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SUMMARY 

High ozone concentrations have become the major summertime air quality 

problems in China. Extensive in situ observations are deployed for developing strategies 

to effectively control the emissions of ozone precursors, i.e., nitrogen oxides 

(NOX=NO+NO2) and volatile organic compounds (VOCs). The modeling analysis of in 

situ observations often makes uses of the dependence of ozone peak concentration on NOX 

and VOC emissions, because ozone observations are among the most widely available air 

quality measurements. To extract more information from regulatory ozone observations, 

we extend the ozone-precursor relationship to ozone peak time. We find that the 

sensitivities of ozone peak time and concentration are complimentary for regions with large 

anthropogenic emissions such as China. For example, when ozone peak concentration is 

sensitive to VOC emissions but not to NOX emissions, ozone peak time is sensitive to the 

latter. The extended ozone-precursor relationships can be readily applied to understand the 

effects on ozone by emission changes of NOX and VOC and to assess potential biases of 

NOX and VOC emission inventories. These observation constraints based on regulatory 

ozone observations can complement the other measurement and modeling analysis 

methods nicely. Furthermore, we suggest that the ozone peak time sensitivity we discussed 

here to be used as a model evaluation measure before the EKMA diagram is applied to 

understand the effectiveness of emission control on ozone concentrations.  

We also make use of the extensive ozone observations in China to identify the 

resulting constraints of the nighttime mixing processes. Model simulated night-time ozone 

minima have a large low bias of up to 40 ppbv compared to the observations. We found 



 

 xv 

that the underestimated night-time vertical mixing over the urban areas is the most 

plausible explanation for the widespread high-level nocturnal ozone surface concentrations 

in China. Enhanced night-time vertical mixing from the surface to 200-500 meters in urban 

areas is necessary for the model to reproduce the observed surface ozone. The 

underestimate night-time vertical mixing strength likely reflects the rapid urbanization of 

industrialized eastern China. 

Photolysis of oxygenated volatile organic compounds (OVOCs) produces a 

primary source of free radicals, including OH and inorganic and organic peroxyl radicals 

(HO2 and RO2), consequently increasing photochemical ozone production. The 

amplification of radical cycling through OVOC photolysis provides an important positive 

feedback mechanism to accelerate ozone production. This amplifier effect is most 

significant in regions with high nitrogen oxides (NOX) and VOC concentrations such as 

Wangdu in China. Using a 1-D model with in-situ observations at Wangdu and the Master 

Chemical Mechanism, we find that ozone oxidation from RO2 is comparable to HO2 and 

that the condensed 3-D model mechanism severely underestimates the OVOC amplifier 

effect and the resulting enhancements in the production of peroxyl radicals and ozone. 

Current 3-D modeling assessments of surface and boundary oxidation capacity and ozone 

control strategies are therefore also biased, underestimating the effects of anthropogenic 

and biogenic VOCs in polluted regions. 

Empirical fitting of high-resolution satellite composite data of nitrogen dioxide 

(NO2) provides a valuable method for estimating city-scale NOX emissions. However, the 

uncertainties, such as those from the satellite sampling process, have not been 

systematically assessed. After analyzing the method uncertainty with idealized city plume 



 

 xvi 

data, we make use of the simulation results from a 4-km CMAQ model simulation of 

megacity clusters in the Yangtze River Delta (YRD) region and generate synthetic datasets 

through resampling using the orbits and pixels of the Ozone Monitoring Instrument (OMI) 

and the TROPOspheric Monitoring Instrument (TROPOMI). As such the emission 

properties of the datasets are known. We then apply the exponentially modified Gaussian 

(EMG) fitting method to estimate the emissions using the original 4-km NO2 columns as 

well as the resampled NO2 columns to understand the factors contributing to emission 

estimate uncertainties in this method. The analysis of idealized Gaussian city plumes shows 

the orientation dependence of the low bias in NOX emission estimates due to the sampling 

bias of the coarse-resolution OMI pixels. This OMI sampling bias is reproduced using the 

synthetic dataset based on the 4-km CMAQ simulation. Based on the two city cases we 

studied, we suggest using a range of integral distance from 100 to 200 km and find the 

maximum NOX emission estimate as the optimal value when the integral distance is not 

known. Overall, our analysis shows that the EMG fitting method can be applied to OMI 

and TROPOMI observations to examine city-scale emission trends, although factors such 

as the size of the city emission, the emission dependence on the cross-section integral 

distance, and background interference need to be investigated. 
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CHAPTER 1. INTRODUCTION 

Ground-level ozone is a secondary atmospheric pollutant that damages human and 

vegetation health (U.S. EPA, 2013). The chemical production of ground-level ozone 

involves the photochemical reactions between nitrogen oxides (NOX = NO + NO2) and 

volatile organic compounds (VOCs) (Seinfeld et al., 2016). China is experiencing high 

levels of ozone due to high precursor emissions in association with rapid urbanization and 

industrialization in past decades (Wang et al., 2017; Zhao et al., 2013). In this fast-changing 

environment, a better understanding of the ozone formation process, as well as accurate 

estimations of the ground-level ozone and its precursors, are sorely needed for effective 

pollutant control measures.  

In this thesis, I focus on extending the current knowledge of the relationship between 

ozone production and precursor emissions, using modeling simulations coupled with 

extensive in situ observations in China. In CHAPTER 2, I extend the current relationship 

between peak ozone concentration and precursor emissions to peak time and use the ozone 

measurements in China cities as constraints to diagnose the NOX and VOC emissions as 

well as the nighttime mixing height. In CHAPTER 3, I use box and 1-D models to 

investigate the local radical activities in a small town in North China Plain based on 

observations from a field campaign and find that the current 3-D model with simplified 

mechanism underestimate the RO2 production from the intermedia oxygenated volatile 

organic compounds (OVOCs), leading to an underestimation of the effects of VOCs and 

NOX emissions on ozone production. In CHAPTER 4, I test the uncertainty of the current 

empirical fitting method of NOX emissions from satellite observations, using both a 
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generated ideal plume and plumes from simulations. I find that the accuracy of the fitting 

method largely depends on the cross-section integral distance. The findings and future 

work perspectives will be organized in CHAPTER 5. 

1.1 Ozone-precursor relationship 

In the troposphere, over 90% of the ozone is due to chemical production globally 

(Hu et al., 2017; Young et al., 2013). The production of ozone involves the photolysis of 

the nitrogen dioxide (NO2) that produces oxygen atoms (O) and nitrogen monoxide (NO). 

The oxygen atoms then react with oxygen molecules and produce ozone (O3) (R1.1, R1.2). 

The NO can destruct O3 by fast reactions, which is often referred to as the titration effect 

(R1.3).  

 NO2 + ℎ𝜈 → NO + O (R1.1) 

 O + O2 → O3 (R1.2) 

 NO + O3 → NO2 + O2 (R1.3) 

 (R1.1-R1.3) form a null cycle that would not yield ozone. However, when the carbon 

monoxide (CO) or hydrocarbons (RH) exist in the atmosphere, they will react with the OH 

radical produced from the photolysis of O3 and form peroxyl radicals (HO2 or RO2) through 

(R1.4-R1.7). 

 O3 + ℎ𝜈 → O( 𝐷 
1 ) (R1.4) 

 O( 𝐷 
1 ) + H2O → 2OH (R1.5) 
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 OH + CO + O2 → HO2 + CO2 (R1.6) 

 OH + RH + O2 → RO2 + H2O (R1.7) 

The HO2 and RO2 can oxidize NO into NO2, causing a net production of O3 and 

forms oxygenated volatile organic compounds (OVOCs) (R1.8-R1.10). The OVOCs can 

react with OH in a way similar to the hydrocarbons, but they can also provide a secondary 

source of the peroxyl radicals through photolysis (R1.11, R1.12). 

 HO2 + NO → OH + NO2 (R1.8) 

 RO2 + NO → RO + NO2 (R1.9) 

 RO + O2 → R′CHO + HO2 (R1.10) 

 R′CHO + OH + O2 → R′C(O)O2 + H2O (R1.11) 

 R′CHO + ℎ𝜈 + 2O2 → R′O2 + CO + HO2 (R1.12) 

Although both NOX and VOCs are ozone precursors, the relationship between the 

ozone concentration and the precursor emissions is highly non-linear due to the contradict 

character of NOX in ozone production. A high level of NO2 would exhaust OH radicals by 

(R1.13) and halt the oxidation of VOCs.  

 NO2 + OH → HNO3 (R1.13) 

The relationship between ozone production and ozone precursor emissions has been 

well studied as it is an important factor in establishing effective ozone control strategies 
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(Blanchard et al., 2001; Geng et al., 2008; Jimenez et al., 2004; Parra et al., 2009; Ren et 

al., 2013; Zhao et al., 2009a). Under high VOC/NOX emission ratios, the ozone is much 

more sensitive to NOX emissions than VOC emissions, thus called a NOX-limited regime. 

Increasing NOX emissions will enhance ozone production dramatically, while increasing 

VOC emissions will yield a limited increase in the ozone production rate. Under low 

VOC/NOX emission ratios, the ozone is more sensitive to VOC emissions than NOX 

emissions, thus called a VOC-limited regime. Increasing VOC emissions will significantly 

enhance ozone production while increasing NOX emissions will lower the ozone 

production rate. In between the above two regimes, ozone can be sensitive to both 

emissions and is often referred to as the transition regime. The ozone-precursor relationship 

can be critical for policymakers, for example, reducing NOX emission will lead to an 

enhancement of ozone if the local emissions locate in the VOC-limited regime. 

1.2 Ozone pollution in China 

China has been experiencing aggravating air pollution problems due to high 

precursor emissions in association with rapid urbanization and industrialization (Duncan 

et al., 2016; Lin et al., 2013; Wang et al., 2017; Zhao et al., 2013). In 1996, China set the 

first ambient air quality standard, regulating ozone and other eight critical atmospheric 

pollutants. The particular matters (PM) are the most urgent air quality problems in China 

for decades (Ma et al., 2015; Xie et al., 2016), while the control policy of the PM also 

affects ozone concentration by regulating NOX emissions. From 2013 to 2017, the emission 

of NOX has decreased by 21%, and the MDA8 ozone concentrations increase by 10-20% 

during the same period under a stable VOC emission (Zheng et al., 2018; Ma et al., 2016).  
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The increasing summertime ozone levels in the cities raise concerns about possible 

health issues. From June to July 2005, the maximum hourly ozone levels in Beijing reached 

286 ppbv, four times the EPA ozone standard of 70 ppbv, and in one-third of the days, the 

ozone level exceed 120 ppbv (Wang, T. et al., 2006). Before 2012, the ozone observations 

in China are sparsely measured and extensive measurements are necessary for the analysis 

of ozone pollution in China. In 2012, the China Ministry of Ecology and Environment 

revised the maximum daily 8-h average ozone (MDA8 O3) to 160 µg m-3 (~75 ppbv) and 

started to build the China National Environmental Monitoring Center (CNEMC) network. 

In 2013, the network system reports hourly real-time data of six criteria pollutants (O3, CO, 

NO2, SO2, PM2.5, and PM10) and air quality index (AQI) from 450 sites in 74 cities. In 

2020, the network has expanded to >1600 sites in 366 cities. 

The data from CNEMC revealed the severe ozone pollution problem during 

summertime in China. In July 2017, for example, in the 364 cities with available 

observations, 65% of the cities have MDA8 O3 exceeds the air quality standard of ozone 

for at least one day, and in 5 of the cites, the MDA8 O3 exceeds the standard for longer 

than 20 days. Figure 1.1 shows the monthly average of the MDA8 O3 in July 2017. High 

levels of ozone spread over the country, especially in the North Central Plain (NCP) region, 

the Yangtze River Delta (YRD) region, and the Sichuan Basin. Researches have also found 

that from 2013 to 2017, the ozone has been increasing by 1-3 ppbv yr-1 in both urban and 

background regions in China (Gao et al., 2017; Li et al., 2016). The enhancement of ozone 

levels indicates a strong chemical nonlinearity impact that lower NOX emissions can lead 

to higher ozone concentrations. Meteorology conditions and less active heterogeneous 

activities due to lower aerosol surface concentration may also contribute to the 
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enhancement of ozone (Lou et al., 2014; Ding et al., 2019). Control measurements for 

ozone are urgently needed, and a better understanding of the ozone production process is 

necessary. 

 

Figure 1.1 The monthly averaged maximum daily 8-h average (MDA8) ozone 

concentration in July 2017 over 364 cities in China 

1.3 Chemical Transport Model 

The Chemical Transport Models (CTMs) has been widely adopted to simulate the 

atmospheric photochemistry processes, to investigate the emissions and concentrations of 

air pollutants, and to determine the optimal pollutant control measure and predict the 

possible outcome. In this thesis, we adopted the Regional chEmical transport Model 

(REAM) for regional analysis, and we developed a box and a 1-D model for studies on 

local chemistry. 

1.3.1 3-D REAM 
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The framework of the 3-D REAM is illustrated in Figure 1.2. The 3-D REAM has 

been widely used in studies over North America, East Asia, and other regions (Gu et al., 

2014; Liu et al., 2012b, 2014; Wang, Y. et al., 2006, 2007; Xu et al., 2018; Zeng et al., 

2006; Zhang et al., 2016; Zhang R. et al., 2017, 2018; Zhao et al., 2009b). The horizontal 

resolution of the model is 36 km with 30 vertical layers in the troposphere with timestep 

of 1 hour. Meteorological data are obtained from the Weather Research and Forecasting 

model (WRF 3.6) assimilations constrained by the National Centers for Environmental 

Prediction Climate Forecast System Version 2 (NCEP CFSv2) products (Saha et al., 2013). 

The initial and boundary conditions for chemical tracers are obtained from the GEOS-

Chem model (v9-02) (Bey et al., 2001). The chemistry mechanism extends the GEOS-

Chem chemistry mechanism with reactions involving aromatics, ethylene, and acetylene. 

The Multi-resolution Emission Inventory for China (MEIC) emissions for the year 2012 

are adopted in the model for anthropogenic emissions of NOX, VOCs, and CO (Zhang et 

al., 2009). The emissions are scaled by the diurnal ratio taken from the National Emissions 

Inventory (NEI), and there is no weekday-to-weekend variation. Biogenic emissions of 

isoprene are calculated using the Model of Emissions of Gases and Aerosols from Nature 

(MEGAN v2.1) (Guenther et al., 2012). Figure 1.3 shows the domain of the WRF and 

REAM model.  
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Figure 1.2 General structure of the 3-D REAM model 

 

Figure 1.3 Domain of the WRF model and the REAM 

1.3.2 Box and 1-D models 

We developed a box model based on the chemical solver from REAM to simulate 

ozone with local chemistry. The time step of the box model is one minute. The box model 

is assembled with replaceable chemistry mechanisms. In this thesis, we adopt two 

mechanism: a simplified mechanism taken from REAM (i.e. the GEOS-Chem v9.02 
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mechanism with extends of aromatics, C2H4, and C2H2) and an explicit mechanism of the 

Master Chemical Mechanism (MCM 3.3.1) (Jenkin et al., 1997; Saunders et al., 2003; 

Jenkin et al., 2003; Bloss et al., 2005; Jenkin et al., 2012; Jenkin et al., 2015). We also 

extend the two mechanisms with chlorine related reactions, and the detailed description 

can be found in Appendix A. The NOX and VOCs in the model can either use constraints 

from observations or specified by emission rates. The meteorology parameters, including 

temperature, pressure, water vapor concentrations, use the in situ observed values or 

simulation results from the WRF model if observations are not available. We assume that 

the box model represents the well-mixed boundary layer, so the height of the model and 

the boundary conditions use corresponding value simulated from 3-D REAM unless 

otherwise specified.  

The 1-D model assembles a series of the box model vertically with the same vertical 

settings in 3-D REAM. The observed constraints are applied to the ground layer of the 1-

D model. The meteorology parameters use the simulations from the WRF model and are 

constrained by the observations in the ground layer.  
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CHAPTER 2. OZONE-OBSERVATION DERIVED EMISSION 

AND NIGHTTIME MIXING CONSTRAINTS IN CHINA: 

DAYTIME PEAK TIME AND NIGHTTIME MIXING 

2.1 Introduction 

As we discussed in Chapter 1, the ground-level ozone is a secondary air pollutant 

that harms human and vegetation health, and high-level ozone frequently occurs in summer 

in large cities where power plants and vehicles emit large quantities of ozone precursors, 

i.e., NOX and VOCs. Parra et al. (2009) and Blanchard et al. (2001) have found that in 

urban areas, due to heavy traffic, NOX emissions often exceed VOC emissions by a large 

extent and locate in the VOC-limited regime. However, in China megacity clusters, ozone 

production is usually found in the transition regime, and the ozone production rate can be 

sensitive to both NOX and VOC emissions (Jin et al., 2015; Li et al., 2013; Liu et al., 2012a; 

Ran et al., 2009; Xing et al., 2011).  

The daily pattern of ozone concentration reflects the dynamic balance among 

chemical production and loss, deposition process, and transport processes (Zhang Y. et al., 

2016; Bloomer et al., 2010). In the daytime, ozone reaches its daily peak due to 

photochemical production in the afternoon. At night, the ozone chemical production is 

negligible, and due to the titration effect by NO emissions in a stable nocturnal boundary 

layer in urban regions, ozone concentrations can be extremely low (Nolle et al., 2002; 

Simon et al., 2014).  
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A commonly used ozone-precursor relationship is the dependence of peak 

concentration of daytime ozone on NOX and VOC emissions, which is also known as the 

empirical kinetic modeling approach (EKMA) diagram (e.g., Ashok et al., 2016; Kinosian 

et al., 1982; Tao et al., 2018). In this study, we extend the ozone-precursor relationship to 

ozone peak time and investigate the potential of using extensive ozone observations in 

China to improve observation constraints on model simulated ozone-precursor 

relationships (Li J. et al., 2019). We use the observations of ozone in July 2014 as an 

example to demonstrate this potential. We show that ozone peak time’s dependence on 

NOX and VOC emissions offers new constraints on the emissions that are different from 

those placed by the observed peak concentrations. Therefore, the discrepancies between 

simulated and observed ozone peak time and peak concentrations can be applied to 

understand the biases in ozone precursor emission inventories and provide pertinent 

guidance on adjusting model-based emission control strategies. We also investigate the 

reasons for a consistent low bias in model simulated nighttime ozone concentrations 

compared to the observations. 

2.2 Data and Methods 

2.2.1 The CNEMC network 

As introduced in Chapter 1, CNEMC has established ambient atmosphere quality 

monitoring networks across the country since 2013, reporting hourly real-time data of six 

criteria pollutants (O3, CO, NO2, SO2, PM2.5, and PM10) and air quality index (AQI) in 

cities online (http://www.cnemc.cn). Recent studies have been using the data for analyzing 

the current air quality issues (Li, K. et al., 2019; Liu, H. et al., 2018; Lu et al., 2018). In 
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this work, we analyzed the hourly surface ozone observations from 861 sites in 189 cities 

for July 2014. For each site, we remove all the data that are higher than 4 times the monthly 

average of 3-hour running mean data for the hour of the observations. We then group the 

data by the hour of the observation and apply Tukey’s fences to remove outliers. 

Specifically, we remove the outlier data which are outside the range of Q1-k(Q3-Q1 ) and 

Q3+k(Q3-Q1 ), where Q1 and Q3 are the 25th and 75th quartiles, respectively, and k=1.5 

(Tukey, 1993). A total of 2.3 % of the measurement data are removed. We compute the 

city averages based on the observations at all sites in a city. The peak time of ozone is 

converted to local sun time base on the longitude of the city. 

2.2.2 The 3-D REAM model 

In this study, we use the 3-D REAM model to analyze the regional distribution of 

the ozone and the sensitivity of ozone peak concentration and peak time to NOX and VOC 

emissions. The detailed description of the 3-D REAM model is in Chapter 1. We run the 

model for July 2014, the same period as the data we used. The model is spun up for 10 

days for initialization. 

The box model is also used for simulating the ozone peak concentration and peak 

time under a broad range of NOX and VOC emissions. The meteorological, physical, and 

chemical parameters including temperature, pressure, water concentration, boundary layer 

height, photolysis rates, deposition rates, and aerosol surface area are averaged hourly for 

city grid cells with surface ozone observations. Advection transport is specified with a 

lifetime of 5.3 hours, corresponding to an average city scale of 100 km and an average 

wind speed of 5.2 m s-1. Hourly background concentrations for ozone are set at the 5th 



 

 13 

percentile value of the observations. Each simulation is run until a steady-state when the 

differences in ozone peak concentration and time converge to a difference of < 1 % from 

the previous day. A total of 400 simulations were conducted for NOX emissions ranging 

from 0-4.5×1016 molecules m-2 s-1 and VOC emissions ranging from 0-1.4×1017 molecule 

m-2 s-1 by carbon. The upper limits of NOX and VOC emissions correspond to 3 times of 

average MEIC emissions for the cities with surface ozone observations. 

2.3 Results 

2.3.1 Correlations of O3 Peak Concentration and Time to NOX and VOC Emissions 

The ozone-precursor relationships to be studied can be simply illustrated by the 

correspondence of ozone peak time and concentration to NOX and VOC emissions in 

China. Figure 2.1a and Figure 2.1b show the correlations between ozone peak 

concentration and NOX and VOC emissions, respectively. The correlation coefficients of 

ozone peak concentration with NOX and VOC emissions are comparable at 0.54 and 0.53, 

respectively. In small cities with NOX emissions <1×1015 molecules m-2 s-1, the transport 

processes dominate the concentrations of ozone and its precursors, and we remove these 

four sites (3 %) to focus on the effects of local ozone photochemistry. Figure 2.1c shows 

that the observed ozone peak time highly correlates with MEIC NOX emission (R = 0.75) 

in the cities with strong NOX emissions (>1×1015 molecules m-2 s-1). The ozone peak time 

delays from 1-2 pm to 5-6 pm as the NOX emissions increase from 1×1015 molecules m-2 

s-1 to 1×1017 molecules m-2 s-1. The ozone peak time is also correlated with VOC emission 

with an R-value of 0.56 (Figure 2.1d). Figure 2.1 implies that the EKMA-type relationship 
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between ozone peak concentration and its precursor emissions may be extended to ozone 

peak concentration in China. 

 

Figure 2.1 Observed ozone peak concentration and time as a function of NOX and 

VOC emissions in the MEIC inventory, respectively, for July 2014. The pink 

triangles denote urban regions with NOX emissions < 1015 molecules m-2 s-1, which 

are excluded from this study. The red line is a least-squares regression for urban 

regions with NOX emissions > 1015 molecules m-2 s-1. 

2.3.2 Modeling Analysis of the Observations 

The observed and simulated distribution of maximum daily 8-h average (MDA8) 

ozone concentrations in the cities are evaluated in Figure 2.2a. The mean simulated ozone 

concentration over the city grid cells is 57 ± 12 ppbv, which is comparable to the observed 

53 ± 13 ppbv, with an overall correlation coefficient of 0.72. To understand regional 

characteristics, we grouped the data into six regions by economic development and 
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topography (Figure 2.2b): North Central Plain (NCP), Northeast (NE) region, Yangtze 

River Delta (YRD), Northwest (NW) region, Southwest (SW) region, and Pearl River Delta 

(PRD). Table 2.1 summarizes the regional statistics. The observed mean MDA8 ozone 

concentrations range from 41 to 64 ppbv in the six regions. The highest mean ozone 

concentration occurs in the NCP region, and the lowest mean concentration occurs in the 

PRD region. The model results differ from the observations by 0-13 ppbv in the six regions 

and the correlation coefficients between observed and simulated ozone range from 0.61 to 

0.81.  

 

Figure 2.2 Panel (a) shows the simulated (background) and observed (circle) 

maximum daily 8-h average ozone (MDA8 O3) concentrations for July 2014. Panel 

(b) shows the 6 regions: Northwest (“NW”, orange), North China Plain (“NCP”, 

red), Northeast (“NE”, green), Southwest (“SW”, purple), Pearl River Delta 

(“PRD”, blue), and Yangtze River Delta (“YRD”, yellow). 
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Table 2.1 Statistics of observed and simulated means and standard deviations 

(ppbv) of MDA8 ozone in 6 regions for July 2014. 

 NCP NE NW PRD YRD SW Overall 

Observations 64±9 56±9 55±11 41±11 52±8 43±12 53±13 

Simulations 64±8 59±9 55±6 42±6 58±12 56±14 57±12 

Correlation coefficient  0.61 0.78 0.72 0.81 0.62 0.67 0.72 

 

To further investigate the relationships of ozone peak concentration and time with 

NOX and VOC emissions, we conduct two series of sensitivity tests: (1) NOX emissions 

changing from -50 % to +50 % with an increment of 10 %, and (2) VOC emissions 

changing from -50 % to +50 % with an increment of 10 %. Figure 2.3 shows the monthly 

mean results of the sensitivity simulations in comparison with the observations. VOC 

emissions enhance the ozone peak concentration nearly linearly, while the NOX emissions 

affect the ozone peak concentration differently. In the NW and SW regions, the ozone peak 

concentration increases with NOX emissions, but the sensitivity decreases with increasing 

NOX emissions. The peak ozone and NOX emission relationship is no longer monotonic in 

the other four regions. While increasing NOX emissions decrease the ozone peaks, 

decreasing NOX emissions eventually also decrease the ozone peaks, but the turnover 

points are shifted to the left in the NCP, YRD, and NE regions. The sensitivity results of 

the ozone concentration to the emissions agree with previous studies (Li et al., 2013; Xing 

et al., 2011). 
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Figure 2.3 Sensitivities of ozone daily peak concentration and peak time to VOCs 

and NOX emissions in the 6 regions for July 2014. The black open circles and lines 

show the observed peak averages and the corresponding standard deviations. The 

open circles at the intersection of the red and blue lines denote the standard 

simulation results. The red lines with solid dots show the sensitivities to NOX 

emissions (“NOX Sens”); the blue lines with solid dots show the sensitivities of VOC 

emissions (“VOC Sens”). (+) and (-) denote increase and decrease of emission in the 

model, and each dot denotes an increment or decrement of 10% in emissions. 

Sensitivities up to plus or minus 50 % are shown. 

 

In contrast to the complex ozone peak concentration sensitivities to NOX emissions, 

the sensitivities of ozone peak time to NOX and VOC are monotonic. Increasing NOX 

emissions delays the ozone peak time while increasing VOC emissions advances the ozone 

peak time in all 6 regions. For the same 50% change of emissions, the effect of NOX is 

larger than VOCs, which partly explains the higher correlation coefficient between ozone 

peak time and NOX emissions than those between ozone peak time and VOC emissions or 

for ozone peak concentration. 



 

 18 

The monotonic sensitivities of ozone peak time to NOX and VOC emissions 

compared to the more complex response of ozone peak concentration to emissions imply 

that the observations of ozone peak time provide good constraints on model simulations 

other than the observations of ozone peak concentration. It is only because the ambient 

ozone standard is based on concentrations that the observations of ozone peak time are 

usually not applied to evaluate model simulations. A further useful property of the 

simulated ozone peak time is that the impact of changing NOX and VOC emissions 

concurrently by 50 % are nearly additive (Figure 2.4): the change of ozone peak time in a 

simulation of changing NOX and VOC emissions by 50 % concurrently is close to the sum 

of the simulated changes of changing NOX or VOC emissions by 50 % alone. This additive 

effect does not exist in the ozone peak concentration simulations due to chemical 

nonlinearity (Figure 2.5), suggesting that the observed and simulated sensitivities of ozone 

peak time are easier to interpret than ozone peak concentration in urban regions of China. 
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Figure 2.4 The sensitivities of simulated ozone peak time to NOX and VOC emissions 

for July 2014. N+: increase NOX emissions by 50%, N-: decrease NOX emissions by 

50%, V+: increase VOC emissions by 50%, V-: decrease VOC emissions by 50%, 

N+V+: increase both NOX and VOC emissions by 50%, N-V-: decrease both NOX 

and VOC emissions by 50%, N+V-: increase NOX emissions by 50% and decrease 

VOC emissions by 50%, N-V+: decrease NOX emissions by 50% and increase VOC 

emissions by 50% 
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Figure 2.5 Same as Figure 2.4 but for ozone peak concentration 

 

We examine in more detailed chemical processes leading to these sensitivity 

results. The chemical production of ozone is due to the oxidation of NO by the hydroperoxy 

(HO2) radicals or organic peroxy (RO2) radicals. Peroxy radicals are mostly produced from 

the reactions of VOCs with OH. Photolysis of oxygenated VOCs (OVOCs) is also a large 

primary source of peroxy radicals in polluted urban regions. The reaction of OH with NO2 

is a large sink of radicals and NOX (Liu et al., 2012a). The sensitivities of OH, HO2+RO2, 

NOX, and the rates of OVOC photolysis, the reaction rate of OH and NO2, and chemical 
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production rate of O3 (pO3) to 50% changes of NOX or VOCs are shown in Figure 2.6. The 

sensitivity results show that NOX and VOC emissions affect ozone peak concentration and 

peak time in different ways. A 50% increase of NOX emissions increases the radical sink 

through the reaction of OH and NO2, suppressing radical concentrations. The net effect is 

a decrease in ozone production and peak ozone concentration. A 50% decrease of NOX 

emissions has the opposite consequence. The radical suppressing effect by an increase of 

NOX is larger in the early morning when the primary radical source is smaller than at noon. 

As a result, the ramping up of ozone production is delayed, and the ozone peak time is 

later. A 50% increase of VOC emissions increases HO2 and RO2 concentrations but does 

not affect NOX concentrations as much, thereby increasing ozone production and peak 

concentrations. The effect of VOC emissions on ozone peak time is largely due to the 

photolysis of OVOCs, which peaks at noon, while ozone peak time is in mid-afternoon 

(Figure 2.3). A 50% increase of VOC emissions increases OVOC photolysis, shifting HO2 

and RO2 concentration peak towards noon and making ozone peak time occur in earlier 

afternoon. Similarly, a 50% decrease of VOC emissions delays ozone peak time. 
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Figure 2.6 Sensitivities of OH, HO2+RO2, NOX, and the rates of OVOC photolysis, 

the reaction rate of OH and NO2, and pO3 to 50 % changes of NOX or VOCs at 

urban sites in this study for July 2014. The black lines are the results from the 

standard model; the red dashed lines show the results from a 50 % increase of NOX 

emissions; the red dotted lines show the results from a 50 % decrease of NOX 

emissions; the blue dashed lines show the results from a 50 % increase of VOCs 

emissions; the blue dotted lines show the results from a 50 % decrease of VOCs 

emissions. 

 

2.3.3 Isopleth Diagram for Ozone Peak Time 

The EKMA isopleth diagram for the sensitivity of ozone to NOX and VOC 

emissions has been widely used (Ashok et al., 2016; Kinosian et al., 1982; Tan et al., 2018). 

We use the 0-D box model to compute the EKMA-type diagrams for ozone peak 

concentration and time for the urban regions of China in this study. Averaged hourly 

regional transport time, deposition rates, background concentrations, wind speed, and 

boundary layer height are included to simulate the effect of advection, mixing, and 
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deposition. The results provide qualitative guidance on understanding the 3-D model 

results discussed previously. 

Figure 2.7 shows the sensitivity diagrams. The peak ozone sensitivity diagram is as 

expected. Under high NOX and low VOC emissions, peak ozone concentration increases 

with increasing VOC and decreasing NOX emissions, although the VOC sensitivity is much 

higher than NOX. Hence it is often referred to as the VOC-limited regime. Under low NOX 

and high VOC emissions, which is often referred to as the NOX-limited regime, peak ozone 

concentration increases with increasing NOX emissions rapidly but is insensitive to VOC 

emissions. In the transition regime (near the NOX to VOCs (N:C) emission ratio of 1:3 in 

Figure 2.7), peak ozone concentration increases with increasing NOX or VOC emissions. 

If the N:C emission ratio increases (to the lower right of the N:C ratio of 1:3), the sensitivity 

of peak ozone concentration to VOC emissions increases while the sensitivity of peak 

ozone concentration to NOX emissions turns from positive to negative. 

 

Figure 2.7 EKMA-type diagrams for the sensitivities of ozone peak concentration 

and time reacting to NOX and VOC emissions simulated in the box model. The 
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range of NOX and VOC emission increments covers up to 3 times of average urban 

emissions in model grid cells with urban surface ozone observations 

 

On average, the urban regions in China fall into the transition regime: the behaviors 

of the ozone peak concentrations in the NW and SW regions are centered in the transition 

regime while the other regions lean towards the side of the transition regime with higher 

NOX to VOC (N:C) emission ratios. Figure 2.7 shows that the sensitivity of ozone peak 

time in the vicinity of the transition regime is quite consistent. Increasing NOX emissions 

or decreasing VOC emissions delays ozone peak time, in qualitative agreement with 3-D 

model simulation results. The reasons can be understood in Figure 2.6. For polluted urban 

regions, increasing NOX emissions or decreasing VOC emissions has a similar effect of 

shifting the peak of peroxy radicals towards the afternoon and resulting in a later peak time 

of ozone. The former is due to an increase of the primary radical loss through the reaction 

of OH and NO2, and the latter is due to a decrease of the primary radical source through 

the photolysis of OVOCs. As the N:C emission ratio continues increasing to be > 1:2 (lower 

right), ozone peak time is moved earlier by increasing NOX emissions as peak ozone 

concentration decreases, while it is delayed by increasing VOC emissions as peak ozone 

concentration increases. In this regime, OH, ozone production, and chemical reactivity 

become increasingly suppressed by the reaction of OH and NO2. Increasing VOC 

emissions decreases the effect of the reaction of OH and NO2 since the fraction of OH 

reacts with VOCs would increase, and decreasing NOX has a similar effect. When the N:C 

emission ratio continues to decrease from the 1:3 line (upper left), ozone peak time 

becomes less sensitive to NOX and VOC emission. In the highly enriched VOC emission 
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regime, the peroxy radicals are not as sensitive to NOX emissions as in the transition or 

high NOX regime. 

2.3.4 Diagnosing Potential Regional Emission Biases 

The extended ozone-precursor relationships of Figure 2.7 can be applied to 

understand the implications of the observed changes in ozone peak time and concentration. 

For example, we would expect to see corresponding changes when urban emissions of NOX 

or VOCs in a region decrease due to air quality control measures. The qualitative diagrams 

of Figure 2.7 provide quick guidance on the effectiveness of the control measures, and 

quantitative assessments can be carried out with modeling results (Figure 2.3). Here we 

illustrate the use of Figure 2.3 to understand potential problems in the emissions NOX or 

VOCs in the model. More detailed analysis is recommended particularly with respect to 

more thoroughly understanding the model uncertainties. Figure 2.3 shows that the 

simulation results are very close to the observations for the NW and NCP regions, implying 

good emission estimation, consistent with previous studies (Guo et al., 2019; Li et al., 

2018). For the NE region, the model overestimates the observed ozone peak value and an 

early ozone peak time. To correct for both biases, the best solution is to increase NOX by 

50%. For the SW region, the ozone peak time is well simulated, but the ozone peak 

concentration is overestimated. The former dictates that a decrease of NOX emissions must 

be accompanied by a decrease of VOC emissions since decreasing one alone would lead 

to a bias in simulated ozone peak time and reducing both emissions is optimal (Figure 2.5).  

Previous research suggested that MEIC may overestimate VOC emissions for 67% in 

Sichuan province in the SW region, consistent with our results (Zhou et al., 2019). For the 

PRD region, the model-observation difference is within the variability of the observed data.  
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For the YRD region, the model estimates a higher peak concentration and an earlier peak 

time than the observations. These biases can be corrected by either increasing NOX 

emissions or reducing VOC emissions. Since previous studies found overestimations of 

NOX emission (Kong et al., 2019; Wu et al., 2017; Zhang L. et al., 2018; Zhao et al., 2018), 

the simulation results of Figure 2.3 indicate that VOC emissions are also overestimated. 

The potential biases in the emissions discussed here need other methods such as direct 

measurements of NOX and VOC concentrations or emissions to corroborate. 

2.3.5 Uncertainty 

For urban regions of China, Figure 2.7 qualitatively explains the additional 

information obtained by extending the ozone-precursor relationships from peak 

concentration to peak time. In and around the transition regime, ozone peak time is 

sensitive to both NOX and VOC emissions, and its sensitivity to NOX emissions is much 

more straightforward than that of peak ozone concentration. There are uncertainties of 

using the ozone-precursor relationships, which apply for the previously established ozone 

peak concentration as well as ozone peak time discussed here. One caveat is that the 

observations of ozone are reported every hour. When comparing model results to the 

observations, hourly data are also used. Assuming that the precision error follows a 

Gaussian distribution with a 95th percentile range of 1 h. For N observations, the 

uncertainty is therefore 0.25 √𝑁⁄  h. For a city, one-month data have a precision uncertainty 

of 0.045 h. Since we considered regional data and the number of cities for each region is 

>16, the precision uncertainty of ozone peak hour is <0.011 hr, which is negligible 

compared to the standard deviations. The precision of ozone peak time and concentration 

can be improved by increasing the observation frequency from every hour to every 10 min, 
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which can be easily achieved with today’s technology. The same frequency must also be 

used for model data. 

There are other factors to be considered which introduce uncertainties. The standard 

deviation of the observed regional ozone peak concentrations is ~3 ppbv, similar to 

previous studies for longer periods (Li K. et al., 2019; Lu et al., 2019). The model simulated 

ozone systematic uncertainties are difficult to assess due in part to nonlinear chemistry (Liu 

et al., 2012a). Previous studies mostly focused on ozone peak concentrations. In Mexico 

City, diurnal patterns of NOX and VOC emissions can affect ozone peak concentrations by 

up to 17 % (Ying et al., 2009). If we remove the diurnal variations of NOX and VOC 

emissions, the largest effects occur in the NCP, NE, and PRD, where ozone peak time is 

delayed by ~0.25 h, and ozone peak concentration decreases by 0.5 and 1 ppbv in NCP and 

YRD regions, respectively (Figure 2.8). The dry deposition also affects surface ozone 

(Zhao et al., 2019). Increasing or decreasing dry deposition rate by 10% does not affect 

simulated ozone peak time but changes ozone peak concentrations by up to 2 ppbv (Figure 

2.9). Meteorology factors can also influence ozone concentrations (Hu et al., 2010; Lin et 

al., 2008), and dedicated studies are required. In general, the regional and monthly averages 

used in this study are less sensitive to meteorological biases than considering a single city. 
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Figure 2.8 Same as Figure 2.3 with and extra case for removing the diurnal cycle of 

the emissions, marked as yellow dot. 

 

Figure 2.9 Same as Figure 2.3 with two extra cases for 10% enhancement and 10% 

reduction of the dry deposition rate of ozone, marked as green triangular pointing 

upward and downward separately. 

2.3.6 Nighttime mixing 
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Figure 2.10 compares the monthly mean of the nighttime ozone concentration (8 

PM to 8 AM) at urban sites from observation and simulation. The simulated nighttime 

ozone concentrations never exceed the observed level, and the difference between 

simulated and observed nighttime ozone concentrations can be as much as 50 ppbv. High 

nocturnal ozone concentrations were also observed elsewhere over the United States and 

other regions, and they were attributed to specific regional circulation systems including 

low-level jet (LLJ), land-sea breeze, down-valley wind, or typhoon (Corsmeier et al., 1997; 

Hu et al., 2013; Reitebuch et al., 2000; Kulkarni et al., 2013; Eliasson et al., 2003; Salmond 

et al., 2002; Jiang et al., 2015). However, they cannot explain the model low biases of 

simulated nocturnal ozone in every urban region across China.  

  

Figure 2.10 The distribution of simulated nighttime ozone in China and the 

observed nighttime ozone in the cities. The simulated ozone concentration from the 

corresponding grids of the cities is compared to the observation. The red line 

corresponds to 1:1.  

The nighttime chemical loss of ozone in urban regions is mostly due to the titration 

effect of NO. Therefore, the underestimation of nighttime ozone by the model may result 

from overestimated NO emission at night. We conduct three simulations with modified 
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NOX emissions with the NOX emissions reduced by 20%, 50%, and 80%, respectively, at 

night from 8 PM to 8 AM local time. The amount of reduced NOX emission is moved to 

daytime from 8 AM to 8 PM local time to maintain the total NOX emission. The results 

show that even when nighttime NOX emissions are reduced by 80%, the model still cannot 

reproduce the observations in most regions except for the NW (Figure 2.11).  

 

Figure 2.11 Simulated and observed diurnal variation of ozone concentrations in 6 

regions. D1: 20% of NOx emissions at night from 8 PM to 8 AM to daytime; D2: 

same as D1, but the fraction is 50%; D3: same as D1, but the fraction is 80%. 

Carslaw et al. (2005) find that the NO2 can account for up to 17% of the total NOX 

emissions from vehicle emissions, indicating a possible overestimating of the NO 

emissions from NOX emissions. We conduct three sensitivity tests by changing the 

NO/NOX emission ratio in the standard model to 20%, 50%, and 80%, respectively. The 

results show that the simulated nighttime ozone concentrations are still lower than the 

observations even with 80% of the NOX emitted as NO2 in most regions except for the NW 

and SW (Figure 2.12). In addition, Figure 2.10 shows that the model simulated low ozone 
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at night is regional in nature, so the horizontal advection is not the source of elevated 

nighttime ozone.  

 

Figure 2.12 Simulated and observed diurnal variation of ozone concentrations in 6 

regions. M1: 20% of NOX emission is emitted as NO; M2: 50% of NOX emission is 

emitted as NO; M3: 80% of NOX emission is emitted as NO. 

 

Another potential source of ozone at night is vertical mixing, which brings ozone 

from the residual boundary layer (RBL) downwards to the surface (Lin et al., 2008, 2010; 

Stock et al., 2014). Nighttime zone concentrations in the RBL are high due to daytime 

photochemical production. The observations of the nocturnal boundary layer height in 

China indicate a mixed layer from the surface to 200-500 meters (Wang, W. et al., 2016; 

Tang et al., 2016; Ma et al., 2013; Huang et al., 2017). In our model, the WRF simulation 

shows a very shallow nocturnal boundary layer of <200 meters, severely reducing the 

mixing of surface ozone with the RBL at night. We conduct three sensitivity tests, in which 

we enhance the nighttime (8 PM to 8 AM) vertical mixing from the surface to 100 meters, 

200 meters and 500 meters, respectively. Figure 2.13 shows the model simulation results 
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in comparison to the observations. Enhanced vertical mixing at night significantly 

improves model simulation results. Accounting for the model bias, mixing to 200m is 

necessary for the model. Model simulated nighttime ozone is least sensitive to mixing 

height in PRD and YRD due in part to the advection of marine air masses from the 

southeast. The reasons for large underestimates of mixing height in urban regions by WRF 

are not understood and require further studies. The much more extensive urban landscape 

development in China than in the U.S. in recent years is likely a significant factor (Ching 

et al., 2018). 

 

Figure 2.13 Observed and simulated ozone diurnal variations in 6 regions in Beijing 

Time. Gray shaded areas show the ozone observations within one standard 

deviation (“Obs”). The model results are shown in solid-colored lines for the 

standard simulation (“Std”) and enhanced nocturnal mixing from 8 PM to 8 AM 

height to 100 meters (“100m”), 200 meters (“200m”), and 500 meters (“500m”), 

respectively. 

2.4 Conclusion 
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In this study, we extend the ozone-precursor relationship to ozone peak time. The 

initial clue is simply based on the correlations of the observed ozone peak time and 

concentrations with NOX and VOC emissions. We used the observations for the period of 

July 2014 to show that ozone peak time has better or comparable correlations with ozone 

precursor emissions in comparison to ozone peak concentration. It implies that the widely 

used EKMA diagram can be extended to observed ozone peak time and provides additional 

and independent constraints on ozone control strategies on the basis of widely available 

regulatory air quality monitoring data. We analyzed the observations for China, but the 

extended ozone-precursor relationships can be applied in other polluted regions.  

We apply the 3-D REAM model with an extensive suite of sensitivity simulations 

to examine the sensitivities of ozone peak time and concentrations to NOX and VOC 

emissions. The 3-D model sensitivity results are corroborated with the emission sensitivity 

isopleth diagram for ozone peak time similar to the EKMA diagram for ozone 

concentrations. The sensitivity distributions of ozone peak time and concentration differ 

significantly, indicating that the sensitivities of ozone peak time and concentration are 

complimentary for regions with large anthropogenic emissions such as China. 

Since ozone is a secondary pollutant produced from photochemical reactions, the 

near-surface observations are not affected as much by heterogeneously distributed 

emission sources as NOX and VOCs. The longer chemical lifetime of ozone than NOX and 

fast-reacting VOCs also makes its measurements more representative than its precursors. 

Furthermore, the measurements of ozone are more reliable and readily available than NOX 

and VOCs in China and other regions. The extended ozone-precursor relationships 

developed here provide both qualitative and quantitative constraints on understanding the 
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effects on ozone by emission changes of NOX and VOC. They can also be applied with air 

quality models to assess potential biases of NOX and VOC emission inventories. In this 

work, we find that the emissions of ozone precursors are consistent with the observed ozone 

peak time and concentrations for the NW and NCP regions. In the NE region, NOX 

emissions may have a low bias of 50%. In the SW region, both the NOX and the VOC 

emissions are overestimated. In the YRD region, the VOC emissions are overestimated. In 

the PRD region, model results are in agreement with the observations within the 

uncertainties of the measurements. Such observation constraints on the basis of regulatory 

ozone observations can complement nicely the other measurement and modeling analysis 

methods for evaluating NOX and the VOC emission inventories. 

The uncertainties of the method developed here are similar to previous studies using 

the EKMA diagram (Moore et al., 2001; Tan et al., 2018). We examine specifically the 

uncertainties related to the diurnal variation of emissions and ozone dry deposition, and we 

find that they do not significantly affect the inference results of potential emission biases 

based on ozone observations. While not explicitly studied, the inference results are 

insensitive to short-term meteorology biases because the modeling analysis (e.g., Figs. 3-

9) is based on monthly and regional averaged results. Depending on the applications of the 

extended EKMA diagram analysis, further uncertainty analysis needs to be carried out. 

Furthermore, we suggest that the ozone peak time sensitivity as we discussed here to be 

used as a model evaluation measure before the EKMA diagram is applied to understand 

the effectiveness of emission control on ozone concentrations. 

We also find that the model greatly underestimates ozone concentrations at night. 

The regional pattern of the underestimation indicates horizontal transport cannot lead to 
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the underestimation, and chemical approaches by reducing NO emission at night without 

affecting daytime ozone concentrations have been failed for both moving NOX emissions 

from nighttime to daytime and changing the NO2/NOX emission ratios. Underestimated 

vertical transport strength at night is the best possible explanation for the low surface ozone 

level in the model and observations indicate a mixing height of 100-500 meters is 

necessary. 
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CHAPTER 3. SECONDARY PRODUCTION OF OVOCS IN THE 

BOUNDARY LAYER STRONGLY ENHANCES OXIDATION 

CHEMISTRY AND OZONE PRODUCTION NEAR THE 

SURFACE 

3.1 Introduction 

Recent researches have revealed that oxygenated volatile organic compounds 

(OVOCs) are omnipresent in the atmosphere and strongly affect atmospheric oxidation 

(Shim et al., 2007; Yang et al., 2014; Mellouki et al., 2015; Schlundt et al., 2017). 

Photolysis of OVOCs is a primary source of the HOX (OH+HO2) and organic peroxyl 

(RO2) radicals, promoting the production of ozone and peroxyl acetyl nitrate (PAN, 

CH3C(O)OONO2) (Singh et al., 1995; Liu Z et al., 2010, 2012). Ozone has adverse effects 

on human and vegetation health and is a greenhouse gas (Brunekreef & Holgate, 2002; 

Reich & Amundson, 1985); PAN formation and transport significantly enhance the impact 

of anthropogenic emissions in remote regions (Fischer et al., 2014; Singh et al., 1981). 

OVOCs also contribute to the formation of secondary organic aerosols (SOA), which affect 

human health and regional climate (Kokkola et al., 2014; Hazra et al., 2014; Li J et al., 

2016).  

Secondary production from the oxidation of nonmethane hydrocarbons (NMHCs) 

is a major source of OVOCs (Read et al., 2012). However, significant discrepancies were 

found between surface measurements and model-derived OVOC concentrations from the 

NMHCs, which are often explained by unknown chemical sources or sinks (Singh et al., 
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2000, 2004). Here we show that this degree of discrepancy is strongly affected by the model 

chemical mechanism and boundary-layer mixing of secondary OVOCs, using the box and 

1-D models with explicit and condensed chemistry mechanisms, and observation 

constraints from the 2014 field campaign at Wangdu in China. 

3.2 Data and methods 

3.2.1 Wangdu site campaign 

The Campaigns of Air Pollution Research in Megacity Beijing and North China 

Plain (CAREBEIJING-NCP) are made near a small town Wangdu (38.665°N, 115.204°E) 

in Hebei Province from June 7 to July 8, 2014 (Figure 3.1). Wangdu is not well 

industrialized. However, major cities including Beijing, Tianjin, and Shijiazhuang locate 

in a 200km range of the measurement site, as well as multiple coal-fired power plants. The 

site is expected to be affected by local emissions including uncontrolled coal combustion 

and biomass burning, as well as regional transport plume in the North China Plain. 

 

Figure 3.1 Map of Wangdu site and surrounding cities. 
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Multiple instruments have been adopted in the campaign, and for the same species 

measured by multiple instruments, we select the data based on accuracy and temporal 

coverage. O3 was measured by ultraviolet (UV) absorption (Thermo Electron 49i). CO, 

CH4, and H2O were measured by a cavity ring-down (CRDS) instrument (Picarro G2401). 

NO and NO2 were measured by the chemiluminescence method (Thermo Electron 42i). 

HONO was measured by long-path absorption photometry (LOPAP) using a home-built 

instrument from Peking University (PKU) (Liu, Y. et al., 2016). 59 VOCs were measured 

by a gas spectrometer (GC) attached with a flame ionization detector (FID) and a mass 

spectrometer (MS) from PKU (Wang, M. et al., 2014). Formaldehyde (HCHO) was 

measured by the Hantzsch fluorescence method (Aerolaser GmbH AL4021). PAN, Cl2, 

and ClNO2 were measured by a chemical ionization mass spectrometry (CIMS) instrument 

from the Georgia Institute of Technology (Liu, X. et al., 2017). OH, HO2 and RO2 were 

measured by laser-induced fluorescence (LIF) technique from PKU (Tan, Z. et al., 2017). 

The photolysis frequencies were calculated by measured spectral actinic photon flux 

density using a spectroradiometer (Bohn et al., 2008). The aerosol surface area was 

calculated by the size distribution of the aerosols measured by a twin differential mobility 

particle sizer (TDMPS) and an aerodynamic particle sizer (APS) (Wang, Y. et al., 2016). 

The time resolution and the uncertainties of the measurements used for this study are 

summarized in Table 3.1.  

Table 3.1 Observation methods, time resolution, and uncertainties 

 Methods Time 

resolution 

Uncertainties Reference/Model 

O3 UV absorption 1 min 5% Thermo Electron 49i 

CO, CH4, 

H2O 

CRDS 1 min 5-20% Picarro G2401 



 

 39 

NO, NO2 chemiluminescence 1 min 20% Thermo Electron 42i 

HONO LOPAP 0.5 min 20% Liu, Y. et al., 2016 

VOCs GC-FID/MS 60 min 15-20% Wang, M. et al., 2014 

HCHO Hantzsch 

fluorescence 

1 min 5% Aerolaser GmbH 

AL4021 

PAN, Cl2, 

ClNO2 

CIMS 0.1 min 30-36% Liu, X. et al., 2017 

OH, HO2, 

RO2 

LIF 0.5 min 5-12% Tan, Z. et al., 2017 

Photolysis 

frequency 

spectroradiometer 0.33 min 10% Bohn, B. et al., 2008 

Aerosol 

surface area 

TDMPS/APS 10 min 20% Wang, Y. et al., 2016 

3.2.2 Model 

As described in CHAPTER 1, the condensed chemical mechanism is taken from 

the GEOS-Chem mechanism (GCM) with an extension of reactions involving aromatics, 

ethylene, acetylene, and chlorine with 120 active species and >400 reactions. The explicit 

chemical mechanism is the Master Chemical Mechanism (MCM 3.3.1) with 3500 species 

and >10000 reactions. Observed photolysis rates of O3, NO2, NO3, Cl2, ClNO2, H2O2, and 

HCHO are used in the models. For the other photolysis rates, they are computed using 

FAST-J module (Wild et al., 2000) and are then linearly scaled using observed O3 and NO2 

photolysis rates depending on their wavelength dependence. The observations of O3, CO, 

CH4, H2O, NO, NO2, HONO, VOCs, HCHO, Cl2, ClNO2, temperature, pressure, and 

aerosol surface area are prescribed in the box model and the first layer of the 1-D model. 

Missing observation data are replaced by the average value at the same time of the day to 

allow for continuous simulation. The chemistry timestep of the model is 1 minute, and the 

observations with frequencies lower than once per minute are interpolated linearly.  

The 1-D model extends the box model into 30 vertical layers from the surface to 

the top of the troposphere. The meteorology data including pressure, temperature, water 
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vapor concentration, and vertical eddy coefficient are obtained from the Weather Research 

and Forecasting model (WRF) assimilations constrained by the National Centers for 

Environmental Prediction Climate Forecast System Version 2 (NCEP CFSv2) products 

(Saha et al., 2013).  The additional process in the 1-D model includes vertical mixing and 

dry deposition (Zhang, Y. et al., 2016; Liu, Z. et al., 2012) based on WRF simulation 

results. The simulated vertical diffusion coefficient on the surface agrees well with the 

derivation from the observed surface flux (Figure 3.2). The timestep for vertical mixing is 

1 minute, the same as the chemistry timestep.  

 

Figure 3.2 The time series of the simulated vertical diffusion coefficient (Kzz) from 

WRF simulation and the Kzz derived from the observed surface flux. 

The dry deposition velocity and the top chemical boundary conditions in the 1-D 

simulations are obtained from the 3-D REAM model results with the boundary layer height 

from the WRF simulations. The 3-D REAM model has a horizontal resolution of 36 km, 

and the vertical resolution of the 3-D REAM is the same as the 1-D model. The chemistry 

mechanism of the 3-D REAM is the same as the condensed mechanism used in this 

research. The 2012 Multi-resolution Emission Inventory for China (MEIC) emissions are 

adopted in the 3-D REAM for anthropogenic emissions of NOX, VOCs, and CO (Zhang, 
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Q. et al., 2009). We run the 3-D REAM model for the same period in this study. All models 

including the box models, 1-D models, and 3-D REAM model are spun up for 10 days for 

initialization. 

3.3 Results and Discussion 

3.3.1 Formaldehyde (HCHO), peroxyacetyl nitrate (PAN), and free radicals 

Wangdu is a rural site (Figure 3.1), 170 km, 180 km, and 90 km from Beijing, 

Tianjin, and Shijiazhuang, respectively. However, the in-situ observations during the 

CAREBEIJING-2014 campaign showed the site was fairly polluted (Wang, Y. et al., 2016; 

Tan, Z. et al., 2017; Fuchs, H. et al., 2017). We apply box and 1-D model to simulate short-

lived daytime HCHO, PAN, and free radical concentrations in light of the observations to 

understand the effects of boundary layer mixing. 

To evaluate model simulated photochemistry, short-lived chemical species are most 

useful, such as free radicals (Fuchs, H. et al., 2017). HCHO and PAN also have short 

lifetimes in summer near the surface due to intense sunlight and high temperature, and their 

observations provide useful constraints on VOC chemistry (Liu, Z. et al., 2012). The 

daytime (6 AM to 6 PM) variations of OH, HO2, RO2, and HCHO are similar in the box 

and 1-D model but different for PAN due to longer lifetimes of PAN in the upper boundary 

layer and free troposphere, where temperature lower than the surface. The observed PAN 

daytime variation reflects the mixing of surface and boundary-layer PAN.  

The differences between the box and 1-D models and between MCM and GCM can 

be more clearly examined by comparing average daytime HCHO, PAN, OH, HO2, and RO2 
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concentrations among the models with the observations (Figure 3.3). The largest difference 

is found for PAN because of its longer lifetime than HOX and RO2 radicals. In general, the 

MCM mechanism predicted higher concentrations of PAN than GCM. The effect is largest 

in the box model simulations in which the MCM model overestimates the observations by 

161% whereas the GCM results are 14% lower within the uncertainty bound of the 

observations. The much larger PAN concentrations simulated in the box MCM model than 

GCM is due largely to higher OVOC production in the former, particularly methylglyoxal, 

the photolysis of which is a major precursor of PAN (Liu, Z. et al., 2010, 2012).  When 

vertical mixing and deposition processes are included, the 1-D MCM model simulation of 

PAN is much improved than box model with a 10% overprediction than the observations 

due mostly to mixing loss of PAN and OVOCs from the surface to the boundary layer.  

 

Figure 3.3 Observed and simulated daytime (8 am to 8 pm) average concentrations 

of (a) PAN; (b) HCHO; (c) OH; (d) HO2; and (e) RO2. The solid and dashed black 
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horizontal lines show the observed mean and standard deviation, respectively. The 

color bars show the corresponding simulated averages of 1-D MCM, 1-D GCM, box 

MCM, and box GCM models, respectively, with their standard deviations shown in 

vertical black lines. 

Figure 3.3 shows the daytime mean concentrations of peroxyacetyl nitrate (PAN), 

formaldehyde (HCHO), OH, HO2, and RO2 from the measurements and the surface layer 

of the models, and the four models show various ability to reproduce the observed values. 

The observed PAN level is 2.5 ppbv, lower than the summertime observation in other 

polluted urban regions in China, while much higher than the measurements in background 

sites (Phillips et al., 2013; Lee et al., 2012; Zhang, G. et al., 2015). The 1-D MCM model 

has the best performance with the mean concentration 3% higher than the measurement. 

The 1-D GCM model underestimates 50% of the mean concentration. The box models 

predicted higher concentrations than the corresponding 1-D models. The box MCM model 

predicts the highest PAN concentration with the daytime mean value 159% higher than the 

observation. The box GCM model predicts a 14% lower mean concentration than the 

observation with the uncertainty covering the observed mean. Besides PAN, OVOCs 

including HCHO are also critical HO2 and RO2 source (Xue et al., 2016; Griffith et al., 

2016). The observed level of HCHO is 7.6 ppbv, comparable to the summertime 

observation in Beijing (Qian et al., 2019), indicating strong local chemical reactivity due 

to the short lifetime of the HCHO. The 1-D MCM slightly overestimates the HCHO by 

12% with the best performance. The 1-D GCM model underestimates HCHO for 26%. The 

box MCM model again overpredicts the HCHO for 53%, while the box GCM model has a 

fair result by underestimating 13%. The results show that the chemical process in the box 

MCM model tends to be too strong while in the 1-D GCM model, the chemical activities 

are too weak.  



 

 44 

3.3.2 The photoreactivity of the OVOCs and the radicals 

While the MCM mechanism contains ~900 more kinds of OVOC species than the 

GCM mechanism, most of the unique species in the MCM mechanism are alcohols and 

carbonyls with 4 or more carbon atoms, which are less active than the common species in 

both mechanisms, making the comparison of the total OVOC concentration less 

convincing. To examine the contribution of the OVOCs to the chemical process, we 

separate the OVOCs by common species in both mechanisms and unique species in each 

mechanism, and we calculate their the mean daytime OVOCs photolysis rate (Figure 3.4a) 

and OVOCs photolytic production of HO2 (Figure 3.4b) and RO2 (Figure 3.4c) radicals in 

the surface layer of the four models. The total photolysis rate on the surface in the 1-D 

MCM model is 1.6 ppbv h-1, higher than the 1.0 ppbv h-1 in the 1-D GCM model. The 

common species provide 1.4 ppbv h-1 (89%) in the 1-D MCM mechanism, 39% higher than 

the GCM mechanism, mostly due to formaldehyde (HCHO) and methylglyoxal (MGLY). 

The total photolysis rate of OVOC is much higher in the box models than the surface in 1-

D models, despite the constrained photolysis rate used in all models, implying a higher 

concentration of the OVOCs in the box models than the corresponding 1-D models. The 

total photolysis rates of OVOCs in the box models are 3.0 ppbv h-1 and 1.4 ppbv h-1 for 

box MCM and GCM mechanisms respectively. The common species contribute 2.6 ppbv 

h-1 (89%) in the box MCM model, 86% higher than the box GCM model. HCHO and 

MGLY remain the most significant contributor to the total photolysis rate.  
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Figure 3.4 daytime means results from the surface layer of the 1-D models and the 

box models for (a) total OVOC photolysis rate; (b) HO2 production rate from 

photolysis of OVOCs; and (c) RO2 production rate from photolysis of OVOCs. 

Common species in the two mechanisms are colored, and unique species are left 

white. The common species are formaldehyde (HCHO), methylglyoxal (MGLY), 

biacetyl (BIACE), acetone (ACET), hydroxyacetone (HAC), methyl ethyl ketone 

(MEK), glyoxal (GLYX), methyl vinyl ketone (MVK), glycolaldehyde (GLYC), and 

acetaldehyde (CH3CHO). 

The HO2 productions from the photolysis of OVOCs in the four models have a 

similar composition to the photolysis rate. The total photolytic HO2 production rate is 1.3 

ppbv h-1 in the 1-D MCM model, and 0.8 ppbv h-1 in the 1-D GCM model, while we see 

high values of 2.4 ppbv h-1 in the box MCM model, and 1.2 ppbv h-1 in the box GCM 

model. The common species contribute 1.2 ppbv h-1 (91%) in the 1-D MCM model and 2.2 

ppbv h-1 (91%) in the box MCM model, while in the GCM models, the common species 

contribute all the HO2 production. The most notable species is still HCHO and MGLY, and 
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both their HO2 photolysis yields are ~1. However, the RO2 photolytic productions are quite 

different from the photolysis rate or the HO2 photolytic production. The RO2 production 

rates in the models are 0.5 ppbv h-1 for the 1-D MCM model, 0.3 ppbv h-1 for the 1-D GCM 

model, 1.5 ppbv h-1 for the box MCM model, and 0.6 ppbv h-1 for the box GCM model. 

The HCHO provides no RO2, and the most important RO2 producing OVOC is the MGLY. 

The contribution of biacetyl (BIACE) and acetone (ACET) rises dramatically due to their 

higher yield of RO2. The contribution of the common species is 0.4 ppbv h-1 (70%) for the 

1-D MCM model and 1.1 ppbv h-1 (74%) for the box MCM model. The lower contribution 

of the common species in the RO2 production rate than the HO2 production rate in the 

MCM models implies that the unique species in the MCM mechanism mainly impact the 

chemical activity through RO2 radicals. 

While we have observed lower RO2 concentrations in the GCM models than the 

MCM models (Figure 3.4), due to the complexity of the RO2, the reactivity varies. To 

assess the contribution of the RO2 to the photochemistry activity, we examine the ozone 

production rate in the models, i.e., the oxidation speed of NO by HO2 and RO2 radicals 

(Kleinman et al., 2002). Figure 3.5 shows the mean daytime ozone production rate in the 

ground layer of the 1-D models as well as in the box models. The total ozone production 

rate in the 1-D MCM model is 14.9 ppbv h-1, 91% higher than the 7.8 ppbv h-1 in the 1-D 

GCM model. The RO2 contributes 7.2 ppbv h-1 (49%) and 3.4 ppbv h-1 (44%) in the 1-D 

MCM model and 1-D GCM model separately, showing that the RO2 radical is much more 

active in the MCM mechanism. A similar ratio can be found in the box models. In the box 

MCM model, the RO2 radical contribute 9.5 ppbv h-1 (47%) of the total ozone production 

rate of 20.4 ppbv h-1. In the box GCM model, the RO2 radical contribute 4.1 ppbv h-1 (41%) 
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of the overall ozone production rate of 10.1 ppbv h-1. The GCM mechanism not only 

underestimates the total ozone production rate but also underestimate the relative 

contribution of the RO2 radicals. 

 

Figure 3.5 Simulated daytime means of the ozone production rate of the ground 

layer in the 1-D MCM model, the ground layer in the 1-D GCM model, the box 

MCM model, and the box GCM model from left to right. 

3.4 Implications 

The box model is often used for case studies based on measurements (Karl et al., 

2018; Lu et al., 2013; Liu, X. et al., 2017), and both the condensed mechanism and the 

explicit mechanism can be assembled into the model. Although the condensed mechanism 

is more comprehensive, without proper vertical structure, the model would predict massive 

OVOCs and radicals. The vertical transport is a substantial loss process for species 

produced on the ground level and decaying over altitude, especially in the daytime where 

the vertical mixing is strong (Lin et al., 2010). The absence of such a process would result 

in an accumulation of the species while the effect depends on their chemical lifetime. Short 
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lifetime species such as the radicals are barely affected by the transport process, as the 

radicals are very chemical active with fast formation and loss rate. However, their 

precursors – the OVOCs – usually have lifetimes of several hours (Fu et al., 2008; Lee et 

al., 1995), which allows them to be strongly affected by vertical transport. In the box model 

where there is no vertical transport, the OVOCs concentrations are largely overestimated 

and consequently giving an overestimated total OVOC reactivity and overestimate PAN, 

HO2, and RO2 levels. To correctly evaluate the chemical reactivity in the circumstance, we 

need to use the explicit mechanism with a proper vertical structure. 

The condensed chemical mechanism has been widely adopted in 3-D models that 

are used for evaluating the pollutant control measurements, for studying regional and 

global atmospheric chemical activities, and for estimating the budget (Zhang, R. et al., 

2017; Yang et al., 2011). With the evidence of underestimated OVOCs in the condensed 

mechanism, we can expect that the ozone production rate is also less sensitive to NOX 

emission due to the lower VOC/NOX ratio than the explicit model (Seinfeld & Pandis, 

2006). Figure 3.6 illustrated the change of ozone production rate to the change of NOX 

emission over the boundary layer in the 1-D models with the two mechanisms. The ozone 

production is less and less sensitive to the NOX emission as the NOX emission increases in 

both models. However, the sensitivity is 50% to 120% higher in the MCM mechanism than 

in the GCM mechanism, indicating an underestimated sensitivity of ozone production to 

the NOX emission in the condensed mechanism. With models using the condensed 

mechanism, the NOX control measurements are less favored, and the enhancement of ozone 

formation by new NOX emission is underrated, which would result in biased control 

measures and solutions. The concentration and the chemical reactivity of the OVOCs in 



 

 49 

the condensed mechanism are also underestimated, which can cause an underestimated 

surface OVOCs flux and OA yield from existing NMHCs in the model, leading to 

significant error in budget estimation. 

 

Figure 3.6 The sensitivity of boundary layer daytime mean ozone production rate to 

the NOX emission in two 1-D models. The red line shows the results from the 1-D 

MCM model, and the blue line shows the results from the 1-D GCM model. 
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CHAPTER 4. CITY-SCALE NOX EMISSION ESTIMATION 

FROM FITTING HIGH-RESOLUTION SATELLITE 

COMPOSITE DATA: UNCERTAINTY FACTORS 

4.1 Introduction 

Nitrogen oxides (NOX) are toxic pollutants in the atmosphere and act as precursors 

for tropospheric ozone and secondary aerosols (Gu et al., 2016; Zhang, R. et al., 2018). 

The combustion processes in power plants, vehicles, and factories are dominating 

anthropogenic sources of the NOX (Li et al., 2019). An accurate inventory for the NOX 

emission is critical for predicting the tropospheric ozone level as well as evaluating the 

pollution control measurements. The bottom-up emission inventories of NOX usually have 

significant uncertainties due to changing emission factors and the limited information and 

resolution of the source data (Zhao et al., 2011). Satellite observation, on the contrary, 

provides a global view of the NO2 column concentration with minor uncertainty and can 

be used for trend analysis or derivation of accurate top-down NOX emissions through 

inverse modeling or direct methods (Gu et al., 2013; Lamsal et al., 2008; Qu et al., 2019; 

Wang et al., 2010). 

The exponentially modified Gaussian (EMG) fitting is one of the most commonly 

used methods deriving lifetimes and emissions directly from the satellite observation. This 

method combines the Gaussian distribution from the diffusion process and the exponential 

decay from first-order chemical loss. Beirle et al. (2004) first adopted the EMG for 

estimating the ship NOx emission from the Global Ozone Monitoring Experiment (GOME) 
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observed the NO2 column on the Indian ocean. Beirle et al. (2011) revise the method by 

separating the observation by wind direction on estimating the total NOx emission from 

Riyadh, Saudi Arabia from the Ozone Monitoring Instrument (OMI) observed NO2. Valin 

et al. (2013) further improve the method by rotating the satellite observation by the wind 

direction and analyses the impact of wind speed on estimated NOx lifetime and emission, 

suggesting that under high wind speed conditions, the estimation is less affected by the 

wind variability and more convincing. The EMG method with rotation has been applied to 

analyze emissions from satellite observation of various species (Fioletov et al., 2015; 

Goldberg et al., 2019; Laughner et al., 2015; Lu et al., 2015). The performance of the EMG 

fitting method has been evaluated by de Foy et al. (2014, 2015), applying on the simulated 

column with known lifetime and emissions from a point source. The emission estimation 

is found most accurate at high wind speed, and the results are quite stable. Liu, F. et al. 

(2016) further modify the method by substitute the Gaussian function by the distribution 

of NO2 line density under the calm wind condition to estimate the lifetime, and Liu, F. et 

al. (2017) use the new method to derive the emissions from 48 China cities.  

Although the uncertainty of the EMG fitting process has been characterized, the 

impact of the satellite sampling process on the accuracy of the EMG method remains 

unknown. In this study, we evaluate this impact by comparing the fitted emission before 

and after the satellite resampling with the pixels from the OMI satellite as well as the newly 

launched TROPOspheric Monitoring Instrument (TROPOMI) satellite. We apply the 

method on both an ideal EMG shaped NO2 plume from a point source and a simulated NO2 

plume modeled by the Community Multi-scale Air Quality (CMAQ) model over the 

Yangtze River Delta region. 
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4.2 Data and Methods 

4.2.1 OMI/TROPOMI satellite and the resampling process 

The OMI satellite was launched in July 2004, observing trace gases and aerosols 

with a resolution of 13 × 24 km2 at nadir. In this work, we used the level 2 data from the 

Dutch OMI NO2 (DOMINO) v2.0 product (Boersma et al., 2011). This product has been 

widely adopted for the EMG fitting as well as for NOX emission inversion (Vinken et al., 

2014; Lamsal et al., 2015). In this research, we used the location data (corner longitude and 

latitude) of the satellite pixels rather than the NO2 total column observed by the satellite. 

We obtain a total of more than 94,200 pixels of OMI observation over the Yangtze River 

Delta region in June, July, and August in 2014. We applied no filter on the pixels.  

The TROPOMI satellite was launched in October 2017, focusing on similar species 

as the OMI satellite with a higher resolution of 7 × 3.5 km2 at nadir. The TROPOMI NO2 

processing system has the same algorithm as the DOMINO v2.0 product, except that it has 

been adapted for TROPOMI (http://www.tropomi.eu/data-products/nitrogen-dioxide). We 

applied the same process on the TROPOMI pixels in June, July, and August in 2018. The 

total number of TROPOMI pixels exceeds 1,200,000 over the same region. 

For each satellite pixel, we calculated the resampled NO2 column for the pixel by 

averaging the NO2 column in the grids it fully or partly covers weighted by the common 

area of the two, in Eq 3.1: 

 
𝑅 =

∑(𝑉𝐶𝐷𝑖 × 𝐴𝑖)

∑ 𝐴𝑖
 

(Eq 3.1) 
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where 𝑅 is the resampled NO2 column value for the satellite pixel, 𝑉𝐶𝐷𝑖 are the 

NO2 vertical column density in grid 𝑖, and 𝐴𝑖 is the common area between grid 𝑖 and the 

satellite pixel. In this way, the total NO2 amount is preserved inside the satellite pixel. 

4.2.2 EMG fitting of a city-scale plume 

In Beirle et al. (2011), the Exponential Modified Gaussian function that 

characterizes the distribution of the line density over the wind direction comes from the 

combination of the Gaussian distribution 𝐺(𝑥) that describes the diffusion process in Eq 

3.2 and the exponential decay function 𝑒(𝑥) that represents the first-order chemical loss in 

Eq 3.3: 

 
𝐺(𝑥) =

1

√2𝜋𝜎𝑥

exp (−
𝑥2

2𝜎𝑥
2

)  
(Eq 3.2) 

 
𝑒(𝑥) = exp (−

𝑥 − 𝑃

𝑥0
) 𝐼(𝑥>𝑃) 

(Eq 3.3) 

where σx is the standard deviation in the x-direction (wind direction), P is the 

location of the emission source, x0 is the e-folding distance of the chemical decay, and I is 

the indicator function. The EMG function is then interpreted as Eq 3.4: 

 
𝑀(𝑥) = 𝐸 exp (−

𝑥 − 𝑃

𝑥0
+

𝜎𝑥
2

2𝑥0
2) Φ (

𝑥 − 𝑃

𝜎𝑥
−

𝜎𝑥

𝑥0
) + 𝐵 

(Eq 3.4) 

 E is the total emission of NO2 in this region, Φ is the cumulative distribution 

function of the standard normal distribution, and B is a constant background. In this study, 

we substitute the parameter E with L/x0, so the EMG equation becomes Eq 3.5: 
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𝑀(𝑥) =

𝐿

𝑥0
exp (−

𝑥 − 𝑃

𝑥0
+

𝜎𝑥
2

2𝑥0
2) Φ (

𝑥 − 𝑃

𝜎𝑥
−

𝜎𝑥

𝑥0
) + 𝐵 

(Eq 3.5) 

It is easy to see that L is the total amount of NO2 above the background as we can 

integrate both sides on Eq 3.5, we get Eq 3.6: 

 

∫ [𝑀(𝑥) − 𝐵]𝑑𝑥

𝑑
2

−
𝑑
2

= 𝐿 

(Eq 3.6) 

In the fitting, we rotate the data to align the wind direction into the x-direction and 

calculated the line density by integral the NO2 column in the y-direction from -d/2 to d/2 

(d is the cross-section integral distance). The center grid of the rotation for the CMAQ 

simulation and its resampling results are chosen according to the emission inventory. Then 

we perform a least-square curve fitting of the line density to fit the parameters σx, P, x0, L, 

and B, and further derive NOx lifetime (τ=x0/w) and NOx emission (E=(1.32×L)/τ), where 

w is the mean wind speed. 

4.2.3 CMAQ model and ideal plume 

Simulations are conducted for three nested grids with a horizontal resolution of 36 

km (D1), 12km (D2), and 4km (D3), respectively (Figure 4.1). D1 covers most of China 

and the surrounding countries including Japan and South Korea; D2 covers eastern China 

and D3 covers the entire YRD region and its surrounding land and waters. Meteorological 

fields are provided by the Weather Research and Forecasting (WRF version 3.7, 

Skamarock et al., 2008) model with 27 vertical layers extending to the tropopause 

(100hpa). WRF initial and boundary conditions (ICs, BCs) are based on the 1° x 1° 
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reanalysis data from the National Centers for Environmental Prediction Final Analysis 

(NCEP-FNL).  

 

Figure 4.1 Three nested model domains. The resolutions of the three domains are 36 

km, 12 km, and 4 km for D1, D2, and D3 separately. 

Anthropogenic emissions in YRD are updated based on a most recent inventory 

(Huang et al., 2011; Li et al., 2011; Liu, Y. et al., 2018). Emissions for areas outside YRD 

in China are derived from the Multi-resolution Emission Inventory for China (MEIC) 

emissions model for 2012 (Zhang et al., 2009) and anthropogenic emissions of other 

regions are from the Model Inter-Comparison Study (MIX) emission inventory for 2010 

(Li et al., 2017). Biogenic emissions are estimated by Model of Emissions of Gases and 

Aerosols from Nature (MEGAN) v2.1 (Guenther et al., 2012) using WRF meteorology 

predictions. The Sparse Matrix Operator Kernel Emissions (SMOKE, 

https://www.cmascenter.org/smoke) model is applied to process emissions for input to 

CMAQ. 

CMAQ version 5.0.2 (https://www.cmascenter.org/cmaq/) is used to simulate 

atmospheric pollutants concentrations. ICs and BCs of D1 domain are based on a Model 
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for Ozone and Related Chemical Tracers (MOZART) global simulation 

(https://www.acom.ucar.edu/wrf-chem/mozart.shtml). For the inner D2 and D3 domain, 

ICs and BCs are extracted from the simulation results of the outer domains.  

In addition to the CMAQ simulation, we generated two ideal plumes under west 

wind and south wind conditions separately, as southwest is the dominant wind direction in 

the research period. The emission center of the plume is Shanghai, the largest city in the 

YRD region. The line density along the wind direction of the plumes follow EMG function 

with no background concentration, and the across the wind direction, the plumes follow a 

Gaussian distribution, as in Eq 3.7: 

 
𝐼𝑃(𝑥, 𝑦) = 𝑀(𝑥) ×

1

√2𝜋𝜎𝑦

exp (−
(𝑦 − 𝑃𝑦) 2

2𝜎𝑦
2

)  
(Eq 3.7) 

where σy and Py are the standard deviation and source position in the y-direction. 

The parameters we use for generating the plumes are in Table 4.1. 

Table 4.1 Parameters used in the generation of the idealized plume 

Parameter 𝑳 𝒙𝟎 𝝈𝒙 𝝈𝒚 𝑷𝒙 𝑷𝒚 𝒘 𝝉 𝑬 

Value 
1×1027 

molecules 

40 

km 

10 

km 

10 

km 

0 

km 

0 

km 

10 km 

h-1 

4 

h 

3.3×1026 

molecules h-1 

4.3 Results 

4.3.1 Idealized city plume 

Figure 4.2 shows the distribution of the ideal plume and the resampled plume under 

the west wind and the south wind. The OMI satellite resampling process significantly 
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shifted the shape of the plume. Comparing to the original plume, the OMI resampled plume 

stretches in the east-west direction, causing a longer tail in the west wind case and a wider 

distributing range in the south wind case. Also, in the resample plume, the NO2 density at 

the center of the emission is 45% and 58% lower than the ideal plume for the west wind 

case and the south wind case separately, indicating that the OMI satellite results massively 

underestimate NO2 column in the emission center. Both the effects are due to the rough 

resolution of the OMI satellite, which averages the NO2 column over a broad range and 

reduces its gradient, especially in the east-west direction where the rectangular-shaped 

OMI pixel is longer (refer to  Figure 4.3 for example). The TROPOMI satellite resampling 

process, on the contrary, maintains the original distribution with only 7% decay of the NO2 

density in the emission center. 

 

Figure 4.2 The generated ideal plume and the resampled ideal plume by OMI 

satellite pixels and TROPOMI satellite pixels 
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Figure 4.3 Illustration of one nadir OMI (left in red) pixel and one nadir TROPOMI 

(right in blue) pixel over the 4-km grids (black) in the CMAQ model covering the 

same location. The topside is north. The OMI pixel covers ~20 grids while the 

TROPOMI pixel merely covers 2 grids. The OMI pixel is much longer in the east-

west direction than the north-south direction 

We applied the EMG fitting on all plumes under various integral distances. Figure 

4.4 shows the relative error of the estimated parameters. The accuracy of the fitted total 

NO2 amount T, and NOX emission E showed great dependency on the integral distance. 

The underestimation of the total NO2 amount T due to the part of NO2 transport out of the 

integral range, and as the range increases, the fraction is smaller. The underestimation of 

total NO2 drops to 0 at around 60km for the idealized plume and the TROPOMI resampled 

plume in both wind direction, corresponding to the 3σy on two sides. The OMI resampled 

plume yields an extra error in the total NO2 amount estimation, and the extra error depends 

on both the wind direction and the integral distance. In the results from the OMI resampled 

plume, the total NO2 amount is underestimated for an extra 10% in the west wind case and 

20% in the south wind case than the idealized plume fitting results under the integral 
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distance of 10 km. However, as the integral distance increases, the underestimation 

disappears for the west wind case after 70 km, while in the south wind case, the 

underestimation drops to 10% at an integral distance of 100 km. The underestimation is 

related to the rough resolution of the OMI pixel. While the resampling process preserves 

the total NO2 amount inside the satellite pixel, it will remove any gradient inside the pixel, 

which is equivalent to moving NO2 from high concentration area to low concentration area 

inside the pixel. In this specific idealized plume case, if a satellite pixel covers the edge of 

the integral region, the outer part will always have a lower NO2 concentration than the 

inner part, and the resampling process will move NO2 out of the integral range and cause 

underestimation. The OMI satellite has a much larger pixel size than the TROPOMI, 

making more OMI pixels covering the edge and leads to higher underestimation. Also, as 

the OMI satellite pixels are longer in the west-east direction than in the south-north 

direction, more pixels cover the edge of the integral area in the south wind case than in the 

west wind case, causing a higher error.  

 



 

 60 

 

Figure 4.4 The relative error changing with the integral distance in the total amount 

of NOX (T), lifetime (τ), and emission (E) in the ideal plume and the OMI and 

TROPOMI resampled ideal plumes 

The lifetime estimation is much more accurate for the idealized plume and the 

TROPOMI resampled plume, with differences under 1%. The OMI resampled plume also 

yields a 30% longer lifetime for the west wind case and 3-7% shorter lifetime for the south 

wind case, and the bias is uncorrelated to the integral distance. The error in NO2 lifetime 

estimation is more complicated than the total NO2 amount as the e-folding distance x0, 

which is the traveling distance of air in one lifetime, determines the distribution of the NO2 

column line density together with the diffusion coefficient in x direction. Still, the higher 

error in the OMI results than the idealized plume or TROPOMI plume indicates that the 

bias in lifetime depends on pixel size of the satellite.  
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The estimated emission is then calculated by dividing estimated total NO2 by 

lifetime. Both the idealized plume and the TROPOMI resampled plume has accurate 

lifetime estimation and the bias in the emission follows the bias in the total NO2 amount, 

ranging from 60% to 0% with the cross-wind integral distance changing from 10km to 

60km, and after 60km the emission estimation is precise. The OMI resampled plume, 

however, underestimate the emission for 80% to 20% in west wind case and 80% to 10% 

in south wind case. The bias in the emission estimation is a combination of the errors in 

the estimations of total NO2 amount and lifetime. As the error in lifetime is independent of 

the integral distance, the accuracy of the OMI satellite resampled plume is limited. 

The results from the resampled ideal plumes indicate that the cross-section integral 

distance is an important factor in the EMG method, and the accuracy is approving with 

longer integral distance. However, the idealized plume only considered a point source 

without interference from other sources, and we further investigate the effect of the integral 

distance based on CMAQ simulated NO2 columns. 

4.3.2 CMAQ simulation 

Figure 4.5 illustrates the mean NO2 tropospheric column for July and August in the 

Yangtze River Delta area from the CMAQ simulation and its resampled results with the 

pixels of the OMI satellite and the TROPOMI satellite under 4 km resolution. The 

distribution of the CMAQ simulation clearly shows the point sources and their outflow 

under the dominating southwest wind. The 95th percentile of the NO2 column in the 

CMAQ simulation is 1.29×1016 molecules cm-2. The OMI satellite resampled result 

obscures the distribution of the NO2 column, significantly lowering the NO2 column 



 

 62 

density in the high concentration areas, making the small point sources indistinguishable 

from the background. The 95th percentile of the NO2 column in the OMI resampled results 

is 8.33×1015 molecules cm-2, 36% lower than the original CMAQ result. The TROPOMI 

resampled result mostly preserves the distribution of the original NO2 column. However, 

for areas with a high NO2 concentration gradient, the smoothing effect is visible, and the 

95th percentile of the NO2 column slightly drops to 1.25×1016 molecules cm-2. 

 

Figure 4.5 (a) Simulated CMAQ NO2 columns; (b) the resampled NO2 columns by 

OMI satellite pixels; (c) the resampled NO2 columns by TROPOMI satellite pixels. 

We choose two areas with the highest NO2 column density in the CMAQ simulation 

for the EMG fitting: the Nantong area and the Shanghai area (Figure 4.6). The distance 

between the center of the two regions is 105km. Although the EMG function only 

represents the plume from point sources, here we applied the EMG fitting to the two areas 

to examine the possible bias in the results. As previous researches have also indicated that 

the wind speed threshold will impact the accuracy of the fitting (Laughner et al., 2016; Lu 

et al., 2015), we in addition group the data by the wind speed, with calm condition of wind 
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speed <4 m s-1 and windy condition of wind speed ≥ 4 m s-1, and we apply EMG fitting 

for each group separately.  

 

Figure 4.6 Location of Shanghai and Nantong. The Nantong region has a broader 

distribution range of high NO2 column pixels than the Shanghai region 

Figure 4.7 shows the rotation results under the calm wind condition. The average 

wind speed in Shanghai is 2.83 m s-1, and the average wind speed in Nantong is 2.82 m s-

1. Under calm wind condition, the horizontal transport of NO2 is limited, and the 

distribution of the NO2 column generally follows the distribution of the emission. In 

Shnaghai, the shape of the plume indicates that the local NOX emission is concentrated at 

the center. In Nantong, the band of high concentration plume indicates that the local NOX 

emission is spreading over the surrounding region.  
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Figure 4.7 Monthly mean of the NO2 column density after rotation by wind direction, 

under calm wind condition (<4 m s-1) 

We applied the EMG fitting on the calm wind plume, and the relationship between 

the fitted lifetime and emission to integral distance is shown in Figure 4.8. The difference 

between the fitting results of CMAQ simulation and the TROPOMI resampled plume is 

small, indicating the consistency of the TROPOMI resampling process under the 4km 

resolution. The OMI resampled plume generally yields a higher lifetime than the CMAQ 

plume and the TROPOMI resampled plume, consistent with the ideal plume results under 

west wind condition. In Shanghai, the estimations of lifetime are stable for CMAQ and 

TROPOMI, but for OMI the lifetime estimation increases with integral distance. The 

lifetime estimated from the CMAQ or TROPOMI appears to be too short compared to the 
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3-4h lifetime in other studies using the same method on OMI observations (Beirle et al., 

2004, 2011; Liu, F. et al., 2016, 2017). However, the reason behind the underestimation is 

the false assumption of the constant lifetime in the EMG function, while the lifetime of 

NO2 positively correlates to its concentration if the NO2 level is high (Zhang, R. et al., 

2018; Gu et al., 2014, 2016). Under the calm wind condition, the NO2 accumulates on 

where the emissions are, so the lifetime of NO2 in the center of the emission is very high. 

In the downwind direction where the NO2 concentration drops, the lifetime of NO2 also 

decreases, creating a much stronger gradient along the wind direction than the constant 

lifetime would form. When fitting with the EMG function, it explains the strong gradient 

by a short constant lifetime, causing the underestimation. For the OMI result, as the OMI 

resampling process smooths the distribution to a wider area, the sharp gradient is lowered 

such that the estimated lifetime can be longer. However, the smoothing effect also brings 

in NO2 from further sources, when the NO2 from Nantong begins to interfere with the OMI 

results, the estimated lifetime rises to explain the extra NO2 in the downwind direction. 

This phenomenon is missing in Nantong as the Shanghai emission is concentrated in a 

small region. In Nantong, the estimated lifetime from the plumes are higher than that in 

Shanghai, and the lifetime estimation has no apparent trends. The consistent lifetime 

estimation in Nantong is due to the area source like emissions. Under the calm wind 

condition, the distribution of the area source contributes much more to the shape of the 

NO2 line density than the chemical decay and diffusion. 
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Figure 4.8 The correlation of EMG fitting result of the lifetime and the total emission 

to integral distance for Shanghai and Nantong under calm wind condition 

 

The NO2 emission is fitted in the model and compared to the emission inventory 

we used in the CMAQ simulation. In both Shanghai and Nantong, the accuracy of the fitted 

emission largely depends on the integral distance. In Shanghai, the emissions are 

overestimate at a integral distance of 20-60 km for OMI plume, and 20-80 km for CMAQ 

and TROPOMI plume. After 80km, the fitted emissions almost remain in the same level 

due to the stable estimation of the lifetime, and the concentrated distribution of the NO2 

column around Shanghai. However, the true emission in the model input keeps on 

increasing. In Nantong, the accuracy also depends on the integral distance, with the fitted 
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emission higher than the true emission under 140 km. After 140km, the fitted emission 

increase with the integral distance with similar rate as the true emission.  

Figure 4.9 shows the rotation results under the windy condition. The average wind 

speed in Shanghai is 6.6 m s-1, and the average wind speed in Nantong is 5.8 m s-1. The 

horizontal transport due to the wind is clearly visible. In both Shanghai and Nantong, the 

NO2 is blown downwind, leaving a long tail extends to more than 100 km. However, the 

large pixel of the OMI satellite creates blocks of high NO2 columns on the figure, and the 

tail of the plume is hard to distinguish from the background. 

 

Figure 4.9 Monthly mean of the NO2 column density after rotation by wind direction, 

under windy condition (>4 m s-1) 
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Figure 4.10 shows fitting results under the windy condition. In contrast to the 

dispersed results under the calm condition, the CMAQ model simulation and the 

TROPOMI resampled plumes yield very similar fitting for both lifetime and emission. In 

Shanghai, the lifetime estimation for CMAQ and TROPOMI plume is stable at ~ 1.8 hours, 

while the lifetime estimation for the OMI plume has discontinuous points where the 

relationship of the lifetime estimation to the integral distance turns over. In Nantong, all 

three plumes yield a much longer lifetime than Shanghai or Nantong under calm wind 

condition. The emission estimation for Shanghai is only accurate at an integral distance of 

20-40km for OMI, or 40-60km for CMAQ and TROPOMI. After 60km, the estimated 

emissions remain the same level similar to the calm wind condition, and the method fails. 

The emission estimation in Nantong is most accurate at an integral distance of 80-100 km 

for CMAQ and TROPOMI, and 100-120 km for OMI. Before 60 km, the fitted emission 

in the three plume is close to each other and have a similar trend on integral distance as the 

true emission. However, the fitted emission turns flat after 140 km. 
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Figure 4.10 The correlation of EMG fitting result of the lifetime and the total 

emission to integral distance for Shanghai and Nantong under windy condition 

4.3.3 Uncertainties 

The uncertainty of the EMG fitting process has been well established in previous 

researches (Beirle et al., 2011; Lu et al., 2015). Here we would like to discuss the 

uncertainty due to the filters on the satellite pixels and the integral range. Filters are often 

applied to the satellite pixels to reduce the uncertainties (Zhao and Wang., 2009; Tang et 

al., 2013). We filter the pixels if they have no available NO2 data from the satellite or if 

they locate in the outer 5 bands in both satellites, and we use these filtered grids to resample 

the ideal plume. Although the total number of satellite pixels in the research region drops 

73% and 25% for OMI and TROPOMI separately, the resampled results do not show 

visible differences, and the EMG fitting results are almost the same. The results show that 
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the filters on the satellite pixels only contribute limited uncertainty to the estimated 

emissions. 

In previous research, the impact of the integral range on the fitted emission has been 

estimated as 10% (Beirle et al., 2011; Liu, F. et al., 2016). In this study, however, the fitted 

emission has a much higher dependence on the integral distance. For example, the method 

totally fails for Shanghai after an integral distance of 100 km under calm wind condition, 

and 40 km under windy condition, as the fitted emission remains the same level and the 

true emission is growing with distance. For Nantong, the integral distance has to reach 160 

km for an accurate estimation under calm wind condition, and under windy condition, the 

integral distance should be below 120 km for accurate estimation. The results indicate that 

the integral distance plays an important role in EMG fitting, and when applying the EMG 

fitting, the effect of integral distance should be considered.   

4.4 Conclusions 

We investigate the uncertainties in applying the EMG fitting of satellite NO2 

observations to derive city-scale NOX emissions. We use two synthetic datasets: An 

idealized Gaussian plume and the 4-km CMAQ simulation results for the summer over the 

YRD region. Sampling pixels equivalent to OMI and TROPOMI were tested compared to 

the original 4-km CMAQ results. The TROPOMI resolution is sufficiently high that the 

synthetic dataset resampled using TROPOMI pixels yield essentially the same results as 

the original CMAQ data. In comparison, the effect of the low resolution of OMI resampling 

than TROPOMI become clear using the idealized Gaussian plume dataset. Given the 

orientation wind, the low bias is > 22% for westly wind due mostly to a 30% overestimate 
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of NOX. The low emission estimate bias for southerly wind is reduced to > 7% because of 

the higher OMI sampling resolution in the N-S than E-W direction.  

For the idealized Gaussian plume, the cross-section integral distance is known, and 

a shorter integral distance introduces low biases in emission estimates. In the applications 

of using satellite measurements, the cross-section integral distance is not known. When 

using the CMAQ simulations, the total NOX emission increases with the selected cross-

section integral distance. While the EMG fitting method derived NOX emission also 

increases with cross-section integral distance at first, the increasing rate is deficient after a 

certain cross-section integral distance, suggesting that the EMG fitting method is 

insensitive to relatively low emissions outside the city. It is for the same reason that the 

EMG fitting method can tolerate some transgression of low-level outflow from another city 

like in the case of Shanghai. Based on the two city cases we studied, we suggest using a 

range of integral distance from 40 to 200 km and find the maximum NOX emission estimate 

as the optimal value when the integral distance is not known. 

Unlike the idealized Gaussian plume case, we only found some evidence of a low 

estimate bias due to the coarse-resolution sampling of OMI (in Shanghai) when using 

CMAQ results. The deviation from the Gaussian plume assumption and the emission 

dependence on the cross-section integral distance could mask out this bias. The former 

factor is also reflected in that a city-cluster type emission source like Nantong is not a point 

or Gaussian-shaped source as assumed in the EMG fitting method. Overall, our analysis 

shows that the EMG fitting method can be applied to OMI and TROPOMI observations to 

examine city-scale emission trends although factors such as the size of the city emission, 
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deviation from the Gaussian plume assumption, the emission dependence on the cross-

section integral distance, and background interference need to be investigated. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1 Ozone observation derived constraints 

In CHAPTER 1, we extend the sensitivities of the ozone-precursor relationship 

from ozone concentrations to peak time. We find that the sensitivities of ozone peak time 

and concentration are complimentary for regions with large anthropogenic emissions such 

as China. Currently, the empirical kinetic modeling approach (EKMA) diagram (for ozone 

concentrations) is being used extensively in many metropolitan environmental protection 

organizations in China to justify the strategies to control NOX or VOC emissions. Adding 

ozone peak time sensitivities will enable more information extraction from available 

regulatory monitoring data. More importantly, it improves the assessment of model biases, 

such as in the emission inventories of NOX and VOCs. These biases in model simulations 

can lead to erroneous emission control strategies and need to be corrected before air quality 

models can be used in policy applications. The extension of the EKMA diagram to ozone 

peak time also applies to other regions of the world where anthropogenic emissions 

dominate ozone production.  

In CHAPTER 1, we also identify that the nocturnal boundary layer height is 

underestimated. Figure 5.1 shows the simulated nocturnal boundary layer height compared 

to other researches. The underestimation of the nocturnal mixing strength results in an 

accumulation of the NOX emission in the shallow boundary layer, and the nighttime surface 

ozone in the model is depleted through titration effect. With enhanced mixing added, the 

model is able to reproduce the observed nocturnal ozone concentrations, indicating that the 
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nighttime mixing height should be increased to at least 100 m for the SW region, 200m for 

the NW, NE, and PRD regions, and 500m for NCP and YRD region.  

 

Figure 5.1 Nocturnal boundary layer height from WRF simulation and from 

observations in other literatures 

 

The future work of the research involves extending the ozone peak time constraints 

to biogenic emission dominated regions and validating the relationships using local 

measurements. Li et al., (2019) have applied the ozone peak time and peak concentration 

relationships in the continental U.S. and suggest an underestimation of the soil NOX 

emission in the south, and find overestimations of the isoprene emissions in central, south, 

and southwest consistent with results from the OMI HCHO column analysis.  

 

5.2 Impact of OVOC and RO2 on ozone production 



 

 75 

In CHAPTER 2, we identified that the intermedia OVOCs produced from the 

oxidation of RH are a critical source of RO2, which promotes the production of ozone and 

accelerate the atmospheric oxidation process as a positive feedback. The modeling analysis 

constrained by in situ measurements from Wangdu campaign in China indicates a large 

underestimation of the OVOC and PAN production from hydrocarbons in the simplified 

mechanism. The underestimated OVOC level consequently lead to an underestimation of 

the HO2 and RO2 production, and a lower ozone production rate. We also find that the lack 

of the OVOCs in the simplified mechanism leads to underestimated ozone production 

sensitivity to the NOX emission, and thus the current 3-D model using the simplified 

mechanism may have biased results. 

The future work of this study involves developing a new photochemistry 

mechanism to correct the OVOC and RO2 production from the hydrocarbons. The new 

mechanism can be based on existing simplified mechanism by adding critical reactions or 

based on the MCM mechanism by reducing the unimportant reactions. The mechanism 

development will require a thorough understanding of the radical cycle, and we investigate 

the radical cycle rates in Wangdu in Figure 5.2 and Figure 5.3. However, the mechanism 

should satisfy varying chemistry conditions, and additional analysis of the radical cycle 

should be conducted by in situ observations under other chemical and meteorology 

conditions.  
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Figure 5.2 Daytime averaged (6 AM to 6 PM) radical cycle rates [ppbv/h] for Wangdu 

data using MCM mechanism. The number outside the bracket shows the value in the 

boundary layer of the 1-D model. The number inside the bracket shows the value in 

the box model. 
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Figure 5.3 Same as Figure 5.2 but for GCM mechanism. 

5.3  Effect of cross-section integral distance on EMG fitting 

In CHAPTER 4, we show that the cross-section integral distance can dominate the 

error in EMG fitting of NOX emissions from satellite observed NO2 columns using both 

idealized plumes and CMAQ simulated plumes in the Yangtze River Delta region. The 

idealized plume suggest that the accuracy is better under longer integral distance, however, 

in the CMAQ simulated plumes, longer integral distance leads to worse results. In Shanghai 

and Nantong under calm wind condition, the fitted NOX emission increases with the cross-

section integral distance, however, the increasing rate drops dramatically after the cross-

section integral distance reaches a certain value, indicating that the EMG fitting is 
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insensitive to relatively low emissions. As the true emission continues to increase with the 

distance, the bias of the fitted emission can be large. In the application of the EMG fitting, 

the cross-section integral distance often uses empirical values ranging from 180 km to 300 

km, and the uncertainty due to the cross-section integral distance is estimated for 10% 

(Beirle et al., 2011; Fioletov et al., 2015; Goldberg et al., 2019; Liu, F. et al., 2016). With 

point sources without other sources at a close range, the “visual inspection” method may 

work, however, for regions with complex source distribution such as China, a determined 

method is necessary, and the corresponding uncertainty should be analyzed. 

The future work of this study involves developing a method for selecting the proper 

cross-section integral distance with the EMG fitting. Based on the current results for 

Shanghai and Nantong, the proper distance should be correlated to the increasing rate of 

the fitted emissions with respect to the cross-section integral distance. After the method is 

developed, the uncertainty can be determined by applying the method on simulated NO2 

plumes similar to this research, and the uncertainty is expected to be much larger than 

current 10%. 

  



 

 79 

APPENDIX A. DESCRIPTION OF DEFAULT SUBHEADING 

SCHEME 

A.1 Atmospheric chlorine chemistry 

Chlorine atoms (Cl) are known for the destruction of ozone in the stratosphere and 

the troposphere (Seinfeld et al., 2016). However, in polluted regions, Cl can initiate the 

oxidation of VOCs and produce RO2 radicals and hydrochloric acid (HCl), promoting 

ozone production (R A.1). 

 RH + Cl + O2 → RO2 + HCl (R A.1) 

The Cl atoms react with RH and OVOCs with a much faster rate than OH (Figure 

A.1). However, unlike the OH radical, the Cl atoms cannot regenerate from the oxidation 

process of VOCs. The global average of the tropospheric Cl concentration is ~104 

molecules cm-3 (Saiz-Lopez & Glasow, 2012), much lower than the global average of 

tropospheric OH of ~106 molecules cm-3 (Liang et al., 2017). Despite the low abundance 

of the Cl atoms in the troposphere, Cl atoms contribute ~3% to the total oxidation of CH4, 

and regionally the percentage can reach as high as 20% (Hossaini et al., 2016). 
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Figure A.1 Kinetic rates for several hydrocarbons and aldehydes with OH radicals 

and Cl atoms. 

The major sources of Cl atoms in the daytime include the rapid photolysis of nitryl 

chloride (ClNO2) and molecular chlorine (Cl2), and also the reaction between OH and HCl 

(R A.2-R A.4). 

ClNO2 + ℎ𝜈 → Cl + NO2 (R A.2) 

Cl2 + ℎ𝜈 → 2Cl (R A.3) 

OH + HCl(𝑔) → Cl + H2O (R A.4) 

The ClNO2 is produced by the aerosol uptake of N2O5 during the night (R A.5), as 

the N2O5 has a deficient daytime concentration due to the heat decomposition into NO2 and 

NO3, and NO3 has a very short lifetime of seconds during the day due to photolysis (Brown 

& Stutz, 2012; Faxon & Allen, 2013). The production of ClNO2 from the uptake of N2O5  

competes with the hydrolysis of N2O5 (R A.6), and the observation derived yield of ClNO2 
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from the N2O5 uptake can vary between 1%-104% in China, with maximum ClNO2 

concentrations over 2 ppbv (Liu X. et al., 2017; Wang, T. et al., 2016; Tham et al., 2018).  

 N2O5 + Cl(𝑙)
− → ClNO2 + NO3

− (R A.5) 

 N2O5 + H2O(𝑙) → 2HNO3 (R A.6) 

The Cl2 can be generated from aerosol uptake of hypochlorous acid (HOCl) and 

chlorine nitrate (ClONO2) (R A.7-R A.11), activating chlorine ions in the aerosol (Vogt et 

al., 1996).  

Cl + O3 → ClO + O2 (R A.7) 

ClO + HO2 → HOCl + O2 (R A.8) 

ClO + NO2 + (M) → ClONO2 + (M) (R A.9) 

HOCl + Cl− + H+ → Cl2 + H2O (R A.10) 

ClONO2 + Cl− → Cl2 + NO3
− (R A.11) 

Other mechanisms that produce Cl2 involve the surface reaction of OH and Cl- and 

the uptake of ClNO2 in high acidic aerosols (Knipping et al., 2000; Roberts et al., 2008). 

The new mechanisms are based on experimental studies and have not been validated 

through observations. 
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A.2 Additional reactions in the mechanism 

We expand the previous REAM mechanism with 9 chlorine species including 

chlorine atoms (Cl), chlorine monoxide (ClO), chlorine dioxide (OClO), hydrochloric acid 

(HCl), hypochlorous acid (HOCl), molecular chlorine (Cl2), nitryl chloride (ClNO2), 

chlorine nitrite (ClONO), and chlorine nitrate (ClONO2). The extended mechanism 

contains 22 inorganic reactions, 22 organic reactions, 7 photolysis reactions, and 3 

heterogeneous reactions. The names of the organic species in REAM are listed in Table 

A.1 and the reactions are listed in Table A.2. The products in the chlorine-organic reactions 

use the same product as OH-organic reactions replacing H2O formation with HCl. 

Table A.1 Tracer names in REAM and the corresponding species 

REAM tracer name Species 

CH4 Methane 

MP Methyl hydroperoxide 

CH2O Formaldehyde 

HCOOH Formic acid 

MOH Methanol 

ALD2 Acetaldehyde 

C2H6 Ethane 

C3H8 Propane 

ALK4 Alkanes with equal or more than 4 carbons 

R4N2 Organic nitrites with more than 4 carbons 

ACTA Acetic acid 

RCHO Aldehydes with equal or more than 3 carbons 

ACET Acetone 

MEK Methyl ethyl ketone 

EOH Ethanol 

ROH Alcohols with equal or more than 3 carbons 

PRPE Alkenes with equal or more than 3 carbons 

C2H4 Ethene 

C2H2 Acetylene 

ISOP Isoprene 

TOL Aromatics with k(OH) < 1×10-11 cm3 molecule-1 s-1 

XYL Aromatics with k(OH) > 1×10-11 cm3 molecule-1 s-1 
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Table A.2 The chlorine related reactions added to REAM mechanism 

Inorganic reactions Rate constant at 298K, 1 

atm [cm3 molecule-1 s-1] 

reference 

Cl+O3®ClO+O2 1.21E-11 Atkinson et al., 2007 

Cl+H2®HCl+H 1.68E-14 Atkinson et al., 2007  

ClO+NO®Cl+NO2 1.67E-11 Atkinson et al., 2007  

ClO+HO2®HOCl+O2 6.88E-12 Atkinson et al., 2007  

ClO+NO2+M®ClONO2+M 2.17E-12 Atkinson et al., 2007  

ClO+ClO®Cl2+O2 4.82E-15 Atkinson et al., 2007  

ClO+ClO®OClO+Cl 3.53E-15 Atkinson et al., 2007  

ClO+ClO®2Cl+O2 8.06E-15 Atkinson et al., 2007  

Cl2+OH®HOCl+Cl 6.48E-14 Atkinson et al., 2007  

ClNO2+OH®HOCl+NO2 3.62E-14 Atkinson et al., 2007  

Cl+NO2+M®ClNO2+M 3.6E-12 Burkholder et al., 2015 

Cl+NO2+M®ClONO+M 1.63E-11 Burkholder et al., 2015 

Cl+H2O2®HO2+HCl 4.10E-13 Atkinson et al., 2007 

HCl+OH®Cl+H2O 7.86E-13 Burkholder et al., 2015 

Cl+HO2®HCl+O2 3.18E-11 Burkholder et al., 2015 

Cl+HO2®OH+ClO 9.06E-12 Burkholder et al., 2015 

ClO+OH®HCl+O2 1.30E-12 Burkholder et al., 2015 

ClO+OH®HO2+Cl 1.83E-11 Burkholder et al., 2015 

HOCl+OH®ClO+H2O 5.60E-13 Burkholder et al., 2015 

Cl+ClONO2®Cl2+NO3 1.01E-11 Burkholder et al., 2015 

ClONO2+OH®Cl+HO2+NO2 3.97E-13 Burkholder et al., 2015 

ClONO2+M®ClO+NO2+M 5.57E-04 (s-1) Zhu & Lin, 2005 

Organic reactions Rate constant at 298K, 1 

atm [cm3 molecule-1 s-1] 

reference 

Cl+CH4®products 1.03E-13 Atkinson et al., 2006 

Cl+MP®products 5.90E-11 Atkinson et al., 2006 

Cl+CH2O®products 7.23E-11 Atkinson et al., 2006 

Cl+HCOOH®products 1.90E-13 Atkinson et al., 2006 

Cl+MOH®products 1.90E-13 Atkinson et al., 2006 

Cl+ALD2®products 8.00E-11 Atkinson et al., 2006 

Cl+C2H6®products 5.76E-11 Atkinson et al., 2006 

Cl+C3H8®products 1.38E-10 Atkinson et al., 2006 

Cl+ALK4®products 2.05E-10 Atkinson et al., 2006 

Cl+R4N2®products 8.50E-11 Atkinson et al., 2006 

Cl+ACTA®products 2.65E-14 Atkinson et al., 2006 

Cl+RCHO®products 1.30E-10 Atkinson et al., 2006 

Cl+ACET®products 2.07E-12 Atkinson et al., 2006 

Cl+MEK®products 4.00E-11 Atkinson et al., 2006 

Cl+EOH®products 1.01E-10 Atkinson et al., 2006 
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Cl+ROH®products 1.57E-10 Atkinson et al., 2006 

Cl+PRPE®products 2.70E-10 Atkinson et al., 2006 

Cl+C2H4®products 1.58E-10 Atkinson et al., 2006 

Cl+C2H2®products 5.24E-11 Atkinson et al., 2006 

Cl+ISOP®products 4.07E-10 Atkinson et al., 2006 

Cl+TOL®products 5.90E-11 Shi & Bernhard, 1999 

Cl+XYL®products 1.50E-10 Shi & Bernhard, 1999 

Photolysis reactions Average noon rates [s-1] reference 

ClO®Cl+O3 1.58E-05 Atkinson et al., 2007 

HOCl®OH+Cl 1.42E-04 Atkinson et al., 2007 

OClO®O3+ClO 5.16E-02 Atkinson et al., 2007 

ClONO2®Cl+NO3 2.87E-05 Atkinson et al., 2007 

ClONO®Cl+NO2 2.57E-03 Atkinson et al., 2007 

Cl2®2Cl 1.40E-03 Atkinson et al., 2007 

ClNO2®Cl+NO2 2.81E-04 Atkinson et al., 2007 

Heterogeneous reactions Uptake coefficient (γ) reference 

N2O5+HCl ® φClNO2+(2-

φ)HNO3 

0.1 Ammann et al., 2013 

ClONO2+HCl®Cl2+HNO3 0.03 Ammann et al., 2013  

HOCl+HCl ®Cl2+H2O 0.01 Ammann et al., 2013  

We have applied the box model assembled with the extended REAM mechanism 

to analyze the chlorine chemistry in Wangdu. Figure A.2 shows the comparison of the 

daytime averaged (6AM to 6 PM) radical concentrations simulated by the box model before 

and after the chlorine chemistry is added. The OH, HO2, and RO2 concentrations rise by 

5%, 14% and 22% separately. The corresponding ozone production rate increased by 20% 

in the daytime. The chlorine atoms also contribute to the oxidation of 16% to methane, 

55% to non-methane alkanes, 13% to alkenes, 7% to aromatics, and 5% to isoprene. More 

details can be found in Liu, X. et al., (2017). 
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Figure A.2 The effect on daytime (6AM to 6PM) radical concentrations due to the 

chlorine chemistry 

In MCM, the inorganic reactions, photolysis reactions, and heterogeneous reactions 

are the same as in the REAM mechanism. For the organic reactions of non-lumped species 

in Table A.2, we directly add those reactions in MCM. For the other species, we only add 

the reactions with reliable kinetic rates and assume the branching ratio of the products is 

the same as OH radicals. The organic reactions in MCM are listed in Table A.3. The 

complex products use the same product as their reactions with OH radical by replacing the 

H2O production with HCl.  

Table A.3 Additional chlorine related organic reactions in MCM 

Organic reactions Rate constant at 298K, 1 

atm [cm3 molecule-1 s-1] 

reference 

Cl+CH4®CH3+HCl 1.03E-13 Atkinson et al., 2006 

Cl+C2H2®products 5.24E-11 Atkinson et al., 2006 

Cl+C2H4® products 1.58E-10 Atkinson et al., 2006 

Cl+C2H6®C2H5+HCl 5.76E-11 Atkinson et al., 2006 

Cl+C3H6®products 2.70E-10 Atkinson et al., 2006 

Cl+C3H8®C3H7+HCl 1.38E-10 Atkinson et al., 2006 

Cl+n-C4H10® C4H9+HCl 2.05E-10 Atkinson et al., 2006 

Cl+HCHO®HCl+HCO 7.23E-11 Atkinson et al., 2006 

Cl+CH3CHO®HCl+CH3CO 8.00E-11 Atkinson et al., 2006 

Cl+CH3C(O)CH3®products 2.07E-12 Atkinson et al., 2006 

Cl+CH3C(O)C2H5®products 3.60E-11 Atkinson et al., 2006 



 

 86 

Cl+CH3OH®products 5.50E-11 Atkinson et al., 2006 

Cl+C2H5OH®products 1.01E-10 Atkinson et al., 2006 

Cl+CH3OOH®products 5.90E-11 Atkinson et al., 2006 

Cl+HCOOH®products 1.90E-13 Atkinson et al., 2006 

Cl+CH3COOH®products 2.65E-14 Atkinson et al., 2006 

Cl+CH3ONO2®products 2.40E-13 Atkinson et al., 2006 

Cl+C2H5ONO2®products 4.70E-12 Atkinson et al., 2006 

Cl+n-C3H7ONO2®products 2.20E-11 Atkinson et al., 2006 

Cl+i-C3H7ONO2®products 3.80E-12 Atkinson et al., 2006 

Cl+ISOP®products 4.07E-10 Atkinson et al., 2006 

Cl+TOL®products 5.90E-11 Shi et al., 1997 

Cl+XYL®products 1.50E-10 Shi et al., 1997 
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