Statically Stable Assembly Sequence Generation
for Many Identical Blocks

Georgia Tech Research Report: GIT-IC-07-06

October 16, 2007
Sebastien J. Wolff Imme Ebert-Uphoff
Atronix Engineering Woodruff School of Mechanical Engineering
3100 Medlock Bridge Road Georgia Institute of Technology
Suite 110 Atlanta, Georgia 30332-0405
Norcross, Georgia) .)
Email: swolff@ieee.org Joint appointment with:

College of Computing
Robotics and Intelligent Machines Center
Interactive & Intelligent Computing Division
Georgia Institute of Technology
Atlanta, Georgia 30308
Email: ebert@me.gatech.edu

Harvey Lipkin
Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0405
Email: harvey.lipkin@me.gatech.edu

Statically Stable Assembly Sequence Generation
for Many Identical Blocks

Sebastien J. Wolff
Atronix Engineering
3100 Medlock Bridge Road
Suite 110
Norcross, Georgia
Email: swolff@ieee.org

Imme Ebert-Uphoff

Woodruff School of Mechanical Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332-0405
Email: ebert@me.gatech.edu

Harvey Lipkin
Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0405
Email: harvey.lipkin@me.gatech.edu

This work develops optimal assembly sequences for
modular building blocks. The underlying concept is that an
automated device could take a virtual shape such as a CAD
file, and decide how to physically build the shape using sim-
ple, identical building blocks. The primary focus of this work
is the development of methods for generating assembly se-
quences in a time-feasible manner that ensure static stabil-
ity at each step of the assembly. This is accomplished by
a multi-hierarchical rule-based approach, consisting of a set
of low-level, mid-level and high-level assembly rules. Both
high-level and mid-level assembly rules are primarily based
on static considerations. The best performing rules are pre-
sented and their behavior is analyzed.

1 Introduction

Assembly sequences are crucial to many engineering
problems. Most existing work details assembly sequence
enumeration and generation for assemblies with few parts,
but with complicated interfaces. Some situations however re-
quire assembly sequences to be generated for a large number
of parts that prevent traditional methods from being useful.
One such instance, which is the focus of this work, is rapid
shape display.

1.1 Shape Display

Most current methods of representing shape rely on
communicating shape with visual information. A number
of recent projects have sought to expand the representation
of shape to the physical world. For example, rapid proto-
typing provides a means to obtain physical, touchable mod-
els in a limited amount of time. In contrast, modular robots
[11, [2], [3], [4], consist of actuated connected modules, but

| CAD Fiié |—>| Robot + Building Blocks |—>| Assembled Shape |

Fig. 1.
play

Recyclable and Scalable Rapid Prototyping For Shape Dis-

are limited due to the fact that their small actuators have to
carry all weight. Finally, Digital Clay [5], [6], [7] is an ap-
plication currently being developed at the Georgia Institute
of Technology which uses micro-fluidic actuation. The cur-
rent implementation is a large array of pins that is actuated
vertically only. While it may serve as both an input and an
output device, it will not be able to represent certain shapes
such as overhangs and toroids.

1.2 Recyclable Rapid Prototyping

Most aforementioned concepts rely on an automated de-
vice being a shape. This work proposes to have an automated
device assemble shapes instead. The main idea is for a robot
to autonomously be able to build a structure to fit any pre-
scribed shape. This paper presents the methods by which
an assembly sequence is selected that will ensure that the
structure can be built in a statically stable manner. One way
to think of the proposed device is as scalable and recyclable
rapid prototyping: “recyclable” since blocks used in one pro-
totype can be disassembled and re-used for future prototypes,
and “scalable” since the procedure can be applied to a wide
range of block sizes, ranging from tiny MEMS parts to huge
hollow wood blocks. Figure 1 shows the basic procedure of
recyclable rapid prototyping for shape display. The user pro-
vides a CAD file. A robot then assembles the shape from a

o |J

Fig. 2. A Simple 6-sided Block

large number of identical building blocks.

1.3 Existing Work: Assembly Sequences

Homem de Mello and Sanderson [8] developed the main
representations of assembly sequences, in the form of graphs.
Most existing work consists of first enumerating all possible
assembly sequences in graph form. Bourjault [9], De Fazio
and Whitney [10], Wilson [11], Ames et al. [12], Kaufman
et al. [13], and Homem de Mello and Sanderson [14] all de-
velop methods by which all possible assembly sequences for
a given assembly can be enumerated. Once the full list of as-
sembly sequences is generated, Homem de Mello and Desai
[15], [16], Nilsson [17], Wilson [11], Ames et al. [12], and
Kaufman et al. [13] all then use graph searching techniques
which search many of the possible assembly sequences, and
test all options at any given step. It should be noted that none
of this work considers static testing but rather optimizes val-
ues such as assembly time. In addition, only Homem de
Mello and Desai [15], [16] consider systems with a large
number of parts, but statics are not involved because they
work with trusses in a weightless environment.

1.4 Block Type and Modeling Environment

This work uses a fairly simple modular block type and
a simplified static connection model to keep the focus of the
work on the big picture. The blocks being considered are
rectangular blocks that can connect to one another on all 6
sides with male and female connections as seen in Figure 2.
The horizontal connections require a square connection to
support a moment due to gravity, while the top connections
never have to support a moment and can thus be round. Fur-
thermore, it is easier to model the top connections as round
so that a moment in any direction is equally likely to cause
the connection to snap.

Once the general technique has been developed to ad-
dress this type of problem, the block type can be generalized
and the static connection model can be refined. The static
connection model defines the conditions on the forces and
moments that will cause a connection to break.

It is assumed that the blocks are always oriented in the
same direction, which means that the blocks can only be
translated. The workspace can thus be discretized and any
structure that can be built with these units is represented by
a three dimensional array, S, for the spatial case. The shape
to be represented is fit into a grid, whose unit length is a
block length. The blocks connect at the center of their sides
and once connected, the surfaces of the connecting blocks (or
neighbors) match. The blocks were modeled as PETP plastic
cubes with a side length of 1 cm.

A full testing and visualization package was developed,
and it allows the user to input a structure (array) and assem-
bly sequence (list of arrays), and can output the maximum
forces and moments that occur at the connections at any step
of assembly. It can also animate the entire assembly. All the
programming for this work was developed in Matlab Version
7.0.4. Programming for the static testing was performed with
Femlab, which is a finite element modeling package that in-
terfaces with Matlab.

1.5 Organization of this Article

The rest of this paper is organized as follows. Section
2 describes and justifies the novel rule-based approach to as-
sembly sequence generation. Section 3 describes the best
performing rules, how they were generated, and how they
perform. Section 4 details some sample numerical results.
Section 5 presents a synthesis of the results and a summary
of when various rules should be used. Finally, Section 6
presents the conclusions.

2 Rule-Based Approach

The main contribution of this work is to make assembly
sequence generation for a large number of parts time-feasible
while taking static considerations into account. There are
two primary challenges for time-feasibility:

1. Exponential search space: The search space for assem-
bly sequences is exponential in the number of parts and
thus searching all possibilities is impossible. For n parts,
the number of assembly sequences can be up to n!.

2. Static Stability Tests are Time-Consuming: Even a
search of only a polynomial number of assembly se-
quences may not be time-feasible if static stability has to
be tested explicitly for every considered sequence, par-
ticularly with FEM testing.

The first challenge above (exponential search space) was
addressed by viewing this problem as a search space reduc-
tion problem.

In the developed algorithm so-called high-level rules
drastically reduce the search-space by identifying a portion
of the structure to be assembled first. So-called mid-level
rules decide what order to assemble those blocks in. Finally
low-level rules are invoked at every step to see what blocks
are viable options. It should be noted that mid-level rules can
also be used on their own to assemble structures, as well as
in conjunction with high-level rules.

The second challenge above (time-consuming static sta-
bility tests) was addressed by designing the rules specifically
to address static stability as far as possible in open-loop.
Namely, the rules are designed to generate an assembly se-
quence that is already likely to be statically stable, and static
stability is only tested at the very end, once the final assem-
bly sequence is generated. Thus static testing of an assembly
sequence only has to be performed a single time if the algo-
rithm performs well.

2.1 Types of Rules

Assembly sequences are created by applying either as-
sembly or disassembly rules. Assembly rules take in a struc-
ture, and virtually assemble it by adding one block at a time.
In contrast, disassembly rules take in a structure, and vir-
tually disassemble it by removing one block at a time. An
assembly sequence is still generated by reversing the order
of the disassembly sequence. Regardless of which direction
is chosen at any given time, three “levels” of rules are estab-
lished:

Low-level rules enforce constraints by observing the struc-
ture and determining which blocks can be assembled or
disassembled next. These rules enforce that the robot
can reach blocks to be assembled and that no blocks
“float in the air” during assembly.

Mid-level rules are rules which take in a structure, and at
each step determine which block should be assembled
(disassembled) next, after calling the low-level rules to
determine which blocks can be assembled next. While
an entire structure can be assembled by the mid-level
rules, each step considers only which block is assembled
next, without considering future steps.

High-level rules are rules which take a structure and at each
step identify a portion of the structure that should be as-
sembled next. The portion of the structure, which con-
sists of one or more blocks, can then be assembled by
applying a mid-level rule.

The two low-level rules implemented in this work are
accessibility and connectivity. Accessibility refers to the
robot’s ability to get to a block of interest. The current imple-
mentation assumes a snake-like robot that can access a block
whenever there is a path of vacant blocks from the outside of
the structure to the block being added. Other robot types re-
sult in more stringent criteria which reduce the search space
further. Connectivity refers to the constraint that there can
be no “floating” blocks. Namely, a block can not be assem-
bled unless one of its neighbors is already in place, and a
block can not be removed if it will cause neighboring blocks
to no longer be connected to ground.

Another important constraint is static stability, which
means that the structure should be able to resist gravity at
any moment in time during assembly. Ideally, static stability
would be enforced as a low-level rule. Unfortunately, this
would take far too long. The preferred solution, as discussed
in Section 2.3, is to use intelligent rule design through mid
and high-level rules to only have to test the steps of the final
selected assembly sequence. The top performing high-level
and mid-level rules are discussed in Section 3.

2.2 Combining Rules

The overall approach is to efficiently combine high-
level, mid-level, and low-level assembly rules in order to
develop statically stable assembly sequences rapidly. Fig-
ure 3 displays the information flow in the development' of

Not to be confused with the information flow at run-time of the algo-
rithm.

i Building Block Models | i Connection Models i ! Robot Accessibility !

R R = N

! Static Stability Test | Low-Level
o l ---------------- Assembly Rules
Assembly Sequence | | Mid-Level Assembly High-Level

Evaluation Rules Assembly Rules

Synthesizing Algorithm:
Apply Rules and Evaluate the Sequence

Selected Assembly Sequence

Fig. 3. Information Flowchart Representation of the Development of
the Synthesis Algorithm

the synthesis algorithm, which in turn generates assembly
sequences. The boxes with dashed lines represent elements
that can be replaced for various applications. For instance,
connection models that more closely represent a particular
application may be substituted. The arrows represent gen-
eral information flow. For instance, the connection model is
used by the static stability test and the low-level rules.

The blocks written in italics represent the main contri-
butions of the work: the low-, mid-, and high-level assembly
rules. What is important to note is that the low-, mid- and
high-level rules are independent of the block model, thus
opening the door to apply them to a much wider class of
blocks than described here. In fact, one can easily imagine
an implementation of these rules which would remove the re-
quirement that blocks be identical, thus allowing to use this
approach for many civil engineering applications.

A synthesizing algorithm should take an input structure,
select what rules to apply, generate an assembly sequence
and test its static stability at the end. For the rule selection
process we expected to have to classify structures and assign
a best rule for each class. However, for the block model con-
sidered here it turned out that a single rule is superior for
all sample structures considered (see Section 4). It is not
yet clear whether this would also be the case for all other
block types, potentially requiring additional research to clas-
sify structures accordingly for other block types.

The proposed synthesis approach is to combine the se-
lected rules in assembly and disassembly direction. Suppose
that the first rule applied is a high-level assembly rule. As ex-
plained previously, all high-level rules are implemented with
a mid-level rule, which in turn uses low-level rules to check
for constraints. After this initial assembly rule, the structure
that results from applying these assembly tasks will become
the new initial structure, Siyi, as seen in Figure 4. The prob-
lem has now been reduced to finding an assembly sequence
to assemble from S;,;; to the final structure.

Suppose that a high-level or mid-level disassembly rule
is selected next. The disassembly rules start with the final
structure and remove blocks, resulting in a new target struc-
ture, Syarger. The problem at this point becomes a search for
appropriate sequences to disassemble S;ger intO S;yjr, OT as-

1 3
Assembly Reduced Task Disassembly
> < <

£

Ground Points

Initial Sm” Starget Final Structure

Fig. 4. Outline of the Rule Synthesis Process

semble S;yi; into Sy4peer. Figure 4 illustrates the process. The
entire process can then be repeated until the assembly and
disassembly sides meet. So long as the partial assembly /
disassembly sequences are saved, the end-result of this pro-
cess will be an assembly sequence that assembles from the
ground points to the final structure.

2.3 Computational Complexity

The time required by our algorithm to generate an as-
sembly sequence is very small. For example, for typical mid-
level rules the entire assembly sequence generation takes less
time than a single static stability test of the structure. Thus
the critical criterion for algorithm time is the number of static
tests performed.

While previous methods would need to perform static
stability tests many times for every single block selection, in-
telligent rule selection allows us to test the static conditions
only after the entire assembly sequence has been determined,
at which time each assembly step is verified once to make
sure that no conditions are violated. In the unlikely event
that unacceptable conditions occur during assembly, differ-
ent rules are applied. This is why it is crucial to understand
the behavior of all rules in various scenarios to be able to pre-
dict which ones yield the best static results. As a result this
open-loop approach typically requires the minimal number
of static tests. Namely, for a structure with N blocks, our al-
gorithm typically only requires static stability testing N times
(one test for each step of the final assembly sequence).

3 Overview of the Best Performing Rules

A large number of high- and mid-level rules were devel-
oped and are discussed in much detail in [18]. It should be
emphasized that the primary consideration for all rules was
to establish good static stability conditions.

‘We started out with several intuitive rules, such as build-
ing from the ground up (i.e. always assembling blocks with
lowest z-coordinate first) or trying to establish connections
between grounded blocks as quickly as possible. A descrip-
tion of the general behavior was then obtained for each such
rule using the following procedure:

1. Apply the algorithm to many (or all) sample structures
to generate the assembly sequences. Both accessibility
and connectivity is verified.

2. Use the analysis tools that were developed to investi-
gate the largest forces and moments for each assembly
sequence. These are the potential failures.

3. Visually inspect the assembly sequence using the ani-
mation tools to look for any unusual or unexpected be-
havior.

4. Assemble a list of all observations from (2) and (3) and
identify the specific properties of the algorithm that are
responsible for this behavior.

5. Summarize all findings. There is certainly no guaran-
tee that this procedure can identify all problems or is-
sues that can arise for any of the algorithms, simply be-
cause the number and nature of sample structures be-
ing considered is limited. However, tremendous insight
was gained in the general behavior of the algorithms that
helps select the best candidates.

Insight gained from the above approach was used to better
understand these rules and to develop even better ones. This
process generated a total of 27 mid- and high-level rules.
Due to space limitations only the top performing rules are
presented here. Section 3.1 briefly presents the best mid-
level rule, Section 3.2 presents the best high-level rule, and
finally Section 3.3 introduces the random rules that were cre-
ated as a baseline.

3.1 Best Mid-Level Rule: Assemble_D_Solid Local

The best mid-level rule is a rule called “Assemble_-
D_Solid_Local”. This rule was created by combining two
rules, Assemble_Solid_Local and Assemble_D _Local, which
are presented briefly below in Sections 3.1.1 and 3.1.2. This
rule was the best mid-level rule because it combines the ad-
vantages of both of those rules.

Essentially, Assemble_D_Solid Local is an assembly
rule that uses a primary and a secondary criterion. The
primary criterion (indicated by “D”) is smallest distance of
a block to ground, where distance is defined as the short-
est neighbor-to-neighbor path through blocks of the current
structure. Among blocks of equal distance to ground the sec-
ondary criterion (indicated by “Solid”) selects the block with
the largest number of neighbors in the intermediate struc-
ture.

The equivalent disassembly rule, Disassemble D_-
Solid_Local, is also presented below. It is the disassembly
counterpart of the above rule and is equally successful.

3.1.1 Assemble_Solid Local

At any time, this algorithm assembles the block that -
out of all possible choices - would have the most current
neighbors if it was assembled. A block’s neighbor is a block
that shares a face with it. A block can have up to 4 neigh-
bors. At any iteration, the rule considers all possible blocks
that can be assembled (ensured by the low-level rules), and
determines how many neighbors each potential block would
have.

The motivation for this algorithm is to assemble blocks
that will have the most neighbors. The motivating concept
for this algorithm is that by having more neighbors, the
blocks being assembled will have more connections to the
existing structure. In general, more connections to the struc-
ture allow for better distribution of the forces and moments
due to the addition of this block. In particular, Assemble _-
Solid_Local is very effective at preventing unnecessary

— , L2 P
Gravity 2 AT AT AT A | 5 .
g | GLLLly Gl

(@) (b) (©
Fig. 5. Example of (a) an Overhang Being Assembled by (b) Most
Neighbors Last and (c) Most Neighbors First.

Fig. 6. Branches Being Assembled By Assemble_D.

cantilever structures, and at building solid bases which
can better support the loads created by necessary can-
tilever structures. This can be seen in Figure 5 where as-
sembling blocks with more neighbors first avoids the large
moments that would be generated by the cantilever in Figure
5(b).

Unfortunately, Assemble_Solid Local is inefficient
when cantilever structures are inevitable during assem-
bly AND there are supplementary blocks on the can-
tilever which do not help support or connect the beam.
This is because these blocks will generally have more neigh-
bors and thus be assembled, yet they only worsen the static
conditions.

3.1.2 Assemble_ D _Local

Assemble_D_Local uses a distance measure to assemble
blocks, namely measuring the number of blocks on the short-
est path to ground. For instance, any block that neighbors a
ground block has a distance of 1, and its neighbors have a
distance of 2.

This rule performed well. Consider Figure 6, in which
a sample structure called “Branches” is being assembled by
this rule. One can see that ground points G1 and G2 are
being connected by the shortest path between them. This
connection occurs equally from each side, which minimizes
the intermediary cantilevers, and thus the loads. In general,
Assemble_D Local first connects the shortest connections
between ground blocks by assembling equally from each
ground point, and does so very efficiently for thin, iso-
lated connections. It is not as efficient when these connec-
tions have many extra blocks neighboring them in some
areas that do not help support the cantilever.

Additionally, this rule assembles equally in all direc-
tions, as seen in Figure 6. Consider group A, which extends
in the +x direction, and group C which extends in the —x

direction. Group C creates a moment that opposes the mo-
ment My, created by the weight of A at the connection above
G1. By assembling in all directions, Assemble_D_Z I.ocal
takes advantage of any symmetry about an axis above the
ground block and reduces the moments that occur in the
horizontal (top, bottom) connections.

3.1.3 Assemble_D_Local Versus Disassemble_D_Local

As shown in previous work [19], for some criteria dis-
assembly differed significantly from assembly. For example,
if the primary criterion is height (z-value) of a block over
ground, there are situations where blocks with low z values
could only be assembled after blocks with higher z-values
were assembled. In essence, the strategies differ when there
are less desirable blocks that have to be assembled before
some more desirable blocks can be assembled, because of
connectivity.

This scenario, however, generally does not occur
with the distance from ground measure used in Assem-
ble_D_Local. The basic reason is that there won’t be any
small-distance blocks that can only be assembled if high-
distance blocks are in place first. By definition, it is the
close ones that are required to be in place before the farther
ones. Additionally, accessibility is unlikely to be a problem,
because it is rare for blocks that are closer from ground to
be in the way of blocks that are further from ground, when
a robot attempts to access them. Because accessibility and
connectivity are highly unlikely to prevent blocks from be-
ing (dis)assembled, either direction will result in blocks be-
ing assembled directly according to distance, with no change
of direction. Therefore proceeding by assembly or disas-
sembly makes little to no difference when the primary
criterion is distance to ground.

3.1.4 Disassemble_D_Solid Local

This function is the disassembly equivalent function to
Assemble_D_Solid_Local. At any time, the blocks with the
furthest distance from ground are removed first, and the
blocks with the least neighbors are removed first among
equal blocks. The motivation is identical to that of Assem-
ble_D_Solid_Local, with an added benefit. Indeed, it has been
shown that no dead-ends due to accessibility or connectivity
can occur when sequences are being generated by disassem-
bly [16]. The behavior is also virtually identical to that of
its assembly counterpart, because the impact of choosing as-
sembly or disassembly is minimal when distance to ground
is the primary criterion.

3.2 Best High-Level Rule: CGL_RUC

This section details the best high-level rule that was de-
veloped and tested on sample structures. High-level rules
consider the entire structure and determine a set of blocks to
be removed or added next. Once the high-level rules select a
portion of the structure that is to be assembled or disassem-
bled, mid-level rules are typically selected to assemble these
portions. Additionally, if high level rules can only assemble

(a) (b)

Fig. 7. (a) A Structure’s Start Points, and (b) the Selected Path.

part of the structure, the mid-level rule assembles the rest.

The best rule is named Con-
nect_Ground_Local _Recursive_Unique_and_Close, ab-
breviated below as CGL_RUC. This rule was created by
making iterative improvements on the Connect_Ground
rule, presented below in Section 3.2.1. The improvements
indicated by the suffixes ‘Local’, ‘Recursive, ‘Unique’,
and ‘Close’ are respectively detailed in Sections 3.2.2,
3.2.3, 3.2.4, and 3.2.5. This rule was successful because it
combines the advantages of all of these improvements. The
results are synthesized in Section 5.

3.2.1 Connect_Ground

The overall goal of this rule is to begin with the ground
points of S and to connect all of the ground points first with
minimal thickness connections. The motivation for this rule
is to begin assembly by building a solid base on top of which
the rest of the structure can be built. Certain portions of the
final structure can be such that they will generate large forces
or moments in the structure. The goal of connecting ground
points is to assemble the structure in such a fashion that the
load will be distributed as evenly as possible, and that the
various ground points will provide parallel support. The im-
pact of this function is limited, because it stops assembling as
soon as all ground points are connected, and does not force
the chosen paths to be new.

3.2.2 Connect_Ground Local

The basic idea of this algorithm is to find each ground
point’s closest unassembled neighbors and connect them.
This function can be called at any point in the assembly pro-
cess. At each iteration, each ground point’s closest unassem-
bled neighbors are found. These blocks are called start
points. The shortest entirely new path that connects two of
these points is then assembled, as long as the two start points
are associated with different ground points.

An example of this process is shown in Figure 7(a),
where solid blocks represent blocks that are assembled, and
the blocks with dashed lines are unassembled. The arrows
show the ink-flow-like progression searching from neighbor
to neighbor until start points are found. The start points are
shown in red (darker gray), and there are two start points for
the ground point P1, and one for the ground point P2. It
should be noted that these blocks are not yet assembled. Fig-
ure 7(b) shows the ink-flow-like search from block to block
that finds the shortest new path between start points. Once

Rl

| T

| S, W S| s

PL:WLH\ I "P EWH‘\ \“H—fﬁ» Ei*j'\ I NHW [ifﬂ—rﬂ_i

(@) (W) (© (d)
Fig. 8. An Example of Assembly Using Connect_Ground_Local_-
Recursive.

S,

the two flows meet, the minimum length new path is estab-
lished and assembled by a mid-level rule.

The main motivation for this improvement on Connect_-
Ground is two-fold. First, it aims to provide better selection
of the order in which the ground points are connected to one
another by focusing only on entirely new blocks that could
be assembled. A connection of length 1 is always preferred
if possible. Secondly, this method allows the algorithm to
keep attempting to close connections after all ground points
are connected. This is desirable because the concepts of
load distribution and parallel support are not unique to
the blocks immediately around the ground blocks.

3.2.3 Connect_Ground_Local _Recursive

This rule (CGL_R) is almost identical to Connect_-
Ground_Local. The difference occurs when no new path can
be found that connects the start points, and the previous rule
would stop. When no path can be found, this rule seeks to
find some new additional start points by taking the ground
point(s) whose furthest start point is the closest to ground,
and finding its next closest unassembled neighbors. This pro-
cess is repeated until a path is found or it becomes evident
that there is no such path because no new start points can be
added.

Figure 8 shows a simple example of this process where
there are only two ground points, P1 and P2. Figure 8(a)
shows (in red - or darker gray) the start points corresponding
to those ground points, S1 and S2, that are respectively at a
distance of 2 and 3. Blocks with dotted lines are unassem-
bled. There is no entirely new path connecting S1 and S2, so
a search for new start points begin. Eventually, start points
S3 and $4 corresponding to P1 and P2 are found, and the en-
tirely new path connecting S2 and S3 is assembled, as shown
in Figure 8(d).

The main motivation for this function was to improve
on the shortcomings of Connect_Ground_Local by looking
for new start points until a new connection can be found.
This is desirable because, as mentioned in Section 3.2.2, it
is advantageous to attempt to connect the various parts of
the structure to one another due to parallel support and load
distribution.

Unexpectedly, the algorithm also built some branches
that seemingly do not connect any ground points. The basic
reason is that while these points connect two start points, this
connection is not part of a non-redundant path.

S,
Sa. a‘uu_g
S
1 %L":jv 33
G, ‘Gs

Lo
o

lllustration of the Motivation for Path Uniqueness.

G,
Fig. 9.

3.2.4 Connect_Ground_Local Recursive_Unique

This rule (CGL_RU) is virtually identical to CGL_R, ex-
cept that a redundancy check was introduced. Consider a po-
tential path from one start point, S1, corresponding to ground
point G1, to another start point, S2, corresponding to ground
point G2, being considered for assembly. It then checks to
see whether there is a minimal-length path from P1 to
G1, and a minimal-length path from P2 to G2, such that
no block is in both paths. If so, the path is non-redundant
and is acceptable. If all minimal paths from P1 to G1 and
from P2 to G2 must go through a common point, then con-
necting P1 and P2 is not considered to be connecting G1 and
G2, and the connection is unacceptable.

In Figure 9, CGL_R selects S1 as the shortest path that
connects start points G1 and G2. In reality however, adding
S1 does not do much in terms of actually connecting the two
ground points. Specifically, there is no path that goes from
G1, to S1, and then to G2 without having to go through the
same point multiple times. That is why this rule ensures that
there is in fact a non-redundant path, that is likely to im-
prove the static conditions. In this example, once it is es-
tablished that adding S1 alone is not truly connecting two
ground points, the program adds S4 as a new start point for
G2, at which point the yellow blocks are assembled to con-
nect S3 and S4. Therefore, by ensuring that redundant
paths are not accepted, CGL_RU decides not to assemble
S1 or S2, but rather the yellow portion of the structure
which actually connects ground points G2 and G3. This
algorithm does not assemble “superfluous” blocks such as
blocks S1 and S2 (in Figure 9). These blocks will typically
only worsen static conditions, and it is preferable to only add
them at the end, rather than in previous steps when the struc-
ture might be weaker. The price to pay for this feature is that
the redundancy check routine can be time consuming during
the assembly sequence generation sequence, depending on
how long it is allowed to run in bad situations. The situa-
tions in which it will be bad will be those in which there is
a large number of paths between the ground points and the
start points.

3.2.5 CGLRUC

The novelty of Connect_Ground_Local_Recursive_-
Unique_and_Close is that instead of finding the new path be-
tween any two acceptable start points that is the shortest,
this function finds the new path that is closest to ground.
This algorithm combines the advantages of CGL_RU and As-
semble_D_Local. Indeed, the idea of connecting the ground
blocks as often as possible is very powerful. By assembling
paths that are closer to ground, this rule aims to incorporate

2|13|4
1 5
o N

Fig. 10. A Tiny Structure lllustrating Random Assembly.

all of the benefits of assembling the closest blocks to ground
first, as discussed in Section 3.1.2, while ensuring that new
ground block connections are provided at every step. The
behavior is thus more intuitive, and it adds the benefits of as-
sembling according to distance. This rule was found to be
the overall best performer.

3.3 Random Assembly / Disassembly

Two random rules were also written. Assemble_Random
maintains a list of all blocks that could be assembled at any
step, and picks a block at random. Disassemble_Random dis-
assembles the structure at random by selecting blocks at ran-
dom amongst the feasible candidates. The disassembly se-
quence that is obtained is reversed to obtain an assembly se-
quence. The motivation for random assembly and disassem-
bly is to establish references against which the other routines
can be compared.

Surprisingly, random assembly outperformed random
disassembly by a large margin. The reason for lower mo-
ments and forces can be understood by examining Figure 10.
By disassembling at random, any of the five blocks that are
numbered on the figure are equally likely to be removed first,
meaning that each block has a 20% chance of being assem-
bled last. In contrast, with Assemble_Random, once the per-
centages are carried out, there is only a 6.25% chance each
that blocks 1 or 5 are assembled last, a 25% chance each that
blocks 2 or 4 are assembled last, and a 37.5% chance that
block 3 is assembled last.

Any block that neighbors a ground block is an equal-
odds candidate for assembly every time a block is selected
for assembly, therefore the overall odds of it getting picked
early in the assembly process are excellent. On the other
hand, if a block is at a distance of seven for instance, it is only
candidate for assembly if an entire path of at least six blocks
that happen to connect it to ground have been assembled. It
is therefore likely that it will take much longer for this can-
didate to be selected. In the long run, blocks that have the
largest distance from ground are more likely to be assem-
bled later in the sequence, and Assemble_Random’s behav-
ior on average will resemble Assemble_D. In practice, any
single run of Assemble_Random may or may not resemble
Assemble_D at all. Disassemble_Random’s behavior could
be described as “more” random, and it is generally sug-
gested as the baseline against which to compare the assembly
sequences.

4 Numerical Results

This section presents a sample of the numerical results
from the simulations. The maximum forces and moments
that occur at a connection during the entire assembly se-

quence were calculated. All 27 rules that were developed
were tested on 8 test structures. Therefore for any given
structure being assembled by one particular rule, the output
is the largest moment and force that occur at any connection
during the entire assembly. In a real system, if this force or
moment is larger than a certain value, the connection will
snap.

In order to facilitate the understanding of the results,
they are presented as relative results (see Equation (1) be-
low). For instance, CGL_RUC’s maximum force in assem-
bling the “Paper” structure was 0.447256 N, the lowest of all
rules. It is referred to as Fj,, for that structure. Disassem-
ble_D_Solid_Local generates a maximal connection force of
1.909921 N. Therefore, the maximum force encountered by
Disassemble_D_Solid_Local relative to the best case will be
as shown in Equation (1):

1.909921 — 0.447256
0.447256

_ Finax — Fpest o
Frei = F -
best

=327%. (1)

These relative results are much easier to read than raw
forces, and more significant in comparing the various rules.
The relative moments are also calculated in the exact same
manner.

In an attempt to summarize all of these results, the aver-
age relative force and moment for each rule (over all struc-
tures) is presented in Table 1. This number is obtained by
averaging the values for a given rule over all structures. Oc-
casionally a rule failed to yield a result for some of the struc-
tures due to a dead-end sequence occurring. For these rules,
the average of all successful cases is taken. This is not a
major issue as this problem did not arise for any of the top
performing rules. Each rule’s ranking amongst the 27 rules
according to this criterion is also presented. It should be
noted that all rules that were tested are shown in Table 1,
even though there is not enough space to describe them all.
The six top ranked results for each column are shown in a
bold, red font so that the best performers can be found easily
among the 27 rows.

Two results are very clear from the results in this ta-
ble. First, intelligent rules clearly outperformed random
assembly sequences. Disassemble_Random encounters a
maximum moment that is over 70 times larger than the best
case assembly sequence on average, and a maximum force
that is over 30 times larger than the best case sequence on
average.

Secondly, CGL_RUC performed the best out of all
rules. It had the best average moment, only 7% above the
best case on average, and the best average force, only 29%
above the best case. In fact, there are only two structures out
of 8 where the maximum force or moment is more than 5%
above the best case scenario.

As far as mid-level rules are concerned, Assemble_-
D_Solid_Local and Disassemble_D_Solid Local were the
best performers. Both rules were amongst the best four
average relative moments for mid-level rules, where the top

Table 1. Average and Worst-Case Moments and Forces, Relative to
the Best Case For Each Structure.

Relative Moments Relative Forces

Average (rank) Average (rank)
MID-LEVEL:
assemble_random 367% 24 208% 24
disassemble_random 6927% 27 3026% 27
assemble_z 961% 26 780% 26
disassemble_z 387% 25 262% 25
assemble_z_new 87% 14 140% 19
assemble_z_solid 115% 16 182% 23
disassemble_z_solid 199% 20 144% 21
assemble_solid_z 74% 12 132% 16
disassemble_solid_z 338% 23 119% 15
assemble_solid_d 40% 8 62% 7
disassemble_solid_d 94% 15 46% 3
assemble_d_z 30% 5 65% 8
disassemble_d_z 26% 3 65% 9
assemble_d_solid 30% 6 53% 4
disassemble_d_solid 27% 4 54% 6
HIGH-LEVEL, WITH
ASS._Z_NEW:
connect_g_dist 76% 13 80% 12
connect_g_short 139% 18 147% 22
connect_g_low 149% 19 144% 20
Connect Ground Thick 116% 17 110% 14
CGLR 210% 22 134% 18
CGLRU 73% 11 77% 11
CGLRLC 67% 10 85% 13
C_GLRUC 62% 9 68% 10
HIGH-LEVEL, WITH
ASS. D_SOLID:
CG.LR 202% 21 132% 17
CGLRU 36% 7 30% 2
CGLRLC 24% 2 54% 5
CGLRUC 7% 1 29% 1

four ranged from 26% to just 30%. The results for both rules
were close to identical, and both rules outperformed the other
mid-level rules. The assembly sequences that were generated
by these two rules are virtually identical because distance is
the primary criterion, as explained in Section 3.1.3. The only
reason there are slight differences in some of the results is
because of the secondary criterion (number of neighbors),
or the implicit third criterion (new neighbors last in assem-
bly, see [18] for details). Overall, the algorithms perform
virtually identically, but the disassembly algorithm would be
preferred because it guarantees that no dead-ends due to ac-
cessibility or connectivity will occur. Unfortunately, the dis-
assembly rule was only created late in the process as a check,
therefore the assembly rule is the one that was implemented
in conjunction with the high-level rules. Fortunately, using
either algorithm should make little to no difference for static
performance.

It should be noted that because of the time it takes to
statically evaluate each assembly sequence, only eight main
structures were tested thoroughly. Because of this, the actual
significance of the numbers shown in Table 1 is somewhat
diminished, and it is important to look at the individual struc-
tures in order to understand why certain rules outperformed
others. Space limitations do not allow this detailed analysis
to be presented here.

In particular, CGL_RUC performed excellently on every
single structure except for the so-called inverted pyramid, for
which it generated a maximum moment that was three times
larger than the best rule for this structure. However, it should
be noted that the reason that CGL_RUC performed poorly
on this structure is so specific and unique to this structure
(see [18]), that it does not prevent recommending it as the
single rule to be used on all structures.

5 Synthesis

This section presents the overall conclusions for rule se-
lection taking different priorities into account, e.g. speed,
avoiding deadlocks, etc.

5.1 Opverall Best Rule

As discussed above, the rule that performed best overall
by far was the high-level rule CGL_RUC, described in Sec-
tion 3.2.5. This function was implemented very successfully
with Assemble_D_Solid_Local as a mid-level rule. Ideally,
it should be implemented with Disassemble D _Solid Local,
whose performance is virtually identical, except that dead-
locks due to accessibility are less likely to occur.

The basic reasons that CGL_RUC implemented with As-
semble or Disassemble_D_Solid_Local is so successful are:

e Connecting ground points repeatedly leads to better load
distribution and parallel support. Assembling the closest
connections to ground first improves this process.

e By checking for unique paths, it is ensured that only
“real” connections are included, and not groups of
blocks on the periphery that do not help distribute the
loads. These superfluous blocks will be added last.

e While connecting these ground points, only a minimal
thickness connection is established at any given time,
and additional blocks that would only worsen static con-
ditions are not included.

e By actually assembling the connections according to
distance first, the largest intermediary cantilevers are
generally reduced, as explained in Section 3.1.2.

Therefore, the rule that should be selected first to as-
semble a structure is Connect_Ground_Local _Recursive _-
Unique_and_Close, implemented with the mid-level rule
Disassemble_D _Solid_Local.

5.2 Best Rule to Guarantee No Deadlocks

While deadlocks due to accessibility or connectivity
are unlikely with CGL_RUC applied with Disassemble_D _-
Solid_Local, they are nevertheless possible. It is therefore

Table 2. Assembly Sequence Generation and Static Testing Time
for Inv_Pyramid.

CPU Time (s) Actual Time (s)
Assemble_D_Solid_Local 4.99718 7.00537
Disassemble_D_Solid_Local 6.76973 8.73539
CGL_RUC with 147.42198 152.60900
Assemble_D_Local
Static Beamtest on Inv_Pyramid 57.70297 101.15630
Static Evaluation of a Full 6981.40877 10442.76788
Assembly Sequence for
Inv_Pyramid

necessary to have a rule for this case. It is known that any
mid-level disassembly rule can always generate a full assem-
bly sequence with no accessibility or connectivity problems.
Disassemble_D_Solid_Local was by far the best performing
disassembly rule. For this reason, Disassemble_D _Solid -
Local should be implemented when deadlocks are en-
countered and it is necessary to guarantee a full solution
with no deadlocks in assembly.

5.3 Best Rule when Assembly Sequence Generation
Time is Problematic

It should be noted that one issue with CGL_RUC is that
it takes more time to generate a sequence, mostly because of
having to test for unique paths. Table 2 shows a few rele-
vant times related to generating and testing the sequence for
Inv_Pyr, which is the largest structure considered, with 200
blocks.

Generally speaking, all mid-level rules operated rapidly.
The disassembly rules were slightly slower because they
have to test the connectivity before removing any block. Ta-
ble 2 shows the results for the best assembly rule, the best
disassembly rule, and the best high-level rule. These tests
were performed on a machine with a Mobile Intel Pentium
4, 2.8 GHz processor, and 512Mb of RAM. The assembly
rule took 5 seconds of CPU time, the disassembly rule took
nearly 7 seconds, and the high-level rule took 147 seconds, or
slightly less than two and a half minutes. While the time that
is taken by the high-level rule seems very large, one should
consider that the static evaluation of the whole sequence took
nearly 2 hours. Therefore, even for this slowest rule, the
sequence generation is performed 47 times faster than the
necessary static testing of all 200 steps. This confirms once
again why methods that measure the static conditions of mul-
tiple options before selecting a block for assembly are not
acceptable.

If one were to decide that implementing the higher-
level rules was too time consuming and that faster rou-
tines were necessary, the suggested option is Assemble _-
D_Solid _Local. This function performs the best out of the
mid-level assembly rules.

5.4 Unacceptable Static Conditions
The goal of this method is that by selecting smart rules to
assemble the structure, it is very likely that the sequence can

be generated before being fully tested statically once. How-
ever, it can happen that the sequence that is selected fails the
static testing, meaning that at least one connection will break
during the assembly. In such a case, another rule should be
applied to generate another assembly sequence that will pass
the static test. The following are the top four recommended
rules, in order:

1. Connect_Ground_Local _Recursive_Unique_and_-
Close implemented with Disassemble_D_Solid Local
as the mid-level rule.

2. Disassemble_D _Solid_Local.

3. Assemble_Solid_D_Local: This rule was the best rule
of the rules whose primary criterion was the number of
neighbors.

4. Disassemble_Solid_Z_Local: This rule outperformed
all other rules for the peculiar Inv_Pyramid structure
(see [18]). It is not generally speaking a very effective
rule. However, in the extremely unlikely event that the
first three rules have failed to assemble a particular struc-
ture, it should be tested.

6 Conclusions

This work’s approach is to intelligently generate the en-
tire sequence based on the geometry of the structure, and test
the static stability of each step once the sequence is gener-
ated. The behavior of many rules was analyzed through the-
oretical, observational and numerical methods. Many pat-
terns of behavior were identified, and related to structures
where such methods would succeed or fail. The anticipated
result was that a variety of rules would need to be applied for
a wide range of scenarios. However, CGL_RUC performed
so well that the overall conclusion is that the most efficient
method is to apply this high-level rule to attempt to gener-
ate all assembly sequences. Alternative rules are presented
for the cases where accessibility or static stability conditions
can not be met by the sequence in question.

References

[1] Wurst, K., 1986. “The conception and construction of a
modular robot system”. In Proceedings of the 16th Int.
Sym.Industrial Robotics (ISIR), pp. 37—44.

[2] Benhabib, B., Cohen, R., Lipton, M., and Dai, M.,
1992. “Conceptual design of a modular robot”. ASME
Journal of Mechanical Design, 114, pp. 117-125.

[3] Chen, I.-M., and Burdick, J., 1998. “Enumerating
non-isomorphic assembly configurations of a modular
robotic system”. International Journal of Robotics Re-
search, 17(7), pp. 702-719.

[4] Pamecha, A., Ebert-Uphoff, 1., and Chirikjian, G.,
1997. “Useful metrics for modular robot motion plan-
ning”. In IEEE Transactions on Robotics and Automa-
tion, Vol. 13-4, pp. 531-545.

[5] Rossignac, J., Allen, M., Book, W., Glezer, A., Ebert-
Uphoff, I., Shaw, C., Rosen, D., Askins, S., Bai,
J., Bosscher, P, Gargus, J., Kim, B. M., Llamas, L,

Nguyen, A., Yuan, G., and Zhu, H., 2003. “Finger
sculpting with digital clay: 3d shape input and out-
put through a computer-controlled real surface”. Shape
Modeling International, pp. 229-231.

[6] Bosscher, P., and Ebert-Uphoff, 1., 2003. “Dig-
ital clay: architecture designs for shape-generating
mechanisms”. In Proceedings of 2003 IEEE Interna-
tional Conference on Robotics and Automation, Vol. 1,
pp. 834-841.

[7] Zhu, H., and Book, W. J., 2003. “Control concepts
for digital clay”. In 2003 IFAC Symposium on Robot
Control (SyRoCo).

[8] Homem de Mello, L., and Sanderson, A., 1991. “Rep-
resentation of mechanical assembly sequences”. IEEE
Transaction on Robotics and Automation, 7(2), April,
pp. 211-227.

[9] Bourjault, A., 1984. “Contribution a une approche
methodologique de I’assemblage automatise: Elabo-
ration automatique des sequnces automatiques”. PhD
thesis, L’ Universite de Franche-Comte, France, Nov.

[10] De Fazio, T. L., and Whitney, D. E., 1987. “Simpli-
fied generation of all mechanical assembly sequences”.
IEEE Journal Of Robotics And Automation, RA-3(6),
Dec.

[11] Wilson, R., 1995. “Minimizing user queries in in-
teractive assembly planning”. [EEE Transactions on
Robotics and Automation, 11(2), April, pp. 308-312.

[12] Ames, A., Calton, T., Jones, R., Kaufman, S., Laguna,
C., and Wilson, R., 1996. “Lessons learned from a
second generation assembly planning system”. In Pro-
ceedings of the 1996 IEEE International Conference on
Robotics and Automation, pp. 41-47.

[13] Kaufman, S., Wilson, R., Jones, R., Calton, T., and
Ames, A., 1996. “The Archimedes 2 mechanical as-
sembly planning system”. In Proceedings of the 1996
IEEE International Conference on Robotics and Au-
tomation, Vol. 4, pp. 3361-3368.

[14] Homem de Mello, L., and Sanderson, A., 1989. “A
correct and complete algorithm for the generation of
mechanical assembly sequences”. IEEE Transactions
on Robotics and Automation, 1, May, pp. 56-61.

[15] Homem de Mello, L. S., 1995. “Sequence planning for
robotic assembly of tetrahedral truss structures”. IEEE
Transactions On Systems, Man, and Cybernetics, 25-2,
Feb.

[16] Homem de Mello, L., and Sanderson, A., 1990. “As-
sembly planning for large truss structures in space”. In
IEEE International Conference on Systems Engineer-
ing, pp. 404-407.

[17] Nilsson, N., 1980. Principles of Artificial Intelligence.
Tioga.

[18] Wolff, S., 2006. “Statically stable assembly sequence
generation and structure optimization for a large num-
ber of identical building blocks”. PhD thesis, George
W. Woodruff School of Mechanical Engineering, Geor-
gia Institute of Technology, Atlanta, Georgia.

[19] Wolff, S., and Ebert-Uphoff, 1., 2006. “Preliminary re-
sults on generating assembly sequences for shape dis-

play”. In Proceedings of the ASME International 26th
Computers and Information in Engineering Conference
(CIE). Paper number DETC2006-99233, Sept 2006.

