
Real Clock Time Animation Support for Developing

Software Visualizations

Technical Report GIT-GVU-95-21

John. T. Stasko

D. Scott McCrickard

Graphics, Visualization, and Usability Center

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280 U.S.A.

E-mail: fmccricks,staskog@cc.gatech.edu

July 1995

Abstract

Developers building software visualizations must use a graphics library and user inter-

face toolkit as an underlying support platform. Often, these support environments are

large, di�cult to learn, low-level, and lacking primitives for capabilities such as animation.

We have developed a graphics support environment called Polka-RC for building software

visualizations. Polka-RC is a second generation system that leverages the continuous an-

imation primitives of the mature system Polka, and adds the capability of specifying real

clock time-based animation activations and durations. The new Polka-RC animation model

also provides a exible multiprocess program-to-visualization mapping. In this article we

describe the Polka-RC methodology, list advantages of the approach, and describe how the

methodology inuences the design of software visualizations and algorithm animations.

Keywords: software visualization, algorithm animation, computer graphics, graphics li-

braries and toolkits



1 Introduction

Learning how algorithms work, learning how to program, and learning how to debug pro-

grams are still challenging activities. Many instructional techniques and software tools have

been developed over the past 30 years to aid these activities. This article examines the area

of software visualization, the use of computer graphics, visualization, and animation to help

illustrate how algorithms and programs work[SP92, PBS93]. By providing concrete graphi-

cal depictions of the normally intangible abstract workings of programs, software visualizers

seek to facilitate program understanding and comprehension.

Software visualization systems have been used for a number of di�erent purposes, rang-

ing from instructional aids for teaching algorithms (so called algorithm animations[Bro88b,

Bro88a, Sta90]) to software engineering tools to assist program development and debugging[Rei85,

SI91, KRR94]. In all software visualization systems, the visualization or animation depicted

must be built using an underlying graphics support environment. This graphics support can

be a powerful, but low-level toolkit such as Xlib for X Windows, or it can be an extremely

high level interactive visual environment such as the Lens system[MS94].

A trade-o� exists in these two alternatives. Low-level toolkits are very powerful and can

provide rich visualizations, yet they are usually quite large, di�cult to learn, and building

visualizations with them can be time-consuming. High-level environments, typically utilized

in scenarios where end-users build their own visualizations, are smaller and easy to learn and

use, but they typically provide only a restricted set of visualization and animation primitives.

Consequently, software visualizers have developed their own software visualization support

toolkits that are tuned to provide the types of graphics and animation one usually encounters

in software visualization and algorithm animation systems.

Over time these toolkits have evolved to be quite sophisticated graphics systems. The

early Balsa environments provided black-and-white images in multiple views[BS85]; Animus

provided temporal constraints in a Smalltalk based environment[Dui86]; Tango added color

and smooth animation primitives[Sta90]; Zeus added sound in a general object-oriented

framework[BH92]; Polka-3D examined the use of 3D for software visualization[SW93]; and

recent systems have focused on high-level, powerful toolkit primitives[DeT93].

One area yet to be explored, however, is the capability of real clock time animations,

that is, animations whose initiation and duration are speci�ed in physical times of millisec-

onds, seconds, and so on. These types of animation environments have long existed in 3D

computer graphics where an exact frames-per-second rate is used, and recently they have

surfaced in user interface development toolkits[HS93].

We have built a software visualization support toolkit called Polka-RC (Polka Real

Clock) that provides such primitives. Polka-RC is an evolution of the mature software

visualization toolkit called Polka[SK93] that provides frame, as opposed to time, based

animations. In the next section we provide a brief review of Polka and its components.

After that, we describe Polka-RC and the primitives it provides, and we give some examples

of its use. Finally, we discuss the trade-o�s involved in this new methodology. Our initial

experiences with Polka-RC have uncovered advantages and some challenges in a real clock-

time based approach.

2



2 Polka

The original Polka software visualization toolkit was designed to support end-user developed

software visualizations. In particular, its focus was on expressive algorithm animation-style

views involving concurrent animations, thus facilitating illustrations of parallel programs.

Polka is implemented in C++ on top of the X Window System.

Polka provides a small number of abstract data types, each with a rich set of operations.

Animations are built within Views that can provide di�erent, unique depictions of the

program or algorithm being visualized and that inhabit one window on the display. Within

a View, programmers manipulate three di�erent data types:

� Location - A positional marker that denotes a particular position in the View coor-

dinate system.

� AnimObject - A graphical object primitive such as a line, circle, rectangle, text, etc.

� Action - A motion or change primitive such as movement along a path or a change

in color.

All animation in Polka is frame-based; that is, each Action such as a movement or a

resize has a duration in frames. Programmers can specify any number of frames in an

Action, but once that is done, the number does not change. For example, a movement

between two locations may take 10 frames that correspond to ten equally spaced steps

between the two locations. In addition to allowing the programmer to specify this frame

duration, Polka includes Action operations to add or subtract frames from a default Action,

thus slowing down or speeding up animations, respectively. Polka's run-time user interface

also includes a speed control bar that adjusts the frame-to-frame display rate. That is, it

allows changing the speed of the animation as a whole (all Actions are a�ected in the same

way).

More speci�cally, consider the example below.

Circle *circ;

Loc *loc, *center;

Action *act;

int len;

circ = new Circle(this,1, 0.2,0.3, 0.1, "red", 1.0);

circ->Originate(time);

center = c->Where(PART_C);

loc = new Loc(0.6, 0.5);

act = new Action("MOVE", center, loc, 20);

len = circ->Program(time, act);

time = Animate(time, len);

This code creates a red circle centered at location (0.2, 0.3) with radius 0.1. It then

proceeds to schedule and move the circle to position (0.6, 0.5) along a straight path of 20

steps or animation frames. The variable time is a member of the View class provided by

3



Polka and it is used to maintain the current frame count. The routine Program binds an

Action to an AnimObject and schedules it to occur at the speci�ed frame number. This call

returns the Action's length in frames. The �nal call, Animate, is critical here to actually

generate the animation. It takes a beginning frame count and a duration as arguments,

and generates that many new animation frames. It is the only way that animation occurs

in Polka.

The Polka Action primitive Interpolate can be used to adjust the number of steps or

o�sets in a path. The call below makes a new movement action that covers the same x; y

coordinates as as the one above, but with 30 steps instead of 20.

Action *b = act->Interpolate(1.5);

Although this frame-based methodology has proven to be powerful and useful, it can

be problematic as well. If the code for an animation developed on a particular machine is

transferred to a di�erent machine with a faster CPU and X server, then the same number

of frames will translate to a much faster animation, probably more so than the animation

designer had intended. A similar problem occurs when a machine is heavily loaded with

other processes. The animation then may simply be too slow. To a certain degree, the

inclusion of a speed control bar in Polka addresses this relative timing problem. Nonetheless,

the inability to specify precise times and durations can be frustrating.

Accordingly, we wondered what it would be like to be able to specify that a movement

take 2.5 seconds rather than 20 frames, for example. In particular, we would want the Action

to take this duration regardless of what type of workstation it is running on and how busy the

machine is. Also, we might want the motion to start slowly, speed up, then slow again near

its termination, one of the classic animation techniques for presenting movement[Las87]. In

addition, we want a model in which the animation occurs concurrently with the execution

of the program it is representing, without the need for an explicit Animate call. Finally, we

wondered how this type of toolkit would inuence the design of software visualizations and

animations. These inquiries led us to develop Polka-RC.

3 Polka-RC

The following sections describe the Polka-RC environment, highlighting the di�erences be-

tween it and the original Polka. We begin by describing the new real time animation prim-

itives introduced in Polka-RC, which are partly modeled after those introduced in [HS93].

Next, we describe the two process, asynchronous communication model that the environ-

ment supports, and we give a small example of what code in Polka-RC looks like. Finally,

we discuss some of the implementation details and issues raised by this new system.

3.1 Animation Primitives

Like Polka, Polka-RC contains a primitive called a View that is an abstraction for a graphical

perspective or depiction of a program. Just as static data can have multiple views (such as

a pie graph and a line graph), Polka-RC allows users to create several Views of a dynamic

program. Each View is made up of one or more Scenes (user-de�ned member functions of

their View subclass) that encapsulate di�erent graphical behaviors to occur in the View.

4



At run-time, events from the driver program cause the graphical updates in Scenes that

make animation happen in each View.

Polka-RC provides four basic classes of objects which are created and manipulated in a

View to implement an animation: AnimObject, Location, Traj, and Action. The Location

and AnimObjects are largely unchanged from the original Polka. The AnimObject is simply

a graphical object such as a line, circle, rectangle, text, etc., and is the only data type

with a visual manifestation evident in a View. A Loc is a marker position within the

animation coordinate system and is useful for positioning AnimObjects and as the endpoints

of movement actions. The Traj is a new data type, however, and the role of the Action has

been expanded. These two data types are described in more detail below.

A Traj(ectory) is a path or curve along which an update to an AnimObject occurs.

For example, an AnimObject can move along a Traj or use a Traj to de�ne a change in �ll

pattern. Each Traj is de�ned by three elements: displacement, motion type, and pace.

The displacement speci�es the beginning to ending distance of a Traj and can be spec-

i�ed in two ways, by designating the absolute (x; y) distance that the Traj covers or by

designating two Locations that represent the \start" and the \end" of the Traj.

The motion type describes the type of curve or path form taken by the Traj. We have

found three simple types to be useful: straight, clockwise, or counterclockwise. A straight

Traj simply follows the straight line shortest path between its starting and ending points.

The clockwise and counterclockwise Trajs follow an arc of at most 180 degrees. Imagine

that the points designating the distance to be traversed are points on a clock dial and the

clock hand sweeps out the trajectory. Since two points could de�ne a number of di�erent

arcs, Polka-RC enforces the additional condition that one of the points is either at nine

or at three on the dial. The clock hand sweeps out the arc de�ned by these points in

either a clockwise or counterclockwise manner depending on the motion type. These three

motion types are provided to simplify the work of the animation designer. To create more

complex arcs and curves, it is necessary to combine a number of simpler arcs and lines using

composition operations provided by Polka-RC.

The pace refers to the rate at which an AnimObject is modi�ed along the Traj curve.

In Polka, the pace was always uniform (each discrete step of a path corresponded to an

animation frame). However, it can be useful to traverse a curve at di�erent speeds depending

on the current position on the curve. For example, it has been shown that slowly building

up the speed of an object as it begins a motion (called \slow out") helps draw attention

to the object[Las87]. Similarly, slowing down the speed of an object as it is about to stop

(called \slow in") indicates to a viewer that the object is about to stop. A pace function

is a way to specify the rate at which a curve is traversed. Mathematically, a pace function

accepts a percent of time that has passed as a parameter and returns the percent of the

total displacement on the curve that should be covered in that time. Polka-RC provides

uniform and slow-in/slow-out pace functions as primitives, and it also allows designers to

create and use their own pace functions.

An Action is an update to an AnimObject that changes its position or appearance,

such as a movement or a color change. Two types of actions exist: discrete and continuous.

Discrete Actions happen at one speci�c point in time and do not change the size or

5



position of an AnimObject. Polka-RC provides �ve discrete Actions:

� COLOR - change the AnimObject's color to some new color (any X Window color

name or RGB-valued color).

� VIS - toggle the visibility of the AnimObject. If an AnimObject is invisible, other

Actions can still be performed on it, but their results will not be seen until the

AnimObject is made visible.

� RAISE - raise the AnimObject to the topmost viewing plane. Thus, if several Ani-

mObjects overlap, RAISE can be used to raise an AnimObject to the top.

� LOWER - lower the AnimObject to the bottommost logical viewing plane (similar to

the raise Action).

� ALTER - change the contents of a text string (valid only for the Text AnimObject

type).

In addition to the Action type, an animation designer also speci�es the AnimObject on

which the Action will be performed and the time at which the Action will occur in order

to create an animation. The methods for specifying the time at which a discrete Actions

occurs are the same as the methods for specifying the start time for continuous Actions and

are discussed later.

Here are some example calls that create discrete Actions.

Action vis("VIS", rect1, START_AT, Sec(15)); (1)

Action rai("RAISE", rect1, START_AFTER_START_OF, &vis, 0); (2)

The �rst Action changes the visibility of an AnimObject at time 15 (15 seconds after the

animation commences). The second raises the rectangle to the topmost view plane at the

same time as the visibility Action.

Unlike the discrete Actions, continuous Actions happen over a period of time and follow

some path (represented by a Traj). The continuous Action types provided by Polka-RC

are:

� MOVE - move the AnimObject along the Traj.

� RESIZE - resize the AnimObject. The di�erent types of AnimObjects have di�erent

methods in which they are resized. Resizing a line changes the length of the line.

Resizing a rectangle corresponds to dragging the upper right corner of the rectangle

along the given Traj. For circles, the radius changes according to the x component of

the Traj. On an ellipse, both the x and y size components can change, and so on.

� GRAB - grab and drag part of an AnimObject. For polylines, polygons, and splines,

the Action moves only one speci�ed vertex and leaves all others �xed (unlike RESIZE,

which modi�es all vertices following the speci�ed one).

� FILL - change the �ll style for the AnimObject. For objects such as rectangles, circles,

ellipses and polygons, the X-coordinate of the Traj used as a parameter is interpreted

as a modi�er of the �ll percentage (0-100) of the AnimObject.

6



In addition to the Action type, the AnimObject modi�ed, and the Traj that the Action

will cover, an animation designer must specify the start time and duration over which a

continuous Action will occur.

Polka-RC provides several methods for specifying the starting time for each Action.

The time simply can be given in seconds or milliseconds (assumed relative to the start

of the animation); for example, the start time might be 15 seconds into the animation.

Alternatively, it is possible to use the Now() function provided by Polka-RC to acquire the

current time. Finally, the designer can specify the starting time with respect to another

Action. In Example 2 above, the designer requested that an Action start at the same time

as another Action. In Example 4 below, Action a2 will start a half second after a1 ends.

Polka-RC also provides two methods for specifying the ending time for continuous Ac-

tions. One simple method is to provide the duration of the Action in seconds or milliseconds

(see Example 3 below). The second method is to specify the velocity of the Action. Velocity

is de�ned in terms of the percentage of the computer display that is covered in one second.

In Example 4, the designer speci�es the velocity to be 50, meaning it will take one second

to move across 50 percent of the display. Velocity is useful when a number of AnimObjects'

movements should occur at the same rate.

In the examples below, the �rst Action resizes a rectangle AnimObject so that it becomes

wider (increase in x) and shorter (decrease in y) over a period of 1.5 seconds. The Action

also uses a slow in/slow out pace. The second Action moves the rectangle from loc1 to loc2

in a straight line at velocity 50. Note that the �rst Action is speci�ed to start at the current

time and the second starts a half second after the �rst completes.

Action a1("RESIZE", rect1,

Traj(CLOCKWISE,0.2,-0.1,slowinout),

START_AT, Now(),

DURATION, Sec(1.5)); (3)

Action a2("MOVE", rect1,

Traj(STRAIGHT,loc1,loc2,uniform),

START_AFTER_END_OF, &a1, Sec(0.5),

VELOCITY,50) (4)

Once Actions such as these have been de�ned, they must be added to the list of \active"

Actions manipulated by Polka-RC using the Schedule call.

Schedule(&a1);

When an Action is scheduled, it is added to the working set of Actions in the animation.

Whenever a speci�ed commencement time of an Action occurs, Polka-RC initiates the

action.

The critical di�erence to the original Polka here is that no Animate routine is necessary

to generate animations. Polka-RC constantly monitors Actions in the \background" and

keeps updating them as quickly as it can. That is, animation is always occurring, or rather,

has the potential to occur. It is not based on a particular call.

When Polka-RC processes an Action, it examines the beginning time and duration of

the Action with respect to the current time. It then calculates where and how to draw

7



       Driver
     Program Animation

main()
{
  ...

SendMessage(move1);

...

SendMessage(swap2);

...

SendMessage(color4);

...

}

PolkaLoop()
{
   ...
  while(1)
     ...
     CheckScheduleEvents()

  ...
}

move()
{
   ...
}

   swap()
   {
   ..
   }

color()
{
   ...
}

Figure 1: Model of program to animation communication in the Polka-RC framework.

the object, taking into account the Traj and pace function if they exist. If an Action is

encountered that should have completed in the past, the AnimObject is simply updated to

its resultant con�guration.

3.2 Organizing an Animation

In the original Polka, the program being visualized and its animation design code are usu-

ally written in separate �les for modularity, then compiled into a single executable. Conse-

quently, the transmission of events from program to animation is synchronous. That is, an

event is passed to the animation, the corresponding animation is scheduled and executed,

then control is transferred back to the driver program which then proceeds with dispatching

the next event. In Polka-RC, the program and animation are written, compiled, and exe-

cuted separately, as two di�erent processes. The program communicates with the animation

by sending it messages though a socket (see Figure 1).

The program being visualized (we call this the \driver") can be written in any language,

but to communicate with the animation code, it must be able to connect to a socket. A

socket is simply a generalization of a UNIX pipe in which neither process is an ancestor of

8



the other. Thus, the animation does not need to know the name of the program that will

connect to it, and the program does not need to know the animation name. The animation

�nds a free socket and advertises its id number. Polka-RC provides a library of socket

functions used for connecting to a socket and sending messages through the socket. Any

existing program easily can be annotated with socket connection calls and message passing

calls in order to communicate with an animation program. Later, as the program actually

executes, it dispatches a series of events across the socket to the animation. These events

characterize the operations that are occurring in the program.

The animation code consists of three elements: a main routine, a Controller routine, and

a set of animation service functions. The main routine contains the startup function calls

for the animation. The controller maps the run-time events sent by the driver program to

the appropriate animation functions. These functions are used to create and manipulate the

graphical objects in the animation views that represent operations in the driver program.

Several reasons for separating the program and its animation exist. First, the program

developer and animation developer might be di�erent people. Since Polka-RC allows the

units to be written and compiled separately, the developers can work independently. Second,

the separation of program and animation allows any algorithm to connect to any compatible

animation. For example, several di�erent animations of sorting algorithms may exist. A

particular sorting algorithm does not have to be physically linked with each animation in

order to be executed with it. Rather, it simply connects to the socket of the animation

and dispatches events. Finally, and perhaps most importantly, the animation component

must now have its own independent control and event processing loop because of the real

clock time aspect. In the original Polka, if the driver program blocked waiting on input

from the user, then the animation was blocked also. In Polka-RC we could not allow the

animation component to block|it must retain control to advance the clock and update

graphical objects appropriately at all times.

3.3 An Example

This section provides a brief example of what it is like to build a software visualization with

Polka-RC. The two subsections below describe the two programs that must be created: one

for the animation and one for the program which is being visualized and is driving the

animation. We begin by describing the animation program and then follow this with the

code for a driver program.

3.3.1 Animation Component

In Polka-RC as in Polka, an object of a class called Animator is the intermediary between the

program being visualized and its animation. The Animator initially �nds and advertises a

free socket, then waits for the driver program to connect to the socket and to send messages.

Each Polka-RC animation must have one Animator object (actually a derivation is always

used) and one or more View objects. The Animator should include the declarations for

the View(s) and the virtual function Controller. The View should include the animation

functions available for the View (these are called Scenes) as well as any data structures

which may be used.

The messages (events) sent by the program request these Scenes to take place. A Scene

9



is simply the visual manifestation of an update in the program. For example, an event in

a sorting program may correspond to a swap of two data values. This swap event can be

mapped to one or more Scenes that will graphically represent the swap in the animation

View(s); for example, a Scene may switch the positions of two rectangles that represent the

swapped elements in the sorting program.

In the following example, two Views are created for a sorting algorithm animation.

BlocksView may represent the values being sorted as a row of rectangles. A second View,

SticksView, may represent distances between swapped items with lines. Parts of the dec-

larations have been omitted for brevity.

class MyAnimator : public Animator {

public:

int Controller();

BlocksView bv;

SticksView sv;

MyAnimator() {

RegisterView(&bv);

RegisterView(&sv);

...

};

};

class BlocksView : public View {

public:

int Init(int);

int Exchange(int,int);

private:

Rectangle *elts[100];

double wid;

};

class SticksView : public View {

...

}

The main procedure of the animation program, part of which is shown below, has three

basic tasks. First, it �nds and advertises the socket to which the driver program will connect

via the Animator member function SocketInit. Second, it creates the View windows where

AnimObjects will be seen. Third, it enters a loop which waits for the driver program to

connect and send messages over the socket. The Animator member function PolkaLoop

performs the third task.

MyAnimator anim;

main()

{

anim.SocketInit();

anim.bv.Create("Polka Blocks View");

10



anim.sv.Create("Polka Sticks View");

...

anim.PolkaLoop();

}

The animation program also must contain a Controller routine that provides a mapping

from the event names and parameters passed from the driver program to the member func-

tion names and parameters of the animation Views. When an event arrives over the socket

from the driver program, its name (id) is stored in the Animator class variable, AlgoEvt-

Name, and its parameters are stored in the member arrays, AnimInts, AnimDoubles, and

AnimStrings, according to their types.

The example controller below maps the INIT and SWAP messages from the sorting

algorithm to animation functions for the di�erent Views. Note that a single event can map

to any number of View Scenes.

int

MyAnimator::Controller()

{

if (!strcmp(AlgoEvtName,"INIT")) {

bv.Init(AnimInts[0]);

sv.Init();

}

else if (!strcmp(AlgoEvtName,"SWAP")) {

bv.Exchange(AnimInts[0], AnimInts[1]);

sv.DrawLine(AnimInts[0] - AnimInts[1]);

}

else ...

...

}

The View functions (Scenes) contain the code that performs the animation. AnimOb-

jects are created and Actions are performed on them. For example, a rectangle can be

created with the following command.

int i;

...

Rectangle *elt[i] = new Rectangle(this, 1, 0.3, 0.3,

wid, i * 0.4, "orange", 0.625);

elt[i]->Originate( Now() );

The �rst parameter to the Rectangle creation is the View in which the rectangle will

appear. The second is the visibility: 1 means the rectangle will be visible when it is �rst

shown. The next two parameters are the initial location of the rectangle. The next two

parameters are the width and height of the rectangle. The next parameter is the color and

the �nal parameter is the �ll percent. Creating an AnimObject allocates its internal data

structures, but the member function Originate is necessary to specify the time at which

the AnimObject should �rst appear in the View.

11



Loc objects are often used in Trajs to specify the \from" and \to" positions. Locs

are easily speci�ed; simply provide the x and y coordinates. For Trajs, the curve type,

displacement and pace function must be given. The displacement can be either an (x; y)

displacement or \from" and \to" locations. Below are examples of Loc and Traj de�nitions.

Loc *to = new Loc(0.05, 0.1);

Loc *from = new Loc(0.1, 0.15);

Traj *t1 = new Traj(CLOCKWISE,from,to,uniform);

Traj *t2 = new Traj(STRAIGHT,-0.1,0.5,slowinout);

Finally, we will provide examples of Actions that will exchange the position of two

rectangles and change the color of one of them.

Action mov1("MOVE", elt[i], Traj(CLOCKWISE,from,to,uniform),

START_AT, ASAP(), VELOCITY, 50);

Schedule(&mov1);

Action mov2("MOVE", elt[i+1], Traj(CLOCKWISE,to,from,uniform),

START_AFTER_START_OF, &mov1, Sec(0.0), VELOCITY, 50);

Schedule(&mov2);

Action col("COLOR=red", elt[i], START_AT, ASAP());

Schedule(&col);

The �rst Action is a clockwise movement of a rectangle. It is given a start time of ASAP,

a value we have yet to discuss but that will be fully described in Section 4, and a velocity to

cover half of the screen per second. The second Action is a movement of another rectangle.

It starts at the same time as (0 seconds after the start of) the previous Action. Since the

velocity and distances are the same, the two rectangles will stop at the same time.

The �nal Action is a discrete Action. It changes the color of one of the rectangles to

red ASAP, essentially after the rectangles have �nished moving. Note that no velocity or

duration is given with this Action since it is discrete. Recall that all of the Actions must

be scheduled in order to occur in the View.

3.3.2 Algorithm Component

In order to interact with the animation program, the driver program �rst must connect

to the socket that has been acquired by the animation program. Therefore, the socket

number must be passed to the driver. The easiest way to connect to a socket is to use the

SocketConnect function provided by Polka-RC. If the socket number was passed as the

�rst argument via the command line, this call would look like

SocketConnect(atoi(argv[1]));

Once the driver program has connected to the socket, messages can be passed to the

animation program. Polka-RC provides a function SendMessage which is used to send

messages across the socket.

12



There are two basic types of messages that the driver sends to the animation: Register

messages and Send messages. Register messages are used to describe the events that the

driver may dispatch. Each event can have a list of parameters whose types must be indicated

in the Register message. Send messages are actual event transmissions from the driver

program. When a Send message is received, the Animator reads the message to determine

the event name and parameters, and it calls the controller function. Additionally, Polka-

RC uses a special End message that tells the animation program that the algorithm is done

sending messages and is closing the socket.

Every event that the program designer wishes to instantiate �rst must be registered

with a Register message. The Register message contains the name of the event and the

parameter type list. The parameter type list contains characters representing the type of

parameters that will be sent much like a printf statement: d for integer, f for oat, and s

for string. A sorting algorithm might de�ne a SWAP event with two integer parameters as

follows.

SendMessage("Register SWAP dd");

Whenever the program designer wants to animate an event that occurred in the driver

program, a Send message is sent. The message should include the event name followed

by the list of parameters. Because SendMessage accepts only one string parameter, it is

sometimes necessary to use a Unix sprintf command to compress all of the data into one

string. An example is given here of the SWAP event registered previously with integer

variable parameters for the indices of the two elements being exchanged.

char msg[80];

sprintf(msg,"Send SWAP %d %d", i, i+1);

SendMessage(msg);

3.4 Implementation

In the original Polka implementation, each View maintains a list of AnimObjects as its

primary data structure. Essentially, this list serves as a display list just as in traditional

computer graphics toolkits. Each AnimObject maintains a list of Actions that will be

performed on it. When an Animate call occurs, a designated number of new frames are

generated using a two phase algorithm at each frame. In the �rst phase, the Action list

for all AnimObjects with pending Actions is traversed, and all necessary changes to the

AnimObjects' data structures are made. In the second phase, the new frame is generated

by drawing each AnimObject onto an o�screen pixmap, then copying the pixmap to the

drawing window. An XFlush call is made to ush the request bu�er. This implementation

has a few drawbacks, especially when generating clock-based animations. Most notably,

the dependence on program initiated Animate calls and the bu�ering of graphics redraw

requests by X presents problems for a real-time approach.

Unlike Polka, each View in Polka-RC maintains a list of Actions as its primary data

structure. The AnimObject list is only used in the drawing phase, and AnimObjects no

longer must reference Actions. Rather, each Action stores a pointer to its AnimObject

so that the Action/AnimObject relationship is maintained. When an Action is created,

13



the starting time, duration, and trajectory are determined. In certain cases calculation is

necessary since some parameters are not de�ned absolutely; for example, the starting time

can be de�ned with START AFTER START OF, or a velocity can be speci�ed instead of

a duration. Instead of maintaining complex relationships such as pointers to other Actions,

all of these calculations are done at the time of Action creation. Every Action also stores a

value indicating the percentage of the Action completed so far (initially 0).

After an Action is created, it is scheduled in a View. This involves inserting the Action

into the View's list of Actions, which is being sorted by the starting time of the Action.

To �nd the correct position, the Action list is traversed from the latest to the earliest

scheduled Action until the correct place for the new Action is found. The reason for a

backwards traversal is in the belief that Actions are scheduled in the order they occur (for

the most part). The correct insertion point is found more rapidly by traversing the list

backwards.

Rather than requiring regular �Animate calls to generate frames, Polka-RC uses a timeout-

based approach. Usually, Polka-RC loops between checking for X events like button presses

and checking the pipe for animation events from the driver program. An X Toolkit timeout

signals the need to update the display. An important consideration is the interval of time

between timeouts. If the interval is too small, then frames are generated more rapidly than

needed and the load on the machine will be unnecessarily high. If the interval is too large,

changes in AnimObject appearances will be noticeable to the observer. Through trial and

error, we determined a good interval to be 25 milliseconds on a Sun SPARCstation 2.

Even though timeouts are set at regular intervals, they do not always occur when the

animation program is at an appropriate place. Timeouts can only be processed when

polling the X event queue. For instance, a timeout can logically occur while a function of

the animation is executing. In this case, the timeout is held pending until the next query

of the X event queue. Thus, we must always determine the actual time using the Unix

call ftime rather than using the regular data value of the timeout. The retrieved time is

sent to each of the Views, which then update their displays. Since it takes time to update

and redraw the Views, they will be slightly out-of-date by the time the new AnimObject

con�guration is shown. E�orts could be made to estimate the delay and adjust accordingly,

but delay spikes (times when the system is busy and delay is high) can cause the delay

to be overestimated[HS93]. When the next timeout occurs, it may be earlier than the last

estimated update time, which would result in the AnimObjects moving backwards! Since

the out-of-date time is very small, we decided it was acceptable.

As in the original Polka, there are two phases in updating a View. First, the AnimOb-

jects must be updated. In Polka-RC, the update function traverses the View's Action list

and sends update messages to each Action until it reaches an Action with beginning time

after the current time. Since the list is ordered by starting time, all Actions later in the list

must have starting times in the future as well, so the list does not need to be traversed any

further.

Using the current time, each Action will compute the appearance and position for its

AnimObject. For discrete Actions like COLOR, if the scheduled change time has passed,

the change is straightforward and immediate. For continuous actions like MOVE, the An-

imObject must be updated according to the Action's Trajectory. To e�ect this change,

the Action determines the new appearance and the old appearance, calculates their di�er-

ence, and instructs the AnimObject to change its appearance according to this delta. The

14



�rst step in this process is to calculate the percentage of time that has elapsed since the

start of the Action. This value is passed to the pacing function, which returns a modi�ed

percentage that reects the desired pacing value. Next, the old and new appearances are

calculated using the motion type, displacement, and percentage of elapsed time (the newly

calculated percentage for the new, and the old stored percentage for the old). The di�erence

is calculated and the AnimObjects are updated if necessary.

In the next phase of the View update, the new animation frame is generated in the

same way as in Polka with one important exception. The XFlush call ushes the request

bu�er, but the frames may be bu�ered before they are displayed. The delay caused by this

bu�ering disturbs the synchronization that Polka-RC tries to establish. Instead of XFlush,

Polka-RC uses the XSync call to insure that the graphics requests are processed and the

new frame is displayed immediately.

4 Discussion

In building software visualizations with Polka-RC and its real-time, asynchronous anima-

tion model, we discovered a number of interesting advantages as well as challenges in this

approach. First, we'll discuss the advantages of this model over the more conventional

approaches of prior systems.

The foremost advantage of Polka-RC is the exactness and clarity in scheduling the start

and duration of animations. This is particularly true in a model such as Polka's that

emphasizes smooth, continuous animations. For example, when two rectangles exchange

positions in a sorting algorithm animation, we can now specify that this should take 2.5

seconds. No guesswork about the graphics speed and frame rate of the machine being used

is necessary. Basically, the capability of real clock time speci�cations provides the animation

designer with a much more detailed and sophisticated set of capabilities and tools.

A second advantage of Polka-RC's model is more subtle, yet just as useful. As many

developers worked with the original Polka library, they requested that more user interface

capabilities be added to it. For instance, designers requested that the viewer be able to use

the mouse to select View coordinates which then subsequently get utilized in the animation.

Similarly, designers requested that selection callbacks be associated with AnimObjects so

that a mouse click on an object would invoke a particular piece of code. Both these capa-

bilities were subsequently added to Polka.

The di�culty in such user interface operations in the original Polka stemmed from their

interaction with the animation cycle (frame generation). When polling the user for input,

the Polka animation cycle cannot operate simply because the system blocks on input. Even

when Polka animation code (but not the Animate call) is executing, no animation can occur.

Other examples of this problem also exist. Whenever a View was panned or zoomed,

whether by the end-user or programmatically, a fundamental question arose of whether

new animation frames were generated. In fact, Polka includes a somewhat inelegant pro-

grammatic View panning operation that synchronizes properly with the normal animation

cycle.

Generally, these problems characterize the mismatch between a frame generated anima-

tion approach and one that also attempts to provide rudimentary user interface capabilities.

The new Polka-RC model simply makes these problems go away.

15



In addition to exhibiting the bene�ts mentioned above, building animations with Polka-

RC also uncovered some challenges or \unexpected issues." A �rst question we faced was

whether to continue to support a relative speed control bar, and if so, how should it work?

We introduced real clock time animations so that an animation designer would be able

to specify precise animations independent of the hardware and software environment of

the animation. However, viewers of an animation may wish to view particular sequences

of the animation more slowly or quickly. After all, not every viewer has the same rate of

understanding, and not every viewer will be interested in the same aspects of the animation.

We felt that it was necessary to include the relative speed bar for the bene�t of the animation

viewer.

Following the decision to include a speed bar, the next question was how to implement it.

The solution we used was to treat the speed bar like the accelerator in an automobile. When

the value of the speed bar is increased, AnimObjects appear to move faster, and when the

value is decreased, AnimObjects move more slowly. We accomplished this by maintaining

two variables, the real clock time and the simulated Polka-RC time which starts at 0 when

the animation begins. The real clock time is the value returned by the Unix system call,

and the Polka-RC time is the time at which the animation actions are based. When the

new time is generated with a system call, the di�erence between the new and old times

are noted. This di�erence is adjusted according to the speed bar value and added to the

Polka-RC time. Thus, if one second passes in real time and the speed bar is set to double

the speed, two seconds would be added to the Polka-RC time, e�ectively doubling the speed

of the animation.

A second challenge arose in the design and implementation of animation code specifying

the start of Actions under varying circumstances. Consider the following example. Suppose

a designer seeks to visualize a computer program that reads input and carries out an oper-

ation. The animation response to this operation should be to create a circle whose radius

is scaled to the input value and then moved smoothly across the view.

In the synchronous, frame-based model of the original Polka, the Action for this opera-

tion would be

Action a("MOVE", fromloc, toloc, 20);

len = circ->Program(curtime, &a);

curtime = Animate(curtime, len);

This simply creates and schedules a movement between the positions fromloc and toloc

of 20 frames that commences at frame number curtime, which is kept to be the current

frame counter. It then animates for 20 frames and updates curtime appropriately.

We wrote the \corresponding" animation code in Polka-RC and it looked like

Action a("MOVE", circ,

Traj(STRAIGHT, fromloc, toloc, uniform),

START_AT, Now(), DURATION, Sec(3.0));

Schedule(&a);

This schedules a movement Action to commence \now" and take 3 seconds. The code

works �ne when the driver program fetching input values is run interactively and animations

occur immediately in response to events from the driver program. Whenever the user

16



enters a value, the appropriate event is passed through to the animation program and the

movement is scheduled and generated immediately. Even if the user waits 30 seconds before

entering a new value, this code works properly.

Now suppose the same driver program reads input from a �le as opposed to fetching

interactive replies from a terminal. Clearly, the program can read hundreds of values and

call the animation program with these events in only a second or two. If we keep the same

code using Now(), we will see a multitude of values (circles) all moving together. This is

not what the designer wanted. The designer was actually hoping for a synchronous model

where each new movement animation follows the conclusion of the prior one. So, to achieve

this behavior, they may rewrite the code in the following way:

a = new Action("MOVE", circ,

Traj(STRAIGHT, fromloc, toloc, uniform),

START_AFTER_END_OF, b, Sec(0.0), DURATION, Sec(3.0));

Schedule(a);

b = a;

In this code, we save each old Action and make the new one start right after the old

one �nishes. Of course, we must be careful about the very �rst Action, but basically this

code addresses the problem above.

Now return to our example where the program is run interactively. Let's say that the

user enters one value, waits for 10-15 seconds, and enters another value. In this case, the

code above that uses the START AFTER END OF technique will be problematic. Making

a new Action start immediately after the end of the prior Action e�ectively schedules the new

Action in the past. In Polka-RC, the system would encounter this Action and immediately

place the AnimObject at its resultant target position because both the scheduled beginning

and ending times of the Action are in the past. So, we see that neither of these coding

approaches works in all cases. What is needed is an Action that commences at either

the current time or at a time after all other pending scheduled Actions have completed,

whichever is later. This approach would solve both problem scenarios discussed earlier.

In Polka-RC we include the special value ASAP() to provide such functionality. When

an Action with a start time of ASAP is supplied, Polka-RC internally checks the pending

Actions and resolves this time as needed, either to be the current time or the earliest time

after all pending Action have completed. We have found many such uses of the ASAP

functionality, and it has turned out to be a commonly utilized operation. The resultant

code for this �nal solution is shown below.

Action a("MOVE", circ,

Traj(STRAIGHT, fromloc, toloc, uniform),

START_AT, ASAP(), DURATION, Sec(3.0));

Schedule(&a);

5 Conclusion

We have introduced a real time based animation model for developing symbolic visual-

izations and simulations. This model has been implemented in a toolkit called Polka-RC

17



which is particularly well-suited for building software visualizations and algorithm anima-

tions. Polka-RC relieves software visualizers from using low level graphics libraries, and it

allows them to specify precise animation commencements and durations. We have discussed

a number of the advantages of this real clock approach and a few challenging issues raised

by our implementation of the system. We hope that this model and our experiences will be

useful for the developers of evolving future frameworks for software visualization.

Acknowledgments

Partial support for this project was provided by Mitsubishi Research Labs in the form of a

graduate research assistantship.

References

[BH92] Marc H. Brown and John Hershberger. Color and sound in algorithm animation.

Computer, 25(12):52{63, December 1992.

[Bro88a] Marc H. Brown. Exploring algorithms using Balsa-II. Computer, 21(5):14{36,

May 1988.

[Bro88b] Marc H. Brown. Perspectives on algorithm animation. In Proceedings of the ACM

SIGCHI '88 Conference on Human Factors in Computing Systems, pages 33{38,

Washington D.C., May 1988.

[BS85] Marc H. Brown and Robert Sedgewick. Techniques for algorithm animation. IEEE

Software, 2(1):28{39, January 1985.

[DeT93] John DeTreville. The GraphVBT interface for programming algorithm anima-

tions. In Proceedings of the 1993 IEEE Symposium on Visual Languages, pages

26{31, Bergen, Norway, August 1993.

[Dui86] Robert A. Duisberg. Animated graphical interfaces using temporal constraints. In

Proceedings of the ACM SIGCHI '86 Conference on Human Factors in Computing

Systems, pages 131{136, Boston, MA, April 1986.

[HS93] Scott E. Hudson and John T. Stasko. Animation support in a user interface

toolkit: Flexible, robust and reusable abstractions. In Proceedings of the 1993

ACM Symposium on User Interface Software and Technology, pages 57{67, At-

lanta, GA, November 1993.

[KRR94] Doug Kimelman, Bryan Rosenburg, and Tova Roth. Strata-Various: Multi-layer

visualization of dynamics in software system behavior. In Proceedings of the IEEE

Visualization '94 Conference, pages 172{178, Washington, D.C., October 1994.

[Las87] J. Lassiter. Principles of traditional animation applied to 3d concurrent animation.

In Proceedings of SIGGRAPH '87, pages 35{44, July 1987.

[MS94] Sougata Mukherjea and John T. Stasko. Toward visual debugging: Integrating al-

gorithm animation capabilities within a source level debugger. ACM Transactions

on Computer-Human Interaction, 1(3):215{244, September 1994.

18



[PBS93] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A principled taxonomy of

software visualization. Journal of Visual Languages and Computing, 4(3):211{266,

September 1993.

[Rei85] Steve P. Reiss. Pecan: Program development systems that support multiple views.

IEEE Transactions on Software Engineering, SE-11(3):276{285, March 1985.

[SI91] Takao Shimomura and Sadahiro Isoda. Linked-list visualization for debugging.

IEEE Software, 8(3):44{51, May 1991.

[SK93] John T. Stasko and Eileen Kraemer. A methodology for building application-

speci�c visualizations of parallel programs. Journal of Parallel and Distributed

Computing, 18(2):258{264, June 1993.

[SP92] John T. Stasko and Charles Patterson. Understanding and characterizing software

visualization systems. In Proceedings of the 1992 IEEE Workshop on Visual

Languages, pages 3{10, Seattle, WA, September 1992.

[Sta90] John T. Stasko. TANGO: A framework and system for algorithm animation.

Computer, 23(9):27{39, September 1990.

[SW93] John T. Stasko and Joseph F. Wehrli. Three-dimensional computation visualiza-

tion. In Proceedings of the 1993 IEEE Symposium on Visual Languages, pages

100{107, Bergen, Norway, August 1993.

19


