)− Ck(x, r2, j) ≤ αlρ(r1, r2)

and

EξCk(x− ξ, r1, j)− EξCk(x− ξ, r2, j) ≤ αlρ(r1, r2)

(b) If for all x and l ≥ 1

EξCk−l(x− ξ, r1, j + l)− EξCk−l(x− ξ, r2, j + l) ≥ ρ(r1, r2)

then

Ck(x, r1, j)− Ck(x, r2, j) ≥ αlρ(r1, r2)

and

EξCk(x− ξ, r1, j)− EξCk(x− ξ, r2, j) ≥ αlρ(r1, r2)

Proof

Part (a). The proof uses induction on the variable n ∈ {1, . . . , l}. For n = 1, stage k− l+1,

and period j + l − 1, we have that for all x

Vk−l+1(x, r1, j + l − 1)− Vk−l+1(x, r2, j + l − 1)

= αEξ[Ck−l(x− ξ, r1, j + l)− Ck−l(x− ξ, r2, j + l)]

≤ αρ(r1, r2)

19

and

Ck−l+1(x, r1, j + l − 1) = min
z≥x

{Kδ(z − x) + Vk−l+1(x, r1, j + l − 1)} − cex

≤ min
z≥x

{Kδ(z − x) + Vk−l+1(x, r2, j + l − 1) + αρ(r1, r2)} − cex

= αρ(r1, r2) + Ck−l+1(x, r2, j + l − 1)

Hence

Ck−l+1(x, r1, j + l − 1)− Ck−l+1(x, r2, j + l − 1) ≤ αρ(r1, r2)

and

EξCk−l+1(x− ξ, r1, j + l − 1)− EξCk−l+1(x− ξ, r2, j + l − 1) ≤ αρ(r1, r2)

Assume that

EξCk−l+n−1(x− ξ, r1, j + l − n + 1)− EξCk−l+n−1(x− ξ, r2, j + l − n + 1) ≤ αn−1ρ(r1, r2)

Then

Vk−l+n(x, r1, j + l − n)− Vk−l+n(x, r2, j + l − n)

= αEξ[Ck−l+n−1(x− ξ, r1, j + l − n + 1)− Ck−l+n−1(x− ξ, r2, j + l − n + 1)]

≤ αnρ(r1, r2)

and

Ck−l+n(x, r1, j + l − n) = min
z≥x

{Kδ(z − x) + Vk−l+n(x, r1, j + l − n)} − cex

≤ min
z≥x

{Kδ(z − x) + Vk−l+n(x, r2, j + l − n) + αnρ(r1, r2)} − cex

= αnρ(r1, r2) + Ck−l+n(x, r2, j − l)

This completes the induction argument.

Part (b). Again, we use induction on n. For n = 1, stage k− l + 1, and period j + l− 1, we

have that for all x

Vk−l+1(x, r1, j + l − 1)− Vk−l+1(x, r2, j + l − 1)

= αEξ[Ck−l(x− ξ, r1, j + l)− Ck−j(x− ξ, r2, j + l)]

≥ αρ(r1, r2)

20

and

Ck−l+1(x, r1, j + l − 1) = min
z≥x

{Kδ(z − x) + Vk−l+1(x, r1, j + l − 1)} − cex

≥ min
z≥x

{Kδ(z − x) + Vk−l+1(x, r2, j + l − 1) + αρ(r1, r2)} − cex

= αρ(r1, r2) + Ck−l+1(x, r2, j + l − 1)

Hence

Ck−l+1(x, r1, j + l − 1)− Ck−l+1(x, r2, j + l − 1) ≥ αρ(r1, r2)

and

EξCk−l+1(x− ξ, r1, j + l − 1)− EξCk−l+1(x− ξ, r2, j + l − 1) ≥ αρ(r1, r2)

Assume that

EξCk−l+n−1(x− ξ, r1, j + l − n + 1)− EξCk−l+n−1(x− ξ, r2, j + l − n + 1) ≥ αn−1ρ(r1, r2)

Then we have

Vk−l+n(x, r1, j + l − n)− Vk−l+n(x, r2, j + l − n)

= αEξ[Ck−l+n(x− ξ, r1, j + l − n + 1)− Ck−l+n(x− ξ, r2, j + l − n + 1)]

≥ αnρ(r1, r2)

and

Ck−l+n(x, r1, j + l − n) = min
z≥x

{Kδ(z − x) + Vk−l+n(x, r1, j + l − n)} − cex

≥ min
z≥x

{Kδ(z − x) + Vk−l+n(x, r2, j + l − n) + αnρ(r1, r2)} − cex

= αnρ(r1, r2) + Ck−l+n(x, r2, j + l − n)

This completes the proof.

Lemma 3 The cost functions Ck(·) satisfy the following properties:

(a) For all γ ≥ 0 and j ∈ {1, . . . , m− 1}:

(a.1) Ck(x, r, j) ≤ Ck(x + γ, r, j) + K + ceγ.

21

(a.2) EξCk(x− ξ, r, j) ≤ EξCk(x + γ − ξ, r, j) + K + ceγ.

(b) If Ck(x, r, j) < ∞ for all x, r, and j, then the following limits and expectations can

be exchanged:

lim
r→∞EξCk(x− ξ, r, j) = Eξ lim

r→∞Ck(x− ξ, r, j)

and

lim
|x|→∞

EξCk(x− ξ, r, j) = Eξ lim
|x|→∞

Ck(x− ξ, r, j)

(c) Ck(x, r, τ − 1) = Ck(x + r, 0, τ − 1).

(d) For all γ, γ1, γ2 ≥ 0 and j ∈ {1, . . . , m− 1}:

(d.1) Ck(x, r, j) ≤ Ck(x, r + γ, j) + K + ceγ.

(d.2) EξCk(x− ξ, r, j) ≤ EξCk(x− ξ, r + γ, j) + K + ce.

(d.3) Ck(x, r, j) ≤ Ck(x + γ1, r + γ2, j) + K + ce(γ1 + γ2).

(d.4) EξCk(x− ξ, r, j) ≤ EξCk(x + γ1 − ξ, r + γ2, j) + K + ce(γ1 + γ2).

Proof

Part (a.1). By the definition of Ck(x, r, j), for j ∈ {1, . . . , m− 1} \ {τ − 1}, we have

Ck(x, r, j) = min
z≥x

{Kδ(z − x) + G(z) + αEξCk−1(z − ξ, r, j + 1)} − cex

≤ min
z≥x+γ

{Kδ(z − x− γ) + G(z) + αEξCk−1(z − ξ, r, j + 1)}+ K − cex

[by Lemma A.3 in Appendix A]

= Ck(x + γ, r, j) + K + ceγ

For j = τ − 1, we have

Ck(x, r, τ − 1) = min
z≥x

{Kδ(z − x) + G(z + r) + αEξCk−1(z + r − ξ, 0, τ)} − ce(x + r)

≤ min
z≥x+γ

{Kδ(z − x− γ) + G(z + r) + αEξCk−1(z + r − ξ, 0, τ)}

+K − ce(x + r) [by Lemma A.3 in Appendix A]

= Ck(x + γ, r, τ − 1) + K + ceγ

22

Part (a.2). The proof follows directly from part (a.1).

Part (b). Since the random variable ξ is nonnegative, part (a.1) implies that, w.p.1,

Ck(x− ξ, r, j) ≤ Ck(x, r, j) + K + ceξ

Taking expectations yields

Eξ[Ck(x, r, j) + K + ceξ] = Ck(x, r, j) + K + ceµξ < ∞

for all x, r, and j. Then the Dominated Convergence Theorem (Billingsley [8, Theorem

16.4]) implies

lim
r→∞EξCk(x− ξ, r, j) = Eξ lim

r→∞Ck(x− ξ, r, j)

and

lim
|x|→∞

EξCk(x− ξ, r, j) = Eξ lim
|x|→∞

Ck(z − ξ, r, j)

Part (c). We have

Ck(x, r, τ − 1) = min
z≥x

{Kδ(z − x) + G(z + r) + αEξCk(z + r − ξ, 0, τ)} − ce(x + r)

= min{G(x + r) + αEξCk(x + r − ξ, 0, τ),

K + min
z>x

G(z + r) + αEξCk(z + r − ξ, 0, τ)} − ce(x + r)

= min{G(x + r) + αEξCk(x + r − ξ, 0, τ),

K + min
w>x+r

G(w) + αEξCk(w − ξ, 0, τ)} − ce(x + r)

= Ck(x + r, 0, τ − 1)

Part (d.1). For j = τ − 1 we have

Ck−τ+1(x, r, τ − 1) = Ck−τ+1(x + r, 0, τ − 1) [by part (c)]

≤ Ck−τ+1(x + r + γ, 0, τ − 1) + K + ceγ [by part (a.1)]

= Ck−τ+1(x, r + γ, τ − 1) + K + ceγ [by part (c)]

Hence, the hypothesis is true for all x and j = τ − 1. By Lemma 2 with j ∈ {1, . . . , τ − 2}
and l = τ − 1− j we have

Ck(x, r, j) ≤ Ck(x, r + γ, j) + ατ−1−j(K + ceγ)

≤ Ck(x, r + γ, j) + K + ceγ

23

Therefore, the hypothesis is true for 1 < j < τ − 1. Since Ck(x, r, j) is constant in r when

j ∈ {τ, . . . ,m− 1}, the result holds as an equality.

Part (d.2). The proof follows directly from part (d.1).

Part (d.3). For j = τ − 1 and γ1, γ2 ≥ 0 we have

Ck−τ+1(x, r, τ − 1) = Ck−τ+1(x + r, 0, τ − 1) [by part (c)]

≤ Ck−τ+1(x + r + γ1 + γ2, 0, τ − 1) + K + ce(γ1 + γ2)

[by part (a.1)]

= Ck−τ+1(x + γ1, r + γ2, τ − 1) + K + ce(γ1 + γ2)

Hence, the hypothesis is true for all x and j = τ − 1. By Lemma 2 we have for j ∈
{1, . . . , τ − 2} and l = τ − 1− j

Ck(x, r, j) ≤ Ck(x + γ1, r + γ2, j) + ατ−1−j [K + ce(γ1 + γ2)]

≤ Ck−τ+1+l(x, r + γ, l) + K + ce(γ1 + γ2)

Therefore, the hypothesis is true for 1 < j < τ − 1. Since Ck(x, r, j) is constant in r for

j ∈ {τ, . . . ,m− 1}, it follows that

Ck−τ+1+j(x, r, j) = Ck−τ+1+j(x, r + γ2, j)

≤ Ck−τ+1+j(x + γ1, r + γ2, j) + K + ceγ1

[by part (a.1)]

≤ Ck−τ+1+j(x, r + γ, j) + K + ce(γ1 + γ2)

Part (d.4). The proof follows directly from part (d.3).

Lemma 4 establishes additional properties for the functions Ck(·) under the assumption

that the functions Ck−1(·) are finite, nonnegative, and K-convex in x. The functions σk,j(r)

and Σk,j(r) in part (b) will be used in Section 2.8 and are related to the functions EξCk(x−
ξ, r, j) in the same manner as the functions S(r) and s(r) are related to the cost-to-go

functions Ck(x, r, j).

24

Lemma 4 For fixed r, the cost functions Ck(·) satisfy the following properties:

(a) If Ck−1(x, r, 2) is K-convex in x and Ck−1(x, r, 2) < ∞, then there exists a function

sk,1(r) such that for all x ≤ z ≤ sk,1(r):

(a.1) Ck(x, r, 1) = Ck(z, r, 1) + ce(z − x).

(a.2) EξCk(x− ξ, r, 1) = EξCk(z − ξ, r, 1) + ce(z − x).

(b) If Ck−1(x, r, j+) is K-convex in x and Ck−1(x, r, j+) < ∞, then there exist functions

σk,j(r) and Σk,j(r) such that:

(b.1) EξCk(σk,j(r)− ξ, r, j) = EξCk(Σk,j(r)− ξ, r, j) + K.

(b.2) EξCk(Σk,j(r)− ξ, r, j) ≤ EξCk(x− ξ, r, j) for all x.

(b.3) EξCk(x− ξ, r, j) ≤ EξCk(z − ξ, r, j) + K for z ≥ x ≥ σk,j(r).

(b.4) EξCk(x− ξ, r, j) ≥ EξCk(z − ξ, r, j) for x ≤ z ≤ σk,j(r).

(b.5) EξCk(Σk,j(r)− ξ, r, j) ≥ Ck(Sk,j(r), r, j).

(c) If Ck−1(x, r, τ − 1) is K-convex in x, then Ck(x, r, j) is continuous in r for all j.

Proof

Part (a.1). Since the random variable ξ is nonnegative, then by Lemma 3(a.1) we have

Ck−1(x− ξ, r, 2) ≤ Ck−1(x, r, 2) + K + ceξ, w.p.1. It follows that

EξCk−1(x− ξ, r, 2) ≤ Ck−1(x, r, 2) + K + ceµξ < ∞

For fixed r, by parts (a), (c) and (g) of Lemma A.1 in Appendix A, we have Vk(z, r, 1) =

G(z)+αEξCk−1(z−ξ, r, 2) is K-convex in z. Since G(z) →∞ as |z| → ∞ and Ck−1(x, r, 2) ≥
0, then by part (h) of Lemma A.1 in Appendix A, there exist functions of r, (sk,1(r), Sk,1(r))

such that

Ck(x, r, 1) =





Vk(x, r, 1)− cex if x ≥ sk,1(r)

K + Vk(Sk,1(r), r, 1)− cex if x < sk,1(r)

We conclude that for x ≤ z ≤ sk,1(r)

Ck(x, r, 1) = Ck(z, r, 1) + ce(z − x)

25

Part (a.2). Since ξ ≥ 0, then x ≤ z ≤ sk,1(r) implies x− ξ ≤ z − ξ < sk,1(r) and therefore

Ck(x− ξ, r, 1) = Ck(z− ξ, r, 1)+ ce(z−x), w.p.1. Taking expectations completes the proof.

Part (b). By the same argument used in the proof of part (a), we have

Ck(x, r, j) =





Vk(x, r, j)− cex if x ≥ sk,j(r)

K + Vk(Sk,j(r), r, j)− cex if x < sk,j(r)

Further, Ck(x, r, j) is K-convex in x by Lemma A.2 in Appendix A. EξCk(x − ξ, r, j) is

also K-convex in x by part (g) of Lemma A.1 in Appendix A. Since for sufficiently large

positive x, we have Ck(x, r, j) = EξL(x − ξ) + EξCk−1(x − ξ, r, j + 1), equation (2) and

Ck−1(x− ξ, r, j + 1) ≥ 0 imply

lim
x→+∞Ck(x, r, j) ≥ lim

x→+∞EξL(x− ξ) = ∞

On the other hand, for sufficiently small x < 0 we have

Ck(x, r, j) = K + G(Sk,j) + EξCk−1(Sk,j − ξ, r, j + 1)− cex

Hence, limx→−∞Ck(x, r, j) = ∞ and Lemma 3(b) implies

lim
|x|→∞

EξCk(x− ξ, r, j) = Eξ lim
|x|→∞

Ck(x− ξ, r, j) = ∞

By part (h) of Lemma A.1 in Appendix A, there exist functions σk,j(r) and Σk,j(r) such

that (b.1)–(b.4) hold.

Part (b.5). We have

EξCk(Σk,j(r)− ξ, r, j) = min
x

EξCk(x− ξ, r, j)

≥ min
x

Eξ min
x

Ck(x− ξ, r, j)

= min
x

EξCk(Sk,j(r), r, j)

= Ck(Sk,j(r), r, j)

Part (c). We first observe that Ck(x, r, j) is a function of Ck−1(x, r, j+) and therefore, a

function of Ck−l(x, r, (j + l) mod m), for all l ≤ k.

For k < τ − 1 − j, Ck(x, r, j) depends on functions that are constant in r; hence it is

trivially continuous in r. Therefore, we consider the case k ≥ τ − 1− j.

26

Since the functions Ck(x, r, j) are constant in r for j ∈ {0} ∪ {τ, . . . ,m − 1}, they are

trivially continuous in r.

For j ∈ {1, . . . , τ − 1} we write the cost functions in terms of the variable l as

Ck−(τ−1−j)+l(x, r, τ − 1− l) and establish continuity by induction on l ∈ {0, . . . , τ − 1− j}.
We start the induction argument at l = 0, where we have Ck−τ+1+j(x, r, τ − 1) =

Ck−τ+1+j(x + r, 0, τ − 1) by Lemma 3(c). Since Ck−τ+1+j(x, 0, τ − 1) is K-convex in x by

assumption, we conclude that Ck−τ+1+j(x + r, 0, τ − 1) is K-convex in r. Hence, by part

(e) of Lemma A.1 in Appendix A, Ck−τ+1+j(x, r, τ − 1) is continuous in r. By part (b) of

Lemma 3, EξCk−τ+1+j(x− ξ, r, τ − 1) is also continuous in r.

The continuity of EξCk−τ+1+j(x− ξ, r, τ − 1) at a point r = r0 implies that for all ε > 0

there exists a δ(ε; x, r0) > 0 such that for all r ≥ 0 with |r − r0| < δ(ε;x, r0) we have

|EξCk−τ+1+j(x− ξ, r0, τ − 1)− EξCk−τ+1+j(x− ξ, r, τ − 1)| < ε

By Lemma 2 we have that for l = τ − 1− j,

|r − r0| < δ(ε; x, r0) ⇒ |Ck(x, r0, j)− Ck(x, r, j)| < ατ−1−jε < ε

Therefore Ck(x, r, j) is continuous in r for j ∈ {1, . . . , τ − 1}. This completes the proof.

Lemmas 5 and 6 below establish K-convexity of Hk(z) when τ = 2. In this case we

rewrite Hk(z), defined in (6), as follows:

Hk(z) = min
y≥0

{cry + αEξCk−1(z − ξ, y, 1)}

= min
y≥0

{cry + αEξCk−1(z + y − ξ, 0, 1)}

[by Lemma 3(c)]

= min
w≥z

{(w − z)cr + αEξCk−1(w − ξ, 0, 1)} (7)

For given z, let wk(z) be the argument that attains the minimum in (7). That is,

wk(z) := argminw≥z{(w − z)cr + αEξCk−1(w − ξ, 0, 1)} (8)

wk(z) is related to the optimal regular order function Qk(z) defined in Equation (10)

by Qk(z) = wk(z)− z. Note that wk(z) corresponds to an inventory position that includes

outstanding emergency and regular order quantities.

27

Lemma 5 If τ = 2, then wk(a) = wk(z) for all a ∈ [z, wk(z)].

Proof By the definition of wk(z), for all w ≥ z we have

[wk(z)− z]cr + αEξCk−1(wk(z)− ξ, 0, 1) ≤ [w − z]cr + αEξCk−1(w − ξ, 0, 1)

Adding (z − a)cr to both sides yields

[wk(z)− a]cr + αEξCk−1(wk(z)− ξ, 0, 1) ≤ (w − a)cr + αEξCk−1(w − ξ, 0, 1)

Since z ≤ a ≤ wk(z) and w ≥ a, it follows that wk(z) = wk(a).

Lemma 6 Suppose that τ = 2. For all k, if EξCk−1(x− ξ, 0, 1) is K-convex in x, then the

function Hk(x) defined in equation (7) is also K-convex.

Proof The proof is based on Definition A.1(b) in Appendix A. Let x1 ≤ x2, λ ∈ [0, 1],

λ̄ = 1− λ and xλ = λx1 + λ̄x2.

By Lemma 5, if x2 ≤ wk(x1), we have wk(x2) = wk(x1). Alternatively, if x2 > wk(x1),

we have wk(x2) ≥ x2 > wk(x1). Therefore, x1 ≤ x2 implies wk(x1) ≤ wk(x2). Since

x2 ≥ xλ, we analyze the following two cases.

Case 1: xλ ≤ wk(x1). We have

λHk(x1) + λ̄[Hk(x2) + K] = λ[(wk(x1)− x1)cr + αEξCk−1(wk(x1)− ξ, 0, 1)]

+ λ̄[(wk(x2)− x2)cr + αEξCk−1(wk(x2)− ξ, 0, 1) + K]

= (λwk(x1) + λ̄wk(x2)− xλ)cr + λαEξCk−1(wk(x1)− ξ, 0, 1)

+ λ̄[αEξCk−1(wk(x2)− ξ, 0, 1) + K]

≥ (wλ − xλ)cr + αEξCk−1(wλ − ξ, 0, 1)

[for wλ = λwk(x1) + λ̄wk(x2)

by the K-convexity of αEξCk−1(x− ξ, 0, 1)]

≥ min
w≥xλ

{(w − xλ)cr + αEξCk−1(w − ξ, 0, 1)}

[since xλ ≤ wk(xλ)]

= Hk(xλ)

28

Case 2: wk(x1) < xλ. Since

Hk(x1) = (wk(x1)− x1)cr + αEξCk−1(wk(x1)− ξ, 0, 1)

≤ (wk(x2)− x1)cr + αEξCk−1(wk(x2)− ξ, 0, 1)

= (wk(x2)− wk(x1))cr + αEξCk−1(wk(x2)− ξ, 0, 1) + (wk(x1)− x1)cr

we have

αEξCk−1(wk(x1)− ξ, 0, 1) ≤ (wk(x2)− wk(x1))cr + αEξCk−1(wk(x2)− ξ, 0, 1) (9)

We will show that, in this region, the line that joins the points (x1,Hk(x1))

and (x2,Hk(x2) + K), denoted as g1(x), lies above the line that joins the points

(wk(x1), Hk(wk(x1))) and (wk(x2), Hk(wk(x2)) + K), denoted as g2(x), which in turn lies

above the point (x,Hk(x)). By Definition A.1(b) in Appendix A, this will establish K-

convexity for Hk(x). Figure 4 illustrates this line of thinking for K = 5.

We have

g1(x) :=
x2 − x

x2 − x1
[(wk(x1)− x1)cr + αEξCk−1(wk(x1)− ξ, 0, 1)]

+
x− x1

x2 − x1
[(wk(x2)− x2)cr + αEξCk−1(wk(x2)− ξ, 0, 1) + K]

Note that for xλ as defined above and λ = (x2 − xλ)/(x2 − x1) we have

g1(xλ) = λHk(x1) + λ̄[Hk(x2) + K]

On the other hand,

g2(x) :=
wk(x2)− x

wk(x2)− wk(x1)
[αEξCk−1(wk(x1)− ξ, 0, 1)]

+
x− wk(x1)

wk(x2)− wk(x1)
[αEξCk−1(wk(x2)− ξ, 0, 1) + K]

29

Figure 4: Descriptive Graph for Case 2. Displayed are Hk(x), g1(x), g2(x), and EξCk(x−
ξ, 0, 1) for x1 = 2, x2 = 17. Note that wk(x1) = 11 and wk(x2) = 17.

H[k](x) EC[k](x- xi, 0, 1) g1(x) g2(x)

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

x

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

At x = wk(x1) we have

g1(wk(x1)) =
x2 − wk(x1)

x2 − x1
[(wk(x1)− x1)cr + αEξCk−1(wk(x1)− ξ, 0, 1)]

+
wk(x1)− x1

x2 − x1
[(wk(x2)− x2)cr + αEξCk−1(wk(x2)− ξ, 0, 1) + K]

=
x2 − wk(x1)

x2 − x1
[(wk(x1)− x1)cr + αEξCk−1(wk(x1)− ξ, 0, 1)]

+
wk(x1)− x1

x2 − x1
[(wk(x2)− wk(x1))cr + αEξCk−1(wk(x2)− ξ, 0, 1)

+ (wk(x1)− x2)cr + K]

≥ x2 − wk(x1)
x2 − x1

[(wk(x1)− x1)cr + αEξCk−1(wk(x1)− ξ, 0, 1)]

+
wk(x1)− x1

x2 − x1
[αEξCk−1(wk(x1)− ξ, 0, 1)] + (wk(x1)− x2)cr + K]

[by equation (9)]

= αEξCk−1(wk(x1)− ξ, 0, 1)]

= g2(wk(x1))
30

while at x = x2 we have

g2(x2) =
wk(x2)− x2

wk(x2)− wk(x1)
[αEξCk−1(wk(x1)− ξ, 0, 1)]

+
x2 − wk(x1)

wk(x2)− wk(x1)
[αEξCk−1(wk(x2)− ξ, 0, 1) + K]

≤ wk(x2)− x2

wk(x2)− wk(x1)
[(wk(x2)− wk(x1))cr + αEξCk−1(wk(x2)− ξ, 0, 1)]

+
x2 − wk(x1)

wk(x2)− wk(x1)
[αEξCk−1(wk(x2)− ξ, 0, 1) + K]

[by equation (9)]

= (wk(x2)− x2)cr + αEξCk−1(wk(x2)− ξ, 0, 1) +
x2 − wk(x1)

wk(x2)− wk(x1)
K

≤ (wk(x2)− x2)cr + αEξCk−1(wk(x2)− ξ, 0, 1) + K

= g1(x2)

Since both g2(x) and g1(x) are linear, we conclude that g1(x) ≥ g2(x) for x ∈ [wk(x1), x2].

Recall that by definition (8), x ≤ wk(x). Now, at xλ = λx1 + λ̄x2 such that wk(x1) ≤
xλ ≤ x2 ≤ wk(x2), we have

λHk(x1) + λ̄[Hk(x2) + K] = g1(xλ)

≥ g2(xλ)

=
wk(x2)− xλ

wk(x2)− wk(x1)
αEξCk−1(wk(x1)− ξ, 0, 1)

+
xλ − wk(x1)

wk(x2)− wk(x1)
[αEξCk−1(wk(x2)− ξ, 0, 1) + K]

≥ αEξCk−1(xλ − ξ, 0, 1)

[by the K-convexity of EξCk−1(x− ξ, 0, 1)]

≥ min
w≥xλ

(w − xλ)cr + αEξCk−1(w − ξ, 0, 1)

= Hk(xλ)

This completes the proof.

The next lemma states the structure of the optimal decisions for the functions Ck(x, r, j).

Lemma 7 Suppose that τ = 2. Then for k = 0, 1, . . ., x ∈ R, and r ∈ R+:

31

1. Ck(x, r, j) is K-convex in x.

2. For all (x, r, j) ∈ X, Ck(x, r, j) < ∞.

3. There exist constants (sk,j , Sk,j) for j ∈ {0, . . . , m − 1}, and a function Qk(x) such

that the following inventory control policy is optimal at iteration k for an inventory

state (x, r, j).

(a) For j = 0: if x < sk,0, place an emergency order for ye = Sk,0 − x units;

otherwise, do not order (ye = 0). Further, place a regular order of size Qk(ye+x).

(b) For j = 1: if x + r < sk,1, place an emergency order for Sk,1 − (x + r) units;

otherwise, do not order.

(c) For j ∈ {2, . . . ,m− 1}: if x < sk,j place an emergency order for Sk,j − x units;

otherwise, do not order.

Proof We first observe that since EξL(z − ξ) is convex and EξL(z − ξ) →∞ as |z| → ∞
by Assumption 7, then EξL(z − ξ) < ∞ and G(z) = cez + EξL(z − ξ) is convex and finite

for z ∈ R. Hence, G(z) →∞ as |z| → ∞.

For k ≥ 1 we define

Qk(z) := argminy≥0{cry + αEξCk−1(z − ξ, y, 1)} (10)

Note that for any emergency inventory position z, the function Qk(z) returns the size

of the optimal regular order.

The proof uses induction on k. Since C0(x, r, j) = 0 for all (x, r, j), we start with k = 1.

We have

H1(z) = min
y≥0

{cry + αEξC0(z − ξ, y, 1)} = min
y≥0

cry

Since cr > 0, then Q1(z) = 0 and H1(z) = 0. Hence, H1(z) is K-convex in z.

Now we consider

C1(x, r, 0) = min
z≥x

{Kδ(z − x) + G(z) + H1(z)} − cex

= min
z≥x

{Kδ(z − x) + G(z)} − cex

32

Since G(z) is convex by part (a) of Lemma A.1 in Appendix A and G(z) →∞ as |z| → ∞
by Assumption 7, then by parts (a) and (h) of Lemma A.1 in Appendix A, there exists a

pair of constants (s1,0, S1,0) such that for all r,

C1(x, r, 0) =





G(x)− cex if x ≥ s1,0

K + G(S1,0)− cex if x < s1,0

Further, C1(x, r, 0) is finite and K-convex in x by Lemma A.2 in Appendix A.

Note that the optimal inventory policy that yields such a cost function can be stated as:

if the net inventory at the beginning of the period, x, is less than s1,0, place an emergency

order of size S1,0−x; otherwise, do not order. This type of cost functions will appear several

times during this proof and hence will prove part (a) of this lemma.

For j = 1 we have

C1(x, r, 1) = min
z≥x

{Kδ(z − x) + G(z + r) + αEξC0(z + r − ξ, 0, 2)} − ce(x + r)

= min
z≥x

{Kδ(z − x) + G(z + r)} − ce(x + r)

Again, since G(z) is convex and G(z) →∞ as |z| → ∞, then for a given r and by parts (a)

and (h) of Lemma A.1 in Appendix A, there exists a pair of constants (s1,1, S1,1) such that

C1(x, r, 1) =





G(x + r)− ce(x + r) if x + r ≥ s1,1

K + G(S1,1)− ce(x + r) if x + r < s1,1

Hence C1(x, r, 1) is finite and K-convex in x by Lemma A.2 in Appendix A.

For j = 2 we have

C1(x, r, 2) = min
z≥x

{Kδ(z − x) + G(z) + αEξC0(z − ξ, 0, 3)} − cex

= min
z≥x

{Kδ(z − x) + G(z)} − cex

Since G(z) is convex and G(z) →∞ as |z| → ∞, then by parts (a) and (h) of Lemma A.1

in Appendix A, there exists a pair of constants (s1,2, S1,2) such that

C1(x, r, 2) =





G(x)− cex if x ≥ s1,2

K + G(S1,2)− cex if x < s1,2

33

Further, C1(x, r, 2) is finite and K-convex in x by Lemma A.2 in Appendix A.

Using similar arguments, we can establish that for any r and j ∈ {3, . . . , m − 1},
C1(x, r, j) is finite and K-convex in x.

Now we assume that for fixed r this lemma holds for a given k. For j ∈ {2, . . . , m− 1},
we have

Ck+1(x, r, j) = min
z≥x

{Kδ(z − x) + G(z) + αEξCk(z − ξ, 0, j+)} − cex

Recall that the random variable ξ is nonnegative and by Lemma 3(a.1) we have that, w.p.1,

Ck(x− ξ, r, j) ≤ Ck(x, r, j) + K + ceξ. Then

EξCk(x− ξ, r, j) ≤ Ck(x, r, j) + K + ceµξ < ∞

where the finiteness follows from the induction hypothesis and µξ < ∞. Therefore, by part

(g) of Lemma A.1 in Appendix A, EξCk(x− ξ, 0, j) is K-convex in x. By parts (a) and (c)

of Lemma A.1 in Appendix A, Vk+1(z, r, j) = G(z) + EξCk(z− ξ, r, j) is, in turn, K-convex

in z. Since G(z) →∞ as |z| → ∞, by part (h) of Lemma A.1 in Appendix A there exists a

pair of constants (sk+1,j , Sk+1,j) such that

Ck+1(x, r, j) =





Vk+1(x, 0, j)− cex if x ≥ sk+1,j

K + Vk+1(Sk+1,j , 0, j)− cex if x < sk+1,j

Further, Ck+1(x, r, j) is finite and, for fixed r, is K-convex in x by Lemma A.2 in Appendix

A.

For j = 1 we have

Ck+1(x, r, 1) = min
z≥x

{Kδ(z − x) + G(z + r) + αEξCk(z + r − ξ, 0, 2)} − ce(x + r)

= min
z≥x

{Kδ(z − x) + Vk+1(x + r, 0, 1)} − ce(x + r)

By the same argument used for j ∈ {2, . . . , m−1} we can prove that EξCk(x− ξ, r, j) < ∞.

Then by parts (a)–(c) and (g) of Lemma A.1 in Appendix A, and for fixed r, Vk+1(z +

r, 0, 1) = G(z+r)+αEξCk(z+r−ξ, 0, 2) is K-convex in z+r. Since G(z) →∞ as |z| → ∞,

by part (h) of Lemma A.1 in Appendix A there exists a pair of constants (sk+1,1, Sk+1,1)

34

such that

Ck+1(x, r, 1) =





Vk+1(x + r, 0, 1)− ce(x + r) if x + r ≥ sk+1,1

K + Vk+1(Sk+1,1, 0, 1)− ce(x + r) if x + r < sk+1,1

Also Ck+1(x, r, 1) is finite and, for fixed r, is K-convex in x by Lemma A.2 in Appendix A.

For j = 0 we have

Hk+1(z) = min
y≥0

{cry + αEξCk(z − ξ, y, 1)}

Since EξCk(z − ξ, y, 1) ≥ 0, it follows that

lim
y→∞{c

ry + αEξCk(z − ξ, y, 1)} ≥ lim
y→+∞ cry = +∞

By Lemma 3(b) and Lemma 4(c), Eξ[Ck(z− ξ, y, 1)] is continuous in y. Hence we conclude

that Hk+1(z) achieves its infimum in [0,∞) and therefore Qk+1(z) defined in equation (10)

exists for all z.

Now we look at

Ck+1(x, 0, 0) = min
y≥0,z≥x

{cry + Kδ(z − x) + G(z) + αEξCk(z − ξ, y, 0)} − cex

= min
z≥x

{Kδ(z − x) + G(z) + Hk+1(z)} − cex

Since αEξCk(z−ξ, y, 0) is K-convex by the induction hypothesis, then, by Lemma 6, Hk+1(z)

is K-convex. In turn, parts (a) and (c) of Lemma A.1 in Appendix A imply that G(z) +

Hk+1(z) is K-convex. Since G(z) → ∞ as |z| → ∞ and Hk+1(z) ≥ 0, we have G(z) +

Hk+1(z) → ∞ as |z| → ∞. Therefore, by Lemma A.1(h), there exists a pair of constants

(sk+1,0, Sk+1,0) such that

Ck+1(x, r, 0) =





G(x) + Hk+1(x)− cex if x ≥ sk+1,0

K + G(Sk+1,0) + Hk+1(Sk+1,0)− cex if x < sk+1,0

and Ck+1(x, r, 0) is K-convex by Theorem A.2 in Appendix A.

We have shown that, if the net inventory at the beginning of a regular-review period,

x, is less than sk+1,0, then an optimal inventory policy places places an emergency order

of size Sk+1,0 − x; otherwise, it does not place an order using the emergency mode. Note

35

that the function Ck+1(x, 0, 0), and hence the operational parameters sk+1,0 and Sk+1,0,

include the cost of an optimal regular order decision, Hk+1(·). From the definitions of

Qk(z) in equation (10) and Ck+1(x, 0, 0), at regular review epochs an optimal inventory

policy also places an order for Qk+1(z) items using the regular mode, where z = ye + x is

the inventory position after an emergency order is placed. This completes the proof.

2.7 Existence and Structure of C∞(x, z, j)

We now prove that our dynamic programming cost functions Ck(x, r, j) converge to the

optimality functions C(x, r, j) as k →∞.

Lemma 8 For all initial states x = (x, r, j), limk→∞Ck(x) = C(x).

Proof Note that the single-stage cost functions c(x,d, ξ) are nonnegative for all (x, r, j).

Hence, we have a Negative Dynamic Program (Bertsekas [5, p. 124]). Define the level sets

of Ck(x, r, j) by

Uk(x, r,m− 1, λ) := {z ≥ x | Kδ(z − x) + G(z) + αEξCk(z − ξ, 0, 0)− cex ≤ λ}
...

Uk(x, r, τ − 1, λ) := {z ≥ x | Kδ(z − x) + G(z + r) + αEξCk(z + r − ξ, τ)− ce(x + r) ≤ λ}

Uk(x, r, τ − 2, λ) := {z ≥ x | Kδ(z − x) + G(z) + αEξCk(z − ξ, r, τ − 1)− cex ≤ λ}
...

Uk(x, r, 0, λ) := {z ≥ x, y ≥ 0 | Kδ(z − x) + G(z) + cry + αEξCk(z − ξ, y, 1)− cex ≤ λ}

These sets are bounded since the functions inside the curly braces tend to ∞ as either

|z| → ∞ or r → ∞. The sets are also closed since Ck(x, r, j) is continuous in x and r by

Lemma 4. Hence, the sets Uk(x, r, j, λ) are compact subsets of X for all λ. The proof of

the Lemma follows from Lemma A.4 in Appendix A.

2.7.1 Structure of the Optimal Inventory Policy

The following lemma establishes the K-convexity of C(x, r, j).

36

Lemma 9 If Ck(x, r, j) is K-convex in x for all k = 0, 1, . . ., then C(x, r, j) is K-convex

in x.

Proof Again, we use Definition A.1(b) in Appendix A. Let x1 ≤ x2, λ ∈ [0, 1], λ̄ = 1− λ

and xλ = λx1 + λ̄x2. Then

C(xλ, r, j) = lim
k→∞

Ck(xλ, r, j) [by Lemma 8]

≤ lim
k→∞

{λCk(x1, r, j) + λ̄[Ck(x2, r, j) + K]}

[by the K-convexity of Ck(x)]

= λC(x1, r, j) + λ̄[C(x2, r, j) + K]

[by Lemma 8]

This completes the proof.

The proof of Theorem 1 is now obvious.

Proof of Theorem 1 For τ = 2, we have by Lemma 7 that the functions Ck(x, r, j) are

K-convex in x; hence, by Lemma 9 the limiting functions C(x, r, j) are K-convex in x. The

same arguments used in Lemma 7 establish the optimal policy described in this theorem.

2.7.2 Extension of the Optimality Proof

We conjecture that Lemma 9 can be extended the the general case τ > 2.

Conjecture 10 For k = 0, 1, . . ., x ∈ R, and r ∈ R+:

1. Ck(x, r, j) is K-convex in x for fixed r.

2. For all (x, r, j) ∈ X, Ck(x, r, j) < ∞.

3. There exist constants (sk,j , Sk,j) for j ∈ {0} ∪ {τ − 1, . . . , m − 1}, functions

(sk,j(r), Sk,j(r)) for j ∈ {1, . . . , τ − 2}, and a function Qk(x) such that the follow-

ing inventory control policy is optimal at iteration k for an inventory state (x, r, j).

(a) For j = 0: if x < sk,0, place an emergency order for ye = Sk,0 − x units;

otherwise, do not order (ye = 0). Further, place a regular order of size Qk(ye+x).

37

(b) For j ∈ {1, . . . , τ − 2}: if x < sk,j(r), place an emergency order for Sk,j(r) − x

units; otherwise, do not order.

(c) For j = τ − 1: if x + r < sk,τ−1, place an emergency order for Sk,τ−1 − (x + r)

units; otherwise, do not order.

(d) For j ∈ {τ, . . . , m− 1}: if x < sk,j place an emergency order for Sk,j − x units;

otherwise, do not order.

The following discussion lists properties that we have proved and the gap we attempt

to close with a numerical argument.

By the arguments in the proof of Lemma 7, for stage k = 1 and j = 1 we have

C1(x, r, 1) = min
z≥x

{Kδ(z − x) + G(z) + αEξC0(z − ξ, r, 2)} − cex

= min
z≥x

{Kδ(z − x) + G(z)} − cex

Since G(z) is convex and G(z) →∞ as |z| → ∞, then by parts (a) and (h) of Lemma A.1

in Appendix A, there exists a pair of constants (s1,1, S1,1) such that for all r

C1(x, r, 1) =





G(x)− cex if x ≥ s1,1

K + G(S1,1)− cex if x < s1,1

Also, C1(x, r, 1) is finite and K-convex in x by Lemma A.2 in Appendix A.

Using similar arguments as for C1(x, r, 1), we can establish that, for fixed r and j ∈
{1, . . . , τ − 2}, the functions C1(x, r, j) are finite and K-convex with respect to x.

Similarly, if we assume that items (a) through (d) of Conjecture 10 are valid for stage

k, then we can argue that for j ∈ {1, . . . , τ − 2}, we have

Ck+1(x, r, j) = min
z≥x

{Kδ(z − x) + G(z) + αEξCk(z − ξ, r, j + 1)} − cex

= min
z≥x

{Kδ(z − x) + Vk+1(x, r, j)} − cex

Since G(z) →∞ as |z| → ∞, then by part (h) of Lemma A.1 in Appendix A there exist

functions, (sk+1,j(r), Sk+1,j(r)) such that

Ck+1(x, r, j) =





Vk+1(x, r, j)− cex if x ≥ sk+1,j(r)

K + Vk+1(Sk+1,j(r), r, j)− cex if x < sk+1,j(r)

38

Further, for fixed r, Ck+1(x, r, j) is K-convex in x by Lemma A.2 in Appendix A, and finite.

By the same argument of Lemma 7 the functions Ck+1(x, r, j) are K-convex for j ∈
{1, . . . ,m− 1}. To complete the same induction argument used in Lemma 7 though, Hk(x)

must be shown to be K-convex. Although we have not been able to prove this property

for τ > 2, we have computed the dynamic program limiting functions C(x, r, j) for the

experimental design of Table 4 with τ ∈ {3, 4, 5}. At each stage k, we verified numerically

that the functions Hk(x) are indeed K-convex. Hence, by the argument stated in Section

2.7.1, if the conjecture is true, then the optimal policy for the system described in Chapter

I has a structure of the form stated in this conjecture.

2.8 Characteristics of the Optimal Regular Orders

In a periodic-review inventory system with a single supply mode available on every period,

an alternative supplier or transportation mode available only on certain time periods rep-

resents an opportunity to improve the expected total cost. Recall the dynamic program

functions for periods j = 0 and j = τ − 1:

Ck(x, r, 0) = min
y≥0,z≥x

{Kδ(z − x) + ce(z − x) + cry + αEξL(z − ξ) + αEξCk−1(z − ξ, y, 1)}

Ck(x, r, τ − 1) = min
z≥x

{Kδ(z − x) + ce(z − x) + αEξL(z + r − ξ) + αEξCk−1(z + r − ξ, 0, τ)}

Note that the addition of the regular supply mode may reduce the optimal cost. Further,

emergency supply decisions made between the time of the regular order placement and its

arrival must consider the outstanding regular order, as our optimal policy does.

The following lemmas are defined for the dynamic program cost functions Ck(·) but

the results can be extended for the optimal cost functions C(·). They state bounds for

the regular order size that provide insights into the optimal solution and are used in the

algorithm of Section 2.9.2.

Recall from equation (10) that given an emergency inventory position z, the optimal

regular order size is

Qk(z) = argminy≥0{cry + αEξCk−1(z − ξ, y, 1)}

39

The following lemma obtains an upper bound for the size of a regular order when the

unit cost for regular order is larger than the discounted unit cost for emergency orders (over

τ − 1 periods). The last condition is typically invalid for small τ or large α.

Lemma 11 Suppose that cr ≥ ατ−1ce. Then for any iteration step k, emergency inventory

position z, and y ≥ K/(α1−τcr − ce) we have

αEξCk(z − ξ, 0, 1) ≤ cry + αEξCk(z − ξ, y, 1)

Proof Let

ȳ :=
K

α1−τ cr − ce

Since y(α1−τ cr − ce) ≥ K for y ≥ ȳ, then for j = τ − 2 we have

Eξ[Ck−τ+1(z − ξ, 0, τ − 1)− EξCk−τ+1(z − ξ, y, τ − 1)]

= Eξ[Ck−τ+1(z − ξ, 0, τ − 1)− Ck−τ+1(z − ξ + y, 0, τ − 1)]

[by Lemma 3(c)]

≤ (K + yce) [by Lemma 3(b)]

≤ y(α1−τcr − ce + ce)

= yα1−τcr

The remainder of the proof follows from Lemma 2 with j = 1 and l = τ − 2.

The next lemma implies that the economic benefits that can be obtained using regular

orders are bounded by an exponentially decreasing function of the regular order lead-time;

hence, no regular orders should be placed if this lead-time is too large.

Lemma 12 For any k ≥ 1, γ ≥ 0, and for periods j ∈ {1, . . . , τ − 1},

Ck(x, r, j)− Ck(x, r + γ, j) ≤ α(τ−1−j)(K + γce)

In particular, for r > 0 and j = 1,

EξCk(x− ξ, 0, 1)− EξCk(x− ξ, r, 1) ≤ ατ−2(K + rce)

40

Proof For j = τ − 1, by Lemma 3(a.2) we have

Eξ[Ck−τ+1(x− ξ, r, τ − 1)]− Eξ[Ck−τ+1(x− ξ, r + γ, τ − 1)]

= Eξ[Ck−τ+1(x + r − ξ, 0, τ − 1)− Ck−τ+1(x + r + γ − ξ, 0, τ − 1)]

≤ (K + γce)

Now, by Lemma 2 with j ∈ {1, . . . , τ − 1} and l = τ − 1− j, we conclude that

Ck(x, r, j)− Ck(x, r + γ, j) ≤ ατ−1−j(K + γce)

In particular, for j = 1 we have

EξCk(x− ξ, 0, 1)− EξCk(x− ξ, r, 1) ≤ ατ−2(K + rce)

The next lemma applies to the case where τ = 2 and z ≤ sk−1,1. Recall the definition

of wk(z) from equation (8): wk(z) = argminw≥z{(w − z)cr + αEξCk−1(w − ξ, 0, 1)}.

Lemma 13 Suppose that τ = 2. Then for sk−1,1 and Σk−1,1 defined in Lemma 4:

(a) If cr ≤ αce, then for z ≤ sk−1,1, wk(z) = wk(sk−1,1).

(b) If cr > αce, then wk(z) = z for z < z̄ < sk−1,1 where

z̄ = sk−1,1 − α
EξCk−1(sk−1,1 − ξ, 0, 1)− Eξ[Ck−1(Σk−1,1 − ξ, 0, 1)]

cr − αce
(11)

Further, z̄ satisfies

z̄ ≥ sk−1,1 − α
K + ceµξ

crαce
(12)

Proof

Part (a). To prove this part of the lemma we compare the value of the objective function at

wk(sk−1,1) with the value of the function for any w ≥ z. We consider two cases, w ≥ sk−1,1

and z ≤ w < sk−1,1. For z ≤ sk−1,1 ≤ w, by the optimality of wk(sk−1,1) we have

[wk(sk−1,1)−sk−1,1]cr +αEξCk−1[wk(sk−1,1)−ξ, 0, 1] ≤ (w−sk−1,1)cr +αEξCk−1(w−ξ, 0, 1)

41

Adding (sk−1,1 − z)cr to both sides yields

[wk(sk−1,1)− z]cr + αEξCk−1[wk(sk−1,1)− ξ, 0, 1] ≤ (w − z)cr + αEξCk−1(w − ξ, 0, 1)

For z ≤ w < sk−1,1, we have

(w − z)cr + αEξCk−1(w − ξ, 0, 1) = (w − z)cr + αEξCk−1(sk−1,1 − ξ, 0, 1) + αce(sk−1,1 − w)

[by Lemma 4(a.2)]

= (sk−1,1 − z)cr + αEξCk−1(sk−1,1 − ξ, 0, 1)

+(sk−1,1 − w)(αce − cr)

≥ (sk−1,1 − z)cr + αEξCk−1(sk−1,1 − ξ, 0, 1)

[since w < sk−1,1 and cr ≤ αce]

≥ (sk−1,1 − z)cr + (wk(sk−1,1)− sk−1,1)cr

+ αEξCk−1(wk(sk−1,1)− ξ, 0, 1)

[by the optimality of wk(sk−1,1)]

= (wk(sk−1,1)− z)cr + αEξCk−1(wk(sk−1,1)− ξ, 0, 1)

We conclude that wk(z) = wk(sk−1,1).

Part (b). For z ≤ w ≤ sk−1,1 and cr > αce, Lemma 4(a.2) implies

αEξCk−1(z − ξ, 0, 1) = αEξCk−1(w − ξ, 0, 1) + αce(w − z)

< αEξCk−1(w − ξ, 0, 1) + cr(w − z)

Before we continue, we note that z̄ is the horizontal coordinate of the point where the

line

ψ1(z) := αEξCk−1(Σk−1,1 − ξ, 0, 1) + cr(sk−1,1 − z)

intercepts the line

ψ2(z) := αEξCk−1(sk−1,1 − ξ, 0, 1) + αce(sk−1,1 − z)

Since EξCk−1(Σk−1,1 − ξ, 0, 1) < EξCk−1(sk−1,1 − ξ, 0, 1) and cr > αce, then for z < z̄ we

have

ψ1(z) ≥ ψ2(z) (13)

42

For z ≤ z̄ < sk−1,1 < w, we have

αEξCk−1(z − ξ, 0, 1) = αEξCk−1(sk−1,1 − ξ, 0, 1) + αce(sk−1,1 − z)

[by Lemma 4(a.2)]

≤ αEξCk−1(Σk−1,1 − ξ, 0, 1) + cr(sk−1,1 − z)

[by inequality (13)]

≤ αEξCk−1(w − ξ, 0, 1) + cr(sk−1,1 − z)

[by Lemma 4(b.2)]

< αEξCk−1(w − ξ, 0, 1) + cr(w − z)

[since sk−1,1 < w]

We conclude that for z ≤ z̄ and z ≤ w

αEξCk−1(z − ξ, 0, 1) ≤ αEξCk−1(w − ξ, 0, 1) + cr(w − z)

To obtain the lower bound in (12), we observe that for a nonnegative random variable

ξ, by Lemma 4(a.1) we have, w.p.1,

Ck−1(sk−1,1 − ξ, 0, 1) = Ck−1(sk−1,1, 0, 1) + ceξ

Therefore

EξCk−1(sk−1,1 − ξ, 0, 1) = Ck−1(sk−1,1, 0, 1) + ceE[ξ]

and

EξCk−1(sk−1,1 − ξ, 0, 1)− EξCk−1(Σk−1,1 − ξ, 0, 1)

= Ck−1(sk−1,1, 0, 1) + ceµξ − EξCk−1(Σk−1,1 − ξ, 0, 1)

≤ Ck−1(sk−1,1, 0, 1) + ceµξ − Ck−1(Sk−1,1, 0, 1)

[by Lemma 4(b.2)]

= K + ceµξ

Finally

z̄ = sk−1,1 −
αEξCk−1(sk−1,1 − ξ, 0, 1)− αEξCk−1(Σk−1,1 − ξ, 0, 1)

cr − αce

≥ sk−1,1 − α
K + ceµξ

cr − αce

43

which completes the proof.

2.9 Computing Parameter Values for the Optimal Policy

This section covers the numerical computation of the optimal policy parameters. We first

develop a stopping criterion for the dynamic program defined in Section 2.5.2, and then

present an algorithm to compute the optimal parameters of the inventory policy. Finally,

we obtain the optimal parameters for an experimental design.

2.9.1 Stopping Criterion

We begin by providing bounds for the operational parameters based on the values of the

dynamic program cost functions Ck(·). These bounds can be used as a stopping rule for

the value iteration algorithm.

We use the notation and arguments of Bertsekas [5]. First, for any function J : X → R

we define the mapping T in terms of the single-stage costs c(x,d, ξ) and the transition

function f(x,d, ξ) by

(TJ)(x) := min
d∈D(x)

Eξ{c(x,d, ξ) + αJ(f(x,d, ξ))}

and denote the composition of the mapping T with itself k times as (T kJ)(x). In the

dynamic program defined in Section 2.5.2, we have Ck(x, r, j) = T kC0(x, r, j). Further,

since we have defined a negative dynamic program, it follows that

C0(x, r, j) ≤ C1(x, r, j) ≤ · · · ≤ Ck(x, r, j) ≤ · · · ≤ C(x, r, j)

The following lemma is from Bertsekas [5, Exercise 1.9].

Lemma 14 Let X be a set and B(X) be the set of all real valued bounded functions on X.

Let T be a mapping with the following two properties:

(a) TJ ≤ TJ
′
for all J , J

′ ∈ B(X) with J ≤ J
′

(b) For every scalar b 6= 0 and all x ∈ X

α1 ≤ (T (J + be))(x)− (TJ)(x)
b

≤ α2

44

where α1, α2 are two scalars with 0 ≤ α1 ≤ α2 ≤ 1, and e is the vector of ones with

the same dimensions as X.

Then for all J ∈ B(X) and x ∈ X

(T kJ)(x) + ck ≤ (T k+1J)(x) + ck+1

≤ J∗(x)

≤ (T k+1J)(x) + c̄k+1

≤ (T kJ)(x) + c̄k

where

ck = min
{ α1

1− α1
min
x∈X

[(T kJ)(x)− (T k−1J)(x)],
α2

1− α2
min
x∈X

[(T kJ)(x)− (T k−1J)(x)
}

ck = max
{ α1

1− α1
max
x∈X

[(T kJ)(x)− (T k−1J)(x)],
α2

1− α2
max
x∈X

[(T kJ)(x)− (T k−1J)(x)
}

The following lemma is from Bertsekas [6, Proposition 5.12].

Lemma 15 Consider the mapping

H(x,d, J) = Eξ{c(x,d, ξ) + αJ(f(x,d, ξ)) | (x,d)}

If c(x,d, ξ) ≥ 0, w.p.1, for all x ∈ X and d ∈ D, then for all scalars b > 0

H(x,d, J) ≤ H(x,d, J + b) ≤ H(x,d, J) + αb for all x ∈ X and d ∈ D

The next lemma can be used to define a stopping rule for the search of the parameters

(sj(r), Sj(r)).

Lemma 16 For fixed r, Sj(r) ∈ [Sk,j(r), Sk,j(r)] and sj(r) ∈ [sk,j(r), s̄k,j(r)] where

Sk,j(r) := {x > Sk,j(r) | Ck(x, r, j) = Ck(Sk,j , r, j) + ck − ck}

Sk,j(r) := {x < Sk,j(r) | C(x, r, j) = C(Sk,j , r, j) + ck − ck}

sk,j(r) := {x < Sj(r) | Ck(x, r, j) = Ck(sk,j , r, j) + ck − ck}

sk,j(r) := {x < Sj(r) | Ck(x, r, j) = C(sk,j , r, j) + ck − ck}

45

Proof First note that by Lemma 15 we can use the bounds for Ck(·) defined in Lemma

14. Also note that the definition of K-convexity does not require the minimum of this type

of function to be unique. Nevertheless, the minimizing argument that defines the optimal

policy and satisfies parts (i)–(iv) of Lemma A.1 corresponds to the smallest minimizer.

For any state (x, r, j), by Lemma 14 we have

Ck(x, r, j) + ck ≤ C(x, r, j) ≤ Ck(x, r, j) + ck (14)

Therefore, for any x and fixed (r, j) we have

Ck(Sj(r), r, j) ≤ Ck(x, r, j) ≤ Ck(x, r, j) + ck

In particular, for x = Sk,j(r) we have

Ck(Sj(r), r, j) ≤ Ck(Sk,j(r), r, j) ≤ Ck(Sk,j(r), r, j) + ck (15)

Hence, for fixed (r, j)

Sj(r) ∈ {x | C(x, r, j) ≤ Ck(Sk,j(r), r, j) + ck} (16)

On the other hand, from equation (14) we have C(x, r, j) ≥ Ck(x, r, j) + ck; hence we

conclude that

Sj(r) ∈ {x | Ck(x, r, j) + ck ≤ Ck(Sk,j(r), r, j) + ck} (17)

Equations (16) and (17) imply Sj(r) ∈ [Sk,j(r), S̄k,j(r)].

Now recall that for fixed (r, j)

sj(r) = {x < Sj(r) | C(x, r, j) = C(Sj(r), r, j) + K}

Equation (14), Sj(r) = argminxC(x, r, j), and Sk,j(r) = argminxCk(x, r, j), imply that for

fixed (r, j)

Ck(Sk,j(r), r, j) + ck ≤ C(Sj(r), r, j) ≤ Ck(Sk,j(r), r, j) + ck

Therefore

Ck(sk,j(r), r, j) + ck ≤ C(sj(r), r, j) ≤ Ck(sk,j(r), r, j) + ck

46

and

sj(r) ∈ {x | Ck(sk,j(r), r, j) + ck ≤ C(x, r, j) ≤ Ck(sk,j(r), r, j) + ck}

By the left inequality of (14), we have

sj(r) ∈ {x | Ck(x, r, j) + ck ≤ Ck(sk,j(r), r, j) + ck}

and the condition x < Sj(r) implies sj(r) ≥ s. By the right inequality of (14), we also have

sj(r) ∈ {x | Ck(x, r, j) + ck ≥ Ck(sk,j(r), r, j) + ck}

and the condition x < Sj(r) implies sj(r) ≤ s. This completes the proof.

2.9.2 Algorithm

To compute the parameters of the optimal policy for τ = 2 we solve the dynamic program

described in Section 2.5.2 using the next algorithm. An implementation of this algorithm

is available upon request.

Step 0. Set j = m− 1, k = 1, and C0(x, r, j) = 0 for all (x, r, j).

Step 1. For j ≥ 1, set

Vk(x, 0, j) = G(x) + αEξCk−1(x− ξ, 0, j)

and perform a grid search for the value Sk,j that minimizes the function Vk(x, 0, j)

with respect to x. For this search, use the lower bound defined in Lemma 13 and the

upper bound defined by part h(iv) of Lemma A.1. Next, find the value sk,j such that

sk,j < Sk,j and Vk(sk,j , 0, j) = Vk(Sk,j , 0, j)+K. These two values define the function

Ck(x, 0, j) by

Ck(x, 0, j) =





Vk(x, 0, j)− cex if x ≥ sk,j

K + Vk(Sk,j , 0, j)− cex if x < sk,j

For j = 0 proceed as follows: for every value of z perform a grid search for the smallest

y ≥ 0 that minimizes cry + αEξCk(z − ξ, y, 1) with respect to y. This yields

Qk(z) = argminy≥0{cry + αEξCk(z − ξ, y, 1)}

47

and

Hk(z) = crQk(z) + αEξCk(z, Qk(z), 1)

Then, perform a grid search for the argument Sk,0 that minimizes G(z) + Hk(z).

Proceed with finding the value sk,0 such that sk,0 < Sk,0 and

G(sk,0) + Hk(sk,0) = G(Sk,0) + Hk(Sk,0) + K

These three parameters define the function Ck(x, r, 0) as

Ck(x, 0, 0) =





G(x) + Hk(x)− cex if x ≥ sk,0

K + G(Sk,j) + Hk(Sk,j)− cex if x < sk,0

Step 2. If Ck(x, r, j) does not satisfy the stopping criterion defined in Section 2.9.1, set

k = k + 1, j = j − 1 and go to Step 1. Otherwise, deliver Sj = Sk,j , sj = sk,j , and

Q(z) = Qk(z).

Example 1 (continued) Computing the parameters of the optimal policy for Example

1 with this algorithm we obtain the following values for the first review cycle (stages k

from 1 to 5 and periods j from 4 to 0): (s1,4, S1,4) = (−9.5, 2), (s2,3, S2,3) = (−1.6, 4),

(s3,2, S3,2) = (0.4, 6), (s4,1, S4,1) = (1, 7), (s5,0, S5,0) = (−7.5, 2), and Q5(z) = max(11−z, 0).

2.9.3 Numerical Computations

In this section we compute the optimal policy for a grid of 3888 cases specified in Table

4. This design and the optimal cost functions will be used in Section 3.3 to evaluate the

proposed heuristics.

We consider an inventory cost function of the form L(x) = hδ(x) + pδ(−x), where x

is the net inventory at the end of the current period, h is the unit holding cost, and p is

the unit backorder penalty cost. We consider two types of demand distributions, namely

Poisson and negative binomial with 9 combinations of means and coefficients of variation

to account for central tendency and deviation about the mean. The negative binomial

distribution with parameters r > 0 and p ∈ (0, 1) has probability mass function

Pr(X = k) =
Γ(k + r)
k!Γ(r)

pr(1− p)k

48

Table 4: Experimental Design

Factor Levels Number of Levels
Demand Distribution Poisson(σ2/µ = 1) 3

Negative Binomial(σ2/µ = 3)
Negative Binomial(σ2/µ = 9)

Mean Demand (µ) 2, 4, 8 3
Regular Order Lead-time 2, 3, 4 3
Review Cycle Regular Order Lead-time + 1, 4 2
Emergency Order Variable Cost 3, 5, 7 3
Emergency Order Fixed Cost 5, 50 2
Regular Order Variable Cost 1, 2 2
Backorder Penalty Cost 8, 15 2
Holding Cost 1 1
Discount Factor 0.999, 0.99, 0.9 3
Total Number of Cases 3888

where Γ(·) is the gamma function. We also consider regular order lead-times equal to 2, 3

and 4 and two variable costs for regular orders. The variable costs for emergency orders that

are approximately 5 times as large as the variable costs for regular orders. Since the single-

stage cost functions are linear with respect to the emergency variable cost and the backorder

penalty cost, the holding cost is set equal to 1. By the same reasoning, we consider the

backorder penalty cost rate in three levels corresponding to approximately 100%, 200% and

300% of the emergency variable cost. The setup costs for emergency orders are 50%, 100%,

and 1000% of the emergency variable cost. Since for real systems a single-period discount

factor is not expected to be lower than 0.9, we consider the discount factors of 0.9, 0.99,

and 0.999. We further note that both equations of Assumption 7 are satisfied.

A subset of the experimental results is tabulated in Section B.1.

2.10 Concluding Remarks

In this chapter we have proved the optimality of an (s, S) type policy when the regular

lead-time is two periods, provided a dynamic program to estimate the parameters of the

optimal policy, and argued the extension of the optimal policy to the case τ > 2. We also

obtained the parameters for these policies.

Event though our proof for the case τ = 2 could restrict the applicability of this result to

49

many real situations, our numerical results give confidence that the structure of the optimal

policy can be applied in a fair number of scenarios.

In the next chapter, we will develop approximate policies that are less time consuming

and yield near optimal parameters.

50

CHAPTER III

APPROXIMATE POLICIES

The policy described in Chapter II was proven to be optimal for the case of τ = 2 and con-

jectured to remain optimal for τ > 2. It does require, however, significant computational

effort. The goal of this chapter is to obtain heuristic policies whose operational parameters

can be computed with relatively small computational effort. The chapter proceeds as fol-

lows. In Section 3.1 we review the related literature related, in Section 3.2 we present two

heuristic approaches, and in Section 3.3 we compare their performance. Finally, in Section

3.4 we present conclusions for this chapter.

3.1 Literature Review

Most heuristics for multi-period inventory policies originate from approximations to limiting

results based on renewal theory, approximations to expectations and differential equations,

or approximations to the value iteration algorithm. We will present the relevant literature

following these three directions focusing primarily on policies that include a fixed cost.

The first direction starts with Roberts [49] who derives the asymptotic behavior of the

discounted renewal function for (s, S) policies and obtains approximations for the difference

S−s when the values of the fixed cost and the backorder penalty cost are large. Hadley and

Whitin [28, Ch. 4] assume that the expected number of backorders is negligible and that the

supplier lead-time is a random variable to present two approximations for the estimation of

the operational parameters of an (r,Q) policy. Wagner [63] compares the performance of

several policies by estimating the optimal parameters using search heuristics, approximating

the asymptotic quantities derived by Roberts [49], using continuous-review models instead

of periodic-review models, or adopting a batch base-stock policy.

Ehrhardt [18] estimates the optimal parameters of an (s, S) policy using a regression

model whose structure is obtained from the work of Roberts [49] and only requires knowl-

edge of the first two moments of the demand distribution. The regression coefficients are

51

estimated from an experimental design of 288 configurations with known optimal parame-

ters. This is the original Power Approximation (PA) method. Ehrhardt et al. [20] study

stocking rules for a warehouse facility whose demand is comprised of replenishment orders

from other facilities that follow (s, S) policies. Using simulation they search for stationary

(s, S) policies. The best performing approximation found is a rule that is an adjustment

of the power approximation of Ehrhardt [18] to an (auto) correlated demand process. This

policy is close to optimal when the demand’s mean and variance are known exactly, and

reasonably close when statistical estimates are used. Ehrhardt and Mosier [21] present a

revision to the PA method incorporating modifications to ensure the homogeneity in the

units chosen to measure demand and the proper limiting behavior of the quantity S − s

when the variance of the demand is small. Ehrhardt [19] studies policies for systems with

random lead-times assuming that replenishment orders do not cross in time and that the

supplier’s random lead-time is independent of the size of the order. For the minimization

of the expected discounted cost problem, he presents the optimality conditions for an (s, S)

policy and shows how to modify the PA method to estimate the operational parameters of

the optimal policy.

Sahin and Sinha [51] show simple conditions under which two policy approximations

based on asymptotic renewal theory are accurate. The approximations sunder consideration

are the Revised PA of Ehrhardt and Mosier [21] and a linear approximation of the cost rate

in the renewal function.

Tijms and Groenevelt [60] evaluate approximations for (s, S) policies for periodic and

continuous-review systems. They allow stochastic lead-times for replenishment orders pro-

vided that the probability of orders crossing in time is negligible. Their inventory policies

take into account a constraint on the service level, defined as the fraction of demand met

directly with inventory at hand. In particular, they use renewal theory to find the reorder

level as a function of the amount S − s.

The second direction of research, based on expectations and approximation of differential

equations, begins with Sivazlian [56] who uses computational methods to estimate Laplace

transforms and obtain the solution of the differential equations involving the parameters

52

of an (s, S) policy for a demand following a gamma distribution. Naddor [41] presents

heuristics to estimate the operational parameters of order-up-to-R, (r,Q), and (s, S) policies

when the acquisition costs do not include a fixed setup cost. The heuristics are motivaed

from the optimal results for six inventory systems. The author also extends the heuristics

to multi-item inventory systems.

Shore [55] employs approximations for the quantiles of a random variable loss function

to derive explicit approximate solutions to the standard newsboy problem, the (r,Q) model,

and a periodic order-up-to-R model.

Sivazlian and Wei [57] analyze a multicommodity inventory system which operates under

a given (s, S) policy. They approximate an integral of the expected backlog level with

a bivariate exponential function to obtain first a closed-form expression for the Laplace

transform of the expected backlog level and then approximate operational parameters.

Kapalka, Katircioglu and Puterman [34] study optimal (s, S) policies for a large number

of products and locations of a Western Canadian retailer. They evaluate the long-run

average cost and service level for a fixed (s, S) policy and then use a search procedure

to locate the optimal parameters. The search procedure is based on an updating scheme

for the transition probability matrix of the underlying Markov chain, bounds on S, and

monotonicity assumptions on the cost and service level functions.

Kleinau and Thonemann [35] present an alternative approach for solving inventory-

control problems that is based on Genetic Programming. They apply their procedure to

a single-echelon system with deterministic demand, a single-echelon system with Poisson

process demand, and a serial two-echelon system with Poisson process demand under con-

tinuous review.

The work presented in this chapter does not follow the first two research directions

because they are based on analytical results that are hard to obtain for the inventory

policy described in Theorem 1. Since we have already shown the convergence of a dynamic

program, we follow the third direction of research which begins with the work of Norman and

White [42], who present approximate solutions for the policy iteration algorithms introduced

by Howard [31] by replacing probability distributions with their expectations and using the

53

value of the states in the corresponding deterministic system under its optimal policy to

determine an approximate policy for the stochastic system through a single application of

the policy improvement step.

Porteus [46] introduces an adjustment to the approach in [42]. In the policy evaluation

step, his approach maintains the current period’s probabilistic reward but approximates the

random demand in the transition function by its expected value. Freeland and Porteus [23]

evaluate the approximation presented in Porteus [46] and compare its performance against

the approximation presented by Wagner et al. [63]. Freeland and Porteus [22] simplify

the method presented in Porteus [46] by assuming that the shortage cost is relatively large

and that the variance of the demand is relatively small. Porteus [47] introduces three new

methods to compute the operational parameters of an (s, S) policy, two of them based on

Freeland and Porteus [22] and a third one based on a continuous-review approximation. The

development of the heuristics presented in this chapter is based on the same simplification

principle presented by Porteus [46] albeit in a more complex system.

3.2 Inventory-Policy Heuristics

In this section we develop two inventory-policy heuristics based on a simplification of the

value iteration algorithm. This simplification, which we call Deterministic Model, is an

approximation of the underlying Markov reward process defined in Section 2.5.

3.2.1 Extension of Definitions

We extend some definitions of Section 2.5 to the corresponding limiting function C(x, r, j).

As in (5), we have

V (z, r, j) := G(z) + αEξC(z − ξ, r, j+) (18)

Parallel to (7), we define

H(z) := min
w≥z

{(w − z)cr + αEξC(w − ξ, 0, 1)} (19)

For given z, we define w(z) to be the argument that attains the minimum in (19). That is,

w(z) := argminw≥z{(w − z)cr + αEξC(w − ξ, 0, 1)} (20)

54

3.2.2 Deterministic Model

We define the deterministic model as the reward process with state space X, decision space

D, single-period cost functions c(x,d, ξ) as defined in Sections 2.3 and 2.5, and transition

function

f [(x, r, j), (z, y)] =





(z − µξ, r, j
+) if j /∈ {0, τ − 1}

(z + r − µξ, 0, 1) if j = τ − 1

(z − µξ, y, 1) if j = 0

3.2.3 Heuristic Policy 1 (HP1)

Since the proofs in Chapter II are valid for a deterministic demand distribution, the optimal

policy for the deterministic model retains the structure presented in Theorem 1.

The first inventory-policy heuristic is the optimal policy for the deterministic model.

As proved in Section 2.7, the optimal parameters for this system can be obtained from the

limit functions of a dynamic programming model, hence the algorithm presented in Section

2.9.2 can be used to compute the operational parameters.

3.2.4 Heuristic Policy 2 (HP2)

This policy is applicable to the case τ = 2 and is based on the user-defined parameter R

and the operational parameters (sj , Sj), j ∈ {0, . . . ,m − 1}, that are computed with the

algorithm presented later in Section 3.2.6.1. In state (x, r, j) the following actions are taken:

(a) For j = 0: if x < s0, place an emergency order for ye = S0 − x units; otherwise, do

not order (ye = 0). Further, place a regular order of size max(R− ye − x, 0).

(b) For j = 1: if x + r < s1, place an emergency order for S1 − (x + r) units; otherwise,

do not order.

(c) For j ∈ {2, . . . , m−1}: if x < sj place an emergency order for Sj−x units; otherwise,

do not order.

This policy is very similar to the optimal policy presented in Theorem 1, but the regular

order size function is simplified. This change not only eases the application of the policy but

55

also allows us to develop a simpler minimization model in order to obtain the operational

parameters. To motivate this simplification, we note that in all the results presented in

Section B.1, there exists a value R > S0 such that Q(z) = R− z for z ≤ R. In most of the

experiments, there is no benefit to place regular orders when z > R, so an order-up-to-R

with Q(z) = max(R− z, 0) is optimal. Even though there are a few experiments where this

is not the case, for the optimal policy stated in Theorem 1 the emergency inventory-position

z at period j = 0 will always be in the interval [s0, maxj Sj], hence the function Q(z) for

z > R can be simplified to Q(z) = 0 and an order-up-to-R policy with Q(z) = max(R−z, 0)

is a good approximation.

3.2.4.1 Characteristics of HP2

In this section we show that, under HP2, the emergency inventory-position of the deter-

ministic model follows cycles of length m and, consequently, the expression for the total

expected discounted cost stated in equation (3) can be simplified. This simpler form and

the fact that V (x, r, j), defined in equation (18), achieves a minimum at Sj are the basis to

formulate a minimization model that returns the operational parameters for HP2.

First, we show that the emergency inventory-position of the deterministic model con-

trolled with HP2, follows cycles with length m.

Lemma 17 When the deterministic model is controlled with the HP2 policy, the path of

the emergency inventory-position z follows cycles with length m. The cycles start at period

j = 2 following the first regular-order placement opportunity.

Proof We prove this lemma by showing that at every period j = 2 following the first

regular-order placement opportunity, the emergency inventory-position is constant. Since

the transition function is deterministic, the sample path will start following cycles proving

the lemma.

We first look at the period following following the first regular order opportunity, i.e.,

period (1, 1). Recall that if x1,1 + r < s1, the policy will raise the emergency inventory-

position to z1,1 = S1 − r; otherwise, z1,1 = x1,1. Also, we note that since x1,1 = z1,0 − µξ

and r = y = R − z1,0, we have x1,1 + r = R − µξ. Hence, according to the inventory

56

policy, if x1,1 + r = R − µξ ≥ s1, then x1,2 = z1,1 + r − µξ = R − 2µξ. On the other

hand, x1,1 + r = R − µξ < s1 implies x1,2 = z1,1 + r − µξ = S1 − µξ. We observe that the

decision level is constant and that the inventory at hand at the beginning of period j = 2,

and consequently the emergency inventory-position, does not depend on previous inventory

levels. Further,

x1,2 =





R− 2µξ if R− µξ ≥ s1

S1 − µξ if R− µξ < s1

This argument is valid for any of the following regular review cycles, hence we have

x1,2 = x2,2 = · · · .
Since the transition function and the reorder decisions are deterministic, then two

regular-order cycles with same net inventory at the beginning of period j = 2, i.e.,

xk,2 = xk+1,2, will have the same emergency inventory-position path, proving the lemma.

As a consequence of the above lemma, we show that the total size of orders placed

during a cycle is a constant.

Corollary 18 Under the assumptions of Lemma 17, in every cycle of the emergency

inventory-position sample path we have

R− zi,0 +
m−1∑

j=2

ye
i,j +

1∑

j=0

ye
i+1,j = mµξ

Proof By Lemma 17, we have that for all regular review cycles i, zi,0 = zi+1,0. Since for

the deterministic model

zi+1,0 = zi,0 + R− zi,0 +
m−1∑

j=2

ye
i,j +

1∑

j=0

ye
i+1,j −mµξ

the result follows.

3.2.5 Optimization Model for HP2

In this section we formulate a minimization model to obtain the optimal parameters for the

deterministic model controlled with HP2.

57

3.2.5.1 Notation

The following variables will be used to define the optimization model. In the following

definitions, we distinguish the path cycle-related elements by adding a bar on top of them.

• l: Specific initial period for cost accounting denoted by the number of periods after

the last regular review epoch, l ∈ {0, 1, . . . , m− 1}. In other words, this is the period

within a cycle where costs will start to be accrued.

• xl: Inventory on hand at the beginning of period l.

• ye
j : Size of emergency order placed in period j before starting the first cycle.

• Q = R− z0: Size of regular order at period j = 0 before starting the first cycle.

• zj : Emergency inventory-position at period j before starting the first cycle. This is

an auxiliary variable such that

zj =





zj− + ye
j − µξ if j 6= 2

z1 + ye
2 − µξ + Q if j = 2

(21)

• ȳe
j : Size of emergency order placed in period j during a cycle.

• Q̄ = R− z̄0: Size of regular order at period 0 during a cycle.

• z̄j : Emergency inventory-position at period j during a cycle. This is an auxiliary

variable such that

z̄j =





z̄j− + ȳe
j − µξ if j 6= 2

z̄1 + ȳe
2 − µξ + Q̄ if j = 2

(22)

3.2.5.2 Objective Function

Since the path of the emergency inventory-position follows cycles, the total expected dis-

counted cost for the deterministic model can be broken in two parts: the function that

accounts for the costs before the start of the first cycle, which we name the pre-cycle

cost function, and the function that represents the infinite sum of the remaining cycle

58

costs, which we name the cycle cost function. Our goal is to form an objective function

Ψl(xl, R, ye
j+ , . . . , ye

1, z̄2, ȳ
e
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1) with the same value, under the optimal policy,

as the function V (x, 0, l) defined in equation (18). By the definition of Sl provided in Lemma

7, the minimization of this objective function will provide the optimal parameters for HP2.

Since under the optimal policy no emergency orders are placed for an initial inventory

of Sl units, we do not include emergency orders on the first period. We define the pre-cycle

cost function for an initial period l ∈ {1, 2, . . . ,m− 1} as

ϕl(xl, R, ye
l+ , . . . , ye

1) := αEξL(xl − ξ) + α[Kδ(ye
l+) + ce(ye

l+) + αEξL(zl+ − ξ)] + · · ·

+ αm−l[cr(R− z0) + Kδ(ye
0) + ce(ye

0) + αEξL(z0 − ξ)]

+ α1+m−l[Kδ(ye
1) + ce(ye

1) + αEξL(z1 − ξ)]

and for l = 0 as

ϕ0(x0, R, ye
1) := cr(R− x0) + αEξL(x0 − ξ) + α[Kδ(ye

1) + ce(ye
1) + αEξL(z1 − ξ)]

For l 6= 0, we replace the redundant variable z0 to get

ϕl(xl, R, ye
l+ , . . . , ye

1) := αEξL(xl − ξ) + α[Kδ(ye
l+) + ce(ye

l+) + αEξL(zl+ − ξ)] + · · ·

+ αm−l[cr[R− xl + (m− 1− l)µξ − ye
l+ − · · · − ye

m−1 − ye
0]

+ Kδ(ye
0) + ce(ye

0) + αEξL(z0 − ξ)]

+ α1+m−l[Kδ(ye
1) + ce(ye

1) + αEξL(z1 − ξ)]

We now define the cost function of a single cycle as

φ(z̄2, R, ȳe
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1) := Kδ(ȳe

2) + ceȳe
2 + αEξL(z̄2 − ξ) + · · ·

+ αm−3[Kδ(ȳe
m−1) + ceȳe

m−1 + αEξL(z̄m−1 − ξ)]

+ αm−2[Kδ(ȳe
0) + ceȳe

0 + cr(R− z̄0) + αEξL(z̄0 − ξ)]

+ αm−1[Kδ(ȳe
1) + ceȳe

1 + αEξL(z̄1 + Q̄− ξ)]

59

Next, we write z̄0 in terms of z̄2, R, ȳe
0, ȳ

e
1, ȳ

e
3, . . ., and ȳe

m−1

z̄0 = z̄m−1 − µξ + ȳe
0

= z̄m−2 − 2µξ + ȳe
0 + ȳe

m−2

= z̄2 − (m− 2)µξ + ȳe
0 +

m−1∑

j=3

ȳe
j

By Corollary 18, we also have

ȳe
2 = mµξ −R + z̄0 −

m−1∑

j=0,j 6=2

ȳe
j

= mµξ −R + z̄2 − (m− 2)µξ + ȳe
0 +

m−1∑

j=3

ȳe
j −

m−1∑

j=0,j 6=2

ȳe
j

= z̄2 −R + 2µξ − ȳe
1

Hence

φ(z̄2, R, ȳe
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1) = Kδ(z̄2 −R + 2µξ − ȳe

1)

+ ce(z̄2 −R + 2µξ − ȳe
1) + αEξL(z̄2 − ξ) + · · ·

+ αm−3[Kδ(ȳe
m−1) + ceȳe

m−1 + αEξL(z̄m−1 − ξ)]

+ αm−2[Kδ(ȳe
0) + ceȳe

0 + cr(R− z̄0) + αEξL(z̄0 − ξ)]

+ αm−1[Kδ(ȳe
1) + ceȳe

1 + αEξL(z̄1 + Q̄− ξ)]

We express the auxiliary variables z̄j in terms of z̄2, R, ȳe
0, ȳ

e
1, ȳ

e
3, . . . using equation (22)

to obtain

φ(z̄2, R, ȳe
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1) = Kδ(z̄2 −R + 2µξ − ȳe

1)

+ ce(z̄2 −R + 2µξ − ȳe
1) + αEξL(z̄2 − ξ) + · · ·

+ αm−3[Kδ(ȳe
m−1) + ceȳe

m−1 + αEξL(z̄2 + ȳe
3 + · · ·+ ȳe

m−1 − (m− 3)µξ − ξ)]

+ αm−2[Kδ(ȳe
0) + ceȳe

0 + cr[R− (z̄2 + ȳe
3 + · · ·+ ȳe

0 − (m− 2)µξ)]

+ αEξL(z̄2 + ȳe
3 + · · ·+ ȳe

0 − (m− 2)µξ − ξ)]

+ αm−1[Kδ(ȳe
1) + ceȳe

1 + αEξL(z̄2 + ȳe
3 + · · ·+ ȳe

1 − (m− 1)µξ − ξ)]

60

To simplify the notation, we define the function κ : Rm → R, as

κ(R, ȳe
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1) := K[δ(z̄2 −R + 2µξ − ȳe

1) + · · ·

+ αm−3δ(ȳe
m−1) + αm−2δ(ȳe

0) + αm−1δ(ȳe
1)]

and rewrite

φ(z̄2, R, ȳe
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1) = κ(R, ȳe

0, ȳ
e
1, ȳ

e
3, . . . , ȳ

e
m−1)

+ αm−2cr[R− (z̄2 + ȳe
3 + · · ·+ ȳe

0 − (m− 2)µξ)]

+ ce[z̄2 −R + 2µξ − ȳe
1 + αȳe

3 + . . . + αm−3ȳe
m−1 + αm−2ȳe

0 + αm−1ȳe
1]

+ αEξL[z̄2 − µξ − ξ] + · · ·+ αm−2EξL[z̄2 + ȳe
3 + · · ·+ ȳe

m−1 − (m− 3)µξ − ξ]

+ αm−1EξL[z̄2 + ȳe
3 + · · ·+ ȳe

0 − (m− 2)µξ − ξ]

+ αmEξL[z̄2 + ȳe
3 + · · ·+ ȳe

1 − (m− 1)µξ − ξ]

To build the objective function, we start with the total expected discounted cost and

correct it with the term term cexl to account for the relation V (Sl, 0, l) = C(Sl, 0, l) + ceSl,

as established in Lemma 7. Therefore, we have

Ψl(xl, R, ye
j+ , . . . , ye

1, z̄2, ȳ
e
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1) := cexl + ϕl(xl, R, ye

j+ , . . . , ye
1)

+α2+m−jφ(z̄2, R, ȳe
0, ȳ

e
1, ȳ

e
3, · · · , ȳe

m−1)/(1− αm)

3.2.5.3 Constraints

Corollary 18 defined the first constraint for our model. The following lemma establishes

bounds for z̄2.

Lemma 19 Under the assumptions of Lemma 17, the emergency inventory-position z̄2

satisfies the following bounds

R− 2µξ + ȳe
1 ≤ z̄2 ≤ R + (m− 2)µξ − ȳe

0 −
m−1∑

j=3

ȳe
j

61

Proof Since Q(z) ≥ 0 and Q(z̄0) = R∗ − z̄0, we have

R ≥ z̄0 = z̄m−1 − µξ + ȳe
0

= z̄m−2 − 2µξ + ȳe
0 + ȳe

m−2

= z̄2 − (m− 2)µξ + ȳe
0 +

m−1∑

j=3

ȳe
j

This implies

z̄2 ≤ R + (m− 2)µξ − ȳe
0 −

m−1∑

j=3

ȳe
j

With regard to the lower bound, Corollary 18 implies

ȳe
2 = mµξ − (R− z̄0)−

m−1∑

j=0,j 6=2

ȳe
j ≥ 0

Hence

0 ≤ mµξ − (R− z̄0)−
m−1∑

j=0,j 6=2

ȳe
j

= mµξ − (R− (z̄2 − (m− 2)µξ +
m−1∑

j=3

ȳe
j + ȳe

0)−
m−1∑

j=0,j 6=2

ȳe
j

= z̄2 −R + 2µξ − ȳe
1

This completes the proof.

62

3.2.5.4 Model Formulation

Using the objective function and constraints we formulate the following minimization prob-

lem

minΨl(xl, R, ye
j+ , . . . , ye

1, z̄2, ȳ
e
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1) (23)

subject to

R− (z̄2 − 2µξ + ȳe
0 + ȳe

1) +
∑

ȳe
j = mµξ

z̄2 ≥ (1−m)µξ + R +
m−1∑

j=1,j 6=2

ȳe
j

z̄2 ≤ R + (m− 2)µξ − ȳe
0 −

m−1∑

j=3

ȳe
j

ye
j , ȳ

e
j ≥ 0 ∀j

(24)

3.2.6 Relaxed Model Formulation

To avoid having a discontinuous objective function, we relax equation (23) by adding the

auxiliary variables ρj and model the fixed emergency order cost in period j with Kρj such

that ye
j ≤ Mρj and 0 ≤ ρj ≤ 1, for some constant M . Using the new variables, we rewrite

the cost function of a single cycle as

φ′(z̄2, R, ȳe
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1, ρ0, ρ1, ρ3, . . . , ρm−1)

:= K[ρ̄2 + αρ̄3 + · · ·+ αm−3ρ̄m−1 + αm−2ρ̄0 + αm−2ρ̄1]

+ αm−2cr[R− (z̄2 + ȳe
3 + · · ·+ ȳe

0 − (m− 2)µξ)]

+ ce[z̄2 −R + 2µξ − ȳe
1 + αȳe

3 + · · ·+ αm−3ȳe
m−1 + αm−2ȳe

0 + αm−1ȳe
1]

+ αEξL(z̄2 − µξ − ξ) + · · ·+ αm−2EξL(z̄2 + ȳe
3 + · · ·+ ȳe

m−1 − (m− 3)µξ − ξ)

+ αm−1EξL(z̄2 + ȳe
3 + · · ·+ ȳe

0 − (m− 2)µξ − ξ))

+ αmEξL(z̄2 + ȳe
3 + · · ·+ ȳe

1 − (m− 1)µξ − ξ)]

63

and the pre-cycle cost function as

ϕ′l(xl, R, ye
l+ , . . . , ye

1, ρl+ , . . . , ρ1)

:= cexl + αEξL(xl − ξ) + α[Kρl+ + ce(ye
l+) + αEξL(zl+ − ξ)] + · · ·

+ αm−l{cr[R− xl + (m− 1− l)µξ − ye
l+ − · · · − ye

m−1 − ye
0]

+ Kρ0 + ce(ye
0) + αEξL(z0 − ξ)}

+ α1+m−l[Kρ1 + ce(ye
1) + αEξL(z1 − ξ)]

The resulting nonlinear minimization model is

minΨl(xl, R, ye
l+ , . . . , ye

1, ρl+ , . . . , ρ1, z̄2, ȳ
e
0, ȳ

e
1, ȳ

e
3, . . . , ȳ

e
m−1, ρ0, ρ1, ρ3, . . . , ρm−1)

subject to (25)

R− (z̄2 − 2µξ + ȳe
0 + ȳe

1) +
∑

ȳe
j = mµξ

z̄2 ≥ (1−m)µξ + R∗ +
m−1∑

j=1,j 6=2

ȳe
j

z̄2 ≤ R∗ + (m− 2)µξ − ȳe
0 −

m−1∑

j=3

ȳe
j

ye
j ≤ Mρj

ȳe
j ≤ Mρ̄j

ye
j , ȳ

e
j ∀j

1 ≥ ρ̄j ≥ 0 ∀j

1 ≥ ρj ≥ 0 ∀j

The value M = 4 was used for the experiments of Table 4.

3.2.6.1 Algorithm

The algorithm uses a simplified steepest ascent heuristic. On each step, the algorithm

searches for the best improving direction verifying the effect of a single variable change

(that is, changing either R, ye
j , ȳe

j , ρj , ρ̄j or xl). Let SSAl(z̄2) be the smallest value of the

objective function found by the simplified steepest ascent method for the fixed values of z̄2,

that is,

SSAl(z̄2) = Ψl(x∗l , R
∗, y∗l+ , . . . , y∗1, ρ

∗
l+ , . . . , ρ∗1, z̄2, ȳ

∗
0, ȳ

∗
1, ȳ

∗
3, . . . , ȳ

∗
m−1, ρ

∗
0, ρ

∗
1, ρ

∗
3, . . . , ρ

∗
m−1)

64

The search for the best value z̄2 proceeds in the following manner:

Step 0. Set k = 0, R = mµξ, z̄2 = R − 2µξ, xl = 0, ye
j = 0, ȳe

j = 0, searchStep = 0.1, and

minVal = SSA(z̄2).

If SSAl(z̄2 − searchStep) < SSAl(z̄2), then set searchStep = −0.1.

Step 1. Set z̄2 = z̄2 + searchStep, R = z̄2 + 2µξ, xl = 0, ye
j = 0, and ȳe

j = 0.

Step 2. If SSAl(z̄2) < minVal, then set minVal = SSAl(z̄2) and go to Step 1. Otherwise,

set Sl = xl and R∗ = R.

3.3 Comparisons of Heuristics

We implemented the algorithm of Section 2.9.2, HP1 and HP2 with Java in order to obtain

the operational parameters and the expected cost-to-go function for each of the experiments

of Section 2.9.3. Different implementations of the algorithm of Section 2.9.2 and HP1 are

required for τ = 2 and τ > 2 because the bounds and properties presented in Section 2.8,

which are used to speed up the algorithm of Section 2.9.2, are different for each case.

To compare each heuristic against the optimal solution, we use the following criteria:

implementation difficulty, speed, and accuracy.

3.3.1 Implementation Difficulty

Since both the optimal solution and HP1 use the same Java code, there is no difference be-

tween them with regard to implementation difficulty. The implementation of HP2 algorithm

requires less coding.

3.3.2 Speed

We executed all programs on a computer with two 2.4GHz Xeon processors and 2GB RAM

running under the Linux operating system (Vanilla Linux kernel, version 2.4.20). Tables

5 and 6 display the minimum, maximum and average time it took to solve each of the

experiments described in Table 4.

65

Table 5: Maximum, Minimum, and Average Time Required for the Experimental Design
in Table 4 when τ = 2

Max time (min) Min time (min) Average Time (min)
Optimal Solution 3.51 0.40 1.53
HP1 0.26 0.03 0.10
HP2 0.44 0.001 0.06

Table 6: Maximum, Minimum, and Average Time Required for the Experimental Design
in Table 4 when τ = 3, 4

Max time (min) Min time (min) Average Time (min)
Optimal Solution 3803.95 4.04 295.09
HP1 72.49 0.66 17.98

3.3.3 Accuracy

For each of the experiments of Section 2.9.3, we searched for the largest difference between

the expected total costs produced by the heuristics and the optimal policy using an ini-

tial inventory in the range [−40, 40], that is maxx∈[−40,40]{CHP(x, 0, 0)− C(x, 0, 0)}, where

CHP(x, 0, 0) is the expected total cost function under a heuristic policy.

Tables 7 and 8 display the maximum, minimum, and average largest difference for these

experiments. The tables also show an estimated percent difference histogram. For example,

in 75.3% of the experiments, the largest difference between HP1 and the optimal solution

was less than 2%. Although HP2 is, on average, 40 % faster than HP1 (Table 5), the latest

heuristic has a smaller cost difference with the optimal expected total cost.

Table 7: Maximum, Minimum, Average and Histogram for the Largest Differences Between
the Heuristics and the Optimal Policy when τ = 2

Max Min Average 2% 5% 10% 15% 20%
HP1 13.4% 0% 1.5% 75.3% 97.1% 99.8% 100% 100%
HP2 25.4% 0% 3.1% 41.9% 82.7% 96.4% 99.2% 99.8%

66

Table 8: Maximum, Minimum, Average and Histogram for the Largest Differences Between
the Heuristics and the Optimal Policy when τ = 3, 4

Max Min Average 2% 5% 10% 15% 20%
HP1 11.0% 0.002% 3.3% 27.6% 79.3% 98.5% 100% 100%

3.4 Concluding Remarks

In this chapter we presented two heuristic inventory policies and compared them against

the optimal policy described in Chapter II in terms of implementation difficulty, speed and

accuracy for the experimental design of 3888 cases listed in Table 4. Based on this substan-

tial experimentation, both heuristics provided a significant reduction in computational time

without adding substantial errors in the total expected costs when the regular lead-time is

two periods.

The next chapter presents an inventory simulator suite that will allow the estimation of

performance measures which are hard to obtain by analytical means.

67

CHAPTER IV

INVENTORY SYSTEM SIMULATOR

Several simulators have been developed to solve inventory problems in a supply chain.

Some simulators have been developed for academic research such as Pope’s “Inventory

Management Simulation” [44], Bernstein’s “Inventory Simulator” [4], Wedel’s “Otto’s In-

ventory Simulation” [64], Jacobs’ “Supply Chain Inventory System Design Exercise” [32],

and Snyder’s “BaseStockSim” [58]; see also Przasnyski [48] and Adi Ben-Israel [3]. Since

these simulators were developed for educational purposes, they provide limited flexibility

to model and test more complex systems involving non-trivial inventory allocation policies

or reorder policies of the type depicted in this thesis. Such flexibility can be provided by

Object-oriented simulations such as the one as presented in Rossetti, Miman, Varghese and

Xiang [50] or simulation libraries such as DSOL [17]. Since these require coding (in both

cases in Java), they have limited use by those who can effectively program those languages

as opposed to graphical simulations.

Various commercial simulations have also been developed such as “The SIMPLE 1 pro-

gramming language” [14], the “Financial and Inventory Simulator” [15], “VALOGIX” [61],

and the “Supply Chain Guru” [36].

This chapter describes the implementation of a multi-echelon inventory system simulator

developed in Java. It proceeds as follows: Section 4.1 contains the User’s Guide, Section

4.2 presents test cases to validate various models created with the simulator, and Section

4.3 provides software documentation.

4.1 User’s Guide

4.1.1 Introduction

The Inventory Simulation Workbench (ISW) is a Java-based simulation suite that allows

a user to develop a network of inventory systems by means of nodes and supply arcs in a

graphical environment, define experimental settings, and observe the results of a simulation.

68

4.1.2 Acknowledgements

ISW is based on:

• The open source Distributed Simulation Object Library (DSOL) developed

at the Delft University of Technology, The Netherlands, and available at

http://www.simulation.tudelft.nl/ (August 21, 2008) .

• The open source Java Graph Visualization and Layout library, JGraph. Available at

http://www.jgraph.com/ (August 21, 2008).

4.1.3 Copyright

• DSOL: GNU Lesser General Public License available at

http://www.gnu.org/copyleft/lesser.html (August 21, 2008).

• JGraph: Library General Public License (LGPL) version 2.1 and JGraph License ver-

sion 1.1, available online at http://www.jgraph.com/license.html (August 21, 2008).

• ISW: GNU Lesser General Public License.

4.1.4 Installation and System Requirements

The distribution of ISW is through a compressed and Java executable jar file. No installation

is required.

• Operating Systems: Windows, Linux, Unix, and Mac OS X.

• Hardware Requirements: 1GB RAM.

• Software Requirements: Java runtime environment J2SE version 1.5 or higher.

4.1.5 Quick Start

To illustrate the use of ISW, we will explain how to run the tutorial model rQPolicySim.

Double-click the inventory.jar file or run the command java -jar inventory.jar in

a command prompt window or shell. The main window should open. Open the (r,Q)

inventory tutorial model using the menu Help-Tutorial-rQPolicySim.xml. As shown in

69

http://www.simulation.tudelft.nl/�
http://www.jgraph.com/�
http://www.gnu.org/copyleft/lesser.html�
http://www.jgraph.com/license.html�

Figure 5, three tabs should have been created on the main window: Experiment, Control,

and Graph.

Figure 5: ISW Main Window

The Control tab allows the user to setup simulation parameters such as the number of

replications and warmup interval (more details available in Section 4.1.8). The Graph tab

allows the user to review and modify the inventory network (more details can be found in

Section 4.1.7).

The rQPolicySim model represents a single-item, single-echelon, continuous-review in-

ventory system managed with an (r,Q) policy. To view the parameters of each of the nodes

in the network, select the Graph tab and right-click on any selected node or arc. This will

open a dialog allowing the user to view and edit any node parameters (more details about

node parameters can be found in Section 4.1.7). To add new nodes (demand, supplier or

node manager) or arcs, the user can utilize the buttons on the top of the panel.

When changes to the inventory network and the simulation parameters have been com-

pleted, the model may be saved using the File-Save menu (or the shortcut CTRL+S).

Since the included tutorial files are distributed in a compressed jar file, the simulation model

will not create the log nor record statistical results; hence, it is advised to save the model

70

as a local file before running the model.

The user may run the simulation using the buttons at the bottom left corner of the

window. The Run button will start the simulation, with the current simulation time being

displayed at the bottom right corner of the window. Similarly, the simulation can be

paused or stopped with the buttons at the bottom left corner of the window. To observe

the inventory statistics or graphs, open the Statistics window (use the Window-Statistics

menu or the key shortcut F2). Once the statistic window is opened, any chart or statistic

may be “dragged and dropped” from the statistic panel on the left to the display panel on

the right side of the window (more details can be found in Section 4.1.6).

To compare the results against a different model, close the current experiment (use

the File-Close menu or the key shortcut CTRL+F4) and open or create a new inventory

network. Run the simulation and open the Statistics window. Now, both experiment results

are available in the left panel in folders named with the date and time that the experiment

was run, so any combination of statistics can be ‘dragged and dropped” to the display panel

for comparison.

4.1.6 The Workbench Menus

The following menu items are available:

• File

– New File: Creates a new model with no components.

– Open File: Opens an existing model file (model files have extension .xml).

– Save File: Saves the existing model. The model’s parent directory becomes the

experiment directory where the log and statistic files are saved.

– Open URL: Opens an existing model file from a URL address.

– Close: Closes the current model.

– Open Recent: Provides quick access to the most recent successfully opened mod-

els.

– Exit: Exits the ISW.

71

• Tools

– Pause Simulator At: Provides a way to pause the simulation at a given time.

• Window

– Context: Displays current experiment information such as experiment name,

date, and time.

– Statistics: Displays a two-panel window (see Figure 6). The left panel displays

the experiments simulated during the current session, providing access to statis-

tics and charts for each experiment (see Section 4.1.9 for the available measures

of performance and charts). The right panel displays selected statistics or graphs.

To display any performance measure statistic or graph, click and drag the object

from the left panel to any of the cells in the right panel. The right panel has

buttons to add or delete rows and columns of cells.

The displayed plots can be zoomed in and out, saved or printed by right-clicking

on them.

Figure 6: Statistics WIndow

72

– Event List: Displays a table with the simulation events currently scheduled (fu-

ture event list).

– Logging: Displays different types of logs (inventory, simulation, etc). To review

the inventory events, open the gatech.isye.smtet.trace log. This display and

the simulation log are useful debugging tools.

– Memory: Displays the current system memory usage.

• Help

– Tutorial: Provides access to tutorial examples as explained in Section 4.1.12.

4.1.7 The Inventory Model

ISW involves two different models, the Inventory Model and the Simulation Model. The

user graphically creates a network of inventory nodes and arcs connecting the nodes using a

library of elements. This network is the Inventory Model. When the simulation is started,

the Inventory Model is appropriately translated to a Simulation Model using the DSOL

library. To expand the available library of inventory elements, the user can define new

elements following the procedure described in Section 4.1.13.

The four basic elements used to build the Inventory Model are: Demand, Supplier,

Node Manager, and Supply Arc. The basic structure of the inventory network is that of a

directed tree, where the direction of the arcs represents flow of goods (as opposed to flow

of orders). Orders are created by a Demand Node or by any Node Manager that requires

replenishment of goods, and are sent to a Supplier or to another Node Manager, where

they can be fulfilled with inventory or production. In order to ensure that all orders are

satisfied, it is required that all roots are of type Demand and all leafs are of type Supplier.

The behavior of the inventory elements is defined by some smaller, and usually simpler,

elements. For example, the behavior of a Demand node is mainly defined by the following

three Random Variable elements: the starting time, the interarrival time, and the demand

quantity.

To describe the elements of the Inventory Model, we follow a top-bottom approach,

73

describing basic components first and then their subcomponents.

Demand: A Demand is a node that generates Orders for a single type of item according to

a stochastic process. The following parameters define a Demand:

(a) Demand Class: This corresponds to the Java class that implements the Demand

according to the DSOL paradigm. Default value: Demand.

(b) Demand Id: A unique identifier for this node. Default value: dem.

(c) Item Type: The type of product that this node will demand. Default value:

prod.

(d) Quantity Distribution: A Random Variable that models the amount of items

requested in the order. Default value: DistributionDiscreteConstant(1).

(e) Interval Distribution: A Random Variable that models the time between orders.

Default value: DistributionConstant(1).

(f) Start-time Distribution: A Random Variable that defines the time of the first

order. Default value: DistributionConstant(0).

(g) Maximum Number Creations: A constant that defines the maximum number of

orders generated by the node. Default value: java.lang.Long.MAX VALUE.

Supplier: A Supplier is a node that provides a single type of item. These nodes have

unlimited availability of resources, hence they do not require replenishment. The

following parameters define a Supplier:

(a) Supplier Class: This corresponds to the Java class that implements the Supplier

according to the DSOL paradigm. Default Value: Supplier.

(b) Supplier Id: A unique identifier for this node. Default value: supp.

(c) Item Type: The type of product that this node will supply. Default value: prod.

(d) Lead-time: This Random Variable parameter defines the lead-time of the

Supplier due to transportation. If a shipment from this node follows a Supply

Arc with a specified lead-time, the arc delay prevails over the node value. Default

value: DistributionConstant(0).

74

Node Manager: A Node Manager node models a production, assembly or inventory ware-

house organization. The following parameters define a Node Manager:

(a) Node Class: This corresponds to the Java class that implements the Node

Manager according to the DSOL paradigm. Two different classes are provided

in the ISW database:

– NodeManager: This class models an organization that behaves indepen-

dently of the rest of the network.

– CentralizedNodeManager: This class models an organization that is an el-

ement of a multi-echelon inventory management. Henceforth, its behavior

(and its components behavior as well) may depend on other nodes.

Default value: NodeManager.

(b) Node Id: A unique identifier for this node. Default value: man.

(c) Transport Mode: This Transport parameter models transportation and its re-

lated costs. The Transport Mode element provides the flexibility to model dif-

ferent transport delays at different costs. If a shipment from this node follows a

Supply Arc with a specified lead-time, the arc delay prevails over the Transport

value. Please see Transport for information about available modes. Default

value: SingleModeTransport.

(d) Inventories: A Node Manager node may have one or more Inventories. Each

element of type Inventory models the storage, replenishment policy and ac-

counting of a single item inventory. Please see Inventory for information

about available inventories and their management. Default value: Single

PeriodicReviewInventory element.

Supply Arc: A Supply Arc represents the flow of a single item. Different arcs should

connect demands and suppliers for different item types. The following parameters

define a Supply Arc:

• Demand Node Id: The Node Id of the destination node.

75

• Supply Node Id: The Node Id of the origin node.

• Item Type: The type of product that moves through this arc. Default value:

prod.

• Lead-time: This Random Variable parameter models the transportation lead-

time of the items moving through this arc. Default Value: 0.

Inventory: An Inventory models the storage, replenishment management, and account-

ing of a single item. We first describe the Inventory functionalities and then its

parameters.

The following functionalities are implemented either by the inventory element or by

its parameters:

• Inventory Reviewing: Timing for inventory-position review and resupply deci-

sion. This functionality is implemented by the Inventory Class.

• Inventory Production: This functionality defines how the inventory obtains the

stored items and is implemented by the Inventory Production/Warehousing

element.

• Reorder Decision: This functionality defines whether to place an Order to a

supplier. The Order includes the order quantity and the type of order (see

the Order element for more details). This functionality is implemented by the

Inventory Policy element.

• Costing: This functionality keeps inventory level statistics and computes the

inventory costs and revenues. It is implemented by the Cost Function element.

• Allocation: This functionality describes the allocation of inventory to pend-

ing orders in a Distribution Warehouse inventory. It is implemented by the

Allocation Policy element and works only on the Distribution Warehouse

inventory type.

• Event Prioritization: This functionality defines the sequence in which the

76

inventory-related events are executed on every period (highest numbered pri-

ority has precedence). The following events may be prioritized:

– Replenishment.

– Demand.

– Review.

– Costing.

For obvious reasons, this functionality is important mainly in

PeriodicReviewInventory systems.

The following parameters define the inventory behavior:

(a) Inventory Class: This corresponds to the Java class that implements the inven-

tory review functionality.

The following classes are provided in the ISW database:

– PeriodicReviewInventory: Models an inventory with periodic review.

– ContinuousReviewInventory: Models an inventory with continuous review.

– DistributionWarehouse: Models an inventory with periodic review and al-

location policy defined by an AllocationPolicy element. The allocation

event for this type of inventory has a low priority (priority 1, see Event

Execution Priority for details).

– NeverReviewInventory: Implements an inventory that is never reviewed.

– UpstreamSynchronizedReviewInventory: Models an inventory whose review

epochs happen after the upstream inventory has completed its review.

Default value: PeriodicReviewInventory.

(b) Item Type: The type of product that this inventory will hold. Default value:

prod.

(c) Backorder: This is a Boolean field that defines whether the node will backlog

orders. Default value: true.

77

(d) Partial Shipment: This is a Boolean field that defines whether the inventory will

deliver partially satisfied orders. Default value: true.

(e) Inventory Policy: Depending on the state of the inventory (some complex cases

may include inventory levels, upstream inventory levels, and current time), this

element defines whether to place an Order to a supplier. The Order includes

order quantity and type (see the Order element for more details). The following

policies are implemented in the database:

– BaseStock: Implements a base-stock inventory policy defined by a single

parameter, the base-stock level. That is, when the inventory position is less

than the base-stock level, it will reorder enough items to raise the inventory

position up to the base-stock level. For details, see Hopp and Spearman [30,

p. 69].

– BaseStock Batch: Implements a batch ordering policy. This policy has a

single parameter, the reorder point as defined in Cachon [10]. That is, when

the inventory position is less than or equal to the reorder point, it will

reorder enough quantity (in batches) to raise the inventory position above

the reorder point.

– BaseStock sSPolicy: In a periodic-review inventory with two supply modes

(regular and emergency), this policy implements a base-stock policy for the

regular mode and an (s, S) policy for the emergency mode. The emergency

mode is available at all time periods while the regular mode is available at

a fixed frequency. This policy place TwoModesSingleItemOrder orders.

– CentralizedSerialBaseStock: Implements a base-stock policy in a serial sup-

ply chain. For details, see Shang and Song [54].

– NeverOrderPolicy: Implements a policy that will never place an order.

– rQPolicy: Implements an (r,Q) policy. That is, when the inventory position

is less than r, it will place an Order for Q items. For details, see Zheng [65].

– sSPolicy: Implements an (s, S) policy. That is, when the inventory position

78

is less than s, it will place an Order to raise the inventory position up to S.

For details, see Porteus [45, p. 103].

Default value: NeverOrderPolicy.

(f) Inventory Production/Warehouse: This element models the production depart-

ment or warehouse that supplies the items of the inventory. Two classes are

available in the database:

– Warehouse: This is a warehouse with no production capability.

– BTOProductionDepartment: This is a model of a build-to-order (assembly)

production facility.

(g) Cost Function: This element keeps inventory level statistics and computes the

corresponding inventory costs. The following costs are accounted for: holding,

backorder, on-transit, and purchase (includes acquisition and transport costs

charged by the Transport element).

Two classes are available in the database:

– ContinuousTimeCostFunction: This object computes the average inventory

level as a time-average statistic. Cost statistics are computed based on a

linear holding rate, backorder rate, and on-transit rate.

– DiscreteTimeCostFunction: This object performs the same computations as

the BasicInvCostFunction, but instead of time-averages, it uses the average

of periodic samples to compute the inventory costs. This type of cost function

should be used for all periodic-review inventories.

Default value: ContinuousTimeCostFunction.

(h) Allocation Policy: In a DistributionWarehouse inventory, this element imple-

ments the allocation of available inventory to all pending orders. The Allocation

Policy will only work well in the DistributionWarehouse inventory type, since

this type of inventory will delay the allocation decision until all orders have been

received. Two classes are available in the database:

79

– FIFOAllocation: This class allocates the available inventory to pending or-

ders following a First-In-First-Out (FIFO) order.

– RandomAllocation: This class allocates the available inventory to pending

orders in a random fashion (with equal probabilities).

– RelativeNeedAllocation: If there is not enough inventory at-hand to satisfy

all pending orders, this class will allocate sequentially each item available to

the requesting Node Manager with the largest number of pending orders. If

the inventory has enough inventory at-hand, this class will allocate the items

following a FIFO order.

Default value: FIFOAllocation.

(i) Event Execution Priorities: This is a set of priorities (numbers) that defines the

sequence in which some inventory-related events (demand, review, replenishment,

and costing) are executed on every period. The event with highest priority is

given preference. The range of priority values is {0, 1, . . . , 10} and the following

sets are available in the database:

– Default: With this set of priorities all four events have the same priority

(value 5). Hence, events will be executed in the order that they were sched-

uled by the model.

– Cachon: This set of priorities defines the sequence demand-review-

replenishment-costing as defined in Cachon [10].

– Lystadt: This set of priorities defines the sequence replenishment-demand-

review-costing as defined in Lystadt and Ferguson [37].

– Scarf: This set of priorities defines the sequence review-replenishment-

demand-costing as defined in Scarf [52].

– Veinott: This set of priorities defines the sequence review-demand-

replenishment-costing as described in Veinott and Wagner [62].

Random Variable: A Random Variable provides a stream of pseudo-random samples

according to a specified distribution. The following real-valued random variables are

80

included in the database:

• DistributionBeta(α1, α2): Implements the Beta random variable with expected

value α1/(α1 + α2).

• DistributionConstant(c): Implements a constant random variable with value c.

• DistributionErlang(k, β): Implements an Erlang random variable of order k and

expected value kβ.

• DistributionExponential(µ): Implements an exponential random variable with

mean µ.

• DistributionGamma(α, β): Implements a gamma random variable with shape

parameter α > 0 and expected value αβ.

• DistributionLogNormal(µ, σ): Implements a lognormal random variable with

mean eµ+σ2/2 and variance e2µ+σ2
(eσ2 − 1).

• DistributionNormal(µ, σ): Implements a normal random variable with mean µ

and standard deviation σ.

• DistributionPearson5(α, β): Implements a Pearson type 5 distribution with

shape parameter α > 0 and scale parameter β > 0.

• DistributionPearson6(α1, α2, β): Implements a Pearson type 6 distribution with

shape parameters α1 > 0, α2 > 0 and scale parameter β > 0.

• DistributionTriangular(a, b, c): Implements a triangular random variable with

minimum value a, mode b, and maximum value c.

• DistributionUniform(a, b): Implements a uniform random variable with mini-

mum value a and maximum value b.

• DistributionWeibull(α, β): Implements a Weibull distribution with shape param-

eter α > 0 and scale parameter β > 0.

The following integer-valued random variables are included in the database:

• DistributionBernoulli(p): Implements a Bernoulli random variable with mean p.

81

• DistributionDiscreteConstant: Implements a discrete random variable with value

c.

• DistributionGeometric(p): Implements a geometric random variable with pa-

rameter p ∈ (0, 1) and probability mass function Pr(X = k) = p(1 − p)k for

k ∈ {0, 1, 2, . . .}.

• DistributionBinomial(n, p): Implements a Binomial distribution with n trials an

probability of success p.

• DistributionDiscreteUniform(a, b): Implements a random variable with equal

probability for the integer numbers in the set {a, . . . , b}.

• DistributionNegBinomial(r, p): Implements a negative binomial random variable

with parameters r > 0 and p ∈ (0, 1), and probability mass function

Pr(X = k) =
Γ(k + r)
k!Γ(r)

pr(1− p)k

• DistributionPoisson(λ): Implements a Poisson random variable with mean λ.

Also included are the DistReader. This object read samples from a user-defined file.

Transport: This element models the transportation of goods between nodes. Two trans-

portation classes are provided in the database:

• SingleModeTransport: This class models the transportation of any order simu-

lating its lead-time and its costs.

• Reg EmergModeTransport: This class models the behavior of two transportation

modes for the same node, a regular mode and an emergency mode. With this

type of transportation, goods required by a TwoModesSingleItemOrder order

will be transported by the regular mode or by the emergency mode, as specified

in the order. On the other hand, goods required by a SingleItemOrder will be

transported using the regular mode. For further details about orders, see below.

Order: The user does not have to specify any parameter for an Order but a short descrip-

tion is included for completeness. This element specifies a supply request including

82

the type and amount of items required. Two classes are used in order to specify the

urgency (by requesting different types of transport) of the Order:

• SingleItemOrder: This Order is the basic type of order and will be delivered

using the regular mode of transportation.

• TwoModesSingleItemOrder: This Order requires the use of two modes

of transportation, regular and emergency, to deliver the goods (see

Reg EmergModeTransport for further details), hence it specifies the amount to

be delivered by regular means and the amount to be delivered by emergency

means.

4.1.8 The Simulation Model

The user interacts with the Simulation Model by defining the following treatment param-

eters in the Control tab:

• Number of Replications.

• Warmup Time: Time to start the computation of statistics.

• Run Length: Length of a replication. INF sets this value to infinity.

• Time Units: Defines the units of time to be used in the simulation. The options are

MILLISECOND, SECOND, MINUTE, HOUR, DAY, WEEK, YEAR, and UNIT (generic).

• Record Log: Defines whether to record a log of events. If set to true, the simulation

will create a subdirectory named log in the same directory where the ISW file is saved

and will write in this folder the log of every replication run. Default value: true.

• Record Sample Path: Defines whether to record the sample paths of various processes

related to the measures of performance under consideration. If set to true, the sim-

ulation will create a subdirectory named stat in the same directory where the ISW

file is saved, and will record in this folder the sample path of every statistic in a file

with the same name as the statistic (see Section 4.1.9). Default value: false.

83

4.1.9 Measures of Performance

For each inventory in the network, the following statistics are maintained and can be dis-

played as explained in Section 4.1.6. Statistics are updated during the data collection period

that starts at the warmup time and ends with the replication (run length).

• Inventory at Hand: Number of items in stock.

• Backorder Level: Number of backordered items.

• Inventory on Transit: Number of items in transit.

• Service Level: Fraction of fully satisfied orders.

• Time Between Replenishment(s): Time between order placements.

• Total Purchase Cost: Total cost incurred in orders to suppliers.

• Total Cost: At the end of each replication, the total cost is computed as the sum of the

total purchase, total inventory holding, total backorder penalty, and total in-transit

costs.

• Cost Per Period: At the end of each replication the cost per period is computed as

the total cost divided by (total) number of periods.

• Total Revenue: Total income from orders received.

If the number of replications is 5 or less, ISW will create a time graph of the inventory

at hand and the backorder level for each inventory in the network. When more than 5

replications are selected, no graphs will be created in order to conserve memory.

4.1.10 Building a Model

To build a model, two approaches can be followed: start from scratch (use the File-New

menu or press CTRL+N) or modify an existing model (use the File-Open menu or press

CTRL+O) and later save the model (use the File-Save menu or CTRL+S). In either case,

a new Graph tab will be created where the user can add, remove or modify the nodes and

84

arcs of the inventory network with the menu buttons available on the tab. Similarly, a new

Control tab will be created where the user can change the simulation parameters.

To understand the details of building a simulation model in ISW, we describe the steps

to build and setup the parameters for the sSPolicySim.xml tutorial available from the

Help menu. This tutorial example models a single-item, single-echelon inventory network.

The inventory is reviewed periodically and an (s, S) policy (sSPolicy element) is applied.

Figure 7 displays the network. We explain how to build this network by stating the goals

and the required commands.

Figure 7: (s, S) Inventory Network

Start ISW: Double-click the file inventory.jar or run the command java -jar

inventory.jar in a command window or shell.

Create a new model: Type CTRL+N or use the menu File-New. Select Graph tab.

Create a Demand: Click on Insert Demand Node button on the toolbar. A demand

node named dem[0] is created. Later we will change the node identification to dem1.

Relocate a Node: Using the arrow cursor on top of the dem[0] node, click and drag the

85

node to the desired location.

Set Demand Parameters: Right-click on top of dem[0]. A Demand Node Editor dialog

will open.

Change Demand Id: Select the Demand Id radio button and click the Edit button. The

Identification Editing dialog will open. Type the new node name, dem1, and

select Accept. If the Cancel button is selected, no changes are made. See Figure 8.

Figure 8: Demand Node Editor

Change Quantity Distribution: Select the Quantity Distribution button and then

click Edit. A Random Variable editing dialog will open. In the combo box search

for DistributionPoisson. Two input boxes will be created, one for the λ parameter

(mean), and one for the stream number. For the λ parameter enter 21 and Accept

the changes to the Random Variable and the Demand Node Editor dialogs.

Create Node Manager: Click on Insert Node Manager button on the toolbar. A Node

Manager named man[0] is created. Later we will change the node identification to

man1.

Set Node Parameters: Right-click on top of man[0]. A Node Manager Editor dialog

will open. See Figure 9. Change the Node Id to man1 following the same procedure

as explained for the Demand node.

86

Figure 9: Node Manager Editor

Modify Inventory Parameters: Select the Inventories tab in the Node Manager

Editor dialog. Select the inventory by clicking on the radio button and then click the

Edit button. An Inventory Editing dialog will open.

Change the Inventory Policy: Select the Inventory policy and click Edit. An

Inventory Reorder Policy Selection dialog will open. To change the parame-

ters of the current policy we must first change the policy. In the combo box select

sSPolicy. Two input boxes will be added, one for the reorder point s and another

one for the order-up-to value S. Set s = 15 and S = 65. Accept the changes in the

Inventory Reorder Policy Selection dialog.

Change the Initial Inventory: Select the Production/Warehouse Mode button and

click Edit. An Inventory Production Mode Selection dialog will be displayed.

In the combo box select Warehouse. One input box will be created for the initial

inventory. Type 65 for the initial inventory and accept the changes in the Inventory

Production Mode Selection dialog.

Define the Cost Function: Select the Cost Function button and click Edit. A

Cost Function Selection dialog will be displayed. In the combo box select

DiscreteTimeCostFunction. Type 1 for the holding rate and 9 for the bakorder

rate. Accept the changes in the Cost Function selection dialog.

87

Modify Event Priorities: Select the Event Priorities button and click Edit. In the

combo box select the set Veinott and Accept the changes. Also Accept the changes

in the Inventory Editing dialog. Accept the changes in the Node Manager Editor

dialog.

Create Supplier Node: Click on Insert Supplier Node button on the toolbar. A Sup-

plier Node named supp[0] is created. Relocate the node as desired and rename it as

supp1.

Set Supplier Parameters Right-click on top of supp[0]. A Supplier Editor dialog

will open; see Figure 10. Rename the node to supp1 and type in the Fixed Selling

Price box the value 64. Accept the changes.

Figure 10: Supplier Editor

Create Supply Arc: Move the cursor on top of the man1 node until a hand cursor appears.

Click and drag towards the dem1 node. Drop the button on top of the dem1 node.

This will create a supply arc from man1 to dem1. To edit the arc parameters, select

the arc and right-click. In the same manner, create a supply arc from supp1 to man1.

Change Simulation Parameters: Click on the Control tab and edit the simulation pa-

rameters.

88

4.1.11 Running the Model and Viewing Results

When the Inventory Network is ready, the user can run, pause or stop the simulation using

the buttons available for this purpose in the bottom left corner of the ISW window. If

Record Log was selected, a log (text) file will be created in the directory containing the

ISW file.

4.1.12 Tutorial Examples

The ISW examples are accessed in the Help menu. The following examples are provided:

(a) EOQPolicySim.xml: This is the model of a single-echelon, continuous-review, deter-

ministic inventory system that uses an rQPolicy policy.

(b) baseStockPolicySim.xml: This is the model of a single-echelon, continuous-review

inventory system that uses a Base Stock policy.

(c) rQPolicySim.xml: This is the model of a single-echelon, continuous-review inventory

system that uses an rQPolicy policy.

(d) sSPolicySim.xml: This is the model of a single-echelon, periodic-review inventory

system that uses a sSPolicy policy.

(e) cachonPolicySim.xml: This is the model of a two-echelon, periodic-review inventory

system that uses a random allocation policy as explained in Cachon [10].

(f) serialSupplyChainSim.xml: This is the model of a four-echelon, periodic-review in-

ventory system that uses a CentralizedSerialBaseStock policy.

4.1.13 Expanding the Workbench

The user may expand any of the elements defined in Section 4.1.7, Inventory Model. To

achieve this, the user must code the new Java class implementing the following interfaces:

• Demand: To code a Demand element, implement the interface

gatech.isye.sim.isw.model.manager.DemandInterface.

89

• Supplier: To code a Supplier element, implement the interface

gatech.isye.sim.isw.model.manager.SupplierInterface.

• Node Manager: To code a Node Manager element, implement the interface

gatech.isye.sim.isw.model.manager.NodeManagerInterface.

• Inventory: To code an Inventory element, implement the interface

gatech.isye.sim.isw.model.inventory.SingleItemInventoryInterface. To re-

duce the amount of required work, it is convenient to extend the abstract class

gatech.isye.sim.isw.model.inventory.BasicSingleItemInventory.

• Inventory Policy: To code an Inventory element, implement the interface

gatech.isye.sim.isw.model.policies.reorder.InventoryPolicyInterface.

• Inventory Production/Warehouse Mode: To code a Production/Warehouse element,

implement the interface

gatech.isye.sim.isw.model.production.ProductionInterface.

• Cost Function: To code a Cost Function element, implement the interface

gatech.isye.sim.isw.model.cost.InventoryCostFunctionInterface.

• Allocation Policy: To code an Allocation Policy element, implement the interface

gatech.isye.sim.isw.model.policies.allocation.AllocationPolicyInterface.

• Event Execution Priorities: No coding is necessary to implement new priority rules.

Just add the new set of priorities to the database eventprioritiesDB.xml.

• Random Variable: To code a Random Variable element, implement the in-

terface nl.tudelft.simulation.jstats.distributions.DistContinuous or

nl.tudelft.simulation.jstats.distributions.DistIntegerValued depending

on the type of distribution.

• Transport: To code a Transport element, implement the interface

gatech.isye.sim.isw.model.transport.TransportInterface

90

4.2 Validation

In this section we validate various models created with ISW by computing 95% confidence

intervals (CIs) based on independent replications and comparing these intervals against the

true mean.

4.2.1 Single Echelon Warehouse Policies

Table 9 shows the simulation parameters used to validate the simulator for a single-echelon,

single-item inventory system controlled with an EOQ or with an (s, S) policy. Table 10

displays the reorder point, average inventory, and total average cost obtained by the simu-

lation of the EOQ policy compared to those presented in Hopp and Spearman [30, p. 51].

Table 11 displays the confidence intervals (CIs) for the expected cost per period under the

(s, S) policy obtained by the ISW simulation compared to the expected values presented in

Veinott and Wagner [62].

Table 9: Parameters for the EOQ Inventory and (s, S) Policy Simulations

EOQ Policy (s, S) Policy
Demand Quantity 2 Poisson(λ)

Interval 1 1
Inventory Class Continuous Review Periodic Review

Node Initial Inventory 101 S
Inventory Holding Cost 0.05 1
Backorder Penalty 0 9
Inventory Policy rQPolicy(0, 100) sSPolicy(s, S)
Priorities Set default Veinott
Variable Cost 1 0

Supplier Setup Cost 50 64
Lead-time 0 0
Replication Length 200 days 1500 days

Simulation Warm-up Period 0 0
Parameters Replications N/A 100

Table 12 shows the parameters used to validate the ISW simulator for a single-echelon,

single-item, inventory system controlled with a base-stock policy or with an (r,Q) policy.

Table 13 displays the CIs for the expected inventory at hand and backorder level obtained

by the ISW simulation compared to the expected values presented in Hopp and Spearman

91

Table 10: EOQ Inventory Simulation Results

Reference Results Simulation Results
Reorder Period 50 50
Average Inventory 50 50
Total Average Cost 5.5 5.5

Table 11: (s, S) Policy Simulation Results

λ (s, S) Reference Results Simulation Results
Expected Cost per Period 95% CI for Expected Cost per Period

21 (16,65) 50.41 [50.35, 50.47]
59 (51,126) 76.68 [76.57, 76.76]

[30, p. 72]. Table 14 displays the confidence intervals for the expected cost per period for

two values of setup cost, K, compared to the expected values presented in Zheng [65]. In

each case, the CI contains the true value.

Table 12: Parameters for the Base-Stock and (r,Q) Policy Simulations

Base Stock Policy (r,Q) Policy
Demand Quantity 1 1

Interval Exponential(0.1) Exponential(0.02)
Inventory Class Continuous Review Continuous Review

Node Initial Inventory R r
Inventory Holding Cost 15 10
Backorder Penalty 25 25
Inventory Policy Base Stock(R) rQPolicy(r,Q)
Priorities Set Default default
Variable Cost 0 0

Supplier Setup Cost 0 K
Lead-time 1 0
Replication Length 100 days 50 days

Simulation Warm-up Period 10 5
Parameters Replications 100 100

92

Table 13: Results for the Base-Stock Policy Simulation

R Expected Inventory at Hand Expected Backorder Level
5 Reference Results 0.043 5.043

95% CI [0.04, 0.05] [4.99, 5.11]
15 Reference Results 5.1 0.103

95% CI [5.03, 5.15] [0.09, 0.11]

Table 14: Results for the (r,Q) Policy Simulation

K (r,Q) Reference Results Simulation Results
Expected Cost per Period 95% C.I. for Expected Cost per Period

1 (50, 7) 95.46 [93.47, 96.36]
100 (38, 40) 289.37 [288.02, 289.95]

4.2.2 Multi-echelon Policies

4.2.2.1 Serial Supply Chain

Table 15 shows the parameters used to validate the simulator for a four-echelon, single-

item inventory system controlled with an echelon base-stock policy. The inventory network,

shown in Figure 11, consists of a demand node that is supplied by a chain of four retailers.

The last node, retailer 4, is supplied by an infinite capacity supplier. Table 16 displays

the 95 % CIs for the expected inventory at hand and the backorder level and the expected

values computed with the formulas provided in Gallego and Zipkin [26, Section 2.4] and

Graves [27]. Again, the narrow CIs contain the true expected values.

4.2.2.2 Distribution Policy

To validate such a policy, we use a three-echelon inventory system depicted in Figure 12.

The first echelon has four independent demand nodes that place orders to a second echelon

of four retailers, each using a base-stock batch policy, (Rr, Qr). In the third echelon,

a warehouse distributes items to the retailers. A single supplier, with infinite capacity,

supplies the warehouse. The warehouse places orders following a base-stock batch policy

with parameters Rw and Qw. Table 17 shows the parameters used to validate this system.

Table 18 displays the confidence intervals for the expected inventory at hand and backorder

93

Figure 11: Serial Supply Chain Network

Table 15: Parameters for the Serial Supply Chain Simulation

Demand Quantity 1
Interval Exponential(0.0625)
Inventory Class Continuous Review
Initial Inventory 8

Retailer 1 Inventory Holding Cost Rate 0.25
Backorder Penalty 9
Inventory Policy CentralizedSerialBaseStock(8)
Stage Lead-time 0
Inventory Class Synchronized Review
Initial Inventory 5

Retailer 2 Inventory Holding Cost Rate 0.25
Retailer 3 Backorder Penalty 0
Retailer 4 CentralizedSerialBaseStock(13)

Inventory Policy CentralizedSerialBaseStock(18)
CentralizedSerialBaseStock(22)

Stage Lead-time 0.25
Variable Cost 0

Supplier Setup Cost 0
Lead-time 0.25
Replication Length 50 days

Simulation Parameters Warm-up Period 10
Number of Replications 100

94

Table 16: Results for the Serial Supply Chain Simulation

Retailer 1 Retailer 2 Retailer 3 Retailer 4
Expected Inventory Reference Results 3.309 1.066 1.059 0.781
at Hand 95% CI [3.26, 3.35] [1.04, 1.09] [1.03, 1.08] [0.77, 0.80]
Expected Backorder Reference Results 0.215 0.906 0.840 0.781
Level 95% CI [0.19, 0.24] [0.87, 0.94] [0.82, 0.87] [0.77, 0.81]

level, and the expected values presented in Cachon [10].

Figure 12: Distribution Chain Network

4.2.3 Validation Conclusion

In all cases, the 95% CIs based on 100 independent replications contained the true mean.

This creates a strong supporting argument for the validity of the simulation models built

with ISW. Of course, the validity of models based on enhancements of the workbench will

depend on the fidelity of the new classes and modules.

95

Table 17: Parameters for the Distribution Policy Simulation

Demand 1 Quantity Poisson(0.1)
Demand 2
Demand 3 Interval 1
Demand 4

Inventory Class Periodic Review
Retailer 1 Initial Inventory 0
Retailer 2 Inventory Holding Cost Rate 1
Retailer 3 Backorder Penalty 20
Retailer 4 Inventory Policy BaseStock Batch(Rr, Qr)

Stage Lead-time 0
Inventory Class Distribution Warehouse
Initial Inventory 0

Warehouse Inventory Holding Cost Rate 1
Backorder Penalty 0
Inventory Policy BaseStock Batch(Rw, Qw)
Stage Lead-time 1
Variable Cost 0

Supplier Setup Cost 0
Lead-time 1
Replication Length 1500 days

Simulation Parameters Warm-up Period 100
Number of Replications 100

Table 18: Results for the Distribution Policy Simulation

(Rw, Qw, Rr, Qr) Warehouse Retailers
Expected Inventory Reference 0.45 3.09

(0, 1, 0, 1) at Hand 95% CI [0.45, 0.46] [3.01, 3.19]
Expected Backorder Reference 0.25 0.13

Level 95% CI [0.25, 0.26] [0.13, 0.13]
Expected Inventory Reference 1.78 3.21

(0, 4, 0, 1) at Hand 95% CI [1.77, 1.79] [3.20, 3.27]
Expected Backorder Reference 0.08 0.09

Level 95% CI [0.08, 0.09] [0.09, 0.10]
Expected Inventory Reference 0.00 8.48

(-1, 1, 0, 4) at Hand 95% CI [0.00, 0.00] [8.42, 8.50]
Expected Backorder Reference 0.80 0.08

Level 95% CI [0.80, 0.82] [0.08, 0.09]

96

4.3 Documentation

The documentation for ISW is provided in the form of a User Manual, HTML JAVA API

documentation, and Class and Activity Diagrams using the Unified Modeling Language

standard, UML 2.1. The User Manual and the the HTML files are provided in the distri-

bution “inventory.jar” file.

4.3.1 Class Diagrams

The class diagram shows how the different entities relate to each other; in other words,

it shows the static structures of the system. Since the code is written in Java packages

grouping similar functionalities, we provide Class Diagrams for each of the relevant ISW

packages.

• Order: The order package groups the objects that model the Order element of ISW.

Figure 13 displays the class diagram.

• Production: The production package groups the objects that model the Inventory

Production element of ISW. Figure 14 displays the class diagram.

• Cost: The cost package groups the objects that model the Cost Function element

of the Inventory. Figure 15 displays the class diagram.

• Allocation: The allocation package groups the objects that model the Allocation

element of ISW. Figure 16 displays the class diagram.

• Reorder: The reorder package groups the objects that model the Inventory Policy

element of ISW. Figure 17 displays the class diagram.

• Inventory: The inventory package groups the objects that model the Inventory

element of ISW. Figure 18 displays the class diagram without “getter” and “setter”

methods.

• Transport: The transport package groups the objects that model the Transport

element of ISW. Figure 19 displays the class diagram.

97

• Node Manager: The manager package groups the objects that model the Node

Manager element of ISW. Figure 20 displays the class diagram.

Figure 13: Class Diagram for the Order Package

 getWhoRequestsOrder()

 setWhoRequestsOrder()

 getOrderQuantity()

 setOrderQuantity()

 getItemType()

 getOrderId()

 getPendingItems()

 addAvailableItems()

 addAvailableItems()

 receivePurchase()

 getAvailableItems()

 removeAvailableItems()

 removeAvailableItems()

 clone()

 splitAvailablePending()

 «interface »

OrderInterface

orderNumber

demandId

quantityOrdered

quantitySatisfied

itemType

requestor

SingleItemOrder

regularQuant

emergQuant

TwoModesSingleItemOrder

98

Figure 14: Class Diagram for the Production Package

 receiveReplenishment()

 satisfyOrder()

 setWarehouseCapacity()

 setInventorylevel()

 getWarehouseInventory()

 cleanMemory()

 «interface »

ProductionInterface

myNodeManager

myInventory

itemType

productionDelay

productionMix

 BTOAssembly()

 satisfyOrder()

 deliverProduction()

 setProductionDelay()

 setProductionMix()

 getWarehouseInventory()

 receiveReplenishment()

 setInventorylevel()

 setWarehouseCapacity()

 finalize()

 cleanMemory()

BTOAssembly

myInventory

warehouseCapacity

storedItems

 Warehouse()

 Warehouse()

 receiveReplenishment()

 satisfyOrder()

 removeItems()

 setWarehouseCapacity()

 setInventorylevel()

 getWarehouseInventory()

 finalize()

 cleanMemory()

Warehouse

 InfiniteWareHouse()

 satisfyOrder()

InfiniteWareHouse

99

Figure 15: Class Diagram for the Cost Package

PARTIAL_COST_CHANGE

 getTotalCostRate()

 getTotalAcumulatedCost()

 getDiscountedTotalAcumulatedCost()

 getExpectedTotalCost()

 getPurchasePrice()

 getAverageBackorder()

 getAverageInvAtHand()

 setPurchasePrice()

 cleanMemory()

 «interface »

InventoryCostFunctionInterface

serialVersionUID

simulator

myInventory

holdingRate

backorderRate

onTransitRate

fixedSellingPrice

varSellingPrice

inventoryAtHandStat

inventoryBackorderStat

inventoryOnTransitStat

totalCost

totalRevenue

costRate

purchaseCostStat

 BasicInvCostFunction()

 getTotalCostRate()

 getTotalAcumulatedCost()

 getExpectedTotalCost()

 getDiscountedTotalAcumulatedCost()

 getAverageBackorder()

 getAverageInvAtHand()

 notify()

 getPurchasePrice()

 setPurchasePrice()

 cleanMemory()

 finalize()

BasicInvCostFunction

serialVersionUID

fixedSellingPrice

varSellingPrice

 NoInventoryCostingFunction()

 getTotalCostRate()

 getAverageBackorder()

 getAverageInvAtHand()

 getDiscountedTotalAcumulatedCost()

 getTotalAcumulatedCost()

 getExpectedTotalCost()

 getPurchasePrice()

 setPurchasePrice()

 cleanMemory()

NoInventoryCostingFunction
serialVersionUID

simulator

myInventory

holdingRate

backorderRate

onTransitRate

fixedSellingPrice

varSellingPrice

inventoryAtHandStat

inventoryBackorderStat

purchaseCostStat

inventoryOnTransitStat

totalCostStat

totalRevenueStat

costRate

lastAcquisitionCost

lastTotalRevenue

discount

totalCost

totalDiscountedCost

presentDiscount

 PeriodicInventCostFunction()

 getTotalCostRate()

 getTotalAcumulatedCost()

 getExpectedTotalCost()

 getDiscountedTotalAcumulatedCost()

 getAverageBackorder()

 getAverageInvAtHand()

 getPurchasePrice()

 setPurchasePrice()

 stampStatistics()

 performSampling()

 notify()

 toString()

 cleanMemory()

 finalize()

PeriodicInventCostFunction

100

Figure 16: Class Diagram for the Allocation Package

distributionWarehouse

 allocateItems()

 cleanMemory()

 «interface »

AllocationPolicyInterface

myInventory

 FIFOAllocation()

 FIFOAllocation()

 allocateItems()

 toString()

 finalize()

 cleanMemory()

FIFOAllocation
myInventory

stream

 RandomAllocation()

 RandomAllocation()

 allocateItems()

 toString()

 finalize()

 cleanMemory()

RandomAllocation

101

Figure 17: Class Diagram for the Reorder Package

 checkReorderPolicy()

 cleanMemory()

 «interface »

InventoryPolicyInterface

simulator

myInventory

s

S

reorderPoint

regularCycle

firstRegularEpoch

 BaseStock_sSPolicy()

 amountEmergencyToOrder()

 ammountRegularToReorder()

 checkReorderPolicy()

 getReorderPoint()

 cleanMemory()

 getCyclePeriod()

 setPolicyParameters()

 toString()

BaseStock_sSPolicy

myInventory

reorderPoint

 Base_Stock()

 Base_Stock()

 ammountToReorder()

 setPolicyParameters()

 checkReorderPolicy()

 getReorderPoint()

 cleanMemory()

Base_Stock

myInventory

reorderPoint

batchSize

 Base_Stock_Batch()

 Base_Stock_Batch()

 ammountToReorder()

 setPolicyParameters()

 checkReorderPolicy()

 getReorderPoint()

 cleanMemory()

Base_Stock_Batch

myInventory

myManager

reorderPoint

itemType

 CentralizedSerialBaseStock()

 CentralizedSerialBaseStock()

 ammountToReorder()

 checkReorderPolicy()

 getReorderPoint()

 getEchelonInventoryOrderPosition()

 setPolicyParameters()

 cleanMemory()

 finalize()

CentralizedSerialBaseStock

 NeverOrderPolicy()

 checkReorderPolicy()

 cleanMemory()

 setPolicyParameters()

NeverOrderPolicy

myInventory

quantityToReorder

reorderPoint

 rQPolicy()

 ammountToReorder()

 checkReorderPolicy()

 getReorderPoint()

 cleanMemory()

rQPolicy

myInventory

upToPoint

pointOfReorder

 sSPolicy()

 sSPolicy()

 ammountToReorder()

 checkReorderPolicy()

 getReorderPoint()

 cleanMemory()

 finalize()

sSPolicy

102

Figure 18: Class Diagram for the Inventory Package

 «interface »

SingleItemInventoryInterface

 «interface »

gatech::isye::sim::isw::model::cost::InventoryCostFunctionInterface

 «interface »

gatech::isye::sim::isw::model::policies::reorder::InventoryPolicyInterface

 «interface »

gatech::isye::sim::isw::model::order::OrderInterface

 «interface »

gatech::isye::sim::isw::model::manager::NodeManagerInterface

 «interface »

gatech::isye::sim::isw::model::production::ProductionInterface

simulator

myManager

productionDept

itemType

log

inventoryName

reorderPolicy

backorder

partialShipment

pendingBackorders

pendingOrders

costFunction

totalAcquisitionCost

totalRevenue

replenishmentEventPriority

demmandEventPriority

inventoryReviewEventPriority

inventoryCostingEventPriority

timeBetweenReplenishmOrdersStat

ServiceLevel

timeOfLastOrder

ordersPlacedCounter

recordingInvetoryRequests

warmupFinished

 receivePurchase()

 receivePurchase()

 satisfyDemand()

 fillOrder()

 placeReorder()

 payReorderCost()

 notify()

 stampStatistics()

 createStatistics()

BasicSingleItemInventory

serialVersionUID

 NeverReviewInventory()

 createStatistics()

NeverReviewInventory

serialVersionUID

triggerEvent

triggerProducer

 SynchronizedReviewInventory()

 setTrigger()

 performInventoryReview()

 notify()

 cleanMemory()

SynchronizedReviewInventory

serialVersionUID

reviewFreq

 PeriodicReviewInventory()

 PeriodicReviewInventory()

 reviewInventory()

 receivePurchase()

 prioritizedPurchaseReception()

 setEventPriorities()

 setReviewFrequency()

PeriodicReviewInventory

serialVersionUID

 ContinuousReviewInventory()

 satisfyDemand()

 receivePurchase()

ContinuousReviewInventory

allocationPolicyInterface

serialVersionUID

myAllocationPolicy

pendingAllocation

 getAllocationPolicyInterface()

 setAllocationPolicyInterface()

 DistributionWarehouse()

 receivePurchase()

 satisfyDemand()

 allocateItems()

 setEventPriorities()

 setAllocationPolicy()

 cleanMemory()

DistributionWarehouse «interface »

gatech::isye::sim::isw::model::policies::allocation::AllocationPolicyInterface

serialVersionUID

 UpstreamSynchronizedReviewInventory()

 notify()

 cleanMemory()

UpstreamSynchronizedReviewInventory

costFunction

1

+ ownedEnd

reorderPolicy

1

+ ownedEnd

pendingBackorders

1

+ ownedEnd

pendingOrders1

+ ownedEnd

myManager

1

+ ownedEnd

productionDept

1

+ ownedEnd

103

Figure 19: Class Diagram for the Transport Package

 transportDemand()

 getInventoryOnTransit()

 getInventoryOnTransit()

 getInventoryOnTransit()

 getInventoryOnTransit()

 setTimeLag()

 setTimeLag()

 getTransportCost()

 setTransportCosts()

 cleanMemory()

 «interface »

TransportInterface

serialVersionUID

simulator

myNodeManagerName

inventoryOnTransit

leadTime

leadTimeToNode

fixedCost

varCost

log

 SingleModeTransport()

 SingleModeTransport()

 transportDemand()

 deliverOrder()

 deliverOrder()

 getTimeLag()

 getInventoryOnTransit()

 getInventoryOnTransit()

 getInventoryOnTransit()

 getInventoryOnTransit()

 getTransportCost()

 setTransportCosts()

 setTimeLag()

 setTimeLag()

 cleanMemory()

SingleModeTransport

serialVersionUID

emergLeadTime

emergFixedCost

emergVarCost

 Reg_EmergModeTransport()

 Reg_EmergModeTransport()

 transportDemand()

 scheduleArrival()

 deliverOrder()

 deliverOrder()

 setEmergencyTimeLag()

 getEmergencyTimeLag()

 getTransportCost()

 cleanMemory()

Reg_EmergModeTransport

104

Figure 20: Class Diagram for the Manager Package

INVENTORY_ONTRANSIT_UPDATE

leadtimeArgs

defaultLeadtime

 addSuppliers()

 getManagerName()

 requestReorder()

 receivePurchase()

 addInventory()

 itemTypeIsSupplied()

 satisfyDemand()

 setTransportMode()

 setTransportCosts()

 setTimeLag()

 setTimeLag()

 getTransportMode()

 getInventoryOnTransit()

 getInventoryOnTransit()

 getBackorder()

 getInventoryAtHand()

 getInventory()

 getLog()

 getSimulator()

 getReplenishmentEventPriority()

 getDemmandEventPriority()

 «interface »

NodeManagerInterface

intervalArgs

startArgs

quantArgs

defaultInterval

defaultStartTime

defaultDemmandQuantity

defaultMaxNumber

 setRequestingParameters()

 «interface »

DemandInterface
serialVersionUID

interval

startTime

maxNumber

totalDemanded

totalDemandedDuringSampling

sampling

samplingStartTime

demmandQuantity

demmandItem

nextDemandEvent

demandRate

Demand

serialVersionUID

itemType

 Supplier()

 addInventory()

 toString()

Supplier

serialVersionUID

upstreamManager

CentralizedNodeManager

UPSTREAM_MANAGER_CHANGED

 «interface »

SequenceNodeManagerInterface

 «interface »

SupplierInterface

105

4.3.2 Activity Diagrams

Activity diagrams show the procedural flow of control between two or more class objects

during the process of an activity. This section contains the diagrams for the following

activities:

• Demand: The Demand activity in Figure 21 involves the flow of an order from its

creation at a Demand node, fulfillment with production or stock at a Node Manager,

and its transportation back to the requesting Demand node.

• Resupply: The Resupply activity in Figure 22 refers to the flow of orders required

to replenish warehouse levels with inventory from an external Node Manager. This

activity may be initiated at any Node Manager.

• Inventory Review: The Inventory Review in Figure 23 refers to the activities carried

to verify inventory levels and place resupply orders in accordance with the inventory

policy in use.

106

Figure 21: Demand Activity Diagram
Order Flow

DemandInterface

Start

Order Creation

Order Reception

NodeManagerInterface

Inventory Selection

Start Transport

InventoryInterface

Order Fulfillment

Order Fulfilled

Production/Warehouse

Fill Order

TransportInterface

Transport

requestDemand()

satisfyDemand()
satisfyDemand()

satisfyOrder()

INVENTORY_DEMAND_READY

transportDemand()

receivePurchase()

107

Figure 22: Resupply Activity Diagram

Resupply Flow

Inventory1

Start

Order Creation

Order Reception

Request Resupply

NodeManager1

Supplier Selection

InventoryInterface

Order Fulfillment Order Fulfilled

Production/Warehouse

Fill Order

Transport2

Transport

NodeManager2

Start Transport

Inventory SelectionInventory Review

receivePurchase()

transportDemand()

INVENTORY_DEMAND_READY

satisfyOrder()

INVENTORY_REPLENISH_REQUEST

satisfyDemand()

satisfyDemand()

Figure 23: Inventory Review Activity Diagram
Inventory Review

Continuous Review Inventory

Order Fulfillment
Resupply Request

InventoryPolicyInterface

checkReorderPolicy() Order Creation

Periodic Review Inventory

Review Inventory Schedule Next ReviewResupp Request

Demand

checkReorderPolicy()

satisfyDemand()

REPLENISH_REQUEST

checkReorderPolicy()

reviewInventory() REPLENISH_REQUEST

108

CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This thesis studied an inventory system with two potential supply modes: regular order

placement opportunities happen at a fixed frequency, which defines regular review cycles,

while emergency orders can be placed on every period within a regular review cycle. Regular

and emergency orders incur a unit cost while the latest incurs an additional setup cost.

We made contributions on two fronts. First, for a regular order lead-time equal to two

periods, we showed that the optimal policy with respect to the expected total discounted

cost is of (s, S) type for emergency orders while the size of a regular order depends on the

inventory position following a potential emergency order. Although we could not establish

the optimality for regular order lead-times exceeding two periods, substantial experimental

evidence supports the conjecture that the optimal policy retains the same structure. In

addition, we developed a value iteration algorithm for computing the parameters of the

optimal policy.

Since the optimal policy algorithm requires significant computational effort, we devel-

oped and evaluated two heuristic policies whose operational parameters can be computed

with relatively small computational effort and compared them against the optimal policy

in terms of implementation difficulty, speed and accuracy for the experimental design of

3888 cases listed in Table 4. The results indicated that both heuristics yield a significant

reduction in computational time without adding substantial errors in the total expected

costs.

The evaluation of the proposed optimal policy and the two heuristics required a sim-

ulation suite flexible enough to capture the specific problem dynamics. A search for such

a tool exposed the lack of a public-domain, user-friendly, simulation package tailored for

evaluating inventory systems. This motivated our second research front: the development

of the Inventory Simulator Workbench (ISW). This inventory system simulator, written in

109

Java, provides the user with a graphical interface and the ability to model a large range of

supply chain structures. Many classic supply chain structures are included with the package

including the single-level base-stock, (r,Q), and (s, S) policies along with serial and distri-

bution networks. In addition, other policies and network structures can be evaluated simply

by modifying the network structure and choosing the appropriate policy for each location in

the network. We envision that the ISW will fill a significant need in both academic research

and in industry.

Our first goal for the future will be the expansion of Theorem 1 for regular order lead-

times larger than two periods. This development will contribute to the expansion of heuristic

HP2 in Section 3.2.4. Further, we are planning to improve the search procedures of the al-

gorithm in Section 2.9.2. Another goal is the enhancement and potential commercialization

of the ISW.

110

APPENDIX A

PREVIOUS RESULTS

Definition A.1 (K-convexity) A function g : R→ R is K-convex, where K ≥ 0 if either

(a) Scarf [52]: For a ≥ 0, b > 0,

K + g(a + y) ≥ g(y) + a

[
g(y)− g(y − b)

b

]

(b) Gallego [25]: For all λ ∈ [0, 1], λ̄ = 1− λ and y ≥ x:

g(λx + λ̄y) ≤ λg(x) + λ̄[g(y) + Kδ(y − x)]

In other words, the line joining the points (x, g(x)) and (y, g(y) + K) lies above the graph

of g(·).
These definitions are equivalent.

The following lemmas are from Heyman and Sobel [29] and Bertsekas [5].

Lemma A.1 For real valued functions g(·):

(a) g(·) is 0-convex ⇐⇒ g(·) is convex on R.

(b) g(·) is K-convex ⇒ g(·+ u) is K-convex for all u ∈ R.

(c) gi(·) is Ki-convex, i = 1, 2 ⇒ α1g1(·)+α2g2(·) is α1K1 +α2K2-convex, for all α1 > 0

and α2 > 0.

(d) g(·) is K-convex ⇒ g(·) is V -convex for all V ≥ K.

(e) g(·) is K-convex ⇒ g(·) is continuous on R.

(f) g(·) is K-convex ⇒ g(·) is differentiable on R except for at most countable many points.

111

(g) If g(y) is K-convex, then Ewg(y − w) is also K-convex, provided that

Ew|g(y − w)| < ∞ for all y

(h) If g(·) is a K-convex function and g(y) → ∞ as |y| → ∞, then there exist scalars s

and S such that:

(i) g(S) ≤ g(y) ∀y ∈ R.

(ii) g(S) + K = g(s) < g(y) ∀y < s.

(iii) g(y) is a decreasing function on (−∞, s).

(iv) g(y) ≤ g(z) + K ∀s ≤ y ≤ z.

Lemma A.2 Suppose g(·) is K-convex, attains its global minimum at S, and there is a

value s ≤ S such that g(s) ≤ W + g(S), where K ≤ W . Then

f(x) = inf
z≥x

{Wδ(z − x) + g(z)}

is V -convex.

Lemma A.3 For a real-valued function g(·) on R, W ≥ 0 and s ∈ R, let

f(s) = inf
a≥s
{Wδ(a− s) + g(a)}

Then for any γ ≥ 0,

f(s) ≤ f(s + γ) + W

The following lemma is from Bertsekas [5, Proposition 3.1.7] and is written in terms of

the functions defined in this paper.

Lemma A.4 If c(x,d, ξ) ≥ 0 for all (x,d, ξ), and the level sets Uk(x, r, j, λ) defined by

Uk(x, r, j, λ) = {d ∈ D(x, r, j) | Eξ[c(x,d, ξ) + αCk(f(x,d, ξ))] ≤ λ}

are compact subsets of a Euclidean space for every x, r, λ ∈ R and for all k greater than

some integer k̄, then limk→∞Ck(x, r, j) = C(x, r, j).

112

APPENDIX B

NUMERICAL RESULTS

B.1 Optimal Parameters for Regular Order Lead-time τ = 2

The following tables display the optimal parameters for some cases of the experiment de-

scribed in Table 4. In order to simplify the representation of the function Q(z), we use

the property stated in Lemma 13 and display the intervals where w∗(z) 6= 0. Hence if z is

contained in some interval [z1, z2], then w(z) = z2 and Q(z) = z2 − z; otherwise, w(z) = z

and Q(z) = 0.

Table 19: Results for the Poisson Distribution with λ = 2 , τ = 2, Backorder Cost = 15,
Regular Review Cycle Length = 5, and Emergency Variable Cost = 5.

α = 0.9 w(z) (s0, S0) (s1, S1) (s2, S2) (s3, S3) (s4, S4)
K = 2 (-∞, 12.0] (1.5, 3.0) (2.9, 5.0) (2.9, 5.0) (2.9, 5.0) (2.8, 4.0)
K = 5 (-∞, 12.0] (1.5, 3.0) (2.9, 5.0) (2.9, 5.0) (2.9, 5.0) (2.8, 4.0)
K = 50 (-∞, 12.0] (0.8, 2.0) (2.2, 5.0) (2.2, 5.0) (2.2, 5.0) (2.1, 4.0)
α = 0.99
K = 2 (-∞, 12.0] (0.9, 3.0) (2.6, 6.0) (2.6, 6.0) (2.6, 5.0) (2.4, 4.0)

[12.1, 13.1]
K = 5 (-∞, 13.0] (0.9, 3.0) (2.6, 6.0) (2.6, 6.0) (2.6, 5.0) (2.5, 4.0)
K = 50 (-∞, 14.0] (-4.1, 2.0) (0.7, 9.0) (0.8, 8.0) (0.8, 6.0) (-0.3, 4.0)

α = 0.999
K = 2 (-∞, 14.0] (-3.4, 3.0) (1.5, 10.0) (1.6, 9.0) (1.4, 7.0) (0.2, 5.0)
K = 5 (-∞, 14.0] (-3.4, 3.0) (1.6, 10.0) (1.7, 9.0) (1.5, 7.0) (0.3, 5.0)
K = 50 (-∞, 12.0] (0.9, 2.0) (2.6, 4.0) (2.6, 4.0) (2.6, 4.0) (2.3, 3.0)

113

Table 20: Results for the Poisson Distribution with λ = 2 , τ = 2, Backorder Cost = 15,
Regular Review Cycle Length = 5, and Emergency Variable Cost = 5.

α = 0.9 w(z) (s0, S0) (s1, S1) (s2, S2) (s3, S3) (s4, S4)
K = 2 (-∞, 11.0] (1.8, 3.0) (2.9, 5.0) (2.9, 5.0) (2.9, 5.0) (2.9, 4.0)
K = 5 (-∞, 11.0] (1.8, 3.0) (2.9, 5.0) (2.9, 5.0) (2.9, 5.0) (2.9, 4.0)
K = 50 (-∞, 11.0] (1.0, 3.0) (2.2, 5.0) (2.2, 5.0) (2.2, 5.0) (2.2, 4.0)
α = 0.99
K = 2 (-∞, 12.0] (1.2, 3.0) (2.6, 6.0) (2.6, 6.0) (2.6, 6.0) (2.5, 4.0)
K = 5 (-∞, 12.0] (1.3, 3.0) (2.6, 6.0) (2.6, 6.0) (2.7, 6.0) (2.5, 4.0)
K = 50 (-∞, 13.0] (-3.5, 3.0) (0.6, 10.0) (0.8, 8.0) (0.8, 7.0) (-0.1, 5.0)

α = 0.999
K = 2 (-∞, 14.0] (-2.9, 3.0) (1.5, 11.0) (1.6, 9.0) (1.5, 7.0) (0.4, 5.0)
K = 5 (-∞, 14.0] (-2.8, 3.0) (1.6, 11.0) (1.7, 9.0) (1.5, 7.0) (0.4, 5.0)
K = 50 (-∞, 11.0] (1.2, 2.0) (2.6, 4.0) (2.6, 4.0) (2.6, 4.0) (2.4, 4.0)

Table 21: Results for the Poisson Distribution with λ = 4 , τ = 2, Backorder Cost = 15,
Regular Review Cycle Length = 5, and Emergency Variable Cost = 5.

α = 0.9 w(z) (s0, S0) (s1, S1) (s2, S2) (s3, S3) (s4, S4)
K = 2 (-∞, 23.0] (3.7, 5.0) (5.5, 8.0) (5.5, 8.0) (5.5, 7.0) (5.6, 7.0)
K = 5 (-∞, 23.0] (3.7, 5.0) (5.5, 8.0) (5.5, 8.0) (5.5, 8.0) (5.6, 7.0)
K = 50 (-∞, 22.0] (2.7, 5.0) (4.3, 8.0) (4.4, 8.0) (4.3, 8.0) (4.6, 7.0)
α = 0.99
K = 2 (-∞, 24.0] (2.9, 5.0) (4.8, 9.0) (4.8, 9.0) (4.7, 9.0) (4.9, 8.0)
K = 5 (-∞, 24.0] (2.9, 5.0) (4.8, 10.0) (4.8, 10.0) (4.8, 9.0) (4.9, 8.0)
K = 50 (-∞, 25.0] (-2.5, 5.0) (2.0, 17.0) (2.3, 15.0) (2.7, 12.0) (2.2, 8.0)

α = 0.999
K = 2 (-∞, 26.0] (-1.7, 5.0) (3.0, 19.0) (3.4, 16.0) (3.7, 13.0) (2.8, 9.0)
K = 5 (-∞, 27.0] (-1.7, 5.0) (3.1, 19.0) (3.5, 16.0) (3.8, 13.0) (2.8, 9.0)
K = 50 (-∞, 23.0] (2.8, 4.0) (4.9, 7.0) (4.9, 7.0) (4.9, 7.0) (4.9, 6.0)

114

Table 22: Results for the Poisson Distribution with λ = 4 , τ = 2, Backorder Cost = 15,
Regular Review Cycle Length = 5, and Emergency Variable Cost = 5.

α = 0.9 w(z) (s0, S0) (s1, S1) (s2, S2) (s3, S3) (s4, S4)
K = 2 (-∞, 21.0] (3.9, 5.0) (5.5, 8.0) (5.5, 8.0) (5.5, 7.0) (5.5, 7.0)
K = 5 (-∞, 22.0] (3.9, 5.0) (5.5, 8.0) (5.5, 8.0) (5.5, 8.0) (5.6, 7.0)
K = 50 (-∞, 20.0] (3.1, 5.0) (4.3, 8.0) (4.4, 8.0) (4.3, 8.0) (4.5, 7.0)
α = 0.99
K = 2 (-∞, 22.0] (3.3, 5.0) (4.8, 9.0) (4.8, 9.0) (4.7, 9.0) (4.9, 8.0)
K = 5 (-∞, 23.0] (3.3, 5.0) (4.8, 10.0) (4.8, 10.0) (4.8, 10.0) (5.0, 8.0)
K = 50 (-∞, 25.0] (-1.7, 5.0) (2.0, 18.0) (2.3, 15.0) (2.7, 12.0) (2.3, 9.0)

α = 0.999
K = 2 (-∞, 26.0] (-1.2, 5.0) (3.0, 20.0) (3.3, 17.0) (3.7, 13.0) (3.0, 9.0)
K = 5 (-∞, 26.0] (-1.1, 5.0) (3.1, 20.0) (3.4, 17.0) (3.8, 13.0) (3.0, 9.0)
K = 50 (-∞, 22.0] (3.1, 4.0) (4.9, 7.0) (4.9, 7.0) (4.9, 7.0) (4.9, 7.0)

Table 23: Results for the Poisson Distribution with λ = 8 , τ = 2, Backorder Cost = 15,
Regular Review Cycle Length = 5, and Emergency Variable Cost = 5.

α = 0.9 w(z) (s0, S0) (s1, S1) (s2, S2) (s3, S3) (s4, S4)
K = 2 (-∞, 40.0] (7.8, 9.0) (10.3, 12.0) (10.3, 12.0) (10.3, 12.0) (10.3, 13.0)
K = 5 (-∞, 40.0] (7.8, 9.0) (10.3, 13.0) (10.3, 13.0) (10.3, 13.0) (10.4, 13.0)
K = 50 (-∞, 40.0] (6.7, 9.0) (8.8, 12.0) (8.8, 12.0) (8.8, 12.0) (8.9, 12.0)

[40.1, 40.2]
α = 0.99
K = 2 (-∞, 40.0] (7.0, 9.0) (9.3, 13.0) (9.3, 13.0) (9.3, 13.0) (9.5, 13.0)

[40.1, 40.2]
K = 5 (-∞, 40.0] (7.0, 9.0) (9.3, 13.0) (9.3, 13.0) (9.3, 13.0) (9.5, 13.0)

[40.1, 40.2]
K = 50 (-∞, 40.0] (1.1, 9.0) (5.3, 23.0) (5.2, 28.0) (6.0, 23.0) (6.6, 16.0)

[40.1, 40.2]
α = 0.999

K = 2 (-∞, 40.0] (1.9, 9.0) (6.1, 36.0) (6.6, 31.0) (7.3, 24.0) (7.7, 17.0)
[40.1, 40.2]

K = 5 (-∞, 40.0] (1.9, 9.0) (6.2, 37.0) (6.7, 31.0) (7.4, 24.0) (7.8, 17.0)
[40.1, 40.2]

K = 50 (-∞, 40.0] (6.6, 8.0) (9.6, 12.0) (9.6, 12.0) (9.6, 12.0) (9.6, 12.0)

115

Table 24: Results for the Poisson Distribution with λ = 8 , τ = 2, Backorder Cost = 15,
Regular Review Cycle Length = 5, and Emergency Variable Cost = 5.

α = 0.9 w(z) (s0, S0) (s1, S1) (s2, S2) (s3, S3) (s4, S4)
K = 2 (-∞, 40.0] (8.3, 10.0) (10.3, 12.0) (10.3, 12.0) (10.3, 12.0) (10.3, 13.0)
K = 5 (-∞, 40.0] (8.4, 10.0) (10.3, 13.0) (10.3, 13.0) (10.3, 13.0) (10.4, 13.0)
K = 50 (-∞, 37.0] (7.2, 10.0) (8.8, 12.0) (8.8, 12.0) (8.8, 12.0) (8.8, 12.0)
α = 0.99
K = 2 (-∞, 40.0] (7.5, 10.0) (9.3, 13.0) (9.3, 13.0) (9.3, 13.0) (9.4, 13.0)

[40.1, 40.2]
K = 5 (-∞, 40.0] (7.5, 10.0) (9.3, 13.0) (9.3, 13.0) (9.3, 13.0) (9.5, 13.0)

[40.1, 40.2]
K = 50 (-∞, 40.0] (1.9, 10.0) (5.4, 23.0) (5.2, 29.0) (5.9, 24.0) (6.7, 17.0)

[40.1, 40.2]
α = 0.999

K = 2 (-∞, 40.0] (2.5, 10.0) (6.1, 37.0) (6.5, 31.0) (7.2, 25.0) (7.8, 18.0)
[40.1, 40.2]

K = 5 (-∞, 40.0] (2.6, 10.0) (6.2, 37.0) (6.7, 32.0) (7.4, 25.0) (7.9, 18.0)
[40.1, 40.2]

K = 50 (-∞, 40.0] (6.9, 8.0) (9.6, 12.0) (9.6, 12.0) (9.6, 12.0) (9.6, 12.0)

Table 25: Results for the Negative Binomial Distribution with p = 1/3 and r = 1 , τ = 2,
Backorder Cost = 15, Regular Review Cycle Length = 5, and Emergency Variable Cost =
5.

α = 0.9 w(z) (s0, S0) (s1, S1) (s2, S2) (s3, S3) (s4, S4)
K = 2 (-∞, 13.0] (1.0, 2.0) (4.3, 7.0) (4.2, 6.0) (3.8, 6.0) (2.9, 4.0)
K = 5 (-∞, 13.0] (1.0, 2.0) (4.5, 7.0) (4.3, 6.0) (3.8, 6.0) (2.9, 4.0)
K = 50 (-∞, 13.0] (0.2, 2.0) (2.8, 6.0) (2.8, 6.0) (2.6, 5.0) (1.9, 4.0)
α = 0.99
K = 2 (-∞, 14.0] (0.4, 2.0) (3.7, 7.0) (3.6, 7.0) (3.3, 6.0) (2.3, 5.0)
K = 5 (-∞, 14.0] (0.4, 2.0) (3.8, 7.0) (3.7, 7.0) (3.3, 6.0) (2.4, 5.0)
K = 50 (-∞, 15.0] (-4.7, 2.0) (0.6, 9.0) (0.5, 8.0) (0.1, 7.0) (-0.9, 5.0)

α = 0.999
K = 2 (-∞, 16.0] (-4.0, 2.0) (1.7, 10.0) (1.5, 9.0) (0.8, 7.0) (-0.4, 5.0)
K = 5 (-∞, 16.0] (-3.9, 2.0) (1.8, 10.0) (1.6, 9.0) (0.8, 7.0) (-0.4, 5.0)
K = 50 (-∞, 14.0] (0.2, 1.0) (3.3, 5.0) (3.2, 5.0) (2.8, 4.0) (2.0, 3.0)

116

Table 26: Results for the Negative Binomial Distribution with p = 1/3 and r = 1 , τ = 2,
Backorder Cost = 15, Regular Review Cycle Length = 5, and Emergency Variable Cost =
5.

α = 0.9 w(z) (s0, S0) (s1, S1) (s2, S2) (s3, S3) (s4, S4)
K = 2 (-∞, 13.0] (1.5, 3.0) (4.4, 7.0) (4.2, 6.0) (3.9, 6.0) (3.3, 5.0)
K = 5 (-∞, 13.0] (1.5, 3.0) (4.5, 7.0) (4.3, 7.0) (4.0, 6.0) (3.3, 5.0)
K = 50 (-∞, 12.0] (0.6, 3.0) (2.8, 6.0) (2.8, 6.0) (2.7, 6.0) (2.1, 5.0)
α = 0.99
K = 2 (-∞, 13.0] (0.8, 3.0) (3.7, 7.0) (3.7, 7.0) (3.4, 6.0) (2.6, 5.0)
K = 5 (-∞, 13.0] (0.8, 3.0) (3.8, 8.0) (3.7, 7.0) (3.4, 6.0) (2.6, 5.0)
K = 50 (-∞, 14.0] (-4.0, 3.0) (0.6, 9.0) (0.6, 8.0) (0.2, 7.0) (-0.7, 5.0)

α = 0.999
K = 2 (-∞, 15.0] (-3.4, 3.0) (1.8, 11.0) (1.5, 9.0) (0.9, 8.0) (-0.3, 6.0)
K = 5 (-∞, 16.0] (-3.3, 3.0) (1.9, 11.0) (1.6, 9.0) (1.0, 8.0) (-0.2, 6.0)
K = 50 (-∞, 13.0] (0.5, 2.0) (3.3, 5.0) (3.2, 5.0) (2.9, 5.0) (2.2, 4.0)

117

REFERENCES

[1] Axsäter, S., “A heuristic for triggering emergency orders in an inventory system,”
European Journal of Operational Research, vol. 176, pp. 880–891, 2007.

[2] Barankin, E., “A delivery-lag inventory model with an emergency provision,” Naval
Research Logistics Quarterly, vol. 8, pp. 285–311, 1961.

[3] Ben-Israel, R., “Inventory.xls,” Internet page (accessed August 21, 2008),
http://ben-israel.rutgers.edu/386/Solutions/inventory.xls .

[4] Bernstein, D., “Inventory simulator,” Internet page (accessed August 21, 2008),
http://www.princeton.edu/∼civ105/LAB7/PERIODIC .

[5] Bertsekas, D., Dynamic Programming and Optimal Control. Belmont, MA: Athena
Scientific, 2007.

[6] Bertsekas, D. and Shreve, S., Stochastic Optimal Control: The Discrete-Time
Case. Belmont, MA: Athena Scientific, 1996.

[7] Beyer, D. and Ward, J., “Network server supply chain at HP: A case study,” Tech-
nical Report, Hewlett-Packard Laboratories, May 2001.

[8] Billingsley, P., Probability and Measure. New York: John Wiley & Sons, 1995.

[9] Bylka, S., “Turnpike policies for periodic review inventory model with emergency
orders,” International Journal of Production Economics, vol. 93–94, pp. 357–373, 2005.

[10] Cachon, G., “Exact evaluation of batch-ordering inventory policies in two-echelon
supply chains with periodic review,” Operations Research, vol. 49, pp. 79–98, 2001.

[11] Chiang, C., “A note on optimal policies for a periodic inventory system with emer-
gency orders,” Naval Research Logistics, vol. 28, pp. 93–103, 2001.

[12] Chiang, C. and Gutierrez, G., “A periodic review inventory system with two supply
modes,” European Journal of Operational Research, vol. 94, pp. 527–547, 1996.

[13] Chiang, C. and Gutierrez, G., “Optimal control policies for a periodic review
inventory system with emergency orders,” Naval Research Logistics, vol. 45, pp. 187–
204, 1998.

[14] Cobbin, P., “SIMPLE 1,” Internet page (accessed August 21, 2008),
http://www.cobbin.com/sierra.htm .

[15] Consulting, L. G., “Financial and inventory simulator,” Internet page (accessed
August 21, 2008), http://www.lmi.org/logistics/logisticstools.aspx.

[16] Daniel, K. H., “A delivery-lag inventory model with emergency order,” in Multistage
Inventory Models and Techniques, Stanford, CA: Stanford University Press, 1962.

118

http://ben-israel.rutgers.edu/386/Solutions/inventory.xls�
http://www.princeton.edu/~civ105/LAB7/PERIODIC�
http://www.cobbin.com/sierra.htm�
http://www.lmi.org/logistics/logisticstools.aspx�

[17] Delft University of Technology, “Discrete simulation object library DSOL,”
Internet page (accessed August 21, 2008), http://www.simulation.tudelft.nl/.

[18] Ehrhardt, R. A., “The power approximation for computing (s, S) inventory poli-
cies,” Management Science, vol. 30, no. 5, pp. 777–786, 1979.

[19] Ehrhardt, R. A., “Easily computed approximations for (s, S) inventory system op-
erating characteristics,” Operations Research, vol. 32, no. 1, pp. 121–132, 1984.

[20] Ehrhardt, R., Schultz, C., and Wagner, H. M., “(s, S) policies for a whole-
sale inventory system,” Multi-level production/inventory control sysems: Theory and
Practice, pp. 145–161, 1981.

[21] Ehrhardt, R. A. and Mosier, C., “A revision of the power approximation for
computing (s, S) policies,” Management Science, vol. 30, no. 5, pp. 618–622, 1984.

[22] Freeland, J. and Porteus, E. L., “Easily computed inventory policies for periodic
review systems: Shortage cost and service level models,” Research Paper No 501,
Graduate School of Business, Stanford University, 1979.

[23] Freeland, J. and Porteus, E. L., “Evaluating the effectiveness of a new method
for computing approximately optimal (s, S) inventory policies,” Operations Research,
vol. 28, no. 2, pp. 353–364, 1980.

[24] Fukuda, Y., “Optimal policies for the inventory problem with negotiable lead-time,”
Management Science, vol. 10, pp. 690–708, 1964.

[25] Gallego, G. and Sethi, S. P., “K-convexity in Rn,” Journal of Optimization Theory
and Applications, vol. 127, no. 1, pp. 71–88, 2005.

[26] Gallego, G. and Zipkin, P., “Stock positioning and performance estimation in serial
production-transportation systems,” Manufacturing and Service Operations Manage-
ment, vol. 1, pp. 77–88, 1999.

[27] Graves, S., “A multi-echelon inventory model for a repairable item with one-for-one
replenishment,” Management Science, vol. 31, no. 10, pp. 1247–1256, 1985.

[28] Hadley, G. and Whittin, T., Stochastic Models in Operations Research, Volume II.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[29] Heyman, D. and Sobel, M., Stochastic Models in Operations Research, Volume II.
Mineola, NY: Dover Publications, 1984.

[30] Hopp, W. and Spearman, M., Factory Physics. Singapore: McGraw-Hill Higher
Education, 2000.

[31] Howard, R. A., Dynamic Programming and Markov Processes. New York: The
Technology Press of the Massachusets Institute of Technology and John Wiley & Sons,
1960.

[32] Jacobs, A., “Supply chain inventory system design exercise,” Internet page (accessed
August 21, 2008), http://www.pom.edu/egames.html .

119

http://www.simulation.tudelft.nl/�
http://www.pom.edu/egames.html�

[33] Johansen, S. and Thorstenson, A., “An inventory model with Poisson demands
and emergency orders,” International Journal of Production Economics, vol. 56-57,
pp. 275–289, 1998.

[34] Kapalka, B., Katircioglu, K., and Puterman, M., “Retail inventory control with
lost sales, service constraints, and fractional lead times,” Production and Operations
Management, vol. 8, no. 4, pp. 393–408, 1999.

[35] Kleinau, P. and Thonemann, U. W., “Deriving inventory-control policies with
genetic programming,” OR Spectrum, vol. 26, pp. 521–546, 2004.

[36] llamasoft, “Supply chain guru,” Internet page (accessed August 21, 2008),
http://www.llamasoft.com/guru.html .

[37] Lystad, E. and Ferguson, M., “Simple newsvendor heuristics for two echelon dis-
tribution networks,” 2006.

[38] Minner, S., “Multiple-supplier inventory models in supply chain management: A
review,” International Journal of Production Economics, vol. 81-82, pp. 265–279, 2003.

[39] Moinzadeh, K. and Nahmias, S., “A continuous review model for an inventory
system with two supply modes,” Management Science, vol. 34, no. 6, pp. 761–773,
1988.

[40] Moinzadeh, K. and Schmidt, C., “An (S-1, S) inventory system with emergency
orders,” Operations Research, vol. 39, no. 3, pp. 308–321, 1991.

[41] Naddor, E., “Optimal and heuristic decisions in single and multi-item inventory
systems,” Managemnet Science, vol. 21, no. 11, pp. 1234–1249, 1975.

[42] Norman, J. M. and White, D. J., “A method for approximate solutions to stochas-
tic dynamic programing problems using expectations,” Operations Research, vol. 16,
pp. 296–306, 1968.

[43] Ormeci, M., Inventory Control in a Build-to-order environment. Doctoral Thesis,
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, June 2006.

[44] Pope, J. A., “Inventory management simulation,” Internet page (accessed August 21,
2008), http://sbaweb.wayne.edu/∼absel/bkl/.%5Cjels%5C3-3n.pdf .

[45] Porteus, E., Foundations of Stochastic Inventory Theory. Stanford, CA: Stanford
University Press, 2002.

[46] Porteus, E. L., “An adjustment to the Norman-White approach to approximating
dynamic programs,” Operations Research, vol. 27, no. 6, pp. 1203–1208, 1979.

[47] Porteus, E. L., “Numerical comparisons of inventory policies for periodic review
systems,” Operations Research, vol. 33, no. 1, pp. 134–152, 1985.

[48] Przasnyski, Z. H., “Spreadsheet simulation model for inventory management,” Sim-
ulation, vol. 63, pp. 32–43.

120

http://www.llamasoft.com/guru.html�
http://sbaweb.wayne.edu/~absel/bkl/.%5Cjels%5C3-3n.pdf�

[49] Roberts, D., “Approximations to optimal policies in a dynamic inventory model,”
in Studies in Applied Probability and Management Science, Stanford, CA: Stanford
University Press, 1962.

[50] Rossetti, M., Miman, M., Varghese, V., and Xiang, Y., “An object-oriented
framework for simulating multi-echelon inventory systems,” Stochastic Analysis and
Applications, 1962.

[51] Sahin, I. and Sinha, D., “On asymptotic approximations for (s, S) policies,” Stochas-
tic Analysis and Applications, vol. 5, no. 2, pp. 189–212, 1987.

[52] Scarf, H., The Optimality of (s, S) Policies in the Dynamic Inventory Problem. Stan-
ford, CA: Stanford University Press, 1960.

[53] Sethi, S., Yan, H., and Zhang, H., “Inventory models with fixed costs, forecast
updates and two delivery modes,” Operations Research, vol. 51, no. 2, pp. 321–328,
2003.

[54] Shang, K. and Song, J.-S., “Newsvendor bounds and heuristic for optimal policies
in serial supply chains,” Management Science, vol. 49, no. 5, pp. 618–638, 2003.

[55] Shore, H., “General approximate solutions for some common inventory models,”
Journal of Operations Research Society, vol. 37, no. 6, pp. 619–629, 1986.

[56] Sivazlian, B. D., “Dimensional and computational analysis in stationary (s, S) inven-
tory problems with gamma distributed demand,” Management Science, vol. 17, no. 6,
pp. B307–B311, 1971.

[57] Sivazlian, B. D. and Wei, Y. C., “Approximation methods in the optimization of a
stationary (a, s) inventory problem,” Operations Research Letters, vol. 9, pp. 105–113,
1990.

[58] Snyder, L. V., “BaseStockSim,” Internet page (accessed August 21, 2008),
http://www.lehigh.edu/∼lvs2/software.html .

[59] Tagaras, G. and Vlachos, D., “A periodic review inventory system with emergency
replenishment,” Management Science, vol. 47, no. 3, pp. 415–429, 2001.

[60] Tijms, H. C. and Groenevelt, H., “Simple approximations for the reorder point in
periodic and continuous review (s,s) inventory systems with service level constraints,”
European Journal of Operations Research, vol. 17, pp. 175–190, 1984.

[61] VALOGIX, “Inventory planner,” Internet page (accessed August 21, 2008),
http://www.valogix.com/Pdf/Valogix Inventory Planner Brochure%20110 080115.pdf.

[62] Veinott, A. and Wagner, H., “Computing optimal (s, S) inventory policies,” Man-
agement Science, vol. 11, pp. 525–552, 1965.

[63] Wagner, H., O’Hagan, M., and Lundh, B., “An empirical study of exactly and ap-
proximately optimal inventory policies,” Management Science, vol. 11, no. 7, pp. 690–
723, 1965.

[64] Wedel, T., “Otto’s inventory simulation,” Internet page (accessed August 21, 2008),
http://www.csun.edu/∼hcmgt006/wedel.htm .

121

http://www.lehigh.edu/~lvs2/software.html�
http://www.valogix.com/Pdf/Valogix_Inventory_Planner_Brochure%20110_080115.pdf�
http://www.csun.edu/~hcmgt006/wedel.htm�

[65] Zheng, Y., “On properties of stochastic inventory systems,” Management Science,
vol. 38, pp. 87–103, 1992.

122

VITA

Francisco Javier Hederra Pinto was born on December 13, 1962, in Santiago de Chile. He

attended the Chilean Naval Polytechnic Academy and earned a B.S. degree in Electrical

Engineering in 1989. In 1994, he received an M.Sc. degree in Operations Research from the

Naval Postgraduate School, Monterey CA.

He currently has the rank of commander in the Chilean Navy, and has worked for

more than 10 years at the Operations Research Department at the Chilean Naval Research

Directorate. He has also taught computer simulation at the School of Industrial Engineering

in the Universidad Catslica de Valparaiso.

123

