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SUMMARY 

In this thesis, exact results are obtained for the 

time evolution of the phase space distribution in several 

specific situations. The tools of operator calculus are 

applied to the Liouville equation and the time evolution of 

the system calculated for a noninteracting, ideal gas, an 

ideal gas interacting with an external potential, and an 

ideal gas interacting with an external potential and immersed 

in a Brownian fluid. It is shown that an equilibrium is 

reached by each of these systems and the nature of that 

equilibrium is explored. In the first two cases equilibrium 

is reached by the contracted, spatial distribution which is 

obtained by integrating the full phase space distribution 

with respect to its momentum variables. It is shown that, if 

the initial distribution is Maxwellian in momentum, the 

contracted, spatial distribution for the first system becomes 

a uniform distribution while, for the second system, the 

contracted, spatial distribution goes to an equilibrium 

which is not a Boltzmann distribution although it has 

something of a Boltzmann character. In the case of the third 

system, the phase space distribution is shown to go to a 

Maxwell-Boltzmann distribution. In each of these cases, not 

only is the final equilibrium calculated but some of the 

details of the approach to equilibrium are revealed. 



CHAPTER I 

INTRODUCTION 

This thesis is concerned with the time evolution of 

the phase space distribution for classical mechanical 

systems. The tools of operator calculus, which were origi

nally shown to be useful during the development of quantum 

electrodynamics, are used in the approach to this problem. 

The calculations contained in this thesis should strengthen 

the impression that such tools are also useful in analyzing 

non-quantum mechanical problems. With these tools, exact 

results are obtained for the time evolution of the phase 

space distribution in several specific situations. 

Although the dynamical description of the full phase 

space distribution time evolution is time reversal invariant, 

a contracted, spatial distribution may exhibit time irrever

sible behavior. In particular, the object of study in much 

of this thesis is the time evolution of the contracted, 

spatial distribution which is obtained by integrating the 

full phase space distribution with respect to its momentum 

variables. The asymptotic, t-»•«>, form of the contracted, 

spatial distribution is studied under the condition that 

the full phase space distribution is characterized, 

initially, by a momentum distribution which is Maxwellian 
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and an arbitrary distribution in position space. The act 

of contraction creates a spatial distribution which is time 

irreversible. This contracted, spatial distribution 

approaches an asymptotic equilibrium which exhibits the 

form of a Boltzmann spatial distribution. For this reason 

this work has been entitled Maxwell Boltzmann. 

Chapter II of the thesis is devoted to the study of 

the problem just described in the special case of the ideal 

gas. This problem is easily shown to be equivalent to the 

study of one particle in one dimension, and has been studied 

previously by other researchers using methods more tradi

tional in classical mechanics.^'^^ This problem is 

presented in order to exhibit, in the simplest context, the 

contraction of a phase space distribution, and the special 

role which is played by the condition that the full phase 

space distribution at the initial time is Maxwellian in 

momentum. It is this Maxwellian momentum distribution 

that allows the integral over momentum, which produces 

the contracted, spatial distribution, to be performed. In 

this special case, the contracted, spatial distribution 

becomes, asymptotically in time, uniform spatially. This 

is, of course, the Boltzmann distribution in the absence of 

any potentials. 

In Chapter III, this kind of analysis is continued 

with the added complication that the ideal gas is in the 

presence of an external potential field. This complication 
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requires the introduction of more sophisticated operator 

calculus techniques. This occurs because the Liouville 

equation for this case, 

|t D(r,p,t) - C- £ • <*Uirl |_) DCr.p.t), (1) 

involves a differential operator for the phase space evolu

tion, - 2. !_ + ^ ^ r ^ 1_, which is comprised of two non-

commuting pieces. Nevertheless, the operator calculus 

techniques permit the time evolution of the contracted, 

spatial distribution for this problem to be rendered in 

the form of an explicit series expansion, each term of 

which can be analyzed. Asymptotically in time a contracted, 

spatial distribution is obtained which separates, in a 

natural way, into a sum of two power series. The first 

series is shown to be identical with a power series expan

sion of the Boltzmann, spatial distribution, 

1 1 L 

i exp[-3U(r)], where 3 = T ^ T a n d Q = f exp[-3U(r)]dr , (2) 
^ B o 

in powers of 3. The proof of this identity involves an 

intricate combinatorial identity, some of the details of 

which have been relegated to the Appendices. The second 

series in the asymptotic result is comprised of complicated 

"correction" terms which modify the Boltzmann distribution 
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series, and together these two series provide the equilibrium 

solution. Because, initially, the Maxwellian momentum 

distribution is parameterized by the temperature, T, and the 

asymptotic Boltzmann spatial distribution is parameterized 

by the same temperature, the "correction" series was conjec

tured to give rise to a renormalized temperature, T*. On 

physical grounds this might be expected because the redistri

bution in an external potential will change the temperature 

of the system when its time evolution is energy conserving, 
2 

as is the case here. Up to order 3 in our 3 series, the 
3 

renormalization procedure succeeds, but at order 3 this 

approach fails. To confirm the general formulae, a check of 

internal consistency is carried out at the end of section 

III. This check shows that the formalism is correct and 

that a true Boltzmann distribution is not obtained, asymp

totically in time, even though the contracted, spatial 

distribution goes to an equilibrium. 

In Chapter IV a successful attempt is made to circum

vent the difficulty that arose in the form of a "correction" 

series. Because the difficulty in the special case analyzed 

in Chapter III resulted from energy conservation, the 

analysis of a modified Liouville equation, 

(3) 
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in which F(t) is a stochastic force, and a is a damping 

parameter, is attempted. The stochastic properties of F(t) 

are those of Brownian motion, and the autocorrelation 

function for F(t) is related to a by the Einstein relation. 

These "Brownian" forces have been introduced to provide a 

phenomenological description of an ideal gas of particles in 

an external potential, and immersed in a fluid of other 

particles which exhibit their presence only through these 

"Brownian" forces. If a momentum distribution which is 

initially Maxwellian is perturbed momentarily into a non-

Maxwellian state, these "Brownian" forces are known to cause 

relaxation back to the Maxwellian momentum distribution. In 

addition the relaxation guarantees that the temperature 

remains essentially constant. Of course, these "Brownian" 

forces are not conservative forces, but conservative time 

evolution has already been analyzed and its consequences 

described in section III. 

The analysis in this "Brownian" case requires still 

more sophisticated operator identities, but, remarkably 

enough, the analysis is tractable in closed form. The 

contracted, spatial distribution is found to approach the 

Boltzmann distribution asymptotically in time, and the 

"correction" series is found to vanish. Again, some of the 

intricate details of the proofs are found in the appendices. 

The last special case, analyzed in Chapter IV, is 
f 31 

related to an earlier analysis by Kramers^ ; of a similar 
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system. Kramers then applied his results to the analysis 

of chemical reaction rates. The analysis presented in 

Chapter IV might also be applied to physical problems, such 

as the interaction of molecules immersed in a solvent. The 

molecules would be presumed to interact through some force 

law, but the solvent molecules would be treated as only 

producing "Brownian" forces acting upon the solute molecules. 

The consequences of this kind of approach remain to be 

explored. 
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CHAPTER II 

IDEAL GAS 

The system studied in this section is an ideal gas 

contained in a cube of side L. This gas is assumed to be 

composed of particles which do not interact with each other. 

The Hamiltonian for such a system is given by E ^ — 

where j is the particle index. Since the Hamiltonian is 

separable, both with respect to particle index and with 

respect to cartesian coordinate, the problem factors and the 

solution to the three dimensional N-body problem is reduced 

to the product of solutions of one body, one dimensional 

problems. Thus, the problem studied in this section is that 

of one particle in a one dimensional box, [0,L]. 

The complete description of this system is provided 

by its phase space distribution, D(r,p,t), the evolution of 

which is given by the Liouville equation, 

2 

3t D(r,p,t) = -iL D(r,p,t), (4) 

where (5) 

The wall 

periodic 

reflections do not appear explicitly because 

boundary conditions are used. This is a modified 
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problem which is, in a sense, equivalent. (4,5) A contracted, 

spatial distribution is defined as 

00 

R(r,t) = / DCr,p,t)dp (6) 
- 00 

where D(r,p,t) is the solution to Eq. (4). Formally, this 

solution is given by 

where D(r,p,0) is the initial phase space distribution. In 

the introduction it is stated that the initial conditions 

which are used in this analysis are a Maxwellian momentum 

distribution and an arbitrary spatial distribution. This 

corresponds to 

D(r,p,t) = exp[-itL] D(r,p,0) (7) 

D(r,p,0) = R(r,0)Wfp) (8) 

where W (p) is a Maxwellian momentum distribution, 

3,1/2 ex P[- (9) 27TIT1J 

and R(r,0) is the initial spatial distribution. In order to 

use the evolution operator, exp(-itL), from Eq. (7) the 

initial spatial distribution is Fourier analyzed 
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i—kr 
R(r,0) = £ L " 1 / 2 C V e L , k = 0, ±1, ±2, (10) 

k K 

Thus, the contracted, spatial distribution can be written as 

R(r,t) = Z L " 1 / 2 C k / dp exp[- & f^expti ^ kr]W m(p). (11) 
k - o o 

It is easily seen, by expanding the exponential, that 

exp[a -̂p-] expfbr] = exp [ab] exp [br] . (12) 

Using Eq. (12) in Eq. (11), one has 

R(r,t) = I L " 1 / 2 C k exp[i ^ kr] / dp exp[-it £ ^ k]W m(p). 
k "°° (13) 

The integral in Eq. (13) may be done by elementary methods. 

This is due in a large part to the Gaussian nature of the 

integral. The result obtained contains terms which damp to 

zero as the square of t increases, 

R(r,t) = £ L " 1 / 2 C k exp[i ^ kr]exp[- ^_( 2^-) 2 k 2 t 2 ] . (14) 

The object of study in this analysis is the long time limit 

of R(r,t), the contracted, spatial distribution. One sees 

that 
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lim exp[- * (2£) 2k 2t 2] = 6(k) (15) 
t+°° 

where 

0 k f 0 
6(k) = { (16) 

1 k = 0 

and where 6(k) is called the Kronecker delta symbol. Therefore 

in the long.time limit one has 

lim R(r,t) = L ~ 1 / 2 C Q. (17) 
t-*oo 

Normalization of the initial distribution requires 

L 
/ R(r,0)dr = 1 (18) 

o 

and therefore I L ~ 1 / 2 C v ^ exp[i H- kr]dr = L 1 / 2 C = 1. 
k K o L 0 

(19) 
From Eq. (17) and Eq. (19), one finally has 

lim R(r,t) = L'1^2 C = L" 1. (20) 
t->°° 

Thus, one sees that in the long time limit the 

contracted, spatial distribution for this system approaches 

the uniform distribution. Since this is the Boltzmann 

distribution in the absence of potentials, one might suppose 

that the contracted, spatial distribution for an ideal gas in 
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the presence of an outside potential would also approach a 

Boltzmann distribution. 

It should be noted that the use of the Maxwellian 

momentum distribution is not crucial to the result which 

was obtained, Eq. (20) . If one substitutes any square 

integrable momentum distribution for W (p) in equation (13) 

and takes the long time limit of that equation, then a simple 

application of the Riemann-Lebesgue lemma gives the result 

obtained in Eq. (20).* The analysis was developed in the 

more restricted manner to elucidate the methods which will 

be used in later sections. 

In his treatment of this problem (Ref. 1) Grad's 
approach was essentially a proof of the Riemann-Lebesgne 
lemma. 
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CHAPTER III 

IDEAL GAS IN THE PRESENCE OF AN 

EXTERNAL POTENTIAL 

In this section the analysis of the ideal gas is 

extended to the effect the action of conservative forces 

has upon the equilibrium reached by the contracted, spatial 

distribution. Since the equilibrium reached in the absence 

of any forces was a Boltzmann distribution, a Boltzmann 

distribution may also be approached in the present case. 

There is more to the matter than just the Boltzmann distri

bution, however. A Boltzmann distribution, exp(-$U(r)), is 

characterized by the potential, U(r), which is assumed to be 

arbitrary, and 3, which in the case of a Maxwell-Boltzmann 

distribution is a measure of the average kinetic energy of 

the gas particles. In the present case, the phase space 

distribution, at the initial time, is assumed to have a 

Maxwellian momentum distribution. This distribution is 

parameterized in terms of such a 3, which is a measure of 

the initial average kinetic energy of the particle. Should 

one expect that the average kinetic energy of the particle 

would remain unchanged under the action of conservative 

forces? Indeed one should not. If the contracted spatial 

distribution approaches a Boltzmann distribution one would 
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expect to find a new parameter, 3' . Next, bearing in mind 

these arguments, the analysis of this system is performed. 

Time Evolution of the Contracted, 

Spatial Distribution 

The Liouville equation which governs the time 

evolution of this system is 

ft " C P . * ) " C- I h + ^ fe) DCr.p.t) (21) 

and has a solution given by 

D(r,p,t) = exp(- El |_ + M U i l l |_) D(r,p,0). (22) 

The contracted, spatial distribution is given by 

oo 
R(r,t) = / exp(- 21 |_ +

 t d ^ ) |_) D(r,p,0)dp. (23) 

In Chapter II, the evolution operator, exp(-itL), acted 

only on the initial spatial distribution and the results 

could be resummed to an exponential form. This method can 

not be applied in the present case because the two parts of 

the Liouville operator do not commute. Nevertheless, the 

action of the two parts may be separated by means of a 

disentanglement theorem.^'^^ This theorem allows R(r,t) to 
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be written in terms of an infinite series; each term of 

which may be solved. 

Introduction of the Disentanglement Theorem 

If A and B are noncommuting differential operators, 

then 

exp[is(A+B)] = 

s 
exp[isA]T exp[i f exp(-is'A)B exp (is 1 A) ds ' ] (24) 

o 

where, for an operator, 0(s), which does not commute with 

itself at different times, 

s 
T exp[/ 0(s')ds'] = 

o 

oo s s l SN-1 
1 + Z / dsl f d s 2 ... / d s N 0(s 1)OCs 2) . . .0(s ) . (25) 

N-l o o o 

This identity is proved in Appendix I. 

Series Expansion of the Contracted, Spatial Distribution 

Using Eq. (23) and Eq. (24), one has 

oo t 
R(r,t) = / dp exp[- ^ f^] T exp [/ ds 

- o o -<f- O (26) 
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or 

R(r,t) = R 0 + Z R N (27) 
N=l 

where 

00 

R Q = / d p exp[- ^ R(r,0)W m(p) (28) 

and 

uu 
R N = / dp ex P[-

(29) 
N S i _ 1 s i P a Hnrrl a S i P a 

[ TT / ds. e x p [ — 4-] A 1 ? ~ exp[- — |-]]R(r,0)W (p) 
• _ -i i F L m 9r J dr 3p r L m 9r J J ^ ' m^- 7 

i = l o 

In Eq. (29), S = t and the larger i terms are to the right 
0 N 

in the product, TT . As the series, Eq. (27), is analyzed 
i = l 

it is found that a power series in the parameter 3 is 

produced. This power series separates, in a natural way, 

into two power series in 3. The first of these two power 

series is shown to be equal to a Boltzmann distribution in 

the original parameter 3. In light of the previous arguments, 

the second of the two power series is interpreted, to be a 

correction reflecting the conservation of energy. 

In Chapter II the technique used in analyzing the 
T D 3 

action of operators such as exp(-jj- ̂ p) depended intimately 



on Fourier analyzing the r 

techniques are used in the 

is also Fourier analyzed. 

dependent terms. Since the same 

present calculation, the potential 

U(r) = £ L 
k 

-1/2 U(k) exp[i ^ kr] k = 0, ±1, ±2... (30) 

It should be noted at this point that this Fourier analysis 

will not, in general, produce a "nice" spectrum of values for 

U(k). This will not prove to be an impediment, however, in 

that no arguments will be made requiring U(k) to become small 

for large values of k. 

Analysis of the Part of R(r,t) Which is Shown to Approach 

A Boltzmann Distribution in the Original Parameter g 

Normalization requirements on the original distribu

tion, Eq. (18), imply that the first term in the Fourier 

expansion of R(r,0) is L ^. Thus, each term R^ contains 

within it a term B X T, where 

N s. i-1 
B N = L" 1 / dp exp[- ] TT 

i=l o 
ds i exp[ 

(31) 
dU(r) 3 
~~cTr 3 3p e x P [ " m 

Using Eq. (12), Eq. (30), and a = B M may be written 
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N+2 
B N = L E E ... S U C k ^ U C ^ ^ ) ... U(k 1) (iam) N 

k N kN-l k l 

N t S l SN-1 
k x T k > T n . . . k., expfiamr E k.l / dp / ds-, f ds 0.../ds X T M M-l 1 L . t 1 J 1 ^ Z ^ N 1=1 - o o O O O 

N N-l g 
exp[iap(s 1-t) E k i] ^- exp[iap(s 2-s 1) E k i] ^- ... 

i=l p i=l p 

exp[iap (s N-s N_ 1)k 1] jL.W m(p). (32) 

Integration by parts is performed N times over the variable 

p and the result is 

- Nji N N . - t S N - 1 
B N = L z (iam) I N [ TT E k.U (k i) exp [ iamrk i ] ] / dp / ds 1.../ds N i = l k- - o o o o l 

N N-l 
(ia) J N[(s 1-t)( Z k^)] [( S ; L-t)k N + (s 2-t)( Z k^)] 

1 1 

N-2 

[ ( s r t ) k N + ( s ^ t ) ^ ^ + (s 3-t)C 2 k £)]...[( S l-t)k N + 

( s 2 - t ) k
N - i + ••• + (s N-t)k 1]exp[iap[(s 1-t)k N + ... + 

(s N-t)k x]] W m ( p ) . (33) 

Changing variables, x^ = (s-^-t), and performing the integral 

over the p variable, one has 
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B 'N 

XN-1 
/ 
-t 

dx N 

(ia) [x x ^ ^ . . [ x ^ + x ^ ^ + 

exp[-a 2 2j t x ! k
N
 + ... - x ^ ] 2 ] . (34) 

The integral over the variable x^ is now easily performed. 

The integral which results from evaluating at the limit 

x^ = -t is difficult and will not be considered at this time. 

Later in the thesis, the first several terms in the series 

expansion of R(r,t) will be calculated including these 

terms. However, the integral which results from evaluating 

at the limit x^ = x^_^ is easily done. This process of 

dropping the terms resulting from evaluation of the integrals 

at the lower limits is continued until the integral over x-^ 

is performed. At this point the results from evaluating at 

both limits are kept and one has 

N+2 
L 2 (-a 2m) N[ TT Z k.U(k.) exp [iamrk. ]] ( J * ) 

1=1 k^ -a m 
N 

(35) 
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This form has implied exclusions. In carrying out each 
N-j 

integration it was implicitly assumed that the sum, E k , 
£=1 36 

which appeared was zero. Therefore the possibility of any 
N-j 

sum, Z k p, being zero must be excluded. Also, the factor, 
£=1 36 

k-j^-.-k^, prohibits any k^ from being zero. Thus, in the 

long time limit, term (35) may be written as 

L _ 1K^(r)3 N (36) 

where KjJ(r) = 

-S N k, £ 
L 1 TT Z U(k ) exp [iamrk ] * (l-6( Z k.)) (1 - 6 (k.)) . 

1 = 1 k £ Z k J = 1 

* j (37) 

This part, term (37), of the long time limit of R(r,t) is a 

Boltzmann distribution. This is a remarkable statement. 

Only upon closest examination does term (37) reveal itself to 

be a Boltzmann distribution. In order to prove this state

ment one needs a power series in 3 which is equivalent to a 

Boltzmann distribution. 

Series Expansion of the Boltzmann Distribution. 

Theorem 1. The series expansion of the Boltzmann distri

bution is given by 

i exp[-3U(r)J = L _ 1 Z K N(r)3 N (38) 
* N=o w 
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where 

m=o v J 

(39) 

I I I . , r -, n P 7T 1 1 1 0 

Partitions £=1 m '(A!) m£ 
of m 

L 

o 
In Eq. (39), g[r) = L - 1 / g(r) dr for any function g(r), 

and the symbol p a r-ti-ti o n s ^ s t n e s u m o v e r a H partitions of 
of m 

m into smaller integers with multiplicity, m^, such that 

m m 
m = Z imQ and p = Z mQ . 

£ = 1 36 £ = 1 * 

In the future, this summation symbol is used without explana

tion. Theorem 1 is proved in Appendix II. In order to show 

that term (37) is a Boltzmann distribution, one must show 

K^(r) = K^(r) or term (37) equals term (39). 

Proof of the Boltzmann Term. In this proof the method 

of induction is used. To start with, the first several terms 

of each series are examined. 

1 n 1-m 
K l W - "I * ( l - m ) ! m ! [U(r)-UXrT] 

•m = n •> m=o 
(40) 

m 
* P " 1 " ^ [IU(r)-Ul7T]^] 

Partitions £ = 1 ,mi^ & 
or m I y J 
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K-^r) = -[U(r)-TnTJ] + [U(r)-UXYJ] = -U(r)+UTrT (41) 

KJ(r) = (-1)L" 1 / 2 E Udc^expfi ^ rk x] (l-6(k x)) (42) 
k l 

K x(r) = -U(r) + (43) 

K 2(r) = l/2[U(r)-UTrT] 2 - 1/2 [U(r)-OTrT] T (44) 

K 2 ^ ) - L" 1 E E Utk^lKk^expti r ^ k , ) ] ^ -
1 2 1 2 

(l-6(k 1 +k 2)) (l-6(k 1))(l-6(k 2)) (45) 

K 2(r) does not appear to equal K 2 ( r ) . However, K 2(r) would 

be unchanged if k-̂  and k 2 are exchanged. In the future the 

relabeling of the k^ in all equivalent ways will be called 

symmetrization. Symmetrizing K 2 (r) one has 

K 2 ^ - L _ 1 I \ U(k 1)G(k 2)exp[i if Hk1 + k 2 n ^ ^ + ^) 

(l-6(k 1 +k 2)) (l-6(k 1))(l-6(k 2)). (46) 

K 2(r) = I L" 1 E E U(k 1)U(k 2)exp[i ^ r(k 1+k 2)] 
k l k 2 

(1-6(k x)-6(k 2)-6(k x + k 2) + 26(k x)6 (k 2)) (47) 



22 

K 2(r) = \ [U(r)-UTFn 2 - \ [UCrJ-UTrJT 7 (48) 

The symmetrization of the expression for K^(r) is clearly 

vital to showing that K^(r) = K^'(r). It has been shown 

that K 1(r) = KJ(r) and K 2(r) = K 2'(r). It will also be 

shown that the assumption that K^(r) = K^'(r) implies that 
KN+l^ r^ = K N + 1 ^ ' which will complete the proof that 
K^(r) = K N'(r). Three Lemmas will be used in this proof, 
and they are presented next. 

Lemma 1. Note, that in terms of Fourier expansions, 

_N 
[U(r)-DTrT] N = L 1 TT Z U(k.) exp[i 1* r k ^ (1-6 (k.)) (49) 

i = l k. 
I 

1 I I 
[U(r)-uTr7r = L 2 6( Z k ) TT Z U(k )exp[i *f rk.](l-6(k.)) 

j=l J i=l k. 1 L 1 1 

1 (50) 

The truth of Eq. (49) is obvious. The truth of Eq. (50) is 

just as obvious if one notices that the product of the Fourier 
2TT 

exponentials, exp(i -^r- rk.) is always one, because of 
I L 1 

6( £ k.)- This term is included so that K M(r) in Eq. (39) 
j = l J 

may be written using only a single product symbol in the 

following way, 
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N 
K N W = T * (N-mjlml L " ? J 5(k.)exp[i ^ rk-Kl -6 (k.) J 

m=o v y i=l k. 
1 

Z ^ / ( - D P P ! M ! K 

Partitions £=1 r=l l 0 , m £ j=l r £ ( r _ 1 ) + ^ 
o t m £ 

Lemma 2. 

m 
Z TT TT 

£ 
m 0 < 5 ( Z k 
* j=l PC*Cr-l)+JD J P(N) 

n e s 1=1 r = l ™ £ 

t (52) 

In Eq. (52), S is the set of all permutations among the 
n m 

integers, 1, 2, n and m = Z £m 0. This lemma is proved 
£ = 1 * 

in Appendix II. 

Lemma 3. 

- i (-l) N + 1[U(r)-iTTiT] N + 1- i n E * (-^PP' 
•titions i - i ( N + 1 . m ) ! m £ U ! 

m=o Partitions £ = 1 . . v . I n , m £ 

[ ( U(rJ-TTTrTD t] m A - ( - 1 ) N + 1
 S ^ ^ ' P , ' 1 

Partitions £=1 t, t, £ 
of N+l m £ , j 6 * 
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This lemma is proved in Appendix II. 

Theorem 2. 

K N(r) = K N»(r) (54) 

Proof: 

It has been shown that K N(r) = K N»(r) for N=l and N=2 

It is assumed that K^(r) = K^'(r). ^ N + l ^ r ^ m a ^ t n e n be 
written as 

_ N N 

K N + l ( r ) = ( _ 1 5 N l 7 7 7 E UCk^expIi ^ r k ^ _ A _ (l-6(k i)) 
1 = 1 k i £ k. 

j-l 3 

C1-6C.2 k.)){-L' 1 / 2 I G(k N + 1)exp[i ^ r k N + 1 ] 
J" 1 K N + i 

K N + l N + 1 

N + i (l-6(k M + 1))(l-6( £ k,))}. (55) (l-6(k N + 1))(l-6( E k.))}. 
v j = 1 J 

E k 
j-l J 

Using the assumption, % ( r ) = K^(r), and Lemma 1, one has 

-Nl2 N+1 
KjJ + 1(r) = (-1) N + 1 L 2 E U(k.)exp[i ^ rk.] (l-6(k.)) 

l 1 k • 
I 

( 1 - 6 ( N E | k.))k N + 1 N m m A 

E E TT TT 

2 ^ m=o Partitions £=1 r=l 
• i i of m J=l J 
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-m) !m0 !(£!) 36 J ~ 1 (N _ £ 

Symmetrizing among the k. , using f^-\ * , £ , and using 
1 P £ SN+1 

Lemma 2, one has 

K N + l ( r ) =
 . 7 7 ^ U C K . ) E X P [ i ^ R ^ K L - F I C K . ) ) 

i-l K I 

N+l N 
C 3 P £ S N + 1 3 = 1 m = 0 Partitions l b / J 

of m 

36 1 r 1 (N+l-m) !m £! (£!) 36 -1 1 

Now, if one sums over Fourier indices and rewrites K' (r) ' n+l 
in r space, the permutations have no effect upon the form 

and one obtains 

I f 1 ^ N + 1 N M 4 . 1 m 

W r > " IWrj^ 1 1 {[U(r)-UlrT] N + 1- J 1 1 

P E S N + L M = O 

[UCrj-TrTry] 1 1 7 1^} Z J? S^hl =- (58) 
Partitions £ = 1 ( N + 1 . M ) , , ( J L I } A 

[(U(r)-DTFJ) 
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Since ^ iK t £ sums the same expression (N+l)! times LN + ij . P £S^ +2 
and then divides by (N+l)!, one may replace it with 1. 

Then using Lemma 3, one obtains 

KA.crD = C - D n + 1 ? cu(r)-irrFr) N + 1- m i T 
m=o Partitions £=1 

o£ m 

^ ^ — [ (U(r) -U(r)) ] (-1) X TT 
/-•»T i , , r o n £ Partitions k=l (N+l-m)!m£!(£,!) o £ N + 1 

r i P i — — — — r - m-, 
C " 1 J £• [(U(r)-UTrTr] k (59) 

m k!(k!) 
m k 

or 

This completes the proof of Eq. (54) and thus the fact that 

the series, term (37), is a Boltzmann distribution. 

It has been shown that the long time limit of the 

contracted, spatial distribution is equal to a Boltzmann 

distribution plus corrections. The Boltzmann distribution 

depends only upon the normalization of the initial spatial 

distribution and does not depend upon any of the details of 

that distribution. This corresponds with the behavior that 
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one would expect of a macroscopic description of a real gas. 

In that case one expects the gas to go to a final equilibrium 

state which depends on the amount of gas present but not on 

the initial distribution of the gas. The system which is 

being studied here, however, has correction terms. These 

correction terms depend on both the normalization and on the 

details of the initial spatial distribution. One would 

expect these corrections to be related to the conservation 

of energy, and thus depend on the average, initial potential 

energy. One might guess that these corrections are such that 

the long time limit of the contracted, spatial distribution 

is a Boltzmann distribution in terms of a new parameter, 3', 

which is an energy conserving renormalization of 3. In 

order to examine this possibility, the first four terms of 

Eq. (27), the series representation of R(r,t), are calculated 

in the long time limit. 

Is the Asymptotic, Spatial Distribution a Boltzmann 

Distribution in Terms of a Renormalized Temperature Parameter? 

Calculation of the Terms of Eq. (27). From the 

results of Chapter II, Equations (14) through (20), it is 

clear that 

lim R = L" 1. (61) o t->°° 

The next term may be written as 
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lim R = lim / dp / ds1 exp[( S l-t)£ ^ I L " 1 / 2 U ( k 1 ) i ^ k± 

t->°° t-*00 - 0 0 o k-̂  

expli ^ r k x ] |p exp[- f £ E L" 1/ 2 C N 

e x p [ i 2j r N ] W m ( p ) (62) 

and simplified to 

- 1 ~ 
lim R x = E E L C NU (k 1) exp [ iamr (k^N) ] k x N 

[NI ( 1^ )(k 1,N) - 3I ( 0)(N) + ai^ 0- 1 (k;L+N)] (63) 

where 

I C 0 ) ( N ) = lim / dp exp[-iaptN]W (p) = 6 (N) (64) 
£->oo - OO 

and 

I L ̂ (N.kjD * lim / dpW (p) / d s ^ m o r k exp [iap ( s ^ - t [k^N]) ] 
•^->oo -oo O 

(65) 

It is shown in Appendix III that 
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I ^ C N , ^ ) = £- [6(N+k 1)-6(N)][l-6(k 1)] (66) 

and thus 

N I(l)nu v . = 3N (N,k x) = (l-6(N))(l-6(k 1))(6(N+k 1)-6(N)). (67) 

It is important to include the exclusion, (1-6(N)), because 

the contribution to I ^ ( N , k ^ ) , for the case N=0, is zero. 

From Eq. (64) and Eq. (63) one has 

-3I^ 0 )(N) + 3 I ( 0 ) (k :+N) = -3[<5(N) - 6 (k 1+N) ] . (68) 

Combining terms one may write Eq. (63) as 

lim R± = Z Z L" 1C NU(k 1)exp[iamr(k 1+N)](-36(N))(l-6(k 1)) (69) 
t+°° k^ N 

or 

lim R± = -L" 13[U(r)-UTrJ]. (70) 
t-)-oo 

The next term, lim R 2, is 
t-><» 

0 0 t s 1 
lim R 2 = lim / dp / ds x / d s 2 exp[( S l-t) £ j U ^ 1 1 3 
t+co t-̂°° -°° O O 
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Equation (71) may be shown to simplify to 

lim R = I E Z L " 3 / 2 U ( k 1 ) U ( k 2 ) C N exp[iamr(k^+k 2+N)]I (72) 
t+°° k^ k 2 N 

where 

. S N 

t 1 2 2 I = lim / dp / d s 1 / ds 2[(s 1ma Nk 1-(s 2~s 1)ma k-^-iapk^) 
- 0 0 0 O 

(73) 

(s 2ma 2Nk 2-3 ^|-) + 3ma 2k- Lk 2] exp [ i a p l s ^ + s ^ - t (k 1 + k 2+N) > ] \ C P ) 

I may be shown to be 

I = N I ( 2 ) ( N , k 1 , k 2 ) 

+ 3 ( N + k 2 ) I ( 1 ) ( k 2 + N , k 1 ) - 3 N I ( 1 ) (N,k 2) 

+ 3 2 I W (N) - 32I(-°') (k 9+N) 

where 
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(71 °° 1 2 7 7 4 I ^ J ( N , k 1 , k 2 ) E lim / dp / ds1 f d s 2 ~ S 2 k ^ m a 

T - > o o - o o O O 

exp[iap[s1k.1 + s 2k 2-t(k 1+k 2+N)]]W m(p) 

0 0 1 1 2 4 + lim f dj> f d s 1 / d s 2 k ] [k 2 (k 2+N) s ] [s 2m a 

t->-°° - o o o o 

exp[iap[s 1k 1+s 2k 2-t(k 1+k 2+N)]]W m(p). (75) 

It is shown in Appendix III that 

2k 2 + 3k k 
I ( 2 )(N,k k 2) = 3 2(l-6(k ))(l-6(k 2)){-6(N) _ I L 2 

1 Z 1 Z 3 k 2 ( k 1 + k 2 ) Z 

+ 6(k +N) J - - 6 ( k 1 + k ? + N) (76) 
z ^ 2 1 Z ( k x + k 2 ) Z 

Using Equations (76), (66) and (64), Eq. (74) may be 

rewritten, 

I = 3 2 {- | 6(k 2 +N) + 6 ( k 1 + k 2 + N ) F 4 l T } 

1 2 

2 N k l 
- r ^ — y {[6(k 1 +k ? +N)-(S(N)](l-6(N))(l-6(k ))} 

( k 1 + k 2 ) 2 1 Z 1 

9 Nk ? 

+ 3 Z - ^ {[6(k 1 +k ? +N)-6(N)](l-6(N))(l-6(k ))} 
(k + k 2 ) Z 1 1 
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9 (N+k ?) 
+ 3 -k {[6(k 1 +k 2+N)-6(k 2+N)] (l-6(k 1)) (l-6(N+k 2))} 

- 3 2 {[6(k 2+N)-6(N)](l-6(N))(l-6(k 2))} 

k k 
+ 3 2 6 (N)-3 26 ( k 2 + N ) - 3 2 j ^ - ^ - 6 ( N ) + 3 2

 F 4 ] T 6 ( V k 2 + N ) - (77) 
1 2 1 2 

Using Eq. (77), and symmetrizing with respect to k^ and k 2, 

Eq. (72) may be rewritten as 

lim R 2 = j 3 2 L" 1 [U(r)-DTiT] 2 - j 3 2 L _ 1 [U (r) -\T(T)] 2 

t->°° 

I 3 2 L" 1 [U(r)-UXFJ] (U(r)-UTrT) (78) 

where 

g(r) 5 / R(r,o)g(r)dr for any g(r). (79) 
o 

The final term which will be considered, lim R^, may 

be obtained by a similar but much longer calculation. 

Renormalization Procedure. In order to compare the 

long time limit of the contracted, spatial distribution with 

a Boltzmann distribution, containing a renormalized tempera

ture parameter, the series expansion of both is written in 

the following table. 

In calculating a renormalized temperature parameter, 
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Table 1. Series Comparison 

0

Qld*r ^- exp[-3'U(r)] R ( r , « 0 

L" 1 L" 1 

-B'L^CUCrD-DTrT) - 3 L _ 1 (U (r)-JTJJJ) 

+ \ p , 2L _ 1t(U(r)-DTrI) 2 + \ 3 2 L _ 1 [ (U(r)-TT(Ty) 2 

- (U(r)-DTrT) 2] -(U(r)-IJTr7)7] 

\ 3 2L- 1CU(r)-UTrT) (U(r)-TTTrT) 

- \ 3 , 3L _ 1[(U(r)-TJrrT) 3 - \ $ 3 L _ 1 [ (U (r) -UTrJ) 3 

3 (U (r) -TJTrT) (U (r) -UTrT) 2 - 3 (U (r) -TTTrJ) (U (r) -UTrJ) 2 

(U(r)-inTT) 5] - (U(r)-inTT) 3] 

| 3 3L _ 1[(U(r)-T]TrT){ (U(r)-TTIrT)2 

- (U(r)-TJTrJ) 2}] 

| 33L'1[CU(r)-TJTr7(U(r)-TJtr7)Z] 

| $3L"1(U(r)-TTIrT){(U(r)-TJTrT)2 

(U(r)-TjTrJ)Z} 
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3 f , it is assumed that 

3' = I a N 3 N. (80) 
N=o 

Comparing the left and right columns, one quickly sees that 

a Q = 0 and a± = 1. (81) 

A little calculation yields 

a 2 = 2 (U(r) - DTrT). (82) 

Thus, to second order, 3' may be written as 

3' = 3 + | (U(r)-DTFT) 3 2 + .... (83) 

The renormalization procedure is working! The coefficient 

2/3 raises some questions, however. The equation for the 

conservation of energy may be written as 

1 '-1 L 

+ / Q T exp[-3'U(r)]U(r)dr - \ 3 _ 1 + OTrT. (84) 

If one expands the Boltzmann distribution as a power series 

using Theorem 1, one may show 
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3 = 3' + 3(23'(U(r)-DTrT) + 23 ' 2 (U (r)-uTrJ) T 

3' = 3-2(U(r) -U(r))3 + ... higher order terms in 3. (86) 

Not only is the coefficient which was found in Eq. (82) 

the wrong magnitude, but it is also the wrong sign. Equation 

(83) implies that a gas would cool as it "fell into a 

potential well." This very non-physical result prompts a 

careful reexamination of the interpretation of 3'. This 

parameter has been interpreted as a kinetic energy tempera

ture parameter of the type found in a Maxwellian momentum 

distribution. Although the initial momentum distribution is 

Maxwellian, the potential perturbs this distribution and there 

is no mechanism for returning the momentum distribution to a 

Maxwellian distribution. Without a Maxwellian momentum 

distribution, how can one discuss a kinetic energy tempera

ture? Thus, the contracted, spatial distribution may approach 

a Boltzmann distribution, but the parameter, should not 

be interpreted as a kinetic energy temperature parameter. 

Notice that the renormalization is related to the 

conservation of energy. The expression, (U(r) - U(r), 

+ ... higher order terms in 3'). 

Using 'Eq. (80), this equation may be rearranged to yield 

(85) 
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is the difference between the average initial potential 

energy and the average potential energy for a uniform distri

bution. Continuing with the renormalization procedure, 

further calculation leads to the coefficient of the third 

order term, 

a 3 = | (U(r)-DTFr) 2" - ^ (U (r) -UTrJ) 1 

+ ^ (U(r)-UTrT) (U(r)-UTrT) 

+ l| (U(r)-DTrT)" 1 (U(r)-UTrT) 2" (U(r)-uTrJ). (87) 

The third and fourth terms in a^ are functions of r, and 

therefore violate the implicit assumption that 3' is not a 

function of r. Therefore the contracted, spatial distri

bution does not approach a Boltzmann distribution even 

though the equilibrium distribution which it does approach 

has a strong Boltzmann character as demonstrated in Theorem 2. 

Boltzmann Boltzmann 

In this section a check of the internal consistency 

of the previous calculation is made. This check is possible 

because there exists a distribution which is unchanged by 

the action of the Liouville operator for this system. That 

distribution is the Maxwell-Boltzmann distribution, 

i exp[-3U(r)]W (p). Therefore, if the initial distribution 
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is specified to be a Maxwell-Boltzmann distribution, then 

the contracted, spatial distribution would remain a Boltzmann 

distribution for all time. In order to be self consistent, 

the expression which was derived for the long time limit of 

the contracted, spatial distribution should be the same 

Boltzmann distribution, under these initial conditions. it 

has already been shown that the long time limit of the 

contracted, spatial distribution is the same Boltzmann 

distribution plus correction terms. These correction terms 

are non-zero but they are shown to sum to zero in this 

special case. The correction terms are a power series in 3 
2 

which starts at the 3 order. If the initial distribution 

is a Maxwell-Boltzmann distribution, then the coefficients 

of the power series are functions of 3. In order to see 

this, the long time limit of the contracted, spatial distri

bution is written out in terms of the Boltzmann distribution 

and the correction terms. 

lim R(r,t) = Q _ 1expi-3U(r)] - I 3 2L _ 1(U(r) -OTrJ) (U(r) -TTJrJ) 
t->°° 

- | 3 3L _ 1(U(r)-lJTFJ){(U(r)-TJTrT) 2 - "(u"(r)-TTTrJ)2} 

- | 3 3L" 1[(U(r)-TnTT) (U(r)-UTrJ) 2] 

+ | 3 3 L _ 1 (U(r)-UTrJ) { (U(r) -TTTrJ) 2 - (U(r) -TTfrJ) ̂ } 

+ 
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The initial average found in the first correction term is 

= L L , 
(U(r)-DTrT) = / CU(r)-UTrT)[/ exp[-3U(r»)]dr»]' exp[-3U(r)]dr. 

o o 
(89) 

Expanding in terms of 3 by means of Theorem I, Eq. (38), 

one has 

= = = = 1 L _-. L 
(U(r)-TTTrT) = -TJXrJ + L / U(r)dr - L X 3 /U (r) (U (r)-TTTrJ) dr 

o o 
(90) 

+ . . . . 

The first correction term is now written as 

I 3 3L" 1(U(r)-UTrT) (U (r) -TTTTT)1 + higher order terms in 3. 

(91) 

One sees that there is no contribution, from the first 
2 

correction term, to order 3 . One also notices that the 

contribution which the first correction term makes at order 

3 3 exactly cancels the third correction term in Eq. (88). 

It remains to analyze the second and fourth correction 

terms. If they are expanded in a power series in 3, as was 

done with the first correction term, one readily sees that 
3 

these two terms make no contribution up to order 3 . There

fore it has been shown, that to the order calculated, the 
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correction terms sum and cancel in this special case, 

yielding 

lim R(r,t) = Q _ 1exp(-3U(r)). (92) 
t-*°° 

This calculation verifies that the formalism used in 

this section is correct. It has been shown that the long 

time limit of the contracted, spatial distribution is not 

a Boltzmann distribution even though there is an approach to 

equilibrium. The equilibrium which is approached has 

correction terms which conserve energy and also depend on 

higher "moments" of the potential. 
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CHAPTER IV 

IDEAL GAS IN THE PRESENCE OF AN EXTERNAL POTENTIAL, 

AND IMMERSED IN A BROWNIAN FLUID 

In this chapter an attempt will be made to find a 

system which has a contracted, spatial distribution which 

approaches a Boltzmann distribution. In the last chapter, 

it was found that an ideal gas acted upon by conservative 

forces tended in that direction, but the conservation of 

energy prevented it. In this chapter, there is a "Brownian" 

fluid present in which the ideal gas is immersed, which 

continually returns the momentum distribution to a Maxwellian 

distribution as the distribution is perturbed. Because of 

the ability of the gas to exchange energy with the "Brownian" 

fluid, one would expect the phase space distribution to relax 

to a Maxwell-Boltzmann distribution. 

This "Brownian" fluid is considered to be a fluid 

of particles which make their presence known only through a 

stochastic force, F(t) and a damping coefficient, a, which 

is intimately related to F(t). The results of this analysis 

have many physical applications. Kramers^ J used the results 

of a calculation for this system in the high viscosity limit 

to find chemical reaction rates. If the gas is assumed to be 

composed of noninteracting ions, the conservative force which 
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acts is assumed to be a constant electric field, and finally 

the system is open instead of closed. Then the problem is 

that of ions in a drift tube such as might be found in a 

mobility experiment. 

Another possible application is to the time evolution 

of molecules in solution. One might consider, for example, 

an enzyme and its associated substrate in aqueous solution. 

These macromolecules exist as ions and they will interact by 

means of their charge distributions. When they come into 

contact and reach the proper relative orientation, bonding 

will occur. It is possible that the charge distributions of 

these molecules aid in the establishment of this proper 

orientation. Such a question might be answered by means of 

the techniques which are developed in this section. 

The time evolution of this system is given by its 

Liouville equation 

It " C P . * ) " C" S fr + ^ fe " I P I" S P^Ct)])D(r.p,t) ap 9p 
(93) 

where the stochastic properties of F(t) are those of Brownian 

motion: 

<F(t)> = 0 and <F(t)F(s)> = 2 f <5(t-s). (94) 
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Here 6(t-s) is a Dirac delta. The damping parameter, a, 

from Eq. (93), is found in the autocorrelation formula for 

F(t) and that is the Einstein relation which connects a 
i ~ f 91 

and F ( t ) . v J The function of interest in this case is not 

the phase space distribution, but the stochastic average of 

the phase space distribution. The time evolution for this 

distribution is given by a Fokker-Planck type equation: 

Ft <D(r,p,t)> " t" m 9r - a F ^ 3p + a3p (m + 3 3p } ] 

<D(r,p,t)>. (95) 

This equation is derived from the Liouville equation in 

Appendix IV. The solution to Eq. (95) is given by 

<D(r.p.t)> - e x P [ - |_ • t ^ |- • „ t §- £ • B"l §_,] 

D(r,p,o). (96) 

Equation (95) is a caricature of the Boltzmann equation 

which can be written 

fg- fCr.p.t) = C- £ §Y • % |p)f(r.p.t) • coll(f(r,p,t)) (97) 

in which coll(f(r,p,t)) signifies the non-linear integral 
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operator for collisions in the Boltzmann equation. This 

operation is known to drive the momentum distribution 
* flcn 

towards a Maxwellian form ^ ; so that 

f(r,p,t) •* A(r)W m(p) (98) 
t->oo 

where W (p) is the Maxwellian momentum distribution. 

Asymptotically, coll(f(r,p,t)) = 0 and |^ f(r,p,t) = 0 so 

that 

(_ £ |_ + dU 3 j A(r)W (p) = 0 (99) v m 9r dr 9p^ v J m v ^ v J 

must hold and this implies that A(r) = C exp[-$U(r)] where 

C is an arbitrary constant. In equation (95) the operator 
3 rj -1 9 

a aTT + 3" k t t ) drives <D(r,p,t)> to the asymptotic form 

<D(r,p,t)> - A(r)W m(p) (100) 
t"H» 

with |Y <D(r,p,t)> = 0. Therefore, again A(r) = C exp[~3U(r)] 

because both the Boltzmann equation and equation (95) contain 

the same streaming operator, - ^ + j^. In the following, 

the details of the dynamics of the approach to the Boltzmann 

distribution are examined. Operator techniques are used to 
* 
This argument for the Boltzmann equation appears on 

page 80 of Lectures in Statistical Mechanics, G. E. Uhlenbeck 
and G. W. Ford (Amer. Math. Soc., 1963). 
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show that the series representation of the Boltzmann distri

bution given by equation (37) is obtained as the dynamical 

asymptotic limit of equation (96). 

Simplification of the Propagation Operator 

In the process of simplifying the exponential propaga

tion operator, it will prove convenient to define several 

operators. 

A = P i_ m 9r 
(101) 

C = 23 -1 9 
9p9r D = - 2_ 9 

3m 9r' 

The following relations will also be useful: 

[A,B] = - ± (A+C) 

[B,C] = - | C 

[A,C] = D 
[A,D] = [B,D] = [C,D] = 0 . (102) 

Using the disentanglement theorem, Eq. (24), one may simplify 

Eq. (96). 
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t 
<D(r,p,t)> = exp[-t(A-B)] T exp [/ exp[s(A-B)] 

«- o 

|_ exp[-s(A-B)]ds] D(r,p,o) 

(103) 

This may be written in series form as 

<D(r,p,t)> = D + E D (104) 
0 N=l 1 N 

where 

D q = exp[-t(A-B)] D(r,p,o) (105) 

and 

D N = / d S ] L f1 d s 2 ... / 1 d s N exp[-(t- S l)(A-B)]Mll * 
0 0 0 ^ 

(106) 

e x p [ - ( s r s 2 ) (A-B)] ... |_ ex Pr-s N(A-B)] D(r,p,o). 

Operators of the form, exp(-t(A-B)), appear several times in 

Eq. (103) and Eq. (106) and these operators will now be 

simplified. Using the disentanglement theorem one obtains 

t 
exp[-t (A-B) ] = exp[-tA] T exp [/ exp[sA]B exp[-sA]ds]. (107) 

«- o 
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The integrand in Eq. (107) will be simplified. 

oo N 
exp[sA]B exp[-sA] = B' + Z |L- [A,*] WB (108) 

N=l N-

The operator, [A,«], in Eq. (108) is a commutator operator. 

Its action is illustrated in the following example: 

[A,-] 3B = A 3 B - 3A 2BA + 3ABA 2 - BA 3. (109) 

Using the commutation relations in equations (102) through 

(105), one may write Eq. (108), which truncates automatically 

after N = 2, as 

exp[sA]B exp[-sA] = B - (A+C) - f (^)D (110) 

and therefore Eq. (103) may be rewritten as 

t 
exp[-t(A-B)] = exp[-tA]T exp[/ B - ^ (A+C) - f D ds] 

o 
(111) 

One may again use Eq. (102) and the disentanglement theorem 

to further simplify the integrand. 

exp[-t(A-B)] = exp[-tA]exp[- \ t 3 £ D]exp[tB] (112) 
6 

T expf-/* exp[-sB] (A+C) exp [sB] ds] 
+• o 
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exp[-sB] *± (A +C)exp[sB] = ^ (A+C) + *2L z i ^ f - [B.-AA+C) 
N=l 

(113) 

( £ ) N A if N is odd 
N ' m 

[B,-]"(A+C) = { „ (114) 
(A+C) if N is even 

exp[-sB] 5 | (A+C)exp[sB] = ^ exp[- M ] A + 2SL cosh[^]C (115) 

Thus one obtains 

exp[-t(A-B)] = exp[-tA] exp[- £ t 3 ^ D] exp[tB] (116) 

T expf-/ 1 ^ (exp[- ^ ] A + cosh [^] C)ds]. 
+- o 

Now the time propagation operator may be further simplified 

using a time ordered extension of Glauber's theorem, because 

of Eq. (102) . 

Introduction of a Time Ordered Glauber's Theorem 

Glauber's theorem is true for two operators which do 

not commute with each other but do commute with their 

commutator, 

exp[f+g] = exp[f]exp[g]exp[|[f,g]]. (117) 

A time ordered extension of this theorem is proved in 
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Appendix IV and is found to be 

t t t 
T exp[/ ds f(s)+g(s)] = T exp[/ ds £(s)]T exp [/ ds g(s)] 

o +- O O 

t s l 
(118) 

T exp[/ ds± f d s 2 [g(s 1),f (s 2)]] 
-y o o 

If this theorem is applied to Eq. (116), one obtains 

exp[-t(A-B)] = exp[-tA] expftB] e x p ( t ) A ] 

(119) 

exp[cj)2(t)C] exp[<J>3(t)D] 

where 

^ ( t ) - - / *± exp[- ^ ] d s = t exp[- • £ [exp[-

(120) 

t , 
* 2 ( t : ) = - ; cosh[^]ds = £ [<|> ft) + ^ ( - t ) ] , (121) 

o 

*,(t) = - i t 3 £ - /* ds' / ds"s f £ cosh[^-]s" ~ exp[- ^ L ] , 3 v y 6 m m L m J m r L m J > o o 
(122) 

and 

* 3(t) - - j [ ^ ( t ^ C - t ) + ^ 2 ( t ) + £ * l ^ " 5f *iC-t)]. C123D 

The terms in the series, Eq. (104), for the average phase 
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space distribution may now be written out in terms of 

operators which act consecutively. Several lemmas will be 

useful in the further analysis of this problem. 

Operator Identities 

1. - & | F exp[»A] (124) 

2. exp[tB] |^ - |p exp[- % expftB] (125) 

3. exp[-t(A-B)] |p - (|p exp[- *|] • (126) 

exp[-t(A-B)] 

The Action of Operators on Maxwellian Distributions 

4. exp[b |p |Y] exp[ar]W m[p+q] - exp[ar]W m[p+q+ab] (127) 

5. exp[tB]W m(p + a) = W m[p + a exp[- ^ ] ] (128) 

Simple Identities 

6a. W m(p)exp[ap] = W m[p - exp [^|] (129) 

6b. W m[ P +b]exp[ap] = WJp+b - exp[fg- (ma-23b)] (130) 

Lemmas 1, 2, and 5 are proved in Appendix I. Lemma 3 is an 
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application of Lemma 1 and Lemma 2 to Eq. (119). 

Analysis of the Series Expansion of D(r,p,t) 

Analysis of D Q 

D Q is the first term in the expansion of the average 

phase space distribution, but it is also the average phase 

space distribution for a system which consists of a particle 

acted on by a "Brownian" fluid but not subject to any other 

forces. It is assumed that the initial conditions are 

D(r,p,o) = E L " 1 / 2 C N expti ^ ^ W ^ P ) - (131) 

D Q may then be written using Eq. (101) and Eq. (119) as 

2 2 
D Q = L " 1 / 2 E C exp[i 2£ Nr] exp [ 4 < w t ) ] ( i 3 2 ) 

N L 3m 

exp[-it N exp[tB] exp f i ^ (t) ^ N £] 

W m ^ P + i ^ 2 T 7 N f ^ 

or 

D o = L " 1 / 2 ^ C N e x P [ i ^ r N ] w m ( p + i i | N { t + 

2 2 
(2*2(t)-(j)1(t))exp[- e x p [ ^ L ^ ( t ) ] , 

L 3m 

(133) 
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where 

* 4(t) = 4<j>3(t) + 4cj)2
2(t) - (2({)2Ct)-(j)1(t))2 

t2-2t(2({)2Ct)-(j)1Ct))exp[-

(134) 

4>4(t) = -2 + 2 ^ (l-exp[- ^ ] ) . (135) 
a 

One notes that in Eq. (133) 

t+(2(})2(t)-(j)1(t))exp[- ^ ] = ^ (l-exp[- ^ ] ) (136) 

Since Einstein's relation for the diffusion constant is 

D = i- , (137) 3a 

one may write Eq. (133) as 

D Q = L " 1 / 2 Z C N exp[i rN]W mCp + i ^ Nm(l-exp[- % ] ) D ) 

2 2 _ r 4TT N m . m _ r t a n 7 n 7 Q>| exp[- — 2 — D(t- - + - exp[- — j ) ] . (138) 
L 

It is clear from the damping behavior of the last exponential 

that in the long time limit one has 
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lim D Q = L" 1 W m ( p ) . (139) 

Thus, the average of the phase space distribution for 

a particle in a "Brownian" fluid but subject to no other 

forces, relaxes to a distribution which is uniform in posi

tion space and Maxwellian in momentum space, as was expected. 

One should also note that Eq. (138) contains in the last 

exponential the term D(t- ~ + ™- exp[- which is the 

diffusive behavior of a particle. 

Analysis of 

D l 85 * >! ^ d s i exp[-(t- S l)(A-B)]exp[i ^ r k±] 

(140) 
exp[- S l(A-B)]exp[i ^ rNJWJp) 

where 

{ K = Z S L 1 U ( L ) C M i ~ k r (141) 
k x N 1 N L 1 

Using the result which was obtained in the analysis of D Q 

one may rewrite Eq. (140) as 

D l 55 < >1 ^ d s i exp[-(t- S l)(A-B)] jL- exp[i ^ r(N+k 2)] 

W m(p+£( S l,N)) F( S l,N) 
(142) 
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where 

i27rNm _ „ r
 S l a 

fCs^NJ = ± ^ (l-exp[- (143) 

and 

2 2 
F( S l,N) = e x p [ ^ ~ ~ c ( ) 4 ( S l ) ] . (144) 

L 3m 

One may now use Lemma 3, Eq. (126) and obtain 

D x = ( >! exp[i ^ r ( N + k 1 ) ] / d s ^ > 2 exp [ - ( t - s ^ ^ C N + k ^ ] 
o 

exp[(t-s 1)B]exp[<D 1Ct-s 1)^(N+k 1)|]exp[(D 2(t-s 1)i ^ ( N - ^ ) 

2 
2 | p ] e x p [ ^ — 4(N+k 1) 2c() 3(t-s 1)]W m(p + £(s 1,N))F(s 1,N)(145) 

L 3m 

where 

rv t-s-, -cj)1 (t-s-,) ? 

{ } 2 • |p exp[-(t- S l) £] • _ ^ L _ J L_ i 2* ( N + k i ) . ( 1 4 6 ) 

Next D-̂  is simplified in a sequence of steps: 

B1 = { }1 exp[i ^ r(N+k 1)]/ t d s ^ > 2 exp [-(t-s 1)i^L(N+k 1)|] 

exp[(t-s1)B]exp[c|)1(t-s1)i ^ ( N + k ^ ] 
(147) 
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[p + £Cs 1,N)+i £ | CN+k 1)2 (j) 2Ct-s 1)]exp[^-- 4CN+k 1) 2
(j) 3Ct-s 1)] 

s 1 , N ) , 

= { } 1 exp[i ^ r C N + k ^ ] / d S l { } 2 exp[-Ct- S l)i ^ - ( N + k ^ ] 
o 

exp[Ct-s 1)B]W m[p + £(s 1,N)+i | | (N+k^ C2<j,2 (t-s^ - <|)l (t-s^ ) ] 

2 
e x p [ ^ — C4(N+k 1 ) 2 (J) 7 ;Ct-s )-CN+k 1) 2

(|, 1
2Ct-s )+4(N+k 1) 2 

L 3m 1 5 1 i l l i 

(J) 1Ct-s 1 ) ( J) 2Ct-s 1)]exp[-£Cs 1,N ) (J) 1Ct-s 1)i ^ (N+k^ 

FCs 1,N), (148) 

? t 

= { } exp[i £ ^ r C N + k 1 ) ] / d s ^ > 2W [p + f ( S l,N)exp [-(t-s^] 
o 

+ £(t-s 1,N+k 1)]F(t-s 1,N+k 1)F(s 1,N) (149) 

exp[£( S l,N) (i ^ (N+k1)(-(j)1(t-s1) + (t-s 1)exp[-(t-s 1)^])], 

= Z E L U ( L ) C w i k n exp [i r(N+k.J]/ ds n k x N 1 J N L 1 L i Q i 

~ t-s 1 ~d) 1(t-s 1) ~ 
Cfp expf-Ct-s^] • _ L _ J L_ i 1, ( N + k i ) ) 

Wffl[p+f (s 1,N)exp[-Ct-s 1^] + f(t-s 1,N+k 1)] 
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F(t-s 1,N+k 1) F( S l,N) 

exp[^ £( S l,N) ^ (N+k 1)(l-exp[-(t-s 1) ) ] . (150) 

Now the long time limit of D-̂  will be examined and it 

will be found to depend on the initial spatial distribution 

only as far as the normalization. In the integrand, lim 
t-*-oo 

F(t-s^,N+k-^) is zero unless s^-*°o or N+k^ = 0. If N+k^ = 0, 

the integrand contains a term lim exp(-(t-s-^) and the 

integrand is still zero unless s -^+oo. If s-^+oo then the 

integrand is zero due to Fts-^.N) unless N = 0. Therefore, 

only the N = 0 term in the sum over N contributes to the 

long time limit of D^. From normalization requirements, 

Eq. (10), C Q = L " 1 / 2 . 

lim D-. = L £ L 1 U(k.) lim / ds. exp [ - (t-s 1) (A-B) ] 
1 (151) 

i Z f k l e x p f i ^ r k x] f ^ W ^ p ) 

Using the definition of A and the fact that B exp[i —j- r k-̂ ] 

W m(p) = 0, one may write Eq. (151) as 

lim D = L" 1 Z L " 1 / 2 U(k-.) lim /* ds. (-3) exp [ - (t-s.) (A-B) ] 
t+°° k i t+oo o 

(A-B) exp[i ^ r k±] W J p ) 
(152) 
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The integrand is now an exact differential! Integrating 

gives 

lim D = L" 1 Z L " 1 / 2 U C k ^ (-$) (exp[i r k^-6 (k^ )W m(p) 
t->-°o k^ 

(153) 

or 

lim B1 = -3L" 1 W m(p) (U(r)-UT^T). (154) 
t-)-co 

Comparing D Q and with the table in the last chapter, one 

sees that to this order the asymptotic distribution is a 

Maxwell-Boltzmann distribution. In order to prove this 

relation to all orders one must analyze D n for arbitrary n. 

Analysis of D n 

From what has been learned in the analysis of D Q and 

Dj, , D n may now be evaluated. A very useful result may be 

abstracted from the analysis of D^. From equations (142) 

and (150), one may show 

exp[-t(i * I K-B) ] W m(p+b) = WJp+b exp[- (155) 

+ f(t,K)]F(t,k)exp[^ b K(l-exp[- *|]) ] . 

From Eq. (106) one has 
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N+l 
D N = Z Z ... Z Z L 2 U(k 1)U(k 2)...U(k N) 

k l k 2 k N £ 

t s l SN-1 
C £ (i k 1k 2...k N / d5l f d s 2 ... / d s N 

0 0 o 

exp[-(t- S l)(A-B)] exp[i ^ r k N] 

exp[-( S ; L-s 2) (A-B)exp[i ^ r k ^ ] |- ... 

exp[i ^ k xr] |p exp[-s N(A-B)] 

exp[i ^- r£]W m(p). (156) 

Letting the A operators act, one obtains 

t SN-1 ? N 
D N = { } / ds ... / d s N exp[-(t- S l)(i r ^ P [ £ + Z k.] 

o o i = l 

B)] |j- exp[-( S l-s 2)(i ^ p [ £ + V k^-B)] |p ... (157) 

lp e^>t-s NCi E P * - B ) ] W m ( p ) 

where 

N+l 
--—- • N 

{ } = L 2 ( ^ ) N Z C TT Z U(k,)exp[i k. ] . (158) 
i L £ ^ i=l k i

 1 L 1 
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Using Lemma 3, Eq. (126), one has 

t SN-1 ? 

D N = { }1 1 d s l •'" 1 d s N { }2 e x p f " ( t _ s l ) ^ Em p 

o o 
(159) 

N N-l 
[£ + Z k i]-B)] exp[-( S l-s 2)(i £l p[£+ Z k ^ - B ) ] . . . 

i= 1 i=l 

E X P T - s N ( I ^ P R B ) ] W M C P ) 

where { } 7 , the product obtained from commuting all the — 

operators to the left, is given by 

{ h • [fe « P [ - C T - S L ) | I . C T - s ^ C T - s u + j k ]] 
1 = 1 

[fp exp[-Ct-s 2) £] * C t - s ^ C t - s ^ A * ! [*• k i ] 

exp[-C S l-s 2 SL] . (s 1-s 2-« 1(s 1-s 2)J % [*+ V k i ] l 
1=1 

(160) 

[|_ e x P R - ( T - s N ) |] . (t-s^jft-sj)) U + k i ] 

e x p [ - C S R S N ^ + ••• + C S N - I - S N - * 1 < S N - r S N » % * + K
1 ] ] 

Using Eq. (155), one may rewrite Eq. (159) as 
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t 
} 1 / d S l ... / d s N { } 2 W m[p+£(s N,Jl)exp[-(t-s N)^] 

£ ( s N - l " s N , £ + k i : ) e x p [ " ( t " s N - i : ) m 1 + ••• + £ t t " s i > 

N 
F(s N,JDF(s N. 1-s N,H+k 1) ... F(t- S l,4 + Z kj) (162) 

exp[i^- £(s N,4)(l-exp[-(s N. 1-s N) ^ l U ^ ) ] 

e x P [ i ^ {f(s N,*)exp[-(s N. 1-s N) £] + 

f (s N. 1-s N,i+k 1)}(l-exp[-(s N. 2-s N. 1) |]) U + k 1 + k 2)] . . . 

e x p [ I G {£(s N,«exp[-( S l-s N) |] + f ( s ^ - s ^ A * ^ ) 

o o 

N 
+ (161) 

N-1 
exp[-(s 1-s N_ 1) jjL] + ... + £ C S l - s 2 , £ + Z k.) } 

i = l 

N 
(l-exp[-(t-s ) + I k.)]. (163) 

i = l 1 
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From the form of D n it may be argued that the only 

term in the sum, Z, which contributes to the long time limit 
£ 

of D is the term £ = 0. This is due to the product, { },. 
N 

lim F(t-s-,, £ + Z k.) = 0 unless s ..-»•<». If s,+™ then 
t+OO 1 i = l 1 1 1 

N-l 
lim F ( s - , - S 2 > £ + £ k.) = 0 unless s--^00. This process 

i = l 1 

continues until lim F(s^,£) = 0 unless £ = 0. 

This chain of argument may be broken at some point if 
N-j 

there is a sum which is zero, £ + Z k. = 0. In this case 
i = l 1 

the time variable, s j + i> ^ s n 0" t required to become infinite. 

This type of problem also occurred in the evaluation of D-̂ ; 

see the arguments following Eq. (150) . In this case the 

argument is similar. The chain of argument is assumed to be 

intact up until this first break. Thus, the time variables, 

t, s-, , s ? , s., all become infinite while s. - is 

allowed to remain finite. { } 2 contains a term which is as 

follows 

[fp exp[-(t-s j + 1) i] + (t-s 1-# 1(t-s 1)) ^ [£ + j k.] 

exp[-( S l-s. + 1) |] + ... + (s £-s £ + 1 - ^ ( s £ - s £ + 1 ) ) 

i = l 

i 2 T T 

" Lm 

N-j 
[£ + Z k-]]. (164) 

i = l 1 

The exponentials in this term all damp to zero and only the 
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last term remains. This last term, however, contains 
N-j 

[£ + E k-] which was assumed to be zero. Thus one sees 
i=l 

that all such breaks in the chain of argument which has been 

constructed lead, inevitably, to a zero contribution. It 

has been shown then that lim may be written in terms of 
t ->OO 

only the normalization information from the initial spatial 

distribution, 

lim D N = lim L" 1 / ds± ... / ^ exp [-(t-s±) (A-B) |=-
t ->OO t->OO O O ^ 

( 1 6 5 ) 

. . . D I I G I | F e x P [ - s N ( A - B ) ] W m ( p ) . 

Since 

|p expt-s N(A-B)]W m(p) = |p W m(p) = - BE. W M ( P ) , ( i 6 6 ) 

Eq. (165) may be written in a form similar to Eq. (151), 

1 t sN-2 
lim D N = lim L { > 1 / d s 1 . . . / d s ^ exp[-(t-s 1) 
t->OO t->OO O O 

C i Jx V B ^ F P • • • F P C-B)Ci ^t^'1 ^ 

/ X d s N expf-Cs^j-s^Ci ^ p k x - B ) ] ( i ^ P K 1 ) W M ( P ) . 
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Since -B w
m ( p ) = 0, this quantity may be added to the 

integrand thereby making it an exact differential of s^l 

Integrating one has 

_ i t SN-2 
lim D N = lim L { }± / ds± ... / d s N - l e x P [ " ( t - s i ^ 
t->OO t O O 

C 1 ffiP j, V B ^ fp e x P [ - ^ N - 2 " S N - l ^ 

^ H P Ck 1 +k 2)-B)] y (-3) (i ^ k , ) " 1 

[ l - e x p l - s ^ (i ^ pk 1-B)]]W m(p). (168) 

The part of the integrand which uses the 1 in the last bracket 

is already in the form of Eq. (167) and this integration 

procedure can be iterated. The part of the integrand which 
2TT 

uses e x p [ - s N 1 (i j — pk-^B)] is of the form of Eq. (157) 

with £ replaced by k^ and by U ( k 1 ) . It has been shown 

that for this form only k^ contributes. Thus Eq. (168) may 

be rewritten as 
N 

lira D = L 1 E £ ... Z L U(k n)(i ̂ f ) 1 N 

t - k, k 2 k N 

7 N N 
k xk 2...k N exp[i ±£ r Z k . ] ( - 3 r 0 6 ( Z k-)) 

i=1 i=l 
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N-1 • ? M N i 
(l-6( Z k.)) ... (l-6(k1))(ifTr-)"JN( Z k ) _ i 

i=l 1 i=l 1 

N-1 _i 
( 2 k.) 1 ... k 1

 1 W (p) (169) 
i=l 1 ± m 

or 

lim D N = L" 1 K^(r)3 N W (p) (170) 

I 
where K^(r) is the same as Eq. (37) and was shown to be the 
N t^ 1 coefficient of the series expansion of a Boltzmann 

N-j 
distribution. The exclusions, (1-6 ( Z k.))> i-n Eq. (169) 

i = l 1 

enter that equation automatically and not as assumptions 

which are required for the integrations to be performed. 

It has been shown that the long time limit of the 

phase space distribution is a Maxwell-Boltzmann distribution 

if the initial phase space distribution was Maxwellian in 

momentum space. Notice the way in which this result has 

occurred. The Boltzmann distribution which has been obtained 

is the same as the result obtained by the partial resummation 

in Chapter III, Eq. (36). Indeed it has also been obtained 

by a partial resummation of the same type of terms. The 

important difference is that the terms which have not been 

resummed, the correction terms, have been shown to be zero 

in this case. The arguments which have shown these correction 

terms to be zero are intimately related to the action of the 
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Brownian operator which was introduced in this section. 

This operator also provides physical justification for the 

presence of the original parameter, 3, in the final Maxwell-

Boltzmann distribution. This parameter is the kinetic energy 

temperature parameter for the Brownian fluid and the particle 

exchanges energy with the fluid so that this becomes the 

correct temperature parameter for the particle. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

1. The contracted, spatial distribution for a 

noninteracting, ideal gas subject to an external potential 

achieves an equilibrium if the initial momentum distribution 

is Maxwellian. 

2. The equilibrium reached by a noninteracting, ideal 

gas subject to an external potential is not a Boltzmann 

distribution. 

3. The reason that this equilibrium distribution is 

not a Boltzmann distribution is related to the conservation 

of energy, or from another point of view, the lack of 

partitioning of the energy. 

4. If the ideal gas subject to an external potential 

is allowed to exchange energy with a Brownian fluid, then 

the equilibrium reached by the phase space distribution is a 

Maxwell-Boltzmann distribution. 

5. It has been shown that operator techniques such 

as have been used in this dissertation are powerful tools 

which can be used to analyze classical problems. 

Recommendations 

There are a number of systems to which analysis such 
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as that found in Chapter IV might be applied. The problem 

of ion drift velocities in a neutral fluid under the influence 

of an electric field is one. The interaction of macro-

molecular ions in solution is another. A molecule migrating 

across the surface of a crystal to a binding site is a third. 

Another problem which is related to those in this 

dissertation is that of 2, 3, 4, ... particles in a box 

interacting by means of interparticle potentials,, I would 

expect such a system to show a closer approach to a renormalized 

Boltzmann distribution than the equilibrium of a one particle 

system. 

It might prove possible to find the phase space 

distribution in Chapter IV for arbitrary time and apply that 

result to many types of rate problems. For example Kramers has 

solved this problem in the large viscosity limit and applied 

the results to the calculation of chemical reaction rates. 
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APPENDICES 
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APPENDIX I 

MATHEMATICAL TOOLS 

A. exp (a -^-)exp(br) = exp (br) exp (ab) 

a, b, and r commute (171) 

Proof: 

8 " exp(a^-)exp(br) = z — R R F exp(br) 
9 r N=o N ! 

OO , , . N 
Z J exp(br) = exp(br)exp(ab) (172) 

N=o 

B. / exp[^]W m(p)dp = exp[l/2 ±-] (173) 
- n o P 

Proof 

0 0 ° ° N 1 / 7 O O 2 

/exp [^]W m(p)dp = z ^ f ^ ) 1 ' 2 / (£) Nexp[- 6 f^Jdp (174) 
0 0 N = 0 -OO 

Since the integral is zero if N is odd, let N = 2a. 

00 r*2^SL D I / ? 0 0 2 0 2 
^ ' ' (^"expf-g P^dp (175) 

J6-o -OO m 
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This is the form of a Gaussian average and it is well known 

that 

<K> = — = ~ (176) 

and 

< ( 4 ) a > - I 2 | L I < 4 > A ( 1 7 7 ) 
ni 2A'£! m 

where 

Y OO 2 
f(P)> = ( ^ f ) 1 / 2 / f(p)exp[-0 2_]dp C178) 

for any function f(p). Rewriting Eq. (175), one has 

1 A 2 

2 
R 8 N N - 1 r v x 2mn (55-) [X exp — ] 

X = f 

(179) 

• e x p [ J I G - ] . ( 1 8 0 ) 

C. / p N exp[ap]W m(p)dp - 1 - L ? (181) 
-OO 2 
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This result may be obtained by treating (p)exp(ap) as 

|^ exp(ap). 

D. Disentanglement Theorem 

s 
exp[is(A+B)] = exp(isA]T exp[i / exp[-is'A]B exp[is 1A]ds 1] 

«- o 
(182) 

Proof: 

The two sides are equal when s = 0. Next, both sides 

are differentiated. 

|- exp[is(A+B)] = i(A+B)exp[is(A+B)] (183) 
a S 

i— exp[isA]T exp[i f exp[-is'A]B exp[is'A]ds 1] a S 
+- O 

(184) 

{ iA exp[isA] + exp[isA](iexp[-isA] B exp[isA])} 

s 
T exp[i / exp(-is'A)B exp(is *A)ds 1] = 
+- o 

s 
i(A+B)exp(isA)T exp[i / exp[-is'A]B exp[is 1 A]ds 1] (185) 

+- o 

Therefore, the two sides of Eq. (182) are equal for s = 0 

and obey the same linear, first order, differential equation. 
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E. Lemma 1 from Chapter IV 

-L̂ElMl = ±|_ exp[M] (186) 

Proof: 

The general formula for the parameter differentiation 

of exponential operators is 

8 6 9 A [ a H ] = ; exp[(a-u)H] |S exp[uH]du (187) 

Using this identity, one has 

3 exyA]
 = / exp[(<J>-u)A] |A exp[uA]du (188) 

where 

If = sir <189) 
Simplifying, one has 

L̂£lMi = 1 |_ expf^A] / du (190) 
o 

= i I, exp[$A] (191) 



Lemma 2 from Chapter IV 

ex?(tB) h= IP E X P [ " ^ ] E X P [ T B ] 

Proof: 

exp[tB]
 IP-N.E

0TIMP 

t j N 3 _ y N ! R R , £ 3 „N-«. 
B 3P " £ ! 0 A K K - t ) ! [ B ' , ] 3P B 

[ B ' J 3p 3p 

OO N N 
e X p [ t B ] 3P 3P Nf0 lQ N T t!(N-4jl C i } 

3 R T N

 A , N 
3p N f Q ̂  ™ 

Lemma 5 from Chapter IV 

exp[tB]W m(p + a) = W j p + a exp[- ̂ ] ) 

Proof: 
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00 

where G(p,p') is the Greens' function given by 

G(P,P') = ^ «- exp[ ^-y- (p-p'p) 2] (201) 
2Trm(l-p^) 2m(l-p z) 

and 

p = exp[- (202) 

Simplifying, one obtains 

exp[tB]W m(p + a) = J- ( l - p 2 ) " 1 / 2 / exp [ - § — j - (p'-p) 2] 
-OO 2m(l-p ) (203) 

exp[- 2^p' (2a+2p(l-p)" 1)]exp[- § H a 2 ] d p ' 

let 

2 _ m(l-p 2) 
A S 

(204) 

X = p'-p (205) 

C = IJJ. (2a+2p(l + p)" 1) (206) 

Then Eq. (203) may be written as 

exp[tB]W m(p + a) = t^)1/2 I G(p,p')exp[- ^ (p ' +a) 2 ] dp ' (200) 
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exp[tB]W m(p+a) = ^ (1-p 2)" 1 / 2exp [- ^ a 2]exp[-Cp] (207) 

2 
/ exp[-ex]exp[- —j] dx 

-OO 2a 

or 

exp[tB]W m(p +a) = ^ ( l - p 2 ) " 1 7 2 

2 2 2 
exp[- |fL_]exp[-cp]exp[^-]a /27 (208) 

If one substitutes for C and a one obtains Eq. (199). 

H. Time ordered extension of Glauber's Theorem 

t t 
T exp[/ f(s)+g(s)ds] = T exp[/ f(s)ds] (209) 
+- o +- o 

t t s l 
T exp[/ g(s)ds] T exp[/ ds± f d s 2 [g (s ) , f (s 2 ) ] ] 
+- o •> o o 

f(s) and g(s') both commute with their commutator 

Proof: 

Define: 

t t 
F(t) = T exp[/ f(s)ds] T exp [/ g(s)ds] (210) 

a t t 
^ F(t) = f(t)F(t) + T exp[/ f(s)ds]g(t) T exp [/ g(s)ds] 

+- o +- o 
(211) 
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4<rF(t) = {f(t) + T exp[/ £(s)ds]g(t) T exp[/ -f(s)ds]}F(t) 
9 t o o 

(212) 

since 

t t 
T exp [/ -£(s)ds] T exp[/ £(s)ds] = 1 (213) 

Equation (213) is easily proved since it is true for t = 0 

and the derivative with respect to t is zero. 

t t 
T exp[/ f(s)ds]g(t) T exp[/ -f(s)ds] = 
<- o -> o 

t t s l 
g(t) + / [f(s),g(t)]ds + / ds-, / ds 2[f(s ),[f(s ),g(t)]] 

o o o 

(214) 

or 

t t 
T exp[/ f(s)ds]g(t) T exp[/ -f(s)ds] = (215) 
-̂ o o 

t 
T exp [/ ds[f(s),.]]g(t) 

o 

Using the fact that f and g both commute with their commutator 

and Eq. (215), one may rewrite Eq. (212) as 
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1̂  F(t) = (f(t)+g(t) + / [f(s),g(t)]ds}F(t). (216) 

Equation (216) is now integrated to obtain 

s 
t t 1 

F(t) = T exp[/ (f (s)+g(s))ds] T exp [/ ds± /" d s 2 (217) 

[f(s 2),g(s 1}]] 

Equation (217) is equivalent to Eq. (209) if 

t s l t s l 
T exp[/ d s 1 / ds 2[f(s 2),g(s 1)]]T exp[/ d s 1 / d s 2 

o o -> o o 

[f(s 2),g(s 1)]] = 1. (218) 

This is easily proved using Eq. (213). Define I such that 

t 
T exp[/ f(s)ds] 1 = 1 (219) 
+ o 

t t t 
T exp[/ -f(s)ds]T exp[/ f(s)ds]I = T exp [/ -f(s)ds] (220) 
-> o o -> o 

t 
I = T exp[/ -f(s)ds] (221) 

-> o 
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APPENDIX II 

A. A Boltzmann distribution is to be expanded in a series 

in powers of 3. 

L
G X p [ - g U ( r ) ] - L" 1 E % ( r ) 3 N 

/ exp[- 3 U(r)]dr N 0 

o 

(222) 

exp[-3U(r)] exp[-3(U(r)-DTrJ)] 
~T (223) 

/ exp[-3U(r)]dr / exp[-3(U(r)-DTrJ)]dr 
o o 

K N ( r ) = ^-(IB)N[(:/ exp[-3(U(r)-urrT)]dr)"1exp[-3(U(r)-IJTrT)]] 
d p o 

(224) 

One now uses the Leibnitz rule for product differentiation. 

3=o 

K N ^ = NT * mi(N-m)! exp [-B(U(r)-TTTrT] ] m=o v J 3=o 

(225) 
9 ^m {%) [f exp[-3(U(r)-IJTrT)]dr] 

;=o 

(fy)^™ exp[-3(U(r)-UTrT)] (-l) N" m(U(r)-rHTX) N" m (226) 
3=o 

Next, one uses di Bruno's Formula for the differentiation of 
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Definitions: 

is the group of all permutations among the 

integers 1, 2, N. For a permutation peS^, S^_m is 

the set of all permutations of the integers p(m+l), p(m+2), 

P(N). 

Proof: 
m m £ £ 

Note that TT TT <5 ( Z k r r -n +.;0 implies that 
£ = 1 r=l j=l p l J t i r " 1 J J J 

m N N 111 A 1 A 1 

£ i t „ m = 0 and Z k ,., = E k C230) 
j-1 P(J) j-i P O ) j = m + i P O ) 

One may rewrite the left hand side of Eq. (229) as 

z : >' cJiww { *»OT } = (231) 

* j=m+l P U J 

c » \ 111 { ( N - m ) ! S
C P 

P £ S N * = 1 r = 1 m . H I * q e S N - m 

N 

m »* 6 ^ kp(*Cr-l).j)> , 
J X / - 1 Z TT TT — { ± _ Z 

p e S N £=1 r-1 • £ ( N _ m ) ! z q s S P „ m 

j=m+l P J 

k q ( p ( N ) ) } " < 2 3 2 ) 
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1 - J = 1 P U ( R - L ) + J ) 

^ /i "i { N 
P C S N 3 6 1 R 1 M 'ft! * ( N - M ) ! E K F . . 

3 6 J = M + L P U J 

N 

( N - M - 1 ) ! E K N M , ( 2 3 3 ) 

J = M + L P ^ J J 

E Q U A T I O N ( 2 3 3 ) I S E Q U A L T O T H E R I G H T H A N D S I D E O F E Q . ( 2 2 9 ) . 

C . L E M M A 3 F R O M C H A P T E R I I I 

? C - D N + 1 r u M - D T ^ R 1 - * z : _ t ± & J _ 
m = 0 Partitions 4-1 ( N + 1 . m ) ! m U ! I 

or m v £ 

J L L O N + L 
[ ( U ( R ) - U ( R ) ) ] £ = ( - 1 ) - * 1 E TT 

P A R T I T I O N S £ = 1 

O F N + L 

C " 1 ) P P ' I [ ( U ( R ) - U ( R ) ) R A ( 2 3 4 ) 

m £ ! £ ' ! 

P R O O F 

D E F I N I T I O N : F(3) = / E X P [ - 3 ( U ( R ) - U ( R ) ) ] D R ( 2 3 5 ) 

O 

F ( O ) = L , ( f g O ^ T S ) 
K T K 

= ( - 1 T L ~ ( U ( R ) - U ( R L ) 

3= O 
( 2 3 6 ) 

F R O M A P P E N D I X I I , E Q . ( 2 2 7 ) , O N E H A S 
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c|g) k[f(e)]" 1 (-l)V1 l I C-D qqlk 
Partitions j =1 . . , j 

of k m j ' 3 ' 

[(U(r)-uTrT) J] 
•z- m. 

(237) 

where 

k = 
k 
E 
3=1 

Q = E m . 
j=l J 

(238) 

k, q, and iru are used here to emphasize that Eq. (237) is an 

identity independent of this lemma. Equation (234) may then 

be written as 

N 
E 

m=o (N+l-m)!m! U 9 3 J l 3 j 

$=o 
] [ ( - D " M ( F 3 ) m [ f ( 3 ) ] 

-1 
] 

(239) 
L r 3 _ , N + l f £ r . r l (N+l)! C 3 3 J L±C3JJ 3=o 

Multiplying both sides by (N+l)! and adding -L ( f - - ) N + 1 [f (3) ] _ 1 

D P 

to both sides gives 
3=o 

N v X CN*1)1 [(d ,N+l-m 
m f 0 (N+l-m)!m! U33 j C 3 j 

3=o 
] [ ( F 3 - ) m [ f ( 3 ) ] 

-1 ] = o 
3=o 

(240) 

Or using Leibnitz rule, one has 
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C ^ N + 1 r f ( 3 ) [f(S)]" 1] = 0 (241) 

(|3) N + 1ri] = 0 (242) 

which is true if N is greater than or equal zero 
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APPENDIX III 

Derivation of I ^ ^ N , ^ ) 

OO T ^ 

I (^ 1^(N,k 1) = lim / dp W m(p) / d s 1 s^ma*^ 
T - > « ) - OO O 

exp[iap(s 1k 1-t(k 1+N))] (243) 

Integrating, k^ f 0 

I ^ f N . y = lim C ^ ) 1 7 2 Y~ A(3)(l-6(k 1)) (244) 
t+OO 1 

where 

°° n 2 1 A(3) = / dp exp [-3 f^] ^ {exp [-iaptN]-exp [-iapt ] 
- OO p 

-iaptk-^ exp [-iaptN] } (245) 

lim A(3) = 0 (246) 
3+CO 

Therefore 

0 0 0 0 J N 2 1 

A(3) = / dx / dp ^ exp[-x ^ ^ {exp[-iaptN] 
3 -°° p 

-exp [-iapt (k-ĵ +N) ]-iaptk1 exp [-iaptN] } (247) 
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2 

3 

t 2ma 2(N+k,) 2 

-exp[- ^ i — ] } (248) 

Changing variables 

x = dx = - dw (249) 
w w 

3-l/2 
A ( 3 ) = ( S ) 1 / 2 / \ [( 1-t 2mNk 1a 2w 2)exp[-l/2 t 2 m a

2 N 2 w 2 ] 
o w 

-exp[-l/2 t 2ma 2(N+k 1) 2w 2]]dw (250) 

Integrating by parts 

A(B) = ( ^ ) 1 / 2 [ 3 1 / 2 { e x p [ - I 3 - t 2ma 2(N+k 1) 2] - ( 1 - t 2 m a 2 N k 1 / 3 ) 

exp[- ±j t 2 m a 2 N 2 ] } + t 2 B ( 3 ) ] (251) 

where 

3 - I / 2 

B ( 3 ) = m a 2 / ( N + k 1 ) 2 exp[-l / 2 1 2 m a 2 (N+k-^) 2 w 2 ] 
o 

[(N 2 + 2 N k 1 ) - t 2 m a 2 N 3 k 1 w 2 ] exp [-1/2 t 2 m a
2 N 2 w 2 ] d w (252) 

I / O 0 0 t /n O JnNk.,a + 2^ 2XT2 
ACS) - ( ^ ) 1 / 2 / dx x ' 1 / 2

 { ( l - t 2 - ^ _ ) e x p [ - l ^ J L ] 
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Therefore 

I^CN,!^) = [6(N +k 1)-6(N)](l-6(k 1)) 

lim ( j f - ) 1 7 2 Y~ Cl-6(k1))t:2B( 3) (253) 
+ ~ I R M 

Thus I (N,^) is finite if and only if lim t 2B(3) = 0. This 
t ->OO 

will be proved next. 

lim t 2B(3) = B 1(3)-B 2 (3) (254) 
t ->OO 

where 

B x(3) = lim t 2 m a 2 f { (N+k^ 2exp [-1/2 t 2 m a
2 (N+k^ 2 w 2 ] -

t ->OO O 

[N 2+2Nk 1-t 2m a
2N 3k 1w 2]exp[-1/2 t 2 m a

2 N 2 w 2 ] } d w (255) 

B 7(3) = lim t 2 m a 2 / {(N+k n) 2exp[-1/2 t 2 m a
2 ( N + k . ) 2 w 2 ] -

1 t+CO g-i/2 1 1 

[N 2+2Nk 1-t 2m a
2N 3k 1w 2]exp[-l/2 t 2ma 2N 2w 2]}dw (256) 

In B^(3) the order of the limit and the integral may be 
2 

exchanged and the limit of t times the integrand is zero. 
Integrating B-^(3) 
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? ? rr r t 2 m a
2 ( N + k , ) 2 

lim t 2B(3) = lim t2J^U [ 1— 
t+°° t+CO V M V z ta(N+k 1) M 

t 2 m a
2 ( N 2 + 2 N k 1 ) 

taNi/m 

Thus 

t 4 m 2 a 4 N 3 k 1 

(257) 

lim t B(g) = 0 
t-»-CO 

(258) 

= j~- [6(N+k 1)-6(N)] [l-6(k 1)] (259) 

Derivation of I ^ ( N , k 2) 

I ( 2 ) ( N , k 1 , k 2 ) = 

1 1 2 2 4 lim / dp / ds 1 / d s 2 K ^ [ ( K 2 + N ) s - J S 2 - K 2 s 2 ] M a 
T-*-OO -OO O O 

exp[iap[s 1k 1+s 2k 2-t(k 1+k 2+N)]]W m(p) (260) 

Integrating over the time variables 
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I ^ C N . k ^ k ^ = 

lim /dp{m 2
a
4k 1k 2(k 2+N)[ ( a 4 p 4 k 2

2 (k-^k^ 3) - 1[exp[-iaptN] 
t ->OO - OO 

[-a 2p 2t 2k 2(k 1+k 2) 2-2iaptk 2(k 1+k 2) 

+3k 2+k 1-iapt(k 1+k 2) ] 

-exp[-iapt(k 1+k 2+N)][3k 2+k 1]] 

- ( a 4 p 4 k 1
2 k 2

2 ) _ 1 [exp [-iapt(k2+N) ] [l-iapt^] 

-exp[-iapt(k 1+k 2+N)]]] 

- m 2 a 4 k 1 k 2
2 [ ( a 4 p 4 k 2

3 ( k 1 + k 2 ) 3 ) _ 1 [ e x p [ - i a p t N ] 

[-a 2p 2t 2k 2
2(k 1+k 2) 2-2iaptk 2

2(k ]+k 2) 

+2k 2
2-2iaptk 2(k 1+k 2) 2+2k 2(k 1+k ?)+2(k 1+k 2) 2] 

-exp[-iapt(k 1+k 2 + N)] [2k 2
2 + 2k 2(k 1+k 2)+2(k 1+k 2) 2] 

-exp[-iapt(k 2+N)] [£- ( k 1 + k 2 ) 3 ] 

+exp[-iapt(k 1 +k 2+N)][|- (k 1 +k 2) 3]]]}W m(p) (261) 
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Simplifying 

I C 2 )CN,k 1,k 2D = lim / p " 4 F(p,N,k 1,k 2)W m(p)dp (262) 
t ->CO - CO 

where 

F(p,N,k 1,k 2) = exp[-iaptN]P 1 + exp [-i apt(k 2+N)]P 2 + 

exp[-iapt(k 1+k 2+N)]P 3 (263) 

and where 

m 2k 
P x = - j [ - a

2 p 2 t 2 k 2 N ( k 1 + k 2 ) 2 + iapt(k 1+k 2) [k 2(k x+k 2) 
k 2 ( k 1 + k 2 ) 

-N(3k 2+k 1)]-(3k 2+2k 1)Ck 1+k 2)+N(3k 2+k x)] (264) 

2 
P 2 E F I T [i«ptk 1(k 2+N)+2k 1-k 2-N] (265) 

1 2 

2 9 

P , - - x [k/(k 1+k 7)+Nk 7(3k 1+k 7)] (266) 
3 k 1 ( k 1 + k 2 ) " 5 2 11 ILL 

Now applying the same technique as before 

0 0 -4 / P •* F(p,N,k 1,k 2)W m(p)dp 
- C O 

= 0 (267) 
3=OO 

Also 



8 9 

3 , n-4 (fg / P F(p,N,k 1,k 2)W m(p)dp) 
- OO 

= 0 ( 2 6 8 ) 

I ( 2 ) ( N , k 1 , k 2 ) = 
( 2 6 9 ) 

ft 1/? 3 x OO 2 
lim (^) i / z / dx / dy / dp exp[-y 2_] F (p ̂ N , ^ ,k 2) 
L ->OO OO OO - OO 4m 

or defining the operator 

lira (T^T) 1 7 2 / dx f dy (^V/2 <F(p,N (k 1 )k 2)> ( 2 7 1 ) 
t->°° 4m OO OO ^ ' 

Now changing variables 

z w 

and exchanging the order of integration 

C2) 3 " 1 / 2
 6 " 1 / 2

 x I l^ J(N,k 1,k 2) = lim £ - 5 - / dw / dz ^ <F(p,N,k 1,k 2)> 1 

"t̂ -OO m o w w —2" 
w 

z~ 3 (273) 

Integrating over z and then by parts 
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1/2 

I 2(N,k k 2) = lim \ (§ 3 3 / 2 ) <F(p,N,k 1,k 2> (274) 

1/2 3 " 1 / 2 

• S - | / D W ( | - 1 ) ^ <F(p,N,k 1,k 2)> 1 

m o 3w ~ Y 
w 

Now the integral term will be shown to be zero 

<F(p,N,k 1,k 2)> 1 = (275) 
W 2 m k 

exp[-l/2 a 2 t 2 N 2 m w 2 ] [ 1 [- a
2t 2k ?N(k 1+k 9) 2 ( m w 2 - a

2 t 2 N 2 m 2 w 4 ) 
k 2 ( k 1 + k 2 ) 3 

+ a
2 t 2 N m w 2 ( k 1 + k 2 ) ( k £ ( k x + k 2 ) - N ( 3 k ? + k 1 ) ) 

- (3k 2+2k 1)(k 1+k 2) + N(3k 2+k 1)]] 

2 
+ exp [-1/2 a 2 t 2 ( k 2 + N ) 2 m w 2 ] [ ^ m

F - [ a
2 t 2 m w 2 k 1 ( k 2 + N ) 2 + 2k 1-k 2-N]] 

2 
+ exp [-1/2 a 2 t 2 (k- +k 9+N) 2mw*|[ - T [ k 2 (kn +k 9) +Nk 9 (3k, +k ?) ] ] 

1 L k 1 ( k 1 + k 2 ) 5 L 1 Z L L L 

^ <F(p,N,k 1,k 2)> 1 = (276) 

w 
2^3 ̂  ̂ j^^]^ 

exp[-l/2 a
2 t 2 N 2 m w 2 ] \ [-w 5

a
4t 4N 3m 2k 9(k. + k 9 ) 2 

k 2(k 1+k 2)- 5 z 

+ w 3
a
2 t 2 N m ( k 1 + k 2 ) [N(3k 2+k x)+4k 2 (k ; l+k 2) ] 

-w[3k 2(k 1+k 2) + N(3k 2+k 1)]] 
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7 7 a 2 m 3 t 2 ( k + N ) 3 ^ 7 7 

+ exp[-l/2 a t z ( k 2 + N ) z m w z ] ^ k
 z [-w a Zt zmk ; 1 (k 2+N)+w] 
1 2 

9 7 9 7 a 2 m 3 t 2 ( k 1 + k 7 + N ) 2 

-exp [-1/2 a t z C k 1 + k 7 + N) zmw z] ± [wfk/Ck. +k 7)+Nk 7 
1 Z k 1 ( k 1 + k 2 ) 3 z 1 z z 

(3k 1 +k 2)]] 

Now define 

W x + W 2 = lim / dw (| - - ^ ) ^- <FCp,N,k 1,k 2> 1 (277) 
t->OO o 3w —2" 

w 

where 

9 3-1/2 
W 1 = lim a / dw ^ G( a»w) (278) 

t-*» o w 

where 

7 7 7 7 t 2 m 3 N 2 k 1 

G ( A , w ) E exp[-l/2 A z t z N z m w z ] ± =- [3k ? (k-, +k 7) +N (3k 7+k. ) ] 
3 k 2 ( k 1 + k 2 ) 3 z 1 

7 7 7 7 t 2 m 3 ( k 7 + N ) 3 

-exp[-l/2 a 1: (k 2+N) zmw z] 
1 2 

2 2 ? ? t 2 m 3 ( k 1 + k 7 + N ) 2
 7 

+ exp[-l/2 a t z(k +k ?+N) zmw z] ± z =- [k 7
z (k n+k 7)+k 7N 

1 Z 3k ( k 1 + k 2 ) 3 Z 1 Z Z 

(3k 1 +k 2)] (279) 
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E " 1 / 2 

W 2 = / G(w)dw (280) 
o 

3 " 1 / 2 ? 9 ? 7 a 2 t 2 m 3 N 2 k 
G(w) = / dw exp [-1/2 a t N mw ] ^ 

o k 2 ( k 1 + k 2 ) 

[ - w 4 3 a 4 t 4 N 3 m 2 k 2 ( k 1 + k 2 ) 2 

+ i- w 2 a 4 t 4 N 3 m 2 k 2 ( k 1 + k 2 ) 2 

+ 3w 2a 2m(k 1+k 2){t 2N 2(3k 2+k 1)+4t 2Nk £(k 1+k 2)} 

i a 2m(k 1+k 2)(t 2N 2(3k 2+k 1)+4t 2Nk 2(k 1+k 2)} 

- 3{3k 2(k 1+k 2)+N(3k 2+k 1)}] 

9 0 9 9 a 2 t 2 m 3 ( k 9 + N ) 3
 9 9 

+exp[-l/2 a Z t z ( k 2 + N) zmw z] ^ - y — [3 + j a't'k^k^Njm 

-3w 2a 2t 2k. L(k 2+N)m] 

9 9 9 9 3 a 2 t 2 ( k 1 + k ? + N ) 2 m 3 

exp[-l/2 a t Z(k 1+k 9+N) Zmw z] - - ^ 
k i C k 1 + k 2 ) 3 

[k 2
2(k 1+k 2)+k 2N(3k 1+k 2)] (281) 

Now will be analyzed 
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2 °° 1 
= lim a / —j G(a,w)dw 

t o w 

2 1 a / —j l i m G( a,w)dw 
-1/2 W t ->OO 

3 

(282) 

lim G(a,w) = 0 for all w f 0 t ->OO 

(283) 

2 0 0 1 
W 1 = lim a / —j G( a,w)dw 

T->OO O W 

(284) 

G(a,w) = 0 (285) 

implies 

2 a d °° 1 W-, = lim a / dx ^ / dw — G(x,w) 
W 

(286) 

a 0 0 

W n = lim a f dx f dw [-exp[-1/2 x*t N mw ] 
4 4 4 

2.2„2 ..2, I t l N k l 
3k2, (k 1 + k 2) 

[3k 2(k 1+k 2)+N(3k 2+k 1)] 

? ? ? 7 x t 4 m 4 ( k ? + N ) 5 

+ exp[-l/2 x z t Z ( k 2 + N ) z m w Z ] ( 2 8 7) 

4 4 4 
7 7 7 7 xt m (k,+k 9+N) 

- exp [-1/2 x zt (k 1+k ?+N) zmw Z] i — , — 
3 k 1 ( k 1 + k 2 ) 5 

[ k 2
z ( k 1 + k 2 ) + k 2 N ( 3 k 1 + k 2 ) ] ] 
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/ e[-aw 2]dw = 1/2̂ 1 [288) 
o 

, r — - t 3 m 4 N 3 k 1 

W = lim a\/Z- [ ^ ^ k ^ k . + k O + N ^ k ^ l O ] 
1
 t ^ o o v z m 3 k ( k + k ^ 1 1 1 1 1 

+ t 3 m 4 ( k ? + N ) 4 

- t 3 m 4 ( k 1 + k ? + N ) 3
 ? 

— [ k 2
Z ( k 1 + k 2 ) + k 2 N ( 3 k 1 + k 2 ) ] ] 

3 k 1 ( k 1 + k 2 ) 

Now W 2 will be analyzed 

W 2 = lim / G(w)dw - / lim G(w)dw = lim / G(w)dw (290) 
T->oo O n - 1 / 2 T->oo T->oo O 

Integrating and simplifying 

W 2 = lim 1 z { a V m 3 ^ k 1(k 2+N) 3(k + k 2 ) 3 

t + ° o V k 1 k 2 ( k 1 + k 2 ) 

- i k 1
2 N 3 ( k 1 + k 2 ) ( 3 k 2 + k 1 ) 

- k x
2 k 2 N 2 ( k 1 + k 2 ) 2 ] 

+ a 3 t m 2 [ N k 1
3 ( k 1 + k 2 ) + k 1

2 k 2 ( k 1 + k 2 ) 2 

- N 2 k 1
3 - 3 N 2 k 1

2 k 2 + ( - k 1 + k 2 + N ) ( k 2 + N ) ( k - ^ ^ 
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k 2
5 ( k 1 + k 2 + N ) 2 

3k 1Nk 2
2(k 1+k 2+N)]} (291) 

After a little algebra the coefficient of t in the second 
3 

term of w
2 is zero. Thus and W 2 are both of order t . 

Adding 
3 3 3 

W..+W7 = lim a - l - ^ — [(k 1+k 7+N) ( k 9 + N ) 3 ( k 1 + k ? ) 2 

z t->oo a k 1 k 2 ( k 1 + k 2 ) z 1 z z 1 z 

-(k 1+k 2) 2{N 4+N 3(k 1+4k 2) 

+3N 2k 2(k 1+2k 2)+Nk 2
2(3k 1+4k 2) 

+ k 2
3 ( k 1 + k 2 ) } ] (292) 

W x + W 2 = 0 (293) 

Therefore 

2 
I^ J(N,k 1,k 2) = lim -Zj <F(p,N,k 1,k 2)> 3 (294) 

One may obtain <F(p,N,k^,k 2)>^ from <F(p,N,k-^,k 2)> 1 by 

2 - 1 w 

replacing w by 3 . Taking the limit t-M» one obtains 
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(2) I ^ ( N , k k ?) = [-6(N) — 7 
1 z 3nT k 2

z ( k 1 + k 2 ) 
m ' ( 3 V 2 k l > - ... 2m 

7 + 6 ( k 2 + N ) — " 2 
k l K 2 

6(k x+k 2+N) 3m' 
k l ( k 1 + k 2 ) 

-] (295) 

I ( 2 ) ( N , k 1 , k 2 ) = 

I O (3k 7 + 2k 1) k-. 7 

j 3 Z I-6(N) Z L-1 + 6(k ? +N) f-
J k 2 ( k 1 + k 2 ) Z Z K 2 

- 6(k 1+k 2+N) 
3k, 

( k 1 + k 2 ) 
Y ] (l-6(k 1)(l-6(k 2)) (296) 
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APPENDIX IV 

DERIVATION OF EQUATION (9 6) 

jL. D(r,p,t) = (E+E)D(r,p,t) (297) 

where 

p 3 + dU(r) 3 a 3 ( 2 9 8 ) 

m 3r r 3p m 3p p ^ ; 

E = - |p F(t) (299) 

(12) 
Using time ordered cumulants, J one has 

|^ <D(r,p,t)> = (E+exp[tE] Z G^(t)exp[-tE])<D(r,p , t)> . 
d t N=l 

(300) 

The average o£ the stochastic operator is zero and its auto

correlation function is proportional to a Dirac delta. In 

these circumstances, all of the cumulants G ^ ( t ) are zero 

except the second one. 

t t 51 
f G ^ ( s ) d s = / ds± f d s 2 <exp[-s 1EJE(s 1)exp[(s 1-s 2)E]E(s 2) 
o o o 

exp[s 2E]> (301) 
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t sl 
= f ds1 f ds 2'exp[-s 1E] ^ ±j 6. '(s 1-s 2) exp [ ( s ^ s ^ E ] 

|p exp[s 2E] (302) 

2 

G ( 2 ) ( t ) = -exp[-tE] £ 9 e Xp[tE] (303) 

Substituting back into Eq. (300) one has 
2 

|t <DCr,p,t)> = (E - | -iy) <D(r,p,t)> . (304) 
3 P 
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