A POWER OPTIMIZED PIPELINED ANALOG-TO-DIGITAL CONVERTER DESIGN IN DEEP SUB-MICRON CMOS TECHNOLOGY

A Thesis
Presented to
The Academic Faculty
by
Chang-Hyuk Cho
In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2005

A POWER OPTIMIZED PIPELINED ANALOG-TO-DIGITAL CONVERTER DESIGN IN DEEP SUB-MICRON CMOS TECHNOLOGY

Approved by:

Dr. Phillip E. Allen, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology
Dr. W. Marshall Leach, Jr
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. James Stevenson Kenney
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. W. Russell Callen, Jr School of Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Thomas D. Morley
School of Mathematics
Georgia Institute of Technology

Acknowledgments

First and foremost, I would like to express my deep appreciation to my academic advisor, Professor Phillip E. Allen, for his invaluable guidance, his kindness, and support throughout my graduate study at the Georgia Institute of Technology. Without his encouragement and patient support, this work would not have been possible.

I would like to thank my dissertation committee members, Dr. W. Marshall Leach, Jr., Dr. James Stevenson Kenney, Dr. W. Russell Callen, and Dr. Thomas D. Morley for their time, effort and valuable suggestion. I would like to thank Professor Kwang-sup Yoon for his help and kindness. My special appreciation also goes to Marge Boehme for her kindness, smiles, and help. My thanks are also extended to the National Semiconductor Corp. for support, fabrication, and packaging. I am especially grateful for the assistance and support of Patrick O'Farrell and Arlo Aude at National Semiconductor Norcross site.

I am indebted to my colleagues in the Analog Circuit Design Laboratory for their assistance and friendship - Han-woong Son, Lee-Kyung Kwon, Kyung-Pil Jung, Hoon Lee, Simon Singh, Ganesh Balachadran, Mustafa Koroglu, Tien Pham, Shakeel Qureshi, Zhijei Xiong, Zhiwei Dong, and Fang Lin. Of the many good friends I have made in the course of my graduate studies at Georgia Tech, I especially wish to recognize the following for the many ways they have enriched my life: Wei-Chung Wu, Franklin Bien, Hyungsoo Kim, Jinsung Park, Yunseo Park, Youngsik Hur, Moonkyun Maeng, Ockoo Lee, Dr. Changho Lee, Dr. Kyutae Lim, Dr. Seoung-Yeop Yoo, Dr. Sang-Woo Han,

Sang-Bin Lee, Sang-Bum Kang, Kyung-Girl Yoo, Jong-Seong Moon, and Sang-Woong Yoon.

I am deeply grateful to my father and mother, Chung-Hun Cho and Kwang-Ja Ahn. Without their endless support, love, prayer, and encouragement, this work could not been completed. I also thank my brother, Chang-Ho Cho, his wife, Hee-Seong Yoo, his beautiful daughter, Seo-Yeon Cho, and my little sister, Ji-Young Cho, for their love and encouragement. Finally, I am thankful to my fiancée, Hyo-Suk Lim, for her love and support.

Table of Contents

Acknowledgments iii
List of Tables ix
List of Figures X
Summary xV
CHAPTER 1 :Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 4
CHAPTER 2 : Overview of A/D conversion 5
2.1 A/D Converter Performance Parameters 5
2.1.1 Differential Non-linearity and Integral Non-linearity 5
2.1.2 Signal-to-Noise Ratio 7
2.1.3 Total Harmonic Distortion 7
2.1.4 Signal-to-Noise and Distortion Ratio 8
2.1.5 Spurious Free Dynamic Range 8
2.1.6 Effective Number of Bits 8
2.2 Review of Analog to Digital Converter Architectures 9
2.2.1 Flash ADC 9
2.2.2 Two Step Flash ADC 10
2.2.3 Folding ADC 11
2.2.4 Subranging ADC 13
2.2.5 Successive Approximation ADC 14
2.2.6 Pipeline ADC 15
2.2.7 Oversampled ADC 17
2.3 Summary 18
CHAPTER 3 : Overview of A Pipeline ADC 19
3.1 Digital Error Correction 19
3.2 Basic Building Blocks. 25
3.2.1 Multiplying Digital-to-Analog Converter 25
3.2.2 Sub-Analog-to-Digital Converter 33
3.2.3 Operational Amplifiers 35
3.2.4 Comparators 43
3.3 Non-ideal Error sources in Pipeline Stages 55
3.3.1 Error in Sub-ADC 55
3.3.2 Thermal Noise 56
3.3.3 Switches 58
3.3.4 Finite DC gain of Operational Amplifiers 64
3.3.5 Finite Bandwidth of Operational Amplifiers 67
3.3.6 Capacitor Mismatch 69
3.4 Summary 72
CHAPTER 4 : A Systematic Design Approach for a Power Optimized Pipeline ADC.. 73
4.1 Design Requirements 73
4.1.1 DC gain of Operational Amplifiers 74
4.1.2 Bandwidth of Operational Amplifiers 75
4.1.3 Capacitor Mismatch 76
4.1.4 Noise 77
4.1.5 Stage Accuracy 77
4.2 Recent Pipeline Architecture 79
4.3 Power Optimization 80
4.3.1 Per Stage Resolution 81
4.3.2 Numerical Optimization Algorithm 84
4.3.3 Analysis Results 87
4.4 Summary 91
CHAPTER 5 : Design of a Prototype ADC 93
5.1 SHA 93
5.2 MDAC. 96
5.3 Operational Amplifier 102
5.4 Sub-ADC and Comparator 113
5.5 Bias Circuit 117
5.6 Clock Generator 118
5.7 Simulation Results 120
5.8 Layout Design 121
5.9 summary. 124
CHAPTER 6 : Experimental Results 125
6.1 Evaluation Board and Test Setup 125
6.2 Test Results 128
6.3 Summary 137
CHAPTER 7 : Conclusion 138

List of Tables

Table 4.1: Different pipeline architectures79
Table 4.2: List of different pipelined architectures 84
Table 6.1: Summary of measurement results. 129
Table 7.1: Comparison of the large and small number of bits per-stage 138

List of Figures

Figure 1.1: Power versus sampling rate for 10-bit ADCs. 2
Figure 2.1: INL and DNL errors in a 3-bit ADC 6
Figure 2.2: Flash ADC 10
Figure 2.3: Two step flash ADC 11
Figure 2.4: Folding ADC 12
Figure 2.5: Subranging ADC 14
Figure 2.6: Successive approximation ADC 15
Figure 2.7: A pipeline ADC block diagram 16
Figure 2.8: block diagram of an oversampling ADC 18
Figure 3.1: The input/output characteristic of a 2-bit stage in a pipeline ADC 20
Figure 3.2: The input/output characteristic of 2-bit stage in the pipeline ADC with theoffsets21
Figure 3.3: The input output characteristic of a 2-bit stage in the pipeline ADC withconventional digital error correction when there are the offsets22
Figure 3.4: The input/output characteristic of a 2-bit stage in a pipeline ADC with amodified digital error correction23
Figure 3.5: The input /output characteristic of one stage in a pipeline ADC with amodified digital error correction when offset is present................................. 2424
Figure 3.6: Basic building blocks of a pipeline ADC 25

Figure 3.7: Typical S/H circuits (a) one-capacitor S/H (b) two-capacitors S/H................ 27
(c) combination of (a) and (b)... 27

Figure 3.8. SC MDAC in (a) sampling phase (b) amplifying phase.................................. 29
Figure 3.10. SC realization of a 1.5 bit/stage MDAC with equal-valued capacitor array. 32
Figure 3.11: The 2.5-bit sub-ADC... 34
Figure 3.12: Current mirror amplifier .. 37
Figure 3.13: Two stage Miller amplifier.. 39
Figure 3.14: Telescopic amplifier .. 41
Figure 3.15: Folded-cascode amplifier .. 43
Figure 3.16: Input/output characteristic of an ideal comparator with infinite gain and finite gain .44

Figure 3.17: A CMOS regenerative latch ... 45
Figure 3.18: A simple latch circuit comprising back-to-back inverters............................. 46
Figure 3.19: The simplified small signal circuit of the latch ... 46
Figure 3.20: The time domain response behavior of a CMOS latch 48
Figure 3.21: A comparator comprising of a preamplifier and a latch................................ 49
Figure 3.22: A comparator with input offset storage technique .. 51
Figure 3.23: IOS comparator in Φ_{1} clock phase .. 51
Figure 3.24: IOS comparator in Φ_{2} clock phase ... 52
Figure 3.25: A comparator with output offset storage technique 53
Figure 3.26: OOS comparator in Φ_{1} clock phase... 54
Figure 3.27: OOS comparator in Φ_{2} clock phase... 54
Figure 3.28: Effect of a comparator offset voltage on a 1.5-bit stage transfer function.... 56

Figure 3.29 (a) simple MOS sampling circuit (b) its equivalent circuit with on-resistance
\qquad
Figure 3.30: MOS sampling circuit ... 59
Figure 3.31: MOS sampling circuit with a dummy switch... 60
Figure 3.32: The sampling circuit with bottom plate sampling technique and its operating clock phases .. 62

Figure 3.33: Principle of a bootstrapped switch .. 63
Figure 3.34: Switched-capacitor implementation of the bootstrapped switch : (a) Off state
\qquad
Figure 3.35: Finite DC gain effect on a 1.5-bit stage transfer function 67
Figure 3.36: Finite gain bandwidth effect on a 1.5-bit stage transfer function.................. 69
Figure 3.37: Capacitor mismatch effect on a 1.5-bit stage transfer function..................... 71
Figure 4.1: SC MDAC in the amplifying phase .. 74
Figure 4.2: SC MDAC in the amplifying phase .. 82
Figure 4.3: Flow chart of the power optimization algorithm... 85
Figure 4.4: Simulation results of option I analysis .. 87
Figure 4.5: Simulation results of option II analysis... 89
Figure 4.6: Simulation results of option III analysis.. 90
Figure 5.1: Fully differential flip around SHA and its clock phases 95
Figure 5.2: Switched-capacitor circuit implementation of the 2.5-bit MDAC 97
Figure 5.3: Switched-capacitor implementation of the 1.5-bit MDAC 97
Figure 5.4: Non-overlapping clock phases .. 98
Figure 5.5: Input/output transfer function of the 2.5-bit stage... 99
Figure 5.6: Gain boosting cascode amplifier 105
Figure 5.7: Bode plot of gain boosted, auxiliary boosting and original main amplifiers108
Figure 5.8: Gain boosted folded-cascode amplifier 110
Figure 5.9: N-type gain boosting auxiliary amplifier (A_{2}) 111
Figure 5.10: P-type gain boosting auxiliary amplifier (A_{1}) 111
Figure 5.11: Switched-capacitor common-mode feedback circuit 112
Figure 5.12: Simulated frequency response of the gain boosted folded-cascode amplifier112
Figure 5.13: The single ended version of the 2.5-bit sub-ADC 114
Figure 5.14: Pre-amplifier used in 2.5-bit sub-ADC 114
Figure 5.15: Preamplifier used in 1.5-bit sub-ADC 116
Figure 5.16: CMOS latch and SR latch 116
Figure 5.17: Schematic of the bias circuit 118
Figure 5.18: Non-overlapping clock generator 119
Figure 5.19: Timing diagram of the clock generator 120
Figure 5.20: FFT spectrum of the full chip simulation. 121
Figure 5.21: Layout of the prototype ADC 123
Figure 6.1: Diagram of the measurement setup 127
Figure 6.2: Photograph of the evaluation board 128
Figure 6.3: SNR and SNDR versus input frequency 130
Figure 6.4: Measured DNL 130
Figure 6.5: Measured INL 131
Figure 6.6: FFT spectrum for $\mathrm{F}_{\text {in }}=2.1 \mathrm{MHz}$ 131
Figure 6.7: FFT spectrum for $\mathrm{F}_{\text {in }}=33.3 \mathrm{MHz}$ 132

Figure 6.8: Simulated FFT spectrum with error sources .137

Summary

High-speed, medium-resolution, analog-to-digital converters (ADCs) are important building blocks in many electronic applications. Various architectures folding, subranging and pipeline - have been used to deliver these high-speed, mediumresolution ADCs. Of these, pipeline architecture has proven to be the most efficient for applications such as digital communication systems, data acquisition systems and video systems. Especially, power dissipation is a primary concern in applications requiring portability. Thus, the objective of this work is to design and build a low-voltage lowpower medium-resolution (8-10bits) high-speed pipeline ADC in deep submicron CMOS technology.

The non-idealities of the circuit realization are carefully investigated in order to identify the circuit requirements for a low power circuit design of a pipeline ADC. The resolution per stage plays an important role in determining overall power dissipation of a pipeline ADC. The pros and cons of both large and small number of bits per-stage are examined. A power optimization algorithm was developed to assist in determining whether a large or a small number of bits per stage performs best. Approaches using both an identical and non-identical numbers of bit per-stage were considered and their differences analyzed.

A low-power, low-voltage 10-bit 100Msamples/s pipeline ADC was designed and implemented in a $0.18 \mu \mathrm{~m}$ CMOS process. Its power consumption was minimized through proper selection of the per-stage resolutions based on the result of the power optimization algorithm and by scaling down the sampling capacitor size in subsequent stages.

CHAPTER 1:INTRODUCTION

1.1 Motivation

Over the past two decades, silicon integrated circuit (IC) technology has evolved so much and so quickly that the number of transistors per square millimeter has almost doubled in every eighteen months. Since the minimum channel length of transistors has been shrunk, transistors have also become faster. The evolution of IC technology has been driven mostly by the industry in digital circuits such as microprocessors and memories. As IC fabrication technology has advanced, more analog signal processing functions have been replaced by digital blocks. Despite this trend, analog-to-digital converters (ADCs) retain an important role in most modern electronic systems because most signals of interest are analog in nature and must to be converted to digital signals for further signal processing in the digital domain.

In telecommunication systems, the goal of this trend toward digitalization is to move ADCs close to the antennas so that all the analog functions such as mixing, filtering and demodulating, can be implemented in the digital domain. Thus, one radio system can handle multiple standards by simply changing the programs in the digital signal processing block. This concept is known as software-defined radio. Recently, a cognitive radio, based on a concept similar to software-defined radio, is getting attention due to the its ability to adapt to the environment. Because of these trends and rapidly growing
wireless digital communication market, ADCs with higher sampling rates and linearity are in high demand. However, since ADCs with a higher sampling rate are often designed solely for maximum speed, they tend to consume significant amount of power as shown in Figure 1.1. Consequently, the demand for increased functionality of high-speed ADCs also carries with it a need for these improved ADCs to have low power dissipation.

Figure 1.1: Power versus sampling rate for 10 -bit ADCs

Another trend is toward higher-level circuit integration, which is the result of demand for lower cost and smaller feature size. The goal of this trend is to have a singlechip solution, in which analog and digital circuits are placed on the same die with advanced CMOS technology. Although advanced fabrication technology benefits digital circuits, it poses great challenges for analog circuits. For instance, the scaling of CMOS devices degrades important analog performance such as output resistance, lowering amplifier gain. Cascading transistors or an added gain stage can compensate for this
lowered gain. However, the use of cascading transistors runs into a limitation on the number of transistors that can be stacked, a limitation that is imposed by the low power supply voltage of scaled CMOS technology. And turning to the solution of additional stages has the disadvantages of increased power dissipation and more complicated circuitry. The low power supply voltage of scaled CMOS technology also limits the performance of analog circuits. Assuming the system is limited by the $K T / C$ noise, the Signal-to-Noise Ratio (SNR) of the system is reduced because the output voltage swing of an op-amp is decreased while the $K T / C$ noise remains constant. To maintain the same SNR, the capacitor size has to be increased to reduce the $K T / C$ noise. This means, the size of devices and the current of the op-amp should also be increased to drive the large capacitor. Therefore, just as is the case with digital circuits, simply lowering the power supply voltage in analog circuits does not necessarily result in lower power dissipation. The many design constraints common to the design of analog circuits makes it difficult to curb their power consumption. This is especially true for already complicated analog systems like ADCs; reducing their appetite for power requires careful analysis of system requirements and special strategies.

The various ADC architectures available include flash, two-step, folding, pipeline, successive approximation, and over-sampling. Each variation has unique features and which of them is deployed in specific applications is typically determined by the speed and resolution requirements involved. Of the d ADC architectures available, the pipeline approach is most suitable for low-power, medium resolution and high-speed applications, especially with CMOS technology. Pipeline architecture is widely used in digital
communication systems, data acquisition systems and video systems, all applications in which both accuracy and speed are required. Nevertheless, as observed earlier, power dissipation is a primary concern in those applications requiring portability. Thus, the objective of this work is to design and build a low-voltage low-power medium-resolution (8-10bits) high-speed pipeline ADC in deep submicron CMOS technology.

The main focus of this work is as following. First, study and understand the principles and operation of a pipeline ADC. Second, identify the locations of the power hungry blocks when a pipeline ADC is implemented with switched capacitor (SC) circuits. Third, determine the relationship between power consumption and the number of bits per stage. Fourth, develop an optimization algorithm in order to decide which version of pipeline architecture consumes the least power for a given speed, resolution and technology. Last, implement the pipeline ADC based on the results of a power optimization algorithm.

1.2 THESIS ORGANIZATION

This thesis is organized as follows. Chapter 2 describes important ADC performance parameters and various ADC architectures. Chapter 3 gives an overview of a pipeline ADC. Chapter 4 presents a systematic design approach for low power pipeline ADCs. Chapter 5 details the system blocks, circuit design and layout of a prototype ADC. Chapter 6 assesses and discusses the performance of the prototype ADC. Chapter 7 is devoted to conclusions drawn from the research.

CHAPTER 2 : OVERVIEW OFA/D CONVERSION

Various parameters describe the performance of an ADC, and all of them must be understood in undertaking to design an ADC. The first section of this chapter presents the most important performance parameters. These parameters describe the static and dynamic behavior of the ADC. The next section briefly reviews different ADC architectures.

2.1 A/D CONVERTER PERFORMANCE PARAMETERS

2.1.1 DIFFERENTIAL NON-LINEARITY AND INTEGRAL

NON-LINEARITY

Differential non-linearity (DNL) is defined as the difference between the size of an actual and an ideal step size. The ideal step size is equal to 1 LSB and $\mathrm{V}_{\mathrm{LSB}}=\mathrm{V}_{\mathrm{FS}} / 2^{\mathrm{N}}$, where V_{FS} is the full-scale input range and N is the full resolution of the ADC. DNL can be expressed as follows:

$$
\begin{equation*}
\text { DNL }(k)=\left[\text { step size of code }(k)-V_{L S B}\right] / V_{\text {LSB }} \tag{eq.2.1.1}
\end{equation*}
$$

The input-output conversion characteristic of the 3-bit ADC is shown in Figure 2.1. DNL cannot be smaller than -1 . If a DNL for code k is -1 , then the converter cannot
generate code k . It is called a missing code. Therefore, if the DNL for each code is larger than -1 , the converter is said to be monotonic, which means the output of the converter always increases as the input increases.

Integral non-linearity (INL) is defined as the deviation of an actual transfer function from an ideal straight line connecting two end points of the converter's transfer function. The ideal straight line is created by connecting the mid-points of all the step sizes of the ideal transfer function. Another line can be drawn for the actual transfer function in the same way as the ideal straight line was created.

There is another way to find INL, which is given in eq.2.1.2,

$$
\begin{equation*}
I N L(k)=\sum_{i=0}^{k} D N L(i) \tag{eq.2.1.2}
\end{equation*}
$$

The equation tells that the INL of code k is equal to the integration of DNL from code 0 to code k .

Figure 2.1: INL and DNL errors in a 3-bit ADC

2.1.2 Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR) is the ratio of the power of a full-scale input signal to total noise power present at the output of a converter. The quantization noise and the circuit noise are included in the SNR, but harmonics of the signal are excluded. The SNR can be measured by applying a sinusoidal signal to the converter and performing a fast Fourier transform (FFT) of the digital output of the converter. The SNR can then be:

$$
\begin{equation*}
\text { SNR }=10 \cdot \log \left(\frac{\text { Signal Power }}{\text { Total Noise Power }}\right) \quad(\mathrm{dB}) \tag{eq.2.1.3}
\end{equation*}
$$

The maximum achievable theoretical SNR is given by

$$
\begin{equation*}
S N R=6.02 \cdot N+1.76(d B) \tag{eq.2.1.4}
\end{equation*}
$$

where N is the resolution of the ADC and only the quantization noise is considered.

2.1.3 Total Harmonic Distortion

Total harmonic distortion (THD) is defined as the ratio between the root-meansquare (RMS) sum of the harmonic components and the amplitude of the input signal. THD is given by

$$
\begin{equation*}
T H D=\frac{\sqrt{\sum_{i=2}^{j} A^{2}\left(i \cdot f_{i n}\right)}}{A\left(f_{i n}\right)} \tag{eq.2.1.5}
\end{equation*}
$$

where $A\left(f_{\text {in }}\right)$ is the amplitude of the fundamental input signal, $A\left(i \cdot f_{\text {in }}\right)$ is the amplitude of the $\mathrm{i}^{\text {th }}$ harmonic and j is the number of harmonics considered.

2.1.4 Signal-to-Noise and Distortion Ratio

The Signal-to-Noise and Distortion Ratio (SNDR) is the ratio between the power of the full scale input signal and total noise including harmonics and can be written as

$$
\begin{equation*}
\text { SNDR }=10 \cdot \log \left(\frac{\text { Signal Power }}{\text { Noise and Harmonic Distotrion Power }}\right) \tag{dB}
\end{equation*}
$$

2.1.5 Spurious Free Dynamic Range

The Spurious Free Dynamic Range (SFDR) is defined as the ratio between the maximum amplitude of the input signal and the amplitude of the next largest spectral component. SFDR is an important specification in telecommunication applications in which ADC spectral purity is crucial of an ADC.

2.1.6 Effective Number of Bits

The Effective Number of Bits (ENOB) can be obtained from the SNDR. The ENOB can be given as

$$
\begin{equation*}
E N O B=\frac{S N D R-1.76}{6.02}(\text { bits }) \tag{eq.2.1.7}
\end{equation*}
$$

2.2 REVIEW OF ANALOG-TO-DIGITAL CONVERTER

ARCHITECTURES

2.2.1 Flash ADC

As the nomenclature implies, Flash ADC conversion is the fastest possible way to quantize an analog signal. The concept of this architecture is relatively simple to understand. In order to achieve N -bit from a flash ADC, it requires $2^{\mathrm{N}}-1$ comparators, 2^{N} 1 reference levels and digital encoding circuits. The reference levels of comparators are usually generated by a resistor string.

One example of simple flash ADC is shown in Figure 2.2. First, the analog input signal is sampled by comparators and is compared with one of the reference levels. Then, each comparator produces an output based on whether the sampled input signal is larger or smaller than the reference level. The comparators generate the digital output as a thermometer code. This thermometer code output is usually converted to a binary or a gray digital code by encoding logic circuits at the end. Since this operation is done in only one clock cycle, a flash ADC can attain the highest conversion rate.

The high sensitivity of the comparator offset and a large circuit area are the main drawbacks of a flash ADC. For instance, to build a 10-bit ADC based on flash architecture requires more than 1,023 comparators. Therefore, it will occupy a very large chip area and dissipate high power. Moreover, each comparator must have an offset voltage smaller than $1 / 2^{10}$, which is quite difficult to build. That is why we seldom see flash architecture with ADCs of more than 8-bits.

Figure 2.2: Flash ADC

2.2.2 Two Step Flash ADC

The block diagram of a two-step flash ADC [64] is shown in Figure 2.3. It consists of a Sample and Hold Amplifier (SHA), two low-resolution flash ADCs, a digital-toanalog (DAC), a subtracter and a gain block. The conversion is executed in two-steps as the name implies. The sampled analog signal is digitized by the first coarse quantizer producing the B_{1} Most Significant Bits (MSBs). This digital code is changed back to an analog signal by the DAC and subtracted from the sampled input signal producing the residue signal. The residue signal is amplified by the gain block and digitized by the second quantizer producing the B_{2} LSBs. Because 1-bit out of the output digital codes is often used for error correction, the overall resolution is $\left(B_{1}+B_{2}-1\right)$ bit.

Figure 2.3: Two step flash ADC
In a subranging architecture, the fine quantizer must have full resolution accuracy while the coarse quantizer can have a much more relaxed accuracy requirement. In the two-step flash architecture, both quantizers can have relaxed accuracy requirement because the gain block amplifies the residue signal to the full input scale. The major drawback of the two-step ADC is that the DAC must have an accuracy of the entire resolution of the ADC. The DAC needs time to settle to the required accuracy and will limit the conversion speed of the ADC.

2.2.3 Folding ADC

A folding ADC $[41,42]$ can have a high-speed conversion rate because it uses the parallelism of the flash ADC but uses fewer comparators and less power dissipation than a conventional flash ADC. This performance is achieved by adapting analog
preprocessing. A typical block diagram of a folding ADC is shown in Figure 2.4. The analog preprocessor, in front of the fine quantizer, consists of folding amplifiers that generate the folded signals. The folded signal is similar to the residue signal in a subranging ADC, except for the fact that the residue signal is not generated from the output results of the coarse quantizer. A high conversion rate is achieved because the coarse and fine quantizers are in parallel. The open-loop design of the folding amplifiers also speeds up the converter.

Ideally, an analog preprocessor should generate a sawtooth waveform, but this is difficult to implement. Instead, a triangle waveform is used in actual implementation, but sharp corners remain difficult to realize.. The actual waveform is more sinusoidal, and causes nonlinearity errors in the ADC.

Figure 2.4: Folding ADC

2.2.4 Subranging ADC

In order to overcome such drawbacks as hardware complexity, large chip area and high power dissipation, subranging architecture was $[39,40]$ developed at the cost of the sampling speed. A simplified subranging ADC is illustrated in Figure 2.5. It comprises a SHA, reference level generators, comparators and decoders. The number of comparators is $2^{\mathrm{N} / \mathrm{M}} \times \mathrm{M}$, where N is the total ADC resolution, and M is the number of stages. For a 2stage (two-stage?) 10-bit subranging ADC, only 64 comparators are required instead of the 1,024 comparators in a flash ADC. Therefore, compared with a flash ADC, subranging architecture yields a quite significant reduction in power consumption and in the required circuit area

However, the conversion in subranging architecture is done by multiple clocks instead of one clock as in a flash ADC. The operation of the 2-stage subranging ADC is as follows: In the first clock, an analog input signal is sampled by the SHA and quantized by a coarse flash ADC that determines the most significant bit from the sampled input signal. In the next clock, the segment of the resistor string is selected by the results from the coarse flash ADC, and the least significant bits are produced by the fine flash ADC. The comparator requirement of the coarse flash ADC can be relaxed, but the comparators of the fine flash ADC should be as accurate as the full resolution of the ADC. The conversion speed decreases as the number of subranging stages increase.

Figure 2.5: Subranging ADC

2.2.5 Successive Approximation ADC

The block diagram of a successive approximation ADC [66] is shown in Figure 2.6. It consists of a comparator, a DAC and a successive approximation register (SAR). The successive approximation ADC uses a binary search algorithm to find the closest digital code for an input signal. When an input signal is applied to the converter, the comparator simply determines whether the input signal is larger or smaller than the DAC output and produces one digital bit at a time starting from the MSB. The SAR stores the produced digital bit and uses the information to change the DAC output for the next comparison. This operation is repeated until all the bits in the DAC are decided. In order
to achieve N -bit resolutions, a successive approximation ADC requires N clock cycles. Because the performance is limited by DAC linearity, the calibration of the DAC is needed to achieve high resolution.

Figure 2.6: Successive approximation ADC

2.2.6 Pipeline ADC

A typical pipeline architecture [18] is illustrated in Figure 2.7. Each stage has the four elements of a SHA, a sub-ADC, a sub-DAC and an inter-stage gain amplifier.

The operation of a single stage consists of four steps. First, the input signal is captured by the sample and hold amplifier. Second, this signal is quantized by the subADC, which produces a digital output. Third, this digital signal goes to the sub-DAC which converts it to an analog signal. This analog signal is subtracted from the original sampled signal - thereby, leaving a residual signal. Fourth, this residual signal is increased to the full scale through the inter-stage amplifier.

Figure 2.7: A pipeline ADC block diagram

The residual signal is passed to the next stage and the procedure mentioned above is repeated. Since every stage has the element of sample and hold, the above procedure occurs concurrently in every stage. The most interesting feature of a pipeline ADC is the throughput behavior. For a pipeline with i-stages, the very first signal will take i-clock cycles to go through the entire i-stages. Obviously, it will have the latency of i-clock cycles. The next signal - given the nature of the sample and hold element - will have the latency of (i-1) clock cycles. After i-clock cycles, we will have a complete digital output in every clock cycle. At this moment, each sampled signal will have the latency of a singular clock cycle. The advantage of a pipeline ADC is that the conversion rate does
not depend on the number of stages. The overall speed is determined by the speed of the single stage.

2.2.7 Oversampled ADC

A sigma-delta ADC is also known as an oversampling data converter [61,62]. The ADCs seen so far in this chapter are often called as Nyquist rate ADCs because the conversion rate of those ADCs is equal to the Nyquist rate. In sigma-delta ADCs, however, the sampling is performed at a much higher rate than the Nyquist rate. The ratio of the sampling rate to the Nyquist rate is called the oversampling ratio (OSR). Each doubling OSR allows to reduce the quantization noise power resulting in 3dB SNR improvement.

A sigma-delta ADC also uses noise-shaping techniques to increase resolution. The quantization noise power is moved to higher frequencies by negative feedback. Then, the out-of-band noise is removed by a digital low pass filter, leaving only a small amount of the quantization noise. The conceptual block diagram is shown in Figure 2.8. It consists of a S / H, a sigma delta modulator, a digital filter and a down sampler. The down sampler converts the oversampled digital signal into the lower sample rate digital signal.

The resolution of the sigma delta ADC can be enhanced by increasing either the order of the modulator or the resolution of the quantizer. An L-th-order sigma delta modulator improves SNR by 6L + 3dB/octave. However, increasing the order of the modulator more than $2^{\text {nd }}$ can cause instability problems. To avoid instability problem with a high order modulator, a special architecture like multi-stage noise shaping (MASH) can be employed. Increasing the resolution of the quantizer also cause a problem because of
the nonlinearity of the DAC. Dynamic element matching is one of the methods available to reduce the distortion from the multi-bit DAC.

Figure 2.8: Block diagram of an oversampling ADC

2.3 SUMMARY

Performance metrics have been reviewed in this chapter and used to precisely describe and characterize ADC performance. A brief description of various ADC architectures has been presented, including flash, two-step flash, folding, successive approximation, pipeline, and an oversampling ADC.

CHAPTER 3 : OVERVIEW OF A PIPELINE ADC

This chapter presents a detailed description of pipeline architecture. In the first section, a digital error correction technique is discussed. In the next section, the basic building blocks of a pipeline architecture such as MDACs, sub-ADCs, op-amps and comparators are described. The last section presents the nonidealities associated with these pipeline ADC building blocks

3.1 DIGITAL ERROR CORRECTION

Digital error correction is a method to fix incorrect codes caused mainly by the offsets of comparators in a sub-ADC. To better illustrate digital error correction, a 4-bit ADC case is used as an example. Digital error correction [53] has evolved over the past two decades. The conventional method uses two stages. For a 4-bit ADC, the first stage would need to be 2-bits with three comparators. The second stage would need to be 3-bits with seven comparators. This conventional method uses addition and subtraction to correct the error. The newer modified digital error correction method [2] uses only addition. In this new method, three stages, each with two bits, are used. The advantage of the newer method lies in the ease with which addition is implemented in digital circuits, whereas subtraction is cumbersome and takes substantial logic to implement.

Figure 3.1: The input/output characteristic of a 2-bit stage in a pipeline ADC

In Figure 3.1, the input/output characteristic of an ideal 2-bit stage in the pipeline ADC is shown. The binary digits located on the top of the graph are the digital outputs from the sub-ADC of the current stage. The binary digits on the right side of the graph are the ones from the next stage. The inter-stage gain amplifier converts the residual/residue signal to full scale for the next stage immediately after summation in Figure 2.7.

In Figure 3.1, 4-bits output codes from the two-stage pipeline ADC are 1000 and 0111 for the inputs of $\operatorname{Vin}(1)$ and $\operatorname{Vin}(2)$, respectively. This is a case in which there is no offset error. Hence, no digital error correction is required.

In Figure 3.2, the same input/output characteristic of Figure 3.1 is shown with offsets in the threshold level located in the center. Notice that with an offset in the threshold level, the input/output characteristic is out of the input range of the next stage. It is shown with dotted line in Figure 3.2. As a result, with the same inputs of Vin(1) and

Vin(2) in Figure 3.1, incorrect codes are produced. The output digital codes are now 0111 and 1000 instead of 1000 and 0111.

Figure 3.2: The input/output characteristic of 2-bit stage in the pipeline ADC with offsets

In the conventional digital error correction method, the inter-stage gain is reduced to fix over-range problems and an additional bit is used in the next stage to detect and correct the error. In Figure 3.3, a conventional digital error correction is shown. Notice that the input/output characteristics with offsets are within the input range of the next stage. With the positive offset (denoted as (1) with an arrow on the right-side of y-axis), the digital output code from the current stage is 0100 , not 1000 . In order to correct this, the correction code should be added. The correction code of 0100, corresponding code of 4 from the next stage, is added to 0100 . This results in producing the correct code of 1000 . The same principal can be applied to a case with a negative offset (denoted as (2) with the arrow on the left-side of y-axis). The output code from the current stage is 1000, not 0100.

Figure 3.3: The input output characteristic of a 2-bit stage in the pipeline ADC with conventional digital error correction when there are the offsets

To correct this, the correction code should be subtracted. The correction code of 1111 is added to 1000 and the correct code of 0111 is produced. The correction code of 1111 is the 2 's complement number of the corresponding code of -1 .

However, this approach requires one more bit to the next stage, plus the complication of the subtraction circuit. In the modified digital error correction method [2][6], these two problems can be avoided by adding systematic offsets intentionally to the threshold levels. In Figure 3.4, the modified digital error correction is shown. Notice that all the threshold levels are moved to the right compared with the ones in Figure 3.3. Here redundancy is used to correct the errors. So, one bit from the each stage will be
overlapped to produce the digital output. Because of the redundancy, one more stage is needed to make the 4-bits digital output.

Figure 3.4: The input/output characteristic of a 2-bit stage in a pipeline ADC with a modified digital error correction

With the same input of Figure 3.1, it is able to yield the correct codes of 1000 and 0111. This is shown in the bottom of the graph. The next step is to see if an offset will result in production of the correct code without resort to subtraction.

With the negative offset (1), the threshold level at $1 / 4 \mathrm{~V}_{\text {ref }}$ is moved $1 / 2$ LSB to the left and overlapped with y-axis. With a negative offset, subtraction will be required, as in Figure 3.3, to correct the error. However, the error can be corrected with only addition and the correct code of 1000 is yielded. This is shown at the bottom of the graph. Often the right-most threshold level is omitted since the comparators in the sub-ADC with the
modified digital error correction have the correction range of $1 / 2$ LSB. The correction range is the amount of allowable shift in threshold level that does not cause any error [6]. Therefore, two comparators will be needed and only three digital outputs $(00,01,10)$ will be produced. That is why the stage with modified digital error correction is often called 1.5-bits per stage instead of 2-bits per stage.

Figure 3.5: The input /output characteristic of one stage in a pipeline ADC with a modified digital error correction when an offset is present

3.2 Basic Building Blocks

3.2.1 Multiplying Digital-to-Analog Converter

Figure 3.6: Basic building blocks of a pipeline ADC.

A basic block diagram of a pipelined ADC is illustrated in Figure 3.6. When this block is designed, a switched-capacitor (SC) circuit is typically used. A sample and hold amplifier, a sub-DAC, a subtractor and an inter-stage amplifier can be implemented with one SC circuit called a Multiplying Digital to Analog Converter (MDAC). Therefore, when one stage of a pipeline ADC is realized, actually only two blocks are needed: a MDAC and a sub-ADC. Those blocks can be implemented simply with a low-resolution flash ADC.

There are three typical SC configurations [18] that can be used for implementing a SC MDAC. These are shown in Figure 3.7(a), (b) and (c). For simple illustration, all of them are single-ended SC configurations but in circuit implementation all would be fully differential. All of the three configurations share the same basic operation. The operation needs two non-overlapping clock phases - sampling and amplifying or transferring

The first SC configuration is shown in Figure 3.7(a). This one is popularly employed for an Sample and Hold (S/H) circuit. It requires only one capacitor that is used for both sampling and feedback. Therefore, it does not have the capacitor mismatch problem of the other two SC configurations.

(a)

(b)

Figure 3.7: Typical S/H circuits (a) one-capacitor S/H (b) two-capacitors S/H

(c)

Figure 3.7: Typical S/H circuits (a) one-capacitor S/H (b) two-capacitors S/H
(c) combination of (a) and (b)

The $-3-\mathrm{dB}$ frequency of the closed-loop amplifier is given by [20]

$$
\begin{equation*}
\omega_{-3 d B}=\frac{1}{\tau}=\beta \cdot \omega_{\text {ua }}=\beta \cdot \frac{g_{m}}{C_{L}} \tag{eq.3.2.1}
\end{equation*}
$$

where $\omega_{u a}$ is the unity-gain frequency of an op-amp, C_{L} is the output load capacitance of an op amp and β is the feedback factor. The feedback factor is defined as the ratio between the feedback capacitor and the sum of all the capacitors connected to the summing node of the op amp. If we ignore the input parasitic capacitance of an op amp, the feedback factor of the SC circuit in Figure 3.7(a) is almost unity, which is larger than in other configurations. Therefore, as we can observe from eq. 3.2.1, the SC circuit in Figure 3.7(a) can be operated at higher speed than others. Nonetheless, the SC circuit cannot be used for a MDAC due to transfer function is always unity and it cannot have any other gain.

The next S / H circuit is shown in Figure 3.7(b). This configuration is often used for an integrator. The input signal is sampled first in the sampling capacitor and in the next
clock phase the sampled charge is moved to the feedback capacitor. The transfer function of this SC circuit is

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{C_{s}}{C_{f}} \tag{eq.3.2.2}
\end{equation*}
$$

And, the feedback factor is

$$
\begin{equation*}
\beta=\frac{C_{f}}{C_{f}+C_{s}+C_{p}} \tag{eq.3.2.3}
\end{equation*}
$$

The last SC configuration is illustrated in Figure 3.7(c). This one can be understood as a combination of the other two SC circuits. In the sampling clock phase, the input signal is sampled both in the sampling and feedback capacitor. In the next phase, the sampled charge in the sampling capacitor is transferred to the feedback capacitor. As a result, the feedback capacitor has the transferred charge from the sampling capacitor as well as the input signal charge sampled by itself. The transfer function of this SC circuit is given by

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{C_{s}+C_{f}}{C_{f}} \tag{eq.3.2.4}
\end{equation*}
$$

The feedback factor is the same as in the second SC circuit. In comparing the second and third configurations, the third has a wider bandwidth that makes it widely used for an MDAC because it can have wider bandwidth. When both of these SC circuits are designed to have the same gain, the configuration in Figure 3.7(c) can have a larger feedback factor than the other. This results in its having wider bandwidth according to eq. 3.2.1.

A MDAC can be implemented by using either binary-weighted capacitors [47] or equal-valued capacitors with SC implementation.

The SC MDAC with binary-weighted capacitor array [66] is shown in Figure 3.8. For simplicity, the circuit shown in Figure 3.8 is single-ended, but it would be constructed with a fully differential configuration. This MDAC has two inputs b_{1}, b_{0} where b_{1} is the Most Significant Bit (MSB) and b_{0} is the least significant bit (LSB). Here, we assume the op-amp has infinite gain and the parasitic capacitor at the inverting node of the op-amp is negligible.

(a)

(b)

Figure 3.8. SC MDAC in (a) sampling phase (b) amplifying phase

During the first sampling clock phase, the input signal is connected capacitors C_{2}, C_{3} and C_{4} and the capacitor C_{1} is connected to $-V_{\text {ref. }}$. The total charge stored during the sampling clock phase is

$$
\begin{equation*}
q_{s}=V_{\text {in }} \cdot 4 C+\left(-V_{\text {ref }}\right) \cdot C=4 C \cdot V_{\text {in }}-C \cdot V_{\text {ref }} \tag{eq.3.2.5}
\end{equation*}
$$

On the next amplification clock phase, the capacitors C_{1} and C_{2} are connected to the output of the op-amp, building the feedback capacitors. The rest of the capacitors are connected to either $\mathrm{V}_{\text {ref }}$ or $-\mathrm{V}_{\text {ref }}$, depending on the output results from the sub-ADC in the same stage. The total charge on the capacitors during the amplification phase is

$$
\begin{align*}
q_{a} & =2 C \cdot V_{\text {out }}+C \cdot b_{0} \cdot V_{\text {ref }}+2 C \cdot b_{1} \cdot V_{\text {ref }} \tag{eq.3.2.6}\\
& =2 C \cdot V_{\text {out }}+C \cdot V_{\text {ref }} \cdot\left(b_{0}+2 \cdot b_{1}\right) \tag{eq.3.2.7}
\end{align*}
$$

where $b_{1}, b_{0}= \pm 1$ are the digital output bits from the sub-ADC. According to the charge conservation theory, q_{a} should be equal to q_{s}. If we equate Eq.3.2.5 and Eq.3.2.7, we have

$$
\begin{equation*}
4 C \cdot V_{\text {in }}-C \cdot V_{\text {ref }}=2 C \cdot V_{\text {out }}+C \cdot V_{\text {ref }} \cdot\left(b_{0}+2 \cdot b_{1}\right) \tag{eq.3.2.8}
\end{equation*}
$$

Thus, the output of the MDAC in the 1.5-bits per stage is

$$
\begin{align*}
& V_{\text {out }}=2 \cdot V_{\text {in }}-\frac{1}{2} \cdot V_{\text {ref }} \cdot\left(b_{0}+2 \cdot b_{1}\right)-\frac{1}{2} \cdot V_{\text {ref }} \tag{eq.3.2.9}\\
& =\left\{\begin{array}{ccc}
2 \cdot V_{\text {in }}-V_{\text {ref }} & \text { if } & V_{\text {in }}>V_{\text {ref }} / 4 \\
2 \cdot V_{\text {in }} & \text { if } & -V_{\text {ref }} / 4 \leq V_{\text {in }} \leq V_{\text {ref }} / 4 \\
2 \cdot V_{\text {in }}+V_{\text {ref }} & \text { if } & V_{\text {in }}<-V_{\text {ref }} / 4
\end{array}\right. \tag{eq.3.2.10}
\end{align*}
$$

The input output characteristic of the 1.5-bits per stage MDAC is shown in Figure 3.9.

Figure 3.9. Transfer function of 1.5 bit/stage MDAC

The same MDAC transfer function of 1.5-bits per stage [18] in Figure 3.9 can also be realized by the equal valued capacitor approach. The single-ended SC implementation of the MDAC with the equal-valued capacitor array is shown in Figure 3.10. We can observe the differences between the approaches in Figure 3.8 and Figure 3.10. In Figure 3.10, there are only two equal-sized capacitors, less the number of switches and a MUX. The MUX chooses the DAC output from $+\mathrm{V}_{\text {ref }}, 0,-\mathrm{V}_{\text {ref }}$ depending on the digital output of the sub-ADC.

Figure 3.10. SC realization of a $1.5 \mathrm{bit} /$ stage MDAC with equal-valued capacitor array

The operation of the MDAC is as follows. First, the input signal is sampled to the C_{s} and C_{f} capacitors. It is also applied to the sub-ADC that has decision levels at $\pm \mathrm{V}_{\text {ref }} / 4$. On the next clock phase, the C_{f} capacitor is disconnected from the input signal and switched to the op-amp output making a negative feedback loop. The C_{s} capacitor is connected to the MDAC output which is decided by the sub-ADC output. The output of this MDAC is given by

$$
\begin{equation*}
V_{\text {out }}=\left(\frac{C_{f}+C_{s}}{C_{f}}\right) \cdot V_{\text {in }}-s_{0} \cdot \frac{C_{s}}{C_{f}} \cdot V_{\text {ref }} \tag{eq.3.2.11}
\end{equation*}
$$

Where $\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\mathrm{f}}=\mathrm{C}$ and s_{0} can be one of the three values, $+1,0,-1$, depending on the size of the input signal.

$$
\begin{align*}
& V_{\text {out }}=2 \cdot V_{\text {in }}-s_{0} \cdot V_{\text {ref }} \tag{eq.3.2.12}\\
& =\left\{\begin{array}{c}
2 \cdot V_{\text {in }}-V_{\text {ref }} \quad \text { if } \quad V_{\text {in }}>V_{\text {ref }} / 4 \\
2 \cdot V_{\text {in }} \quad \text { if }
\end{array}-V_{\text {ref }} / 4 \leq V_{\text {in }} \leq V_{\text {ref }} / 4 ~\left(4 . V_{\text {in }}+V_{\text {ref }} \quad \text { if } \quad V_{\text {in }}<-V_{\text {ref }} / 4\right.\right. \tag{eq.3.2.13}
\end{align*}
$$

3.2.2 Sub-Analog-to-Digital Converter

A sub-Analog-to-Digital converter (sub-ADC) is one of the building blocks in one stage of a pipeline ADC as illustrated in Figure 2.7. There are two roles for a sub-ADC. The first one is to perform coarse quantization for an output voltage from the previous stage or an SHA. The second one is to produce a decoded control signal for an MDAC in the same stage so that the MDAC can perform the subtraction and amplification of the sampled input signal. The control signal is generated by a few logic gates for a low resolution per stage or by a read only memory (ROM) for a high resolution per stage.

Most pipeline ADCs are implemented with switched-capacitor (SC) circuits. Two non-overlapping clocks are required to operate SC circuits, which are Φ_{s} in a sampling phase and Φ_{h} in a hold or amplifying phase. Of course, there are delayed clock phases to reduce charge injection errors from the switches, but they are merely variations from these two clock phases Φ_{s} and Φ_{h}. In a hold mode, the sub-ADC generates coarse quantized digital outputs and passes a decoded control signal to the MDAC for subtraction and amplification. The time to pass control signals to the MDAC from the sub-ADC should be minimized to maximize the settling time of the MDAC, which is important in high-speed applications. Because of their simple structure and high-speed capability, flash architectures are natural choices for sub-ADCs. The 2-, 3- and 4-bit [14] are the most commonly used resolution of sub-ADCs. 5-bit sub-ADC is also reported in [21].

The block diagram of a 2.5-bit sub-ADC with flash architecture is illustrated in Figure 3.11. It consists of six comparators, six reference voltage levels generated by a
resistor string, an encoding logic to convert a thermometer output code to a binary code and a decoding logic to generate a control signal for the MDAC. When the input signal arrives at the sub-ADC, all of the comparators determein whether the input signal is larger than their reference voltages or not. If the input signal is larger than the reference voltage, the corresponding comparator produces an output logic " 1 ". The output logic " 0 " is produced from comparators whose reference voltages are smaller than the input signal.

The type of comparators in the sub-ADC is determined by the resolution of the stage. For a 2-bit per stage, a dynamic comparator such as in [18] is the most popular because it does not dissipate static power and occupies smaller area. For a stage with more than a 2-bit, a dynamic comparator cannot be used because of its large offset voltage. Instead, a comparator with a preamplifier and a regenerative latch is used for a higher resolution than the 2-bit. The offset voltage is reduced by preamplification and also can be reduced further by auto-zeroing technique.

Figure 3.11: The 2.5-bit sub-ADC

3.2.3 Operational Amplifiers

An op-amp is not only a widely used component in most of analog circuits but a very important building block of a SC pipeline ADC since it often limits performance such as speed and accuracy, and consumes most of the power in the SC circuits. In this section, the important parameters of the different op-amp topologies are reviewed and their pros and cons are discussed.

3.2.3.1 Current Mirror Amplifier

The circuit schematic of the current-mirror amplifier [56] is shown in Figure3.12. The differential input stage is formed by input transistors $\mathrm{M}_{0}, \mathrm{M}_{1}$ and diode-connected transistors $\mathrm{M}_{2}, \mathrm{M}_{3}$. The current-mirrors are formed by diode-connected transistor $\mathrm{M}_{2}, \mathrm{M}_{3}$ with transistor M_{6}, M_{7} and M is the current multiplication factor of the current mirrors. A typical value for M is between 1 and 3 .

The voltage gain of the current-mirror amplifier is given by

$$
\begin{equation*}
A_{v} \approx M \cdot g_{m 0} \cdot\left(r_{o 4} \| r_{o 6}\right) \tag{eq.3.2.14}
\end{equation*}
$$

where $r_{o 4}, r_{o 6}$ are the resistance of transistor $\mathrm{M}_{4}, \mathrm{M}_{6}$, respectively.
The value of unity gain bandwidth is given by

$$
\begin{equation*}
\omega_{u}=M \cdot \frac{g_{m 0}}{C_{L}} \tag{eq.3.2.15}
\end{equation*}
$$

where $g_{m 0}$ is the transconductance of input transistor $\mathrm{M}_{0}, \mathrm{C}_{\mathrm{L}}$ is the load capacitance and M is the current mirror ratio.

The non-dominant pole is located at the drain of transistor $\mathrm{M}_{2}\left(\mathrm{M}_{3}\right)$ and given by

$$
\begin{equation*}
\omega_{n} \approx \frac{g_{m 0}}{C_{G S 2}+C_{D B 2}+C_{G S 6}+C_{D B 0}+\left(1+g_{m 6} r_{\text {out }}\right) C_{G D 6}+\left(1+g_{m 0} r_{o A}\right) C_{G D 0}} \tag{eq.3.2.16}
\end{equation*}
$$

where $g_{m 0,} g_{m 6}$ are the transconductance of transistors $\mathrm{M}_{0}, \mathrm{M}_{6}$ and $C_{G S 2}, C_{G S 6}$ are the gatesource parasitic capacitance of transistor $\mathrm{M}_{2}, \mathrm{M}_{6} . C_{D B 0}, C_{D B 2}$ are the drain-bulk parasitic capacitances of transistor $\mathrm{M}_{0}, \mathrm{M}_{2}$ and $C_{G D 0}, C_{G D 6}$ are the gate-drain parasitic capacitances of transistor $\mathrm{M}_{0}, \mathrm{M}_{6} . r_{\text {out }}$ is the output resistance of the amplifier, which is the parallel combination of the output resistance of transistors M_{4} and $\mathrm{M}_{5} . r_{o A}$ is the resistance at node A, which is approximately $1 / g_{m 2}$. The last two terms of the denominator are because of the miller effect of $C_{G D 0}$ and $C_{G D 6}$. In order to have enough phase margin of the amplifier for stability, the non-dominant pole should be located at higher frequency than the unity-gain frequency. The non-dominant pole of the current mirror amplifier is much lower than that of the folded cascode amplifier and telescopic amplifiers because of the larger parasitic capacitance at node A. Therefore, the current mirror amplifier is not suitable for high-speed applications.

The output voltage swing of the amplifier is $2\left[\mathrm{~V}_{\mathrm{DD}}-2 \mathrm{~V}_{\mathrm{DS} \text {,sat }}\right]$ where V_{DD} is the power supply voltage and $\mathrm{V}_{\mathrm{DS}, \text { sat }}$ is the saturation voltage of a transistor. The factor of 2 is because of the fully differential architecture of the amplifier. The voltage swing of this amplifier is larger than that of most of the amplifiers.

The slew rate of the amplifier is given by

$$
\begin{equation*}
S R=\frac{M \cdot I_{b 8}}{C_{L}} \tag{eq.3.2.17}
\end{equation*}
$$

where M is the current mirror ratio, $I_{b 8}$ is the bias current of transistor M_{8} and C_{L} is the output load capacitance.

The input-referred noise voltage is

$$
\begin{equation*}
\overline{v_{n}^{2}} \cong \frac{16}{3} \cdot k T \cdot \frac{1}{g_{m 0}} \cdot\left(1+\frac{g_{m 2}}{g_{m 0}}+\frac{g_{m 4}+g_{m 5}}{M^{2} \cdot g_{m 0}}\right) \tag{eq.3.2.18}
\end{equation*}
$$

where M is the current mirror ratio, k is Boltzman constant, and $g_{m 0}, g_{m 2}, g_{m 4}$ and $g_{m 6}$ are the transconductance of transistor $\mathrm{M}_{0}, \mathrm{M}_{2}, \mathrm{M}_{4}$ and M_{6}, respectively. We can decrease the input-referred noise either by increasing the transconductance of input devices or by increasing the current mirror ratio. A large current mirror ratio improves the unity-gain frequency and slew rate, but degrades the phase margin because of increasing parasitic capacitance at node A.

Figure 3.12: Current mirror amplifier

3.2.3.2 Two-Stage Miller Amplifier

A Miller compensated two-stage amplifier [56,65] is shown in Figure3.13. The gain of the two-stage miller amplifier can is approximately,

$$
\begin{equation*}
A_{v} \cong g_{m 0} \cdot\left(r_{o 0} \| r_{o 2}\right) \cdot g_{m 5} \cdot\left(r_{o 5} \| r_{o 4}\right) \tag{eq.3.2.19}
\end{equation*}
$$

The unity gain bandwidth of the two-stage miller amplifier is given by

$$
\begin{equation*}
\omega_{u}=\frac{g_{m 0}}{C_{C}} \tag{eq.3.2.20}
\end{equation*}
$$

where $g_{m 0}$ is the transconductance of the input M 0 and M 1 , and C_{C} is the miller compensation capacitor. Often, a resistor is inserted in series with the compensation capacitor to deal with the right half plane zero. The non-dominant pole of the amplifier is located at the output of the amplifier and is approximately given by

$$
\begin{equation*}
\omega_{2} \approx \frac{g_{m 5}}{C_{L}+C_{G S 5}} \tag{eq.3.2.21}
\end{equation*}
$$

where $\mathrm{g}_{\mathrm{m} 5}$ is the transconductance of transistor $\mathrm{M}_{5}, C_{G S 5}$ is the gate-source parasitic capacitance of transistor M_{5} and C_{L} is the load capacitance. Usually, the location of this non-dominant pole of the two-stage amplifier is lower than that of either a folded-cascode or a telescopic amplifier. Thus, in order to push this pole to higher frequencies, the second stage of the amplifier must have higher currents.

One of the main merits of the two-stage amplifier is its large output voltage swing. The output swing is almost rail-to-rail and is given by $2\left[V_{D D}-2 V_{D S, \text { sat }}\right.$, where $V_{D S, s a t}$ is the saturation voltage of transistor.

The slew rate is given by

$$
\begin{equation*}
S R=\min \left(\frac{I_{b 8}}{C_{C}}, \frac{2 \cdot I_{b 4}}{C_{C}+C_{L}}\right) \tag{eq.3.2.22}
\end{equation*}
$$

where $\mathrm{I}_{\mathrm{b} 8}, \mathrm{I}_{\mathrm{b} 4}$ are the bias currents of transistors M_{8} and M_{4}, respectively. The slew rate is determined by the smaller of the two values in the bracket.

The input-referred noise voltage is

$$
\begin{equation*}
\overline{v_{n}^{2}} \cong \frac{16}{3} \cdot k T \cdot \frac{1}{g_{m 0}} \cdot\left(1+\frac{g_{m 2}}{g_{m 0}}\right) \tag{eq.3.2.23}
\end{equation*}
$$

where k is Boltzmann constant, T is the Kevin temperature, $\mathrm{gm}_{\mathrm{m} 0}, \mathrm{~g}_{\mathrm{m} 2}$ are the transconductance of transistors $\mathrm{M}_{0}, \mathrm{M}_{2}$, respectively. A two-stage amplifier has a poor power supply rejection ratio (PSRR) at high frequency due to the connection from V_{dd} through the compensation capacitor and the gate-source parasitic capacitance of $\mathrm{M}_{5}\left(\mathrm{M}_{6}\right)$.

Figure 3.13: Two stage Miller amplifier

3.2.3.3 Telescopic Amplifier

The simplest way to design a high-gain amplifier is to use a telescopic cascode structure $[31,57]$ as shown in Figure 3.11. The gain of the telescopic amplifier is given by

$$
\begin{equation*}
A_{v} \cong g_{m 0}\left\{\left(g_{m 2} r_{o 2} r_{o 0}\right) \|\left(g_{m 4} r_{o 4} r_{o 6}\right)\right\} \tag{eq.3.2.24}
\end{equation*}
$$

Because it is a single-stage structure and there are only two current branches, the telescopic amplifier is a good candidate for high-speed low-power applications. The unity -gain frequency of the amplifier is given by

$$
\begin{equation*}
\omega_{u}=\frac{g_{m 0}}{C_{L}} \tag{eq.3.2.25}
\end{equation*}
$$

where $g_{m 0}$ is the transconductance of the input M0, M1 and C_{L} is the load capacitance. The second pole of the amplifier is located at the source of the n-channel cascode transistor and is given by

$$
\begin{equation*}
\omega_{2} \approx \frac{g_{m 2}}{C_{G S 2}+C_{S B 2}+C_{G D 0}+C_{D B 0}} \tag{eq.3.2.26}
\end{equation*}
$$

where $\mathrm{g}_{\mathrm{m} 2}$ is the transconductance of transistor $\mathrm{M}_{2}, C_{G S 2}$ is the gate-source parasitic capacitance of transistor $\mathrm{M}_{2}, C_{S B 2}$ is the source-bulk parasitic capacitance of transistor M_{2}, $\mathrm{C}_{\mathrm{GDO}}$ is the gate-drain parasitic capacitance of transistor M_{0} and $C_{D B 0}$ is the drain-bulk parasitic capacitance of transistor M_{0}. The high-speed capability of the amplifier is the result of the presence of only N -channel transistors in the signal path and of relatively small capacitance at the source of the cascode transistors.

The main drawback of the telescopic amplifier is its small output voltage swing. The output swing is given by $2\left[V_{D D}-5 V_{D S, s a t}\right]$, where $V_{D S, s a t}$ is the saturation voltage of transistor.

The slew rate is given by

$$
\begin{equation*}
S R=\frac{I_{b 8}}{C_{L}} \tag{eq.3.2.27}
\end{equation*}
$$

where $I_{b 8}$ is the bias current of transistor M_{8}. The input-referred noise voltage is

$$
\begin{equation*}
\overline{v_{n}^{2}} \cong \frac{16}{3} \cdot k T \cdot \frac{1}{g_{m 0}} \cdot\left(1+\frac{g_{m 6}}{g_{m 0}}\right) \tag{eq.3.2.28}
\end{equation*}
$$

where k is Boltzmann constant, T is the Kevin temperature, gm_{m}, gm_{m} are the transconductance of transistors $\mathrm{M}_{0}, \mathrm{M}_{6}$, respectively, and 1/f noise of transistor is ignored.

The input referred noise voltage can be reduced by increasing the transconductance of the input transistors. The major drawback of a telescopic amplifier is its small headroom due to a stack of transistors.

Figure 3.14: Telescopic amplifier

3.2.3.4 Folded -CAScode Amplifier

The folded cascode amplifier structure [32] is shown in Figure 3.15. The gain of the folded cascode amplifier is given by

$$
\begin{equation*}
A_{v} \approx g_{m 0}\left\{\left[g_{m 6} r_{o 6}\left(r_{o 8} \| r_{o 0}\right)\right] \|\left(g_{m 4} r_{o 4} r_{o 2}\right)\right\} \tag{eq.3.2.29}
\end{equation*}
$$

where $g_{m 0}, g_{m 4}, g_{m 6}$ are the transconductance of transistors $\mathrm{M}_{0}, \mathrm{M}_{4}, \mathrm{M}_{6}$ and $r_{o 0}, r_{o 4}, r_{o 6}$ are the output resistance of transistors $\mathrm{M}_{0}, \mathrm{M}_{4}, \mathrm{M}_{6}$, respectively. Compared with the gain of the telescopic amplifier, a folded cascode amplifier has somewhat smaller gain because of the parallel combination of the output resistance of transistors M_{8} and M_{0}.

The output voltage swing of the amplifier is $2\left[V_{D D}-4 V_{D S, s a t}\right]$, which is better than that of the telescopic amplifier. The unity-gain frequency of the amplifier is given by

$$
\begin{equation*}
\omega_{u}=\frac{g_{m 0}}{C_{L}} \tag{eq.3.2.30}
\end{equation*}
$$

where $g_{m 0}$ is the transconductance of the input M 0 and M 1 , and C_{L} is the load capacitance. The second pole of the amplifier is located at the drain of the input transistor and is given by

$$
\begin{equation*}
\omega_{2} \approx \frac{g_{m 6}}{C_{G S 6}+C_{S B 6}+C_{G D 8}+C_{D B 8}+C_{G D 0}+C_{D B 0}} \tag{eq.3.2.31}
\end{equation*}
$$

where $g_{m 6}$ is the transconductance of transistor M_{6} or M_{7} and $C_{G S 6}$ is the gate-source parasitic capacitance of transistor $\mathrm{M}_{6}, C_{S B 6}$ is the source-bulk parasitic capacitance of transistor $\mathrm{M}_{6}, C_{G D 8}$ is the gate-drain parasitic capacitance of transistor $\mathrm{M}_{8}, C_{D B 8}$ is the drain-bulk parasitic capacitance of transistor $\mathrm{M}_{8}, C_{G D 0}$ is the gate-drain parasitic capacitance of transistor M_{0} and $C_{D B}$ is the drain-bulk parasitic capacitance of transistor M_{0}. The non-dominant pole of the folded cascode amplifier is lower than that of the telescopic amplifier because of more parasitic capacitance and the lower transconductance of P-channel transistor.

The output voltage swing of the amplifier is given by $2\left[\mathrm{~V}_{\mathrm{DD}}-4 \mathrm{~V}_{\mathrm{DS} \text {,sat }}\right]$, which is larger than that of the telescopic amplifier. The slew rate is given by

$$
\begin{equation*}
S R=\frac{I_{b i a s 10}}{C_{L}} \tag{eq.3.2.32}
\end{equation*}
$$

where $I_{\text {bias10 }}$ is the bias current of transistor M_{10} and C_{L} is the load capacitance at the output. The frequency compensation of the folded cascode amplifier is simply
performed by changing the value of C_{L}. The input-referred noise voltage is

$$
\begin{equation*}
\overline{v_{n}^{2}} \cong \frac{16}{3} \cdot k T \cdot \frac{1}{g_{m 0}} \cdot\left(1+\frac{g_{m 8}+g_{m 2}}{g_{m 0}}\right) \tag{eq.3.2.33}
\end{equation*}
$$

where k is Boltzmann constant, T is the Kevin temperature, and $\mathrm{g}_{\mathrm{m} 0}, \mathrm{~g}_{\mathrm{m} 2}$ and $\mathrm{g}_{\mathrm{m} 8}$ are the transconductance of transistors M_{0}, M_{2} and M_{8} respectively. The input-referred noise voltage of the folded-cascode amplifier is larger than that of the telescopic amplifier because of the noise contribution of transistors M_{2} and M_{8}.

Figure 3.15: Folded-cascode amplifier

3.2.4 COMPARATORS

Comparators are one of the most frequently used functional blocks in analog circuits. A comparator is a circuit component that compares an applied input signal with a reference voltage and then generates an output voltage based on whether the input voltage is higher or lower than the reference voltage. Comparators can be found in many
analog circuit systems, but an analog-to-digital converter is the most important application for comparators. Actually, a comparator can be considered as a 1-bit ADC. The important performance parameters for comparators are gain and speed just as for opamps. The offset of a comparator is also an important parameter to be considered. Assume, for example, that an input voltage slightly higher than the reference voltage is applied to a comparator with a large offset voltage. The output result from this comparator will be wrong if the offset voltage is greater than the difference between the input and reference voltage. Circuit techniques to reduce the offset effect of the comparator will be discussed later.

Figure 3.16: Input/output characteristic of an ideal comparator with infinite gain and finite gain

Figure 3.16 illustrates the input/output characteristic of an ideal comparator with
infinite gain, and showing a steep transition at $\mathrm{V}_{\text {ref }}$. A high gain op-amp in open-loop configuration can be used to mimic an ideal comparator, but its performance will be limited by non-idealities such as finite gain and offset voltage. The input/output characteristics of a comparator implemented with a high-gain op-amp is shown in Figure 3.16. Comparator speed is another important non-ideality to consider. Because of its slow response, an op-amp type comparator is seldom used in high-speed applications. Regenerative latches can be used as comparators for high-speed applications. One of the CMOS regenerative latches [37] is depicted in Figure 3.17.

Figure 3.17: A CMOS regenerative latch
When the clock Φ is low, two switches S_{A} and S_{B} are closed, and transistor M_{1} is turned off. The two nodes A and B are connected to the inputs and charged to different input voltages, $\mathrm{V}_{\mathrm{inA}}$ and $\mathrm{V}_{\mathrm{inB}}$, respectively. When the clock Φ is high, two switches S_{A} and S_{B} are opened, disconnecting nodes A and B from inputs $V_{i n A}$ and $V_{\text {inB }}$. The transistor
M_{1} is turned on and starts regeneration. The small voltage difference between nodes A and B is then amplified because of a positive feedback to the digital logic levels. The time domain behavior and time constant of the latch in its regeneration phase can be studied with a simple latch circuit comprising two back-to-back amplifiers with a single-pole response. It is shown in Figure 3.18. The simplified small-signal circuit of the latch [66] is shown in Figure 3.19.

Figure 3.18: A simple latch circuit comprising back-to-back inverters

Figure 3.19: A simplified small-signal circuit of a latch

From the small-signal equivalent circuit, we can write

$$
\begin{equation*}
g_{m} \cdot V_{A}+\frac{V_{B}}{r_{o}}+C_{L} \cdot \frac{d V_{B}}{d t}=0 \tag{eq.3.2.34}
\end{equation*}
$$

$$
\begin{equation*}
g_{m} \cdot V_{B}+\frac{V_{A}}{r_{o}}+C_{L} \cdot \frac{d V_{A}}{d t}=0 \tag{eq.3.2.35}
\end{equation*}
$$

Dividing the above equation by r_{o} and rearranging them, we have

$$
\begin{align*}
& g_{m} \cdot r_{o} \cdot V_{A}+V_{B}=-C_{L} \cdot r_{o} \cdot \frac{d V_{B}}{d t} \tag{eq.3.2.36}\\
& g_{m} \cdot r_{o} \cdot V_{B}+V_{A}=-C_{L} \cdot r_{o} \cdot \frac{d V_{A}}{d t} \tag{eq.3.2.37}
\end{align*}
$$

We can rewrite equations eq.3.2.36 and eq.3.2.37.

$$
\begin{align*}
& A \cdot V_{A}+V_{B}=-\tau \cdot \frac{d V_{B}}{d t} \tag{eq.3.2.38}\\
& A \cdot V_{B}+V_{A}=-\tau \cdot \frac{d V_{A}}{d t} \tag{eq.3.2.39}
\end{align*}
$$

where A is the gain and τ is the time constant of the amplifier.
Subtracting eq.3.2.38 from eq.3.2.39, we can have

$$
\begin{equation*}
\left(V_{A}-V_{B}\right)=\frac{\tau}{(A-1)} \cdot \frac{d\left(V_{A}-V_{B}\right)}{d t} \tag{eq.3.2.40}
\end{equation*}
$$

Solving eq.3.2.40 with the initial voltage V_{AB}, we have

$$
\begin{equation*}
V_{A}-V_{B}=V_{A B 0} \cdot e^{\left[\cdot \frac{(A-1)}{\tau}\right]} \tag{eq.3.2.41}
\end{equation*}
$$

Assuming A>>1, the settling time constant of the latch can be given by

$$
\begin{equation*}
\tau_{L} \cong \frac{\tau}{A}=\frac{C_{L}}{g_{m}} \tag{eq.3.2.42}
\end{equation*}
$$

From the eq.3.2.41, we can find the fact that the exponential function has the positive argument, therefore the latch output reaches its digital logic level very quickly as time increases. The speed of the latch can be increased by increasing transconductance and reducing the load capacitance of the amplifier. The time domain response behavior of the
latch [37] with the different transconductance and load capacitor is shown in Figure 3.20. Obviously, the latch with the fastest response curve (1) has larger transconductance and a smaller load capacitor than the others.

Figure 3.20: The time domain response behavior of a CMOS latch
At the end of the regenerative phase, the output of the latch should produce a voltage difference $\mathrm{V}_{\mathrm{AB} 1}$ large enough for the following digital circuits to be toggled. The time required to reach the voltage difference $\mathrm{V}_{\mathrm{AB} 1}$ is given by

$$
\begin{equation*}
T_{L}=\frac{\tau}{A-1} \cdot \ln \left(\frac{V_{A B 1}}{V_{A B O}}\right) \tag{eq.3.2.43}
\end{equation*}
$$

The time T_{L} should be shorter than the allocated time for the regenerative phase. Otherwise, the phenomenon called meta-stability occurs. The errors caused from metastability can be reduced by decreasing τ, increasing A or cascading latches.

Although regenerative latch-type comparators have an advantage in speed, their usage is limited because of their large offset voltage. In order to reduce the effect of the offset voltage of a regenerative latch, a preamplifier is often required for a comparator
that is used in ADC. The preamplifier is placed in front of the latch as shown in Figure 3.21. The preamplifier enlarges the difference between the input and reference voltage so that the comparator can perform a more precise comparison than a latch-type comparator alone. Another disadvantage of using the latch-type comparator is its large kickback noise from the latch circuit. The kickback noise is generated during regeneration and corrupts the input signal and reference voltage. The preamplifier can reduce the effect of the kickback noise from the latch.

Figure 3.21: A comparator comprising of a preamplifier and a latch

For higher accuracy comparison, the preamplifier needs to have high gain. When a single stage amplifier is used as the preamplifier, increasing the gain usually means decreasing bandwidth because of the increasing time constant because of the large value of the output resistance. Thus, a high gain single-stage preamplifier is not suitable for high-speed applications. For high-speed, high-resolution comparison, low-gain multistage preamplifiers can be used instead of a high-gain single-stage preamplifier.

The penalty for using preamplifiers is higher power dissipation. Not like the regenerative latch that consumes only dynamic power, the preamplifier consumes static power that requires dc bias current. The dynamic power dissipation of the latch is relatively small compared with static power dissipation of the preamplifier because the
transistors in the latch of Figure 3.17 are on for only a short time only during the regenerative phase. Thus, the power dissipation of a comparator is usually determined by the number of preamplifiers used in the comparators.

3.2.4.1 COMPARATOR OFFSET CANCELLATION TECHNIQUE

One of the main factors that limit the resolution of the comparator is the offset voltage caused by mismatches of the MOS devices. Simple methods such as fuse and laser trimming can be utilized to reduce errors caused by these mismatches. However these approaches require high cost, extra time and take up large area. Besides, these cancellation methods eliminate the offset voltage variation over time and temperature.

A better way to cancel an offset voltage is called the auto-zeroing technique [66,37]. The principle of this technique is as follows. First, the offset voltage is measured and stored in a capacitor. Then, this stored offset voltage is added to the input voltage and eventually the offset voltage is cancelled by itself. Since this process is repeated by clocks, the offset voltage variation is reduced.

There are two different auto-zeroing techniques. One is called the Input Offset Storage (IOS) technique [60] and the other is called the Output Offset Storage (OOS) technique [60]. A simplified single-ended comparator with the IOS technique is shown in Figure 3.22.

Figure 3.22: A comparator with input offset storage technique

It consists of a preamplifier, a latch, and a capacitor for offset storage, switches, and two nonoverlapping clock phases. The operation is as follows. During the offset cancellation mode or Φ_{1} clock phase, switches S_{1}, and S_{2} are turned on while switch S_{3} is turned off. This will create a unity-gain feedback loop around the preamplifier, and the sampling capacitor C_{s} will be charged with the offset voltage of the preamplifier, which is shown in Figure 3.23

Figure 3.23: IOS comparator in Φ_{1} clock phase
During the tracking mode or Φ_{2} clock phase, switches S_{1}, and S_{2} are turned off, which opens the feedback loop. The switch S_{3} is on, and the sampling capacitor is
connected to the input signal. This is shown in Figure 3.24.

Figure 3.24: IOS comparator in Φ_{2} clock phase.

The voltage at the negative input of the preamplifier is equal to $V_{\text {in }}+V_{\text {off }}$. Since the node voltage at the positive input is $V_{\text {off }}$, the difference between the two inputs of the preamplifier is only $V_{i n}$, resulting in $A \cdot V_{\text {in }}$ at the output of the preamplifier. Then, the latch is strobed so that A> digital logic level is produced at its output.

In addition to the offset voltage of a preamplifier, other non-idealities can contribute to total comparator offset. These are charge injection from switch S_{1} and another offset voltage from a latch. Offset voltage caused by switch S_{1} can be minimized by using a small transistor for S_{1} or by increasing the value of the sampling capacitor C_{s}. An alternative method to reduce offset voltage from charge injection is to place a much smaller size transistor, $\mathrm{S}_{1 \mathrm{a}}$, parallel with S_{1}. The additional switch, $\mathrm{S}_{1 \mathrm{a}}$, is operated by the delayed version of clock phase Φ_{1}. Hence, S_{1} is turned off slightly earlier than $S_{1 a}$. In this way, when S_{1} is off, the charge from S_{1} is absorbed by $S_{1 a}$ reducing some of the charge that otherwise would go to sampling capacitor C_{s}. The effect from $S_{1 a}$ is minimized because $S_{1 a}$ is a much smaller device than S_{1}

The other comparator offset cancellation technique, OOS, is shown in Figure 3.25. This output offset storage technique measures the output offset of a preamplifier by connecting preamplifier inputs to ground and stores offset voltage on a coupling capacitor at the output of a preamplifier.

Figure 3.25: A comparator with output offset storage technique

The components of an OOS comparator are basically the same as an IOS comparator. However, some of their positioning differs from IOS topology. Especially noteworth positioning is the placement of the capacitor between a preamplifier and a latch to store an offset voltage of a pre-amplifier. The operation is as follows. During the offset cancellation mode or Φ_{1} clock phase, switches S_{1} and S_{2} are turned on while switch S_{3} is turned off as shown in Figure 3.26. The inputs of both the preamplifier and the latch are connected to ground. The preamplifier only amplifies the offset voltage producing $A \cdot V_{\text {off }}$ at the output, where A and $V_{\text {off }}$ are the gain and the offset of the preamplifier, respectively. The amplified offset voltage $A \cdot V_{\text {off }}$ is then stored on C_{s}.

Figure 3.26: OOS comparator in Φ_{1} clock phase

Figure 3.27: OOS comparator in Φ_{2} clock phase

During the tracking mode or Φ_{2} clock phase, switches S_{1} and S_{2} are off, the switch S_{3} is turned on, connecting an input signal to the preamplifier. The preamplifier amplifies the differential voltage $V_{\text {off }}-V_{\text {in }}$ resulting in only $-A \cdot V_{\text {in }}$ at the input of the latch. Then, the latch is strobed to provide digital logic levels at the output. This is illustrated in Figure 3.27. The OOS comparator also has an offset voltage caused by a charge injection from switch S_{1}. However, because a capacitor and a switch are placed at the output of the preamplifier, the offset voltage from the charge injection is divided by the gain of the amplifier when it is referred to the input of the preamplifier. Hence, the effect from the charge injection of an OOS comparator is smaller than that of an IOS comparator. With

OOS topology, the gain of a preamplifier should be low because a preamplifier is used in an open-loop configuration. If the gain of a preamplifier is too high, the output of a preamplifier maybe saturated by its own offset voltage. The input common-mode range of an OOS comparator is limited because the input of a comparator is DC coupled with an input source. In order to achieve higher accuracy comparison, a combination of these two offset cancellation techniques, or a multistage OOS topology, can be used

3.3 Non-Ideal Error Sources in Pipeline Stages

3.3.1 ERROR IN SUB-ADC

The offset voltage of comparators is a main source of errors in the sub-ADC of a pipeline ADC. A comparator produces an output signal indicating whether or not an input signal is larger than a reference level. When an offset voltage exists in a comparator, the offset voltage acts as an additional reference level and results in increasing or decreasing the overall reference level of a comparator. Therefore, when an input signal is close to an original reference level, a comparator may make a wrong decision. Several sources cause the offset voltage in a comparator, but device mismatch is a main source of errors that occur. The effect of an offset error in a comparator on a 1.5-bit stage transfer function is shown in Figure 3.28. The dotted line represents an ideal transfer function, and the solid line shows a transfer function with an offset voltage in a comparator.

Figure 3.28: Effect of a comparator offset voltage on a 1.5-bit stage transfer function

3.3.2 Thermal Noise

Unpredictable errors occur in pipeline ADCs and they cannot be fixed because of their randomness. One dominant source of these errors is thermal noise generated by random movement of electrons in resistors. The thermal noise [36] of a resistor appears as white noise and its power spectral density is given by

$$
\begin{equation*}
\bar{e}_{R}^{2}=4 K T R \cdot \Delta f \tag{eq.3.3.1}
\end{equation*}
$$

where K is Boltsmann's constant $\left(1.38 \times 10^{-23} \mathrm{JK}^{-1}\right)$, T is the temperature in Kelvin's and R is the resistor value.

Figure 3.29 (a) Simple MOS sampling circuit (b) its equivalent circuit with on-resistance and thermal noise

In the sampling circuit, thermal noise is produced due to finite resistance of a MOS transistor switch and is stored in a sampling capacitor. A simple sampling circuit is illustrated in Figure 3.29 (a) and in Figure 3.29 (b). A MOS switch is replaced with a turn-on resistance and its thermal noise voltage source. The thermal noise of a switch is filtered by a single pole response low-pass filter created by the resistance of a switch and a sampling capacitor. The transfer function of the low-pass filter is

$$
\begin{equation*}
A(j \omega)=\frac{1}{1+j \omega R C} \tag{eq.3.3.2}
\end{equation*}
$$

The total noise power can be obtained by integrating noise power spectral density over frequency and is given by

$$
\begin{align*}
\bar{e}_{n, \text { out }}^{2} & =\frac{1}{2 \pi} \int_{0}^{\infty} \bar{e}_{R}^{2} \cdot|A(j \omega)|^{2} \cdot d \omega \tag{eq.3.3.3}\\
& =\frac{1}{2 \pi} \int_{0}^{\infty} \frac{4 K T R}{1+(\omega R C)^{2}} \cdot d \omega \tag{eq.3.3.4}
\end{align*}
$$

$$
\begin{align*}
& =\left.\frac{1}{2 \pi} \cdot \frac{4 K T R}{R \cdot C} \cdot \arctan (\omega R C)\right|_{0} ^{\infty} \tag{eq.3.3.5}\\
& =\frac{K T}{C} \tag{eq.3.3.6}
\end{align*}
$$

From the above expression, it is obvious why noise in a sampling circuit is called $K T$ / C noise. It is also interesting to know that there is no resistance value at the expression, which indicates that total noise power is independent of the resistance value of a switch. This is because the increase of thermal noise power caused by increasing the resistance value is cancelled in turn by the decreasing bandwidth of a low-pass filter. Therefore, the only way to reduce thermal noise of a sampling network is to increase sampling capacitor size.

3.3.3 SWITCHES

Most pipelined ADCs are implemented with SC circuits, and MOS transistors are used as switches. These MOS switches cause non-idealities and errors, and require attention before any effort is undertaken to design SC pipelined ADCs. The main errors of MOS switches are clock feedthrough, charge injection [25, 26, 27] and the nonlinear turn-on resistance of a MOS transistor.

Figure 3.30: MOS sampling circuit

Figure 3.30 outlines a sampling circuit for consideration. When a switch is on, a channel should exist between source and drain to make $V_{\text {in }}$ almost equal to $V_{\text {out }}$. The total charge in the channel is expressed as

$$
\begin{equation*}
Q_{t, c h}=W L \cdot C_{O X} \cdot\left(V_{d d}-V_{i n}-V_{T h}\right) \tag{eq.3.3.7}
\end{equation*}
$$

When the switch is off, the charge in the channel is injected to the source and drain. Because the charge injected to an input side is absorbed by an input source, it does not create any error. However, the charge injected to an output side is problematic because the injected charge is stored on a sampling capacitor, thus changing any voltage sampled on the same capacitor. As can be seen from eq. 3.3.7, the charge is input signal-dependent. Therefore, an error from the injected charge creates distortion. The amount of the charge absorbed by the source or the drain side is not exactly half of the total charge in the channel because it depends on the impedance of each side and the transition time of the falling edge of a clock.

The parasitic capacitance of a MOS switch also generates an error known as clock
feedthrough. A clock signal is coupled to a sampling capacitor through a gate-source or a gate-drain parasitic capacitor, creating an error in a sampled voltage on the same capacitor. The size of a clock feedthrough error depends on the size of the parasitic capacitor and the transition time of the rising/falling edge of a clock signal. Both clock injection and clock feedthrough can be minimized by the same circuit techniques.

One approach to minimize these errors is to use a dummy switch as shown in Figure 3.31.

Figure 3.31: MOS sampling circuit with a dummy switch

The switch M_{2} is used as a dummy and its source and drain are short-circuited. The size of the dummy switch M_{2} is half of the real switch M_{1} and the dummy switch is driven by an inverse clock waveform of the real switch. When M_{1} is off, M_{2} is on. The channel charge from M_{1} is not injected to a sampling capacitor but absorbed by the dummy switch M_{2} effectively canceling a charge injection error. With this method, the effect of clock feedthrough is also minimized because error voltages from both switches are equal and have opposite polarity. Similar charge injection cancellation can be achieved by using the same size NMOS and PMOS transistors forming a CMOS
transmission gate. When a transmission gate is turned off, an opposite charge error injected by both NMOS and PMOS switches reduces the effect of charge injection. The most popular way to reduce a charge injection error use a bottom plate sampling technique. A signal-dependent charge injection error introduces non-linear distortion. If a switch is operated with a fixed voltage, an error generated from an injected charge will be a constant error. A constant error can be minimized with a differential circuit configuration.

A sampling circuit with a bottom plate sampling technique [28] and its operating clock phases are shown in Figure 3.32. The operation of the sampling circuit is as follows. In sampling clock phase (1), switches S_{1} and S_{3} are turned on, and an input signal is stored to a sampling capacitor. At the instant of (2), switch S_{3} is turned off, and the input signal is sampled to capacitor C_{s}, which leaves node ${ }^{B}$ floating. The charge injected from switch S_{3} is not harmful because it is always connected to ground, resulting in a constant error at the output. A moment later at (3), switch S_{1} is turned off, but the channel charge from switch S_{1} is not injected to the sampling capacitor because there is no DC path from node (B). In the holding clock phase, switches S_{2} and S_{4} are closed, transferring the charge to another capacitor. The charge injected from these switches is also not harmful because switch S_{2} is connected to ground. Switch S_{4} is usually connected to virtual ground at the input of the amplifier.

Figure 3.32: A sampling circuit with a bottom plate sampling technique and its operating clock phases

The turn-on resistance of a MOS switch is given by

$$
\begin{align*}
R_{O N} & =\frac{1}{\mu_{n} C_{O X}\left(\frac{W}{L}\right)\left(V_{g s}-V_{T h}\right)} \tag{eq.3.3.8}\\
& =\frac{1}{\mu_{n} C_{O X}\left(\frac{W}{L}\right)\left(V_{D D}-V_{i n}-V_{T h}\right)} \tag{eq.3.3.9}
\end{align*}
$$

where μ_{n} is the mobility of electrons, C_{OX} is the gate oxide capacitance, V_{Th} is a threshold voltage, and W and L are the width and the length of a MOS transistor. From
eq.3.3.9, the turn-on resistance of a MOS switch is input signal-dependent and creates non-linear distortion. The non-linearity of a switch can be improved by using a CMOS transmission gate instead of using a single transistor (NMOS or PMOS). For high resolution ADCs, high linearity may not be achieved by a CMOS transmission gate. For high linearity, there is a special technique called bootstrapping. The basic idea of bootstrapping [29] comes from eq.3.3.8. From eq.3.3.8, the linearity of a MOS switch can be improved significantly if V_{gs} is kept constant no matter how $\mathrm{V}_{\text {in }}$ changes. This idea is illustrated in Figure3.33.

Figure 3.33: Principle of a bootstrapped switch

A battery voltage, $\mathrm{V}_{\text {bat, }}$, can be added between the gate and the source of a switch. When the switch is turned on, the gate voltage V_{g} will always be $\left(\mathrm{V}_{\mathrm{bat}}+\mathrm{V}_{\text {in }}\right)$, which makes the gate-source voltage V_{gs} constant. The question now is how a battery is implemented by circuits. It can be implemented by a switched capacitor circuit and is illustrated in Figure 3.34 (a) and (b).

Figure 3.34: Switched-capacitor implementation of the bootstrapped switch : (a) Off state (b) On state

The bootstrapped switch in Figure 3.34 (a) shows when a switch is turned off. A NMOS switch is connected to ground while capacitor $\mathrm{C}_{\text {bat }}$ is charged to a supply voltage. In the next clock phase, capacitor $\mathrm{C}_{\text {bat, }}$, now charged to V_{dd}, is connected between the gate and the source of the switch and acts like a constant DC voltage. It is shown in Figure 3.34 (b).

3.3.4 Finite DC gain of Operational Amplifiers

An op-amp is one of the most important building blocks in switched capacitor implementation of pipelined ADCs. Therefore, it is necessary to study the impact of the
non-idealities of op-amps on pipelined ADCs. First, we will analyze the effect of a finite op-amp open loop gain in MDACs. The circuit configuration of a 1.5 -bit MDAC is illustrated in Figure 3.9. Capacitance C_{p} is the input parasitic capacitance of an op-amp. The finite DC gain of the op-amp is A_{0}.

During the sampling phase, a sampling capacitor C_{s} and a feedback capacitor C_{f} are connected to an input, sampling an input signal on the capacitors. The total charge stored on capacitors C_{s} and C_{f} on the sampling phase is expressed as

$$
\begin{equation*}
q_{s}=\left(0-V_{i n}\right) \cdot\left(C_{s}+C_{f}\right) \tag{eq.3.3.10}
\end{equation*}
$$

During the amplifying phase, feedback capacitor C_{f} is connected to the output of the opamp and sampling capacitor C_{s} is connected to $\pm \mathrm{V}_{\text {ref }}$ or to ground depending on the output of a sub-ADC. The total charge stored during this clock phase is given by

$$
\begin{equation*}
q_{a}=\left(V_{-}-s \cdot V_{\text {ref }}\right) \cdot C_{s}+\left(V_{-}-V_{\text {out }}\right) \cdot C_{f}+V_{-} \cdot C_{p} \tag{eq.3.3.11}
\end{equation*}
$$

where $V_{\text {- }}$ is the negative input of the op-amp, and S is the selection signal from the subADC and its value can be ± 1 or 0 .

The total charge is conserved. Therefore,

$$
\begin{equation*}
q_{s}=q_{a} \tag{eq.3.3.12}
\end{equation*}
$$

From the above equation, we can find

$$
\begin{equation*}
V_{\text {out }}=V_{\text {in }} \cdot\left(\frac{C_{s}+C_{f}}{C_{f}}\right)+V_{-} \cdot\left(\frac{C_{s}+C_{f}+C_{p}}{C_{f}}\right)-s \cdot V_{\text {ref }} \cdot \frac{C_{s}}{C_{f}} \tag{eq.3.3.13}
\end{equation*}
$$

The feedback factor β tells how much of the output voltage of an op-amp is fed back to an op-amp input and is given by

$$
\begin{equation*}
\beta=\frac{C_{s}}{C_{s}+C_{f}+C_{p}} \tag{eq.3.3.14}
\end{equation*}
$$

The negative input voltage V. can be expressed as

$$
\begin{equation*}
V_{-}=-\frac{V_{\text {out }}}{A_{0}} \tag{eq.3.3.15}
\end{equation*}
$$

Substituting eq.3.3.15 and eq.3.3.14 into eq.3.3.13,

$$
\begin{equation*}
V_{\text {out }}=\left(\frac{1}{1+\frac{1}{A \beta}}\right)\left(\frac{C_{s}+C_{f}}{C_{f}}\right) \cdot V_{\text {in }}-\left(\frac{1}{1+\frac{1}{A \beta}}\right) \cdot s \cdot V_{\text {ref }} \cdot\left(\frac{C_{s}}{C_{f}}\right) \tag{eq.3.3.16}
\end{equation*}
$$

By using the first order Taylor expansion,

$$
\begin{equation*}
V_{\text {out }} \approx\left(1-\frac{1}{A \beta}\right)\left(\frac{C_{s}+C_{f}}{C_{f}}\right) \cdot V_{\text {in }}-\left(1-\frac{1}{A \beta}\right) \cdot s \cdot V_{\text {ref }} \cdot\left(\frac{C_{s}}{C_{f}}\right) \tag{eq.3.3.17}
\end{equation*}
$$

The effect of the finite DC gain error of an op-amp in a 1.5-bit MDAC is shown in Figure 3.35. It is a transfer function of a 1.5-bit stage. The dotted line represents an ideal transfer function and the solid line shows a transfer function with a finite DC gain error. It can be observed that a finite DC gain and parasitic capacitance decrease the inter-stage gain of a MDAC.

Figure 3.35: Finite DC gain effect on a 1.5-bit stage transfer function

3.3.5 Finite Bandwidth of Operational

Amplifiers

The finite gain bandwidth of an op-amp is another important non-ideality to study in designing pipelined ADCs. Assuming a linear settling single-pole response and an infinite DC gain of an op-amp, an output voltage of a MDAC can be written as

$$
\begin{equation*}
V_{\text {out }} \cong\left(1-e^{-t_{s} / \tau}\right)\left\{\left(\frac{C_{s}+C_{f}}{C_{f}}\right) \cdot V_{\text {in }}-s \cdot V_{\text {ref }}\left(\frac{C_{s}}{C_{f}}\right)\right\} \tag{eq.3.3.18}
\end{equation*}
$$

where t_{s} is a settling time and τ is a time constant of a MDAC in a closed-loop form. The time constant τ is given by

$$
\begin{equation*}
\tau=\frac{1}{\omega_{-3 d B}}=\frac{1}{\omega_{u} \cdot \beta} \tag{eq.3.3.19}
\end{equation*}
$$

where $\omega_{-3 d B}$ is -3 dB frequency of a MDAC, β is a feedback factor and ω_{u} is the unitygain bandwidth of an op-amp. The unity-gain bandwidth of a single stage op-amp is given by

$$
\begin{equation*}
\omega_{u}=\frac{g_{m}}{C_{L}} \tag{eq.3.3.20}
\end{equation*}
$$

where C_{L} is total output load capacitance and g_{m} is transconductance of an op-amp. The total output load capacitance C_{L} in the amplifying clock phase is

$$
\begin{equation*}
C_{L}=\frac{C_{f}\left(C_{s}+C_{p}\right)}{C_{s}+C_{p}+C_{f}}+C_{c o m p}+C_{\text {nect }} \tag{eq.3.3.21}
\end{equation*}
$$

where $\mathrm{C}_{\text {comp }}$ is the total capacitance of a next stage sub-ADC and $\mathrm{C}_{\text {next }}$ is the total capacitance of a next stage MDAC in a sampling mode.

The settling error of an op-amp in a MDAC is

$$
\begin{align*}
\varepsilon_{S}= & e^{-t_{S} / \tau} \tag{eq.3.3.22}\\
& -t_{s} \cdot g_{m} \cdot \beta /\left\{\frac{C_{f}\left(C_{S}+C_{p}\right)}{C_{S}+C_{p}+C_{f}}+C_{c o m p}+C_{n e x t}\right\} \tag{eq.3.3.23}\\
= & e
\end{align*}
$$

The result of a settling error due to the finite gain bandwidth of an op-amp in a 1.5bit MDAC is shown in Figure 3.36. The dotted line represents an ideal transfer function and the solid line shows a transfer function with a finite gain bandwidth.

The settling behavior of an op-amp in actual switched capacitor circuits is not entirely linear. Therefore, a settling error is largest when an input voltage is at $\pm \mathrm{V}_{\text {ref }}$ because an output voltage should change to a full scale. The settling error produces
harmonic distortion at the output. Therefore, the gain bandwidth of an op-amp in a MDAC should be large enough to avoid harmonic distortion due to the settling error.

Figure 3.36: Finite gain bandwidth effect on a 1.5-bit stage transfer function

3.3.6 CAPACITOR Mismatch

The gain of a SC MDAC is decided by a capacitor ratio. Thus, accurate capacitor matching is required to design a high resolution pipelined ADC. The integrated circuit capacitor value is given by

$$
\begin{equation*}
C_{1}=A_{1} \frac{\varepsilon_{O X}}{t_{O X}}=A_{1} \cdot C_{o x} \tag{eq.3.3.24}
\end{equation*}
$$

where A_{1} is the area of a capacitor, $\varepsilon_{O X}$ is the dielectric constant of silicon dioxide, $t_{0 x}$ is the thickness of oxide, and C_{ox} is capacitance per unit area. Capacitance value depends on the area and oxide thickness of a capacitor. The main causes of capacitor mismatch are
due to over-etching and the oxide-thickness gradient.
The relative capacitance error can be expressed by

$$
\begin{equation*}
\frac{\Delta C}{C_{1}}=\frac{\Delta C_{O X}}{C_{O X}}+\frac{\Delta A}{A_{1}} \tag{eq.3.3.25}
\end{equation*}
$$

where $\Delta C_{O X}$ is an error in $\mathrm{C}_{o x}$ due to oxide-thickness gradient and ΔA is an error in area A_{1} due to over-etching.

Since $C_{0 x}$ is fixed by a process technology, the accuracy of capacitance can be improved by simply increasing the area. However, in SC circuits the accuracy of a capacitor ratio is more of concern more than the accuracy of capacitance because the gain of a MDAC is decided by the capacitor ratio.

The integrated circuit capacitor can be defined as

$$
\begin{equation*}
C_{1}^{\prime}=C_{1}+\Delta C \tag{eq.3.3.26}
\end{equation*}
$$

where ΔC is the mismatch error of capacitor C_{1}.
Then, the ratio of C_{2}^{\prime} to C_{1}^{\prime} can be written as

$$
\begin{equation*}
\frac{C_{2}^{\prime}}{C_{1}^{\prime}}=\frac{C_{2}+\Delta C_{2}}{C_{1}+\Delta C_{1}} \tag{eq.3.3.27}
\end{equation*}
$$

And can be approximated as

$$
\begin{equation*}
\cong \frac{C_{2}}{C_{1}} \cdot\left[1-\frac{\Delta C_{1}}{C_{1}}+\frac{\Delta C_{2}}{C_{2}}\right] \tag{eq.3.3.28}
\end{equation*}
$$

The relative error of a capacitor ratio is

$$
\begin{equation*}
\frac{\Delta C_{2} / C_{1}}{C_{2} / C_{1}} \cong-\frac{\Delta C_{1}}{C_{1}}+\frac{\Delta C_{2}}{C_{2}} \tag{eq.3.3.29}
\end{equation*}
$$

Therefore, the accuracy of a capacitor ratio can be improved if the difference of the mismatch errors of both capacitors is as small as possible. A mismatch error in the
accuracy of a capacitor ratio due to over-etching can be minimized by implementing capacitors with an array of small equal sized unit capacitors [23]. A mismatch error in the ratio accuracy of capacitors due to the variation of oxide thickness can be minimized by laying out capacitors in common centroid geometry.

The output voltage of a MDAC with capacitor mismatch can be written as

$$
\begin{equation*}
V_{\text {out }} \cong\left(\frac{C_{s}+\Delta C_{s}+C_{f}+\Delta C_{f}}{C_{f}+\Delta C_{f}}\right) \cdot V_{\text {in }}-S \cdot V_{\text {ref }} \cdot\left(\frac{C_{f}+\Delta C_{f}}{C_{s}+\Delta C_{s}}\right) \tag{eq.3.3.30}
\end{equation*}
$$

If we let $\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\mathrm{f}}=\mathrm{C}$ and $\Delta C / C=\varepsilon$, then

$$
\begin{equation*}
V_{\text {out }} \cong\left(2-\varepsilon_{1}+\varepsilon_{2}\right) \cdot V_{\text {in }}-S \cdot V_{\text {ref }} \cdot\left(1-\varepsilon_{1}+\varepsilon_{2}\right) \tag{eq.3.3.31}
\end{equation*}
$$

The influence of capacitor mismatch on the transfer function of a 1.5-bit MDAC is illustrated in Figure 3.37. The dotted line represents an ideal transfer function and the solid line shows a transfer function with capacitor mismatch.

Figure 3.37: Capacitor mismatch effect on a 1.5-bit stage transfer function

An interesting fact from the above figure is that when an input voltage is equal to $\pm \mathrm{V}_{\text {ref }}$, no error occurs even with capacitor mismatch. This can be checked with eq. 3.3.30. Substituting $\mathrm{V}_{\text {ref }}$ into $\mathrm{V}_{\text {in }}$ in eq. 3.3.30 and letting $\mathrm{S}=1$,

$$
\begin{align*}
V_{\text {out }} & \cong\left(\frac{C_{s}+\Delta C_{s}+C_{f}+\Delta C_{f}}{C_{f}+\Delta C_{f}}\right) \cdot V_{\text {in }}-V_{\text {ref }} \cdot\left(\frac{C_{f}+\Delta C_{f}}{C_{s}+\Delta C_{s}}\right) \tag{eq.3.3.32}\\
& =\frac{C_{s}+\Delta C_{s}}{C_{s}+\Delta C_{s}} \cdot V_{\text {ref }}=V_{\text {ref }} \tag{eq.3.3.33}
\end{align*}
$$

Capacitor mismatch is one of the limiting factors in designing high resolution pipeline ADCs. Special techniques such as capacitor error averaging, capacitor trimming and digital calibration are required to overcome this problem.

3.4 SUMMARY

This chapter has presented an overview of a pipelined ADC. A technique to correct digital errors, with examples, has been described, and the basic building blocks of a switched-capacitor pipelined ADC have been surveyed. An overview of various non-ideal error sources in a pipeline ADC has also been presented, and the sources of these areas have been reviewed. These error sources comparator offset, thermal noise, charge injection, finite op-amp gain, finite settling time and capacitor mismatch.

CHAPTER 4 : A SYSTEMATIC DESIGN APPROACH FORAPOWEROPTIMIZED PIPELINE ADC

A pipeline ADC consists of several stages. Stage resolution can be decided arbitrarily. It could be 2-bit, 3-bit, 4-bit or even 5-bits. Then the question becomes, what is the optimum resolution per stage in terms of low power dissipation? This question can not be easily answered. In order to find a solution, a power optimization algorithm will be developed.

In the next section, the design requirements of a MDAC are discussed to find stage accuracy. After that, recent pipeline architectures are reviewed. Lastly, a power optimization algorithm and its numerical results are explained.

4.1 DESIGN REQUIREMENTS

There are several non-ideal effects that limit the performance of a pipeline ADC, when that is implemented with SC circuits. Among non-ideal effects, finite op-amp gain, incomplete settling, mismatches, and thermal noise are of important to the overall performance [20].

4.1.1 DC gain of Operational Amplifiers

Figure 4.1: SC MDAC in the amplifying phase

An SC MDAC in the amplifying phase is drawn in Figure 4.1. This time, it includes the input parasitic capacitor, C_{p}, and a voltage source, $V_{\text {output }} / A$, which models a finite op-amp gain effect. Due to this, a virtual ground does not exist at the inverting node of a op-amp. Considering these new facts, the actual output of the MDAC becomes

$$
\begin{align*}
V_{\text {out }} & =\frac{2 \cdot V_{\text {in }}-s_{0} \cdot V_{\text {ref }}}{1+\frac{1}{A \cdot \beta}} \tag{eq.4.1.1}\\
& =\left(\frac{A \cdot \beta}{1+A \cdot \beta}\right) \cdot\left(2 \cdot V_{\text {in }}-s_{0} \cdot V_{\text {ref }}\right) \tag{eq.4.1.2}\\
& \cong\left(1-\frac{1}{A \cdot \beta}\right) \cdot\left(2 \cdot V_{\text {in }}-s_{0} \cdot V_{\text {ref }}\right) \tag{eq.4.1.3}
\end{align*}
$$

where β is the feedback factor and given by

$$
\begin{equation*}
\beta=\frac{C_{1}}{C_{1}+C_{2}+C_{p}} \tag{eq.4.1.4}
\end{equation*}
$$

4.1.2 BANDWIdTh OF Operational Amplifiers

This discussion of the bandwidth of operational amplifiers will ignore momentarily the finite op-amp gain effect and assume an op-amp has a single-pole. Due to the finite bandwidth of an op-amp, an output needs time to reach its final value. Including this effect, the actual output of a MDAC in Figure 4.1 is [19]

$$
\begin{equation*}
V_{\text {out }}=\left(1-e^{-\frac{t}{\tau}}\right) \cdot\left(2 \cdot V_{\text {in }}-s_{0} \cdot V_{\text {ref }}\right) \tag{eq.4.1.5}
\end{equation*}
$$

where t is the available settling time, which is usually a little bit less than half of the one clock cycle, and τ is the time constant of a MDAC in a closed-loop configuration. The time constant, τ, is

$$
\begin{equation*}
\tau=\frac{1}{\omega_{-3 d B}}=\frac{1}{\beta \cdot \omega_{\text {иа }}} \tag{eq.4.1.6}
\end{equation*}
$$

where $\omega_{-3 d B}$ is the frequency of a MDAC in a closed-loop configuration and $\omega_{\text {иа }}$ is the unity-gain frequency of an op-amp. The settling time due to the finite bandwidth limits the speed of a SC pipeline ADC. When an op-amp is designed for a MDAC, the op-amp should be designed to have wide enough bandwidth so that the output of the MDAC settles to its final value with allowable accuracy. Otherwise, an incomplete settling error appears as an gain error and degrades ADC performance, a situation discussed in a previous section.

4.1.3 Capacitor Mismatch

Capacitor mismatch is another error source that significantly degrades ADC performance. It is mostly caused by over-etching [15] and the variation of oxidethickness [23]. Although a capacitor mismatch error can be minimized by using larger capacitors realized with the parallel combination of a unit capacitor and commoncentroid layout technique [14], it still exists in circuits and affects the output result of a MDAC. Eq. 4.1.12 can be re-written as

$$
\begin{equation*}
V_{\text {out }}=\left(\frac{C\left(1+\varepsilon_{1}\right)+C\left(1+\varepsilon_{2}\right)}{C\left(1+\varepsilon_{1}\right)}\right) \cdot V_{\text {in }}-s_{0} \cdot\left(\frac{C\left(1+\varepsilon_{2}\right)}{C\left(1+\varepsilon_{1}\right)}\right) \cdot V_{\text {ref }} \tag{eq.4.1.7}
\end{equation*}
$$

where ε is the relative mismatch error of a capacitor C. If we assume and ignore high order terms, then

$$
\begin{equation*}
V_{\text {out }} \cong\left(2-\varepsilon_{1}+\varepsilon_{2}\right) \cdot V_{\text {in }}-s_{0} \cdot\left(1-\varepsilon_{1}+\varepsilon_{2}\right) \cdot V_{\text {ref }} \tag{eq.4.1.8}
\end{equation*}
$$

Assume C_{2} is larger than C by $\Delta C / 2$ and C_{1} is smaller than C by $\Delta C / 2$ where C is desired capacitor value without a mismatch. We can say

$$
\begin{align*}
& \varepsilon_{2}=\frac{\Delta C}{2 C} \tag{eq.4.1.9}\\
& \varepsilon_{2}=-\frac{\Delta C}{2 C} \tag{eq.4.1.10}
\end{align*}
$$

Therefore, the actual output of a MDAC becomes

$$
\begin{equation*}
V_{\text {out }} \cong\left(2+\frac{\Delta C}{C}\right) \cdot V_{\text {in }}-s_{0} \cdot\left(1+\frac{\Delta C}{C}\right) \cdot V_{\text {ref }} \tag{eq.4.1.11}
\end{equation*}
$$

4.1.4 Noise

The dominant noise in SC circuits is thermal noise generated by non-zero resistance switches [19]. This thermal noise is sampled on a capacitor and total noise power across a capacitor is equal to kT / C. This noise is often referred as kT / C noise [23]. The total input referred noise of a SC MDAC is [20]

$$
\begin{equation*}
\overline{v_{n, t o t}^{2}} \cong \frac{k T}{\left(2^{n-1}\right) \cdot C} \tag{eq.4.1.12}
\end{equation*}
$$

where K is the Boltzmann's constant, T is the absolute temperature and n is the number of bits per stage.

4.1.5 Stage Accuracy

The real output of a MDAC includes all of the non-ideal effects explained in the previous sections. The ideal output of a MDAC deteriorates because of non-ideal effects such as finite op-amp gain, incomplete settling and capacitor mismatch [15] as follows.

$$
\begin{align*}
V_{\text {out }, \text { actual }} & =\left(\frac{A \cdot \beta}{1+A \cdot \beta}\right)\left(1-e^{-\frac{t}{\tau}}\right)\left[\left(2+\frac{\Delta C}{C}\right) \cdot V_{\text {in }}-s_{0} \cdot\left(1+\frac{\Delta C}{C}\right) \cdot V_{\text {ref }}\right] \tag{eq.4.1.13}\\
& \cong\left(1-\frac{1}{A \cdot \beta}\right)\left(1-e^{-\frac{t}{\tau}}\right)\left[\left(2+\frac{\Delta C}{C}\right) \cdot V_{\text {in }}-s_{0} \cdot\left(1+\frac{\Delta C}{C}\right) \cdot V_{\text {ref }}\right] \tag{eq.4.1.14}\\
& \cong\left(1-\frac{1}{A \cdot \beta}-e^{-\frac{t}{\tau}}\right)\left[\left(2+\frac{\Delta C}{C}\right) \cdot V_{\text {in }}-s_{0} \cdot\left(1+\frac{\Delta C}{C}\right) \cdot V_{\text {ref }}\right] \tag{eq.4.1.15}\\
& \cong 2 \cdot\left(1-\frac{1}{A \cdot \beta}-e^{-\frac{t}{\tau}}+\frac{\Delta C}{2 C}\right) \cdot V_{\text {in }}-s_{0} \cdot\left(1-\frac{1}{A \cdot \beta}-e^{-\frac{t}{\tau}}+\frac{\Delta C}{2 C}\right) \cdot V_{\text {ref }} \tag{eq.4.1.16}
\end{align*}
$$

$$
\begin{equation*}
\cong 2 \cdot\left(1+\frac{\Delta C}{2 C}-\frac{\Delta G}{G}\right) \cdot V_{i n}-s_{0} \cdot\left(1+\frac{\Delta C}{2 C}-\frac{\Delta G}{G}\right) \cdot V_{\text {ref }} \tag{eq.4.1.17}
\end{equation*}
$$

Since incomplete settling and finite gain error are caused by an inter-stage gain amplifier, we can combine these two errors and denote as an inter-stage gain error, $\Delta \mathrm{G} / \mathrm{G}$ defined as

$$
\begin{equation*}
\frac{\Delta G}{G}=e^{-\frac{t}{\tau}}+\frac{1}{A \cdot \beta} \tag{eq.4.1.18}
\end{equation*}
$$

The largest residue voltage error will occur if an input voltage is greater than $\frac{V_{\text {ref }}}{4}$ and is given by [19]

$$
\begin{equation*}
V_{\text {error }}=\left(\frac{1}{2} \cdot\left|\frac{\Delta G}{G}\right|+\frac{3}{4} \cdot\left|\frac{\Delta C}{C}\right|\right) \cdot V_{\text {ref }} \tag{eq.4.1.19}
\end{equation*}
$$

This residue voltage error should not be greater than $1 / 2 \mathrm{LSB}$ of the remaining stages. Thus, we can get the stage accuracy requirement of i-th stage as follows:

$$
\begin{equation*}
\left(\frac{1}{2} \cdot\left|\frac{\Delta G}{G}\right|+\frac{3}{4} \cdot\left|\frac{\Delta C}{C}\right|\right)_{i}<\frac{1}{2^{r_{i}}} \tag{eq.4.1.20}
\end{equation*}
$$

where r_{i} is the remaining number of bits to be resolved from the following stages. So, the first stage always has to be designed with the highest accuracy, and the later stages can be designed with less accuracy as a stage moves down along pipeline stages [1].

4.2 Recent Pipeline Architecture

Table 4.1 shows the recently published pipeline ADCs. As we can observe from Table 4.1, the minimum number of bits per stage is the most popular architecture. This has two key advantages. First, an inter-stage amplifier has a wide bandwidth due to its large feedback factor [18]. This higher feedback factor gives a shorter time constant, which means faster speed per stage. Moreover, this bandwidth of the inter-stage gain amplifier translates into the conversion rate of an entire pipeline ADC. Second, preamplifiers are not required for comparators. This is because using a digital error correction scheme relaxes the offset requirement of a comparator [2]. It consumes low power mainly due to its large feedback factor.

Table 4.1: Different pipeline architectures

Reference	Pipeline Architecture
$[2]$	$3-3-3-3$
$[3]$	$2-2-2-2-2-2-2-2-2$
$[4]$	$2-2-2-2-2-2-2-2-2$
$[8]$	$2-2-2-2-2-2-2-2-2$
$[6]$	$2-2-2-2-2-2-2-2-2$
$[9]$	$4-4-4-4$
$[10]$	$4-3-3-3$
$[67]$	$4-4-4$
$[15]$	$4-4-4$
$[68]$	$5-5-5-6$
$[21]$	

An obvious disadvantage of this approach is that with a given resolution it needs a large number of stages. It is more sensitive to component mismatch [21]. Thus, it often requires additional calibration circuitry and thereby occupies more die area.

The large number of bits per-stage approach has five advantages. First, this has relaxed gain and settling requirement [1]. This means less power dissipation. Second, this approach allows more aggressive scaling down of capacitor size, which also means less power dissipation [10]. Third, the total input referred noise can be reduced because noise from later stages is divided by the large gain. Fourth, the capacitor mismatch requirement is relaxed [10]. Finally, with increased number of bits per stage, the impact of parasitic capacitance in the feedback factor will be reduced [21].

There are three disadvantages in this approach. First, with the increased number of bits per stage, an inter-stage amplifier has a longer time constant because of its small feedback factor [18]. Second, preamplifiers are needed for comparators when more than 4-bits per stage are involved. A preamplifier increases the power consumption of a system. Third, we will have an increased number of comparators. These in turn, will increase the parasitic capacitance that an amplifier has to drive - resulting once again in increased power dissipation.

4.3 Power Optimization

In this section, we will discuss how to minimize power dissipation in a pipeline ADC implemented with SC circuits.

4.3.1 Per Stage Resolution

As we have already seen in the previous section, there are advantages and disadvantages of using either a minimum number of bits per stage $(\mathrm{n}=2)$ or a large number of bits per stage ($n>2$). Then, which is the better choice to achieve low power dissipation? The answer is not easy. To this point, only an approximate analysis has been performed. In [7], the author has concluded that the optimum number of bits per stage is three or four. This fact contradicts the result from [18] in which the minimum number of bits per-stage (2-bits) is the optimum choice.

The reason for this contradiction is that there are too many parameters to consider and most of the parameters are closely related to one another. There are two important parameters - the time constant and total input referred noise. The time constant is given by

$$
\begin{equation*}
\tau=\frac{C_{L}}{g_{m}} \cdot \frac{1}{\beta} \tag{eq.4.3.1}
\end{equation*}
$$

where C_{L} is the load capacitance at the i-th stage in Figure 4.2 and is

$$
\begin{equation*}
C_{L}=2^{n_{i}+1} \cdot C_{i+1}+\frac{C_{i} \cdot\left\lfloor\left(2^{n_{i}}-1\right) \cdot C_{i}+C_{p}\right\rfloor}{2^{n_{i}} \cdot C_{i}+C_{p}}+C_{c o m p} \tag{eq.4.3.2}
\end{equation*}
$$

Figure 4.2: SC MDAC in the amplifying phase
where $C_{\text {comp }}$ is the input capacitor of the comparators in a sub-ADC and n_{i} is the effective number of bits per stage at the i-th stage. The C_{p} is the input parasitic capacitance of an amplifier and is denoted by

$$
\begin{equation*}
C_{p}=\frac{2}{3} \cdot C_{O X} \cdot W \cdot L=\xi \cdot W \tag{eq.4.3.3}
\end{equation*}
$$

β is the feedback factor of a closed-loop amplifier and is

$$
\begin{equation*}
\beta=\frac{C_{i}}{2^{n_{i}} \cdot C_{i}+C_{p}} \tag{eq.4.3.4}
\end{equation*}
$$

If we put everything together

$$
\begin{equation*}
\tau=\frac{2^{n_{i}+1} \cdot C_{i+1}+\frac{C_{i} \cdot\left[\left(2^{n_{i}}-1\right) \cdot C_{i}+C_{p}\right]}{2^{n_{i}} \cdot C_{i}+C_{p}}}{\sqrt{2 \cdot K^{\prime} \cdot \frac{W}{L} \cdot I_{D S}}} \cdot \frac{2^{n_{i}} \cdot C_{i}+\xi \cdot W}{C_{i}} \tag{eq.4.3.5}
\end{equation*}
$$

Thus, in order to decide a exact time constant at the i-th stage, we need to know the number of bits per stage, capacitor size at $\mathrm{i}, \mathrm{i}+1$ stage and the parasitic capacitance of a
amplifier. Again, the capacitor size at each stage is related to the total input referred noise through the next equation.

$$
\begin{equation*}
\overline{v_{n, t o t}^{2}}=\overline{v_{n, 1}^{2}}+\frac{\overline{v_{n, 2}^{2}}}{G_{1}^{2}}+\frac{\overline{v_{n, 3}^{2}}}{G_{1}^{2} \cdot G_{2}^{2}}+\frac{\overline{v_{n, 4}^{2}}}{G_{1}^{2} \cdot G_{2}^{2} \cdot G_{3}^{2}}+\cdots \cdots \tag{eq.4.3.6}
\end{equation*}
$$

where $\overline{v_{n, t o t}^{2}}$ is the total input referred noise of a pipeline ADC and G_{i} is the gain of a MDAC at the i-th stage. The $\overline{v_{n, i}^{2}}$ is the noise at the i-th stage. If we assume KT/C noise is the dominant noise at each stage, it is given by

$$
\begin{equation*}
\overline{v_{n, i}^{2}}=\frac{K T}{2^{n_{i}} \cdot C_{i}} \tag{eq.4.3.7}
\end{equation*}
$$

Since $G_{i}=2^{n_{i}}$, we can rewrite the input referred noise such as

$$
\begin{equation*}
\overline{v_{n, t o t}^{2}}=\frac{K T}{2^{n_{i}} \cdot C_{i}}+\frac{1}{2^{2 n_{1}}} \cdot\left(\frac{K T}{2^{n_{2}} \cdot C_{2}}\right)+\frac{1}{2^{2 n_{1}}} \cdot\left(\frac{K T}{2^{n_{3}} \cdot C_{3}}\right)+\cdots \cdots \tag{eq.4.3.8}
\end{equation*}
$$

In order to find power consumption in one stage, we need to know all the parameters - current stage resolution, next stage resolution, current stage capacitor size, next stage capacitor size, and parasitic capacitor size. In addition, speed, accuracy and noise requirements should be met with these parameters. This is not a simple task that can be done by hand calculation. That is why a contradiction exists about the optimum number of bits per stage.

Until recently, only an identical number of bits per stage has been used to build a pipeline ADC. For instance, the nine cascaded 2-bits/stage [3] or three cascaded 4bits/stage [15] have been employed to achieve 10-bit resolution with digital error correction. The reason behind this to save design time [19]. When power dissipation is
not a concern, design can be done quickly by copying the design of the first stage for all subsequent stages.

An effort to take a different approach to design raises the question of how, with all of the requirements that must be considered, to compare the different approaches and choose the one that best delivers low power dissipation. Obviously, the number of factors to consider overwhelms simplified analysis or qualitative comparison. A numerical algorithm, however, would take the analysis to a higher level. It is the subject of the following section.

4.3.2 Numerical Optimization Algorithm

Table 4.2: List of different pipelined architectures

Number	Pipeline architecture
1	$2-2-2-2-2-2-2-2-2$
2	$3-3-3-3-2$
3	4-4-4
4	$2-3-3-3-3$
5	$3-2-2-2-2-2-2-2$
6	$4-2-2-2-2-2-2$
7	$4-3-2-2-2-2$
8	$4-3-3-3$
9	5-2-2-2-2-2

Power Optimization Flow Chart

Figure 4.3: Flow chart of a power optimization algorithm

In this section, we perform a numerical analysis for power dissipation in a SC pipeline ADC to decide which architecture consumes less power than others. In Table 4.2, we have a list of architectures to be tested. As the table shows, there are architectures composed of identical and non-identical per stage resolution. Hence, we can see a difference between two approaches after analysis. All of the architectures are selected to yield 10 -bit resolution, and the sampling frequency is set to 100 M samples $/$ sec. Simple single-stage amplifiers are used in this analysis. The peak-to-peak input voltage is assumed to be 1 V .

The flow chart of a power optimization algorithm is shown in Figure 4.3. First, we need to have all the essential information such as the desired total ADC resolution, the sampling rate, capacitor mismatch and technology-related parameters. Then, an architecture is selected from the list in Table 4.2. Next, capacitor scaling may or may not be applied. Capacitor size is decided based on the allowable total input referred noise. Beginning with the first stage, we find the optimum bias currents so that the sum of finite gain, incomplete settling and mismatch error is within the stage accuracy requirement. This routine is repeated until the last stage.

This program offers three options. In Option I, capacitor size is decided so that each stage will have the same KT/C noise. The first stage accuracy requirement, which is the most stringent, is used for all stages. In Option II, the same capacitor size is used as in Option I. A different stage accuracy requirement is applied to each stage. In a pipeline ADC , the later stages have a more relaxed accuracy requirement than in the front stage. In Option III, with the same stage accuracy requirement as in Option II, only the capacitor size is scaled down along pipeline stages by a scaling factor.

4.3.3 Analysis Results

Figure 4.4: Simulation results of Option I analysis. (In (a) and (b) the individual (smaller) bars within a group represent a stage of the ADC)

In Option I, the size of the capacitors was chosen so as to have the same kT/C noise at each stage. All architectures have the same total input referred noise. Total input referred noise is set to a small enough value so that all architectures can yield 10 -bit resolution. The total capacitor size in each pipeline architecture is shown in Figure 4.4(b). The x -axis represents the number of different pipeline architectures listed in Table 4.2.

Each bar consists of several thin bars that represent different stages in one architecture. The same principle of graphical representation is also applied to other graphs.

Total capacitor size of each stage is shown in Figure 4.4(b). Total capacitor size of each stage is the same in order to have the same kT/C noise. Notice that capacitor size in architectures (1) and (4) is larger than others. The noise contribution of the later stages to the total input referred noise is large when a small number of bits per-stage is used for the first stage. Hence, capacitor size has to be larger than the capacitor size in other architectures AND? with a large number of bits per stage in the first stage. Otherwise, the total input referred noise of the architecture containing a small number bits per stage in the first stage is greater than in the others.

The current consumption of a MDAC is shown in Figure 4.4(a). We can observe that a large number bits per-stage consumes more current than a small number bits per stage. This is because large transconductance is required to keep a small settling time constant that meets speed requirement. Otherwise, the settling time constant is increased by the small feedback factor of a large number of bits per stage and eventually becomes unable to meet the speed requirement.

The total current consumption of each architecture is shown in Figure 4.4(c). In this time, the current consumption of comparators is included. A power ratio of 10 is assumed to estimate the current consumption of comparators [7]. The power ratio is defined as the ratio between current consumed by a MDAC and current consumed by each comparator in the same stage. As a result, we can see that architecture (5) dissipates less power than the others in the Option I analysis.

Figure 4.5: Simulation results of Option II analysis
In Option II, the capacitor size is unchanged from Option I. However, a different stage accuracy requirement is applied to each stage instead of the first-stage accuracy requirement being used for all of stages as in Option I. Since the stage accuracy constraint is getting relaxed as a stage moves down to the last stage, power consumption is reduced by this fact. We can observe this effect from the current consumption of the architecture (1) in Figure 4.5(a). Current consumption gets lower in the later stages due to the relaxed stage accuracy requirement. As a result, the total current of all architectures is reduced and, again, architecture (5) dissipates less power than the others.

Figure 4.6: Simulation results of Option III analysis
In Option III, the stage accuracy requirement used in Option II is retained, and the only change is in capacitor size, which is done with a capacitor-scaling factor. We know now from Option II analysis that power dissipation can be reduced by applying relaxed stage accuracy constraint to later stages. We can decrease power consumption even more by reducing capacitor size in the later stages but at the cost of increasing the total input referred noise. The total input referred noise is increased because the capacitor size is reduced to save power consumption. Eventually, it is a trade-off between noise and power dissipation. In this analysis, a 20% increase of the total input referred noise is allowed and the capacitor scaling factor of each architecture is found respectively to meet the increased noise requirement. We can see the capacitor size in Figure 4.6(b) is
different from that of Figure 4.4(b) and of Figure 4.5(b). Note that capacitor size in the later stages of those architectures with a large number of bits per stage in the first stage is much smaller than others; this is because much aggressive capacitor scaling down is possible in those architectures. Likewise, current consumption in those architectures is small since amplifiers do not need to drive large capacitors. The final total current result is different from those of the previous analyses. Architectures with large resolution in the first stage dissipate less power than ones with small resolution in the first stage. From analysis results in Figure 4.6, architecture (5) dissipates less power than others. Although more aggressive capacitor scaling is done in architectures (6) and (9); those architectures consume more power than architecture (5). That is because of the power consumption of comparators in 4-bits and 5-bits per-stage. First of all, the number of comparators in 4-bit and 5 -bit per-stage is larger than 3-bit per-stage. Since the accuracy requirement for comparators in 4-bits and 5-bits per-stage is more stringent, they need more than one preamplifier in a comparator. Thus, comparators in 4-bits and 5-bits per-stage consume much more power than those in 3-bits per-stage. We can also observe that architectures with a large number of bits per-stage in the first stage and 2-bits per-stage for the rest of stages tend to consume less power. This is because not only the power dissipation of comparators in 2-bits per-stage is small but also the capacitive loading of comparators to a previous stage is also small.

4.4 SUMMARY

This chapter has presented a systematic approach to the design of a low-power pipelined ADC. Important design requirements of a MDAC in a pipelined ADC have
been carefully investigated. These requirements include finite op-amp gain, finite setting time, and noise. These are important parameters that determine overall power dissipation of a pipeline ADC. A power optimization algorithm was developed to find an appropriate resolution per stage in terms of low power dissipation. The numerical results are analyzed and the 3-2-2-2-2-2-2-2 architecture was chosen for a 10-bit low-power pipelined ADC. A detailed description of the design of the ADC will be presented in the next chapter

CHAPTER 5 : DESIGN OF A PROTOTYPE ADC

In the previous chapter, the 3-2-2-2-2-2-2-2 architecture was selected for a lowpower 10-bit pipeline ADC. This chapter describes the design of a 10-bit, 100Msamples/s pipeline ADC with the architecture chosen in the previous chapter. The proposed ADC is designed in a $0.18 \mu \mathrm{~m}$ CMOS technology with five metal layers, two poly-silicon layers and is operated with a $1.8-\mathrm{V}$ supply voltage.

5.1 SHA

Most pipelined ADCs need an SHA to acquire a high-frequency input signal. Without it, a pipeline ADC will have an error caused by clock skew between a sampling network of a first-stage MDAC and comparators in a first-stage sub-ADC. This error will have the same effect on a pipeline ADC as if it were a comparator offset voltage, and the error becomes larger as the input frequency gets higher. If a SHA exists in a pipelined ADC, an input signal is sampled and is kept constant during a holding clock phase. Since the sampled input remains constant, a small timing difference between an MDAC and a sub-ADC is no longer a problem.

Because a SHA is placed at the front in a pipeline ADC, its design is crucial to the overall performance of an ADC. Hence, the design requirement of an SHA must be at least equal or be even more stringent than the overall design requirement of an ADC. Two

SHA topologies are widely used in pipelined ADCs. One is known as a chargetransferring SHA, the other is known as a flip-around [17]. The latter was chosen for this prototype design because of its advantages over the charge-sharing topology. The fully differential circuit implementation of a flip-around SHA is shown in Figure 5.1.

When parasitic capacitance is ignored, the feedback factor β of a flip-around SHA is 1 , whereas the feedback factor of a charge-transferring SHA is 0.5 . Because the feedback factor of a flip-around SHA is twice as large, it only requires a half of op-amp gain bandwidth to produce the same closed-loop bandwidth. Thus, the same performance can be achieved with much less power by using a flip-around topology. A flip-around topology also has lower noise than a charge-transferring topology. The total inputreferred noise power of a flip-around SHA can be written as

$$
\begin{equation*}
\overline{v_{n, t}^{2}}=\frac{K T}{C_{S}}+\frac{8 \pi \cdot K T}{3 \cdot C_{L}} \tag{eq.5.1.1}
\end{equation*}
$$

where C_{L} is the output load capacitance of an op-amp. The first-term of total noise power is wideband $\frac{K T}{C}$ noise from the channel resistance of the sampling switches and the second-term is thermal noise from an op-amp. The total input referred noise power of a charge-transferring SHA is twice as large as that of a flip-around SHA. Since a fliparound SHA has lower noise, it needs smaller capacitor size to achieve the same input referred noise power. This results in power saving for a flip-around SHA.

Figure 5.1: Fully differential flip-around SHA and its clock phases

During $\Phi 1$ clock phase, an input signal is applied to a sampling capacitor C_{s}. At the falling edge of $\Phi_{1 p}$ clock phase, the applied input signal is captured on the sampling capacitor C_{s}. During Φ_{2} clock phase, the bottom plate of the sampling capacitor is connected to the output of an amplifier holding the sampled input voltage. An amplifier for a flip-around SHA should have a large input common-mode range when the input common-mode level is different from the output common-mode range. Since in this design both the input and the output common-mode level is set to the middle of a supply voltage, there is no concern about the input common-mode range of an amplifier.

Transmission gates composed of n - and p -MOS transistors in parallel are used for switches to ensure that the switches are conducting throughout the node voltage swing. The size of transistors for the transmission gates is carefully chosen to satisfy the following equation to guarantee accurate settling.

$$
\begin{equation*}
f_{c l k}<\frac{1}{14 R_{o n} \cdot C_{s}} \tag{eq.5.1.2}
\end{equation*}
$$

where $f_{c l k}$ is the sampling frequency, $\mathrm{R}_{\text {on }}$ is the turn-on resistance of CMOS transmission gate and C_{s} is the sampling capacitor.

The open-loop gain of an op-amp for a SHA needs to be larger than 72 dB to avoid any error from finite amp gain. Assuming first-order linear settling for an op-amp, it takes about 8.3 time constants for the output of an op-amp to settle down within 0.25LSB in a 10-bit ADC. For a 100 MHz sampling frequency, the allocated time for settling is around 5 n seconds. Therefore, the closed-loop unity gain bandwidth of an op-amp is 264.2 MHz . Considering process variations, parasitic effects from the layout, and a non-ideal clock period, an op-amp should be designed to have higher unity gain bandwidth than the calculated value. The op-amp used in the SHA is a gain-enhanced folded-cascode op-amp. Detailed discussion about this op-amp can be found in a later chapter. Simulation results show that the op-amp for the SHA has an open-loop gain of 95dB and a closed-loop unity gain bandwidth of 450 MHz while dissipating about 4 mA .

5.2 MDAC

Two different MDACs are used in this prototype ADC One is a 2.5 -bit MDAC and the other is a 1.5 -bit. The 2.5 -bit MDAC is used only for the first stage of the pipeline and the 1.5 -bit MDAC is used for the rest of pipeline stages that are from the $2^{\text {nd }}$ stage to the $7^{\text {th }}$ stage. The circuit implementations of the 2.5 -bit and the 1.5 -bit MDAC are illustrated in Figure 5.2 and Figure 5.3, respectively. Basically, both MDACs consist of an op-amp, capacitors and switches. The two non-overlapping clocks, Φ_{1} and Φ_{2} are
required to drive the switches. The two extra clocks, $\Phi_{1 p}$ and $\Phi_{2 p}$ are used to reduce charge injection errors from switches.

Figure 5.2: Switched-capacitor circuit implementation of the 2.5-bit MDAC

Figure 5.3: Switched-capacitor implementation of the 1.5-bit MDAC

Figure 5.4: Non-overlapping clock phases

The operation of the 2.5-bit MDAC is as follows. During a sampling phase, Φ_{1} and $\Phi_{1 \mathrm{p}}$ clocks are high turning on switches $\mathrm{S}_{1} \sim \mathrm{~S}_{4}$. All of capacitors are connected to an input signal and the inputs of the op-amp are connected to a common-mode voltage. The sampling process is completed at the falling edge of clock $\Phi_{1 \mathrm{p}}$. The input signal is sampled on all capacitors. Then, Φ_{1} goes low, and switches $S_{1} \sim S_{4}$ are off. The charge injection from these switches does not change the charge on the capacitor since there is no DC path. During a holding phase, Φ_{2} clock is high. The capacitor C_{1} is now connected to the output of the op-amp and the rest of the capacitors are connected to $\mathrm{V}_{\text {refp }}$ or $\mathrm{V}_{\text {refn }}$ or V_{cm} depending on the output of the sub-ADC.

The output of the 2.5 -bit MDAC can be expressed as

$$
\begin{equation*}
V_{\text {out }}=\left(\frac{C_{1}+C_{2}+C_{3}+C_{4}}{C_{1}}\right) \cdot V_{\text {in }}+\left(\frac{C_{2}}{C_{1}} \cdot b_{1}+\frac{C_{3}}{C_{1}} \cdot b_{2}+\frac{C_{4}}{C_{1}} \cdot b_{3}\right) \cdot V_{\text {ref }} \tag{eq.5.2.1}
\end{equation*}
$$

Since $C_{1}=C_{2}=C_{3}=C_{4}=C$ and $b_{1}, b_{2}, b_{3}= \pm 1$ or 0 , the output can be written as

$$
\begin{equation*}
V_{\text {out }}=4 \cdot V_{\text {in }}+S \cdot V_{\text {ref }} \tag{eq.5.2.2}
\end{equation*}
$$

where $S= \pm 3, \pm 2, \pm 1$, and 0 are decided by the digital output from the sub-ADC.

The output can also be expressed as

$$
V_{\text {out }}= \begin{cases}4 \cdot V_{\text {in }}-3 \cdot V_{\text {ref }} & \text { if } V_{\text {in }}>5 / 8 \cdot V_{\text {ref }} \\ 4 \cdot V_{\text {in }}-2 \cdot V_{\text {ref }} & \text { if } 5 / 8 \cdot V_{\text {ref }}>V_{\text {in }}>3 / 8 \cdot V_{\text {ref }} \\ 4 \cdot V_{\text {in }}-1 \cdot V_{\text {ref }} & \text { if } 3 / 8 \cdot V_{\text {ref }}>V_{\text {in }}>1 / 8 \cdot V_{\text {ref }} \\ 4 \cdot V_{\text {in }} \text { if } 1 / 8 \cdot V_{\text {ref }}>V_{\text {in }}>-1 / 8 \cdot V_{\text {ref }} \tag{eq.5.2.3}\\ 4 \cdot V_{\text {in }}+1 \cdot V_{\text {ref }} & \text { if }-1 / 8 \cdot V_{\text {ref }}>V_{\text {in }}>-3 / 8 \cdot V_{\text {ref }} \\ 4 \cdot V_{\text {in }}+2 \cdot V_{\text {ref }} & \text { if }-3 / 8 \cdot V_{\text {ref }}>V_{\text {in }}>-5 / 8 \cdot V_{\text {ref }} \\ 4 \cdot V_{\text {in }}+3 \cdot V_{\text {ref }} & \text { if }-5 / 8 \cdot V_{\text {ref }}>V_{\text {in }}\end{cases}
$$

This input/output transfer function of the 2.5-bit stage is shown in Figure5.5.

Figure 5.5: Input/output transfer function of the 2.5-bit stage

Because noise is a very important factor in the design of MDACs, noise in a SC
MDAC will be discussed here. There are three different noise sources; 1/f noise, $\frac{K T}{C}$ noise and thermal noise from an op-amp. Since $1 / \mathrm{f}$ noise is quite small at high frequency, $\frac{K T}{C}$ noise from sampling switches and thermal noise from an op-amp will be the main concerns here. During clock phase Φ_{1}, only thermal noise from switches exists. The noise voltage sampled on the capacitors is given by

$$
\begin{equation*}
\overline{v_{n 1}^{2}}=\frac{K T}{C_{1}+C_{2}+C_{3}+C_{4}}=\frac{K T}{C_{\text {tot }}} \tag{eq.5.2.4}
\end{equation*}
$$

where $C_{\text {tot }}$ is the total sum of the sampling capacitors.
The total noise charge is

$$
\begin{equation*}
\overline{q_{n 1}^{2}}=\overline{v_{n 1}^{2}} \cdot\left(C_{1}+C_{2}+C_{3}+C_{4}\right)^{2}=K T \cdot C_{\text {tot }} \tag{eq.5.2.5}
\end{equation*}
$$

During clock phase Φ_{2}, this noise charge is transferred to the feedback capacitor generating an output voltage. The output voltage of the MDAC due to thermal noise from sampling switches is given by

$$
\begin{equation*}
\overline{v_{\text {out }, n 1}^{2}}=\frac{\overline{q_{n 1}^{2}}}{C_{1}^{2}}=\frac{K T \cdot\left(C_{1}+C_{2}+C_{3}+C_{4}\right)}{C_{1}^{2}}=\frac{K T}{C_{1}} \cdot \frac{1}{\beta} \tag{eq.5.2.6}
\end{equation*}
$$

where β is the feedback factor of the MDAC.
During the clock phase Φ_{2}, thermal noise from the op-amp dominates. The noise power at the output of the MDAC [17] can be found from

$$
\begin{equation*}
\overline{v_{\text {out }, n 2}^{2}}=\overline{v_{n, o p}^{2}} \cdot G_{n}^{2} \cdot B W_{n} \tag{eq.5.2.7}
\end{equation*}
$$

where $\overline{v_{n, o p}^{2}}$ is the noise power density of the amplifier, G_{n} is the noise gain and $B W$ is the
noise bandwidth. Assuming a single-stage amplifier, the noise power density of the amplifier is

$$
\begin{equation*}
\overline{v_{n, o p}^{2}}=4 K T \cdot \frac{4}{3 g_{m}} \tag{eq.5.2.8}
\end{equation*}
$$

where g_{m} is the transconductance of an input transistor of the amplifier.
The noise gain can be

$$
\begin{equation*}
G_{n}=1+\frac{C_{2}+C_{3}+C_{4}}{C_{1}}=\frac{1}{\beta} \tag{eq.5.2.9}
\end{equation*}
$$

and noise bandwidth is

$$
\begin{equation*}
B W_{n}=\beta \cdot \frac{1}{2 \pi} \cdot \frac{g_{m}}{C_{L}} \cdot \frac{\pi}{2}=\frac{1}{4} \cdot \beta \cdot \frac{g_{m}}{C_{L}} \tag{eq.5.2.10}
\end{equation*}
$$

where β is the feedback factor and C_{L} is the total output capacitance at the op-amp output. Hence, noise power at the output of the MDAC during clock phase Φ_{2} can be written as

$$
\begin{equation*}
\overline{v_{o u t, n 2}^{2}}=\frac{4}{3} \cdot K T \cdot \frac{1}{\beta} \cdot \frac{1}{C_{L}} \tag{eq.5.2.11}
\end{equation*}
$$

Total noise power at the output of the MDAC is the sum of noise power from both clock phases, Φ_{1} and Φ_{2} as shown in eq. 5.2.12.

$$
\begin{align*}
\overline{v_{\text {out }, \text { ot }}^{2}} & =\overline{v_{\text {out }, n 1}^{2}}+\overline{v_{\text {out }, n 2}^{2}} \tag{eq.5.2.12}\\
& =\frac{K T}{C_{1}} \cdot \frac{1}{\beta}+\frac{4}{3} \cdot K T \cdot \frac{1}{\beta} \cdot \frac{1}{C_{L}} \tag{eq.5.2.13}
\end{align*}
$$

The total input referred noise power of the MDAC is given by

$$
\begin{align*}
\overline{v_{\text {in }, \text { tot }}^{2}} & =\frac{\overline{v_{\text {out,tot }}^{2}}}{G_{\text {sig }}^{2}} \tag{eq.5.2.14}\\
& =\frac{K T}{C_{1}} \cdot \beta+\frac{4}{3} \cdot K T \cdot \frac{\beta}{C_{L}} \tag{eq.5.2.15}
\end{align*}
$$

$$
\begin{equation*}
=\frac{K T}{C_{\text {tot }}}+\frac{4}{3} \cdot K T \cdot \frac{\beta}{C_{L}} \tag{eq.5.2.16}
\end{equation*}
$$

Eq.5.2.16 indicates that the total input referred noise mainly depends on capacitors in MDACs. Although eq.5.2.16 is derived from the 2.5 -bit MDAC, it can be applied to any number of bit MDAC. Since the parasitic capacitance of an op-amp is not considered when eq.5.2.16 is derived, the actual amount of total noise will be slightly larger than represented in eq. 5.2.16. Thus, a little larger size of capacitor should be used to provide a margin of safety.

Speed, accuracy and noise requirements for the first stage in a pipelined ADC are most stringent. These requirements become relaxed as a signal goes down a pipeline. This less stringent stage requirement for the later stages in a pipeline ADC is used to decrease power consumption by scaling down the size of the capacitors. The scaling down of capacitor sizes results in reductions in the power dissipation of an op-amp in a MDAC because the op-amp has less capacitance load to drive. A 2.5-bit MDAC in a first stage allows more aggressive scaling than a 1.5-bit MDAC in a first stage, which leads more power saving.

Since reducing the size of capacitors increases thermal noise, capacitor sizes at each stage should be chosen carefully. The input referred noise of total and each stage should be smaller than the quantization noise of overall and each stage resolution, respectively.

5.3 Operational Amplifier

Op-amps in MDACs are core circuit components in a SC pipelined ADC. In order
to avoid limiting linearity performance from the non-idealities of op-amps, op-amps must have a sufficient DC gain and wide bandwidth so that output settles within 1/2 LSB to desired value in half a clock cycle.

The DC gain requirement of an op-amp can be obtained from eq. 4.1.3. Error portion due to finite op-amp gain should be smaller than 1/4 LSB of remaining resolution. The gain can be found from

$$
\begin{equation*}
\frac{1}{A \cdot \beta}<\frac{1}{4} \cdot L S B \tag{eq.5.3.1}
\end{equation*}
$$

The open-loop DC gain requirement of an op-amp in a first-stage is $A_{0}>72 d B$ with $\beta=\frac{1}{4}$. The actual op-amp gain should be at least 12 dB larger than this calculated value considering any process variation.

Similarly, an error due to finite gain bandwidth of an op-amp should be smaller than 1/4 LSB. Assuming a single pole system, an error is

$$
\begin{equation*}
e^{-t_{s} / \tau}<\frac{1}{2^{N_{r}+2}} \tag{eq.5.3.2}
\end{equation*}
$$

where t_{s} is allocated settling time, τ is a time constant, N_{r} is remaining resolution after a current stage in a pipeline.

A time constant is given by

$$
\begin{equation*}
\tau<\frac{t_{s}}{\left(N_{r}+2\right) \cdot \ln 2} \tag{eq.5.3.3}
\end{equation*}
$$

A time constant can be also written as

$$
\begin{equation*}
\tau=\frac{1}{\omega_{-3 d B, C L}}=\frac{1}{\beta \cdot \omega_{u, O P}}=\frac{1}{2 \pi \cdot \beta \cdot f_{u, O P}} \tag{eq.5.3.4}
\end{equation*}
$$

where $\omega_{-3 d B, C L}$ is the -3 dB frequency of a close-loop amplifier, $\omega_{u, O P}$ is the unity gain
bandwidth of an open-loop amplifier.
Substituting eq.5.3.4 into eq.5.3.3, the unity gain bandwidth can be found from

$$
\begin{equation*}
f_{u}>\frac{\left(N_{r}+2\right) \cdot \ln 2}{2 \pi \cdot \beta \cdot t_{s}} \tag{eq.5.3.5}
\end{equation*}
$$

For a 100 MHz clock operation, the time allowed for settling is around 5ns. The required unity gain bandwidth of an op-amp in a first-stage is 967.6 MHz .

A single-stage op-amp like a telescopic or folded-cascode op-amp would be a first choice here because it has wide gain bandwidth. However, the dc gain of a single-stage op-amp in a $0.18 \mu \mathrm{~m}$ CMOS technology can hardly be larger than 60 dB . Thus, a special technique known as a gain-boosting or a gain enhancement method $[33,34]$ is utilized to increase the DC gain of a single-stage op-amp. A gain-boosting op-amp is basically based on a cascode amplifier with an auxiliary boosting amplifier connected to a cascode transistor in order to increase the DC gain of the cascode amplifier. It is shown in Figure 5.6.

The output impedance of the gain-boosting cascode amplifier in Figure5.6 is given by

$$
\begin{align*}
R_{\text {out }} & =g_{m 2}\left(A_{\text {boost }}+1\right) \cdot r_{d s 1} \cdot r_{d s 2}+r_{d s 1}+r_{d s 2} \tag{eq.5.3.6}\\
& \cong g_{m 2}\left(A_{\text {boost }}+1\right) \cdot r_{d s 1} \cdot r_{d s 2} \tag{eq.5.3.7}
\end{align*}
$$

where $A_{\text {boost }}$ is the DC gain of an auxiliary boosting amplifier and $\mathrm{r}_{\mathrm{ds} 1}, \mathrm{r}_{\mathrm{ds} 2}$ is the output resistance of transistors M_{1}, and M_{2}, respectively. Without ($A_{\text {boost }}+1$), it is the output impedance of a cascode amplifier. Thus, the output impedance of a gain-boosting amplifier is increased by the gain of an added boosting amplifier, $A_{\text {boost }}$. As a result, the DC gain of a gain-boosted amplifier is increased by the same amount and is given by

$$
\begin{equation*}
A_{\text {tot }} \cong g_{m 1} \cdot r_{d s 1} \cdot g_{m 2} \cdot r_{d s 2} \cdot\left(A_{\text {boost }}+1\right) \tag{eq.5.3.8}
\end{equation*}
$$

Figure 5.6: Gain boosting cascode amplifier
The gain is increased by an additional gain stage without comprising output swing and the gain bandwidth of an original cascode amplifier. It is very crucial to pick up the right bandwidth of an auxiliary boosting amplifier because bandwidth has a great impact on the stability and settling behavior of the overall gain-boosting amplifier.

The transfer function of a cascode amplifier without an auxiliary boosting amplifier can approximately be written as

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}(s)=\frac{A_{0}}{\left(1+\frac{s}{\omega_{1}}\right)\left(1+\frac{s}{\omega_{2}}\right)} \tag{eq.5.3.9}
\end{equation*}
$$

where A_{0} is the DC gain of a cascode amplifier, ω_{1} is a dominant pole at the output node and ω_{2} is a first non-dominant pole at the source of transistor M_{2}. With an auxiliary boosting amplifier, the transfer function is given by

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{0}\left(A_{\text {boost }}+1\right)}{\left\{1+\frac{s}{\frac{\omega_{1}}{\left(A_{b}+1\right)}}\right\}\left\{1+\frac{s}{\omega_{2}}\right\}} \tag{eq.5.3.10}
\end{equation*}
$$

Assuming an auxiliary boosting amplifier has a single-pole response, $\mathrm{A}_{\text {boost }}$ can be written as

$$
\begin{equation*}
A_{\text {boost }}(s)=\frac{A_{\text {boost }}}{\left(1+\frac{s}{\omega_{3}}\right)} \tag{eq.5.3.11}
\end{equation*}
$$

where ω_{3} is the dominant pole of an boosting amplifier.
Substituting eq.5.3.11 into 5.3.10, then

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{0} \cdot\left(A_{\text {boost }}+1\right) \cdot\left\{1+\frac{s}{\omega_{3}\left(A_{\text {boost }}+1\right)}\right\}}{\left\{1+s \cdot\left(A_{\text {boost }}+1\right) \cdot\left(\frac{1}{\omega_{3}\left(A_{\text {boost }}+1\right)}+\frac{1}{\omega_{1}}\right)+\frac{s^{2}}{\omega_{1} \omega_{3}}\right\}\left\{1+\frac{s}{\omega_{2}}\right\}} \tag{eq.5.3.12}
\end{equation*}
$$

Assuming $\omega_{1} \ll \omega_{3} \cdot\left(A_{\text {boost }}+1\right)$,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{0} \cdot\left(A_{\text {boost }}+1\right) \cdot\left\{1+\frac{s}{\omega_{3}\left(A_{\text {boost }}+1\right)}\right\}}{\left\{1+\frac{s}{\omega_{3}\left(A_{\text {boost }}+1\right)}\right\}\left\{1+\frac{s}{\frac{\omega_{1}}{A_{\text {boost }}+1}}\right\}\left\{1+\frac{s}{\omega_{2}}\right\}} \tag{eq.5.3.13}
\end{equation*}
$$

The pole and zero at $\omega_{3} \cdot\left(A_{\text {boost }}+1\right)$ cancel each other. As a result,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{0} \cdot\left(A_{\text {boost }}+1\right)}{\left\{1+\frac{s}{\frac{\omega_{1}}{A_{\text {boost }}+1}}\right\}\left\{1+\frac{s}{\omega_{2}}\right\}} \tag{eq.5.3.14}
\end{equation*}
$$

The pole of the auxiliary boosting amplifier creates the pole and zero in the transfer
function of the cascode gain-boosting amplifier. However, since they are located at the same frequency, they cancel each other. Thus, the effect of the pole of the auxiliary amplifier cannot be seen in the transfer function in eq.5.3.14. The transfer function in eq.5.3.14 merely looks like a transfer function of a cascode amplifier with higher gain and higher output impedance. The gain Bode plot of gain boosted, auxiliary boosting and original main amplifiers is shown in Figure5.7.
A_{0} is the gain of the original cascode amplifier without gain, $A_{\text {boost }}$ is the gain of the auxiliary boosting amplifier and $\mathrm{A}_{\text {tot }}$ is the gain of the gain-enhanced cascode amplifier in Figure5.7. $\mathrm{A}_{\text {tot }}$ shows a single-pole response until $\omega<\omega_{2}$ as we can expect from eq.5.3.14. In order to get eq.5.3.13, $\omega_{1} \ll \omega_{3} \cdot\left(A_{\text {boost }}+1\right)$ is assumed. This is equivalent to the condition in which the unity-gain frequency $\omega_{u, b o o s t}$ of the auxiliary boosting amplifier should be larger than the -3 dB frequency ω_{1} of the original cascode amplifier.

The auxiliary boosting amplifier creates a closed-loop with transistor M_{2}. A stability problem might occur because there are two poles in the loop. One is located at the output of the auxiliary boosting amplifier and the other is at the source of transistor M_{2}. Because the latter is equal to the non-dominant pole ω_{2} of the original amplifier, the unity gain bandwidth of the auxiliary amplifier should be set lower than the first nondominant pole ω_{2} of the original amplifier. Although it has been previously shown that the pole and zero cancel each other under the assumption $\omega_{1} \ll \omega_{3} \cdot\left(A_{\text {boost }}+1\right)$, in a real situation a pole - zero doublet exists near the unity-gain frequency of the auxiliary boosting amplifier.

Figure 5.7: Bode plot of gain boosted, auxiliary boosting and original main amplifiers

The pole - zero doublet can degrade the settling performance of the amplifier because it increases a settling time. A slow settling problem due to the pole - zero doublet can be avoided if the time constant of the pole - zero doublet is smaller than the time constant of the gain-boosting cascode amplifier in a closed-loop form with feedback factor β. Therefore, a safe frequency range [33] for the unity-gain frequency of the auxiliary amplifier that will avoids instability and the slow settling problem is

$$
\begin{equation*}
\beta \cdot \omega_{u, \text { tot }}<\omega_{u, \text { boost }}<\omega_{2} \tag{eq.5.3.15}
\end{equation*}
$$

where $\omega_{u, t o t}$ is the unity-gain frequency of the gain-boosting amplifier, $\omega_{u, b o o s t}$ is the unity-gain frequency of the auxiliary boosting amplifier and ω_{2} is the first non-dominant
pole of the gain-boosted main amplifier. The upper limit guarantees stability and the lower limit prevents a slow settling due to the pole - zero doublet.

With this condition for the unity-gain frequency, the gain-enhancement technique is applied to implement op-amps for the SHA and MDACs. There are two choices for a main amplifier: One is telescopic, and the other is a folded-cascode amplifier. Although a telescopic op-amp has an advantage in terms of power dissipation because of fewer current branches, a folded-cascode op-amp is selected since its output swing is larger than that of a telescopic op-amp. A fully differential gain-enhanced folded-cascode amplifier is shown in Figure 5.8. This op-amp is used for all the MDACs and for the SHA in the prototype ADC. Since capacitor size is scaled down along a pipeline, op-amps are also scaled down in width and in current, which saves power and chip area.

There are two auxiliary boosting amplifiers, A_{1} and A_{2}. These boosting amplifiers are also fully differential folded- cascode configuration. The difference of these two amplifiers is the transistor type of a differential input pair. A_{1} has N -type and A_{2} has Ptype input stage as shown in Figure 5.9 and Figure 5.10. An additional transistor M_{3} is used to set the common mode voltages for the boosting amplifiers A_{1} and A_{2}.

A common mode feedback (CMFB) circuit is required for a fully differential folded-cascode main op-amp to set up common mode output voltage. A switched capacitor CMFB is not only a popular choice with switched-capacitor applications, but also it allows a larger output swing than a continuous time CMFB circuit. The SC CMFB circuit is illustrated in Figure 5.11. It consists of four capacitors and eight switches operated by two non-overlapping clocks. The common mode control voltage $\mathrm{V}_{\mathrm{cmfb}}$ is produced by capacitor C_{1}, which is the average of the output voltages, $\mathrm{V}_{\text {out }}$ and $\mathrm{V}_{\text {out- }}$

When the common mode output voltage of $\mathrm{V}_{\text {out }}$ and $\mathrm{V}_{\text {out- }}$ is too high, the control voltage V_{cmfb} goes up. Then, it brings up the gate voltage of $\mathrm{M}_{3}\left(\mathrm{M}_{7}\right)$ decreasing the common mode output voltage back to the required $\mathrm{V}_{\mathrm{CM}} . \mathrm{V}_{\mathrm{CM}}$ is set to be 0.9 V in this design. $\mathrm{V}_{\mathrm{b} 4}$ is a bias voltage for transistors M_{3}, and M_{7}. The simulation results show that the gainenhanced folded-cascode op-amp achieves a DC gain of 95 dB , a phase margin of 58.9°, a unity-gain bandwidth of 1.2 GHz and consumes around 6 mA . Simulation results are shown in Figure 5.12.

Figure 5.8: Gain boosted folded-cascode amplifier

Figure 5.9: N-type gain-boosting auxiliary amplifier (A_{2})

Figure 5.10: P-type gain-boosting auxiliary amplifier (A_{1})

Figure 5.11: Switched-capacitor common-mode feedback circuit
[]

Figure 5.12: Simulated frequency response of the gain-boosted folded-cascode amplifier

5.4 SUb-ADC And Comparator

This design uses three different sub-ADCs. They are all flash-type sub-ADCs. A 2.5 -bit sub-ADC is used in a first-stage and a 1.5 -bit sub-ADC is used from the $2^{\text {nd }}$ to $7^{\text {th }}$ - stage. For the last stage, a 2-bit sub-ADC is used. The single-ended version of a 2.5-bit sub-ADC is illustrated in Figure 5.13. It consists of six comparators, six reference tap voltages generated from a resistor string and a decoding logic that converts a thermometer code into a binary code. This type of architecture usually has a problem called "bubble" or "sparkle" [37]. This is caused by timing differences between comparators with offset voltages. For example, the output of comparators with a "bubble" problem can be 000101 instead of 000111 . Three-input digital NOR gates are used to suppress the effect of the bubble problem.

Each comparator consists of a preamplifier, a latch and a switched-capacitor circuit for processing a differential signal and offset cancellation. The preamplifier used in the 2.5-bit sub-ADC is shown in Figure 5.14. It is implemented with a NMOS differential input pair with diode-connected and cross-connected PMOS loads.

The gain of the preamplifier [37,60] is

$$
\begin{equation*}
A_{v}=\frac{g_{m 1}}{g_{m 3}} \cdot \frac{1}{1-g_{m 3 a} / g_{m 3}} \tag{eq.5.4.1}
\end{equation*}
$$

Figure 5.13: A single-ended version of the 2.5-bit sub-ADC

Figure 5.14: Preamplifier used in 2.5-bit sub-ADC
The cross-connected transistors $\mathrm{M}_{3 \mathrm{a}}$ and $\mathrm{M}_{4 \mathrm{a}}$ are used to increase the gain of the preamplifier. The second fraction of eq. 5.4.1 is a result from a positive feedback formed
by transistors $\mathrm{M}_{3 \mathrm{a}}$ and $\mathrm{M}_{4 \mathrm{a}}$. The gain of the preamplifier is around 10 large enough to suppress an offset voltage in a latch. For a 1.5-bit pipeline stage, a dynamic comparator [43,48] without a preamplifier is widely used because a 1.5-bit stage with a digital correction logic allows a comparator offset as large as $\pm V_{\text {ref }} / 4$. However, the offset voltage of a dynamic comparator can be larger than $\left|V_{\text {ref }} / 4\right|$ due to low power supply voltage in this design. Thus, a preamplifier is also used in a 1.5 -bit sub-ADC with a latch. The preamplifier is shown in Figure 5.15. It is identical with the one in Figure5.14 except for cross-connected transistors $\mathrm{M}_{3 \mathrm{a}}$ and $\mathrm{M}_{4 \mathrm{a}}$. The gain of the preamplifier [37,60,66] is given by

$$
\begin{equation*}
A_{v}=\frac{g_{m 1}}{g_{m 3}} \tag{eq.5.4.2}
\end{equation*}
$$

It is only decided by the ratio of NMOS and PMOS device dimensions. The gain is around four, enough to reduce the effect from the offset voltage of a latch.

A CMOS latch and an SR latch [59] are followed by a preamplifier. They are shown in Figure 5.16. The SR latch is used to hold previous CMOS outputs of the latch during the whole clock cycle and to prevent them from being reset in every clock cycle. The CMOS latch works in two modes: reset and regeneration. During its reset mode, a latch signal is high. The transistor M_{3} is turned-on forcing both outputs to be set to around V_{gg}. During this time, the current proportional to the voltage difference from the preamplifier is injected to the output nodes through transistors M_{6} and M_{9}. This will be used as the initial difference for the next regeneration mode. A regeneration mode is started immediately after the Latch signal goes low. Transistor M_{3} is opened, and M_{7} and M_{8} are pulled up to V_{dd}. A latch looks just like back-to-back inverters. The positive
feedback formed by back-to-back inverters amplifies an initial difference from a previous mode and causes the outputs to reach opposite CMOS levels. The time constant for regeneration is around 1.5 ns which is fast enough for 100 MHz operation.

Figure 5.15: Preamplifier used in 1.5-bit sub-ADC

Figure 5.16: CMOS latch and SR latch

5.5 Bias Circuit

The schematic of the bias circuits for op-amps is shown in Figure 5.17. Bias circuits establish quiescent voltages for transistors in op-amps so that their drain-source voltage is larger than their gate-source overdrive voltage. This ensure that all transistors remain in the saturation region and maintain high output resistance. Bias circuits also provide quiescent conditions for op-amps to have a wide output swing. A wide swing can be accomplished by making the drain-source voltages of transistors $\mathrm{M}_{11}, \mathrm{M}_{15}$ and M_{19} near the minimum but not so low as to go into the triode region. In order to set the drainsource voltages of M_{11} and M_{15} to the minimum, the gates of the NMOS cascode transistors, M_{12} and M_{16}, are biased to $V_{t h}+2 \cdot V_{o v}$, which is generated from transistors M_{9} and $\mathrm{M}_{10} . \mathrm{M}_{9}$ operates in a saturation region since it is diode-connected. M_{9} forces M_{10} into operate in a triode region. The W/L ratio of M_{10} is chosen such that its drain-source voltage is equal to $V_{o v}$. The same principle is also applied to the PMOS side. The $V_{b A N}$ and $V_{b A P}$ are used as the bias voltages for the auxiliary boosting amplifiers, A_{2} and A_{1} in Figure5.8. Then, the auxiliary amplifier A_{2} drives the gates of M_{4} and M_{8} to make the drain-source voltages of M_{3} and M_{7} equal to $V_{o v}$, which maximizes the output swing of the bottom side. The upper side's output swing is maximized in the same way by the auxiliary amplifier $A_{1} . V_{b 4}$ is used as the bias voltage for the switched-capacitor CMFB circuit in Figure5.11. The master current is generated externally and is distributed to all stages by current mirrors to reduce the effect of a supply line's voltage drop.

Figure 5.17: Schematic of the bias circuit

5.6 Clock Generator

A schematic of the clock generator circuit is shown in Figure 5.18. It is driven by a reference clock provided from an external source. Two non-overlapping clocks are
generated from it to operate switched-capacitor circuits. The non-overlapping interval is created by a propagation delay in inverter chains. An additional pair of delayed clock phases is also generated for a bottom-plate sampling technique to reduce charge injection errors. Clock phases are distributed by four local clock generators instead of one global clock generator. This is done to reduce the effect of clock skew due to interconnections in the layout. Each local clock generator is driven by a single master clock to synchronize between stages. To minimize clock skew, the length of the clock lines are matched as much as possible and the tree structure of the inverter chain is used to distribute the clock from the master clock to improve speed and accuracy. The timing diagram of the clock generator is shown in Figure 5.19.

Figure 5.18: Non-overlapping clock generator

Figure 5.19: Timing diagram of the clock generator

5.7 SIMULATION RESULTS

After integrating all the building blocks, simulations for the designed pipeline ADC are conducted at the transistor level. A $2-\mathrm{MHz}$ input signal is sampled at $100-\mathrm{MHz}$. Simulation results show that the designed pipeline ADC achieves the SNR of 59.2 dB and the SNDR of 58.6 dB , which demonstrate successful design of each individual building block.

(f/fs)
Figure 5.20: FFT spectrum of the full chip simulation

5.8 LAYOUT DESIGN

An experimental prototype chip has been fabricated in a $0.18 \mu \mathrm{~m}$, double-poly, five metal CMOS technology through the National Semiconductor Corp. The layout of the whole chip is shown in Figure 5.21. The total chip area is 2.35 mm x 3.45 mm with ESD pads. The active area without EAD pads is about $2 \mathrm{~mm}^{2}$. The fully differential inputs are located at the far left of the chip. A single 100 MHz clock is located at the bottom, and digital output drivers are at the right side of the die. In order to reduce digital noise coupling, the analog block is placed as far as possible from the digital block. Guard rings are placed around the digital circuits to prevent digital noise from going into sensitive analog blocks. When a line crossing between an analog signal and a digital signal is unavoidable, an analog signal line is routed with metal 2 and a digital signal line is routed
with poly. Metal 1 is inserted between two layers as a shielding ground plane. Noise coupling through the power supply line is decreased by using separate supplies for analog and digital circuits. An analog supply is used for providing power to the op-amps and to the preamplifiers in comparators. Latches, clock generators, and digital logic circuits are powered by an digital supply. There is another digital supply used to power ESD circuits and digital output drivers.

Reference voltages and common mode voltage are provided externally and distributed through the chip. Wide metal lines are used for the supplies, voltage references and the common mode voltage to reduce IR drop which is an unwanted voltage drop caused by the parasitic resistance of a metal line. If possible, to lower metal resistance, the double metal layers are used for power and ground supplies. A commoncentroid technique is used for the layout of the input devices of the op-amps to minimize offsets. A common centroid layout technique decreases the gradient effect by averaging out gradient factors out.

Capacitor-arrays are laid out using a common centroid layout technique to minimize the mismatch caused by the processing gradient. Dummy capacitors are placed along the outsides of the capacitor-arrays to ensure uniform etching of the four sides of the capacitors and the equal fringing field for all capacitors. An N -well is placed under the capacitor-arrays to reduce noise from the substrate.

Figure 5.21: Layout of the prototype ADC

5.9 SUMMARY

This chapter has presented the design of a low-power 10-bit, 100-Msamples/s pipelined ADC with 3-2-2-2-2-2-2-2 architecture. A detailed description of the circuit components of the proposed ADC is given. The circuit components include SHAs, MDACs, op-amps, sub-ADCs, comparators, bias circuits, and clock generators. Lastly, simulation results are presented, followed by a description of the layout of the proposed ADC.

CHAPTER 6: EXPERIMENTAL
 RESULTS

The proposed pipeline ADC described in the previous chapter was fabricated in a $0.18-\mu \mathrm{m}$ CMOS process. In the first section of this chapter, the evaluation board and measurement setup for the proposed chip are described. Then the experimental test results obtained from the proposed chip are presented.

6.1 EvAluation Board and Test Setup

A diagram of the measurement setup to evaluate the proposed chip is shown in Figure 6.1. The proposed chip is packaged in a 48-pin Quad Flat Package (QFP) for its higher speed characteristics. The packaged chip is mounted on a Printed Circuit Board (PCB) and soldered directly onto the board for better electrical contact. A four-layer PCB is designed to provide a platform that offers multiple testing points for evaluation of the proposed chip. The top and bottom layers are used for signal paths and for soldering components. The two middle layers are used for ground and power supply. Any unused area in the two outside layers is also used for ground. All power supplies and biasing lines are decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ tantalum capacitors. They are placed as closed to the pins of the QFP as possible. The chip has three independent power supplies and grounds: two for analog and digital blocks and one for the output drivers. The digital output drivers are powered by a 3.0 V supply to make the output
signal of the ADC high enough so that the output buffer can process it properly. A differential input signal is generated by a transformer. A single-ended signal from a signal source is applied to the primary winding of the transformer and a differential input signal is obtained from the secondary side by connecting the center tap to a common mode voltage. Reference voltages are generated on the board. A low-noise voltage regulator is used to generate a reference voltage that is buffered by low-noise amplifiers to produce the reference voltages as well as the common mode voltage. The low-noise amplifier is powered by a $\pm 5 \mathrm{~V}$ supply. Potentiometers are used to adjust the reference voltages and the common mode voltage. The clock signal is provided by an external signal generator. Both square wave and sine wave signals can be applied to the board. A sine wave signal is converted to a square wave by digital logic circuits on the board.

The digital output of the proposed ADC is buffered with an output buffer to the drive large parasitic capacitance of the lines on the board and probes from the logic analyzer. The digital outputs of the proposed ADC are captured by the logic analyzer. A clock signal is also provided to the logic analyzer to synchronize with the ADC. A photograph of the PCB used in the experimental evaluation is shown in Figure 6.2.

Figure 6.1: Diagram of the measurement setup

Figure 6.2: Photograph of the evaluation board

6.2 TEST RESULTS

A code density test [35] was conducted to obtain static linearity of the proposed ADC. The measured DNL and INL are shown in Figure 6.4 and 6.5. From the figures, the maximum value of DNL and INL are 0.5 LSB and 0.75 LSB at 8 bit level, respectively. The dynamic performance of the proposed ADC is measured by analyzing a Fast Fourier Transform (FFT) of the digital output codes for a single input signal. Figure 6.6 illustrates the spectrum of the output codes of the ADC with an input frequency at 2.1 MHz sampled at 80 MHz with power supply of 1.8 V . The sampling frequency of 80 MHz is used because it is the highest frequency than can be generated from the HP 8656B signal
generator. The SNR is approximately 47 dB and the SNDR is around 44.4 dB . The THD is -51.1 dB and the SFDR is 54 dB . The largest spike, other than the fundamental input signal, is the third harmonic of the input signal and is about 54 dB below the fundamental signal. Figure 6.7 illustrates the spectrum with 33.3 MHz input frequency sampled at 80 MHz. The SNR is 45.6 dB and the SNDR is 41.5 dB . The THD is -42 dB and the SFDR is 47 dB . Figure 6.7 illustrates that dynamic performance is more degraded with a higher input signal. This degradation is mainly due to the nonlinear resistance of the sampling switches. At lower input frequency, this degradation can be neglected since the bandwidth of the sampling circuits is much higher than the input signal. However, with a higher frequency input signal, distortion caused by the nonlinear resistance of the sampling circuit is increased and decreases dynamic performance. The problem can be reduced by using bootstrapped switches [55]. The SNR and SNDR as a function of input frequency are shown in Figure 6.3. The measured results are summarized in Table 6.1

Table 6.1: Summary of measurement results

SNR	47 dB
Power dissipation (analog)	45 mW
Input voltage	$1 \mathrm{~V}_{\mathrm{pp}}$
max INL/DNL	$0.75 / 0.5 \mathrm{LSB}$
Die Area	$2 \mathrm{~mm}^{2}($ without ESD pads)
Technology	$0.18 \mu \mathrm{~m}, 2$-poly, 5-metal
Power Supply	1.8 V

Figure 6.3: SNR and SNDR versus input frequency

Figure 6.4: Measured DNL

Figure 6.5: Measured INL

Figure 6.6: FFT spectrum for $\mathrm{F}_{\text {in }}=2.1 \mathrm{MHz}$

Figure 6.7: FFT spectrum for $\mathrm{F}_{\text {in }}=33.3 \mathrm{MHz}$

The SNR and SNDR of the proposed ADC are smaller than the theoretical maximum value. A couple of reasons account for these differences. One reason is parasitic capacitance generated from the layout. Extra parasitic capacitance can cause a problem at a sensitive node such as the input of op-amps. This parasitic capacitance decreases the feedback factor resulting in an increased settling time constant. Thus, the output of the op-amps cannot reach the desired value with appropriate accuracy. Clock skew, which is the difference between the real arrival time of a clock edge and its ideal arrival time of a clock edge, can also be caused by parasitic capacitance of a clock interconnection wire. Clock skew between a sub-ADC and a MDAC can act like an offset in comparators. The layout of the ADC can be better optimized with post-layout simulation so that the parasitic capacitance of the layout can be minimized.

The non-idealities of clock are another reason for the limited performance of the proposed ADC. The non-idealities of the clock include clock jitter, non-overlapping period time, finite rising and fall time, and unsymmetrical duty cycle. The three latter errors reduce the time allocated for the setting time of an op-amp's output. These errors either increase the noise floor or cause distortion in the digital output spectrum resulting in decreased SNR and SNDR. Clock jitter [38] is a random variation in time that decides when to sample the input signal in a SHA. A condition for clock jitter in a ADC is given by

$$
\begin{equation*}
\Delta t<\frac{1}{\pi \cdot f \cdot 2^{N}} \tag{eq.6.3.1}
\end{equation*}
$$

where Δt is clock jitter, f is an input frequency and N is the resolution of an ADC. As an input frequency and resolution increase, the requirement for clock jitter is getting more stringent. In other words, a clock jitter error will degrade the SNR even more as an input frequency approaches Nyquist input frequency.

As for other reasons for the ADCs limited performance, digital switching noise ranks first. During the switching of digital circuits, the current is drawn from power supply lines. Ideally, neither the supply or ground lines has any impedance. However, because integrated circuits needs to be packaged, parasitic impedance such as resistance and inductance occurs from the leadframe and bondwires. Thus when circuits inside a package draw current, this current has to go through this parasitic impedance from the outside of the package. A voltage drop will occur because of impedance and is given by

$$
\begin{equation*}
V_{L}=L \cdot \frac{d i}{d t} \tag{eq.6.3.2}
\end{equation*}
$$

where di is the current drawn from the circuits and L is the parasitic inductance of the package. This voltage drop causes a difference between on-chip and off-chip supply voltages. The parasitic inductance of a package interacts with an on-chip parasitic capacitance creating ringing on the supply lines. Therefore, a disturbance exists on the power supply and ground lines because of the parasitic impedance of a package. This disturbance is referred to as switching noise. Switching noise produced in digital circuits can couple into sensitive analog circuits through the substrate. It affects transistor currents by changes in the threshold voltage due to body effect and by capacitive coupling into the gate, source and drain of transistors. This limits the analog precision that is required to design an ADCs with a desired resolution. The SNR can be significantly degraded by substrate switching noise and the SNR can be reduced as much as 20% as reported from [54].

One of the ways to suppress switching noise is to reduce the parasitic inductance of a package by using multiple pins for power supply and ground lines. Since parasitic inductance per pin is strongly dependent on the type of a package, using a special package with low parasitic inductance such as Leadless Ceramic Chip Carriers (LCCC) also can help to reduce switching noise. Common ways to reduce switching noise in terms of layout are using physical separation between analog and digital circuits and placing guard rings around each section. These methods work effectively on a lightly doped substrate. However, in this proposed design, CMOS processing with an eptaxial layer [50] on a heavily doped bulk substrate is used due to its excellent ability to suppress latch-up. Because of its low-resistivity in the substrate, most of the switching noise injected from digital circuits travels through the substrate and goes directly into the
analog circuits. Thus, on a heavily doped substrate, physical separation of analog and digital circuits and installing guard rings around them are not as effective as when these same solutions are employed on lightly doped substrate [50].

On-chip decoupling capacitors can be used to reduce switching noise on power supply lines. Decoupling capacitors act like local power supplies during the switching instant. Thus, most of the current can be drawn from decoupling capacitors instead of directly from the power supplies. That means a reduction in the current from an off-chip supply flowing through the parasitic impedance of a package. Therefore, switching noise associated with the current is also reduced. However, the value of on-chip decoupling capacitor should be chosen carefully because of the potential resonance caused by a LC tank composed of parasitic inductance and a decoupling capacitor. A resonance frequency should be located far away from the system clock frequency. Another method is to put a series resistor with a decoupling capacitor. This will reduce the peak of the resonance and damps the oscillation [63].

All digital circuits in this design have a single-ended structure because of its simplicity and wide output voltage swing. Switching noise from this conventional CMOS static logic circuit can be reduced by using a fully differential source-coupled structure. Power supply current remains constant due to differential circuit structure. Among digital circuits in the design, digital output buffers create more switching noise since they have larger size in transistors to drive large output loads and wider swing because they have high supply voltage. Hence, the significant potion of switching noise can be reduced if switching noise from the output buffers is reduced. Output buffers with reduced input swing and a fully differential structure [63] can minimize switching noise by canceling
noise coupled into the substrate through outputs due to its balanced structure. However, twice as many pins are required compared with single-ended output buffers.

A full chip simulation with these error sources was conducted. The input frequency of $2-\mathrm{MHz}$ is sampled at $80-\mathrm{MHz}$. Parasitic inductance is placed on the power supply, ground and reference voltage lines. The estimated parasitic capacitance is added to the input of the op-amps and to the clock interconnection wire. A longer rising/fall time and non 50% duty cycle is applied to the clock signal. Substrate switching noise is modeled as the sum of sinusoidal signals at different frequencies with different amplitude over a large frequency range [69]. This noise source is applied to a bulk node of transistors in the op-amps and comparators. The simulated output spectrum is shown in Figure 6.8. The SNR is 48 dB and the SNDR is 45.2 dB . The distortion in the spectrum is caused by the parasitic capacitance of the layout and the non-idealities of the clock. The noise floor of the spectrum is increased by switching noise. As was expected, most of the SNR degradation is due to switching noise from the digital circuits.

Figure 6.8: Simulated FFT spectrum with error sources

6.3 SUMMARY

This chapter presented a design of the evaluation board and a description of the measurement setup for the proposed ADC. The measurement results for the fabricated chip were presented, followed by a discussion of improvements that could be made to the fabricated chip.

CHAPTER 7: CONCLUSION

The explosive growth of portable multimedia devices has generated great demand for low power ADCs. With an increasing trend to a system-on-chip, an ADC has to be implemented in a low-voltage submicron CMOS technology in order to achieve low manufacturing cost while being able to integrate with other digital circuits. In this work, the design and implementation of a low-voltage low-power $10-$ bit $100-\mathrm{MHz}$ pipelined ADC in a $0.18 \mu \mathrm{~m}$ CMOS process with a $1.8-\mathrm{V}$ supply voltage was presented.

Table 7.1: Comparison of the large and small number of bits per-stage

Resolution	Large	Small
\# of stage	Small	Large
Speed	Slow	Fast
Power dissipation per stage	Large	Small
Capacitor scaling	Aggressively	Modest
Component mismatch	Less sensitive Comparator Pre-amp + dynamic comparator increasing power dissipation	Densitive Damic comparator - large offset power
	dissipation	

The number of resolutions per-stage plays an important role in determining the overall power dissipation of a pipeline ADC. The pros and cons for both a large and a small number of bits per-stage are summarized in Table 7.1. When a small number of bits per-stage is used for a single stage, power dissipation per stage is small because of a large feedback factor. The power dissipation of the comparators in a small number of bits perstage is also small since simple dynamic comparators can be used due to relaxed comparator requirement. The power dissipation per stage of large number of bits perstage is large due to a small feedback factor of a MDAC. The power dissipation of comparators with a large number of bits per-stage is also large since more than one stage of a preamplifier is often needed for higher accuracy. However, the overall power consumption of a pipeline ADC can be smaller because aggressive capacitor scaling is possible with a large number of bits per-stage. Thus, it is not easy with mere qualitative comparisons to decide which one is the better choice for low-power pipeline ADCs. It is an even more complicated and difficult decision when important design parameters like DC gain, bandwidth of the op-amps, and total thermal noise are considered. Therefore, a numerical power optimization algorithm was developed using all important design parameters considered as a way to decide which approach performs better for lower power dissipation. So far, most discussions in the literature about pipeline architecture applications with low power dissipation have focused on architectures with an identical number of bits per-stage. In this work, we considered both identical and non-identical number of bits per-stage. The numerical algorithm developed for this work was applied to a $10-$ bit $100-\mathrm{MHz}$ pipeline ADC and used to compare the nine most likely pipeline architectures. The result of this analysis was that the 3-2-2-2-2-2-2-2 architecture yielded
the lowest power dissipation. 3-bits resolution in the first stage allows capacitors to be scaled down more aggressively than an architecture with all identical 2-bits per-stage. Power consumption is decreased because the load capacitance of the op-amps is reduced. The main reason for selecting the 3-2-2-2-2-2-2-2 architecture is the power saving thanks to aggressive capacitor scaling of 3-bit per-stage was more than increased power dissipation by a lower feedback factor of a 3-bit per-stage. Although more capacitor scaling is possible with architectures having 4-bits and 5-bits in the first stage, the power dissipation of comparators in those architectures increases significantly because of the larger number of comparators. Also each comparator in those architectures dissipates more power because a multi-stage preamplifier is usually used due to higher accuracy requirement. Architectures with a non-identical number of bits per-stage (high resolution in a first stage and low resolution in subsequent stages) tend to dissipate less power. The capacitive loading effect of a small number of bits per-stage to an op-amp in a previous stage is much less than a large number of bits per-stage. The numerical power optimization algorithm developed in this work is able to provide more accurate comparison of different pipeline architectures than any comparative study reported so far. With the program developed here, a low-power pipeline architecture can be found with any desired speed, resolution and technology.

A low-power low-voltage pipeline ADC with 3-2-2-2-2-2-2-2 architecture was designed and implemented in $0.18 \mu \mathrm{~m}$ CMOS process. First, all non-idealities caused by building blocks and their effect on an ADC were carefully investigated. Important design parameters were calculated for circuit design of the building blocks. Advanced submicron CMOS technology poses a huge challenge to analog circuits such as op-amps due to low
power supply and low intrinsic gain. A folded-cascode configuration was selected for the op-amps because of its high-speed capability and medium output swing. A gainenhancement technique was applied to a folded-cascode amplifier and its frequency response was analyzed in detail to design fast, stable op-amps for a SHA and MDACs.

The analysis, design and simulation of the proposed pipeline ADC have been carried out at both system and circuit levels. The performance of the proposed ADC was evaluated after fabrication and packaging. The proposed ADC chip was housed with the 48-pin QFP packaging and was mounted on a 4-layer evaluation board designed to facilitate measurements. The chip area for the ADC is 2.35 mm X 3.45 mm including ESD pads. Most of the area is occupied with ESD pads because the core area without pads is only $2 \mathrm{~mm}^{2}$. The analog core of the chip consumes 25 mA with a 1.8 V supply voltage. Power was minimized with the right selection of the per-stage resolution based on the results of the power optimization algorithm and by scaling down the sampling capacitor size in subsequent stages.

Figure 7.1 illustrates the Figure of Merit (FOM) of reported ADCs versus their sampling rate. The commonly used FOM for data converters is given by

$$
\begin{equation*}
F O M=\frac{P}{2^{E N O B} \times F_{s}} \quad(p J) \tag{eq.7.1}
\end{equation*}
$$

where P is power consumption, ENOB is the effective number of bits and F_{s} is a sampling rate of ADCs. The unit is in pico-Joule. It represents the energy used to achieve a given performance. The smaller FOM number means more power efficient ADCs. (A) and (B) in Figure 7.1 represent the simulated and measured results of the proposed ADC, respectively. The FOM of the proposed ADC is lower than most of the reported ADCs at high speed sampling frequenies.

Figure 7.1: FOM versus sampling rate
The contribution of this work is to develop a low-power 10-bit 100-Msamples/s pipelined ADC with 3-2-2-2-2-2-2-2 architecture in a $0.18 \mu \mathrm{~m}$ CMOS process. Highspeed, gain-enhanced, folded-cascode op-amps are used to achieve a 10-bit 100Msamples/s pipeline ADC with a 1.8 V supply voltage. Low-power dissipation is achieved by the right selection of the per-stage resolution based on the result of the developed power optimization algorithm and by the scaling down of the size of the sampling capacitor in subsequent stages. The power optimization algorithm was developed for a switched capacitor pipeline ADC to decide more accurately what resolution per stage is a better choice for lower power dissipation. Lastly, the reasons why the experimental data did not agree with the simulated data were identified and future improvements are suggested.

For more power saving, a dynamic biasing circuit technique [70] can be applied for a future design. The basic idea of this technique originates from the fact that a MDAC is
in an idle state when it is in sampling phase. Thus, theoretically amplifiers can be turned off during half of the clock cycle. However, since there is a turn-on recovery time of opamps, they are turned off only during the small portion of half of clock cycle. Also partial biasing circuits for op-amps are always on to minimized the turn-on recovery time.

This work can easily be extended to higher resolution in the future. For higher resolution, only the front stages such as a SHA and a first-stage need to be designed with higher accuracy. The rest of the stages can be re-used from this work, thus saving design and layout time. However, in order to design pipeline ADCs with more than 10-bit resolution, usually some sort of special schemes such as capacitor error-averaging [51,52], digital calibration [46] and oversampling techniques [71] are required to compensate for the process mismatch.

References

[1] S. H. Lewis, "Optimizing the Stage Resolution in Pipelined, Multistage, Analog-toDigital Converters for Video-rate Applications," IEEE Trans. Circuits and Systems-II, vol. 39, pp. 516-523, Aug. 1992.
[2] S. H. Lewis, and P. Gray, "A pipeline 5-Msample/s 9-bit analog-to-digital converter," IEEE J. Solid-State Circuits, vol. SC-22, NO. 6, pp. 954-961, Dec. 1987.
[3] W. Song, H. Choi, S. Kwak, and B. Song, "A 10-b 20-Msample/s low-power CMOS ADC,"
[4] L. Sumanen, M. Waltari, and K. Halonen, "A 10-bit 200-MS/s CMOS Parallal Pipeline A/D Converter," IEEE J. Solid-State Circuits, vol. 30, NO. 7, pp. 1048-1055, July 2001.
[5] Iuri Mehr and Larry Singer, "A 55-mW, 10-bits, 40-Msample/s Nyquist-Rate CMOS ADC," IEEE J. Solid-State Circuits, vol. 35, NO. 3, pp. 318-325, Mar. 2000.
[6] S. Lewis, H. Fetterman, G. Gross, R. Ramachandran, and T. Viswanathan, "A 10-b 20-Msample/s Analog-to-Digital Converter," IEEE J. Solid-State Circuits, vol. 27, NO. 3, pp. 351-358, Mar 1992.
[7] Paulux T. F. Kwok and Howard C. Luong, "Power Optimization for Pipeline Analog-to-Digital Converters," IEEE Trans. Circuits and Systems-II, vol. 46, pp. 549-553, May 1999.
[8] T. Shu, K. Bacrania, and R. Gokhale, "A 10-b 40-Msample/s BiCMOS A/D Converter," IEEE J. Solid-State Circuits, vol. 31, NO. 10, pp. 1507-1510, Oct. 1996.
[9] C. Conroy, D. Cline, and P. Gray, "An 8-b 85-MS/s Parallel Pipeline A/D Converter in $1-\mu \mathrm{m}$ CMOS," IEEE J. Solid-State Circuits, vol. 28, NO. 4, pp. 447-454, Apr. 1993.
[10] David W. Cline, and Paul R. Gray, "A Power Optimized 13-b Msamples/s Pipelined Analog-to-Digital Converter in $1.2 \mu \mathrm{~m}$ CMOS," IEEE J. Solid-State Circuits, vol. 31, NO. 3, pp. 294-303, Mar. 1996.
[11] David G. Nairn, "A 10-bit, 3V, 100MS/s Pipelined ADC," IEEE Custom Integrated Circuits Conference, pp. 257-260, 2000
[12] Jun Ming and Stephen H. Lewis, "An 8-bit 80-Msample/s Pipelined Analog-to-

Digital Converter with Background Calibration," IEEE J. Solid-State Circuits, vol. 36, NO. 10, pp. 1489-1497, Oct. 2001.
[13]H. Chen, B. Song and K. Bacrania, "A 14-b 20-Msamples/s CMOS Pipelined ADC, "IEEE J. Solid-State Circuits, vol. 36, NO. 6, pp. 997-1001, June 2001.
[14] Roubik Gregorian, Introduction to CMOS OP-AMPS AND COMPARATORS, New York, Wiley, 1999.
[15]K. Kim, N. Kusayanagi, and A. Abidi, "A 10-b, 100-MS/s CMOS A/D Converter," IEEE J. Solid-State Circuits, vol. 32, NO. 3, pp. 447-454, Mar. 1997.
[16] P. Yu, S. Shehata, A. Joharapurkar, P. Chugh, A. Bugeeja, X. Du, S. Kwak, Y. Papantonopoulous, T. Kuyel, "A 14b 40Msample/s Pipelined ADC with DFCA," ISSCC Digest of Technical Papers, pp. 136-137, Feb. 2001.
[17]D. Kelly, W. Yang, I. Mehr, M. Sayuk and L. Singer, "A 3V 340mW 14b 75MSPS CMOS ADC with 85dB SFDR at Nyquist," ISSCC Digest of Technical Papers, pp. 134-135, Feb. 2001.
[16] Larry A. Singer and Todd L. Brooks, "A 14-Bit 10-MHz Calibration-Free CMOS Pipelined A/D Converter," Symposium on VLSI Circuits Digest of Technical Papers, pp. 94-95, 1996
[17]L. Singer, S. Ho, Mike Timko, and D. Kelly, "A 12b 65Msamples/s CMOS ADC with 82dB SFDR at 120 MHz ," ISSCC Digest of Technical Papers, pp. 38-39, Feb. 2000.
[18]T. Cho, Low-power Low-voltage Analog-to-Digital Conversion Technique using Pipelined Architectures, Ph.D thesis, University of California, Berkeley, 1995.
[19] A. Abo, Design for Reliability of Low-voltage Switched-capacitor Circuits, Ph.D thesis, University of California, Berkeley, 1999.
[20] M. Gustavsson, J. Wikner and N. Tan, CMOS DATA CONVERTERS FOR COMMUNICATIONS, Kluwer Academic Publishers, Boston, 2000.
[21] S. Kwak, B. Song, and K. Bacrania, "A 15-b, 5-Msample/s Low-spurious CMOS ADC," IEEE J. Solid-State Circuits, vol. 32, NO. 12, pp. 1866-1875, Dec. 1997.
[22] G. Ahn, H. Choi, S. Lim, S. Lee, and Chul-Dong Lee, "A 12-b, !0-MHz, 250-mW CMOS A/D Converter," IEEE J. Solid-State Circuits, vol. 31, NO. 12, pp. 2030-2035, Dec. 1996.
[23] David Johns and Ken Martin, ANALOG INTEGRATED CIRCUIT DESIGN, Wiley, New York, 1997.
[24] W. Yang, D. Kelly, I. Mehr, M. T. Sayuk, L. Singer, "A 3-V 340-mW 14-b 75Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input," IEEE J. Solid-State Circuits, vol. 36, pp. 1931-1936, Dec. 2001.
[25] B. J. Sheu, C. Hu, "Switch-Induced Error Voltage on a Switched Capacitor,"IEEE J. Solid-State Circuits, vol. sc-19, pp. 519-525, Aug. 1984.
[26] W. B. Wilson, H. Z. Massoud, E. J. Swanson, R. T. George, Jr., R. B. Fair,"Measurement and Modelling of Charge Feedthrough in n-Channel MOS Analog Switches," IEEE J. Solid-State Circuits, vol. sc-20, pp. 1206-1213, Dec. 1985.
[27] B. J. Sheu, J-H. Shieh, M. Patil, "Modeling Charge Injection in MOS AnalogSwitches," IEEE Trans. Circuits and Systems, vol. cas-34, pp. 214-216, Feb.1987.
[28] D. G. Haigh, B. Singh, "A switching scheme for switched capacitor filters which reduces the effect of parasitic capacitances associated with switch control terminals," in Proc. IEEE International Symposium on Circuits and Systems, pp. 586-589, 1983.
[29] A. M. Abo, P. R. Gray, "A 1.5V, 10-bit, 14MS/s CMOS Pipeline Analog-to-Digital Converter," 1998 Symposium on VLSI Circuits Digest of Technical Papers, pp. 166169.
[30] J. Steensgaard "Bootstrapped Low-Voltage Analog Switches," in Proc. IEEE International Symposium on Circuits and Systems, vol. II, pp. 29-32, 1999.
[31] G. Nicollini, P. Confalonieri, D. Senderowicz, "A Fully Differential SampleandHold Circuit for High-Speed Applications," IEEE J. Solid-State Circuits, vol. 24, pp. 1461-1465, Oct. 1989.
[32] T. C. Choi, R. T. Kaneshiro, W. Brodersen, P. R. Gray, W. B. Jett, M. Wilcox, "High-Frequency CMOS Switched-Capacitor Filters for Communications Application," IEEE J. Solid-State Circuits, vol. SC-18, pp. 652-664, Dec. 1983.
[33] K. Bult, G. J. G. M. Geelen, "A Fast-Settling CMOS Op Amp for SC Circuits with 90-dB DC Gain," IEEE J. Solid-State Circuits, vol. 25, pp. 1379-1384, Dec. 1990.
[34] P. C. Yu, H-S. Lee, "A High-Swing 2-V CMOS Operational Amplifier with ReplicaAmp Gain Enhancement," IEEE J. Solid-State Circuits, vol. 28, pp. 1265-1272, Dec. 1993.
[35] J. Doernberg, H.-S. Lee, D. A. Hodges, "Full-Speed Testing of A/D Converters," IEEE J. Solid-State Circuits, vol. SC-19, pp. 820-827, Dec. 1984.
[36] E. A. Vittoz, "Low-Power Design: Ways to Approach the Limits," in Dig. Tech. Papers International Solid-State Circuits Conference, pp. 14-18, Feb. 1994.
[37] B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995.
[38] M. Shinagawa, Y. Akazawa, T.Wakimoto, "Jitter Analysis of High-Speed Sampling Systems," IEEE J. Solid-State Circuits, vol. 25, pp. 220-224, Feb. 1990.
[39] A. G. Dingwall, V. Zazzu, "An 8-MHz CMOS subranging 8-Bit A/D converter," IEEE J. Solid-State Circuits, vol. SC-20, pp. 1138-1143, Dec. 1985
[40] R. C. Taft, M. R. Tursi, "A 100-MS/s 8-b CMOS Subranging ADC with Sustained Parametric Performance from 3.8 V Down to 2.2 V," IEEE J. Solid-State Circuits, vol. 36, pp. 331-338, Mar. 2001.
[41] A. G. W. Venes, R. J. van de Plassche, "An $80-\mathrm{MHz}, 80-\mathrm{mW}$ 8-b CMOS Folding A/D Converter with Distributed Track-and-Hold Preprocessing," IEEE J. Solid-State Circuits, vol. 31, pp. 1846-1853, Dec. 1996.
[42] B. Nauta, A. G. W. Venes, "A 70-MS/s 110-mW 8-b CMOS Folding and Interpolating A/D Converter," IEEE J. Solid-State Circuits, vol. 30, pp. 1302-1308, Dec. 1995.
[43] T. B. Cho, P.R. Gray, "A 10 b, 20 Msample/s, 35 mW Pipeline A/D Converter," IEEE J. Solid-State Circuits, vol. 30, pp. 166-172, Mar. 1995.
[44] D. W. Cline, P. R. Gray, "A Power Optimized 13-b 5 Msamples/s Pipelined Analog-to-Digital Converter in $1.2 \mu \mathrm{~m}$ CMOS," IEEE J. Solid-State Circuits, vol. 31, pp. 294-303, Mar. 1996.
[45] B. Ginetti, P. Jespers, "A $1.5 \mathrm{Ms} / \mathrm{s}$ 8-bit Pipelined RSD A/D Converter," in European Solid-State Circuits Conference Digest of Technical Papers, pp. 137-140, Sep. 1990.
[46] S.-H. Lee, B.-S. Song, "Digital-Domain Calibration for Multistep Analog-to-Digital Converters," IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1679-1688,Dec. 1992.
[47] J. Goes, J. C. Vital, J. E. Franca, "A CMOS 4-bit MDAC with Self-Calibrated14-bit Linearity for High-Resolution Pipelined A/D Converters," in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC’96), May 1996, pp.105-108
[48] L. Sumanen, M. Waltari, K. Halonen, "A Mismatch Insensitive CMOS Dynamic Comparator for Pipeline A/D Converters," in Proceedings of the IEEE International Conference on Circuits and Systems (ICECS'00), Dec. 2000, pp. I-32-35.
[49] K. R. Laker, W. M. C. Sansen, Design of Analog Integrated Circuits and Systems,

McGraw-Hill International Editions, Singapore, 1996.
[50] D. K. Su, M. J. Loinaz, S. Masui, B. A. Wooley, "Experimental Results and Modeling Techniques for Substrate Noise in Mixed-Signal Integrated Circuits," IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 420-430, Apr. 1993.
[51] B.-S. Song, M. F. Tompsett, K. R. Lakshmikumar, "A 12-b 1-Msamples/s Capacitor Error Averaging Pipelined A/D Converter," IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1324-1333, Dec. 1988.
[52] P. Rombouts, L.Weyten, "A Digital Error-Averaging Technique for Pipelined A/D Conversion," IEEE Trans. on Circuits and Systems-II, vol. 45, no. 9, pp. 1321-1323, Sep. 1998.
[53] S. H. Lewis, H. S. Fetterman, G. F. Gross, Jr., R. Ramachandran, T. R. Viswanathan, "A 10-b 20-Msample/s Analog-to-Digital Converter," IEEE J. Solid- State Circuits, vol. 27, no. 3, pp. 351-358, Mar. 1992.
[54] T. Blalack, Bruce A. Wooley, "The effect of Switching Noise on an Oversampling A/D Converter," in IEEE International Solid-State Circuits Conferences, Feb.1995.
[55] A. M. Abo, P. R. Gray, "A 1.5V, 10-bit, 14MS/s CMOS Pipeline Analog-to- Digital Converter," 1998 Symposium on VLSI Circuits Digest of Technical Papers, pp. 166169.
[56] P. E. Allen, D. R. Holberg, CMOS Analog Circuit Design, Holt, Rinehart and Winston, 1987.
[57] K. Gulati, H.-S. Lee, "A High-Swing Telescopic Operational Amplifier," IEEE J. Solid-State Circuits, vol. 33, pp. 2010-2019, Dec. 1998.
[58] Y. Gendai, Y. Komatsu, S. Hirase, and M. Kawata, "An 8b 500MHz ADC," in IEEE International Solid-State Circuits Conferences, Feb.1991.
[59] Iuri Mehr, D. Dalton, "A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read Channel Applications," IEEE J. Solid-State Circuits, vol. 34, July 1999.
[60] Roubik Gregorian, Introduction to CMOS OP-AMPS and Comparators, WileyInterscience, 1999.
[61] L. Williams and B. A. Wooley, "A third-order sigma-delta modulation with extended dynamic range," IEEE J. Solid-State Circuits, vol. SC-29, pp.193-202, March 1994.
[62] B. P. Brandt, D. Wingard, and B. A. Wooley, "Second-order sigma-delta modulation for digital-audio signal acauisition," IEEE J. Solid-State Circuits, vol. SC-26,
pp.618-627, April 1991
[63] Jing Cao, A Clock Generator and Output Buffer for 12-bit, 75-MS/s, 3.3-V CMOS ADC with SFDR 85dB, M.A. Thesis, University of California, Los Angeles, 1999.
[64] B. Razavi and B. A. Wooley, "A 12-b, 5-Msample/s two-step CMOS A/D converter," " IEEE J. Solid-State Circuits, vol. 27, pp.1667-1678, Dec 1992.
[65] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2000.
[66] M. Gustavsson, J. Jacob Wikner, and N. Nick Tan, CMOS Data Converters for Communacations, Kluwer Academic Publisher, 2000.
[67] K. Moon, M. K. Song, J. W. Kim, and K. H. Kim, "A 10 bit 30 MSPS CMOS A/D converter for a high performance video application system," IEEE Transactions on Consumer Electronics, vol. 43, No.4, Nov 1997.
[68] S. M. Yoo, J. B. Park, S. H. Lee, and U. K. Moon, "A 2.5-V 10-b 120-MSamples CMOS pipelined ADC based on merged-capacitor switching," IEEE Transactions on Circuits and Systems II, vol.51, No.5, May 2004
[69] Y. Zinzius, G. Gielen and W. Sansen, "Analyzing the Impact of Substrate Noise on Embeded Analog-to-Digital Converters," IEEE International conference on Circuits and Systems for Communications, June 2002, pp. 82 ~ 85.
[70] Chunlei Shi, Design and Power Optimization Techniques of CMOS baseband circuits Wideband Wireless Applications, Ph.D thesis, The Ohio State University, 2001.
[71] T. Shu, B. Song, and K. Bacrania, "A 13-b 10-Msample/s ADC Digitally Calibrated with Oversampling Delta-Sigma Converter," IEEE J. Solid-State Circuits, vol. 30, No. 4, April 1995

