Technical report GIT-GVU-00-16, June 2000

Image-Driven Mesh Optimization

Peter Lindstrom Greg Turk

Georgia Institute of Technology

Abstract edge collapses yields an optimal model. Not only do such greedy
algorithms produce suboptimal geometry, but the mesh connectiv-
We describe a method of improving the appearance of a low vertex ity can often be improved as well.
count mesh in a manner that is guided by rendered images of the Our solution to this problemmesh optimizationis to improve
original, detailed mesh. This approach is motivated by the fact that the appearance of a simplified mesh by performing mesh opera-
greedy simplification methods often yield meshes that are poorer tions that do not alter the vertex count. These changes are guided
than what can be represented with a given number of vertices. Ourby comparisons between rendered images of the simplified mesh
approach relies on edge swaps and vertex teleports to alter the mesland the original, high-detail mesh. Because we use comparisons
connectivity, and uses the downhill simplex method to simultane- between rendered images, the color, texture, and normals of the
ously improve vertex positions and surface attributes. Note that this mesh are automatically taken into account in the optimization pro-
is not a simplification method—the vertex count remains the same cess. We describe our method in detail after a review of previous
throughout the optimization. At all stages of the optimization the work.
changes are guided by a metric that measures the differences be-
tween rendered versions of the original model and the low vertex
count mesh. This method creates meshes that are geometricaly?2 PREVIOUS WORK
faithful to the original model. Moreover, the method takes into ac-
count more subtle aspects of a model such as surface shading oBecause our mesh optimization work is designed to improve upon
whether cracks are visible between two interpenetrating parts of the meshes that have been simplified, the mesh simplification literature
model. is the most closely related area to our work. This literature is too
large to cover in any detail, so in this section we will only review
some of the broad trends, paying particular attention to the order
1 INTRODUCTION that each method uses to decide which mesh operation is to be per-
formed next.
Due to the multitude of large geometric models that are available,a In 1992, Schroeder and Lorensen described a simplification
major challenge is to create simple models that have the appearancenethod that repeatedly performs vertex removal in order to simplify
of the originals. One of the most commonly used method to produce a mesh [19]. This is one of the earliest algorithms to repeatedly use
such simple models is to perform a sequence of local operationsa single mesh operation (vertex removal in this case) to reduce the
that reduce the complexity of the model. Nearly all such methods complexity of a mesh. Their method makes a number of succes-
use a greedy approach to selecting these operations—the operatiosive passes through the list of mesh vertices, each time relaxing the
that is performed next is the one that will change the model the tolerance on which vertices may be removed.
least according to some quality measure. Such greedy approaches The original paper on mesh optimization is that of Hoppe and his
often result in simplified meshes that can be substantially improved co-authors [9]. Their goal was to improve the aggregate distance
by further changes to the connectivity, the vertex positions and the between a given mesh and a set of 3D poiRtsand this process
texture coordinates of the model. This paper describes a method forwas designed to improve the meshes from their earlier work on sur-
improving the appearance of a mesh that uses rendered images oface reconstruction from unorganized points [8]. They also used
the original mesh to help guide the changes. this technique for simplifying a mesh by creating the poiRtdy
Why is the greedy approach to simplification not optimal? A densely sampling points on an original mesh. Their approach is to
typical greedy simplification algorithm uses an operation (edge col- perform edge operations (edge swap, edge split, edge collapse) in a
lapse, for instance) to reduce the vertex and polygon count of the manner that is guided by a term that measures the distance from the
model. Usually a priority queue is used to order the potential edges current mesh to the poin8. Their energy term is a weighted sum
to collapse according to the estimated change in geometric fidelity of the number of vertices, the distances from the mesR tand
that each edge collapse would make. At each step, the edge col-an edge length term (ttspring term). Their optimization method
lapse with the lowest cost is performed, then affected neighboring selects an edge at random, performs one of the three edge oper-
edges are re-evaluated and re-inserted into the priority queue. Suchations at random, and then solves a linear least squares problem
algorithms essentially create a path through the space of all possi-using the conjugate gradient method to change the vertex positions
ble meshes, where each new node in the path is a mesh that ha# the neighborhood of the edge in order to improve the fiPtoA
one fewer vertex than the preceding node. Previous decisions inrandom change is accepted if it reduces the energy term.
the selection of earlier meshes in this path severely restrict the later ~ Several researchers use a priority queue to determine the order of
meshes that can be reached. Consider the analogous problem in 2ocal operations for simplifying a mesh. These priorities are based
of simplifying a single (possibly many-sided) polygon by perform- on such measures as distance to points [5], distance to planes [17],
ing edge collapses. If the original polygon is a detailed approxima- minimizing a quadratic function [3], and minimizing change in vol-
tion of a circle, then the best (in the mean error sense) five-sided ume [11]. Perhaps most closely related to the optimization work
simplification is a regular pentagon. A single edge collapse (the in this paper is using an image-driven priority queue to simplify a
greedy step) cannot produce the best four-sided model, which is amodel [12]. All of these are greedy approaches, and therefore are
square. This same problem occurs frequently in 3D simplification. all prone to creating suboptimal meshes.
For example, by extruding the circle and pentagon to cylinders, we View-dependent simplification divides the simplification task
are faced with a similar problem in 3D where no combination of two into two components [6, 14, 22]. During the pre-processing stage,

Technical report GIT-GVU-00-16, June 2000

a sequence of simplification operations (e.g. edge collapse) are per-
formed, and a tree of interdependencies of these operations is also
built. During on-line rendering, information about the viewpoint
is used to decide which of the simplification operations should be
performed, and this determines the mesh to be displayed. Although
we use rendered images from different viewpoints to perform opti-
mization, the work presented in this papenit a view-dependent
simplification approach in the sense that this term is used in the lit-
erature. In our approach, we use rendered images during off-line Iy
optimization. F!
There have been several approaches towards incorporating color
and texture information into the simplification process. Hoppe uses
additional terms in his energy measure to capture information about |
mesh color [5]. Cohen et al. place restrictions on the deviation that 1
texture coordinates may undergo in order to prevent sliding of the v
texture [2]. Garland and Heckbert extended their quadric error met-
ric to incorporate color and/or texture coordinates [4]. Hoppe [7]
describes a similar quadric-based method that uses the memoryless
scheme from [11]. Lindstrom and Turk use an image metric that
unifies differences in geometry and surface properties, and take into
account both scalar attributes and texture content [12].

Figure 1: Twelve uniformly distributed views of a model. The viewpoints correspond

3 OVE RVl EW OF ALG OR |TH M to the vertices of a regular icosahedron.

Our algorithm begins with two input meshes, the original detailed our discussion to the mean-square error (MSE) netriecause
mesh and a simplified version of this mesh that has the desired num-of its computational efficiency and the convincing results it pro-
ber of vertices. It is unimportant what method is used to create the duces for our application. We note that our image-driven opti-
simplified mesh, and we show results from several methods later. mization framework easily allows other image metrics to be used,
The user picks the number of viewpoints to use (from six to twenty- such as [13, 16]. As an example, we have incorporated Bolin and
four is typical), and the algorithm creates this number of rendered Meyer’s perceptual image metric [1] with our optimization method,
images of both the original and the simplified meshes. Then, using but found it to give less pleasing results than MSE in most cases.
amethod described in detail later, an edge in the simplified mesh is Even though some of our examples include colored models, we
selected for improvement. The algorithm then attempts a number compute a single luminance channélfor each image using the

of changes to the mesh at and around this edge to create a mesktandard NTSC coefficients and measure only differences in lumi-
whose rendered images are closer to those of the original mesh. (Anance, which has worked well for all of our test models.
hardware-assisted method of rapidly updating the rendered images e cannot hope to capture the entire appearance of an object in
will be described later.) Possible changes to the mesh include mov-4 single image. Ideally, we wish to capture the set of all radiance
ing two or more vertices, edge swapping, or evereeex teleport samples that emanate from the surface of an object under all possi-
(moving a vertex between entirely different portions of the mesh). pje |ighting conditions. This is obviously not possible in practice.
Which of these changes are tried is based on how costly each at-Tq capture a large collection of radiance samples, we render images
tempt will be relative to the likely improvement each change will from a number of different camera positions, typically between six
yield. When the method is done considering a particular edge, a and twenty-four, around the object and apply the image metric to

new edge is selected and the process repeats. this entire set of images (Figure 1). Our measure of similarity can
then be computed as follows: Given two setd ddminance im-
= " = {Y,} of di i ixels, th
4 THE ENERGY FUNCTION agesy = {Y.} and)’ = {Y}} of dimensionsn x n pixels, the

mean-square difference is

In this section we lay the groundwork for using comparisons be- .

tween images to steer the optimization of a model. Our measure , 1 i ;N2

of similarity is based on the work by Lindstrom and Turk [12] in dus(Y, V') = Imn Z Z Z (Ynis — vhis) @)
which an image metric is used to order a set of edge collapses. h=1i=1j=1

Their method, however, uses geometry-based heuristics for posi-

tioning the vertices and and a greedy method for choosing edge col- While the number of views required and the “optimal” place-
lapses that often yields a suboptimal connectivity. Our optimization ment of viewpoints vary between objects, we have chosen to use a
method, on the other hand, uses the image metric directly to deter-uniform distribution of views, which has worked well for all models
mine the best vertex positions and what changes to make to thethat we have optimized so far. For each view, we place a single light
connectivity. First we describe how multiple images of the original source near the viewer to illuminate the front of the model. For the
and a simplified model are compared in order to judge the similar- results presented in this paper, we used 20 imag25s6ok 256 pix-

ity of the models. Then we explain how to efficiently evaluate the els each during optimization, and placed the model on a gray (50%
metric during optimization. intensity) background.

n

4.1 Comparing Models Using Images 1Although MSE does not satisfy the triangle inequality property of a
metric, we will use it only to determine whether one mesh is a better ap-

An image metrids a function over pairs of images that gives a non- proximation than another, for which triangle inequality is irrelevant. Many
negative measure of the distance between the two images. Whilegeometry-based measures of similarity are likewise expressed as quadratic
several perceptually motivated image metrics exist, we will limit functions [3, 9, 11].

Technical report GIT-GVU-00-16, June 2000

4.2 Definition of Energy Function previous section, only parts 9f need to be generated, and we de-
o . . scribe in this section data structures and algorithms for efficiently
In the context of optimization, we will refer to the quality measure querying what portions of the mesh to render in order to produce
presgnted .|n the preylous section asehergy funActlorE (cf. [9]). the necessary subimages. Our approach to fast image updates has
That is, £ is a function of the rendered imag@sof some ideal peen tailored to systems with graphics hardware, and our imple-
model M that we wish to reproduce, and imaggsof the cur- mentation use®penGL[21] and thepixel buffer[10] extension for
rent modelM being optimized. In order to make the optimization hardware-assisted off-screen rendering.
procedure efficient, we need a fast method for computing image The optimization algorithm begins by rendering imagesf the
differences. Whenever a new mesh is produced by makingpan target model and stores these away. In addition, we render images
timization movei.e. moving some of its vertices or changing its) of the coarse model that is to be optimized, which are gener-
connectivity, we must conceptually use the image comparison pro- ated from scratch only once and are subsequently updated via small
cedure described above, which requires rendering the entire modeljocal changes. Since the evaluation of the energy function, and con-
from multiple viewpoints, capturing the images, and applying the sequently the generation df, resides in the innermost loop of the
image metric to each image to measure the visual quality of the gptimization algorithm, it is imperative that this step is efficient. In
mesh. In practice, however, we can accelerate this process by Upparticular, we need a fast algorithm for replacing a small set of tri-
dating the images incrementally and evaluating the image metric angles7" with 7" without having to re-render the entire mesh. This
over the affected pixels only, assuming the difference between con-jg conceptually done by “un-rendering” the trianglBsrevealing
secutive meshes is small. In this section, we describe a fast methodany obscured parts of the surface, and then rendering the replace-
for evaluating thechangein energy without having to iterate over ment trianglesI”. Unfortunately, un-rendering is not commonly
the entire triple sum in Equation 1. _ _ supported in hardware, but we can limit the number of triangles that
_ The absolute energy is useful for comparing the relative qual- have to be rendered by exploiting spatial locality and subdividing
ity of two meshes and determining when the optimization con- the image space intmiangle buckets We maintain a pair of hash
verges. However, we are often more interested in the change intaples, indexed by the triangle identifiers, for each pixel row and
energyAE incurred by an optimization move. A beneficial move column (Figure 2). This data structure, explained in detail below,
results in a negative change as a low-energy state is preferred.a|lows us to perform rectangular range queries to efficiently cull
Thus, instead of computing absolute energies, we will focus on away most triangles that do not intersect the region= I, x J,
how to evaluate changes in energy efficiently. The procedure de-jn each viewh that contains the trianglég U T”. The result of the
scribed here generalizes the computation of edge collapse energiegange query is a séftr, that is guaranteed to contain all triangles,
described in [12] to arbitrary connectivity and geometry changes. yisible and obscured, that overlap the region. Since the procedure
LetY, Y, and)’ be the collections of images of the target model is the same for all views, we will omit the subscript, in the fol-

M, the current modelM, and the model’ after performing an lowing paragraph for the sake of readability.
optimization move on\/, respectively. Then the change in energy Triangle culling is accomplished by computing the union of
associated with the move is: the vertical bucketsIt = U;ecsT; and the horizontal buckets
, T; = UjesT; spanned byR, and then lettindl'r = 17 N Ty
AE = E(M") — E(M) be a conservative (but generally tight) estimate of the set of tri-
_ 5 N s angles contained itR. We accelerate the computation of unions
= lmn (dMS(y’y) dMS(y’y)) by maintaining an additional set of tablesl; = T; \ T;_; that
I m n are the set differences between consecutive pixel columns/rows).
= Z [(thj — i) = (Gnij — yhij)Q] That is, AT; contains the triangles whose left-most vertex is in
h=1i=1 j=1 columni. Then we can rewritdl; as a union of disjoint sets

Trin TUATmin 1+1U- - \UATmax 1. In general, the hash tablésr;
Note that any pixel satisfyingn:; = y7,;; makes no contribution to are considerably smaller than the tatilesThe intersectioff’z can
AE. In fact, this holds for the majority of pixels due to the spatial then be computed in linear time by associating a “time stamp” with
locality of the optimization moves used in our algorithm. Each op- each triangle. Prior to computirifr, a unique time stamp is cho-
timization move entails replacing a small set of trianglesith 7”. sen. While building the séf;, all triangles encountered are marked
These two sets may be topologically equivalent, but their geometric with the new time stamp. AS; is traversed, only the triangles with
extents may differ whenever their supporting vertices are moved. the given time stamp are addedZg.
Thus, the only pixels that can differ between the imayjeend)’ To replaceT with 77, we first clear each regioR;, in which
whenT is replaced withl” are the ones covered Wy U T". For these sets of triangles are contained. We then render the triangles
efficiency, we compute for each vieiwan axis-aligned bounding Tg, \ T, i.e. all triangles inR;, except those we wish to un-render.
box R, = I, x Jy in screen space around these triangles, which We complete the operation by rendering the’Betproducing the
is a conservative estimate of the affected pixels. By visiting this images)”’, which then allows us to evaluateE. The use of these
smaller set of pixels only, we obtain an expressionAdr that is data structures to cull away triangles increased the overall speed of
faster to evaluate: the algorithm by a factor of six for the bunny model in Figure 7a.
For optimization with 20 views, roughly 100 evaluations &AF

l
AE — Z Z Z [(z?m-j _ yﬁu-]-)Q — (i — yhij)Q:I @) can be made per second.
h=11i€ly jeJy
5 OPTIMIZATION PROCEDURE

4.3 Fast Image Updates o) :
Mesh optimization can be described as a process of searching the

So far, we have described how to evaluaté’ given sets of im- spaceM of all possible meshes for the mesh that minimizes some
ages),), and)’. We will now explain how to efficiently generate given metric, subject to a set of constraints. In this paper, the goal
these images. Our approach is to maintain images the most of optimization is to produce a model with a few number of trian-

optimal model found so far and, for each optimization move con- gles thatis visually similar to a target model with a larger number of
sidered, make incremental changes to these images to protduce triangles. In contrast to mesimplificationalgorithms such as [12]
If the move is beneficialy is replaced by)’. As pointed out in the and the mesh optimization algorithm by Hoppe et al. [9], which are

Technical report GIT-GVU-00-16, June 2000

H L SN SN

:) [%
. iinde /@\ /@\
: ok ESSS

(men (en (men (e

Figure 2: The triangle bucket data structure. The triangles of the model are projected
onto the two image axes and are maintained in hash tables for all pixel rows and

columns. This data structure allows for all triangeg (shown in violet) that intersect . . o .
the rectangular regioR surrounding the triangleE U T” to be accessed quickly. The ation would result in a non-negligible improvement to the mesh.

set of trianglesI” = [[v]] surrounding a single vertex is here shown in red. We Although our work owes a debt to Hoppe et al.'s pioneering tech-

find Tr by computing the intersection of the triang[€s (magenta) and the triangles nigue, we claim that our method is as different from their approach

T (blue-green). as most of the dozens of published mesh simplification methods are

from one another.

also driven by this goal, we will assume that an already simplified |n the remainder of this section, we will first describe the

mesh is provided, which is used as a starting point in our optimiza- |ow |evel details of the continuous and discrete optimization, and

tion method, and which we seek to improve with respect to some then conclude by discussing the strategy for choosing connectivity

measure of visual similarity in relation to the target model. The moves and the set of edges to optimize. In describing the algo-

optimization is constrained by fixing the number of vertices in the rithm, we will make frequent use of the two simplex operators

coarse mesh, although we allow its vertices to move and its coNNec-(the (n, — 1)-simplices that make up am-simplexs) and[s] (the

tivity to change. (n + 1)-simplices thats is a subset of) [11]. Figure 3 illustrates
The space of all meshes that we seek to explore can be param+hese simplex operators.

eterized in terms of the mesh connectivity, geometry, and surface

attributes such as colors, normals, and texture. Formally, we de-

Figure 3: The simplex operatofs | and[s].

fine a meshM/ = (K, X, 5) as a triplet consisting of simplicial 5.1 Continuous Optimization of Mesh Geometry

complexK that defines the connectivity, a set of vertex positions

X that define the geometry, and a set of surface attribsited/e In this section we will explain how to optimize the geometry of a
distinguish between the topological entityce V' and the corre- small portion of a mesh. The goal of this optimization is to improve
sponding geometric realizatiof(v) = x € X C R® of a ver- the visual appearance of the mesh by making a series of small ad-
tex. Each attribute is bound to a vertexa trianglet, or acorner justments to the vertex positions, such as lengthening a protrusion,
(v,t) formed bywv and one of its incident triangles While the smoothing out undesired wrinkles and bumps on the mesh, enhanc-

geometry and surface attributes considered here are continuous paing creases and other fine details, etc. Specifically, given a mesh
rameters, the mesh connectivity is discrete. To optimize both, we with a fixed connectivity and a subsgtof its vertices, we wish to
will take an approach similar to that of Hoppe et al. [9] by using a move the vertex positionX = ¢(V) simultaneously until a local
two-level nested optimization; an inner, continuous optimization in optimum in the visual quality of the mesh is found. We can easily
which vertices and surface attributes are modified while fixing the generalize this procedure to include (continuous) surface attributes,
connectivity, and an outer, discrete optimization in which simple inwhich case we simply concatenate vertex positions and attributes
atomic changes to the connectivity are made. Our general approacHo form a single higher dimensional parameter vector. For simplic-
is to to select a set of edges in the mesh to improve, as suggested byty, however, we will restrict our discussion to vertex positions only.
anoracle interleaved with a sequence of randomly chosen edges. Multidimensional methods for continuous optimization prob-
This oracle (described in detail later) identifies edges that may be lems fall into one of two categories: methods that make use of
the cause of large differences between the images of the originalderivative information of the objective function in order to make
and current mesh. For each chosen edge, we try a sequence of coran educated guess about where, or at least in what direction, the
nectivity moves of varying complexity, and optimize a small set of minimum lies, and slower methods that rely on function evalua-
vertices in the neighborhood of the edge until the connectivity move tions only. Unlike in [9], where the energy function is a closed form
results in a decrease in the energy function. quadratic expression, our energy function is given by discrete image
In addition to the use of an oracle to guide the optimization, ver- differences that depend non-trivially (although generally smoothly)
sus random descent, our optimization method differs from Hoppe on the input parameters (the vertex positions and attributes). There-
et al.'s [9] in several ways. First, we do not use optimization to fore, we use an optimization procedure that relies only on sampling
simplify a mesh—we use it to improve a low vertex count mesh the energy function itself. We have chosen to usedthenhill sim-
that was produced by any mesh simplification method. Second, our plex methodor this task because it is easy to implement and gen-
optimization is not guided by a geometric measure of distance, but erally requires only a small number of function evaluations before
rather by image differences. By using an image metric to guide converging on a minimum [15]. This method takes as input 1
optimization, we can capture all of the relevant factors that make vectors that specify the vertices of arsimplex, evaluates the func-
up the appearance of a mesh without explicitly creating an energy tion at these vertices, and proceeds by making a sequence of moves,
term for each one. We thus avoid the tricky issue of how to bal- such as reflections, contractions, and expansions, which are chosen
ance such factors as geometric distance, color, and texture againsbased on the current function values at the vertices of the simplex.
one another. Third, the method we use to optimize vertex positions The energy function is then evaluated whenever a vertex in the sim-
is entirely different from the conjugate gradient approach used by plex is moved. Near a local minimum, the simplex contracts until
Hoppe et al. Finally, our selection of which operation to perform the function values become sufficiently close. Thus, by tracking the
upon an edge is not random, but is decided based on which oper-hyper-volume of the simplex, which always expands or contracts by

Technical report GIT-GVU-00-16, June 2000

a power of two, we can estimate when a minimum has been found.
To apply the downhill simplex method to our problem, we begin

by constructing a basis for the set@f mesh verticed/ that we

wish to optimize, with positions{ = {x;}i~;. Even though the

vertices need not be related geometrically or topologically what-

swap collapse

soever, we will assume that they are confined to a small neigh-

borhood in the mesh. For example,nif = 4 (a number of ver- split |I
tices frequently optimized at a time in our algorithm), then we need
to producen = 3m = 12 linearly independent 12-dimensional

vectors (theryz-coordinates for the four vertices). In addition to
the vertex positionsX in M—the current mesh—which collec-

tively make up am-vectorp; = [x1' x2' -+ X '] for

one of the vertices in the initial simplex, we can compute the re-

maining n. vertices{p; };—, of the simplex by choosing the unit

coordinate axes ifR™ as a basis, and displacing these vertices a

small distance) from py along each corresponding basis vector,

i.e. pi = po + dé;,1 < ¢ < n. Each suclp; naturally consti-

tutes an initial estimate of the location of the optin}) and it is

important that these estimates are reasonably close to the expected A
minimum for fast convergence. Consequently, we choose the mag-

nitudes of the displacements based on the local geometry around

the vertex sel’/. One might suspect that using local coordinate Figure 4: The edge swap, split, and collapse operations.

frames derived from the geometry of the mesh (as opposed to us-

ing the arbitrary canonical basis Bf*) would produce better and while edge splitis used to introduce a vertex (Figure 4). These

less biased offsets. However, we have not found this to be true in two operations, when used together, make upviréex teleport

practice. operation. We chose edge split insteadveftex split—the dual
Once the initial simplex has been formed, the continuous opti- Of edge collapse—for two reasons: The edge split results both in a

mization of X is performed by making repeated evaluations of the uniquely defined connectivity and a unique position for the new ver-

energy function, until the process converges or a predefined limit on téx (assuming the edge is split at its midpoint), whereas vertex split

the number of evaluations is exceeded. We are currently imposing 'equires not only the specification of which edges to “pull apart”,
a limit of 32n evaluations to avoid spending too much effort on one but also how to assign coordinates and surface attributes to the new

small region of the mesh. vertex. Secondly, by using edge split we can treat the discrete op-
So far we have not discussed how to choose the set of verticestimization as a sequence of improvements made to the edges of the
V to optimize as this decision is tightly linked to the outer, discrete Mesh via a small set of well-defined, atomic operations.
optimization, which we will discuss in the following subsection. Recall that the discrete optimization is wrapped around an inner
continuous optimization. Whenever a connectivity move is made,
. L . we optimize the geometry of the nearby vertices and accept the
5.2 Discrete Optimization of Mesh Connectivity move if it leads to a decrease in the energy function. We will discuss
how to choose what moves to make on what edges in the following

- .) . . sections, and focus the remainder of this section on providing the
positions of their vertices alone. After a while, however, a point of final details of how to perform each move
diminishing returns will be reached as changes to the connectivity] o o) ')
are needed to further improve the mesh. This is generally required ~ Since the initial connectivity might be far from optimal, we
for one of two reasons: either the local mesh connectivity is not ap- Would like to avoid expending too much effort optimizing the ge-
propriate for its given geometry, which can be handled by making ometry during the early stages. Instead, we define for each con-
one or moreedge swapsor the mesh tessellation is too fine or too Nectivity move multiple levels of geometry optimization, ranging
coarse in relation to the geometric complexity, which we address from simple vertex placement heuristics to optimizing successively

Most simplified meshes can be improved greatly by optimizing the

by transferring vertices from one area to another usivgrtex tele- larger sets of vertices simultaneously. The idea is to allow an ef-
port operation. These two connectivity moves are described in the ficient but less accurate optimization strategy as long as the mesh
remainder of this section. quality can be improved, and to employ higher degrees of optimiza-

To explore the entire space of all meshes, we need a way of gen-tion to fine-tune the mesh near an optimum. Since the expected
erating all possible mesh connectiviti&sfor a given set of vertices ~ humber of function evaluations is roughly linear in the number of
V. While the number of meshes with a fixed number of vertices is Vertices to be optimized, we favor optimizing small sets of vertices,
finite, the vast majority of these meshes are not useful to us. Ratherand expand the sets whenever insufficient progress is made. Table 1
than generating the complexes from scratch, this type of combina- contains the vertex set optlmlzed for each connectivity move. In ad-
torial optimization is often done by making incremental changes dition to the edge swap, split, and collapse operations, we include a
to a good initial estimate of the optimal connectivity. For mani- NC-Op” move which corresponds to optimizing the local geometry
fold meshes of fixed topological type, it can be shown thaetige ~ Without making any changes to the connectivity.
swapoperator (Figure 4) is sufficient to produce any desired (man- While the set of connectivity operations used in our algorithm
ifold) connectivity. While this operation is useful for making local allows a large space of meshes to be explored, it is not complete,
changes to the connectivity, it is not practical for distributing ver- i.e. it is not possible to construall meshes with a fixed number
tices over the mesh, as a long chain of edge swaps in conjunctionof vertices from a given initial mesh. For example, there is no way
with geometry optimization might be required to transfer a single to merge two disjoint components or to change the genus of the
vertex from one area to another. Instead, we transfer vertices us-mesh. Nor is it possible to open a hole in the mesh or to split a
ing a more global and atomic operation. In essence, we need twoboundary loop in two. In order to keep the algorithm simple, we
atomic operations; one for vertex removal, and one for adding a ver- rely on starting from a good initial model that has the appropriate
tex to the mesh. To remove a single vertex, we edge collapse topology but not necessarily the optimabnnectivity

Technical report GIT-GVU-00-16, June 2000

commestviy | s optimization level 3 none of these operations is efficient enough to attempt), we con-
no-op Te] [[TeTT] TTelT] clude that the geometry is locally optimal for the given connectiv-
swap Le’] LLTe 1] [TLe™IT] ity, but allow for the possibility that the connectivity is not optimal
split v L[v]] vU [[lell] with respect to the geometry of the target model. Consequently, we
collapse vl v [vUllfell]\ el L[] attempt the next cheaper move; the edge swap. Note that this move

Table 1: Vertex sets optimized for each connectivity move and optimization level. Ex-
amples ok, e’, andv are shown in Figure 4. For the edge split and collapse operations,
v is initially placed at the edge midpoint. Geometry optimization is performed on lev-
els 1-3, but not on level 0, e.g. the positiomofs optimized on level 1 in the edge
collapse operation, but remains at the edge midpoint on level 0.

is only defined ife is manifold and does not form a surface attribute
boundary. If the edge swap optimization does not significantly re-
duce the energy either, we investigate whether the surface is locally
undersampled by attempting a vertex teleport.

The vertex teleport operation begins by splittingia insertion
of a vertexv at its midpoint. In order for the edge split to be
accepted, it must lower the energy enough to offset the expected
After developing the necessary tools for locally optimizing the ge- increase in energy associated with the “cheapest” edge collapse.
ometry and connectivity of the mesh, we will now turn our attention While the exact value for the lowest collapse energy is not always
to the issue of how to intelligently choose what parts of the mesh to known ahead of time, we estimate it using the lowest energy known
optimize and what operations to use in order to most efficiently re- When the previous edge collapse was completed, and attenuate this
duce the mesh energy. In this section, we assume that we are giverenergy over time to ensure that one bad estimate does not entirely
an edge: to optimize, but are left with the decision as to what con- inhibit future teleport attempts. If the edge split does not meet this
nectivity moves to attempt and what vertices arourd optimize. energy constraint, we undo it and proceed with the next optimiza-

As mentioned in the previous section, we associate multiple tion level. Otherwise, we must find an edge to collapse commensu-
nested sets of vertices to optimize with each connectivity move. rate with the decrease in energy provided by splitting
For flexibility, we will treat the different optimization levels with Similar to several simplification algorithms, we maintain a pri-
each move as independent operations. By keeping a history of theority queue of edges, sorted by estimates of the edge collapse ener-
performance of each operation, we can choose whether to attempgies. As with other operations, we associate an optimization level
an operation on an edge based on its efficiency, i.e. the expected with each estimate. Initially, each collapse candidate is set to a
reduction in energy per time unit. For each connectivity move and default state of zero energy and an optimization level of negative
optimization level, we maintain statistics of the average energy re- one. After a set of vertice¥’ is optimized, we reset the state of

5.3 Choosing Connectivity Moves

duction AFE and its standard deviation, the average completion
time? t, as well as the frequency of utilizatigh These averages
are all computed using a nonuniform weighting function that expo-
nentially attenuates the statistics over time.

Following our goal to make quick downhill moves in the energy

the edgeq [[V']]] to the default state and thus indirectly request
that their energy estimates be updated since they are likely to have
changed. When an edge collapse is requested, we dequeue the low-
est energy edge. If its estimated energy is lower than the threshold
given by the previous edge split, we verify the estimate by collaps-

function whenever possible, we generally attempt only the most ef- ing and optimizing the edge at its given optimization level. If, on
ficient Connectivity move on an edge_ However, in order to keep the the other hand, the threshold is exceeded, the optlmlzatlon level is
statistics up to date, we must sometimes attempt less efficient oper-incremented and a (hopefully) lower collapse energy is obtained. If
ations. We balance this choice based on statistical probabilities by the edge collapse is still not acceptable, the edge is either reinserted

computing a confidence interval for the expected energy reduction. into the queue, if the optimization level is lower than the maximum,

Let the superscript refer to the currently most efficient operation.
For large enough samples, we can assumeAfatfollows a nor-
mal distribution. We can estimate the odds that an operafios
more efficient than the currently best operatidhas follows. First,
find then that satisfied\ E —no = AE*ti*. The probabilityP that

O performs better tha®* is thenP = 1 — erf(%), whereerf is

the standard error functio® should be attempted if its relative uti-
lization is lower than the probability of success, i.eﬁfF < P.

In actuality, we perform this computation in reverse. We derive an
n from f and f*, and attempO if the following inequality holds:

f*
f+r

whereAFE, ., is the total change in energy accumulated from pre-
vious operations, which is reset to zero each time an edge is opti-
mized. This term is included to avoid attempting a new, possibly
expensive move when significant progress has already been mad
optimizing the current edge.

By using a probabilistic algorithm to determine if a move should

AFE < min {AE*ti* +V2erf™! (> o, AEtDml} 3)

be performed, several moves per edge may be attempted in addi,

tion to O*. We use a predetermined order of operations, and begin
each at the lowest optimization level. The most simple move—the
no-op—is attempted first. For each of its three optimization levels,

we evaluate Inequality 3, and attempt the corresponding operation

if the condition is satisfied. If insufficient progress is made (or if

2The time is measured in number of function evaluations instead of sec-
onds to ensure that the optimization is deterministic and reproducible.

or is placed in a temporary list, as its energy cannot be lowered, al-
lowing other edge collapses to be considered, and we repeat the
procedure.

In each iteration of this search for a valid edge collapse, we de-
gueue the edge with lowest collapse energy and whose optimization
level has not reached the maximum. Due to this search order, from
lowest to highest collapse energy, the likelihood of finding a valid
edge collapse decreases rapidly over time, and we terminate the
search if the probability of success is lower than 0.3%, i.e. using a
30 confidence interval. This often preempts a futile search after a
few seconds, which might otherwise take a long time to complete.

If an edge is found whose collapse energy is lower than the
threshold, the teleport operation completes successfully. Otherwise,
we conclude that there is no edge collapse compatible with the pre-
vious edge split. Instead of undoing the split, however, we simply
proceed by collapsing the cheapest edge. While this will result in
an energy increase, it is a rare occurrence, but not necessarily a bad
one as it allows for occasional uphill moves that may get us out of

§ocal minima. We also note that since the edges created in the pre-

vious edge split are candidates for collapse, we should always in
theory be able to collapse one of these edges to revert back to the
esh as it was before the edge split.

5.4 Choosing Edges to Optimize

The outermost loop in our optimization method consists of choos-
ing a set of edges to optimize. Quite naturally, some edges are
better candidates than others, yet it is not immediately obvious how
to rank them to maximize the reduction in the energy function. We

Technical report GIT-GVU-00-16, June 2000

image-driven simplification - = - - - - memoryless simplification

vertex clustering

can, however, order the edges by thgitential for improvement

by making use of difference images. That is, for a given choice of 150
image metric and associated difference images,aovacle deter- 1.
mines which areas of the mesh are high in energy, and which have 135
a potential for large improvement. We have found this oracle to be e

useful for detecting artifacts in the mesh that can quickly be im-
proved, which is an advantage over methods like [9] that rely solely
on random descent.

energy (%)
=
B
@

Periodically, we compute for each edge its potential energy by el W
projecting its vertices onto the screen and summing up the pixel o0 P\
differences from blurred versions of the difference images, similar gz B
to [20]. The edges are then sorted by their potential energy, and 75
the oracle recommends a small set of the highest energy edges for 0 ! 2 3 4 s 6

time (hours)

optimization. The difference images are also used to measure the
overall mesh energy, which is useful for monitoring the progress
of the optimization. The user can then terminate the optimization responds to a different initial model, produced by the image-driven [12] (693 vertices),

when a satISfaCtory energy level has been reached. memoryless [11] (686 vertices), and vertex clustering [18] (769 vertices) simplification

As alIUdeq to above, the oracle does n_Ot always produce edgesalgorithms. The energy is measured relative to the model produced by the image-driven
that can be improved greatly, and sometimes outputs roughly the simpiification method, and starts at 380% for vertex clustering.

same set of edges twice in a row. For this reason we interleave the
set of edges suggested by the oracle with a batch of randomly cho- —2—memoryless simplification (ms) —O~— image-driven simpliication (ids)
sen edges. At the beginning of each iteration, in which we optimize A optimized from ms T optimized from ds

a total of 64 edges, we balance these two sets based on the amount 10 ™y
of progress made in the previous iteration. The resulting optimiza- RN
tion procedure is very flexible and adjusts quickly to changes in the *
mesh that are either beneficial or detrimental.

Figure 5: Mesh energy as a function of time for various bunny models. Each curve cor-

N
N

energy

6 RESULTS NN\

The models discussed in this section were optimized on a 250 MHz \‘;
R10000 Silicon Graphics Octane with IMPACTSR graphics and °
256 MB of RAM. We include examples of models that were op- 100 1000 10,000
timized between a few minutes and up to six hours. model size (vertices)
Our first example of mesh optimization is for a bunny model that
has been simplified using a variant of Rossignac and Borrel’s ver- Figure 6: Mesh energy for bunny models at different levels of detail. The lower two
tex clustering method [18], for which we have removed all double- curves correspond to the final, optimized models, whereas the upper curves correspond
sided faces, thus creating a few holes in the mesh. Figure 7a showgo the models before optimization.
the cluster-simplified model, and Figures 7b through 7e show suc-)
cessively improved models using the image-guided optimization. & result, (_jet_alls near the head, legs, and chest have been recovered
In addition to smoothing out the rough surface, the optimization in the optimized model.
is able to close holes in the mesh through properly chosen edge Figure 9 shows a memoryless simplification, the original, and an
collapses. The percentages in the captions correspond to the meshptimized version of a textured torus. The simplified model's ge-
energies relative to the model in Figure 7a. ometry and texture coordinates were improved using our optimiza-
Our mesh optimization method is also able to improve upon tion method. Notice that the large black zeros are better placed after
high-quality geometric simplification results. Figures 7f and 7i optimization, and that the long curved lines are better matched. In-
show two models that have been produces by memoryless simplifi- Sets in Figures 9a and 9c show the image differences between the
cation [11]. Figures 7g and 7j show the results after optimization. coarse meshes and the original model of Figure 9b.
Notice that the shapes of the ears are better captured by the opti- Our final example is a textured frog model, shown in Figure 10a.
mized meshes. Figure 7h shows the original bunny model for com- This model is actually composed of several connected components,
parison. Figure 5 shows the mesh energy as a function of time for with different components for the body, the legs, and the eyes. Such
the models in Figures 7e, 7i, and 7j, while Figure 6 shows the (final) “stuck together” models are commonly used in video games and in
mesh energies for several levels-of-detail of the bunny. These ener-feature film special effects. Figure 10b is a frog model simplified
gies were computed using 24 views that were all different from the by the memoryless algorithm, and several problems are evident.
ones used during optimization. Notice that our optimization method The front right foot has been entirely eliminated, and the remain-
always outperforms Lindstrom and Turk’s image-driven simplifica- ing feet are also poorly preserved. One striking artifact is the dis-
tion method [12] using this quality measure, regardless of which torted eye shape, caused by severe texture stretch and interpene-
model is used as input to the optimization. In fact, we have found trating geometry. There is also cracking evident between the legs
that using the memoryless method followed by optimization takes and the body because these components were never joined in the
less time than using image-driven simplification to reach the same first place, and edge collapses around the places where they inter-
energy level. However, the best meshes are obtained when the twgenetrate have caused a mismatch between components. Simpli-
image-driven methods are used together. fication methods are not often used on such models because none
Figure 8b is a Gouraud shaded dragon. We improved a memory- of the geometric quality measures recognize these problems. We
less simplified version (Figure 8a) by optimizing both geometry and used image-driven simplification to produce a considerably better
vertex normals (Figure 8c). By not constraining the normals to unit looking model, shown in Figure 10c. However, several artifacts
length, the algorithm was sometimes able to artificially darken or remain, mainly because this method does not optimize the vertex
brighten regions without changing the surface normal direction. As positions with respect to the image metric. The image-driven opti-

Technical report GIT-GVU-00-16, June 2000

mization method, on the other hand, not only recognizes all these [9] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
problems, but successfully “repairs” the damaged parts. Figure 10d
shows the result of optimizing the vertex and texture coordinates
of the model from Figure 10c. Optimization has fixed the cracks

and improved both geometry and texture, resulting in a model of
substantially higher visual quality.

7

We have presented a method of improving the appearance of an

CONCLUSIONS AND FUTURE WORK

already-simplified model using optimization that is guided by im-
ages. This is the first mesh optimization method that takes into
account not just the geometry of a model but also properties such[12]
as textures and surface normals. This approach fixes problems in a
simplified mesh that simplification methods are insensitive to, such
as cracks between surface parts and object interpenetration.

One avenue for future work is to explore the use of more
perceptually-based image metrics. A more unusual possibility is
to try optimizing a mesh that looks nothing like the target mesh.
The two meshes might be a horse and a tiger, and the result of the[l4]
optimization would then produce a morph between these two dis-
similar shapes. Success on this problem would probably require
more global mesh moves than those we have used to date. Other
intriguing potential applications of our method include remeshing,

geometry compression, and design and parameterization of bum
or displacement maps.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Mark R. Bolin and Gary W. Meyer. A perceptually based adaptive
sampling algorithm. In Michael Cohen, editéttoceedings of SIG-
GRAPH 98 Computer Graphics Proceedings, Annual Conference Se-
ries, pages 299-310. Addison Wesley, July 1998. ISBN 0-89791-999-
8. Held in Orlando, Florida.

Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-
preserving simplification. In Michael Cohen, edit®roceedings of
SIGGRAPH 98Computer Graphics Proceedings, Annual Conference
Series, pages 115-122. Addison Wesley, July 1998. ISBN 0-89791-
999-8. Held in Orlando, Florida.

Michael Garland and Paul S. Heckbert. Surface simplification using
quadric error metrics. In Turner Whitted, edit®roceedings of SIG-
GRAPH 97 Computer Graphics Proceedings, Annual Conference Se-
ries, pages 209-216. Addison Wesley, August 1997. ISBN 0-89791-
896-7. Held in Los Angeles, California.

Michael Garland and Paul S. Heckbert. Simplifying surfaces with
color and texture using quadric error metrics. In David Ebert, Hans
Hagen, and Holly Rushmeier, editot&EE Visualization '98 pages
263-270. |IEEE, October 1998. ISBN 0-8186-9176-X.

Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor,
Proceedings of SIGRBAPH 96 Computer Graphics Proceedings, An-

nual Conference Series, pages 99-108. Addison Wesley, August 1996.
[

ISBN 0-201-94800-1. Held in New Orleans, Louisiana.

Hugues Hoppe. View-dependent refinement of progressive meshes.
In Turner Whitted, editorProceedings of SIGBAPH 97 Computer

Graphics Proceedings, Annual Conference Series, pages 189-198,

Addison Wesley, August 1997.
Angeles, California.

ISBN 0-89791-896-7. Held in Los

Hugues Hoppe. New quadric metric for simplifying meshes with
appearance attributes. In David Ebert, Markus Gross, and Bernd
Hamann, editordEEE Visualization '99pages 59-66. IEEE, October
1999. ISBN 0-7803-5897-X. Held in San Francisco, California.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Surface reconstruction from unorganized points.
Computer Graphics (Proceedings of SIBBPH 92) 26(2):71-78,
July 1992. ISBN 0-201-51585-7. Held in Chicago, lllinois.

(20]

[11]

(23]

Pas)

[16]

[17]

[18

[l

[29]

[20]

21]

[22]

Werner Stuetzle. Mesh optimization. In James T. Kajiya, edRoo;
ceedings of SIGRAPH 93 Computer Graphics Proceedings, Annual
Conference Series, pages 19-26, August 1993. ISBN 0-201-58889-7.
Held in Anaheim, California.

Renate Kempf and Jed Hartma@penGL on Silicon Graphics Sys-
tems Silicon Graphics, Inc., 1998. SGI Document Number 007-2392-
002.

Peter Lindstrom and Greg Turk. Fast and memory efficient polygonal
simplification. In David Ebert, Hans Hagen, and Holly Rushmeier,
editors,|IEEE Visualization '98 pages 279-286. IEEE, October 1998.
ISBN 0-8186-9176-X.

Peter Lindstrom and Greg Turk. Image-driven simplification. Tech-
nical Report GIT-GVU-99-49, Georgia Institute of Technology, De-
cember 1999. To appear in ACM Transactions on Graphics.

Jeffrey Lubin. A visual discrimination model for imaging system de-
sign and evaluation. In Eli Peli, editdfjsion Models for Target Track-
ing and RecognitionSeries on information display, pages 245-283.
World Scientific, 1995.

David Luebke and Carl Erikson. View-dependent simplification of ar-
bitrary polygonal environments. In Turner Whitted, editerpceed-

ings of SIGGRAPH 9TTomputer Graphics Proceedings, Annual Con-
ference Series, pages 199-208. Addison Wesley, August 1997. ISBN
0-89791-896-7. Held in Los Angeles, California.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. FlanneryNumerical Recipes in C: The Art of Scientific Com-
puting pages 408-412. Cambridge University Press, second edition,
1992.

Mahesh Ramasubramanian, Sumanta N. Pattanaik, and Donald P.
Greenberg. A perceptually based physical error metric for realistic
image synthesis. In Alyn Rockwood, editdProceedings of SIG-
GRAPH 99 Computer Graphics Proceedings, Annual Conference Se-
ries, pages 73-82. Addison Wesley Longman, August 1999. ISBN
0-20148-560-5. Held in Los Angeles, California.

Rémi Ronfard and Jarek Rossignac. Full-range approximation of tri-
angulated polyhedraComputer Graphics Foruml5(3):67—76, Au-
gust 1996. ISSN 1067-7055.

Jarek Rossignac and Paul Borrel. Multi-resolution 3d approximations
for rendering complex scenes. In Bianca Falciendo and Toshiyasu L.
Kunii, editors,Modeling in Computer Graphi¢dFIP series on com-
puter graphics, pages 455-465. Springer-Verlag, 1993.

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen.
Decimation of triangle meshe€Computer Graphics (Proceedings of
SIGGRAPH 92)26(2):65-70, July 1992. ISBN 0-201-51585-7. Held
in Chicago, lllinois.

Greg Turk and David Banks. Image-guided streamline placement. In
Holly Rushmeier, editorProceedings of SIGRAPH 96 Computer
Graphics Proceedings, Annual Conference Series, pages 453-460.
Addison Wesley, August 1996. ISBN 0-201-94800-1. Held in New
Orleans, Louisiana.

Mason Woo, Jackie Neider, and Tom Davi®penGL Programming
Guide: The Official Guide to Learning OpenGL, Version. Atldison
Wesley, second edition, 1997. ISBN 0-201-46138-2.

Julie C. Xia and Amitabh Varshney. Dynamic view-dependent simpli-
fication for polygonal models. In Roni Yagel and Gregory M. Nielson,
editors,|IEEE Visualization 96 pages 327-334. IEEE, October 1996.

ISBN 0-89791-864-9.

Technical report GIT-GVU-00-16, June 2000

(%s'€g = &) pazwndo "8

(SvS'sey = A [epow [eulbuo ‘g

(560'v = Ywoneoydwis ssajAlowa\ eg

(%8°85 = &) paziwndo “I2 (£69 = J\uoneoudwis sssjfIoWBN "I/

(%€°52 '61:00:9) paziwndo oL (%5°9¢ '¥T:20:T) paziwndo "pL

(¥€8'vE = A [opow [eulbuO "yz

2222

(%G°TG '9€:TT) paziwndo "2/

L L XX

(%265 = & paziwndo "6, (T = J\uoneoidwis ssajfiowa "1/

(%€°sL '6v:1) paziundo ‘qz (692 = hBunaisnjo xepan "eL

Technical report GIT-GVU-00-16, June 2000

9a. Memoryless simplificatiori{ = 580) 9b. Original model ¥ = 33,173) 9c. Optimized £ = 51.0%)
.
10a. Original model{ = 24,070) 10b. Memoryless simplificationi{ = 333)
10c. Image-driven simplificatiori{ = 309) 10d. Optimized £ = 60.1%)

10

