
10:10:42 OCA PAD AMENDMENT- PROJECT·HEADER INFORMATION Ol/08/92

Project I: E-24-670
Center # : R6708-0AO

Cost share #: E-24-370
Center shr I: F6708-0AO

Rev #: 5
OCA file #:

Active

Work type : RES
Contract#: N00014-89-J-1658
Prime #:

Subprojects •'?
Main project #:

Project unit:

N

Project director(s)~ .

LLEWELLYN" D C

Sponsor/division names: NAVY
Sponsor/division codes: 103

ISYE

ISYE

Mod #: AOOOOl Document GRANT
Contract entity: GTRC

CFDA: 12.AAA
PE #: N/A

Unit code: 02.010.124

(404)894-2340

I OFC OF NAVAL RESEARCH
I 025

Award period: 890201 to 920930 (performance) 920930 (reports)

Sponsor amount
Contract value
Funded

Cost sharing amount

New this change
0.00
0.00

Does subcontracting plan apply ?: N

Total to date
171,4't7.00
171,447.00

5,334.00

Title: LOCATION AND DISTRIBUTION OF LOCAL OPTIMA

PROJECT ADMINISTRATION DATA

OCA contact: E. Faith Gleason

Sponsor technical contact

DR. JULIA ABRAHAMS, CODE 1111MA
(202)696-4362

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5000

Security class (U,C,S,TS) U
Defense priority rating
Equipment title vests with: Sponsor

894-4820

Sponsor issuing office

RUBY MCDONALD, CODE 1511:RM
(202)696-4513

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5000

ONR resident rep. is ACO (Y/Nl:
ONR supplemental sheet

GIT X

\Cd:inistrative comments -
~~D IAOOOOl PROVIDES A NO-COST EXTENSION TO SEPTEMBER 30, 1992.

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

Closeout Notice Date 12/10/92

No. E-24-670 _____ _ Center No. R6708-0AO __________ _

Project Director LLEWELLYN D C ______ __ School/Lab ISYE ______ _

Sponsor NAVY/OFC OF NAVAL RESEARCH ________________________________ __

Contract/Grant No. N00014-89-J-1658 __________ __ Contract Entity GTRC

Prime Contract No.

Title LOCATION AND DISTRIBUTION OF LOCAL OPTIMA ____________________________ _

Effective Completion Date 920930 (Performance) 920930 (Reports)

Closeout Actions Required:

Final Invoice or Copy of Final Invoice
Final Report of Inventions and/or Subcontracts
Government Property Inventory & Related Certificate
Classified Material Certificate
Release and Assignment
Other

YIN

y
y

N
N
y

N

Date
Submitted

CommentsEFFECTIVE DATE 2-1-89. CONTRACT VALUE $171,447. __________________ _

Subproject Under Main Project No.

Continues Project No.

Distribution Required:

Project Director
Administrative Network Representative
GTRI Accounting/Grants and Contracts
Procurement/Supply Services
Research Property Managment

r~¥-~~~~~~--

Reports Coordinator <DCA)
GTRC
Project File
Other HARRY VANN-FMD ______________________ ___

FRED CAIN-DOD ________________________ _

NOTE: Final Patent Questionnaire sent to PDP!.

y
y
y
y
y

N
y
y
y
y
y

..
PROJECf DESCRIPTION

1. Introduction

Practioners have long been struggling to discover more effective

heuristics for many important problems in combinatorial optimization (see

e.g .. Cornuejols, Nemhauser and Wolsey [1983]. Dearing, Francis and Lowe

[1976]. Derigs [1985]. Handler and Mirchandani [1979]. Hornung [1983], and

Tovey [1983]. Simulated annealing is a new approach to this problem. see

e.g .. Kirkpatrick. Gelat and Vecchi [1983]. and Lundy and Mees [1986]}.

Finding local optima is at the heart of many of these heuristics.

This proposal is for a continuation of work currently being funded by

ONR. The principal investigator has initiated a study of the location of

local optima in discrete structures. To date, two papers have been

published. The first is "Finding Saddlepoints of Two-Person Zero-Sum

Garnes." coauthored with Craig Tovey and Michael Trick. The American

MathematicaL Monthly. Vol. 95, No. 10. This investigates the problem on

finding local and global saddlepoints of a matrix. Using fractal analysis

we find that locating a local saddlepoint is a harder problem then the

corresponding one for a global saddlepoint. The second paper is entitled

"Local Optimization on Graphs," coauthored with Craig Tovey and Michael

Trick. Discrete Applied Mathematics. 23. This work uses game theory to

develop a theoretical base from which lower and upper bounds on the amount

of work required to find a local optima may be gleaned. Another paper,

"Dividing and Conquering the Square," coauthored with Craig Tovey, is in

3

working paper form and will be submitted for publication soon. This looks

at the problem of local optimization on grid graphs with different

neighborhood structures.

Our attention in the past concentrated on "simple" graphical

structures. This was for two reasons - first. we expect our techniques

and theories to extend quite nicely to other, more complicated structures.

Also, as history shows in the arena of continuous optimization, real

problems rarely fall into the classes of pretty textbook problems. In

combinatorial optimization this is also true and so only studying the

problems that give rise to the well-known well-formulated NP-complete

problems is not realistic. Rather, a theory that helps to solve a general

discrete problem is more useful. Our work will give us information about

what types of simple to describe neighborhood structures give rise to

efficient local optimization procedures. This in turn will be used to

develop methods to define neighborhood graphs for general problems that

will allow us to solve them. Eventually, it will be interesting to check

if these neighborhood structures are actually the ones that the textbooks

suggest for the classical problems.

Now, we are also studying using stochastic tools in our analysis.

There are two avenues we are exploring: probabilistic analysis of

deterministic local optimization procedures, and probabilistic algorithms.

Both of these approaches have found some success in recent years. Average

case analysis of algorithms gained a lot of attention in the early 1980's

when applied to the simplex method and other linear programming routines

{see, for example, Dantzig [1980], Adler [1983], and Megiddo [1986]}.

Probabilistic algorithms more recently have been applied to cryptography

4

problems, in particular, to the problems of primality testing and prime

factorization (see, for example, Miller [1976], Rabin [1979 and 1980].

Pomerance [1982] and Diffie and Hellman [1976]). We are looking at using

the results in Llewellyn, Tovey and Trick (1989) to develop a stochastic

procedure for the travelling salesman problem under the two-opt.

neighborhood. This work will impose no restrictions on the functional

forms or values. unlike other results in the area (see, for example, Karp

and Steele (1985)).

With techniques ranging from game theory to stochastic processes we

propose to continue to determine the complexity of finding local optima in

discrete structures as well as to investigate the behavior of these

solutions. If a heuristic involves determining the location of local

optima, then this local optimization subroutine must be efficient for the

algorithm to be effective. Hence, it is important to study lower bounds

on the work needed by local optimization techniques and to investigate

methods that approach these bounds. Moreover, information about the

interrelationships of the local optima. i.e. more knowledge of where the

local optima are located, how their values are distributed, and how these

factors relate to the corresponding information about the global optima

and their values, will permit a scientific approach to the development of

local optimization algorithms. Developing a rigorous mathemathical

approach to this problem is new. While many practioners report on

different techniques in discrete local optimization, there is neither a

consensus on what works well in practice, nor a strong theoretical

foundation describing the relative complexities and benefits of these

different methods. Currently, procedures are written using only intuition

and past empirical experience. In addition, any knowledge of local optima

5

in discrete structures will improve our understanding of these structures

and hence aide in our search for global optimization techniques.

The primary method currently employed in local optimization

algorithms is local improvement. This technique involves pivoting from a

solution candidate to a nearby candidate that has a better function value.

Given the pivoting rule, a neighborhood structure of the candidate

solutions is imposed. In preliminary investigations, we studied bounds on

the worst case amount of work needed by any type of algorithm to find

local optima in particular neighborhood structures. This is one of the

first studies to rigorously investigate techniques other than local

improvement. The mathematics used here includes analyzing a two person

game and finding the fractal dimension of a collection of entries in a

matrix. We are anxious to continue to pursue this and to look for other

neighborhood structures which permit this type of analysis. Further, we

wish to begin to address the larger questions of what makes an efficient

local optimization algorithm and what is the complexity of this problem in

general. (Note that Johnson, Papadimitriou and Yannakakis (1985] have

initiated investigation into this latter question). We wish to extend

this study by further exploring the complexity classes of PLS and R.

We have begun by studying several basic discrete problems; in

particular, problems where the neighborhood structure is easy to analyze

such as those that form grid graphs or planar graphs. Here we have found

bounds on the amount of work involved in locating local optima. With a

better understanding of these elementary settings, we now move on to more

important problems in combinatorial optimization, seeking to answer the

same questions. While looking at these specific problems, we will aim to

6

form a coherent approach and analysis of the subject of local optimization

in discrete structures. If successful, this will help to locate

structures for which the information gleaned from the local optimization

process is useful in the pursuit of global optima. In addition, the

complexity analysis of the local algorithms will serve to disqualify

certain general types of global algorithms as inefficient. More

specifically, if we obtain a lower bound on the worst case amount of work

involved in locating a local optimum, then clearly any global optimization

algorithm must also have this as a lower bound. Further, if we find that

certain genres of local optimization algorithms do not perform near this

lower bound, then probably these will not extend to efficient global

methods. It should be noted that any progress toward more efficient

solution techniques for discrete optimization problems will provide an

enormous boost to the current knowledge base in all areas serviced by

integer programming, including but not restricted to plant location,

production planning and job shop scheduling.

In section 2 below, we define the general combinatorial optimization

problem and the necessary notation for the rest of the proposal. The

problem of finding local optima is discussed in section 3. In section 4

we outline the plan for our research in this area.

2. Background

A general combinatorial optimization problem can be written as given

a finite ground set S, a collection of subsets of S, F, and a weight

function w: S -> R, find * * I E F such that w{I) = min w{I) {where
IEF

7

w(I) = ~ w(e)). Given such a problem. define a symmetric operation of
eEl

pivoting between members of F. Call I 1 and 1
2

neighbors if one can pivot

between them. One useful example to keep in mind here is the pivoting

rule of the linear programming simplex method, (see e.g. Dantzig [1963]).

In this model. the ground set is the collection of variables, the set F is

the collection of feasible bases; and two solutions are neighbors if and

only if they correspond to basic feasible solutions which are adjacent on

the constraint polyhedron. Another useful example occurs in matroid

theory, (see e.g. Welsh [1976]). Here. the ground set is the ground set

of the matroid and the set F is the collection of independent sets of the

matroid. Two independent sets are neighbors if and only if they differ in

cardinality by exactly one. Finally. consider a third example. Given a

graph. let the ground set be the vertex set of the graph and the set F

correspond to independent (stable) sets. Here, let two stable sets be

neighbors if and only if the symmetric difference of them has cardinality

less than or equal to two.

Given a neighborhood structure. the related local minimization

problem is to find I' € F such that w(I') ~ w(I) for all neighbors I.

If we define the function w in the first example above to be the objective

value function of the linear programming problem, then obviously since the

problem is linear. the local optimization problem is equivalent to the

global optimization problem. It is well known that for any linear

objective function the local problem defined in the second example is also

equivalent to the global problem. In the third example. if w = -1 for v

all vertices v • t hen the local and global problems are clearly quite

different. In each of the first two examples, an efficient global

8

optimization algorithm is known. For linear programming. while the

simplex method {which is a local search procedure) has exponential worst

case time. there exist polynomial algorithms {see e.g. Karmarkar [1984]).

In the case of matroids. it is well known that the greedy {local)

algorithm will optimally solve the global problem. Unfortunately. most

combinatorial optimization problems are closer to the third example above.

That is. they are neither linear programs nor defined on a matroid. and

the global problem is often not known to admit a polynomial algorithm.

{See Rod! and Tovey [1987] for more on the third example.) Further. the

local optimization problem is often more tractable than the global

problem.

It is sometimes convenient to discuss these problems in a graphical

setting. For this purpose. define a graph G = {V.E). where V = F and two

vertices are neighbors {i.e. adjacent in G) if and only if the

corresponding sets in Fare neighbors with respect to the defined pivoting

operation. We will refer to G as the graph of neighborliness. Clearly

then. any problem {or algorithm) related to F can be translated into an

equivalent problem {or algorithm) on G.

3. Finding Local Optima

The first issue to be dealt with in relation to local optimization is

the definition of the pivoting operation and hence the neighborhood

structure. {See Scarf [1981a.1981b] for other approaches to the subject

of neighborhood structures for integer programming problems.) This must

be done with two simultaneous and often conflicting objectives. First.

9

one wants to solve the problem at hand and hence seeks a neighborhood

structure that allows for either an exact or a convergent algorithm.

preferably using only a polynomial number of steps. However. one also

wants a structure that is relatively easy to define; that is. it is not

particularly useful to trade one hard problem (the original optimization

problem) for another {pivoting or locating a neighbor). There are a

multitude of different neighborhood structures in the current literature;

these include defining sets to be neighbors if they have the same

cardinality. if they differ in cardinality by some k. or if they are

geometrically adjacent. There is a need to initiate an organized study of

these different structures and the algorithmic results that they lead to.

Once a neighborhood structure has been chosen. the next step is to

decide what type of algorithm to use. One type that is frequently

employed in practice is local improvement. The first step in these

algorithms is to select a starting point. Then the neighboring points are

searched. Either the first vertex is locally optimal or it has an

improving neighbor. If such a vertex exists. the algorithm moves to an

improving neighbor. This is repeated until a local optimum is found. The

whole procedure is iterated many times with different starting points. and

then the best local optimum is chosen. The specific rules are determined

by the actual algorithm in use. Some of the issues that must be addressed

are the neighborhood structure; the location and quantity of starting

points. as well as if these should be deterministically chosen or randomly

selected; the search procedure within the neighborhoods; and the choice of

improving neighbor. i.e .• should the first encountered better neighbor be

chosen or should the best neighbor be selected. Even for this simply

10

stated algorithm genre, there remain many unanswered questions. In which

cases does best neighbor give a "better" local optima? For which

structures and functions is this an efficient algorithm? For given

problems, can this general algorithm be used to create an efficient

heuristic technique? The literature is filled with articles in which the

authors acknowledge using intuition and empirical tests as the main tools

in answering these questions {see e.g. Dyer and Frieze [1985], Foulds,

Gibbons and Giffen [1985], and Thompson and Singhal [1984].) In

Papadimitriou and Steiglitz [1982] it is noted that while local

improvement is often a highly successful technique, determining the

starting points and neighborhood parameters is still accomplished

empirically because "the design of effective local search algorithms has

been, and remains, very much an art." It is time for this procedure to be

studied as a science.

· Further, although local search is a commonly applied procedure, in

most cases the local optimization subroutine is not efficient. One area

where this technique of local search is often used is in the analysis of

the traveling salesman problem, {see e.g., Lawler, Lenstra, Rinooy Kan and

Schmoys [1985]). One popular heuristic algorithm is referred to as

"two-opting." In this process, the neighborhood structure is defined by

letting two tours be neighbors if and only if they differ by exactly two

edges. While this concept has generated a lot of interest and research

there is still no known polynomial local optimization algorithm based on

this neighborhood structure. Further, it is known that in some examples,

using local improvement requires an exponential number of iterations.

This gives just one example of where increased research in the area of

11

discrete structure local optimization techniques would improve our overall

knowledge base.

In general, there are many types of algorithms that do not rely on

local search for finding local optima. In preliminary investigations we

have found a game played on a graph that gives good lower bounds on the

amount of work needed by any algorithm to find a local optimum. The ideas

inherent in this study are closely related to general divide and conquer

techniques. These preliminary results are discussed below. See

Llewellyn, Tovey and Trick [1989] for more details.

Given the graph of neighborliness, G, and local optimization

algorithm A, let L{G,A) denote the worst case number of function look-ups

needed by algorithm A to find a local optimum in graph G. We define a

two-person game played on G which has value v{G). We have proven that

v{G) provides a lower bound for L{G,A) for any A. However, we have also

proven that determining v{G) for general G is an NP-hard problem.

Therefore we investigated techniques for obtaining bounds on v{G). Using

known separator theorems and boundary theorems, {see e.g., Lipton and

Tarjan [1979], Lipton, Rose and Tarjan [1979], Lipton and Tarjan [1980],

and Djidjev [1982]) we have been able to determine reasonable bounds on

v{G) for planar graphs. In most cases these bounds can be proven to be

within a constant factor of v{G). We also investigated geometric

arguments for determining L{G,A) in the case of grid graphs. These

improved the bounds that the methods discussed above provided.

In Llewellyn, Tovey and Trick [1989], we discuss the general

framework of the two person game and the bounds it provides. We also

show, in detail, the application of these methods to two examples, the

12

grid graph with the neighborhood structure which has two nodes adjacent if

and only if they are in the same row or column, and the d - dimensional

hypercube. We are currently applying these tools to other simple examples

including different neighborhood structures on grid graphs. These

examples appear to use primarily geometric arguments.

There are several directions which this research can follow. First,

we want to continue to study grid graphs and other planar graphs to

improve our bounds and to find efficient algorithms that approach the

theoretical bounds. Further. we would like to study other graphs for

which boundary and separation theorems can be used to get bounds on v{G}.

Finally, these methods suggest a means for initiating a thorough

investigation of the problem of local optimization in discrete structures.

Results such as our game bounds are a first step in studying the theory of

the complexity of finding local optima. Johnson, Papadimitriou and

Yannakakis {[1985]} recently produced an extended abstract on the problem

of the complexity of local search. We propose to study and extend their

analysis.

4. Summary of Proposed Work

We are proposing a research project designed to investigate the

problem of determining the location and behavior of local optima in

discrete structures. To begin, we will continue our study of the problem

restricted to simple neighborhood structures, for example, grid graphs,

triangulated graphs and general graphs of fixed genus. This will involve

extending the results we have already found to other graphs and structures

13

PROJECT SUMMARY

. £-cl'-/-~ 7o

/ttJoo/4- JXI-J~ /&S 8

Practioners have long been struggling to develop effective heuristics

for combinatorial optimization problems. At the heart of most of these

algorithms is the need to find local optima. However, most experts

continue to use only intuition and empirical test results to determine the

parameters of their local improvement algorithms. It is time to approach

this problem scientifically and rigorously.

We propose to continue to study the complexity of finding local

optima in discrete structures, and to investigate the distributions of

these solutions and their functional values. We aim to determine how to

develop an efficient local optimization algorithm for a general discrete

structure problem. Intrinsic in this plan is the need to study how local

optima are interrelated as well as effective means to locate these

solutions.

2

PROJECT DESCRIPTION

1. Introduction

Practioners have long been struggling to discover more effective

heuristics for many important problems in combinatorial optimization (see

e.g .. COrnuejols. Nemhauser and Wolsey [1983]. Dearing. Francis and Lowe

[1976]. Derigs [1985]. Handler and Mirchandani [1979]. Hornung [1983]. and

Tovey [1983]. Simulated annealing is a new approach to this problem. see

e.g .. Kirkpatrick. Gelat and Vecchi [1983]. and Lundy and Mees [1986]).

Finding local optima is at the heart of many of these heuristics.

This proposal is for a continuation of work currently being funded by

ONR. The principal investigator has initiated a study of the location and

distribution of local optima in discrete structures. To date. two papers

have been published. The first is "Finding Saddlepoints of Two-Person

Zero-Sum Games." coauthored with Craig Tovey and Michael Trick. The

American Mathematical Monthly. Vol. 95, No. 10. This investigates the

problem on finding local and global saddlepoints of a matrix. Using

fractal analysis we find that locating a local saddlepoint is a harder

problem then the corresponding one for a global saddlepoint. The second

paper is entitled "Local Optimization on Graphs," coauthored with Craig

Tovey and Michael Trick. Discrete Applied Mathematics, 23. This work uses

game theory to develop a theoretical base from which lower and upper

bounds on the amount of work required to find a local optima may be

gleaned. Two other papers have been submitted for publication in Discrete

3

AppLied Mathematics. "Dividing and Conquering the Square," coauthored

with Craig Tovey, looks at the problem of local optimization on grid

graphs with different neighborhood structures. "A Primal-Dual Integer

Progranuning Algorithm," coauthored with Jennifer Ryan develops an

algorithm based on superadditive duality. It discusses the conditions

needed to make such an algorithm efficient for finding global rather than

local optima.

Most of our past work relied on deterministic analysis of local

optimization procedures. Now. we are also using stochastic tools in our

analysis. This approach has found some success in recent years. In

particular, average case analysis of algorithms gained a lot of attention

in the early 1980's when applied to· the simplex method and other linear

programming routines (see, for example, Dantzig [1980]. Adler [1983]. and

Megiddo (1986]). Currently. we are looking at probabilistic analysis of

the traveling salesman problem using general finite, bounded. discrete

distributions. This work looks at questions about the distribution of the

local optima, as well as the effects of choice of neighborhood structure

on the quality of the solutions obtained. We are investigating the

interrelationships between the algorithm used to find initial solutions

and the improvement procedure. We are also studying how to extend some

classical results on the existence of a tour of finding a locally optimum

one (see, for example. Koml6s and Szemeredi (1983] and Bollobas, Fenner

and Frieze (1985]).

With techniques ranging from game theory to stochastic processes we

propose to continue to determine the complexity of finding local optima in

discrete structures as well as to investigate the behavior of these

4

solutions. If a heuristic involves determining the location of local

optima, then this local optimization subroutine must be efficient for the

algorithm to be effective. Hence, it is important to study lower bounds

on the work needed by local optimization techniques and to investigate

methods that approach these bounds. Moreover, information about the

interrelationships of the local optima, i.e. more knowledge of where the

local optima are located. how their values are distributed, and how these

factors relate to the corresponding information about the global optima

and their values, will permit a scientific approach to the development of

local optimization algorithms. Developing a rigorous mathemathical

approach to this problem is new. While many practioners report on

different techniques in discrete local optimization·, there is neither a

consensus on what works well in practice, nor a strong theoretical

foundation describing the relative complexities and benefits of these

diff.erent methods. Currently, procedures are written using only intuition

and past empirical experience. In addition, any knowledge of local optima

in discrete structures will improve our understanding of these structures

and hence aide in our search for global optimization techniques.

The primary method currently employed in local optimization

algorithms is local . improvement. This technique involves pivoting from a

solution candidate to a nearby candidate that has a better function value.

Given the pivoting rule. a neighborhood structure of the candidate

solutions is imposed. In preliminary investigations. we studied bounds on

the worst case amount of work needed by any type of algorithm to find

local optima in particular neighborhood structures. This is one of the

first studies to rigorously investigate techniques other than local

5

improvement. The mathematics used here includes analyzing a two person

game and finding the fractal dimension of a collection of entries in a

matrix. We are anxious to continue to pursue this and to look for other

neighborhood structures which permit this type of analysis. Further, we

wish to begin to address the larger questions of what makes an efficient

local optimization algorithm and what is the complexity of this problem in

general. {Note that Johnson, Papadimitriou and Yannakakis [1985] have

initiated investigation into this latter question). We wish to extend

this study by further exploring the complexity classes of PLS and R.

We began by studying several basic discrete problems; in particular,

problems where the neighborhood structure is easy to analyze such as those

that form grid graphs or planar graphs. Here we have found bounds on the

amount of work involved in locating local optima. With a better

understanding of these elementary settings, we now move on to more

important problems in combinatorial optimization, seeking to answer the

same questions. While looking at these specific problems, we will aim to

form a coherent approach and analysis of the subject of local optimization

in discrete structures. If successful, this will help to locate

structures for which the information gleaned from the local optimization

process is useful in the pursuit of global optima. In addition, the

complexity analysis of the local algorithms will serve to disqualify

certain general types of global algorithms as inefficient. More

specifically, if we obtain a lower bound on the worst case amount of work

involved in locating a local optimum, then clearly any global optimization

algorithm must also have this as a lower bound. Further, if we find that

certain genres of local optimization algorithms do not perform near this

6

lower bound. then probably these will not extend to efficient global

methods. It should be noted that any progress toward more efficient

solution techniques for discrete optimization problems will provide an

enormous boost· to the current knowledge base in all areas serviced by

integer programming. including but not restricted to plant location,

production planning and job shop scheduling.

In section 2 below, we define the general combinatorial optimization

problem and the necessary notation for the rest of the proposal. The

problem of finding local optima is discussed in section 3. In section 4

we outline the plan for our research in this area.

2. Background

A general combinatorial optimization problem can be written as given

a finite ground setS, a collection of subsets of S. F. and a weight

function w: S -> R, find * * I € F such that w(I } = min w(I} (where
I€F

w(I} = ~ w(e)). Given such a problem. define a symmetric operation of
e€!

pivoting between members of F. Call 11 and 12 neighbors if one can pivot

between them. One useful example to keep in mind here is the pivoting

rule of the linear programming simplex method, (see e.g. Dantzig [1963]).

In this model, the ground set is the collection of variables, the set F is

the collection of feasible bases: and two solutions are neighbors if and

only if they correspond to basic feasible solutions which are adjacent on

the constraint polyhedron. Another useful example occurs in matroid

theory, (see e.g. Welsh [1976]). Here, the ground set is the ground set

of the matroid and the set F is the collection of independent sets of the

7

matroid. Two independent sets are neighbors if and only if they differ in

cardinality by exactly one. Finally. consider a third example. Given a

graph. let the ground set be the vertex set of the graph and the set F

correspond to independent {stable) sets. Here. let two stable sets be

neighbors if and only if the symmetric difference of them has cardinality

less than or equal to two.

Given a neighborhood structure. the related local minimization

problem is to find I" € F such that w{I") ~ w{I) for all neighbors I.

If we define the function w in the first example above to be the objective

value function of the linear programming problem. then obviously since the

problem is linear. the local optimization problem is equivalent to the

global optimization problem. It is well known that for any linear

objective function the local problem defined in the second example is also

equivalent to the global problem. In the third example. if w = -1 for v

all vertices v . then the local and global problems are clearly quite

different. In each of the first two examples. an efficient global

optimization algorithm is known. For linear programming. while the

simplex method (which is a local search procedure) has exponential worst

case time. there exist polynomial algorithms (see e.g. Karmarkar [1984]).

In the case of matroids. it is well known that the greedy {local)

algorithm will optimally solve the global problem. Unfortunately, most

combinatorial optimization problems are closer to the third example above.

That is, they are neither linear programs nor defined on a matroid. and

the global problem is often not known to admit a polynomial algorithm.

(See Rodl and Tovey [1987] for more on the third example.) Further. the

local optimization problem is often more tractable than the global

problem.

8

It is sometimes convenient to discuss these problems in a graphical

setting. For this purpose, define a graph G = {V,E), where V = F and two

vertices are neighbors {i.e. adjacent in G) if and only if the

corresponding sets in Fare neighbors with respect to the defined pivoting

operation. We will refer to G as the graph of neighborliness. Clearly

then, any problem {or algorithm} related to F can be translated into an

equivalent problem {or algorithm) on G.

3. Finding Local Dot ima

The first issue to be dealt with in relation to local optimization is

the definition of the pivoting operation and hence the neighborhood

structure. {See Scarf [19Sla,l98lb] for other approaches to the subject

of neighborhood structures for integer programming problems.) This must

be done with two simultaneous and often conflicting objectives. First,

one wants to solve the problem at hand and hence seeks a neighborhood

structure that allows for either an exact or a convergent algorithm,

preferably using only a polynomial number of steps. However, one also

wants a structure that is relatively easy to define: that is, it is not

particularly useful to trade one hard problem {the original optimization

problem) for another (pivoting or locating a neighbor). There are a

multitude o£ different neighborhood structures in the current literature;

these include defining sets to be neighbors if they have the same

cardinality, if they differ in cardinality by some k, or if they are

geometrically adjacent. There is a need to initiate an organized study of

these different structures and the algorithmic results that they lead to.

9

Once a neighborhood structure has been chosen, the next step is to

decide what type of algorithm to use. One type that is frequently

employed in practice is local improvement. The first step in these

algorithms is to select a starting point. Then the neighboring points are

searched. Either the first vertex is locally optimal·or it has an

improving neighbor. If such a vertex exists, the algorithm moves to an

improving neighbor. This is repeated until a local optimum is found. The

whole procedure is iterated many times with different starting points, and

then the best local optimum is chosen. The specific rules are determined

by the actual algorithm in use. Some of the issues that must be addressed

are the neighborhood structure; the location and quantity of starting

points. as well as if these should be deterministically chosen or randomly

selected; the search procedure within the neighborhoods; and the choice of

improving neighbor. i.e .. should the first encountered better neighbor be

chosen or should the best neighbor be selected. Even for this simply

stated algorithm genre. there remain many unanswered questions. In which

cases does best neighbor give a "better" local optima? For which

structures and functions is this an efficient algorithm? For given

problems, can this general algorithm be used to create an efficient

heuristic technique.? The literature is filled with articles in which the

authors acknowledge using intuition and empirical tests as the main tools

in answering these questions (see e.g. Dyer and Frieze [1985], Foulds.

Gibbons and Giffen (1985]. and Thompson and Singhal [1984].) In

Papadimitriou and Steiglitz [1982] it is noted that while local

improvement is often a highly successful technique. determining the

starting points and neighborhood parameters is still accomplished

10

empirically because "the design of effective local search algorithms has

been. and remains. very much an art." It is time for this procedure to be

studied as a science.

Further. although local search is a commonly applied procedure. in

most cases the local optimization subroutine is not efficient. One area

where this technique of local search is often used is in the analysis of

the traveling salesman problem. {see e.g .. Lawler. Lenstra. Rinooy Kan and

Schmoys [1985]). One popular heuristic algorithm is referred to as

"two-opting." In this process. the neighborhood structure is defined by

letting two t~urs be neighbors if and only if they differ by exactly two

edges. While this concept has generated a lot of interest and research

there is still no known polynomial local optimization algorithm based on

this neighborhood structure. Further. it is known that in some examples,

using local improvement requires an exponential number of iterations.

This gives just one example of where increased research in the area of

discrete structure local optimization techniques would improve our overall

knowledge base.

In general, there are many types of algorithms that do not rely on

local search for finding local optima. In preliminary investigations we

have found a game played on a graph that gives good lower bounds on the

amount of work needed by any algorithm to find a local optimum. The ideas

inherent in this study are closely related to general divide and conquer

techniques. These preliminary results are discussed below. See

Llewellyn, Tovey and Trick [1989] for more details.

Given the graph of neighborliness, G, and local optimization

.algorithm A, let L{G,A) denote the worst case number of function look-ups

11

needed by algorithm A to find a local optimum in graph G. We define a

two-person game played on G which has value v(G). We have proven that

v(G) provides a lower bound for L(G.A) for any A. However. we have also

proven that determining v(G) for general G is an NP-hard problem.

Therefore we investigated techniques for obtaining bounds on v(G). Using

known separator theorems and boundary theorems. (see e.g .. Lipton and

Tarjan (1979]. Lipton. Rose and Tarjan (1979]. Lipton and Tarjan (1980].

and Djidjev (1982]) we have been able to determine reasonable bounds on

v(G) for planar graphs. In most cases these bounds can be proven to be

within a constant factor of v(G). We also investigated geometric

arguments for determining L(G.A) in the case of grid graphs. These

improved the bounds that the methods discussed above provided.

In Llewellyn. Tovey and Trick (1989]. we discuss the general

framework of the two person game and the bounds it provides. We also

show. in detail. the application of these methods to two examples. the

grid graph with the neighborhood structure which has two nodes adjacent if

and only if they are in the same row or column. and the d - dimensional

hypercube. We applyied these tools to other neighborhood structures on

grid graphs in Llewellyn and Tovey (1990]. These examples appear to use

primarily geometric arguments.

There are several directions which this research can follow. First.

we are now studying more complex. perhaps more realistic problems. We

have begun using probabilistic analysis rather than relying on straight

deterministic work. We would like to gain a better understanding of how

the neighborhood structure affects the solution quality under different

probabilistic assumptions.

12

4. Summary of Proposed Work

We are proposing a research project designed to investigate the

problem of determining the location and behavior of local optima in

discrete structures. There is a wealth of interesting, important discrete

optimization problems that can benefit from our analysis. After

approaching the problem from the standpoint of neighborhood structure, we

must turn the study around and approach from the original problem. We

will investigate what problems have accessible neighborhood structures

that will allow for our analysis. This research should provide new ways

of looking at old problems, introducing neighborhood ideas that in turn

will generate new heuristic procedures.

The main thrust of our research will be towards designing more

efficient algorithms for discrete local optimization and using these to

develop better global heuristic procedures for combinatorial optimization

problems. It is important to place this work in its proper context. We

are not proposing to study some small, unrealistic problems. The effect

of a new approach to finding local optima iri discrete structures will be

seen in all areas of combinatorial optimization. As mentioned earlier,

for any algorithm that contains a local optimization subroutine to be

effective, that subroutine must be efficient. It is time to study this

important problem scientifically rather than relying on empirical tests

and intuition.

13

IMPACf OF THE PROPOSED RESEARCH

We propose to study the problems of the complexity of finding local

optima in discrete structures and the distributions of these solutions and

their functional values. If successful, this proposed research will

discover new efficient algorithms for finding local optima in discrete

structures as well as new techniques for analyzing the complexity of this

question for general combinatorial optimization problems. Further, we

hope to study how local optima behave, that is, how these solutions are

interrelated and how their functional values are distributed throughout

the structure. By improving our knowledge about finding local optima in

discrete structures, this research will enable us to learn more about how

the structure affects the optimization procedure. Hence, this proposal

has the potential to teach us how to develop more effective combinatorial

optimization heuristics. Any progress toward more efficient solution

techniques for discrete optimization problems will provide an enormous

boost to the· current knowledge base in all areas serviced by integer

programming

14

REFERENCES

Adler. I. {1983} "The Expected Number of Pivots Needed to Solve Parametric
Linear Programs and the Efficiency of the Self-Dual Simplex Method,"
manuscript. Department of Industrial Engineering and Operations
Research. University of California. Berkeley. California.

Bollobas. B., Fenner. T. and Frieze. A. {1985} "An Algorithm for Finding
Hamilton Cycles in Random Graphs," Proceedings of the 17th AnnuaL ACM
Symposium on Theory of Computing. 430-439.

Chang. R.C. and Lee, R.C.T. {1984} "On the Average Length of Delauney
Triangulations." BIT 24. 269-273.

Cornuejols. G .. Nemha.user.G. and Wolsey. L. {1983} "The Uncapacitated
Facility Location Problem," Technical Report Number 605, School of
Operations Research and Industrial Engineering. Cornell University.
Ithaca. New York.

Da.ntzig, G. B. {1980) "Expected Number of Steps of the Simplex Method for
a Linear Program with a Convexity Constraint." Technical Report SOL
80-3. Systems Optimization Laboratory. Department of Operations
Research, Stanford University. Stanford. California.

Dearing, P.M .• Francis, R.L. and Lowe. T.J. {1976} "Convex Location
. Problems on Tree Networks." Operations Research 24. 628-642.

Deri.gs. U. { 1985} "Using Confidence Limits for the Global Optimum in
Combinatorial Optimization." Operations Research 33. 1024-1049.

Diffie, W. and Hellman. M. {1976} "New Directions in Cryptography," IEEE
Trans. Inform. Theory. IT-22. 644-654.

Djidjev. H. {1982} "On the Problem of Partitioning Planar Graphs." SIAM
Journal of Algebraic and Discrete Methods. Volume 3. Number 2.
229-240.

Dyer. M.E .• and Frieze. A.M. {1985} "A Simple Heuristic for the p-center
Problem," Operations Research Letters 3. 285-288.

Edmonds. J. {1965) "Paths. trees. and flowers." Canadian Journal of
Jfa.themat tcs 17. 449-467.

Foulds. L.R .• Gibbons. P.B. and Giffin. j.W. {1985} "Facilities Layout
Adjacency Determination: An Experimental Comparison of Three Graph
Theoretic Heuristics." Operations Research 33. 1091-1106.

Garey. M. and Johnson. D. {1979} Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company. San
Francisco.

15

Handler. G.Y. and Mirchandani. P.B. (1979) Location on Networks Theory and
ALgorithms. The MIT Press, Cambridge. Massachusetts.

Hayward, R.B. (1985) "Weakly Triangulated Graphs," JournaL of
CombinatoriaL Theory. Series B 39, 206-209.

Hornung. R. (1983) "An Effective Algorithm for Solving the Discrete
Minisum Problem," Operations Research Letters 2. 115-118.

Johnson. D .. Papadimitriou, C. and Yannaka.kis. M. (1985) "How Easy is
Local Search?," (Extended Abstract). IEEE Symposium on the
Foundations of Computer Science, 39-42.

Karmarkar, N. (1984) "A New Polynomial-Tim~ Algorithm for Linear
Progranuning." Combinatorica 4. 373-395.

Karp. R.M. and Steele. J. M. (1985). "Probabilistic Analysis of
Heuristics," in The TraveLing SaLesman ProbLem.: A Guided Tour of
Combinatorial Optimization·. John Wiley & Sons, Chichester. 181-206.

Katajainen. J. and Nevalainen, 0. (1986) "Computing Relative Neighborhood
Graphs in the Plane," Pattern Recognition 19 (3). 221-228.

Kirkpatrick, S. Gelat, C and Vecchi, M. (1983) "Optimization by Simulated
Annealing. " Science 220. 671-680.

Koml6s, J. and Szemeredi, E. (1983). "Limit Distributions for the
Existence of Hamiltonian Cycles in a Random Graph," Discrete
Mathematics 43. 53-63.

Lawler.E.L .. Lenstra. J.K .. Rinooy Kan, A.H. and Shmoys. D.B .. editors
(1985) The TraveLing SaLesman ProbLem: A Guided Tour of
CombinatoriaL Optimization, John Wiley & Sons. Chichester.

Lee. D.T. · (1985) "Relative Neighborhood Graphs in the L1-Metric," Pattern

Recognition 18 (5), 327-332.

Lipton. R. Rose, D. and Tarjan, R. (1979) "Generalized Nested Dissection,"
SIAl JournaL of NumericaL AnaLysis, Volume 16, 346-358.

Llewellyn. D.C .. Tovey. C. and Trick. M. (1988) "Finding Saddlepoints of
Two-Person Zero-Sum Games," The American MathematicaL MonthLy. 95
(10). 912-918.

Llewellyn. D.C .• Tovey, C. and Trick. M. (1989) "Local Optimization on
Graphs," Discrete AppLied Mathematics Volume 23. 157-187.

Llewellyn, D. C. and Tovey, C. (1990) "Dividing and Conquering the
Square," submitted to Discrete AppLied Mathematics.

Llewellyn, D. C. and Ryan, J. (1990) "A Primal-Dual Integer Programming
Algorithm," submitted to Discrete AppLied Mathematics.

16

Lundy, M. and Mees, A. {1986} "Convergence of an Annealing Algorithm,"
MathematicaL Programming 34, 111-124.

Megiddo, N. {1986}, "Improved Asymptotic Analysis of the Average Number of
Steps Performed by the Self-Dual Simplex Algorithm," MathematicaL
Programming 35, 140-172.

Miller, G. L. {1976}. "Rieman's Hypothesis and Tests for Primality,"].
Comput. Syst. Sci., Vol. 13, 300-317.

Papadimitriou, C. and Steiglitz, K. {1982} CombinatoriaL Optimization:
ALgorithms and CompLexity, Prentice Hall, Englewood Cliffs, New
Jersey.

Pomerance, C. {1982) "The Search for Prime Numbers," Scientific American,
Vol. 247, No. 6, 136-147.

Rabin, M. 0. {1979) "Digitalized Signatures and Public-Key Functions as
Intractable as Factorization," Technical Report MIT/LC:S/fR-22,
Massachusetts Institute of Technology, Cambridge, MA.

Rabin, M. 0. (1980) "Probabilistic Algorithm for Testing Primality,"].
Number Theory, Vol. 12, 128-138.

Rodl, V. and Tovey, C. (1987) "Multiple Optima in Local Search," JournaL
of ALgorithms 8, 250-259.

Scarf, H.E. (1981a) "Production Sets with Indivisibilities- part I:
generalities," Econometrica 49, 1-32.

Scarf, H.E. (1981b) "Production Sets with Indivisibilites- part II:
the case of two activities," Econometrica 49, 395-423.

Syslo, M.M. (1985) "Triangulated Edge Intersection Graphs of Paths in a
Tree," Discrete Mathematics 55, 217-220.

Thompson. G.L. and Singhal. S. (1984) "A Successful Algorithm for Solving
Directed Hamiltonian Path Problems," Operations Research Letters 3,
35-42.

Tovey. C.A. (1983) "On the Number of Iterations of Local Improvement
Algorithms," Operations Research Letters 2, 231-238.

Welsh.D.J.A. {1976) Matroid Theory. Academic Press. London.

17

Biographical Sketch

Donna Crystal Llewellyn

Assistant Professor of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0205
(404) 894-2340

Education:

B.A.
M.S.
Ph.D.

(Mathematics and Economics), Swarthmore College, 1980
(Operations Research), Stanford University, 1981
(Operations Research), Cornell University, 1984

Teaching Experience:

Inst~uctor, School of Operations Research and Industrial Engineering
Cornell University, Ithaca, New York
Summer 1983

Assistant Professor, School of Industrial and Systems
Engineering
Georgia Institute of Technology, Atlanta, Georgia
1984-present

Other Professional Experience:

Member of the Technical Staff. Bell Laboratories, Holmdel, New
Jersey, Summer 1981

Consu 1 tan t • IBM. Spring 1982

NSF Mathematical Sciences Postdoctoral Fellow, Bonn. West
Germany, and George Mason University, Fairfax, Virginia.
1984-1986

Professional Memberships and Activities:

Member. Operations Research Society of America, Mathematical
Programming Society. Society of Industrial and Applied
Mathematics, Mathematical Association of America, Sigma Xi

Referee for Mathematics of Operations Research, Operations Research
Dtscrete Jatheaatics, Discrete AppLied Mathematics, Networks,
Operations Research Letters, and Handbooks in Operations Research and
Management Science, Vot. 1: Optimization
Reviewer for National Science Foundation
Book Reviewer for IIE Transactions and Optima

Ph.D. Thesis: Tag Systems: A Combinatorial Abstraction of
Integral Dependence

Advisor: Professor Leslie E. Trotter, Jr.

18

Professional Interests:

Combinatorial Optimization. Integer Linear Programming. Network Flows,
Generalized Dependence Structures

Honors:

Invited to participate in the first doctoral colloquium at Northwestern
University. {1982)

National Science Foundation Mathematical Sciences Postdoctoral Fellowship.
Used to work at the Universtat Bonn in Bonn. West Germany; George Mason
University in Fairfax. Virginia and Georgia Institute of Technology in
Atlanta. Georgia. {1984-1986)

Invited to participate in the first. second. third. fourth and fifth
advanced rsearch institute in discrete applied mathematics at RUTCOR.
Rutgers University. New Brunswick. New Jersey. {1986.7.8.9.1990)

Received "Best Professor Award" from Georgia Tech IIE Chapter. June 1988.

Invited to edit special issue of Discrete Applied Mathematics

Ph.D. Students Advised

1. Jun-Sheng Li. co-advised with John Bartholdi: Thesis title: "Design
and Scheduling of Chemical Bath Processing Lines," Graduated Summer
1989.

2. Linda Whitaker: Local Optimization in Discrete Structures. Summer
1988-present.

3. Shiow-Yun Chang: Combinatorial Optimization Problems. Fall
1989-presen t.

M.S. Students Advised

1. Mario Machado: Thesis title: "Application of Integer Progranuning
Techniques to Industrial Scheduling Problems," Graduated Summer 1989.

Publications and Technical Reports:

[1] "Min Algebraic Duality," Discrete Applied Mathematics 16 {1987)
87-90.

[2] "On Abstract Integral Dependence." co-authored with L.E. Trotter.
Mathematics of Operations Research 14{4) {1989) 626-638.

[3] "Finding Sa.ddlepoints of Two-Person Zero-Sum Games."
co-authored with C.A. Tovey and M. Trick. The American Mathemat teal
Monthly. 95 {10) {1988) 912-918.

19

[4] "Local Optimization on Graphs," coauthored with C.A. Tovey and M.
Trick. Discrete AppLied Mathematics, 23 {1989) 157-178.

[5] "On the P=NP Paper by E.R. Swart," co-authored with H.
Greenberg. A. Kalen, W. Morris. A. Rajan, R. Rardin and M. Trick.
Technical Report Number C-86-1, 1986, Georgia Institute of
Technology, School of Industrial and Systems Engineering.

[6] "Dividing and Conquering the Square," co-authored with C. A. Tovey.
Technical Report Number J-90-06, 1990, Georgia I.nstitute of
Technology. School of Industrial and Systems Engineering.

[7] "A Primal Dual Integer Progranuning Algorithm," co-authored with J.
Ryan. Technical Report Number J-90-07, Georgia Institute of
Technology. School of Industrial and Systems Engineering.

Invited Conference Presentations:

"Integral Duality," with P.C. Caravalho and L.E. Trotter. Jr. Presented
at the May 1984 ORSAITIMS Conference, San Fransisco, California. {1984)

"Abstract Integral Dependence." Presented at the Vth Bonn Workshop on
Combinatorial Optimization, Bonn, West Germany. (1984)

"Modules, Graphs and Tags."
Conference, Dallas, Texas.

Presented at the November 1984 ORSA/TIMS
(1984)

"Tag Systems." Presented at the Mathematical Optimization Meeting at
Oberwolfach. West Germany. {1985)

"Life After the Doctoral Colloquium."
Doctoral Colloquium, Atlanta, Georgia.

Presented at the Second ORSA
(1985)

"An Elimination Procedure For Systems of Linear Congruences."
at the November 1985 ORSAITIMS Conference, Atlanta, Georgia.

Presented
(1985)

"Life After the Ph.D." Presented at the Third and Fourth ORSA Doctoral
Colloquiums, Miami Beach, Florida and St. Louis, Missouri. {1986,7)

"Dividing and Conquering the Square," with C. Tovey. Presented at the
April 1988 TIMS/ORSA Conference, Washington, D.C. (1988)

"Local Optimization in Discrete Structures," with C. Tovey and M. Trick.
Presented at ARIDAM III, RUfaJR. (1988)

"A Primal-Dual Integer Progr8JII1ling Algorithm," with T. Ryan. Presented at
ARIDAM IV, Rutcor (1989).

"A Blooming Talk," with John H. Vande Vate. Presented at the October 1989
ORSA/TIMS Conference, New York, New York {1989).

20

Other Conference Presentations:

"An Elimination Procedure for Systems of Linear Congruences." Presented
at the Mathematical Programming Symposium at Boston. Massachusetts.
{1985)

"'Interesting Integer Programming Relaxations. •• with C. Tovey and J. Vande
Vate. Presented at the 1986 Southeastern COnference on Combinatorics,
Graph Theory and Computing. Boca Raton. Florida. {1986)

"Min Algebraic Duality." Presented at the SIAM Conference on Discrete
Mathematics. Clemson. South Carolina. {1986)

""Local Optimization in Discrete Structures .. " with C. Tovey and M. Trick.
Presented at the May 1987 TIMS/ORSA Conference. New Orleans. Louisiana.
{ 1987)

"The Complexity of Finding Sa.ddlepoints of Two-Person Zero-Games." with C.
Tovey and M. Trick. Presented at the October 1987 ORSAITIMS COnference.
St. Louis. Mi·ssouri. { 1987)

"Local Optimization on Graphs." with C. Tovey and M. Trick. Presented at
the Fourth SIAM Conference on Discrete Mathematics, San Francisco,
California. {1988)

"A Primal-Dual Integer Programning Algorithm," with T. Ryan. Presented at
the May 1989 a>RSITIMS/ORSA Confrence in Vancouver. B.C. { 1989).

Invited Seminar Presentations:

"Tag Systems." Johns Hopkins University. Baltimore. Maryland, {1983);
University of Kentucky. Lexington, Kentucky, {1984); Georgia Institute of
Technology. Atlanta. Georgia. {1984): Yale University. New Haven.
Connecticut, {1984); Carnegie Mellon University. Pittsburgh,
Pennsylvania. {1984): Universitat Bonn. Bonn, West Germany. {1984);
Universitat Koln, COlogne. West Germany. {1985); Eotvos Lorand
University, Budapest. Hungary. { 1985).

"Abstract Integral Dependence." Universite Pierre et Marie Curie, Paris,
France. (1985).

"Representability of Tag Systems." Georgia Institute of Technology,
Atlanta, Georgia. {1985).

"Modules, Graphs and Tags- Part II." Emory University, Atlanta. Georgia.
(1985)

"Elimination Schemes." Bellcore. Murray Hill, New Jersey. {1986)

"Elimination Schemes and Duality." George Mason University. Fairfax.
Virginia. (1986)

21

"On Top of the World and Down in the Dumps: A Quick Study of
Saddlepoints." ISyE Graduate Seminar, Georgia Institute of Technology,
Atlanta, Georgia. (1986}

"Finding Local Optima in Discrete Structures." ISyE AT&T Manufacturing
Systems and Operations Research Seminar, Georgia Institute of Technology.
Atlanta. Georgia. {1986}

"So, What's a Matroid Anyway?."
of Technology, Atlanta, Georgia.

ISyE Graduate Seminar, Georgia Institute
(1988}

22

INTERIM REPORT FOR CONTRACT N00014-89-J-1658

Project Director:
Initiation Date:
Termination Date:
Project Title:

Donna Crystal Llewellyn
February 2, 1989
January 31, 1991
Location and Distribution of Local Optima

--·---~------------------~~~==~~========~=========-~------~

PAPERS

Two papers appeared in refereed journals since the proposal was submit
ted:

"Finding Saddlepoints of Two-Person, Zero Sum Games," with Craig Tovey
and Michael Trick. American Mathematical Monthly Volume 95, Number
10, December 1988. Pages 912-918.

"Local Optimization on Graphs," with Craig Tovey and Michael Trick. Dis
crete Applied Mathematics Volume 23, 1989. Pages 157-178.

·One paper has been generated:

"Dividing and Conquering the Square," with Craig Tovey. This will be sub
mitted to Discrete Applied Mathematics within the next month.

STUDENTS

One PhD student, Linda Whitaker, has been supported on this grant.
She has now completed all exams and course work and is devoting full time
to research. Her work is described below.

OTHER

The project director is editing a special issue of Discrete Applied Math
ematics on the subject of Local Optimization.

CURRENT WORK

The project director with a graduate student (see above) are looking at
the problem of local optima for the traveling salesman problem using the two
opt neighborhood structure. First, they are restricting attention to the case
where the edge weights are independent and identically distributed according
to a Bernoulli distribution. Using these assumptions, the questions being
investigated are: What is the probability that a specific solution is a local
optimum, How many local optima are there, and With what probability will
certain algorithms find a local optimum in polynomial time? Next, this work
will be expanded to other, more complex distributions.

1

FINAL REPORT FOR CONTRACT N00014-89-J-1658

Project Director:
Initiation Date:
Termination Date:
Project Title:

Donna Crystal Llewellyn
February 2, 1989
September 30, 1992
Location and Distribution of Local Optima

PAPERS

Two papers appeared in refereed journals since the proposal was
submitted:

"Finding Saddlepoints of Two-Person, Zero Sum Games," with Craig Tovey
and Michael Trick. American Mathematical Monthly Volume 95, Number 10,
December 1988. Pages 912-918.

"Local Optimization on Graphs," with Craig Tovey and Michael Trick.
Discrete Applied Mathematics Volume 23, 1989. Pages 157-178.

Two papers have been accepted for publication in referreed publications:

"Dividing and Conquering the Square," with Craig Tovey. To appear in
Discrete Applied Mathematics.

"A Primal Dual Integer Programming Algorithm," with Jennifer Ryan. To
appear in Discrete Applied Mathematics.

Two papers have been submitted for publication in referreed publications:

"The Bernoulli Salesman Problem: Asymptotic Analysis," with Linda
Whitaker. Submitted to Mathematics of Operations Research.

"2-Lattice Polyhedra: Duality," with Shiow-yun Chang and John Vande
Vate. Submitted to Journal of Combinatorial Theory.

Three papers are in the process of being written:

"The Bernoulli Salesman Problem: Nonasymptotic Analysis," with Linda
Whitaker.

"Matching 2-Lattice Polyhedra: Extreme Points," with Shiow-yun Chang
and John Vande Vate.

"One-Machine Generalized Precedence Constraint Scheduling Problems,"
'with Erick Wikum and George Nemhauser.

STUDENTS

Two students have been supported on this grant:

Linda Whitaker: Graduated with PhD in August 1992; thesis title: "The
Bernoulli Salesman;" current position: Visiting Assistant Professor at
SUNY at Stony Brook.

Shiow-yun Chang: Expected graduation date of June 1993; expected thesis
title: "2-Lattice Polyhedra."

OTHER

The project director has edited a special issue of Discrete Applied
Mathematics on the subject of Local Optimization. The issue is currently
at the publisher.

The Bernoulli Salesman Problem:
Asymptotic Analysis

L.M. Whitaker
Harriman School for Management and Policy, SUNY at Stony Brook, Stony Brook, NY

and
D.C. Llewellyn

School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

Abstract

In this paper, we present a probabilistic analysis of the time versus solution quality
tradeoff of different implementations of a basic sequential edge exchange procedure
for a Traveling Salesman Problem. Our TSP will be on a complete graph with edge
weights assigned independently and identically according to a Bernoulli distribution.
One implementation of the procedure is a generalization of the Lin-Kernighan heuristic.
For this implementation, we find asymptotic performance guarantees which decrease
geometrically as the depth of the search increases. The basic search procedure may
be implemented using a 2-change neighborhood structure. This enables us to find an
asymptotic performance guarantee for a 2-opt procedure.

Key Words: Traveling Salesman, Local Improvement, Random Graphs.

1 Introduction

We will be investigating a random TSP which we designate as the Bernoulli Salesman
problem. This will be defined as the problem of finding a tour of smallest value on a complete
graph, whose edge weights are assigned identically and independently. The weight of an edge
follows a Bernoulli distribution, with the probability an edge has weight 0 being p0 (n). We
require that p0 (n) = cfn, c* ~ c ~ 1.1logn, where c* is a large constant. (At c = 1.1logn,
a tour of length 0 almost always exists, which could be found by our methods, as well as
those of other authors [2],[4].)

We investigate how well local optimization can perform on this problem. We will use
an exchange method which preserves tour feasibility after every pair of exchanges. Different
implementations of this procedure yield a 2-opt procedure and the Lin- Kernighan heuristic .
A 2-opt local search algorithm uses a 2-change neighborhood where two tours are neighbors
if they share all edges of a tour except two. Exchanging two edges in a tour for two new
edges leads to a neighboring tour. The Lin-Kernighan algorithm (denoted here as the LK
algorithm) does a series of edge exchanges; it is a variable k-change heuristic designed to
avoid local optima which would trap other procedures like the 2-opt.

A related procedure is the algorithm HAM, used in Frieze [4], [2] to find Hamiltonian
Cycles. This algorithm looks for Hamiltonian Cycles on a random graph. It is based upon the
extension and rotation idea usually credited to Posa [11]. The algorithm finds a Hamiltonian

1

Cycle on this random graph with probability whicfi· approaches the probability the cycle
exists. We use techniques based partly on this analysis to find asymptotic guaranteed tour
values for different implementations of our edge exchange procedure.

Very few theoretical results have been found for local search procedures. Kern [7] has a
nice result for the Euclidean based TSP, based on a uniform distribution for the city locations.
He showed that with high probability, 2-opting will find a local optimum in polynomial time.
Unfortunately, this result does not address the quality of the local optimum found.

Most TSP algorithms that yield to probabilistic analysis have the same underlying theme.
The problem is split up into small subproblems which are solved to optimality by some brute
force method (like dynammic programming). Then, these small subtours or paths are hooked
together in some way which does not cause the tour value to increase at an explosive rate.
Examples of these algorithms are Karp's disection algorithm [6], the patching algorithm for
the asymmetric TSP [8], Frieze's TSP algorithm [4], and Steele's directed TSP algorithm [12].
All results of this type are asymptotic, they only hold when n ~ oo. The asymptotic results
of these algorithms in some cases give tours that converge to the optimal tour value. However
we have very little information that suggests these algorithms perform well in practice.

The LK procedure has good empirical backing. HAM performs well in the asymptotic
sense. We tie these two sets of information together. In this paper, we present an asymptotic
analysis of a procedure which generalizes 2-opting and the LK algorithm. Specifically, we
find an asymptotic guarantee of solution quality as a function of the time requirement. This
guarantee shows a geometric improvement with respect to the amount of time we are willing
to spend. (See Theorem 5.2 and Corollary 5.1.) We also present an asymptotic guarantee
for a 2-opt procedure

In our next paper, we complete the analysis by presenting empirical and nonasymptotic
results for our local search procedure. Since local search procedures are so widely used, these
results could be useful in practice, as well as theoretically interesting and pleasing.

The organization of this paper is as follows. In Section 2 we introduce the important
notational assumptions of our work. In Section 3 we describe our algorithm in detail. We
analyze the algorithm in Section 5. In Section 6 we show how our algorithm can be modified
to be a strict 2-opt procedure, and how to handle aymmetric instances. Several proofs are
deferred to the appendix.

2 Notation

For ease of presentation the basic notation used will be given here.

2

9(n,c/n)

Gn,cjn
c
E
Eo
0-edge
l-edge
do(v)

No(S, G)

a. a.

Exp(X)
tv(8, n)
X

The set of all complete graphs on vertices V = { 1, 2, .. , n}
with edge weights assigned independently and
identically, and P(edge e has weight 0) = p0 (n) = cjn.
A random graph in 9(n, c/n).
c* < c :::; l.llog n,; c* is a large constant (c(= c(n)) may be a funtion of n)
The set of edges of G, where G = (V, E) is distributed like Gn,cfn·
{ e E E: edge e has weight 0}.
An edge of weight 0
An edge of weight 1.
The number of 0-edges incident with vertex v, called the
0-degree of v.
For S ~ V, No(S,G) = {w (/. S: 3 v E S such that (v,w) E E 0 }.

(N0 (S, G) is the neighborhood of S using only 0-edges).
The random graph Gn,c/n has property Q almost always (a. a.) if
limn-oo P(Gn,c/n has property Q) = 1.
The expected value of the random variable X.
Tour value found by algorithm searching to a depth of 8.
An upper bound for the sequence of random variables Xn,
where limn-oo P(Xn :::; X) = 1.
A lower bound for the sequence of random variables Xn,
where limn-oo P(Xn ~X)= 1.
A function that is 0 (log n)
A small constant such that fc > (~ + 1~e- 2c/3)

3 Algorithm BTS

Our algorithm uses sequential edge exchanges to search for lower valued tours. A sequen
tial edge exchange is simply the exchanging of one edge for another adjacent to the first.
This will become clear with the introduction of the algorithm, and graphs which we use to
track the different steps of the algorithm.

Recall that we are given a complete graph G on n vertices, numbered 1, 2, ... , n, with
edge weights 0 and 1. An initial tour is given which may be chosen in any way independent
of our algorithm. Let T0 = { e E E : e is a 0-edge in this initial tour}. Call this the first
Base Set. In general, we have this definition.

Definition: A Base Set is the collection of 0-edges that is a subset of a tour. The Base
Set which is input to iteration k will be denoted by Tk-I·

During the first iteration of BTS, the algorithm tries to find a set of 0-edges of size
ITol + 1 = IT1 1. The set must be a subset of some tour, so it may contain no cycles and no
vertices may have 0-degree ~ 3. (When we refer to no cycles, we always mean no cycles of
length < n. If we have a cycle of length n, BTS has found a tour of length 0). This leads to
the following definition.

3

w w

I
0 :=J

X•

>-•
Tourl G(AfS

0
)

Figure 1: Tour and underlying Base Set. Edge weights are on the tour T.

Definition: An Acceptable Edge Set (AES) is a subset of E0 such that the graph induced
by Eo has no cycles of length < n and no vertices of 0-degree > 2. Usually the AES will be
subscripted to denote how deep we have searched within an iteration to find it.

Notice that by definition, an AES will be a subset of a tour. In fact, our base sets will
be acceptable edge sets. The algorithm will only keep track of this type of edge set. During
a general iteration k, BTS is given a Base Set (which must be an acceptable edge set), Tk_ 1 ,

and it tries to find an acceptable edge set, Tk, of size 1 + !Tk- 1 ! (which will then be a new
Base Set).

Define the graph, G(AES0), (which is dependent on the initial tour BTS will try to
improve upon) as follows. This graph has the same vertex set as Gn,c/n and edge set AES0 =
T0 . In Figure 1, the first graph shows the initial tour T. The second shows the graph
G(AES0). A general stage of the algorithm will consist of either adding an edge to this set,
or performing one sequential edge exchange. The first operation finds the existence of a lower
valued tour. (For example, if edge (x, w) is a 0-edge in Figure 1, we may add it to the set.)
The second gives a new acceptable edge set with cardinality IAES0 I. This set must also be
a subset of some tour. This set is denoted AES1 since it is one sequential edge exchange
away from the Base Set AE S0 . _

Figure 2 represents a series of sequential edge exchanges that result in a lower valued
tour. Each graph is based on a different AES, and the sets are related as follows: AESd+1 =
AESd U (xd, Yd)\(yd, Xd+I) d=O,l, and AES3 = AES2 U (x2, Y2)· The edges in the sequential
exchanges form a path. Look at the final AES. Since this set is also a subset of a tour, no
edge needs to be removed.

To help in future analysis, we need to further categorize the edges in the sequential
exchanges.

Definition: An alternating path (ap) corresponding to acceptable edge set AESs is a
path with 28 0-edges. Every edge on the path is part of at least one sequential edge exchange
used to find some AESd, 1 ~ d ~ 8. The path alternates between edges BTS adds to an
AES, and those it removes. The path begins at a vertex which has degree less than two in

4

xol xol X~• yO x~oyO

:J: • I yO

•
rl

•
~1

x2 \

:=J :=J
WI

I /

• ./ /

I • •
yl ve/ yl

> > > >
• • - •

G(AES
0

) G(AES
1

) G(AES
2

) G(AES
3

)

Figure 2: Graphs of acceptable edge sets, AES3 implies a lower valued tour.

the current Base Set.

In Figure 2 an ap corresponding to AES2 has vertices (x0 , y0 , x~, y17 x2).

Definition: A proper alternating path (pap) corresponding to acceptable edge set AESs
is an alternating path extended by one 0-edge not in AES8 • Notice that a pap completes an
iteration since it finds a larger acceptable edge set.

In Figure 2, the edge set {(xo,yo),(yo,xt),(xt,Yd,(y17 x2),(x2,Y2)} forms a pap.

We can see that finding a pap ensures us of finding a lower valued tour. BTS will search
for these paps. Notice that our representation of the AES graphs (See Figures 1, 2) have
the property that vertices on the left side of the graphs are incident to at least one l-edge
in the Base Set. A pap must start and end with this set of vertices. Thus we leave them on
the same side of the graph until we find a new and larger Base Set. When a pap is found,
BTS resets the final AES to be AES0 (and we update our graph), and begins again.

Searching for paps is the main idea of the algorithm BTS. This searching is done by the
procedure Search. Before presenting Search, we define the variables it uses.

Definition: Given any Base Set, AP0 is the set of vertices which have 0-degree :S 1.
(These vertices may start the aps).

Definition: Given an AES and a vertex v of 0-degree ~ 1, we define a set of vertices,
Y. A vertex y E Y, is such that y E N0 (v) and (v,y) ¢ AES. (The 0-edges (v,y): y E Y
may be added to an ap ending at v).

Definition: Given an AES and a vertex y E Y, we define a set of vertices X . A vertex
x EX is such that x E N0 (y) and (y, x) E AES. (The 0-edges (y, x) : x EX are candidates
to be removed from the AES and thus added to the ap).

Definition: 8max is the maximum depth to which BTS will search.

5

The recursive procedure Search is presented next'. In a call to the procedure Search, 8
designates the current depth of the search, AES is the current edge set, and v is the vertex
the algorithm will search from to extend the current ap. Initially v = 0, since we have no
designated starting vertex.

Procedure Search(8, AES, v)
Begin
If v = 0 and 8 = 0 (starting vertex is not designated)
Then Compute AP0 (vertices which may start aps)

For v E APo:
Search(O, AES, v) (search from all vertices of 0-degree < 2)

Else (v =/; 0, and vertex to search from is specified)
While 8 < 8max

End if
End

Compute Y (set of next possible vertices on path)
For y E Y:

If AE S U (v, y) is an acceptable edge set
Then Search(O, AES U (v, y), 0) (Start new iteration)
Else

Compute X (set of next possible vertices on path)
For x EX:

Search(8 + 1, AES U (v, y)\(y, x), x)
Endif

The flowchart (Figure 3) shows a nonrecursive representation of the algorithm. A new
iteration occurs when a larger Base Set is found, and the algorithm in effect starts over.

Figure 2 shows an iteration of BTS. The iteration stops when BTS finds a larger Base
Set. In the procedure, this occurs when the call Search(O, AES U (v, y), 0) is made. The
vertices on the pap are labelled xd and Yd, according to the depth at which the edges on
the path were added or removed. The different graphs in the figure show the progression of
acceptable edge sets seen until BTS finds a new Base Set, which is AES3

4 Implementation of BTS

The algorithm BTS simply makes selected calls to the procedure Search. The time required
by Search increases greatly as 8max increases. When the current Base Set has a small cardi
nality, we can reason that we can probably find a pap using a small 8max· This notion stems
from the fact that a small sized Base Set means there are many vertices which may be used
to start and end paps. For this reason as well as the time requirements, we will implement
BTS using an increasing sequence of 8max·

BTS will call Search using 8max = 1 first. When the procedure stops, we increase 8max
to 2 and keep going. Additional increases in the maximum depth of Search are made until
BTS has searched to the maximum depth we are willing to allow.

6

Start here New Iteration Starts
Input tour and - -- l Stop]

~ Find new Base Set --delta max

' no
_Jes r

J
Vertex available to -- -~ Can increase - start search from? no Dmax?

I

delta•1 l yes
no -- Can add new -

edge to path?

delta> 1 ~ yes

• Have new AES?
yes -

Add back last edge l no
removed from path, set Remow last edge

delta - delta-1 added on path

no
delta < delta max? - ~

~ yes no -- Can remove edge?
..-

~ yes
no

Have new AES?

l yes

delta • delta + 1 -
Figure 3: Nonrecursive Flowchart of Algorithm BTS

7

In addition, BTS makes one more change in its calls to Search. Whenever BTS reaches
an AES at depth L 8max/2 J, it will start a new ap. This means BTS want to use this AES as
a Base Set, and have the option of starting new aps from any vertex of 0-degree ~ 1 in the
AES. We can accomplish this modification by slightly changing the procedure Search. Let
Split Search(8, AES, v, d) be the modified procedure Search.

Procedure SplitSearch(8, AES, v, d)
Begin
If v = 0 and (8 = 0 or 8 = L d/2 J)
(starting vertex is not designated)
Then Compute AP0 (vertices which may start aps)

For v E APo:
SplitSearch(O, AES, v, d) (search from all vertices of 0-degree < 2)

Else (v =f. 0, and vertex to search from is specified)
While 8 < d

Endif
End

Compute Y (set of next possible vertices on path)
For y E Y:

If AE S U (v, y) is an acceptable edge set
Then SplitSearch(O, AES U (v, y), 0, d) (Start new iteration)
Else ·

Compute X (set of next possible vertices on path)
For x EX:

Endif

If8= Ld/2J -1
Then SplitSearch(8 + 1, AES U (v, y)\(y, x), 0, d)
Else SplitSearch(8 + 1, AES U (v, y)\(y, x), x, d)
Endif

The algorithm BTS may now be written as follows:

Algorithm BTS
Input the initial tour and calculate T0 • Input 8max, the maximum depth to which BTS may
search.

Do for d = 1 to 8m ax
SplitSearch(O, AES, v, d)
Continue

Output the current AES. Find a tour containing the AES and output it as well.
STOP

Note that ANY tour that BTS finds containing a certain AES has value n -IAESI. This is
true since any extra 0-edge which could be found by hooking the 0-edge components together
would have been found as a pap of length 1.

8

We will forgo the explanation of the need for the· modification to Search until the next
chapter, which presents an asymptotic analysis of BTS. The modification has intuitive ra
tionale and is also needed to vastly improve the bounds the analysis gives.

The time required for BTS is dominated by the time it takes to search for new acceptable
edge sets . Angluin and Valiant [1] have developed a data structure that enables us to find
a new acceptable edge set (adding an edge and removing an edge) in time O(log n). Since
the maximum 0-degree of a vertex is 4log n (a. a.), we have 0(n2 (1og n)6

maz) possible AES
operations (a.a.) per iteration. The n2 comes from the fact that we restart the searching
after depth 8max/2. Thus the overall time requirement is a. a. 0(n3 (4log n)6

maz log n). This
shows that even for large 8max, say 8max ::=; lo~fo;n, the time requirement is quite small (note
~

that logntoslosn = n).
Unfortunately, given as much time as we choose (8max very very large), we still may not

be able to find an optimal tour. This follows because of the sequential ordering that we
talked about earlier, that is, there may be tours that we cannot find using sequential edge
exchanges (see [9]). However, we have evidence already that our algorithm will perform
well. Our algorithm is is a generalization of HAM and of the LK algorithm. HAM has
nice theoretical backings. The class of graphs for which HAM is analyzed has the property
that the proportion of instances for which HAM finds a Hamiltonian Cycle approaches the
probability a Hamiltonian Cycle exists - given a random graph Gn,m on n vertices and with
m edges:

lim,.~00 Pr(G,.,mis Hamiltonian) = { ~-·-''
if Cn ----+ -00

if Cn ----+ C

if Cn ----+ 00.

This implies that sequential edge exchanges will probably take care of most of the searching
we need to do. The LK algorithm has nice empirical backing, so the algorithm should do
well even on small problems. This also demonstrates the power of sequential exchanging.

5 Analysis of BTS

For the analysis, it is convenient to think of BTS in terms of separate iterations. For
the analysis, we assume that when BTS finds a larger Base Set, it throws out all other
information and starts over again.

This section gives an asymptotic performance analysis of BTS. Earlier we defined the
parameter for our Bernoulli distribution to be c• < cfn < 1.1log n. (If c > 1.1log n we know
that a 0-length tour can be found a. a.) Many of the graph properties which we will use call
for c• to be restricted. We will need to have c• > 10 always, and will at times restrict c• to
be much larger (> 400).

5.1 Analysis Overview

9

X~ .!] - xo~· xO=====-· e< :==Jxl 0

• ~\
':=I : r,

• • v~

~ ~ ~
• • •

Figure 4: Graphs of acceptable edge sets, some edges BTS may add are dashed

Here we give an outline of the steps we use to analyze BTS. We will give an intuitive
explanation of these steps.

Look at Figure 4. Starting at vertex x0 , BTS looks for a new edge to add. If BTS adds
an edge such as e1 , a new Base Set is formed and BTS starts a new iteration. If an edge
such as e'\ is added, BTS must remove an edge to form a new AES. Although BTS did not
find a larger Base Set, it gave itself new opportunites by finding x1 . BTS may now search
from vertex x1 . In this stage, BTS finds an edge e2 which implies a new vertex x2 , and at
the next stage BTS finally finds a new Base Set.

A definition will help us here.

Definition: An ap-reachable vertex is any vertex used by BTS from which to search for
a new edge to enter an acceptable edge set. (These are the X vertices in the aps.) If this
vertex is found at depth 8 during some iteration, then it will be referred to as a 8-reachable
vertex. The collection of all vertices which are 8-reachable will be denoted by APs.

It is clear that the "deeper" BTS is allowed to search (the larger the 8max), the better
the chance it has to find a new (larger) Base Set. This is a direct result of BTS being able to
find more vertices which it sees as 8-reachable vertices. Thus the first step in the analysis of
BTS will be to find a lower bound for the number of these vertices (as a function of 8max).
(To make sure we find all vertices, we assume that BTS fails to find a larger base set during
the current iteration.)

Consider one new vertex that is discovered by BTS as an 8-reachable vertex. (See vertex
x 2 in Figure 4, for example). [This new vertex xd could form a new Base Set with nearly
all vertices adjacent to at most 1 edge in the current AES, if a 0-edge connected them (for
example 0-edge (x2 , v) implies a new Base Set, while 0-edge (x2 , w) does not).] If BTS fails
during some iteration K, many edges it sees of the above form (like (x2 , v) or et), must have
weight 1, or BTS would use these edges to form a new Base Set. Let us call these edges,
necessary l-edges, for they are necessary to BTS' failure at iteration K. This is made formal

10

in the following definition.

Definition: A necessary l-edge is a l-edge, e, for which there exists an ap found by BTS
that extended by e (changed into a 0-edge) would form a pap. That is, it is a l-edge which
if changed to a 0-edge would imply a pap.

Definition: W 6 is the set of necessary l-edges found at depth 8.

The second step in this analysis is to find a lower bound for the number of necessary
l-edges BTS sees at a certain iteration, assuming it fails to improve during this iteration.
(For ease of presentation, we refer to BTS failing during an iteration if it is the final iteration
of the algorithm.)

The third step of the analysis is to find an expression for the number of 0-edges BTS
sees in the Base Sets Tk, 0 ~ k ~ K - 1. If we are to find an expression for the probability
BTS fails during iteration K, we must have information about the number of 0-edges BTS
has already seen. In fact, there is an inverse relationship between these two items. The more
0-edges BTS sees, the higher the probability BTS has seen all 0-edges, so the probability it
fails must increase.

Now, in order to put all of this together and analyze BTS, we need one final bit of
information. Given that BTS fails during iteration K, we look for a set of 0-edges that do
not influence the outcome of BTS. All that is necessary to find such a set is to find 0-edges
that are not in any of the Base Sets Tk, 0 ::; k ::; K- 1. Any of these edges could be changed
to l-edges, and BTS would still see all of the same Base Sets. This is the fourth step of our
analysis.

Here is a brief idea of how we put these steps together. Given a particular instance of
G, randomly choose a subset, X, of the 0-edges of G. Now run BTS on Gx where the edges
in X have been changed to l-edges. Suppose that BTS run on this new graph fails during
iteration K. Assume that X did not influence the outcome of BTS in iterations 1, 2, .. K- 1.
Since BTS has failed at iteration K, BTS has seen many, many necessary l-edges during this
iteration. If there are enough necessary l-edges, there will be a high probability that at least
one of them is in X. Thus BTS will probably not fail on G, even though it did fail when a
few 0-edges of G were changed to l-edges.

For reference, here are the steps we will take:
Assume BTS fails during iteration K:
(1) Find a lower bound for the number of vertices discovered as a 8-reachable vertex (for
0 ~ 8 ~ 8max - 1).
(2) Given (1), find a lower bound for the number of necessary l-edges BTS sees during
iteration K.

(3) Find an upper bound for the number of 0-edges seen in the Base Sets Tk, 0 ~ k ~ K- 1.
(4) Establish the existence of X, a set of 0-edges that does not influence the outcome of
BTS.
(5) Put everything together for the final result.

11

5.2 Graph Properties

Here we collect some graph properties which we will need for the five steps of our analysis.

Lemma 5.1 {3} Let G = Gn,c/n and let vertex v be 'small' if d0 (v) ~ c/10 and 'large' oth
erwise. Let SMALL, LARGE be the sets of small and large vertices respectively. (A small
vertex has few incident 0-edges)

Let W(Eo) = Wl(Eo) U W2(Eo) U WJ(Eo) U W4 (Eo), where
Wk(E0) = { v : v is small and there exists a small w such that v and w are joined by a

path of length k comprised only of 0-edges } . (v=w is allowed for k=3,4).

Let f ~ 7 be fixed. Then for c > 20(f + 1) log(f + 1), G satisfies the following (a. a.):

l{v E V: da(v) ~ c/10 + 1}1 ~ ne- 2
c/J

do(v) ~ 4log n for all v E V;

0 i-S~ V, lSI ~ n/2l and S ~LARGE implies INo(S)I ~ liSI;

Next are some new lemmas.

Lemma 5.2 Let Si = { v : vertex v has 0-degree i}, then G a. a. satisfies the following:
(5.2.1) IISol- n(1- c/n)n-ll ~ n 112 logn

(5.2.2)

(5.2.3)

IISd- (n- 1)c(1- c/n)n-2
1 ~ n 112 logn

I(ISol + IS11)- n(1- c/n)n-l- (n- 1)c(1- c/n)n-2
1 ~ n 112 log n

This)emma is proved using Chebyshev's inequality, see appendix for proof.

Lemma 5.3 Given Gn,c/n = (V,E), letS~ V. Let Eo(S) = {e = (v,w): v,w E Sand
(v,w) is a 0-edge }. Then for all0 :f. S ~ V, G a.a. satisfies the following:

If lSI= n/j, where j +jlogj < c/10 then IEo(S)I ~ Exp[IEo(S)I]/5

To prove this lemma use the Markov Inequality, P(la:l ~ 1) ~ Exp(lal)/1. Let a =number
of sets of size lSI such that IEo(S)I < Exp[IE0 (S)I]/5. See appendix for full proof.

12

5.3 Main Steps of Analysis

The next lemma concerns the number of alternating paths of a given length that BTS will
find during one iteration. We will try to bound the number of vertices in APs, (for each
8, 0 :S 8 :S 8max - 1). This will accomplish the first step in our analysis.

Before we start, recall that T/(_ 1 was the Base Set that BTS failed to improve upon (since
we assume that BTS fails during iteration "').

Recall if v E APs, then it is xs in some AES8• Notice that IAP0 I is the set of vertices
with 0-degree < 2 in the Base Set T/(_1 •

We can find many bounds for the size of APs, the following lemma gives one. It is worth
noting that this lemma really bounds the number of x 0 seen on one alternating path. Recall
that we let BTS restart at depth l fJmax/2 J. To avoid confusion now we will assume that
8 :S l8max /2 J. Then, we will address this restarting in the second step of the analysis and
will take into account the added bonus of restarting our aps at 8 = l8max /2 J. So for now,
think of BTS searching on one alternating path where 8 < l8max/2J.

Lemma 5.4 Suppose that BTS terminates during iteration "' on Gn,c/n' and that 8 ~
l8max/2J. Let l 2:: 9 be fixed and c/20 ;::: (£ + 1) log(£+ 1) (since we use Lemma 5.1).
The following hold a.a.:

If I A Po I 2:: lne- 2c/3 then:

Proof:
The proof of this lemma uses techniques from [4] [5].

Consider edges (xs, y) E E0 (G), where xs E APs and y E No(xs, G), and 8 < l8max/2J.
We keep 8 small since BTS in effect spreads itself out up to a depth of l8max/2 J, and then
starts over again. Assume IAPsl ~ n/2£.

If (x 8 , y) ¢ AESs then BTS creates a new AES by adding this edge and removing a
different one incident with y. Such an edge must exist since BTS fails during iteration "''
and actually two edges may exist. In the latter case we will choose only one of these edges.
The edge we choose is called (y, xs+d and we will refer to the vertex Xo+I as Xs+ 1(xs, y).
Notice that xs+t is in AESs+1, a new acceptable edge set. If (xs, y) E AESs, then let
Xo+1(xs, y) = xs.

Notice that

13

> l{xs+t = XS+I(xs, y): Xs E (APs n EARGE), y E No(APs n LARGE)}!
-I(APs n LARGE)I

The final inequality is true since we need to subtract at most ONE edge incident to each
xs that could be in AE Ss. (There is at most one of these edges per x6).

Next, we find an expression for the number of vertices called y:

INo(APs n LARGE)!~ I{Y E No(APs n LARGE): (y,xs+t(xs,y)) ¢ Tl(_1 }1
+ 2l{xs+t: xs E (APs n LARGE),y E No(APs n LARGE), (y,xs+t) E Tl(-t}l

Clearly,

l{xs+t = Xo+t(Xs, y): Xs E (APs n LARGE), y E No(APs n LARGE)}!
> l{xs+t: xs E (APs n LARGE),y E No(APs n LARGE),(y,xs+1(xs,y)) E Tl(_ 1 }1
> INo(APs n LARGE) I l{y E No(APs n LARGE): (y, X6+t(Xs,y)) ¢ Tl(-t}l

2 2

Therefore by substituting into the first expression we find that:

IAPo+tl ~ INo(APo n2LARGE)I -I(APo n LARGE)!

I{Y E No(APs n LARGE): (y,xs+t(Xs,y)) ¢ Tl(-t}l
2

Let Yd = { v : v E N0 (APs n LARGE) and vertex v was seen as Yd during iteration K }.

Note that Yd is in general a proper subset of N0 (AP6 n LARGE).
We also have that:

I{Y E No(APs n LARGE): (y,xs+t(Y)) ¢ Tl(-t}l
~ !{v:vEAPd,orvEYd,O~d<8}!

~ ne-2c/3 + l{v: v E u~:M(APd n LARGE) U (Yd n LARGE)]}!

The first inequality holds since the left hand side is certainly less than the total number
of vertices incident to all edges added during iteration K. (Edge (ys, xs+t) must have been
added to some AES during this iteration). The second inequality holds since we have at
most ne- 2cl3 small vertices.

14

Next notice that any large vertex in APd will also be in APd+2. Notice that Yd will be
E }d,, for all d' ~d. Thus we can complete our inequality with:

j{y E No(APo n LARGE): (y,xo+1(y)) ~ T~-1ll

::; ne- 2c/J + IYa-11 + IAPo-1 n LARGE!+ IAPo-2 n LARGE!

::; ne-2c/J + 2IAPol + IAPo-11 + IAPo-2!

The final inequality holds since there are at most 2 Yd/nd(yd, xd+t) E T~_ 1 .

Plugging in all of this lets us see that:

> INo(APo n LARGE)I - ne-2cfJ -lAPs!- IAPo-11
2 2 2

_IAPs-2! -lAPs n LARGE!
2

> f- 2 (lAPs!- ne-2c/3)- ne-2c/3 - IAPol- IAPo-11 - IAPo-21
2 2 2 2

> f- 4IAPol- f- 1 ne-2c/3 _ IAPo-11 _ IAPo-2!
2 2 2 2

These final steps use Lemma 5.1. We finish the 2 parts of the lemma by using induction.
Assume IAPol ~ fne-2cl3.

> f- 4jAR I f- 1 -2c/3 -- o---ne
2 2

> f- 5jAR I 1 -2c/3 - 2- o + 2ne

> f- 41AP11- f- 1 ne-2c/3- IAPol
2 2 2

f - 5 1 f - 5 2c /3
- -

2
-IAP1I + 2[-

2
-IAPoi-IAPol- (l- 1)ne-]

> f- 51AP I 1 -2c/3 -
2

- 1 + 2ne

Assume true for IAPol ::; n/2£, show true for IAPo+11·

> f- 4IAPsl- f- 1 ne-2c/3 _ IAPo-11 _ IAPo-21
2 2 2 2

> f-
5

IAPsl + ~[f- 5
!APa-11-IAPo-1I-IAPo-21- (f- 1)ne-2c

13]
2 2 2

15

0

Assume BTS fails during iteration K on the graph G. Step two of our analysis is to find
an expression for the number of l-edges BTS finds that would create a pap if any one of
the l-edges were changed to a 0-edge. This is the set of necessary l-edges which we defined
earlier.

We have come to the part of this analysis where we make use of the fact that BTS
restarts itself at depth L 8max/2J. From Lemma 5.4, we know that the largest sized APs we
can guarantee is (t;s)(~),for any 8. Earlier we saw that most edges having one vertex in AP6

and one in AP0 were necessary. This implies we can guarantee almost [(l; 5)(~)][£ne- 2cf3]
necessary edges (may have to have fJ very large). However, this turns out to be not nearly
enough necessary edges to give us good bounds for guaranteed tour values that BTS will
find. This is especially true if c is large.

However, if we restart the searches after L6max/2J, then we may use all vertices in
APL6mazi2J to finish paps. This is true since every vertex in this set has 0-degree < 2 in
some AESLomaz/2J. This AES will be used as a Base Set. Thus we have two groups of ver
tices, APL6maz/2J and APsmaz, which we may use to guarantee necessary edges. If BTS fails
then it will see ~ t[(t;s)(~)] 2 necessary l-edges. The formal statement and proof follow.

Lemma 5.5 Given the conditions of Lemma 5.4, the following holds a.a.:

for 6max greater than 2

Proof:
The general idea of this proof is to show that even if BTS fails, it will still find many pairs
of aps. Each ap pair implies an edge which could hook them together and in most cases, this
edge is necessary. Thus we need only use Lemma 5.4 to bound the number of ap pairs that
BTS will find, (equivalently we find vertices in APL6maz/2J and APomaz' and then show which
of these vertex pairs a new Base Set when they are joined together by a 0-edge. Thus, we
are counting necessary edges between pairs of aps.

16

•
~0--,

L~
....A yO

xO J
Figure 5: Graph of AES1

We will rename the vertices BTS sees to emphasize the fact that it will find two aps
and then try and hook them together. Denote the vertices on the two aps by x 0 , y0 ,

Xt,Yt,X2,Y2,x3,Y3 , ... XLSmaz/2J (first ap) and Xo,Yo ... ,Xt,Yt, ... ,XLSmu/2J-t (second ap). Xo is
the first vertex on the second ap, and is chosen by BTS at depth l8max/2J.

We first prove the bound for 8max = 2. The first step in this proof is to bound the number
of endpoints of aps of length one. By Lemma 5.4 we have:

. l-5 1 . n l-5
IAPtl ~ mtn[IAPol (-

2
-) + 2ne- 2c/3

, (
2
£) (-

2
-)]

Next look at any x 1 E AP1 and its corresponding AES1 • (See Figure 5). If BTS fails at
an iteration with 8max = 2, then x1 is adjacent to at least IAPol - 2 necessary l-edges. The
only 0-edges adjacent to a vertex in AP0 which may not be necessary are (x0 , x 1(x0 , y0)) and
(x 0 , x 1), where the latter edge may form a cycle in AES1 U (x0 ,xt) (as in Figure 5).

Thus each x1 vertex => (IAP0 1- 2) necessary l-edges, and this gives a bound for the total
number of necessary l-edges BTS will find (a.a.). This bound is:

IW2I > min[(£;
5

)(1APol + ~ne-2c13)(1APol- 2)~, (~)(l; 5)(1APol- 2)~]
l-5 1 n l-5 1

> min((-
2
-)IAPol22, (

2
£)(-

2
-)(IAPol- 2)2]

(The 1/2 in the expressions accounts for counting paps up to twice, once in either direc
tion.)

Next, we prove the general case for 8max odd and ~ 3. Recall, we assume BTS fails
during iteration K. To prove the bound for the number of necessary l-edges BTS will find
(a.a.), we look for necessary edges between the two possible aps.

As before, if we could find a lower bound for the guaranteed number of these ap pairs, and
consequently a lower bound for the number of edges used to hook these pairs together, we
could find a lower bound for the number of necessary l-edges BTS will find. (The necessary
l-edges are the edges which can be used to hook together the two aps.)

17

I ~~ ~~ : I ~ ~~,
?1 ~,

x2 f:
xo xO xO

Figure A Figure B Figure C

Figure 6: Graphs of AES2 and 2 possible AES4 , where 8ma.x = 5.

We proceed as in the case where 8max = 2. First we bound the number of endpoints of
aps of length l8max/2J. This is equivalent to bounding the size of IAPLomaz/2J I· Again, by
Lemma 5.4 this is as follows:

We next look at any vertex denoted by an XLomaz/2J and its corresponding AESLsmaz/2J.
(More than one AES may exist: choose one.) Using AESLsmaz/2J as a Base Set, we want to
bound the number of endpoints which imply necessary edges in AESsmaz-1 sets. We will do
this by counting the endpoints of only certain aps. (We continue to use the new notation for
ap vertices defined at the start of this proof).

The following characterizes the second aps that we will count. Given a fixed ap of
length (8ma.x- 1)/2 (since 8max is odd, l8max/2J = (8max- 1)/2) and its acceptable edge
set AES(Smaz- 1)/'2, any ap found from this Base Set will imply a necessary edge of the form
(x(smaz-1)/'2,X(Smu-1)/'2) if the following are satisfied:
1. x0 :/; xo
2. No xd is in same component with X(omaz-I)/2·

It is easy to show that these conditions are sufficient. Condition 1 is needed since Xo

may have 0-degree 2 and thus may not be used to start a new ap. If the second condition is
satisfied no cycles will be created if the necessary edge is added as a 0-edge. (See Figure 5)

18

choose this vertex

" ~ ~ I I I I I I

X~ .f1 x2 ~
Figure A

t::::'a.-.-. c. ·'* I I

91 x2 11 0 x2 ~
Figure 8 Figure C

Figure 7: Adding edges in second ap, 8max = 5, X(S-1)/2 = x2

Given any xlc5mu/2J and a corresponding AESLc5mcu/2J, recall that in the proof of Lerruna 5.4
we used the following idea: first, for any edge added (here we add (xd, Yd)) during an itera
tion of BTS, we take into account the removal of only one of two possible edges. The edge
we choose to account for is called (yd, Xd+d and we refer to the vertex xd+1 as xd+l (Xd, Yd).
Though we may have two choices for the vertex xd+ 1 (neither imply cycles), we choose only
one to count. In this analysis, we stipulate that if Yd is in the same component as the fixed
vertex X(Smaz- 1);2 (in the current AES), we choose xd+ 1 so that it will not be in the same com
ponent as X(Smaz-1)/2 in the next AES. (See Figure 6A, our fixed vertex is X2 = X(Smaz-1)/2)·

Figure 6B shows the corrext choice for x2 , Figure 6C the incorrect choice for x2 •)

As long as x0 is not initially in the same component with X(Smaz- 1)/2 , we can always make
this choice. No cycles will ever be formed. The proof and bounds will still be valid. See
Figure 7 for the three possible results of adding the next edge to the second ap. 7 A and 7B
illustrate how to choose the next vertex. 7C forms a pap, which cannot happen since BTS
fails during this iteration.

We are basically done. We need just note that for any fixed ap and its corresponding AES,
we can start the second ap from (IAPol - 2) vertices. (This will follow the same reasoning
as in the case for 8max = 2). We may not be able to start the second ap from x0 or from
a vertex in the same component with XLc5mcu/2J. (See Figure 5). As in the bound for the
number of endpoints of the first aps, we use Lemma 5.4. The number of vertices BTS will
find that we have called X(Smu- 1)/2 is no less than:

We need now only multiply the two bounds together, and divide by two. This will ac
count for counting the edges at most twice, as the endpoint pairs can be used in both aps.
Note that IAP1 I(IAP0I- 2) ~ (t;s>IAP0 I2 . We have also have accounted for this in the final
expression of this lemma. This concludes the proof for 8max odd.

19

The expression is proved for 8max even and ~- 4 in exactly the same way. The only dif
ference is that the second ap is one edge shorter than the first.
0

We now start the third step of our analysis, which is to find an upper bound for the
number of 0-edges seen in the Base Sets Tk, 0 ~ k ~ K - 1.

Now, instead of thinking about BTS in terms of iterations, it will behoove us to think
about sets of iterations that use the same 8max· We will do this by induction on 8max· Later,
we will analyze BTS by showing how long BTS can continue (a.a.) until it needs to increase
8max·

Definition: B(G, K) = {l-edges in initial tour U (UZ:~ Tk) }. B(G, K) is the union of
the initial tour and all of the Base Sets seen through iteration K - 1.

We give a lemma that enables us to bound IB(G, K)l.
Recall that tv(8, n) is the value of the tour found when BTS can search to a depth of 8.

Also, BTS will first look for paps of length 1, then those of length ~ 2, etc. Thus you may
also think of tv(8, n) as being the tour value where BTS must increase its depth from 8 to
8 + 1 in order to continue its search for a lower valued tour.

Lemma 5.6 Given B TS is at iteration K and is using 8max on graph G, then the following
holds:

Omo~-1

IB(G, K)l ~ 2n + L tv(8, n)
8=1

Proof:
BTS runs at 8 = 1 until it cannot add any more paps of length one. The underlying tour

has value tv(I, n). It then runs using 8 ~ 2, until it stops (with underlying tour of value
tv(2, n)). BTS keeps increasing depth until it reaches 8max·

The initial tour uses n edges. How many additional edges are seen in Base Sets when
BTS searches for paps of length one? There will be at most

(n- tv(1, n)) ~ n

Thus if 8max = 1, we have

IB(G, K)l ~ n + (n- tv(I, n)) ~ 2n

Increasing 8max to 2 increases the number of edges seen in Base Sets by at most 2(tv(1, n)
tv(2, n)). Thus we have:

20

- ,.

IB(G,K)I < n + (n- tv(l,n)) + 2(tv(l,n)- tv(2,n))

< 2n + tv(l, n)- 2tv(2, n)

< 2n + tv(l, n)

Note that the final bound holds for any iteration which uses 8max = 2. You can see this
easily generalizes to any 8max· We have:

0

IB(G,K)I < n + (n- tv(l,n)) + 2(tv(l,n)- tv(2,n))

+ ... + K(tv(K- 1, n)- tv(K, n))

< 2n + tv(l, n) + tv(2, n) + ... + tv(K- 1, n)- K(tv(K, n))

< 2n + tv(l,n) + ... + tv(K -l,n)

We now come to the fourth step in our analysis. We need to come up with an expression
for the number of edges that do not influence BTS until the iteration K during which BTS
fails. (Notice that since we assume that BTS terminates during iteration K, BTS returns a
tour value of n- IT"_ 1 1 and finds a tour containing the 0-edges in T"_ 1.)

Before we can go any further, we need to define our set of noninfluential edges.

Definition: X ~ Eo is called deletable if:
(1) No edge of X is incident with a vertex ofO-degree:::; c/10.
(2) The edges in X form a matching in Gn,c/n·
.(3) x n B(G, "-) = 0.

The deletable set idea is used in [2] and [4]; we have altered it for our purposes. It should
be clear that the third property of X keeps it from influencing BTS before iteration K. As
we saw earlier, this does not mean that BTS will run exactly the same when edges in X
become l-edges. BTS may not see all previous aps now. However, BTS will see exactly the
same Base Sets as before.

Lemma 5.7 If IB(G, K)l :S nc/30 and c > 95, then there a. a. exists a deletable set of size
-rl~n, where 1 is any function that is O(log n).

We prove this in 4 steps.
1. B(G, "') can contain all edges incident to no more than than

20(IB(G, K)l- n)/(c- 10) large vertices.
2. X has at least n- ne- 2c/J- 20(IB(G, K)l- n)/(c- 10) =a large vertices left to

choose edges ' from.
3. If IB(G, K)l ::; nc/30, the number of edges left to choose from is~ a(a- l)c/lOn
4. Find a matching from vertices in 2, using Lemma 5.1 and Lemma 5.3.

21

5.4 Putting it all together

Next we use all of the previously found information to analyze BTS. First a quick preview:
in order to prove that BTS can find a tour of a certain value (a.a.), we prove it does not fail
during iterations corresponding to larger tour values (a.a.). The proofs will center upon the
deletable set idea. We will generate a set X and let G x be the graph G, except that edges
in X have been changed to l-edges.

The general idea is as follows: suppose BTS fails during iteration "'' and X is deletable.
It follows that BTS fails on Gx. Futhermore, BTS will see the same Base Sets (T~~:, 0 ~ k ~
"'-1) on G and Gx. This is true because BTS is a deterministic algorithm. Given the same
realization and starting tour, BTS will always perform identically. We will use Lemma 5.5
to guarantee that if we run BTS on G x the algorithm will see many, many necessary l-edges
in Gx. Under certain conditions, the probability that none of these necessary l-edges are in
X will be so small that P(BTS fails during iteration K)--+ 0 as n--+ oo. Of course we know
by Lemma 5.2 that BTS must fail by a certain iteration. However, we want to know how
small of a tour value BTS can find, as a function of 8mar·

Important Note: The reader may have noticed that we have been sneaky. The reader
may think, if we want to use those lemmas, that we need to go back and change them to
hold true for Gx, instead of G. Well, actually the lemmas that may be affected (5.4 and 5.5)
are true for G x as well as G. Since we wanted to do the calculations only once, we did them
for G X· How can we see this? Notice that we defined "small" vertices as having ~ c/10
incident 0-edges, but we used a bound for vertices of 0-degree ~ c/10 + 1 (see Lemma 5.1).
So when we subtracted off the small vertices, we included vertices that may have become
small due to changing the weights of edges in X.

After generating our edge weights on Gn,c/n' we randomly and independently color the
edges of E0 green with probability ; log n /en. Call the green edges E09 • We will want to see
if these edges can be a deletable set. Note that

Exp[IEo
9

i] = n(n
2
- l) q logn ~ (1' logn)/2

n en

The following method is analogous to that in Frieze [4]. First, we must restrict our
Bernoulli distribution. We let c > 20(l + 1) log(l + 1), where l 2 9. Let it be given that
BTS has reached iteration "'·

We need the following conditions:

1. l{v E V: do(v) ~ c/10 + 1}1 ~ ne-2
c/J

2. d0 (v) :::; 4log n for all v E V

22

3. l\ll2l ~ rnin[t; 5 IAPol 2 ~, t;s ~(IAPol- 2)t

I w Omaz I ~ min[(t;s)Omaz-1IAPol2~, (t;s)2(~)2~
for 8max greater than 2

4. IB(G, 1\:)1 :S 2n + L:~:iz- 1 tv(8, n)

5. If IB(G, 1\:)1 ::S nc/30, then there a.a. exists a deletable set of size ' 1~sn,
where 1 = O(log n).

Let L be the event that conditions 1-5 hold. Note that P(L) = 1- o(1).
Define the following events:

£1 = [(BT S fails during iteration k on G) n L]

£2 = [£1 n (X = Eo9 is deletable)]

We will investigate

P(£2)
P(£1) = P(£2l£t)

We first investigate P(£21£t). We will use IB(G, 1\:)1, which by definition is an upper
bound for IB(G, 1\:)1 which holds a.a.

Lemma 5.8

P(£21£1) ~ (1 - o(1)) (1 - I log n)IB(G,~)I+(c/10)ne-2c/3
en

Proof: If BTS fails on G, X need only satisfy its 3 requirements up to iteration 1\:.

We have that:

P(£2l£t)- P(XnB(G,K)=0,XnEo(SMALL)=0,

We'll show:

X forms a matching)

- P(X forms a matching IX n (B(G, K) U E0 (SM ALL)) = 0)
* P(X n (B(G, K) u Eo(SM ALL))= 0)

(1) P(X forms a matching IX n (B(G, K) U E0 (SM ALL))= 0) = (1- o(l))

23

(2) P(X n (B(G, K) u Eo(SM ALL))= 0) ~ (1- .-yl:!n)IB(G,~e)i+(c/10)ne-2c/3

to prove the Lemma.

To show (1), let a = [number of vertices with at least 2 incident edges in X]. Next use
the Markov Inequality and show that Exp(a) = o(l/n).

Item (2) is easily derived by noticing that there are~ (c/10)ne- 2c/J 0-edges (attached to
small nodes) that may not be colored green. By definition IB(G, K)l is an upper bound for
IB(G,K)j. Later we will find a valid value for IB(G,K)I

(Full proofs may be found in the appendix.) D

Now we will investigate £2 •

Len1ma 5.9

To prove, follow these simple steps:

£2 = [£1 n X = Eo9 is deletable)

£2 ==> (BTS fails on Gx during iteration K AND X n Wsmaz(Gx) = 0 AND L occurs]

thus
£2 ~ [BTS fails on Gx during iteration K n(x n 'llsmaz(Gx) = 0)nL]

and clearly
P(£2) ~ P(Xn 'llsmaz = 0)

Now, recall that the edges e E X were colored independently. By definition-1'11 Smaz I is a
lower bound for I \II 6maz I Thus we have:

24

0

Putting the two Lemmas together:

Theorem 5.1 Given a random graph Gn,c/n· The following holds a.a.:

P(BT S fails during iteration K IBT S succeeds up to iteration K - 1) =

P(£) (1- ~)~~6mul
p (£) - 2 < -:----:-:----;-";.:_2--;:;:::::;:::;=::;:;--:-:--:---:--:-:-

l - P(£21£1) - (1- o(1))(1- 1·~:")1B(G,I()I+(c/10)ne-2 c/3

where 1 is any function that is O(logn), and we must have IB(G,K)I ~ nc/30.

Next we look for relationships between IB(G, K)l and IWomaJ. Given BTS is at iteration
K, we want to find the smallest 8max we can use and still have the probability BTS fails go
to 0. By keeping 8max as small as possible, IB(G, K)I is smaller and we can proceed to do
more iterations before IB(G, K)I > nc/30.

Please keep in mind that the probability
P(£1) = P((BT s fails during iteration K on G) n L)
is conditioned on BTS running to iteration K. However, we would like to have an uncondi
tioned bound for this probability. We may use conditional probability to see that:

P(BTS fails during iteration K)
I(

L P(BTS fails during iteration KIBTS gets to iteration K)
k=l

*P(BTS gets to iteration K)

Since BTS can have upton iterations, we need P(£1) ~ o(1/n). It will be sufficient to
show that (a.a.)

e -1 ~2g n l\ll6maz I+ 11:~ n (IB(G,K)I+(c/10)ne-2c/3) = o(1 In)

25

Why? Let

A= (1 _ 1lo~n)l'lf6mazl , B = e -1~25 "l'lf6mazl
n

c = (1 - /log n) IB(G,J()I+(c/IO)ne-2c/J ' D = e- J
1:! "(IB(G,J()I+(c/IO)ne-2c/3)

en

A A B D
P (£1 ~ (1 + o(1)) C = (1 + o(1)) B * D * C

Now A/ B ~ 1 for all n. We'll show that limn-co f = 1. Let o:n = (IB(G, ~)I +
(e/10)ne- 2cf3

). We will need the following property: if t < .43, then -log t(1 - t) <
(t + t 2 12 + t3 1 2).

1
. D
lffi

n-oo C

D .::.!!!. n c

elirrln-oo(log D-log C)

elirrln-oo(-!o:Jc) log n- o:n log(1-1 l:~n)
2 3

< lim- (-..... o:/c)logn+o:n(~+(-ylogn) +(-ylogn)] e n OO I en 2cn2 3cnj

r ((J logn)2 + (J logn)3
) e lffin-oo 0: 2cn 3cn2

1

So now we know that if (a. a.)

BTS will find any tour values this equation implies.
This is equivalent to showing that

- !IWsmazl + 2_(1B(G, ~)I+ (c/10)ne-2c/3) < -1
n2 en

26

We can see from the Lemma 5.4, that 1 may be any function that is O(log n). From now
on, we assume it is in fact a 0(1og n).

Before we get to the next theorem, here is a corollary to demostrate the implications
of the theorem. Recall that tv(8max, n) represents the value of the smallest tour BTS finds
using 8max· Let TV(8max, n) = E~~oz tv(8, n), where we define tv(O, n) := (2 + €c) n.

Corollary 5.1 Given a random graph Gn,c/n and c ~ 461, (as c ~ 20(l + 1) log(l + 1) and
f ~ 9). If

nc
IB(G, 1\: + 1)1 < 30 and

then the following holds (a. a.):

tv(8 + 1,n) ~ pstv(8,n)

and Ps converges to (l_:5)112 + €, where € is O(e-cf3).

The restrictions on I B(G, 1\: + 1) I and tv(8, n) will be justified in the proof of the following
theorem. As we increase 8max' our guaranteed tour values decrease geometrically. The gen
eral theorem is a bit more messy, but you should be able to see the pattern. The corollary
is proved after the proof of the theorem.

We have already seen from Lemma 5.2 that the optimal tour value, tv*, can be bounded
as follows:

(n- 1)c 1 tv* ~ n(1 - c/n)n-l +
2

(1 - c/n)n-2 - n 1 2 log n

See page 32 for a discussion of the relationship between this lower bound and the upper
bounds given in the previous theorem.

Theorem 5.2 Given a random graph Gn,c/n· The following hold a.a.:

{1) lf8max = 1 and c ~ 10

tv(l,n) ~ tv(l,n) = y, wherej +jlogj < 1~

(2) Let f ~ 9 be fixed, where (f + 1) log(£+ 1) < c/20. {Thus c ~ 461). Then

() _() [2TV(1,n)n 2]112 tv 2, n ~ tv 2, n = 0 c {.- 5

27

(c) -(c) _ [2TV(8max -1,n)n(_2_)8maz-1]1; 2 tV Omax, n ::; tV Omax, n -
c l-5

for 8max 2: 3 and as long as tv(8max,n) > lne- 2c/J, and TV(8max,n) < c;(t~/) 2 .

Proof:
We prove the case for 8max = 1 first. Suppose that BT S is starting iteration K, and
[n - IT~-11] > nl j. The number of vertices with 0-degree < 2 in T~- 1 is = IAPol >
[n- IT~-11 + 1].

By Lemma 5.3, IEo(APo)l 2: Exp[IEo(APo)l]l5 = ciAPol~~:ol- 1) > 1~j2.

The number of 0-edges in [Eo(APo) n Tk-d = jAPol- (n- IT~_ 1 1)- g, where g = the
number of components of size 2: 3 vertices in T~_ 1 • (g = number of 0-edges that would form
cycles in AP0 , see Figure 4 for reference.) Thus the number of edges in E0(AP0) that can
form paps of length 1 is at least

ciAPoi(I~Pol- 1) - [IAPol- (n- ITK-d)- g]- g
1 n

since cl10 2: j + j logj .

> ciAPoi(IAPol- 1) _ IAR I
10n °

> c(IAPol- 1) _ IAR I
10j · 0

> 1

Notice we did not need the idea of a deletable set in this part of the proof; that will
come next. We have found an upper bound for tv(1, n), the smallest tour value BTS can
find (a.a.) using paps of length 1 only. We can now plug this bound and others which we
have computed into the inequality from Theorem 5.1 to find an upper bound for tv(2, n).
This is the smallest tour value found by using paps of length 1 and 2 only. In order to keep
I B(G, K) I small, we have made sure that BTS uses 8max = 1 while I T~- 1 1 > n I j, where n I j
is as in the above lemma. Once we reach the minimum n I j, BTS will use 8max = 2.

To prove the bound for tv(2, n), we want to find valid bounds for l'llsmazl and IB(G, K)l
such that:

or equivalently

n~lw21+~(1B(G,x:)l+(c/10)ne- 2c/J) = o(ljn)

28

It suffices to show that (a. a.)

By algebra we see that we need,

n cne- 2c/3 nc
lll121 > -(IB(G, K)l + 10 + -)
- c I

Now, we let IB(G, K)l = 2 + tv(l, n). Since tc > (~ + 1c0 e- 2c/3
) we can can solve:

I I
n [

2
tv(l, n)] TV(l, n)

~~- +tc+ =
c n c

Recall that (a. a.):

where I AP0 I ~ fne- 2c/3 • We know that given any Base Set, the tour value it implies is
::; IAPol - 1. If we can solve

for IAP0 l, this will imply a tour value which can be found a.a.

After algebra:

min[IAPol 2 , ~(IAPol- 2)] = 2-2-TV(l,n)n
2£ f- 5 c

Since we are trying to minimize IAP0 l, we may assume that IAP0 j
2

::; ~(IAP0 I-2). Thus

n 4 /(l)n
-(IAPol - 2) ~ ---
2£ f- 5 c

If we know that
n f- 5 c

(
2
£- 2)(-

2
-); ~ TV(l, n)

29

then the above equation is feasible.
Minor algebra then gives:

4 TV(l n)n 1 _
tv(2, n) + 1 ~ IAPol = [-0 - ']

1 2 = tv(2, n)
(.- 5 c

Thus we are (a.a.) assured of BTS finding a tour of at most the above value. This gives
the desired result.

To prove the rest of the bounds, assume they are true for all 8 ~ 8max· To show this is
true for 8max + 1 we need to find the minimum IAPol that satifies:

-1 I I
-

2
l'llsmcu+tl + -(IB(G, K)l + (c/10)ne-2c 3) < -1

n en

Recall that (a.a.):

. f. - 5 6maz 2 1 f. - 5 2 n 2 1
l'llsmaz+tl ~ rrun[(-2-) IAPol 2' (-2-) (2£) 2]

Since both terms are less than l'llsmaz+rl (a.a.) and
TV(bmax' n) ~ IB(G, K)l + (c/10)ne-2ciJ) + ~ we may solve for:

min[(t'; 5)6m••jAPol2~l; 5)2(~)2~] = TV(Sm:x• n) n

As before, since tv(8, n) < IAP0 1, this will give us a valid bound for tv(8, n).
As we are trying to minimize IAP0 1, we may assume that

As before, this implies that TV(8max' n) ~ c; (t;,/)2
, or else no feasible solution will exist.

Thus tv(8max + 1, n) is such that:

and this proves the theorem, as long as tv(8max + 1, n) > lne- 2cl3
•

0

30

For example, if l = 11 and c ~ 597:

n
tv(1, n) ~

15
.4 ,

n
tv(2,n) < --,

- 20.81

n .
tv(3,n) < -

- 35.64

n
tv(4,n) ~

6
1.

33
,

n
tv(5 n) < --

' - 105.83

For all 8 ~ 5, we have:

tv(8+ 1,n) ~ .57862tv(8,n)

as long as tv(8+ 1,n) > 11ne-2c/3
, and TV(8,n) < 5.5n. The rate of decrease is already

very close to 1/VJ ~ .57735

To prove the corollary, we need to investigate the rate of decrease of the tv(8, n), as a
function of 8. As well, we need to ensure that IB(G,K)I ~ nc/30, and TV(8,n) ~ c;(l~/) 2 .

Proof of Corollary:
We need only show that if:

[2TV(8, n)n (-2-)<5_ 1p12 = Ps[2TV(8- 1, n)n (-2-)6_ 2p12
c l-5 c l-5

then as 8 ~ oo, P6 ~ (t_:s)112 + t, where t is 0(e-cf3).

The first expression can be simplified to

Thus

2
TV(8, n)(-/) -) = p2TV(8- 1, n)

{.-5

p = (1 + lV(8,n))1/2(_2_)1/2
TV(8- 1, n) l- 5

Now p is strictly decreasing; in the above expression, the numerator is decreasing, and
the denominator increasing. Note that from the previous theorem:

IV(8,n))I/2 < [~(-2-)6-2]1/2
2n TV (8 - 1, n) - c l - 5

31

as long as tv(8, n) > fne- 2cl3 • We have that TV(6 -·1, n) >- 2n, so as well:

IV(8, n) < [~(-2-)6_ 2 p12
TV (8 - 1, n) - c f - 5

for large i and n this will imply that tv(8, n) < 2fne-2cf3 • This proves the corollary. 0

Note: Though we must always satisfy TV(8, n) ~ c;(t~/) 2 and IB(G, K)l ~ nc/30,
sometimes this is always true. At f = 9, we can see that we must have TV(8, n) ~ 2.845n,
but iff is only a little larger, nice things happen. For example, let f = 11 and c > 597 as
we did before. f = 11 :::} we must have TV(8, n) ~ 5.55n. Notice that:

c5

TV(8, n) = TV(O, n) + 2: tv(d, n)
d=1

c5

< TV(5, n) + L tv(d, n)
d=6

< 2.16786n + f:(.57862)i
1

j=l 105.83

< 2.2n

Thus we need not worry that TV(8,n) > c;(t~/) 2 or IB(G,K)I > nc/30.

The first theorem gave us the generalization of the analysis to include the probability
BTS can find a tour of a certain value, given 8max (these are true a.a.). We need only plug
in the values that we have found for IB(G, K)l and l\11 6 1, which are calculated by using the
tv(8, n) we have just found. --

The corollary and final theorem tell us that as 8max is increased, BTS's (asymptotic)
guaranteed tour value will converge at a rate which approaches 2/(f- 5)112 , to a minimum
tour value of fe- 2c/3 + 1. However, we can find smaller guaranteed tour values by using
different bounds, for example, the other bound we found implies a minimum tour value
of l~B e-2c/3 + 1 (but not as fast an improvement rate). As well, this analysis rests on
a neighborhood argument (which we use to bound the number of necessary edges seen by
BTS) which sometimes uses only vertex sets with a large 0-degree. That is, we do parts of this
analysis using vertices that have 0-degree > c/10. By adding in contributions from 'small'
vertices we can obtain smaller guaranteed tour values for large 8. The rate of improvement
that we find can still approach 2/ (f - 5) 112 , and the best tour value we can find is still
0(ne-2c/3).

Now consider these two things. First, the expected value of a randomly chosen tour is
n - c. Even using small values of 8max lets us find tours with a much smaller guaranteed
tour value. Second, by looking at the minimum number of vertices of 0-degree 0 or 1 (see
Lemma 5.2), we find a very quick (and loose) lower bound for the optimal tour value. This
bound shows that the optimal tour value is never less than n(1-c/ n)n-l + (n~1)c (1-c/ n)n- 2 -

n 112log n . A much tighter bound can no doubt be found, and we think it will be much closer
to 0(ne-2cl3).

32

• ·

Our lower bound for the optimal tour value will be closest to the upper bound for our
algorithms performance (with 8ma.x large) when the above bound is close to f.ne- 2c/J. This
is smallest when c is large. For example if c = log n, the difference between the upper and
lower bounds is 0(n 113

) but if c = 0(1) then the difference is 0(n).

6 Modifications to BTS

6.1 Analysis of 2-opting

In the previous section we mentioned that BTS could be reformulated as a strict im
provement algorithm. Here we present results which come from the modification of BTS
into a strict 2-opt heuristic. The key idea in the modification is to find a way to identify
which aps and paps translate into 2-changes. The full analysis can be found in (13].

Theorem 6.1 Given a random graph Gn,c/n· If fc is a small constant such that fc >
(~ + t0 e-2cf3

) (where 1 is a function of O(log n)) and c ~ 95 (for c must satisfy requirements

of Lemma 5. 7 and then 2-opting can find (a.a.) a tour of length tv, such that

What are the time requirements of this 2-opt heuristic? We know that we can do a
2-change in time O(log n) since this is equivalent to a sequential exchange. As stated in the
last section, we know that the 0-degree of any vertex is ~ 4log n a.a. At any iteration we
may have to search from 0(n) vertices, and we have 0(n) iterations. It follows that the
time requirements are 0(n 2(log n)2). Note that this is the same as the time requirements
for algorithm BTS, given that 8max = 1.

According to our analysis, the performance of our 2-opting heuristic never surpasses that
of BTS (when 8max = 1). Notice that 2-opting is quite tour dependent, and will perform
better on tours that have l-edges grouped together. This would imply that using 2-opting
after a nearest neighbor tour construction is probably a good idea. The nearest neighbor
algorithm will produce exactly the tours with which 2-opting is most successful. This suggests
that a modification of our 2-opt heuristic would probably be in order. We would want to do
successful 2-changes (those that lead to a lower valued tour) that keep the most number of
grouped l-edges. (However, this is beyond the scope of this paper. Perhaps we can tackle
this idea in the future.)

However, given our comparison of time requirements of BTS and 2-opting, it would seem
unwise to use 2-opting at any time. Even if we want to use the nearest neighbor algorithm
to find an initial tour, BTS will still outperform the algorithm restricted to be a strict 2-opt
procedure given the same amount of time. We suspect that BTS could also be enhanced by
choosing paps which keep l-edges grouped together.

33

6.2 Further Implementations of Procedure Search

The procedure search can be implemented on a directed or assymetric 0,1 TSP. Tour
improvement algorithms like 2-opting are generally not well qualified to handle the directed
TSP. Picture doing a 2-change on a (directed) tour. Up to 1/2 of the edges may change
direction, and radically change the tour value. But Search can handle these problems by
keeping 0-edge components in their original direction. The same kind of asymptotic analysis
presented in this paper can be performed for the asymmetric Bernoulli Salesman. We need
only make sure we keep components in their original direction at all times. The most
restricted step will be in the choice of final edges on paps. The directed case may also be
analyzed in this manner if there are enough 0-edges present in the graph.

We also stated that Search may be implemented as a strict improvement algorithm. The
current theorem (for symmetric salesman) still holds true for this implementation, though
the time requirement grows. Since searching up to depth 8 implies we are using up to 28 + 1
edge exchanges this analysis is true for a 28 + 1-opt.

In addition, we can modify Search to perform as a strict k-change algorithm. This
modification is very easy to do for 2-opting or 3-opting, although a little harder for a general
k-opt. We have already given results from the analysis of 2-opting. The analysis techniques
can be used for any strict k-opt, however, the increasing complexity makes it hard to obtain
good bounds.

7 Appendix

For the following lemmas, let G = Gn,c/n , where , c• ~ c ~ 1.1log n and c• is a large
constant

Proof of Lemma 5.2

Lemma 5.2 Let Si = { v : vertex v has 0-degree i}, then G a. a. satisfies the following:
(5.2.1) IISol- n(1- c/n)n-1

1 ~ n112 logn

(5.2.2) IIS1I- (n- 1)c(1- c/n)n-2
1 ~ n112 logn

(5.2.3) I(ISol + IS11)- n(1 - c/n)n- 1 - (n- 1)c(1- c/n)n- 2
1 ~ n112 log n

Proof:
We will prove only the first expression, the proofs of the others are similar.

To establish the first expression we use Chebyshev's Inequality which tells us that:

1 Var(IS0 1)
P(IISol- Exp(!Sol)l ~ n1 2 logn) ~ (l)2

n ogn

34

We have that:

Exp(ISol) = n(nQ"1)(_:_)o(l _ _:_)n-1
n n

= n(1- _:_)n-1
n

Now we look at So in terms of indicator variables:

~ { 1 if do (vi) = 0 ISol =
1

L.J_=
1
10 (vi) where Io(vi) = 0 if do(Vj) > 0

This allows us to find an expression for the variance of S0 •

n n

Var(!Sol) - Exp[(2: Io(vj)) 2
]- [Exp(2: l0 (vi)] 2

j=1 j=1

= nExp[Io(vt) 2
] + 2(;)Exp[Io(vt)Io(v2)]- n 2 Exp[I0 (vt)] 2

- nExp[l0 (vt)] + n(n- 1)Exp[l0 (vt)l0 (v2)]- n 2 Exp[l0 (vt)] 2

We can simplify this by noting that:

Exp[Io(vt)Io(v2)] - P[Io(vt) = Io(v2) = 1]

Plugging in:

Var(!Sol)

- P[Io(vi) = 1 llo(v2) = 1] P[Io(v1) = 1]
_ (1 _ _:_)n-2 (1 _ _:_)n-1

n n
_ (1 _ _:_ ?n-3

n

- n(1 - ~)n-1 + n(n- 1)(1 - ~ ?n-3- n2(1 - _:_)2n-2
n n n
c c c c

- n(1--)n-1 + n2(1--?n-2[(1--)-1- 1]- n(1--?n-3
n n n n

- n(1- ~)n-1 + n2(1-.:. ?n-2[-c-]- n(1-.:. ?n-3
n n n-c n
c c < n(1--)n-1 + 2nc(1--?n-2
n n

Using Chebyshev, the proof of (5.2.1) is complete.
0

Proof of Lemma 5.3

35

Lemma 5.3 Given Gn,c/n = (V,E), letS~ v. · Let E0 (S) = {e = (v,w): v,w E Sand
(v, w) is a 0-edge }. Then for all0-:/:- S ~ V, G a.a. satisfies the following:

If lSI = n/ j, where j + j logj < c/10 then IEo(S)I ~ Exp[IEo(S)I]/5

Proof:
Recall the Markov Inequality, P(IXI ~ 1) ~ Exp(jXI)/1 .

Let a =number of sets of size lSI such that IE0 (S)I < Exp[IE0 (S)I]/5. Then

Exp(a) =(lsi) L 2 (.:_)k(1- .:_)<'2')-k f ((lSI)) 5

k=O k n n

where f = Exp[IEo(S)I]/5 - 1. For algebraic ease, let f* = (ciSI2)/(10n) (f < f*).
Since the maximum value of a Binomial distribution occurs at its expected value (ap

proximately), the maximum term in the above expression occurs at f. So we have:

Exp(a) < (lSI)(!'+ 1) ((;~)) (~)I" (1 - ~)<l;ll-1"

< (ne)ISI (ISI 2c) [(ISI-1)10e]tst2c (c)<tst)_c!st2
- -- + 1 lOn 1 - - 2 lOn

lSI 10n 2ISI n

< (ne)lSI (ISI
2
c + 1) [(lSI- 1)10e] I~J:c e :,c[!S!(!;I-1)

lSI 10n 2ISI

< (ne)lSI (ISI2c) () !S!2c =.£[1S!(!S!-l) !S!2c] - -- + 1 5e lOn e n 2 lOn

lSI 10n
ne lSI ISI 2c .27!S!2c -c!S(l + -c2 !~!2 +=.121. < (-) (-- + 1) e n e 2n lOn 2n

lSI 10n
ne lSI -.13c!SI2 -c21;12 +~ < (-) e n e lOn 2n

lSI

< (~~)lSI e -~~sl'

the final expression will go to 0 as n -+ oo if j + j log j < cJ 10.
0

Proof of Lemma 5. 7

IS!2 c)
IOn

Lemma 5. 7 If I B(G, K) I ~ nc/30 and c > 95, then there a. a. exists a deletable set of size
'Y l~g n , where 1 = O(log n), and c is greater than a large constant.

36

Proof:
By the definition of a deletable set, all edges in X must be incident to large vertices only
(one with 0-degree ~ c/10). However, B(G, ~e) may contain many edges incident to large
vertices as well. How many large vertices can B(G, ~e) completely cover (B(G, ~e) contains
all edges incident to how many vertices)?

1. n edges in B(G, K) are in the initial tour, so each vertex has at least 2 of its incident
edges in B(G, ~e). Thus B(G, ~e) can use up to the following number of large vertices:

2(IB(G, ~e)l- n) 20(IB(G, ~e)l- n)
...£.. -1
10 c- 10

2. So the number of vertices left that X has to choose from is at least:

-2c/3 20(IB(G, ~e)l- n)
n-ne --------

c- 10

Assume IB(G, ~e)l ~ nc/30, where c > 10. The the number of vertices left that X has to
choose from is at least:

_ 2c/J 2/3n(c-30) [1 2c/J n]
n - ne - > n - - e > -

c- 10 3 4

3. By Lemma 5.3 if 10(4+4log4) < c (which implies c > 95), then the number of 0-edges
present in the subgraph induced by the large vertices that X can choose from, is at least:

10n 160

4. We can find an acceptable X by finding a matching from this subset of edges and
vertices. Each vertex has ~ 4log n 0-edges incident to it, so we can greedily find a matching
of the desired size. Any first edge chosen may exclude at most (Slog n- 1) edges from the
matching. The second edge chosen may exclude (Slog n - 1) more, etc. In this way, we can
easily find a matching of size at least:

cn/160
Slogn

en 1log n
---->---
12SO log n - 2

if 1 = O(log n) and the Lemma is proved.
0

Proof of Lemma 5.8

37

Lemma 5.8 Given that Gn,c/n satisfies the conditions from Lemmas 5.1 - 5. 7, and that
edges in X were chosen independently from E0 (G) with probability (1 - 1 1;! n):

P(£21£1) ~ (1- o(1))(1- /logn)(c/10)ne-2c/3+1B(G,~)I
en

Proof:
We'll show:

1) P(X forms a matching) ~ (1- o(1))

2) P(X n (Eo(SM ALL) u B(G, K)) = 0) ~ (1- 1 1;!n)(c/10)ne-:2c/J+IB(G,~)I

to prove the Lemma.

1) Let {3 = l{v: v has~ 2 incident edges in XIX n (Eo(SMALL) u B(G,K)) = 0}1

P({3 ~ 1)
< Exp({3)

1
= L: P(vertex vi has ~ 2 incident edges in XIX n (E0(SM ALL) U B(G, K)) = 0)

< L: P(vertex Vi has ~ 2 incident edges in X)

= n'f:(nT1)(/lognc)j(1 - 1logne)n-l-j
i=2 en n en n

_ n[1 -(1 - 1logn)n-l_(n- 1)(11ogn (1 - 1logn)n-2)]
n2 n2 n2

= n [1 - (1 - 1 log n) n-2 (1 + (n - 2) 1 log n)]
n2 n2

Now we show that

This is true since

() 1 log n (n-2)(1 log n)2 = 1- n-2 + 2 n2 n2

-(n- 2)(1 log n)3 (1 log n)n- 2
3 2 + ... 2 n n

38

and for all 1 ~ j ~ n - 1:

Thus

P(/3 ~ 1)

and thus 1) is proved.

(
n_- 2) (r log n)j (~-2) (r log n)j+l
J n2 > J+l n2

r log n r log n < n{1-[(1-(n-2)
2

)(1+(n-2)
2

]}
n n

- n[1-1+((n-2)rlo;n)2)
n

- n[((n-2)rlogn?J
n2

< (r log n) 2

n

2) The edges in £ 0 were colored independently, with the probability any 0-edge given by
green is (1- 1

1;!n). Thus:

P(X n (E0 (SM ALL) u B(G, K))0) _ (1 _ r log n)IEo(SMALL)uB(G,~~;)I
en

> (1 - r log n)(c/10)ne-2c/3 +IB(G,~~;)I
en

since there are ~ (c/ 10)ne-2c/J 0-edges adjacent to small vertices.

D

6 Acknowledgements

We would like to thank Craig A. Tovey for many helpful discussions about this work.
Drs. Llewellyn and Whitaker were supported in part by the Office of Naval Research
(NOOO 14-89-1658).

39

References

[1] Angluin D. and Valiant L., "Fast probabilistic algorithms for hamilton circuits and
matchings," Comput. System Sci., 18 (1979), pp. 155-193.

[2] Bollobas B., Fenner T.l. and Frieze A.M., "An Algorithm for Finding Hamiltonain
Cycles in a Random Graph," Proc. 17th Annual ACM Symposium on the Theory of
Computing, (1985) pp. 430-439.

[3] Frieze A.M., "On Large Matchings and Cycles in Sparse Random Graphs", Discrete
Mathematics, 59 (1986) pp. 243-256.

[4] Frieze A.M., "On the Exact Solution of Random Travelling Salesman Problems with
Medium Size Coefficients," SIAM J. of Computing, 16 (1987) pp. 1052-1072.

(5] Frieze A.M., Personal Communication, Jan, 1992.

(6] Karp R.M., "Probabilistic Analysis of Partitioning Algorithms for the Traveling
Salesman Problem in the Plane," Math. of Operations Research, 2 (1977) pp.209-224.

(7] Kern W., "A Probabilistic Analysis of the Switching Algorithm for the Euclidean TSP",
Math. Programming, 44 (1989) pp.213-219.

[8] Lawler E.L., Lenstra J.K., Rinnoy Kan A.H.G. and Shmoys D.B., eds., The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, J. Wiley, New York
(1985).

(9] Lin S. and Kernighan B.W., "An Effective Heuristic for the Traveling-Salesman Prob-
lem," Operations Research, 21 (1973) pp. 498-516.

(10] Lueker G., Manuscript, Stanford University (1984}.

(11] Posa L., "Hamiltonian Circuits in Random graphs," Discrete Math. 14 (1976) 359-364.

(12] Steele J. M., "Probabilistic Algorithm for the Directed Traveling Salesman Problem,"
Math. Oper. Res 11 (1976) pp. 343-350.

(13] Whitaker L.M., The Bernoulli Salesman, Dissertation, Georgia Institute of Technology,
1992.

40

A PRIMAL DUAL INTEGER PROGRAMMING ALGORITHM

Donna C. Llewellyn
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

and
Jennifer Ryan

Department of Mathematics, University of Colorado, Denver, CO

-6~~W'd '\a~ 3)C1o
~vi <:x d. \oj qo
\-\cc.t.p\<0-.l-.J~ ;q 1)

1

Abstract -

We introduce the framework for a primal dual integer programming algorithm. We
prove convergence, and discuss some special cases.

2

1 Introduction

Many optimization algorithms are based on the relationships derived from linear program

ming duality theory. While Chvatal [5], Blair and Jeroslow [2], Johnson [16] and Wolsey

[19] have developed a rich duality theory for integer programming, this theory has not yet

been exploited algorithmically. We propose a method which uses Chvatal functions to form

a generic primal dual algorithm for general integer programs. When certain subproblems

can be solved efficiently, this procedure will solve 0-1 integer programs in time that is pseu

dopolynomial in the size of the problem. Although, except in special cases, there will not

be a polynomial time algorithm to solve the subproblems, they can always be solved by

generating cutting planes.

In this section we present some background material. The second section contains a

description of the algorithm, and a proof of convergence. In the third section, we discuss

some interesting special cases and show how the algorithm generalizes Gomory's familiar

cutting plane algorithm. Let Q denote the rational numbers, and let Z denote the integers.

Q+ and Z+ will denote the nonnegative rationals and integers respectively. Further, LxJ will

denote the greatest integer less than or equal to x. Iff is a function, then the function L/ J

is defined by L/J (x) = Lf(x)J.

1.1 The Superadditive Dual of an Integer Programming Prob
lem

Let Sn denote the set of n-dimensional superadditive functions. (A function is superadditive

if f(a +b) 2: f(a) + f(b) for all a and b.) A duality involving superadditive functions holds

for integer programming problems (see e.g. [19]). We briefly outline this duality here.

Consider the integer programming problem

(P) max ex
s.t. Ax - b

x > 0 and integer,

where A is an integral m x n matrix, c is an integral n-vector and b is an integral m-vector.

If ai denotes the jth column of A, and ci is the jth component of c, then the superodditive

dual of (P) is:

3

(D) min f(b)
s.t. f(aj) > Cj , for j=l, ... ,n

f E Sm.

The following weak and strong duality properties hold for (P) and (D).

Weak Duality Property: Let x and f be feasible solutions for (P) and (D) respectively.

Then ex~ f(b).

Strong Duality Property: Let x• be an optimal solution to (P). Then (D) has an optimal

solution j• and ex• = j•(b).

The Weak Duality Property is easily verified using superadditivity. The Strong Duality

property follows from the fact that the value function of (P) is superadditive.

Blair and Jeroslow ([2]) have shown that the duality still holds even when the class of

functions is restricted to be Chvatal Functions. The class of Chvatal functions can be defined

as follows. Let Ln denote the set of n-dimensionallinear functions with rational coefficients.

Definition: The class Cn of n-dimensional Chvatal functions is the smallest class K satis

fying the following properties:

1. If f E Ln then f E K;

2. If J,g E K and a,/3 E Q+, then af + /3g E K;

3. If f E K, then lf j E K.

Note that a Chvatal function is superadditive. and that the class of Chvatal functions

contains the linear functions. The Weak Duality Property still holds since the Chvatal

functions are superadditive. That the Strong Duality Property still holds for this restricted

class is nontrivial, and the interested reader is referred to [2].

1.2 A Separation Theorem and Optimality Conditions

As a consequence of strong duality the following proposition holds. (See [2], or derive Propo

sition 1.2.1 by applying the Strong Duality Property to an integer programming problem

with artificial variables and a phase 1 objective.)

4

Proposition 1.2.1 [2] Let A be an m x n matrix with integer entries, and let b be an integral

m-vector. Then exactly one of the following alternatives holds:

1. There exists X E z~ with Ax= b;

2. There exists f E Cm with f(ai) ~ 0 for all j = 1, ... , n and f(b) < 0.

Blair and Jeroslow ([3]) show that the separating function of alternative 2 may have an

exponential nesting of round-downs, so that Proposition 1 does not give an NPnco-NP

characterization of the integer programming feasiblity problem.

We conclude this section by presenting the optimality conditions for (P) and (D) (given

here as Proposition 1.2.2). Similar conditions involving general superadditive functions are

given in (16] and (19]. We omit the straightforward proof of Proposition 1.2.2.

Proposition 1.2.2 Let x and f be feasible solutions to the problems (P) and (D) given above.

Then x and f are optimal solutions if and only if the following two conditions hold:

1. (Complementary Slackness) For all j = 1, ... ,n, if f(ai) > ci then xi= 0;

2. (Complementary Linearity) Ej=1 f(ai)xi = f(b).

Note that Condition 1 is analogous to the usual complementary slackness conditions of

linear programming. In the event that f is a linear function, Condition 2 holds trivially.

2 The Algorithm

In this section we introduce our primal dual algorithm using the duals introduced in the

last section. There will be a couple of places where the actual details will be left as "black

boxes." This is done for several reasons. Primarily, this allows us to present the algorithm

as a generic framework into which many different implementations may be built. We will

prove what is necessary for these black boxes to do in order to assure finite convergence of

the algorithm and then in the next section we discuss a few implementations that satisfy

these requirements.

5

2.1 The Basic Steps

As mentioned in the last section, we always will assume that all data is integral.

PRIMAL DUAL ALGORITHM

Input: Integral m x n matrix A, integral n-vector c and integral nonnegative m-vector b.

Ouput: Integral nonnegative n-vector x optimizing integer programming problem (P),

or information that (P) is infeasible or unbounded; and a Chvatal function I optimizing the

dual problem (D), or information that (D) is infeasible or unbounded.

Step 1: Let I be a dual feasible function. Without loss of generality, assume that I= liJ.
Let J = {j E {1, ... ,n}ll(a1) = c1}. [If no such I exists then (D) is infeasible, and

(P) is infeasible or unbounded. STOP.]

Step 2: Consider the integer program that looks for an integral solution to (P) using only

coordinates in the set J. Call this problem (RFP) [restricted feasibility problem]:

m

(RFP) max W = 2: - x~
i=l

s.t. l:a11 x1 + x~ = b, fori= 1, ... , m
jEJ

all x ~ 0 and integer.

There are three possibilities:

• w• < 0. Go to Step 3 .

• w· = 0 and LjEJ l(aj)Xj = l(b). Go to Step 6.

• w• = 0 and E 1e; l(ai)xj < l(b). Go to Step 7.

Step 3: From Proposition 1.2.1 it is clear that there exists a Chvatal function J such that:

There are two possibilities:

j(a1) > 0 Vj E J,
](b) < -1.

6

• 3 some j ¢ J with f(ai) < 0. Go to Step-4.

• f(ai) ~ 0 Vj. Go to Step 5.

Step 4:

Let () = min { Cj - f (ai) } .
iiJ f(a ·)

/(a;)<O]

Then set f = l! + () Jj. Replace f by f and update J. Go to Step 2.

Step 5: Here it is clear that (D) is unbounded and hence (P) is infeasible. STOP.

Step 6: Here x• and f satisfy the optimality conditions and so are optimal. STOP.

Step 7: Now consider the following problem that attempts to push the objective up to f(b)

while maintaining integrality. This problem is called (RMP) [restricted maximization

problem]:

(RMP) max V - "'£J(ai)xi
jEJ

s.t. "'£aiixi = bi fori= 1, ... , m
jEJ

L f(ai)xi S f(b)
jEJ

all x ~ 0 and integer

There are two possibilities:

• v• = f(b) and all xj for j E J are integral, where x• is the optimal solution of

(RMP). Go to Step 6.

• Otherwise (there is no integer solution with value f(b)) go to Step 8.

Step 8: It is known by the strong duality property that there exists a Chvatal function J
such that

There are two possibilities:

f(ai) > f(ai) Vj E J,
/(b) < f(b).

7

• If J (ai) ~ ci V j then J is dual feasible. Replace f by l J J and update J. Go to

Step 2.

• Otherwise, go to Step 9.

Step 9:

and set J = l A/+ (1 - A)Jj. Then, j is a dual feasible function. Replace f by j and

update J. Go to Step 2.

We conclude this subsection by noting that the algorithm only requires storing the values

of f(ai), for 1 ~ j ~ n, and f(b), which can be updated as the algorithm progresses. It is

not necessary to store a representation of the entire function f.

2.2 Correctness and Finite Convergence

Now let us look in detail at some of the steps of the algorithm defined in Section 2.1. In

Step 1, it is not difficult to get an initial dual feasible function; in particular, one can solve

the linear programming relaxation of (P) and use the (linear) dual function. Since we have

assumed that all data is integral, it is clear that if the linear programming dual is infeasible

then (D) is also infeasible. Denote by / 0 the function used by Step 1. In Step 2, it is clear

that (RFP) is always feasible (set xf = bi for all i and xi = 0 for all j E J). Further, as all

the xf are nonnegative, it is clear that the objective will always be nonpositive.

Consider (J arising in Step 4. By construction it is clear that the denominator is less than

zero. Further, by dual feasibility off and the definition of J, the numerator is also negative,

hence (J will be positive. Now, since a positive linear combination of Chvatal functions is a

Chvatal function, j will be a Chvatal function. Hence, by the construction in Step 3, J will

be dual feasible so it is justified to go to Step 2 with f. Note that by Step 3, f(b) < 0 and

hence](b) < f(b). Further, by definition, J is integral so](b) ~ f(b) - 1.

The algorithm reaches Step 5 when the f found in Step 3 satisfies f(ai) ~ 0 Vj. Consider

the function J = lt + E/ J. Clearly, this function will be dual feasible for any nonnegative

f.. Further, as f. approaches infinity, j(b) approaches negative infinity. Hence the statement

8

made in Step 5 is correct, i.e., (D) is unbounded. ·By Weak Duality it is clear then that (P)

is infeasible.

Step 6 can reached in two ways. In either case (from Step 2 or Step 7), we have an x• that

satisfies (P) for which xj > 0 ~ f(a1) = c1, so complementary slackness holds (Condition

1 of Proposition 1.2.2). Further, we know that LjeJ c1xj = LjeJ f(a1)xj = f(b). Hence

complementary linearity holds (Condition 2 of Proposition 1.2.2). Thus by Proposition 1.2.2,

x• and f are optimal.

In Step 8, clearly if f(a1) ~ c1 for all j then f is dual feasible so it is acceptable to

return to Step 2. Further, note that by construction /(b) < f(b) and since l!J is integral,

lf(b) J ::; f(b) - 1.

Consider .A found in Step 9. Clearly by construction the numerator is positive. Further,

since f is dual feasible we know that f(a1) ~ c1 Vj and since we also know by construction

that within the definition of .A, /(a1) < c1, it is clear that 0 <.A< 1. Thus, since a convex

combination of Chvatal functions is a Chvatal function, j is a Chvatal function. It is not

difficult to see that f is dual feasible and hence it is acceptable to return to Step 2 with /.

Further, since both /(b) and (hence) /(b) are less than f(b), and since j is integral, it is

clear that /(b) ::; f(b) - 1.

Now consider the flow of the algorithm. Notice that each time the algorithm leaves Step

2, it either ends up in Step 4, 5, 6, 8 or 9. Steps 5 and 6 are terminal steps as shown

above. Further we have shown that when the algorithm leaves Steps 4, 8 or 9 to return to

Step 2, it does so with an integral dual feasible function which forces the objective value

to decrease by at least 1. Hence, if J* is the optimal dual function, then in no more than

f0 (b) - f*(b) steps the algorithm must terminate. If / 0 corresponds to the dual solution

of the linear programming relaxation of (P), then fo(b) = Lex* J, where x• is the optimal

linear programming solution. If (P) is a 0-1 integer programming problem, fo(b) - f*(b) ::;

Ej= 1 c1. Thus if the subproblems can be solved in polynomial (or pseudopolynomial) time,

a pseudopolynomial time algorithm results.

We should note here that in Step 7, it is not necessary to solve (RMP) to optimality.

It is merely necessary to find a dual solution of value less than f(b) (which proves that the

value of (RMP) is less than f(b)). (Note that the dual of any linear programming solution

of (RMP) will have value at most f(b).) This fact results in computational savings when

Step 7 is implemented using cutting planes, as discussed in Section 3.2.

9

3 The Black Boxes

The major problems with implementing the primal dual algorithm of Section 2 above are in

Steps 2, 3, 7 and 8. In particular, note that (RFP) is an integer programming problem that

could be as difficult as the original problem (P). Here, we discuss two approaches to dealing

with solving (RFP) and implementing the black boxes of Steps 3 and 8 of the algorithm.

In Section 3.1, we look at two special cases of (P) where the structure allows for an

easy solution of (RFP). Then, in Section 3.2, we consider cutting planes. Specifically we

specialize the results of Chvatal ([5]) to build dual superadditive functions using Gomory

cutting planes in order to implement Steps 2, 3, 7, and 8 of the algorithm. Cutting planes

can always be used to solve (RFP) and (RMP) if no special purpose methods are available.

Finally, in Section 3.3 we show how our framework can be used to find a maximum weight

matching in a graph. In this case the cardinality matching algorithm of Edmonds ([7]) is

used to solve (RFP).

3.1 Easy Special Cases

Here we briefly discuss two very special cases where implementation of the algorithm is easy.

For any J ~ { 1, ... , n} define (P J) to be the subproblem of (P) using only the coltimns of

A in the set J.

First consider the case when (P J) is feasible if and only if its linear programming relax

ation is feasible for each J. In this case, { x E Qn lAx = b, x ~ 0} is an integral polyhedron,

an~ we will show that our algorithm reduces to the usual primal dual algorithm for linear

programming. Since (P J) is feasible if and only if its linear programming relaxation is fea

sible, W* < 0 if and only if the value of the linear programming relaxation of (RFP) is

less than 0. If so, then there is a linear function J (the optimal dual solution to the linear

programming relaxation of (RFP)) that will satisfy the conditions of Step 3 of the algorithm.

In general, the rounding of the function that occurs in Step 4 of the algorithm is vital to the

convergence of the algorithm. However in this case, because the linear dual solution can be

used, convergence is guaranteed without rounding. As with the usual primal dual algorithm

for linear programming, we can assume all optimal solutions to (RFP) are basic solutions.

Since no basis is ever repeated, the algorithm is finite. Thus, with the rounding step omit

ted, the dual function will remain linear throughout the execution of the algorithm. As a

10

consequence, complementary linearity will always be satisfied trivially, (RMP) need never

be solved, and our algorithm reduces to the primal dual algorithm for linear programming.

Next, define the group relaxation of (P), called here (G):

(G) max ex
s.t. Ax =b

x integer.

As our second easy special setting, we now consider the case when for any column set, J,

the problem (P J) is feasible if and only if both its linear relaxation and group relaxation

are feasible. (A simple example where this condition holds is if A is a diagonal matrix with

nonnegative integers along its diagonal.) Now, to solve (RFP) one must first check if the

linear relaxation is feasible. If not, then as above, the linear programming dual solution will

work in Step 3 of the algorithm directly. If the linear relaxation is feasible, then next check

the feasibility of the group relaxation. If the group relaxation is not feasible, by the theorem

of the alternative for integral systems of equations (see [8] for example), it is known that

There exists y such that
but

yai E Z Vj E J,
yb t/. z.

Moreover, y can be found in polynomial time by a unimodular elimination scheme (see [6]).

Then, let /(w) = lywJ - yw. This function satisfies the property required by Step 3 of

the algorithm. If both the linear and group relaxations are feasible, then there is a feasible

solution to (RFP) with value 0, and this solution will be optimal for (P). In particular, there

will be an optimal solution to the linear programming relaxation of (RFP) that is integral.

This integral solution can be found by pivoting among the alternate optima to the linear

programming relaxation or by using other standard techniques. Note that such an integral

solution need only be sought in the final iteration of the algorithm.

For any integer programming problem, the first instance of (RFP) to arise can always

be easily solved in the absence of dual degeneracy in the linear programming relaxation.

Usually the linear programming relaxation of (P) is solved in Step 1 of the algorithm to

find J0 ; and then (RFP) is solved. In the absence of dual degeneracy the set J is exactly

equal to the indices of the basic variables of the optimal solution of the linear programming

relaxation. Hence, unless the solution of the linear programming problem is integral, (and

thus the optimal integer solution), (RFP) is infeasible. If B is the basis, there is some row

of B-1 , say {3, such that {3b is not integer. Since for every j E J, ai is a column of B, {3ai is

11

either 0 or 1. Thus the function J (w) = l,Bw J - ,Bw- satisfies the property required by Step

3 of the algorithm.

3.2 Cutting Planes

Both (RFP) and the integer programming restriction of (RMP) can always be solved using

cutting planes. In [5] Chvatal has shown the following (although using different terminology):

Theorem 3.2.1 (Chvatal) Consider the integer programming problem max{ ex! Ax~ b, x integer}.

If L:j=1 ajxj ~ ,Bk, k = 1, ... ,r, is a series of cuts constructed by Gomory's cutting plane

algorithm, then there are Chvatal functions pk, k- = 1, ... , r, such that pk (aj) = aj and

Fk(b) = ,Bk, for all k = 1, ... , r.

Theorem 3. 2.1 can easily be adapted to our setting.

Theorem 3.2.2 Consider the restricted feasibility problem (RFP). lfL:jeJ ajxj+ L::1 rfxf ~
,Bk, k = 1, ... , r, is a series of cuts constructed by Gomory 's cutting plane algorithm, then

there are Chvatalfunctions Fk, k = 1, ... , r, such that Fk(aj) = aj for allj E J, Fk(ei) = rf
and Fk(b) = ,Bk, for all k = 1, ... ,r.

Similarly, consider the restricted maximization problem (RMP). If L:jeJ ajxj ~ ,Bk, k =

1, ... , r, is a series of cuts constructed by Gomory's cutting plane algorithm, then there are

Chvatal functions pk, k = 1, ... , r, such that Fk(aj) = aj for all j E J and Fk(b) = ,Bk, for

all k = 1 , ... , r.

For continuity of exposition, the details of the construction of the function guaranteed by

Theorem 3.2.2 are left until the end of this subsection. We now show how such functions can

be used to solve both (RFP) and (RMP). (See also [19] for results relating cutting planes

and Chvatal functions.)

Recall (RFP), written as an optimization problem with artificial variables.

m

max W = L:-x~
i=l

s.t. L:aijXj + xf = bi, fori= 1, ... , m,
jEJ

all x ~ 0 and integer.

12

If the linear programming relaxation of (RFP) nas an optimal solution with value less

than 0, let y be the optimal dual solution. Then from linear programming duality, yai 2 0

for all j E J and yb < 0. Define f(w) = yw.

Otherwise, the optimal value of the linear programming relaxation of (RFP) is 0. In this

case we generate cuts until either

1. An integer solution is obtained, and we return to Step 2 of the algorithm with optimal

solution x•, and w· = 0; or

2. We finally get a solution to the linear programming problem with added cuts, whose

value is negative. That is, the following linear programming problem has value less

than 0:

m

max L -x~
i=l

s.t. LlliiXi + x~
jEJ

bi, for i = 1, ... , m

m

2:Fk(ai)xi + L Fk(ei)x~ < Fk(b), fork= 1, ... , r
jEJ i=l

all X~ 0

where the functions Fk, for k = 1, ... , r, are the Chvatal functions corresponding to

the added cuts as in Theorem 3.2.2. Let (y, J.L) be the optimal dual solution to this

linear programming problem, where y is the vector of dual variables corresponding

to the original constraints, and Jl. is the vector of dual variables corresponding to the

added cutting planes. Note that since the cutting-plane constraints are inequalities,

we must have Jl. ~ 0. By linear programming duality, yai + E~=l JJ.~c:Fk(ai) ~ 0 for all

j E J and yb + Ek=l JJ.~c:Fk(b) < 0. Thus we can let /(w) = yw + Ek=l J.L~c:Fk(w). Since

J.L ~ 0, J is in Cm and it satisfies the required conditions of Step 3 of the algorithm.

The integer programming restriction of Problem (RMP) can be handled similarly, with

the understanding that the constraint EieJ f(ai)xi ~ f(b) of (RMP) should be treated just

as any other added cut. Also recall that it is not necessary to find an integer optimal solution

of (RMP), only to find an f with f(ai) ~ f(ai) for all j E J, and f(b) < f(b). If the optimal

solution to (RMP) is less than f(b), then let y be the optimal dual solution. So, yai ~ f(ai)

for all j E J and yb < f(b). In this case we can let f(w) = yw. Otherwise, add cuts with

corresponding Chvatal functions F 1
, ••• , F'", until either

13

1. An integer optimum is obtained with value- f(b). In this case the solution is optimal,

and we return from (RMP) with x•; or

2. An optimal linear programming solution is reached (integer or fractional) with value

less than f(b). As with (RFP), we let (y, J.L) be the optimal dual solution and let

/(w) = yw + L.:~=l J.L~cFk(w). By linear programming duality we have that J.L ~ 0, so J
is a Chvatal function, and that /(a;) ~ f(a;) for all j E J and /(b) < f(b) so that the

conditions of Step 8 of the algorithm are satisfied.

We now give the details of the construction of the function F corresponding to a cut

as in Theorem 3.2.2. Although these can be derived from [5] we have included them for

completeness. We will asume that we are working on (RFP). The adaptation for (RMP) is

straightforward: the same procedure is followed with the omission of the artificial variables.

Suppose that we have already added r cuts, so that the system we currently have is

l:aijXj +X~
jEJ

m

bi, for i = 1, ... , m

l:Fk(a;)x; + L Fk(ei)x~ < Fk(b), fork= 1, ... , r
jEJ i=l

all x ~ 0 and integer.

Let the slack variables which have been added to the tableau for the rows corresponding

to the cuts be s 1, · • · , Sr. We can suppose without loss of generality that the F's being

constructed are always rounded down, and thus always have integer values. Suppose that

we want to cut on row i of the current tableau, and that row i has the form:

L T/jXj + a1x~ + ... + amX~ + 1'181 + ... + 'T'rSr = 8
jEJ

where 8 is fractional. The cut we wish to generate is

(1)

L l'Tl;Jx; +lad~+···+ LamJx~ + l1'ds1 + · · · + L1'rJs,. ~ L8J. (2)
jEJ

Note that in the usual statement of Gomory's algorithm, the cut used is (2) - (1), instead of

(2). However adding (2) alone has the same effect, since (1) is an equality and remains part

of the problem. Solving for the slack St in (1), and substituting in (2) gives

14

r ,

~ L8J - L LrkJ Fk(b). (3)
k=l

Let the current basis be B, and let the i th row of s-1 be Bi-: 1 = ({31, · · · , !3m, r1, · · · , rr).

Note that the coefficients of the slacks in (1) will always occur in the ith row of s-1, since

there were originally unit vectors in these columns. We thus have that

Similarly

and

We now define,

B-l
T/j = i·

r

F'"(ai)

= ({31, ... , f3m)aj + L rkFk(aj), j = 1, ... , m.
k=l

r

ai = ({31, · · · ,f3m)ei + LrkFk(~), i = 1, ... ,m,
k=l

r

8 = (!31, · · ·, f3m)b + LrkFk(b).
k=l

(4)

(5)

(6)

(7)

Since rk - LrkJ ~ 0 always, F is a Chvatal function. Also, since Fk(w) is always forced to

be integer, we can take Ek::1 LrkJFk(w) outside the round-down sign and write:

r

F(w) = l(!3t,· .. ,!3m)w+ E~=1 rkFk(w)j- L LrkJFk(w). (8)
k=l

Using (4), (5), (6) and (8), it is easy to verify that (7) generates the cut (3).

Notes: If cutting planes are being used to solve the "black boxes," cuts generated in (RFP)

should not be discarded (except for terms corresponding to the artificial variables) when

proceeding to (RMP). They will remain valid.

Moreover, when solving (RMP), it is not necessary to continue to add cuts until the

optimal integer solution is found. It suffices to add cuts only until the optimal fractional

15

value falls below f(b). Then the dual function /caD. be constructed as above, and it will

have value less than f(b) as required by Step 8 of the algorithm.

It is important to note that if one is solving a problem for which some or all of the facet

defining inequalities (or some other "deep" cuts) are known, then these can be used in place

of the Gomory cuts since it has been proven (see [4], [13] and [18]) that every valid inequality

of (P) is equivalent to or dominated by a an inequality generated by a Chvatal function. Of

course, one must still construct this function from the facet defining inequality.

3.3 Matching

The primal dual algorithm of Section 2 can be specialized to find a maximum weight matching

in a weighted graph G. We have chosen this example because (RFP) can be solved efficiently.

When it becomes necessary to solve (RMP), deep cuts can be generated using a separation

procedure due to Padberg and Rao ([17]). This approach is not likely to be more efficient

than specialized weighted matching algorithms, but provides a nice illustration of how the

primal dual algorithm can be tailored to a specific problem.

Without loss of generality suppose that any maximum weight matching is a perfect

matching (G is easily altered so that this is the case). Then, if A is the node-edge incidence

matrix of G, b is the vector of all 1 's, and c is the vector of edge weights, the problem of

finding a maximum weight matching is exactly the problem (P) of Section 1. Let the node

set of G be V.

Definition: Given a graph G, an odd set cover of G is a set of node sets N1, •.• , N~ each

having odd cardinality greater than 1, and a set of singletons v1, ... , Vr such that every edge

of G either has both endpoints contained in some Nk or is incident to some vi. The capacity

of the cover is equal to r + E~= 1 l 1 ~":1 J .
Edmonds (see [7]) showed that the following duality holds: the maximum cardinality of

a matching in a graph is equal to the minimum capacity of an odd set cover. The algorithm

given in [7] returns both a maximum cardinality matching and the corresponding odd set

cover. We will use this matching duality result here, and assume that we have available an

algorithm that finds a maximum cardinality matching which also returns an odd set cover

whose capacity is equal to the cardinality of the matching.

Problem (RFP) for the matching problem is efficiently solved. Given J, we must de

termine if (P) is feasible using only the variables in J. In the matching setting, we must

16

determine if there is a perfect matching in G using only the edges indexed by J. We begin by

finding the maximum cardinality matching on the graph whose edges consist only of those

indexed by J. If this is a perfect matching of G, then we have a feasible solution of (P)

satisfying complementary slackness and we proceed to Step 6 or 7 of the algorithm. Oth

erwise, we have a matching of size p, where 2p is less than the number of nodes in G. The

cardinality matching algorithm will also have returned an odd set cover of the edges indexed

by J with capacity p. Let the odd set cover be {NI, N2 , ... , N6 , VI, ... , Vr }. Without loss of

generality assume that the vertices VI, ... , Vr correspond to the first r rows of A.

Theorem 3.3.1 The function

satisfies the condition of Step 3 in the algorithm.

Proof: We must show that f(aj) ~ 0 for each j E J and that f(b) < 0. Recalling that b is

the vector of all 1's, the negative term in f(b) is -~. The positive term will be equal to

r + l:~=I L l~~rl J, the capacity of the cover returned by . the cardinality matching algorithm.

Since the capacity of the cover is equal to the cardinality of the matching found, and the

matching was not perfect, f(b) < 0.

Now let e be an edge indexed by j E J. Then aj has a 1 in the positions corresponding

to the two endpoints of e and O's elsewhere. Since e is indexed by a member of J, it is

covered by the odd set cover given by the cardinality matching algorithm. If e is incident

with one of the vi's then f(aj) ~ 1- 1 = 0. If e has both its endpoints contained in Nk,

then LLieN~r (a4)' J = 1 and f(aj) ~ 1 - 1 = 0. D

Thus (RFP) can be completely solved through the use of the cardinality matching algo

rithm. We now consider (RMP). When we reach step 7 of the algorithm we have found a

perfect matching using only edges in J, but the value of that perfect matching is less than

f(b).

When solving (RMP), it is necessary to find an integer solution of value f(b) or a dual

solution f' with f'(b) < f(b). As discussed above, this can be accomplished by adding

cutting planes until the value of (RMP) first drops below f(b). (Recall that (RMP) will

always have value at most f(b).) In the matching setting we have the advantage that we

know what the facets of the corresponding polytope are.

17

Let S be a set of nodes in the graph, and let· E~ S) denote the set of edges whose both

endpoints are in S. Then every facet-defining inequality is of the form

L x· < ISI-1
jEE(S) J - 2 1

where S is a node set of odd cardinality. It easy to see that the function

Wi
f(w) = lL:-J

iES 2

defines the facet derived from an odd setS.

Now suppose that we have solved the linear programming relaxation of (RMP), and

obtained a basic fractional solution with value equal to f(b). The fractional solution will

violate one of the above facet describing inequalities. Padberg and Rao (17] showed that the

separation problem for the matching polytope can be solved in polynomial time. That is, a

facet-defining inequality that is violated by a given infeasible solution can be determined in

polynomial time. Thus in polynomial time we can generate a cut as described above that

will reduce the value of (RMP) as desired, or find an integer solution with value equal to

f(b).

4 Future Work

Future work related to this algorithm should be directed towards finding special structures

which allow efficient solution of the restricted subproblems. More specifically, one aim is to .

identify cases where the problem can be solved without resorting to the use of cutting planes

in the solution of (RFP). These problems can be of two types- those where the type of data

is known to be such that the subproblems can be solved easily (like those cases discussed in

Section 3.1 for example), and those where the problem structure provides other avenues for

solution (as in Section 3.3). With respect to this last type of problem, the richest potential

lies with integer programming problems with known pseudopolynomial algorithms. It would,

of course, be most rewarding to use our framework to establish pseudopolynomial algorithms

for classes of integer programs for which there do not yet exist "efficient" solution procedures.

One other direction for future work is in the area of column generation. In problems with

exponentially many columns, it is expected that our procedure will not only keep the number

of active columns small but also will direct the user to a "smart" set of such columns.

18

References

[1] C.E. Blair and R.G. Jeroslow (1977). The Value Function of a Mixed Integer Program

1, Discrete Mathematics 24, 121-138.

[2] C.E. Blair and R.G. Jeroslow (1982). The Value Function of an Integer Program, Math

ematical Progromming 23, 237-273.

[3] C.E. Blair and R.G. Jeroslow (1986), Computational Complexity of Some Problems in

Parametric Discrete Programming. I, Mathematics of Operotions Research 11.2, 241-

260.

[4] C.A. Burdet and E.L. Johnson (1977). A Subadditive Approach to Solve Linear Integer

Programs, Annals of Discrete Mathematics 1, 117-144.

[5] V. Chvatal(1973). Edmonds Polytopes and a Hierarchy of Combinatorial Problems,

Discrete Mathematics 4, 305-337.

[6] P.D. Domich, R. Kannan, and L.E. Trotter, Jr. (1987), Hermite Normal Form Compu

tation Using Modulo Determinant Arithmetic, Mathematics of Operotions Research 12,

50-59.

[7] J. Edmonds (1965). Paths, Trees and Flowers, Canadian J. Math. 17, 449-467.

[8] J. Edmonds and F.R. Giles (1977). A Min-Max Relation for Submodular Functions on

Graphs, Annals of Discrete Mathematics 1, 185-204.

[9] R.E. Gomory (1958). Outline of an Algorithm for Integer Solutions to Linear Programs,

Bulletin of the American Mathematical Society 64, 275-278.

[10] R.E. Gomory (1960). Solving Linear Programs in Integers, in Combinatorial Analysis,

R.E. Bellman and M. Hall, Jr., eds., American Mathematical Society, pp. 211-216.

[11] R.E. Gomory (1963). An Algorithm for Integer Solutions to Linear Programs, in Recent

Advances in Mathematical Programming, R. Graves and P. Wolfe, eds., McGraw-Hill,

pp. 269-302.

19

[12] R.E. Gomory (1963). An All-Integer Programming Algorithm, in Industrial Scheduling,

J.F. Muth and G.I. Thompson, eds., Prentice-Hall, pp. 193-206.

(13] R.G. Jeroslow (1978). Cutting Plane Theory: Algebraic Methods, Discrete Mathematics

23, 121-150.

[14] R.G. Jeroslow (1979). An Introduction to Cutting Planes, Annals of Discrete Mathe

matics 5, 71-95.

(15] E.L. Johnson (1973). Cyclic Groups, Cutting Planes and Shortest Paths, in Mathemat

ical Programming, T.C. Hu and S. Robinson, eds., Academic Press, pp. 185-211.

(16] E.L. Johnson (1979). On the Group Problem and a Subadditive Approach to Integer

Progamming, Annals of Discrete Mathematics 5, 97-112.

(17] M. W. Pad berg and M.R. Rao (1982). Odd Minimum Cut-Sets and b-Matchings, Math

ematics of Operations Research 7, 67-80.

[18] A. Schrijver (1980). On Cutting Planes, AnnaLs of Discrete Mathematics 9, 291-296.

(19] L.A. Wolsey (1981). Integer Programming Duality: Price FUnctions and Sensitivity

Analysis, Mathematical Programming 20, 173-195.

[20] L.A. Wolsey (1981). The b-Hull of an Integer Program, Discrete Applied Mathematics

3 193-201.

20

2-Lattice Polyhedra: Duality

Shiow-yun Chang
Donna C. Llewellyn
John H. Vande Vate

ISyE
Georgia Institute of Technology

Atlanta, Georgia 30332-0205

September 4, 1992

Abstract

In this paper we introduce a class of lattice polyhedra, called 2-La.ttice
polyhedra. Examples of 2-Lattice polyhedra include bipartite matching
polyhedra., the intersection of two integral potyrnatroids, the connected
polyhedron of an undirected graph, and the perfectly matchable subgraph
polytope of a bipartite graph. We show that the ma.ximwn cardinality of
a vector in a 2-Lattice polyhderon is equal to the minimwn capacity of
a cover. Special cases of this result include Konig's Theorem, Menger's
Theorem, Dilworth's Theorem, and Edmonds' Theorem for cardinality
matroid intersection and polyrnatroid intersection. We show that the
collection of minimwn covers contains an upper semi-lattice. For special
classes of 2-Lattice polyhedra, called Matching 2-Lattice polyhedra, we
provide a characterization of the largest member in the family of nested
covers in terms of maximum cardinality vectors in the polyhedron.

1

1 Introduction

Let L be a finite set of elements (called lines) and let r be a finite lattice with
partial order (r, :j) which induces meet operation A and join operation V. Let
{3 : r f.-+ Z be submodular and, for each element l E £, let Q!. : f f.-+ Z be
supermodular. Given 8 E r and x E R'.;-1, let Q(8)x = l:(Q!.(8)x(i) : i E £).
Then

{x E RILl : Q(8)x ~ {3(8) for each 8 E r} (1.1)

is a lattice polyhedron. Lattice polyhedra were introduced by Hoffman and
Schwartz [15] and further studied by Johnson [16], Hoffman [13], Groftin and
Hoffman [11], and Grishuhin [1 OJ. We investigate a special class of lattice poly
hedra we call 2-Lattice polyhedra.

Here we consider those lattice polyhedra in which we allow r to be infinite,
but require a finite bound on the length of chains in r. This ensures that r is
a complete lattice and includes, for example, the lattice of linear subspaces of
a finite dimensional vector space. We further require that for each l E £, Ql. is
not only supermodular, but also non-decreasing and maps r into {0, 1, 2}. The
set

P(Q, {3) = {x E R'.;- 1

: Q(8)x ~ {3(8) for each 8 E r},

is called a 2-Lattice polyhedron and each vector x E P(Q, {3) is called a 2-Lattice
vector. Examples of 2-Lattice polyhedra include bipartite matching polyhedra
[14, 18], the intersection of two integral polymatroids [8], the connected polyhe
dron of an undirected graph [12], and the perfectly matchable subgraph polytope
of a bipartite graph [1].

A cover is a pair (8, T) of (possibly identical) members of r such that

Q1.(8) + Q1.(T) ~ 2 for each l E £.

A cover may also be a single element T of r (we denote this kind of cover by
(*, T)) such that

Q1.(T) ~ 2 for each i E £.

The capacity of a cover (8, T), denoted {3(8, T), is

1/2[{3(8) + {3(T)]

while the capacity of a cover (*, T), denoted {3(*, T) is

1/2{3(T).

In this paper we consider the relationship between the problem of finding a
maximum cardinality 2-Lattice vector:

2

maxLx(l)
lEL

s.t o(S)x ~ {3(S) for each S E r (1.2)

X ~ 0

and the dual problem:

min L y(S){3(S)

s.t. L y(S)ot(S) > 1 for each l E L (1.3)

y ~ 0

We show that the maximum cardinality of a 2-Lattice vector is the minimum
capacity of a cover. Special cases of this result include Konig's Theorem (17],
Menger's Theorem (20], Dilworth's Theorem (6], and Edmonds' Theorem for
cardinality matroid intersection and polymatroid intersection [8]. We also show
that the set of minimum covers contains an upper semi-lattice.

This paper focuses on the relationships between the the linear programs
(1.2) and (1.3), not on the integrality of extreme solutions to (1.2). We refer to
LiE L x(l) as the "cardinality" of a vector x even though x may not be integral.
In fact, we only establish the half-integrality of extreme points of (1.2). In many
cases, such as bipartite matching and matroid intersection, the polyhedron is
known to have integral extreme points, whereas in others, most notably non
bipartite matching, the extreme points are not integral, but the polyhedron does
have Chvatal rank 1 [5]. Our ultimate purpose is to characterize those 2-Lattice
polyhedra that share this rank 1 property.

Vande Vate [25] has already shown that 2-Lattice polyhedra have half
integral extreme points and that their extreme points correspond to extreme
points of related non-bipartite matching problems. Unfortunately, this cor
respondence by itself is not enough to ensure that 2-Lattice polyhedra have
Chvatal rank 1. Thus, we turn to the relationship between o, {3 and the convex
hull of integral 2-Lattice vectors.

All of the examples of 2-Lattice polyhedra relate o and /3 in some way. We
capture these relationships with the following general conditions. First, let £ be
a (possibly infinite) set, and let L be a finite subset of~ (generally chosen to be
a collection of pairs from £). We also require that r include the empty set and
be partially ordered by set containment. In this way, we may associate with each
set S ~ £ the smallest member, u(S), of r containing S. We further require {3
to be normalized, non-decreasing and satisfy {3(u { e}) = 1 for each e E £, and
{3(u{l}) = 2 for each i E L. Finally, we model the relationship between o and
{3 via the condition nt(S) = {3(u(l) AS) for each lELand S E r. It is easy to

3

Figure 1.1: Example

see that at is normalized and non-decreasing. It is also straightforward to prove
(see [25]) that al is supermodular. We call the resulting 2-Lattice polyhedra
Matching 2-Lattice polyhdera.

When r is the family of all subsets of a finite set E and Lis: a partition of E
into pairs we refer to the Matching 2-Lattice polyhedra P(a, (3) as an incidence
2-Lattice polyhedron (note that in this setting I 0:i : r -+ {0, 1, 2} is defined
by O:t(S) = IS n ll). Integral incidence 2-Lattice polyhedra include bipartite
matching polytopes [14, 18], network flow polyhedra [9], and the intersection of
two matroids [8]. Incidence 2-Lattice polyhedra have also been studied in the
context of non-bipartite matching [7].

Example 1 Consider the cycle matroid of the graph shown in Figure 1. The
partition Lis given by L = {l1,l2,l3,l4,ls,l6}, where l 1 = {(0,1),(1,5)},
l 2 = {(0, 2), (2,5)}, l3 = {(0, 3), (3,5)}, l4 = {(0,4), (4,5)}, l 5 := {(6, 7), (6,8)},
l6 = {(7,8), (8, 9)}.

Then, P(a, (3) is the set of x E m_ satisfying

Xi~ 1
2xi + 2xj ~ 3

2xi + 2xi + 2x~c ~ 4
2xl + 2x2 + 2x3 + 2x4 ~ 5

2xs +xs ~ 2

for i = 1, 2, ... , 6
for i, j E { 1, ... , 4}, i # j
for i,j,k E {1, ... ,4},i:rfj # k

Despite the significant successes to date, the formulation of a combinatorial
problem via an incidence 2-Lattice polyhedron is not always the best available
to us. We can, for instance, improve the incidence formulation in Example 1 via
the following matroid formulation. When (3 is the rank function of a matroid
M defined on £, L is a partition of E into pairs, and r is the lattice of flats or
closed subsets in M, we refer to P(o:, (3) as a matroid 2-Lattice polyhedron .

. Example 2 Consider once again the graph of Figure 1. The flats of the cycle
matroid of the first connected component consisting of lines l 1 , l2, l3 and l 4 are:
the empty flat; single elements; pairs of elements; pairs of lines; sets of three
elements, one from each of three lines; sets of one element from each line; sets

4

of three lines; and { i 1 , i2, i3, i 4 }. The fiats of the cycle matroid of the second
connected component consisting of lines is and is are: the empty fiat; single
elements; sets consisting of (8, 9) with another element; { (6, 7), (6, 8), (7, 8)};
and {is, is}. The fiats of this matroid are the combinations of two sets, one
from each connected component. Under the matroid formulation P(a:, {3) is the
set of x E Rt satisfying

Xi~ 1
2xi + 2x3 ~ 3

2xi + 2x 3 + 2x~c ~ 4
2x 1 + 2x2 + 2x3 + 2x4 ~ 5

Xs + XS ~ 1

for i = 1, 2, ... , 6
for i,j E {1, ... ,4}, i =F j
for i, j, k E { 1, ... , 4}, i =F j =F k

Note that this formulation has the same integral solutions as that of Example
1, but has cut off all extreme points with x5 = ! and xs = 1. For example, it
has cut off the extreme points (0, 0, 0, 0, ~~ 1) and (!, !, !, !, ~~ 1).

When the matroid is linear and a representation is available, we can do still
better than the matroid formulation via the following linear formulation. Let
A be a rational matrix and let V denote the linear subspace spanned by the
columns of A. If L is a collection of pairs of columns of A, r is the lattice of
linear subspaces of V and, for each S E r, {3(S) denotes the linear rank of S
then we refer to P(a:, {3) as a linear 2-Lattice polyhedron.

Example 3 We once again consider the graph of Figure 1. Under the linear
Matching 2-Lattice formulation, P(o, {3) is given by the set of x E Rt

Xt + X2 + X3 + X4 ~ 1
xs + xs ~ 1

Notice that this is in fact the convex hull of integral solutions to the poly
hedron defined in Example 1.

Section 2 gives notation and preliminaries. The first main result of this pa
per, the min-max theorem for 2-Lattice polyhedra, is proved in Section 3. This
section also shows that the family of minimum covers of a 2-Lattice polyhedra
contains an upper semi-lattice. In Section 4, we show the second main result of
this paper: a characterization of the largest member in the family of nested min
imum covers for Matching 2-Lattice polyhedra in terms of maximum cardinality
Matching 2-Lattice vectors.

2 Preliminaries

In this section we define notation and present some background results.

5

Definition 1 Given x E R!.;,' 1 and a subset S of L, define

xs(l) = { ~(l) ifl E S
othennise

Definition 2 For S, T E r, the rank of T contract S, denoted f3(T / S), is
defined to be f3(T V S) - f3(S).

In a linear matroid, contraction corresponds to orthogonal projection.

Definition 3 A collection of sets is called an upper semi-lattice if it is closed
under a join operation.

Definition 4 The support of vector w E W', denoted by supp(w), is the set
{ i E [1, 2, ... , n] : w, > 0}.

Given a 2-Lattice vector x, the collection of members in r tight with respect
to X is denoted by r(x) = {S E r: a(S)x = f3(S)}. The following lemma shows
that r(x) is a sublattice of r.

Lemma 2.1 Let x be a 2-Lattice vector and supposeS and S' are in r(x), then
S v S' and S 1\ S' are in r(x).

Proof.

0

{3(S v S') + {3(S 1\ S') ~ a:(S v S')x + a(S 1\ S')x

> a:(S)x + a:(S')x

= f3(S) + f3(S')

> {3(S v S') + f3(S 1\ S')

Since r(x) is a sublattice of complete lattice, r, it has a largest member.

Definition 5 For each 2-Lattice vector x, the largest member of r(x) is called
the closure of x and is denoted by cl(x).

The following corollary is an immediate consequence of Lemma 2.1 and will
prove useful in arguing that certain vectors x E R~LI are 2-Lattice vectors.

Corollary 2.2 Let X E n!_;-1 and suppose z and Z' are members of r such that

a(Z)x > f3(Z),
a:(Z')x = f3(Z') and

a(Z 1\ Z')x ~ f3(Z 1\ Z'),

then a(Z V Z')x > f3(Z V Z').

6

Groflin and Hoffman [11] demonstrated the following property of lattice poly
hedra. (Actually, Groflin and Hoffman restricted the range of O:t to { -1, 0, 1}.
Nonetheless, their proof applies here as well.)

Theorem 2.3 (Grofiin and Hoffman) Each extreme point x• of a lattice
polyhedron

{x E Ri_;1 : a:(S)x ~ {3(S) for each S E f}

is the unique solution to a system of linear equatiom:

a:(S1)x = {3(S,)

x(l) = 0

fori = 1, ... , t and

for lEN~ L,

where S = {S,: i E (1, ... , t]} is a chain in (r, ::j), i.e., S1 -< S2-< ... -<St. 0

Using the structure of the bases of the fractional matching polytope of a
graph, we are able to describe the structure of extreme 2-Lattice vectors. In
particular, Vande Vate (Theorem 2.5 proven in [25]) provides a mechanism for
describing extreme 2-Lattice vectors in terms of perfect fractional matchings of
graphs.

Given a graph G = (V, E) and an integer vector b E RIYI, the perfect frac
tional b-matching polytope of G, denoted FP(G, b), is:

{x E n':' : L(de(v)x(e) : e E E) = b(v) for each v E V}.

Here, de(v) is the degree of edge eat vertex v. As the graph G may have loops,
de(v) E {0, 1, 2} and as the graph G may have spurs, l:(de(v) : v E V) E {1, 2}.
Letting D be the lVI x lEI matrix with elements de(v), FP(G,b) may be written
as:

FP(G, b)= {x E R':1 : Dx = b}

Each vector x E FP(G, b) is a perfect fractional b-matching (or, more briefly, a
fractional matching) of G.

Chen [4) (also Balinski and Spielberg [2), Trotter [24), Nemhauser and Trotter
[21], Pulley blank [22] and Bartholdi and Ratliff [3]) described the bases of D in
terms of the subgraphs induced by the corresponding edges of G.

A subset T of edges is a bloom if the subgraph induced by the edges in T
is connected, contains exactly one cycle and that cycle has an odd number of
edges. In the following theorem, each edge in the graph G is identified with the
corresponding column in the matrix D. If G has spurs, we add a distinguished
vertex called the root incident to each spur edge.

Theorem 2.4 (Chen) Suppose D is the incidence matrix of a connected graph
G. A subset T of columns is a base of D if and only if T is a maximal set of
edges such that each component of the subgraph (V, T) is either a tree or a bloom.
The component containing the root must be a tree. 0

7

In light of Theorem 2.4, a set T of edges in a graph G is called a base of G if
the corresponding columns form a base of the incidence matrix D. Theorem 2.5
extends Theorem 2.4 to the 2-Lattice polyhedron via the following association
between extreme 2-Lattice vectors and perfect fractional b-ma.tchings.

By Theorem 2.3, each extreme 2-Lattice vector x• is defined by a subset N of
Land a family S = { S, : i E [1, ... , t]} of members of r with S 1 -< S2 -< ... -< St.
For ease of argument and presentation, we form a new complete lattice, r• by
appending a new smallest element, •, to r and defining (3(•) = 0 and at(•) = 0
for each i E £.(Note that as a smallest element in r•, SA• = • and SV• = S for
each S E r. Further, since at(•) = (3(•) = 0 it is clear that at is supermodular
and (3 is sub modular on r·).

The pair (S, N) induces a graph, denoted G(S, L \ N), defined as follows.
For each S, E S, there is a vertex S, in C(S, L \ N) and for each line i E L \ N
there is an edge i in G(S, L \ N). Let So= *· The edge i is incident to vertex
S, if at(S,) - at(S,_ I) = 1 and is loop at vertex S, if at(S,) - at(S,_ I) = 2.

Theorem 2.5 (Vande Vate) A 2-Lattice vector x• is extreme if and only if
there is a subset N of L and a family S = { S, : i E [1, ... , t]} of members of r
with sl -< s2 -< ... -< s, such that:

1. x•(i) = 0 for each i EN,

2. L \ N is a base of G(S, L \ N), and

:1. The projection of x• onto the components indexed by lines in L \ N is
the unique, perfect fractional b-matching in G(S, L \ N), where b(Si) =
(3(Si)- (3(S,_l) for each i E [1, ... , t].

Corollary 2.6 Each extreme 2-Lattice vector is half-integral.

3 A Min-Max Formula

Theorem 3.1 develops a min-max formula for the maximum cardinality of a
2-Lattice vector. This min-max formula generalizes Konig's Theorem (17],
Menger's Theorem [20], Dilworth's Theorem (6], and Edmonds' Theorem for
cardinality matroid intersection and polymatroid intersection [8].

Theorem 3.1 The maximum cardinality of a 2-Lattice vector is the minimum
capacity of a cover.

Proof. To see that the maximum cardinality of a 2-Lattice vector is at most
the minimum capacity of a cover, observe that for any cover (S, T), the solution
y(S) = y(T) = 1/2 is dual feasible and has objective value /3(S, T).

To prove that the maximum cardinality of a 2-Lattice vector equals the
minimum capacity of a cover, we show that there is an optimum solution y• to
the dual problem such that:

8

1. supp(y*) forms a chain in (r, ~).

2. y• is half-integral,

3. y*(S) > 0 for at most two members S E r.

First, to see that there is an optimum solution y• to the dual problem sat
isfying (1) we employ an argument similar to that of Hoffman and Schwatrz
(15], but modified to accommodate an infinite lattice r. Consider an optimal
dual solution y with finite support (e.g. each extreme point optimal solution
has finite support). If supp(y) forms a chain in (r, ~), we are done. Otherwise,
define a complete order -<' on supp(y) that is consistent with the partial order
~- We argue that y can be converted into a dual solution y• such that supp(y•)
forms a chain in (r, ~) as follows.

Let So = * and index the elements of supp(y) so that

Define i = ig to be the smallest index such that Si-l ~ Si and j = jg to be the
smallest index such that Si ~ Si. Consider the dual solution ii such that

{

y(S)- t

y(S) = y(S) + t
y(S)

where t = min{y(Si), y(Sj) }. Since

ifSE {Si,Sj}
if S E {Si V S;,Si 1\ S;}
otherwise,

ett(Si V Sj) + ett(Si 1\ Si) ~ ett(Si) + ett(S;)

for each line f. E L, ii is dual feasible. Further, since

{3(Si v S;) + {3(Si 1\ Si) :5 {3(Si) + {3(S;),

L ii(S){3(S) :5 L y(S){3(S).
ser ser

So, the (dual) objective value of ii is no worse than that of y.
Note that the chain So ~ S1 ~ · · · Si 1\ S; ~ S; ~ · · · Si-1 in (r, ~) grows

with each successive revision of this kind. Since there is a finite upper bound
on the length of any chain in r, this process must ultimately terminate with a
dual solution y• such that supp(y•) is a chain in (f, ~).

Now, to see that y• satisfies (2), let S = { Si : i = 1, ... , t} be a nested
family of members of rand N a subset of L such that y• is the unique solution
to the system:

L y(Si)ett(Si) = 1 for each f. E L \ N
s,es

9

(3.4)

Let y' be the unique solution to the system:

L y(Si)(at(Si)- at(S,_t)) = 1 for each l E L \ N (3.5)
S,ES

Then y' is the unique solution to the system yA = 1, where A is the node-edge
incidence matrix of the basis graph G(S, L \ N), i.e.,

I 1/2

y'(S;) = l :
if there is no path in G(S, L \ N) from the root to S,,
if there are an odd number of edges on the path in

G(S, L \ N) from the root to S,, and
if there are an even number of edges on the path in

G(S, L \ N) from the root to S,.

And, we may compute y• as follows:

y• (S,) y'(Si) - y' (Si+ I) for i = 1, ... , t - 1, and

y*(St) = y'(St).

It follows immediately that y• is half-integral.
Finally, to see that y• has at most two non-zero components observe that

since y• is dual feasible, it is non-negative. Thus, the corresponding vector y'
must be of the form

y'(S;) = { i/2 for i = 1, ... i1
for i = i 1 + 1, ... , i2

for i = i2 + 1, ... , t.

It follows that y• has at most two non-zero components and LsiES y• (S,) E
{1/2, 1}. If y• has exactly two non-zero components S and T, then y*(S) =
y*(T) = 1/2 and (S, T) is a minimum cover. If y• has only one non-zero com
ponent S, then either y• (S) = 1, in which case (S, S) is a minimum cover, or
y• (S) = 1/2 in which case (*, S) is a minimum cover. 0

Definition 6 A cover (S, T) with S ~Tis called a nested cover.

The following lemma shows that we may associate a nested cover with each
minimum cover and hence that there is always a nested minimum cover.

Lemma 3.2 If (S, T) is a minimum cover then (S 1\ T, S V T) is a nested min
imum cover.

Proof. For each l E L, at(S 1\ T) + at(S V T) ~ at(S) + at(T) ~ 2. Therefore,
(S 1\ T, S v T) is a cover. Since {3(S v T) + {3(S 1\ T) ~ {3(S) + {3(T), it follows
that (S 1\ T, S V T) is a minimum cover. D

10

Corollary 3.3 The maximum cardinality of a 2-Lattice vector is the minimum
capacity of a nested cover.

We present Edmond's duality theorem for cardinality matroid intersection
as a special case of Theorem 3.1.

Corollary 3.4 Let M 1 be a matroid with rank function r 1 and let M2 be a
matroid with rank Junction r2 both defined on the same ground set E. Then the
maximum cardinality of an intersection in M 1 and M2 ia

min r 1 (S) + r2(E \ S).
S~E

Proof. The matroid intersection polyhedron

P = {x E R~ : x(S) ~ r1(S) and x(S) ~ r2(S) for each S ~ E}

is equivalent to the 2-Lattice polyhedron

{x E Rt : o(S)x ~ {3(S) for each S ~ £}

where

• £ consists of two copies E and E' of E,

• L consists of the lines { e, e'} with an element from E and its copy in E',

• For each i E L and S ~ £, ot(S) = lin Sl, and

• For each S E £, {3(S) = r 1(S n E)+ r2(S n E').

Thus, Corollary 3.3 implies that the maximum cardinality of an intersection
in M 1 and M2 is the minimum capacity of a nested cover. Let (S, T) be a
minimum capacity nested cover. Define S1 = S n E and S2 = S n E'. Similarly,
let T1 = T n E and T2 = T n E'. Since (S, T) is a nested cover, if e ¢. S1, then
e' E T2 and, if e' fl. S2 then e E T1. Thus,

and
r1 (E \ S2) + r2(S2) ~ r1 (Tt) + r2(S2).

It is easy to establish that for each x E P and S ~ E

L x(e) ~ r1 (S) + r2(E \ S).
eEE

Since each maximum cardinality x E P satisfies

L x(e) = {3(S, T) = 1/2[rl(SI) + r2(T2) + r1(Tl) + r2(S2)],
eEE

11

It follows that LeEEx(e) = r1(Sl) + r2(E \ Sl) = r1(E \ S2) + r2(S2) and
hence that the maximum cardinality of an intersection in M 1 and M 2 is equal
to mins~E r1 (S) + r2(E \ S). 0

)
When the 2-Lattice polyhedron is known to have integral extreme points,

we may restrict attention to integer 2-Lattice vectors in Theorem 3.1. In the
case of matroid intersection, it is easy to verify that for each family S = { S;. :
i E [1, ... , t]} of members of r with S1 -< S2 -< ... -< St, G(S, L) is bipartite
and hence, as is well known, the extreme points of the matroid intersection
polyhedron are integral.

Note that the notation used in the proof of Theorem 3.1 is consistent with
our construction of the lattice r•. Therefore we henceforth refer to all covers as
(S, T) with the understanding that S may be*·

We can use our linear programming formulation to further characterize min
imum capacity covers.

Corollary 3.5 For each minimum cover (S, T) and maximum £-Lattice vector
x,

• Q(S)x = {3(S)

• Q(T)x = {3(T) and,

• if Qt(S) + Qt(T) > 2, then x(l) = 0

Proof. By complementary slackness. 0

Given a 2-Lattice polyhedron, let n be the collection of all maximum car
dinality 2-Lattice vectors and f2ezt be the collection of all extreme maximum
cardinality 2-Lattice vectors.

Corollary 3.6 For each minimum cover (S, T),

S, T ~ 1\(cl(x): X En) ~ 1\(cl(x) :X E next)

Shapley and Shubik (23] showed that the collection of optimal dual solutions
to a bipartite matching problem form a lattice. The same result holds for
cardinality matroid intersection. In particular, if (S, E \ S) and (S', E \ S') are
dual solutions in the sense of Coro11ary 3.4 to a matroid intersection problem,
then so are (S n S', E \ (S n S')) and (S U S', E \ (S U S')). We show that the set
of nested minimum covers for a 2-Lattice polytope forms an upper semi-lattice.
It remains an open question whether these covers in fact form a lattice.

Lemma 3.7 If (S1, Tt) and (S2, T2) are nested minimum covers, then (S1 1\
S2, T1 V T2) and (S1 V S2, T1 1\ T2) are minimum covers.

12

Proof. We first show that (81 1\ 82, T1 V T2) and (81 V 82, T1 1\ T2) are covers.
Since (81, Tl) and (82, T2) are covers and a:t is supermodular for each l E L,

ett(8l 1\ 82) + a:t(8l V 82) + a:t(Tl 1\ T2) + a:t(Tl V T2) >
a:t(8t) + a:t(82) + a:t(Tt) + a:t(T2) > 4.

And so, we need only consider the cases in which a:t(81 V 82) + a:t(T1 1\ T2) or
a:t(81 1\ 82) + ett(T1 V T2) is strictly greater than 2.

Case 1. If a:t(81 v 82) +ett(Tll\ T2) > 2, either a:t(81 v 82) or a:t(T11\ T2) = 2.
However, since (81, Tl) and (82, T2) are nested,

and
(81 1\ 82) ~ (T1 1\ T2) ~ (T1 v T2).

So, a:t(Tl v T2) = 2; proving that a:t(81 1\ 82) + a:t(Tl v T2) ~ 2.

Case 2. If a:t(81 1\ 82) + ett(Tl v T2) > 2, then a:t(81 1\ 82) ~ 1 and so,

1 ~ a:t(81 1\ 82) ~ a:t(81 v 82).

Similarly,
1 ~ ett(81 1\ 82) ~ ett(Tl 1\ T2);

proving that ett(81 V 82) + ett(T1 1\ T2) ~ 2.
Thus, a:t(81 v 82) + a:t(Tl 1\ T2) ~ 2 and a:t(81 1\ 82) + a:t(Tl v T2) ~ 2 for

each l E L, i.e., (81 1\ 82, T1 V T2) and (81 V 82, T1 1\ T2) are covers.
Since (81 1\ 82, T1 V T2) and (81 V 82, T1 1\ T2) are covers and (81, Tt) and

(82, T2) are minimum covers

and

But, since {3 is submodular,

Thus, we must have equality throughout. 0

Let C be the collection of all nested minimum covers. We show that C is a
upper semi-lattice with partial order defined by (S, T) ~ (S', T') if

• T ~ T' and

13

• S' ~ S.

In fact, we show that the binary operation V c on C defined by

(S, T) Vc (S', T') = (S 1\ S', Tv T')

is the join operation in C.

Lemma 3.8 C ia an upper semi-lattice.

Proof. By Lemma 3.2 and Lemma 3.7, (S 1\ S', TV T') is a nested minimum
cover. It is easy to vertify that this is also the least upper bound of (S, T) and
(S', T'). Thus, C is an upper semi-lattice. 0

The following example shows that C need not be a lattiee. Consider the
incidence 2-Lattice polyhedra on £ = { e, f} with the single line i = { e, f}
and {3(8) defined by lSI. The nested minimum covers are (0,£), ({e}, {e}) and
({!},{!}).Clearly (0,£) is the least upper bound of ({e}, {e}) and({!},{!}),
but these two nested covers do not have a common lower bound in C.

The following corollary shows that there is a largest cover in C and in some
sense this cover dominates all others.

Corollary 3.9 There is a nested minimum cover (S• I r•), such that T ~ r·
and s• ::j S for each minimum cover (S, T).

Proof. Let (S., r•) be any nested minimum cover with the property that no
nested minimum cover (S, T) has T• -< T or S -< s• (since there is a finite
bound on the length of any chain in r, such a cover exists). Suppose that (S, T)
is a minimum cover with T ~ r• or s• ~ S. By Lemma 3.2 (S !\ T, S v T)
is a nested minimum cover. So, by Lemma 3.7, (S !\ T !\ ~, S v Tv P) is a
nested minimum cover and T• -< S v T v r or S !\ T !\ s• -< ~ contradicting
the choice of (S., T•). o

We refer to the nested minimum cover of Corollary 3.9 as the dominant
cover.

4 The Dominant Cover

The most common lattice polyhedra with o e {0, 1, 2} include bipartite match
ing polyhedra and matroid intersection polyhedra. In each case, ot(S) = lin Sl.
Here we generalize this relationship between o and {3. Let£ be a (possibly infi
nite) set, and let L be a finite subset of ?f (generally chosen to be a collection
of pairs from £).

We require that r contain 0 and be partially ordered by set containment.
Recall that we associate with each set S ~ £the smallest member, u(S), of r

14

containing S. We extend the meet and join operation of r to all subsets of £ so
that for S and T ~ £, S 1\ T = u(S) 1\ u(T) and S V T = u(S U T).

We further require that {3 be normalized, non-decreasing and satisfy {3(u { e})
= 1 for each e E £, and {3(u{i}) = 2 for each i E L. Finally, we model the
relationship between a and {3 via the condition at(S) = {3(i 1\ S) for each i E L
and S E r. It is easy to see that at is normalized and non-decreasing. It is
also straightforward to prove (see [25]) that at is supermodular. We call the
resulting 2-Lattice polyhedra Matching 2-Lattice polyhedra.

The following definitions prove useful:

Definition 7 A base of a subset, S ~ £, is a minimal subset T ~ S with
u(T) = u(S).

For example, if r is the collection of flats in a matroid, then a maximal inde
pendent set in S is a base of S. If r is the collection of linear subspaces of a
vector space a maximal linearly independent set of vectors in S is a base of S.

Definition 8 ForTE r, let Lr = {i E L: at(T) = 1}.

Lemma 4.1 shows that given one element of a nested minimum cover, we
can characterize the other.

Lemma 4.1 If (S, T) is a nested minimum cover then S = u ({ i 1\ T : i E Lr})
and T = S V u ({ i E L : at (S) = 0}).

Proof. Since (S, T) is a nested cover, S' = u({ i 1\ T : i E Lr}) ~ S. Further,
since (S', T) is a cover,

{3(S) + {3(T) ~ {3(S') + {3(T).

It follows that S' = S.
Similarly, since (S, T) is a nested cover, T' = Sv u({ i E L : at(S) = 0}) ~ T

and since (S, T') is a cover,

{3(S) + {3(T) ~ {3(S) + {3(T') .

It follows that T' = T. 0

Now we characterize the dominant cover in terms of maximum Matching
2-Lattice vectors.

Let (S, T) be a nested cover and for each i E Lr, let e(i) E i 1\ T. Define
the matroid M 1(S, T) with rank function r 1 on Lr as follows. A set X of lines
in Lr is independent in M1(S, T) if {3({e(i): i EX})= lXI.

Define the matroid M 2 (S, T; {e}) with rank function r2 on Lr as follows. A
set X of lines in Lr is independent in M2(S, T; {e}) if {3(X/T V {e}) = lXI.

Lemma 4.2 shows that if the maximum cardinality of an intersection in M1
and M 2 is {3(S)- 1, there is a cover (S', T') with TV e ~ T'.

15

Lemma 4.2 lf(S, T) is a nested minimum cover and e ~ T, then the maximum
cardinality of an intersection in M 1 (S, T) and M2(S, T; { e}) is either {3(S) or
{3(S) -1. Puthermore, if the maximum cardinality of an intersection in M 1 and
M2 is {3(S) - 1 then there is a minimum cover (S', T') such that TV e ~ T'.

Proof. The maximum cardinality of an intersection in M 1 and M2 is bounded
by {3(S). Suppose the maximum cardinality of an intersection in M 1 and M 2
is less than or equal to {3(S) - 1, then there is a minimum rank cover (X 1, X 2)

of Lr for the matroid intersection problem such that

that is,
{3({e(l): l E XI})+ {3(X2/(Tve)) ~ {3(S) --1

and so

{3({e(i) : l E XI})+ {3(X2 v Tv e) ~ {3(S) + {3(T v e) -1 = {3(S) + {3(T).

LetS'= a({e(i): l E XI}) and T' = X2 v Tv e. Then (S', T') is a cover of L
with TV e ~ T' and {3(S', T') ~ {3(S, T). Since (S, T) is a minimum cover, it
follows that (S', T') is a minimum cover and the size of a maximum intersection
must be at least {3(S) - 1. D

Corollary 4.3 lf(S., T•) is the dominant cover and e ~ T., then the maximum
cardinality of an intersection in M 1(S., T•) and M2(S., T•; {e}) is {3(S•).

The following two lemmas identify special properties of maximum Matching
2-Lattice vectors and show conditions under which we may combine portions of
two Matching 2-Lattice vectors to form a third.

Lemma 4.4 Let x be a maximum Matching 2-Lattice vector and let (S, T) be
a nested minimum cover. Then XL\Lr satisfies

1. a(T)xL\Lr = {3(T/S) and

2. forT' ~ T, a(T')x L\Lr ~ {3(T' / S)

and x Lr satisfies

3. a(T)XLr = {3(8),

4. forT'~ T, a(T')xLr $ {3(T' 1\ S).

Proof. First, observe that for each line l E L \ Lr, at(T) = 2. So, if at(S) > 0,
ai(S) +at(T) > 2 and, by Corollary 3.5, x(l) = 0. Thus, a(S)xL\Lr = 0. Since
a(S)x = {3(S), it follows that a(S)xLr = {3(S).

16

To see (3), observe that for each i E Lr, a:i(T) = a:i(S) = 1. So,

To see (1), observe that since

a(T)x = {3(T) = {3(T V S) and a(T)xLT = {3(S)

it follows that
a:(T)xL\LT = {3(T/S).

To see (2), observe that for T' ~ T,

a:(T' V S)x ~ {3(T' V S) and a:(T' V S)xLT = {3(S).

Thus,

0

a:(T')x L\LT < a(T' V S)x L\LT

= a(T' V S)x - a(T' V S)x Lr

< {3(T' v S) - {3(S)

= {3(T' /S).

To see (4), note that fori E ~, Clt(S) = Clt(T). So,

a(T')xLT = a(T' A S)xLT ~ {3(T' AS).

Lemma 4.5 Let x and x be Matching 2-Lattice vectors and let (S, T) be a nested
minimum cover. If x satisfies {1} and {2} of Lemma 4.4, x satisfies (9) and {4)
of Lemma 4.4,

a. {3(T/cl(xLT)) = {3(T/S) and

b. a(cl(XLT))XL\LT = 0,

then x' = XLT + XL\T is a Matching 2-Lattice vector.

Proof. Suppose x' is not a Matching 2-Lattice vector, then there is a flat
Z E r such that a(Z)x' > {3(Z). We first show that we may choose Z to
contain cl (x LT).

By condition (b), a(Z A cl(xLT))x' = a(Z A cl(xLT))xLT' and since XL~ is
feasible a(Z A cl(xLT))xLT ~ {3(Z A cl(xLT)). It follows by Corollary 2.2 that

a(Z V cl(xLT))x' > {3(Z V cl(xLT)).

17

Thus, if x' is not a Matching 2-Lattice vector, there is a flat Z E r with
cl(xLr) ~ Z such that o(Z)x' > {3(Z).

We next show that we may also assume T ~ Z.
By conditions (1) and (3)

o(T)x' = o(T)xLr + o(T)xL\Lr = {3(8) + {3(T/S) = {3(T).

Further, by conditions (2) and (4)

o(Z 1\ T)x' = o(Z 1\ T)xLr + o(Z 1\ T)xL\Lr ~ /3(Z 1\ T 1\ S) + /3((Z 1\ T)/S).

Therefore, o(Z 1\ T)x' ~ {3(Z 1\ T), and so it follows by Corollary 2.2 that
o(Z v T)x' > {3(Z v T). But,

o(Z V T)x' = o(Z V T)xLr + o(Z V T)xL\Lr

= {3(cl(xLr)) + o(Z V T)xL\Lr since cl(xLr) ~ Z

= {3(cl(xLr)) + o(T)xL\Lr since supp(x L\Lr) ~ T

= f3(cl(xLr)) + {3(T/S) by (1)

= f3(cl(xLr)) + {3(T/cl(xLr)) by (a)

= f3(cL(xLr) v T)

~ {3(Z v T) since cl(xLr) ~ Z.

This contradicts the existence of Z and proves that x' is a Matching 2-Lattice
vector. 0

Lemma 4.6 shows that if (S, T) is a nested minimum cover and e ~ T, then
each {3(8)-intersection in M 1 (S, T) and M2(S, T; { e}) gives rise to a maximum
.Matching 2-Lattice vector x with e ~ cl(x).

Lemma 4.6 Let x be a maximum Matching 2-Lattice vector, (S, T) be a nested
minimum cover and e ~ T. If X is a /3(S) intersection in M 1 (S, T) and
M2 (S, T; { e}), then x' defined by

x'(l) = { ~
x(l)

ifl EX
iflE/rr\X
othenoise

is a maximum cardinality Matching 2-Lattice vector withe¢ cl(x').

Proof. First, since X is independent in M2(S, T; { e}) and lXI = {3(8),

{3(X/T v { e}) = lXI = f3(S)

and so
{3(X v Tv {e}) = {3(S) + {3(T v {e}).

18

Second, since X is independent in M 1(S, T) and lXI = f3(S), {e(i): i EX}
is a base of S. Let { e(i) : i EX} U B be a base ofT. Then e tf. a(X U B) and

/3(X/ (B u { e})) = /3(X u B u { e}) - /3(B u { e})

= f3(S) + f3(Tv {e})- /3(8 u {e})

2/3(S)

= 2IXI.

It follows that x~T is a Matching 2-Lattice vector.
We see that x~T satisfies (3) of Lemma 4.4 as follows. Since at(T) = 1 for

each i EX,
a(T)x~T = lXI = f3(S).

We see that x~T satisfies (4) of Lemma as follows. Since at(S) = at(T) = 1
for each i EX, if T' ~ T,

a(T')x~T = a(T' A S)x~T ~ f3(T' AS).

Since xis a maximum Matching 2-Lattice vector, XL\LT satisfies conditions
(1) and (2) of Lemma 4.4. Thus, to show that x' is a Matching 2-Lattice
vector, we need only show that x£T and XL\LT satisfy conditions (a) and (b) of
Lemma 4.5.

We see that x~T satisfies (a) of Lemma 4.5 as follows. Since

and
a(a(X))x£T = 2IXI = f3(a(X)),

it follows that cl(x~T) = a(X). Therefore,

/3(T/cl(x~T)) = f3(T/X) = IBI = /3(T/a({e(i): i EX}))= /3(T/S).

We see that x~T and xL\LT satisfy condition (b) of Lemma 4.5 as follows.
Since supp(x~\LT) ~ T and cl(x£T) = a(X),

a(cl(x~T))xL\LT = a(X A T)xL\LT·

But X AT= S so

Thus, by Lemma 4.5, x' is a Matching 2-Lattice vector.
Since e ¢ a(X U T) and cl(x') ~ a(supp(x')) ~ a(X U T), it follows that

e ¢ cl(x').

19

To see that x' is a maximum cardinality Matching 2-Lattice vector, observe
that

L:x'(i) = L x'(i) + L x(i)
lEL lELT lEL\LT

= {3(S) + L x(i)- L x(i)
lEL lELT

= {3(S) + {3(S, T)- L x(i)
lELT

~ {3(S) + {3(S, T) - {3(S)

= {3(S,T)

0

Corollary 4.7 IJ(S*, T*) is the dominant cover, then T* 2 n(cl(x): X En)

Proof. By Corollary 4.3, if e ~ T*, then the maximum cardinality of an
intersection in M 1(S*,T*) and M2(S*,T*;{e}) is {3(B-). By Lemma 4.6,
there is X E n such that e ¢ cl(x), hence, e ~ n(cl(x) : X E n). Therefore,
T* 2 n (cL (x) : x e n) o

Combining Corollary 3.6, Corollary 4.7 and Lemma 4.1, we have the foi-·
lowing characterization of the dominant cover in terms of maximum Matching
2-Lattice vectors.

Theorem 4.8 Let T* = n(cl(x) : X E n) and s· = u({ i 1\ T* : i E LT·}).
Then (S*, T*) is the dominant cover.

The following results refine Lemma 4.6 to extreme maximum Matching 2-
Lattice vectors.

Lemma 4.9 Let (S*' T*) be the dominant cover. Then, for each X E nezt

1. For each i E Ur•, x(i) E {0, 1},

!2. /3(T* jcl(xLT.)) = /3(T* /S*), and

9. T* 1\ cl(xLT•) = s•.

Proof. For each x• E !leze, there is a complementary dual solution y•. Let
S = {S,: i = 1, · · · ,t} be a nested family of flats in rand N a subset of L such
that x• is the unique solution to the system:

Q(S,)x = /3(S,)
x(i) = 0

20

for each S, E S
for each i EN

and y• is the unique solution to the system:

L y(Si)crt(Si) = 1 for each l E L \ N
SiES

By arguments similar to those used in the proof of Theorem 3.1, there are two
indexes i 1 and i2, i 1 ~ i2, i1, i2 E {0, 1, · · ·, t} such that

• S1, ···,Sit correspond to the vertices in G(S, L \ N) that have an odd
number of edges in the unique path from Si to the root;

• Sit +1, · · ·, Si~ correspond to the vertices in G(S, L \ N) that have no path
from si to the root;

• Si~+ 1 , • • ·, Se correspond to the vertices in G(S, L \ N) that have an even
number of edges in the unique path from Si to the root; and

• (Sit, Si~) forms a minimum cover.

Since Si~ ~ 'r, if crt(T*) = 1, then crt(Si~) = 1. Clearly, if l E N, then
x• (l) = 0. If l ~ N and crt(T*) = 1 then l must correspond to an edge in a tree
component of G(S, L \ N). Therefore, x•(t) E {0, 1} if crt(T*) = 1.

To see (2), observe that by Corollary 3.5, crt(S•)x(l) = 0 for each l E L \LT•
and crt(S*) = 1 for each l E LT·. It follows that

cr(S*)x = L x(l) = {3(S*).
lELr•

cr(cl(xLT.))x = 2 L x(l) = 2{3(S*) = {3(cl(xLT.)) (4.6)
lELT•

and

cr(T* V cl(xLT•))x = 2 L x(l) = {3(T*) + {3(S*) = {3(T* V cl(xLr•)). (4.7)
lEL

Combining (4.7) and (4.6) we see that {3(T*/cl(xLT.) = {3('r/S*).
Finally, to see (3), observe that s• ~ T* 1\ cl(xLT·), but since

{3(T* V cl(xLT•)) + {3(T* 1\ cl(XLT•)) ~ {3(T*) + f3(cl(xLT•)),

it follows that {3(T* 1\ cl(xLr-)) ~ {3(S*). D

21

Corollary 4.10 Let x be an extreme maximum Matching 2-Lattice vector, (S*,
T*) be the dominant cover and e ¢ T*. If X is a {3(s•) intersection in
M1 (S*, T*) and M2(S*, T*; { e}), then x' defined by

x'(i) = { ~
x(i)

ifi EX
if i E Lr· \X
othenuiae

is an extreme maximum cardinality Matching 2-Lattice vector withe ¢ cl(x').

Proof. In Lemma 4.6, we showed that x' En. If x' is not extreme, there is a
subset { x 1, x2 , · · · , xlc} of distinct vectors in flezt, such that

x' = .X1x1 + .X2x2 · · · + AJcXJc

for some .X = (.X 1, .X2, · · ·, .X~c) > 0 with L: .X, = 1. We show that z' = XLp +
xt\LT· is inn for each i E {1, ... l k} as follows.

Since x En, XLp satisfies conditions (3) and (4) of Lemma 4.4. Similarly,
since x' E n, xt\LT• satisfies conditions (1) and (2) of Lemma 4.4 for i =
1, 2, .. ·, k.

By (2) of Lemma 4.9, XLT• satisfies (a) of Lemma 4.5. And, since supp(xt\LT•)
~ T*,

o:(cl(xLT•))xt\LT· = o:(cl(xLT•) 1\ T*)xt\LT·.

But cl(xLT·) 1\ r· = s· so

o:(cl(xLT•))xi\LT• = o:(S*)xi\LT• = 0;

proving that XLT• and xt\LT• satisfy condition (b) of Lemma 4.5.
Thus, by Lemma 4.5, z' is a Matching 2-Lattice vector for each i E {1, ... , k}.
Since

it follows that
X= AtZ 1 + A2Z 2 ... + AJcZic.

Further, since x£T. E {0, 1}, xtT. = x[.T. fori= 1, ... , k. Hence, the members
of {xl\LT• : i E (1, ... , k]} are distinct and therefore so are the members of
{z' : i E (1, ... , k]}. This contradicts the assumption that x is extreme. D

Corollary 4.11 Let (S*, T*) be the dominant cover, then

T* = n(cl(x) :X E fl) = n(cl(x) :X E fle%t).

In the case of matroid intersection, we have the following characterization.

22

Corollary 4.12 Let M1 be a matroid with rank function r 1 and closure operator
a1 and let M2 be a matroid with rank function r2 and closure operator a2 both
defined on the same ground set E and let fle%t be the collection of all maximum
cardinality intersections in Mt and M2. Then for each IE fle%t,

where

T1 = n(a1 (I) : I E fle%t), and

T2 = n(a2(I) : IE fle%t).

Acknowledgements

Dr. Llewellyn was supported in part by the Office of Naval Research (N00014-
89-1658). Dr. Vande Vate was supported in part by the National Science Foun
dation (DDM-9101581).

References

[1] E. BALAS AND W. R. PULLEYBLANK, The Perfectly Matchable Subgraph
Polytope of a Bipartite Graph, Networks 13 (1983), 495-516.

(2] M. BALINSKI AND K. SPIELBERG, Methods of Integer Programming: Al
gebraic, Combinatorial and Enumerative, in "Progress in Operations Re
search," Vol. III, J. Aronofsky, ed. Wiley, New York, 1969.

(3] J. BARTHOLDI AND H. RATLIFF, A Field Guide to Identifying Network
Flow and Hidden Matching Problems, Research Report No. 77-12 (De
partment of Industrial and Systems Engineering, University of Florida,
Gainesville, 1977).

(4] WAI-KAI CHEN, On the Nonsingular Submatrices of the Incidence Matrix
of a Graph over the Real Field, Journal of the Pro.nklin Institute, 289 (2)
(1970), 155-166.

(5] V. CHV ATAL, Edmonds Polytopes and a Hierarchy of Combinatorial Prob
lems, Discrete Mathematics 4 (1973), 305-337.

[6] R. P. DILWORTH, A Decomposition Theorem for Partially Ordered Sets,
Annals of Mathematics, 51 (1950), 161-166.

[7] J. EDMONDS, Maximum Matching and a Polyhedron with 0,1 Vertices,
Journal of Research of the National Bureau of Standards (B) 69 (1965),
125-130.

23

(8] J. EDMONDS, Submodular Functions, Matroids and Certain Polyhedra, in
"Combinatorial Structures and their Applications", R. Guy et al., eds.,
Proceedings of the Calgary International Conference (Gordon and Breach,
New York, 1970).

(9] L.R. FORD, JR. AND D.R. FULKERSON, "Flows in Networks", Princeton
University Press, Princeton, N.J., 1962.

(10] V. P. GRISHUHIN, Polyhedra related to a Lattice, Mathematical Program
ming 21 (1981), 7Q-89.

[11] H. GROFLIN AND A. HOFFMAN, On Lattice Polyhedra II: Generalization,
Construction and Examples, in "Algebraic and Geometric Combinatorics",
E. Mendelsohn, ed., Annals of Discrete Mathematics 15 North-Holland,
Amsterdam, 1982.

(12] H. GROFLIN AND T. M. LIEBLING, Connected and Alternating Vectors:
Polyhedra and Algorithms, Mathematical Programming 20 (1981), 233-
344.

(13] A. HOFFMAN, On Lattice Polyhedra III: Blockers and Anti-blockers of
Lattice Clutters, Mathematical Programming Study 8 (1978), 197-207.

(14] A. HOFFMAN AND H.W. KUHN, Systems of Distinct Representatives and
Linear Programming, The American Mathematical Monthly 63 (1956),
455-460.

(15] A. HOFFMAN AND D. SCHWARTZ, On Lattice Polyhedra, in "Colloquia
Mathematica Societatis Janos Bolyai", 18 Combinatorics, (Keszthely, Hun
gary, 1976).

[16] E. JOHNSON, On Cut Set Integer Polyhedra, Cahiers du Centre de
Recherche Operationelle 17 (1975), 235-251.

(17] D. KoNIG, Graphs and Matrices, Matematikai es Fizikai Lapok, 38 (1931),
116-119.

[18] H.W. KUHN, The Hungarian Method For The Assignment Problem, Naval
Research Logiatics Quarterly 2 (1955), 83-97.

[19] E.L. LAWLER, Matroids With Parity Conditions: A New Class of Combi
natorial Optimization Problems, Memorandum Number ERL-M334, Elec
tronics Research Laboratory (Berkeley, CA, 1971)

[20] M. MENGER, Zur Allgemeinen Kurventheorie, Pundamenta Mathematicae
10 (1927), 96-115.

24

(21] G. Nemhauser and L. E. Trotter, Jr., Properties of Vertex Packing and
Independence System Polyhedra, Mathematical Programming 6 (1974), 48-
61.

(22] W. R. PULLEYBLANK, "Faces of Matching Polyhedra", Ph.D. Thesis (Uni
versity of Waterloo, Waterloo, Canada, 1973).

(23] L. S. SHAPLEY AND M. SHUBIK, The Assignment Game I: The Core,
International Journal of Game Theory 1 (1972), 111-130.

(24] L. E. TROTTER, JR., Solution Characteristics and Algorithms for the Ver
tex Packing Problem, Technical Report No. 168 (Department of Operations
Research, Cornell University, Ithaca, New York, 1973).

(25] J. VANDE VATE, Fractional Matroid Matchings, to appear in Journal of
Combinatorial Theory.

25

DIVIDING AND CONQUERING THE SQUARE

Donna C. Llewellyn
Craig A. Tovey

School of Industrial and Systems Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0205

March 10, 1990
Revised April 30, 1991

Abstract

A local minimum of a matrix is a cell whose value is smaller than those of its four
adjacent cells. For an n X n square matrix, we find a local minimum with at most
2.554n queries, and prove a lower bound of v'2n queries required by any method. For
a different neighborhood corresponding to the eight possible moves of a chess king, we
prove upper and lower bounds of 3n + O(log n) and 2n, respectively.

1 2 3 4 5 6 7 8
M M M M M M M 9
27 28 29 30 31 32 M 10
26 M M M M 33 M 11
25 M 39 M M 34 M 12
24 M 38 37 36 35 M 13
23 M M M M M M 14
22 21 20 19 18 17 16 15

Figure 1: Local improvement can require "V n 2 work

1 Introduction

A local minimum of a matrix is a cell with value less than or equal to those of its neighboring
cells. How hard is it to find a local minimum of ann x n matrix? It takes zero computation to
determine that one exists, since any global minimum is surely one. And any local minimurp,
once found, can be verified in 0(1) time. On the other hand, local improvement, the most
natural search method, can require time !1(n2

), the same order as enumeration. For example,
suppose a local minimum is sought for a matrix with a descending spiral, illustrated for
n = 8 in Figure 1 (M is some large value such as n2

). Any local improvement algorithm
must traverse a path along that spiral out to the unique local optimum in the corner. But
the length of this path will be n(n2

) for most starting points in the square.
The large gap between the obvious !1(1) lower bound and O(n2) upper bound is charac

teristic of the local optimization problem. In this paper we narrow the gap between these
bounds considerably. There are two natural neighborhoods to consider: (i) in the J(ing ad
jacency, the 8 neighbors of a paricular cell are those a king could move to from that cell on
a chessboard; (ii) in the Grid adjacency the 4 neighbors of a cell are the two adjacent in the
same row and the two adjacent in the same column. We will investigate both neighborhoods
here. Our best strategies ~or the two adjacencies turn out rather differently.

First we surrunarize our principal results: let r(n) equal the minimum number of matrix
lookups required by any valid algorithm that finds a local optimum of a square n x n matrix.
Then

2n ~ r(n) ~ 3n + O(log n) (King Adjacency)

v'2n ~ r(n) ~ 2.554n (Grid Adjacency)

Our best strategy for the grid adjacency, which yields the 2.554n upper bound, is fairly
complicated. It is interesting that the matrix, perhaps the simplest natural discrete structure
for local optimization, is not very straightforward to solve.

In the rest of this section we review necessary background on search procedures for local
optima, and apply it to our specific case of a matrix. The next sections develop the results

2

stated for the King and Grid adjacencies, respectively. We conclude in Section 4 with some
remarks and conjectures.

1.1 Divide-And-Conquer

We seek a strict local optimum of ann x n matrix A of distinct numbers A(i , j). (All results
apply to the slightly more general problem of seeking a nonstrict local optimum when the
A(i,j) values are not necessarily distinct.) Equivalently, form a graph G = (V, E) of the
matrix as follows: take the cells of A as the nodes V of G, and take the edge set

E = [{(i,j), (i',j')}: max(li- i'l, li- j'l) = 1]

for the king adjacency; and

E = [{(i,j), (i',j')}: li- i'l + li- j'l = 1]

for the grid adjacency. Then we seek a local optimum of the function A on the graph G. As
in [4],[2],[5], our computational model employs an oracle to compute the values of A. A call
to the oracle is a query; the total number of queries is taken as the computational effort.

We now summarize necessary background regarding local optima on graphs, from [4].
Results are in terms of finding a local minimum, without loss of generality.

The following divide-and-conquer method will find a local minimum of A:

1. Query the vertices in a separating set S of G, finding a vertex v E S with minimum
A(v). (Where a separating set is a collection of vertices which disconnects the graph.)

2. Query the vertices in N (v), i.e. those adjacent to v. If v is a local minimum, stop.
Otherwise proceed to Step 3.

3. Select wE N(v) with A(w) < A(v); replace G by the connected component of G \ S
containing w; return to Step 1.

Virtually' all the work 1n the algorithm occurs in Step 1, where the vertices of the sepa
rating sets S are queried. The best separators are found by solving the following

Separation Game

Input: Graph G = (V, E).

Two players: Minimizer I, Maximizer II.

Description: Player I removes vertices from G until it is disconnected. Player II selects
one of the newly created components to call G, discards the other components, and
passes the new G back to I. The game ends when lVI ~ 1.

3

Step 1: i = 0, V 0 = V; score(G)= 0.

Step 2: If lVI ~ 1 STOP.

Step 3: Player I chooses Si ~ Vi such that Gi \ Si is not connected or is the empty graph;
score(G) = score(G) +I Si I·

Step 4: Player II selects Gi+l, a connected component of Gi \ Si; i := i + 1; Go to Step 2.

The value of the separation game on G, denoted v(G), is score(G) when each player plays
optimally, I to minimize and II to maximize. Let K denote the number of separating sets
used by player I, and let Amax(G) denote the maximum degree of any vertex in the graph G.
The principal result we employ is

Theorem .1.1.1 Any algorithm to find a local minumum of G requires at least v(G) queries;
the Divide-and-Conquer method requires at most v(G) + K Amax(G) queries.

1.2 Implications

The value of K in Theorem 1.1.1 is typically logarithmically small, and for our graph of the
matrix the maximum degree Amax(G) = 8 or 4. Therefore, the irnplication of Theorem 1.1.1
is to transform our problem into an analysis of the separation game on G.

Solving the separation game is unfortunately NP-Complete in general but we can employ
the following partial characterization ([4]):

Lemma 1.2.1 In the separation game Si can always be taken to be a minimal separating

set ofG.

The minimal separating sets, in turn, are partially characterized in the following Lemma
by an interesting dual relationship between the two adjacencies:

Lemma 1.2.2 A minimal separating set for the separation game under the king adjacency
must be connected with respect to the grid adjacency; a minimal separating set under the grid
adjacency must be connected with respect to the king adjacency. -

Proof: Let S be a minimal separating set of G = (V, E). S separates some set U C

V; U n S = </J; U =f:. <P from V - S - U in the graph G. The set U may be taken to be
connected for if not we can replace it with any connected component. Here "connected"
means under the adjacency for which a local optimum is sought.

Now S must contain B(U), the boundary of U, i.e. S 2 B(U) = {v E V: v ~ U,3u E
U, (v, u) E E} for otherwise there would be a path from U to some vertex in V - S - U that
did not pass through S. But also B(U) is a separating set, thus S = B(U) by the minimality
of S.

We also may take U to be topologically simple. If U is not simple, there are two cases:
(i) if G contains a vertex not encircled by U and not in B(U), then let U' be U together with
all vertices encircled by U (thus including some members of B(U)). In this case, B(U') is

4

X X X 1 2 3
X c X 8 c 4

X X X 7 6 5

Figure 2: Cell c and its king and grid boundaries

strictly contained in B(U) and therefore S = B(U) was not minimal. Otherwise, (ii) there
must exist a nonempty connected component U' of G, encircled by U. Then U' is simple by
induction, therefore B(U') ~ B(U), and so we can replace U by U'.

It remains to show that when U is connected under the king (respectively grid) adjacency,
then B(U) is connected with respect to the grid (respectively king) adjacency. The idea is
demonstrated in Figure 2.

The boundary of a cell under the king adjacency is connected with respect to the grid
adjacency; the boundary of a cell under the grid adjacency is connected with respect to
the king adjacency. For a formal proof, we employ this observation in an induction on
lUI. Remove c, the rightmost of the uppermost cells of U. Referring to Figure 2, cell
i ¢ U : i = 1, ... , 4. By induction, the boundary of U - c is connected as claimed. Again
referring to Figure 2, (5,6, 7,8) n U -j. ¢>(king adjacency); (6,8) n U -j. ¢>(grid). When c
is added to U - c, the boundary gains all neighbors of c not in U, and loses c since U is
connected. Checking all the possible cases, it is generally easy to see that if B(U - c) is
connected as claimed, so is B(U). The only non-trivial cases occur when the removal of
c disconnects the boundary. For example (king adjacency), if 6 E U, 7 ¢ U, 8 E U, then
5 E B(U), 7 E B(U), and it is possible that 5 and 7 are only connected through c. But then
U is not simple, and we have a contradiction. 0

Before proceeding with the analysis, it is interesting to see what upper and lower bounds
can be derived directly from known results. In [4) it is ·shown (Corollary 4.11) that a local

optimum for any planar graph may be found in 13.35y'n +A(1~;~~ 1) queries. Since A = 8 or

4 here, the logarithmic term is negligible, and we can take 13.35y'n as an upper bound on
the necessary number of queries, for both the king and grid adjacencies. For a lower bound,

we appeal to the following . results (Corollary 4.5 in [4] and Theorem 11 in [3], respectively):

Theorem 1.2.1 For any graph and integer t,

v(G) ~ min{t,m:xmin{IB(S)I: k- t ~lSI~ k}}.

Theorem 1.2.2 Let G = (V, E) be an n x n grid graph, and let A C V satisfy IVI/3 ~

IAI ~ 2IVI/3. Then IB(A)I ~ n/3.

Theorem 1.2.2 applies to the king adjacency, as well, because all edges in the grid graph
are edges in the king graph. Letting t = n/3 and considering k = IVI/2 = n 2 /2, we find
that n/3 is a lower bound on the number of queries needed to find either a king or grid local

optimum. Thus we have

5

Theorem 1.2.3 Let r(n) denote the least number of queries required by a valid algorithm
to find a local optimum in a matrix (king or grid adjacency). Then

n/3 ~ r(n) ~ 13.35n.

We sharpen these bounds considerably in the following.

2 The King Adjacency

We consider the problem of finding a local optimum of a matrix where the neighborhood
structure is defined by the king adjacency. By Lemma 1.2.2, a minimal separating set here
must be connected with respect to the grid adjacency. We call any such set a region of the
matrix. Whenever we consider a region of a matrix, we will think of it as being embedded
within a sufficiently large square matrix. For any element in this embedding structure that
is not in the original region, define its distance to the region as the length of the shortest
path (using grid adjacency) to the region. Then give each of these embedding entries value
equal to its distance + n 2• The easiest way to think of this is to think of dropping the region
into the embedding structure and hence the values of the surrounding region will be strictly
larger than the values within the region and will gradually climb as one moves further away
from the region. This will prove useful later when we approximate the indices of a matrix
to be queried and may by chance query an entry of a region which does not exist.

2.1 Upper Bounds

Our divide-and-conquer algorithms will have two major types of steps: query and check. For
ease of presentation we first define these steps and give the parameters for each. Then we
present each procedure, first in words, and then using these generic steps. We also give a
pictorial view of each procedure.

A query step takes as input a description of a region of A and gives as output the
minimum entry in that region. This step requries a number of queries equal to the size of
the input set. This input will be given in one of two ways:

column set (called a Column Query): a pair made up of a column index, j, and a pair
of row indices, (i0 , it) with i0 < i1• Here the query step should be performed over rows
i0 , i 0 + 1, ... , it in column j. (We will use the notation Column Query (j, (i0 , it): a) where
the output of the query is a.)

row set (called a Row Query): a pair made up of a row index, i, and a pair of column
indices, (j0 ,jt) with j 0 < Jt· Here the query step should be performed over columns)o,)o +
1, ... ,j1 in row i.

A check step takes as input an entry in the matrix A and gives as output the smallest
element among the input and its neighbors.

Our procedure will take as input matrix A and a range of rows and a range of columns,
and give as output a local minimum of A within the given ranges.

6

Figure 3: Illustration of Procedure Row-Column

PROCEDURE Row-COLUMN (Rows(l, n) Columns(!, n): a*)
This algorithm is the divide-and-conquer algorithm defined in Section 1 with a specific,

natural choice of separators. The first separator is the central column of the matrix. If
the minimum of this column is not a local optimum then it is assumed without loss of
generality that the left neighbor is smaller, and the next separator is the central row of
the left submatrix of A. If more separators are needed, the procedure is repeated on the
remaining square sub matrix (taken without loss of generality to be the upper left submatrix
of A.)

Step 1: Column Query (f ~ 1, (1, n) : a 1
)

Step 2: Check (a 1 : a1)

Step 3: H a 1 = a1 then · STOP: a* = a 1
. Otherwise, without loss of generality a1 = ai,j

and a1 = ai,j-1·

Step 4: Row Query (r ~ l, (1, f ~ l - 1) : a2
)

Step 5: Check (a 2
: a2

)

Step 6: If a2 = a2 then STOP: a• = a 2
• Otherwise, without loss of generality a2 = ai,j

d -2 an a = ai-l,j·

Step 7: Procedure Row-Column (Rows(l, f~l- 1) Columns(!, f~l- 1): a*)

Theorem 2.1.1 Procedure Row-Column finds a local minimum of an n x n matrix in less

than 3n + O(log n) queries.

7

Proof: Let f(n) be the number of queries that this procedure requires for an n x n matrix.

Then clearly, f(n) = n + r ~ l + 12 + f(r ~ l-1). This leads to the solution f(n) = n + 2(~ +
~ + ...) + O(log n) which converges to 3n + O(log n). 0

Corollary 2.1.2 A local optimum of an m x n matrix, with m. < n, can be found in less
than m(2 +a)+ n/(2a) + O(log n) ~2m+ n + O(log n) queries, where a= llog2 n/m J.

Proof: Slightly altering Procedure Row-Column to always bisect the longer direction (and
hence use the lesser number of queries) in place of alternating between column and row
queries gives this result immediately. 0

2.2 Lower Bounds

We now find lower bounds for the number of queries needed to find a local minimum of an
n x n matrix. The main result of this section is a lower bound of 2n queries.

In the discussions that follow it will be helpful to have the notion of the top, bottom, left
and right of a region of a matrix. Suppose that R is a region within n x n matrix A.

Define
a = min { i I (i, j) E R for any j, 1 ~ j ~ n}
b - min{jl(a,j) E R}
c - max{jl(a,j) E R}
d - max{il(i,j) E R for any j, 1 ~ j ~ n}
e - min{jl(d, e) E R}
f - max{jl(d, f) E R}

Then define the following "corners" of region R:

U L ("upper left")
U R ("upper right")
LL ("lower left")
LR ("lower right")

-
-
-
-

(a, b)
(a, c)
(d,e)
(d,f)

Now, in order to defirie the sides, consider the region R and define an entry of R to
be interior if it has four grid neighbors within R and frontier otherwise. We will think of
traveling along the frontier entries from one corner to another in the clockwise direction
(using the grid adjacency to define this path). The collection of frontier entries that one
encounters while traveling from U L to U R, inclusive, is called the top, those met while
traveling from U R to LR, inclusive, is call the right, those hit while in transit from LR to
LL, inclusive, is the bottom, and finally the others, that set lying on the path from LL to
U L, inclusive, is the left. It should be clear that if R is the whole matrix A then the top is
row 1, the right is column n, the bottom is row n, and the left is column 1. It will not hurt
our arguments to have an entry in more than one side.

Now, let the minimum diameter of R, MinD(R), be the length of a simple grid-connected
left-right path (i.e. a path of matrix entries from any element of the left to any element of
the right) of minimum length in R, where the length of a path is measured by the number

8

of entries in the path. Analogously define the maximum diameter, M axD(R). Then, let
the minimum height, MinH(R) be the length of a simple grid-connected top-bottom path
of minimum length in R; and analogously define the maximum height, M axH(R).

We will define a strategy for player II, the maximizer in the Separation Game, to get a
lower bound on v(G).

PLAYER II STRATEGY

Before Player I plays, we define R to be the subset of matrix A consisting of all unqueried
entries. By definition of separation here, this forms a region. Therefore, after Player I's turn,
the unqueried entries form two (disconnected) regions, say R1 and R2 • If one of these Ri, i = 1
or 2 touches all four sides (top, bottom, left and right) of R, then choose that component,
Ri.

Otherwise, choose that component among R 1 and R2 which has the largest maximum of
its maximum diameter and maximum height. That is, let di = max{M axD(Ri), M axH(Ri) },
and let i* = argmax{ di}. Then choose component Ri··

Lemma 2.2.1 It requires at least n queries to find a local minimum of an n x n matrix.

Proof: Let the sequence of regions chosen by Player II be given by A = R0 , R1
, ... , Rk.

Then, using the strategy above, for some j, 1 ~ j ~ k, region Ri will not touch all -four
sides of region Ri- 1 (since at the end this is true). Hence, either the top and bottom of
Ri- 1 are disconnected or the left and right of Ri- 1 are disconnected by queried elements (or
both). Without loss of generality, assume that the left and right are disconnected. Then,
by piecing together the earlier queries, the left and right of the original matrix, A, are also
disconnected. Hence, there exists a path from the top to the bottom of A made up of queried
entries. Clearly, these entries alone have used n queries. 0

Theorem 2.2.1 It requires at least 2n - 1 queries to find a local minimum of an n x n
matrix.

Proof: First note that the theorem is true in the case of n = 1. Consider the above strategy
for Player II. Suppose, without loss of generality (as guaranteed by Lemma 2.2.1), that
eventually Player I queries a top-bottom path. Consider the first time such a path has been
queried (i.e., this is the first time Player II must choose a component that does not touch
all four sides). Suppose that up to this time n + H queries have been made. H H > n, then
clearly the theorem is proved. So suppose that H < n. Now, in the chosen component, there
exists a square of side length equal to the minimum of the minimum diameter and minimum
height of the component. How can this value be made as small as possible? By using all
of the extra H queries to shorten one of them, say the minimurn diameter. This is done by
using all of these queries in "horizontal" queries, and centering them so that the minimum
diameter is exactly nJH. Hence, in the chosen component, there exists a square matrix of
size at least n~H X n~ • By Lemma 2.2.1 above, this requires at least n~H queries. Thus, the
total number of queries so far is at least n + H + n~H = 1.5n + .5H. Now, "bootstrapping"
with this result in place of the bound given in the lemma gives that the enclosed square

9

requires at least 1.5 (n~H) and hence the total lower bound is 1.75n + .25H. Iterating this
procedure gives a lower bound of 2n queries. D

Now we give an alternative way to arrive at the same lower bound of 2n queries. We
include this because the method is quite different and we believe it provides some additional
insight into the geometry of the problem.

First we need the following lemma. In this method, it is best to think of the matrix, A,
as being placed in the 1?} plane in the following way. Each entry takes up a unit square, so
that the outer edge of the left of A is the y-axis, the outer edge of the bottom of A is the
x-axis, the outer edge of the right of A is the line x = n and the outer edge of the top of A
is the line y = n. Then, given any region R, its area Area(R) is the actual (continous) area
of the enclosed region; its perimeter Per(R) is the sum of the euclidean lengths of all the
straight lines that make up the outer edges of the frontier of the region.

Lemma 2.2.2 For any region, R,

J Area(R) 1
------- <-

Per(R) - 4

Proof: First consider a rectangle with width w and length w + 8, where 8 ~ 0. Then
Per(R) = 2w + 2(w + 8) and hence (Per(R)) 2 = 16w2 + 482 + 16w8. Further, Area(R) =
w(w + 8), so 16(Area(R)) = 16w2 + 16w8. Since 8 ~ 0, it is clear then that (Per(R)) 2 ~
16Area(R) so the lenuna follows for rectangles.

Now consider any region R. Let the tightest circumscribing rectangle be T. It is clear
that Area(T) ~ Area(R). Hence it is sufficient to prove that Per(T) ~ Per(R) since then
we will have (Per(R)) 2 ~ (Per(T)) 2 ~ 16Area(T) ~ 16Area(R). Think of traveling around
the boundary of R and notice that this boundary will agree with the boundary of T at least
for some stretch on each side of T (top, bottom, left and right). Where the boundary of R
differs from the boundary ofT, call it a journey. Any journey either originates and ends on
the same side or else it originates on one side and ends on an adjacent side ofT. We will
consider each of these cases separately.

1. Suppose the journey originates and terminates on the same side. Without loss of
generality, suppose it is the top or bottom. Consider the origin as a point in the R 2

plane, (a, b). Then the terminus is another point (c, b). Without loss of generality
assume that c > a. Then the amount of the perimeter of T between these two points
is exactly c-a. The amount of the perimeter of R that lies between these points is at
least c- a since the boundary follows the grid adjacency (it might also have a vertical
component and hence could be greater).

2. Now without loss of generality, suppose that the journey originates on the left and ends
on the top. Then the origin is some point (a, b) and the terminus is another point (c, d).
We know that d > b. Then the perimeter ofT between these points is (d-b)+ I(c- a) I
and the perimeter of R must be at least this by the same reasoning as above (it must
travel at least d - b vertical distance and at least lc - a I horizontal distance).

10

Since the two regions clearly have the same perimeter between journeys, this completes the
proof. 0

Now consider the region R before Player I queries during some iteration of the separation
game. The queries that follow before another turn of Player II can be combined into some
separating set, C. This causes R to be divided up into two regions, R1 and R2 • For
ease of presentation, call Area(R) = A, Per(R) = P and similarly, Area(Ri) = Ai and
Per(Ri) = Pi for i = 1, 2. We will abuse notation slightly and use C also to represent the
nurr1ber of entries in the set C. We now need the following result.

Lemma 2.2.3 Let

and suppose that
A1 = .AA for some 0 < ,\ < 1.

Then,

Proof: First we will need the following inequality: P1 + P2 ~ 2C + P. To see this rigorously,
we need the following notation. Let the frontier of region Ri for i = 1, 2 be denoted Fi. Let
Fi be the (not necessarily disjoint) union of Fi1 and Fi2, where Fi1 is the part of Fi which
is adjacent to the frontier of C, and Fi2 is the part of Fi which is a subset of the frontier of
R. We can break up P1 + P2 into the part which arises from tracing along F12 U F22 and the
part which comes from tracing along Fu U F21 • The first part is clearly less than or equal to
P. Our goal is therefore to show that the second part is at most 2C. To this end, C can be
assumed to be a minimal separating set by Lemma 1.2.1, whence simple case analysis verifies
that no cell of C has more than 2 sides adjacent to F11 U F21 • Lemma 1.2.1 also ensures that
C has no interior. Therefore, the second part is at most 2C and the inequality holds.

Thus,

and so

This implies that

So, if we can show that

then the lemma is proved.

Pt - .AP < Pt - .A(Pt + P2- 2C)

< (1- .A)P1 - .AP2 + 2AC.

11

By assumption,

=> -\A > (1--\)A
pl p2

=> -XP2A > (1- -X)AP1
=> -XP2 > (1 - -X)P1.

0

Now we are ready for our main result.

Theorem 2.2.2 The number of queries needed to find a local optimum i"n a region of area
A and perimeter P is at least

8A _
1 p

Proof: The proof is inductive on A. First note that if A = 1 then it must be that P = 4,
and clearly it requires exactly one query to solve the problem, so the result holds.

In general, it is sufficient to show that

8A < C 8A1
p - + p1

. { Ai} A1 where as In Lenuna 2.2.3, ~ax p. = -p . By Lemma 2.2.2 we know that
1-1,2 1 1

p?: 4v'A
and that

p1 ~ 4{4: = 4v'JL\.
So, P x P1 ~ 16Av:.\. This implies that Cv/X(P x PI) ~ 16AC ,\, Rearranging this gives

Cv/X 2C-X
-->---8A - P X P1.

Using Lemma 2.2.3 gives the righthand side is
p1- _xp 1 ,\

> = ---.
-PxP1 P P1

So,
C-/). A A-X A A1
-- > -- - = -- -.

8 - p p1 p p1
Hence

8A C· 1\ 8A1 p $ VA+ p
1

•

We know that ,\ < 1 so the result follows. 0

Corollary 2.2.3 The number of queries needed to find a local minimum of an n x n matrix
is at least 2n.

Proof: For an n x n square A = n2 and P = 4n. Using this in Theorem 2.2.2 above gives
the result immediately. 0

12

3 The Grid Adjacency

In this section we consider the problern of finding a local optimum of a matrix where the
neighborhood structure is defined by the usual adjacency in grids. By Lemma 1.2.2, a
minimal separating set need only be connected with respect to the king adjacency. Thus in
this section a region of a matrix will be a subset of entries so connected. As in Section 2
we will continue to think of our matrix as being embedded within a larger square matrix.
Of course, we must update our definition of distance to be consistent with king adjacency
connected paths here.

3.1 Upper Bounds

Of course, Procedure Row-Column can still be used here since any set of entries that is con
nected with respect to grid adjacency will also be connected with respect to king adjacency.
Hence we immediately get an upper bound of 3n + O(log n) on the number of queries needed.
Here, though, we can show that it is not optimal. To improve on it, we employ diagonal
queries. The intuition here is that while the euclidean length of a diagonal of an n x n matrix
is nv'2, there are only n entries in the matrix on the diagonal, so diagonal queries are more
efficient by a factor of J2.

In this section we will need one further way to call a query step:
line segment (called a Line Query): a pair made up a line definition, bx + cy = d, and

a range on x, x0 ~ x ~ x 1 . Here it should be interpreted that the matrix, A, is placed in
the R 2 plane with the (n, 1) entry at the origin and the (1, n) entry at the (1, 1) position in
the plane. The query should be performed at the intersections of the matrix and t'he line
segment.

Notice that the Row and Column Queries can be described as special cases of the Line
Query. However, for technical reasons we leave them with their own descriptions.

To make the following procedures easier to understand, we must first take care of rotated
matrices. We will call a square matrix that has been rotated 45 degrees a diamond matrix.
Let A= [aii] be our n x n matrix and let B = [bii] be the inscribed diamond matrix. Note
that B has euclidean side lengths equal to nJV'i,, but when counting queries the side length is
effectively only n/2. For this reason we will refer to B as an ~ x ~ diamond matrix inscribed
in then x n matrix A. For ease, let n be even. Take b11 = a!!. 1 , b1 !!. = a 1 !!., bn. 1 =ann., and

2 1 1 2 1 2 2 1 1 2

b!!.!!. = a!!. n· Then to find a local minimum of B, we will perform Procedure Row-Column
2 I 2 2 I

on it, but querying the appropiate diagonal segments of A in place of rows and columns.
The input will be the matrix A, but it is understood that only the elements of B must be
known, and the check queries should only be performed over elements of B.

PROCEDURE DIAMOND (Rows(1,n) Columns(1,n): a*)

Step 1: Line Query (x+y = 1,~ ~ x ~ ~: a1
)

Step 2: Check (a1 : a1)

13

Figure 4: Proced~re Diamond

Step 3: If a
1 = a1 then STOP: a* = a 1 . Otherwise, without loss of generality a 1 = ai,j

d -1 an a = ai,j-l or ai+I,j·

Step 4: Line Query (x = y, ~ ~ x ~ ~ : a 2
)

Step 5: Check (a2
: a2

)

Step 6: If a 2 = a2 then STOP: a* = a
2

. Otherwise, without loss of generality a 2 = ai,j

d -2 an a = ai+l,j or ai.i+l·

Step 7: Procedure Diamond(Rows(f ~ l + 1, n) Columns(f ~ 1, f3
4n l :a*)

Corollary 3.1.1 Procedure Diamond finds a local minimum of an ~xI diamond matrix in
less than 1.5n + O(log n) queries.

Proof: This follows immediately from Theorem 2.1.1 and the discussion above.on diamond
matrices. 0

Corollary 3.1.2 A local minimum of an m x n diamond matrix, with m ~ n, can be found in

less than m(2+a+n/(2am))+O(logn) ~ 2m+n+O(logn) queries, where a= llog2 n/mJ.

0

To make the presentation easier, when we call Procedure Diamond we will refer to this
more general form of Corollary 3.1.2 which can take as input an oblong diamond matrix.
We will call the procedure by giving as input the four corners of the matrix rather than the
rows and columns of the embedding square (or rectangular) matrix.

One last result we need before we can use this as a subroutine is the principle of con
tainment: If one region, B, is a subset of another region, A, then it can require no more

14

queries to find a local minimum of B than to find one of A. This is clear, since to find a
local optimum of B we could just consider B to be embedded within A as discussed above
(of course A in turn is embedded within another large matrix), and then find a local opti
mum of A. We will sometimes call a procedure on a row and column set that imply that the
whole diamond matrix does not exist (it would require rows or columns with negative indices
or indices greater than n). When we do this we are actually relying on this containment
principle, and are considering the existing region to be embedded within the called diamond
matrix.

PROCEDURE DIAGONAL (Rows(l, n) Columns(!, n): a*)
This algorithm first queries and checks along the NE-SW diagonal of the square matrix.

Failing to find a local optimum here, it queries and checks along half of the NW-SE diagonal.
Then if it still hasn't found a local optimum it queries a diagonal paralled to the NE-SW line
halfway down the triangle. After this it is either left with another triangle which it treats
with Procedure Diamond, or it forms a diamond and a triangle out of the resulting shape.
Each of these can be taken care of with Procedure Diamond.

Step 1: Line Query (x = y,O ~ x ~ 1 : a 1
)

Step 2: Check (a1 : a1
)

Step 3: If a 1 = a1 then STOP: a* = a 1
. Otherwise, without loss of generality a1 = ai,j

d -I an a = ai-I,j or ai,j-1·

Step 4: Line Query (x + y = 1,0 ~ x ~!: a2
)

Step 5: Check (a 2
: a2

)

Step 6: If a 2 = a2 then STOP: a* = a
2

. Otherwise, _without loss of generality a 2 = ai,j

and a2 = ai,i-I or ai,i+I·

Step 7: Line Query (y = x + !,O ~ x ~ ~: a3
)

Step 8: Check (a3 : a3
)

Step 9: If a3 = a3 then STOP: a* = a 3
. Otherwise,

Case 1: a 3 = ai,j and a3 = ai,j-I or ai-I,j, then Procedure Diamond ((0, 1),(0, ~),
(~, ~): a*)

OR

Case 2: a3 = ai,i and a3 = ai,i+I or ai+I,j, then go to Step 10.

Step 10: Line Query (y = ~- x,O ~ x ~ ~: a4
)

Step 11: Check (a4
: a4

)

Step 12: If a4 = a4 then STOP: a* = a4
. Otherwise,

15

Figure 5: Procedure Diagonal

Case 1: a
4 = ai,j and a4 = ai,j- 1 or ai+ 1,j, then Procedure Diamond ((0, ~), (~, ~),

(0,0): a*)

OR

Case 2: a
4 = ai,j and a4 = ai,j+ 1 or ai- 1,j, then Procedure Diamond ((0, ~), (~, ~),

(1 1) (1 1). *)
4, 4 ' 2' 2 · a

Theorem 3.1.3 Procedure Diagonal finds a local optimum of an n x n matrix in less than
2. 75n + O(log n) queries.

Proof: This procedure terminates in a Procedure Diamond iteration in either Case 1 of
Step 9 or Case 1 or 2 of Step 12. We will consider each of these in turn. The Procedure
Diamond iteration of eac~ of these steps has as input a region within an ~ x ~ diamond
matrix (within an ~ x ~ square matrix) and hence by Corollary 3.1.1 requires no more than
3
4n + O(log n) queries. The number of queries up to Step 9 is n + ~ + ~ + 12. Hence if the

procedure terminates here then the total number of queries is less than 2.5n + O(log n). If,
however, the procedure reaches Step 12 then it already has performed n + ~ + ~ + ~ + 16
queries and hence the total number is less than 2. 75n + O(log n) if the termination occurs
in either Case 1 or 2 of Step 12. 0

The problem with this algorithm is that it is not "balanced." That is, one sees that if
termination occurs in Step 9 then the total number of queries is significantly less than if
termination occurs in Step 12. Intuitively, we should balance the regions to be explored, so
that the number of queries is approximately the same regardless of where the algorithm is led.
The place where we have the leeway to do this in Procedure Diagonal is when we choose the
third query (Step 7). It was rather arbitrary that we decided to query the halfway diagonal.
With this in mind we now introduce a "generic" or parameterized algorithm that leaves as

16

parameters where the third (and later) diagonals should be queried. Then we optimize over
possible values of these parameters in order to balance the resulting regions and so minimize
the total number of queries.

We will need one subroutine that we haven't seen yet, a procedure to deal with triangles
that doesn't use Procedure Diamond directly. Instead, this algorithm iterates the ideas
within Procedure Diagonal with the parametric argument described above. Its input will be
the three corners of the triangle. It is assumed that the triangle is an isosceles right triangle.

PROCEDURE TRIANGLE ((0, 1), (0,0), (~, ~): a*)
This algorithm first queries the diagonal that is a of the way down the triangle (Procedure

Diagonal uses a= ~). This diagonal divides the triangle into a triangle and a trapezoid. If
the diagonal does not turn up a local optimum then the algorithm will either iterate on the
new triangle portion or it needs to deal with the trapezoid. Recall that Procedure Diagonal
took care of the trapezoid by dividing it into a triangle and a diamond. Here, it first cuts it
into two with a NW -SE diagonal f3 of the way from the first cut (Procedure Diagonal uses
f3 = ~). Now, since f3 doesn't necessarily equal ~' this diagonal cut divides the trapezoid
into a region that can be handled by Procedure Diamond and another trapezoid. This new
trapezoid is again divided by a NW-SE diagonal, this time 1 of the way down. Finally, this
results in two regions, one of which can be taken care of with Procedure Diamond and the
other by iterating Procedure Triangle.

Step 1: Line Query (y = x + (1- a),O ~ x < ~: a1
)

Step 2: Check (a1 : a1)

Step 3: If a 1 = a1 then STOP: a* = a 1 . Otherwise,

Case 1: a 1 = ai,j and a1 = ai,j- 1 or ai-I,j, then Procedure Triangle ((1, 0), (0, 1- a),
(a, 1- a): a*)

OR

Case 2: a
1 = ai,j and a1 = ai,j+1 or ai+1,j, then go to Step 4.

Step 4: Line Query (y:::: -x + (1- 2/3), -/3 + ~ ~ x < ~- f3: a 2
)

Step 5: Check (a 2 : a2)

Step 6: If a 2 = a2 then STOP: a* = a 2
• Otherwise,

Case 1: a 2 = a;,j and a2 = ai,j+1 or ai- 1,;, then Procedure Diamond ((~-/3, l-~-/3),
(a, 1- a),(~- /3, ~- /3), (~, ~): a*)

OR

Case 2: a2 = ai,i and a2 = ai,i- 1 or ai+1,j, then go to Step 7.

Step 7: LineQuery(y=-x+(1-2/3-2{),min(O,-~-~-~+~) ~x< ~-f3-1:a3)

Step 8: Check (a3 : a3
)

17

Figure 6: Procedure Triangle

Step 9: If a3 = a3 then STOP: a* = a3
. Otherwise,

Case 1: a3 = ai,i and a3 = ai,j+1 or ai-1,j, then Procedure Diamond ((0, 1 - a),
(~ - /3, 1 - ~ - /3), (! - /3 -I,! - /3 -I), (! - /3,! ·- /3): a*)

OR

Case 2: a3 = ai,i and a3 = ai,j- 1 or ai+1,j, then Procedure Triangle ((0, 1- a)~ (0, 0),
(! - /3 - I, ! - /3 - I): a*)

Now we will use this procedure as a subroutine to get a pararneterized form of Procedure
Diagonal. This procedes exactly like Procedure Diagonal except that once we are left with
a triangle to analyze we use Procedure Triangle rather than the unparameterized version
(which as mentioned above set a and /3 equal to ! and has no 1.)

PROCEDURE PARA-DIAGONAL (Rows(l, n) Columns(!, n): a*)

As mentioned above, this procedure starts out like Procedure Diagonal, querying the
NE-SW diagonal and then the half NW-SE diagonal. Now it is left with an isosceles right
triangle and so finishes by calling Procedure Triangle.

Step 1: Line Query (y = x,O ~ x ~ 1: a 1
)

Step 2: Check (a1
: a1

)

Step 3: If a 1 = a1 then STOP: a* = a 1
. Otherwise, without loss of generality a1 = ai,i

d -1 an a = ai-1,j or ai,j-1 ·

Step 4: Line Query (y = -x + 1, 0 ~ x ~ ! : a2
)

Step 5: Check (a2
: a2

)

18

Figure 7: Procedure Para-Diagonal

Step 6: If a 2 = a2 then STOP: a* = a2
• Otherwise, without loss of generality a2 = ai,j

d -2-an a - ai,i-I or ai,i+I·

Step 7: Procedure Triangle ((1,0), (0,0), (!,!):a*)

Theorem 3.1.4 Procedure Para-Diagonal finds a local optimum of ann x n matrix in less
than 2.5445n + O(log n) queries.

Proof: For this procedure to converge we must restrict the values of the various parameters.
We will always require that a is between ~ and !, {3 is at least ! - a, and 1 is no more
than ! -a. To analyze this, we must separately consider the four different ways that this
algorithm can terminate. These are:

1. If Case 1 is always chosen in Step 3 of Procedure Triangle;

2. At any time Case 1 is chosen in Step 6 of Procedure Triangle;

3. At any time Case 1 is chosen in Step 9 of Procedure Triangle;

4. Case 2 is chosen in Step 9 of Procedure Triangle.

First, it is clear that the largest number of queries will result in any of the three last choices
if they occur at the first possible time, i.e., the first time that step of Procedure Triangle is
encountered. Indeed, the number of queries will decrease the later they are chosen. Hence,
we will analyze the possibilities above, with options (2) - (4) understood to mean that they
actually occur at the first time that step is encountered in the first iteration of Procedure
Triangle. Since we wish to optimize over choices of parameters a, {3, and 1, we will first
symbolically write down the number of queries in parametric form and then discuss possible

19

values of these parameters. Note that the first 6 steps of Procedure Para-Diagonal require
1.5n + 8 queries. Hence, we will only analyze Procedure Triangle (with the inputs used in
Step 7 of our procedure) and at the end will add these extra queries.

1. Case 1 of Step 3 is always chosen (Procedure Triangle is iterated): Here it is straight

forward that the total number of queries is less than .5 [t~") n + 0(log n).

2. Case 1 of Step 6 is chosen: The procedure Diamond step will require less than [2(~ -
a)+,B]n+O(logn) queries by Corollary 3.1.2. The steps of Procedure Triangle leading
up to this step require [a+ (~-a)]n + 8 queries. Hence this termination option requires
less than 1.5n + [-2a + ,B]n + O(log n) queries.

3. Case 1 of Step 9 is chosen: Here the Procedure Diamond step will require less than
[21 + (~ - a)]n + O(logn) queries. The steps of Procedure Triangle leading up to
this termination option require [a+(~- a)+(~- ,8 -1)]n + 12 queries. Hence this
termination option requires less than 1.5n +[-a- ,8 + 1]n + O(logn) queries.

4. Case 2 of Step 9 is chosen: Here the triangle left to analyze requires no more than
r[~- ,8 -1]n queries where rkn is the number of queries needed by Procedure Triangle
on an isosceles right triangle with side length kn. The steps of Procedure Triangle
leading up to this step are as given in (3) above. Hence this termination option
requires less than n - ,Bn - 1n + r[! - ,8- 1]n + O(log n) queries.

As an example, consider the values of a = k, ,8 = i and 1 = k· The reader can easily
verify that these satisfy our convergence requirements stated above. These values give the
following results:

1. l.On + O(log n)

2. 1.08n + O(log n)

3. 1.08n + O(log n)

4. Using rn = 1.25n from Procedure Diagonal (the number of queries less the first two
query and check steps) above, gives . 70n + O(log n)

Using these values, we would have an upper hound of 2.58n + O(log n) queries for the
whole problem. Notice that we have almost accomplished complete balancing of the regions
here. It is probably too much to ask for to also balance the last triangular region. Next, we
discuss how to pick good values for a, ,8 and I·

In order to optimize the parameters a, ,8, and 1, we will write them each in terms of
.5T. What we will show is that the smallest possible .5T we can get using this procedure is
between 1.044 and 1.045.

20

Since we are trying to balance the different regions, what we will do is set each of the
results (I)- (3), ab<:>ve equal to .5nr. Then we will require that the quantity in (4) remains
no more than .5nr. We are suppressing the check steps and their O(log n) terms for clarity .

(I) . 5n [G] = .5nr

::::} Q [.5T] - H-2(.5T)

(2) [I.5n - 2o + ,B]n - .5nr

=> ,8 = (2~.ST}2 -1.s]
2(.5T)-f-l

(3) (1.5 - o - ,8 + 1]n - .5nr
::::} I - [4{.5T}2 -.5T-3]

2(.5T)-f-l

(4) I- ,8- 1- r[.5- ,8- 1] < .5T
and .5T > 0

This gives a third order equation to solve. The solution is .5r = 1.0445. Note that we
must also make sure that our convergence ranges on the parameters are enforced (.25 ~ a ~

.5, ,8 ~ .5-o, and 1 ~ .5- a). Checking these with the above gives the information that
1 ~ .5r ~ 1.075. Hence we are within the necessary bounds. Using this value of .5r = 1.0445
gives

Q ~ .33813532

,8 ~ .22077064

I ~ .10340596

As these satisfy all of our requirements, this is the solution. The total number of queries for
the n x n matrix is less than [1.5 + 1.0445]n + O(log n) = 2.5445n + O(log n), completing
the proof of Theorem 3.1.4. 0

3.2 Lower Bounds

Here notice that we can not use the results in Section 2.2 directly since more sophisticated
query sets may be chosen by the Player I with this adjacency structure. However, from our
discussion on diagonals in Section 3.1, Theorem 2.2.1 does immediately give the following
result.

Theorem 3.2.1 It requires at least n.Ji queries to find a local minimum of ann x n matrix.

2I

Adjacency Lower Bound Upper Bound
King 2n 3n
Grid vf2n 2.5445n

Figure 8: Queries to find a local optimum in an n x n square

4 Conclusions

4.1 Conjectures

The bounds found in Sections 2 and 3 are summarized in Figure 8 (logarithmic terms are
disregarded here). We have substantially improved on the bounds of Theorem 1.1.1, but
a gap persists for both adjacencies. In particular, we conjecture a lower bound of 3n for
the king adjacency (this would imply 3/-/2 for the grid). Neither proof of Theorem 2.2.1
applies directly to this conjecture. The first proof, at the least, would require a new strategy
for Player II. (Against the given strategy, player I can achieve close to 2n by separating
an (n - 2) x (n - 2) non-centered square from the rest of the n x n square.) To prove
the conjecture with the second method, one would show that at least 12A/ P queries are
required to find a local optimum in a region of area A and perimeter P. However, this is
false: consider a 1 x -/2 rectangle. By Corollary 2.1.2, a local minimum can be found in
2+v'2 queries. Now A= -/2, P = 2v'2+2; so (2+2-/2)P/A = (2+-/2) 2 = 11.656 ... < 12.
We do conjecture that at least 8-/2Af P queries are required to find a local optimum under
the king adjacency. We also conjecture a lower bound of 2.5n for a square matrix under the
grid adjacency.

Since completing an earlier draft of this paper, we have found that Althofer and Koschnick
[1] have independently studied the problem of local optimization on an m-dimensional grid.
Form= 2, (our grid adjacency case), their results reduce to

n2 n 1
-
4
n-+-

1
= "4- -

16
+ o(n) ~ ;(n) ~ 4n + O(logn).

It would be interesting to see if Theorems 3.1.4 and 3.2.1 could be extended to m = 3 or
more dimensions to strengthen the bounds in [1].

4.2 Related problems

Local saddlepoints are related to local optima with the grid adjacency. We say a point (i, j)
is a local saddlepoint iff

A(i ± 1,j) < A(i,j) < A(i,j ± 1),

i.e., A(i,j) is larger than its two horizontal grid neighbors and smaller than its two vertical
grid neighbors. Unlike local optima, local saddlepoints need not exist. Finding them turns
out to be more costly, as the following theorem shows.

Theorem 4.2.1 Any valid local saddlepoint algorithm requires at least nm/4 queries in the

worst case for ann x m matrix.

22

1 1 1
4 5 4 5 4 5

1 1 1
4 5 4 5 4 5

Figure 9: Adversary's matrix

saddlepoint local optimum
row-column O(n) 0(n:l)

grid 0(n 1) O(n)

Figure 10: Comparison between grid and row-column adjacencies

Proof: We play the adversary against an arbitrary valid algorithm. We let A be made of
identical 2 x 2 submatrices as shown in Figure 9 Each blank cell will have value either 3 or 7,
but we do not decide which until it is queried. With this strategy, none of the fixed cells can
be a locaf saddlepoint, and each unfixed cell is a local saddlepoint iff its value is 3. Now, as
the algorithm makes queries, we respond with the fixed value for fixed cells, and with 7 for
the unfixed cells, until the last unfixed cell is queried. Then we randomly decide on either
3 or 7. Obviously the algorithm must query all nm/4 unfixed cells to determine whether or
not a local saddlepoint exists. 0

Corollary 4.2.2 It requires 0(n 2) queries to find a local saddlepoint.

Proof: Obviously there exists a valid 0(n 2) algorithm, and the result follows. 0

In a broader context, Theorem 4.2.1 displays a nice asymmetry between grid and row
colunm adjacencies. In the row-column adjacency, a cell is adjacent to all other cells in its
row or colunm. That is, the graph has edge set

{(i,j), (i',j')} E E <=> min{li- i'l, li- /1} = 0.

A (row-column) saddlepoint is the largest in its row and smallest in its column. Bounds for
the different adjacencies are displayed in Figure 10. For the grid adjacency, saddlepoints are
more costly to find; but for the row-column adjacency, local optima are more costly. It would
be interesting to find a general reason for the opposing behavior of the two neighborhoods.

5 Acknowledgments

The authors gratefully acknowledge support from ONR grant N00014-88-K-0349 (Llewellyn)
and NSF grant 84-ECS-8451032 (Tovey). The authors also thank Adam Rosenberg and
Michael Trick for helpful discussions.

23

References

[1] I. Althofer and K. Koschnick, On the Deterministic Complexity of Searching Local
Maxima, manuscript, Universitat Bielefeld West- Germany (1989), submitted to Disc.
Appl. Math.

[2) D. Hausmann and B. Korte, Lower bounds on the worst-case complexity of some oracle
algorithms, Discrete Math. 24 (1978) 261-276.

[3) R. Lipton, D. Rose, and R. Tarjan, Generalized nested Disssection, SIAM J. Numer.
Anal. 16 (1979) 346-358.

[4] D. Llewellyn, C. Tovey, and M. Trick, Local optimization on graphs, Disc. Appl. Math.
23 (1~89) 157-178.

[5] G. Nemhauser and L. Wolsey, Best algorithms for approximating the maximum of a
submodular set function, Math. Oper. Res. 3 (1978) 177-188.

24

