
Technical report GIT–GVU–00–16, June 2000

Image-Driven Mesh Optimization

Peter Lindstrom Greg Turk

Georgia Institute of Technology

Abstract

We describe a method of improving the appearance of a low vertex
count mesh in a manner that is guided by rendered images of the
original, detailed mesh. This approach is motivated by the fact that
greedy simplification methods often yield meshes that are poorer
than what can be represented with a given number of vertices. Our
approach relies on edge swaps and vertex teleports to alter the mesh
connectivity, and uses the downhill simplex method to simultane-
ously improve vertex positions and surface attributes. Note that this
is not a simplification method—the vertex count remains the same
throughout the optimization. At all stages of the optimization the
changes are guided by a metric that measures the differences be-
tween rendered versions of the original model and the low vertex
count mesh. This method creates meshes that are geometrically
faithful to the original model. Moreover, the method takes into ac-
count more subtle aspects of a model such as surface shading or
whether cracks are visible between two interpenetrating parts of the
model.

1 INTRODUCTION

Due to the multitude of large geometric models that are available, a
major challenge is to create simple models that have the appearance
of the originals. One of the most commonly used method to produce
such simple models is to perform a sequence of local operations
that reduce the complexity of the model. Nearly all such methods
use a greedy approach to selecting these operations—the operation
that is performed next is the one that will change the model the
least according to some quality measure. Such greedy approaches
often result in simplified meshes that can be substantially improved
by further changes to the connectivity, the vertex positions and the
texture coordinates of the model. This paper describes a method for
improving the appearance of a mesh that uses rendered images of
the original mesh to help guide the changes.

Why is the greedy approach to simplification not optimal? A
typical greedy simplification algorithm uses an operation (edge col-
lapse, for instance) to reduce the vertex and polygon count of the
model. Usually a priority queue is used to order the potential edges
to collapse according to the estimated change in geometric fidelity
that each edge collapse would make. At each step, the edge col-
lapse with the lowest cost is performed, then affected neighboring
edges are re-evaluated and re-inserted into the priority queue. Such
algorithms essentially create a path through the space of all possi-
ble meshes, where each new node in the path is a mesh that has
one fewer vertex than the preceding node. Previous decisions in
the selection of earlier meshes in this path severely restrict the later
meshes that can be reached. Consider the analogous problem in 2D
of simplifying a single (possibly many-sided) polygon by perform-
ing edge collapses. If the original polygon is a detailed approxima-
tion of a circle, then the best (in the mean error sense) five-sided
simplification is a regular pentagon. A single edge collapse (the
greedy step) cannot produce the best four-sided model, which is a
square. This same problem occurs frequently in 3D simplification.
For example, by extruding the circle and pentagon to cylinders, we
are faced with a similar problem in 3D where no combination of two

edge collapses yields an optimal model. Not only do such greedy
algorithms produce suboptimal geometry, but the mesh connectiv-
ity can often be improved as well.

Our solution to this problem,mesh optimization, is to improve
the appearance of a simplified mesh by performing mesh opera-
tions that do not alter the vertex count. These changes are guided
by comparisons between rendered images of the simplified mesh
and the original, high-detail mesh. Because we use comparisons
between rendered images, the color, texture, and normals of the
mesh are automatically taken into account in the optimization pro-
cess. We describe our method in detail after a review of previous
work.

2 PREVIOUS WORK

Because our mesh optimization work is designed to improve upon
meshes that have been simplified, the mesh simplification literature
is the most closely related area to our work. This literature is too
large to cover in any detail, so in this section we will only review
some of the broad trends, paying particular attention to the order
that each method uses to decide which mesh operation is to be per-
formed next.

In 1992, Schroeder and Lorensen described a simplification
method that repeatedly performs vertex removal in order to simplify
a mesh [19]. This is one of the earliest algorithms to repeatedly use
a single mesh operation (vertex removal in this case) to reduce the
complexity of a mesh. Their method makes a number of succes-
sive passes through the list of mesh vertices, each time relaxing the
tolerance on which vertices may be removed.

The original paper on mesh optimization is that of Hoppe and his
co-authors [9]. Their goal was to improve the aggregate distance
between a given mesh and a set of 3D pointsP , and this process
was designed to improve the meshes from their earlier work on sur-
face reconstruction from unorganized points [8]. They also used
this technique for simplifying a mesh by creating the pointsP by
densely sampling points on an original mesh. Their approach is to
perform edge operations (edge swap, edge split, edge collapse) in a
manner that is guided by a term that measures the distance from the
current mesh to the pointsP . Their energy term is a weighted sum
of the number of vertices, the distances from the mesh toP , and
an edge length term (thespring term). Their optimization method
selects an edge at random, performs one of the three edge oper-
ations at random, and then solves a linear least squares problem
using the conjugate gradient method to change the vertex positions
in the neighborhood of the edge in order to improve the fit toP . A
random change is accepted if it reduces the energy term.

Several researchers use a priority queue to determine the order of
local operations for simplifying a mesh. These priorities are based
on such measures as distance to points [5], distance to planes [17],
minimizing a quadratic function [3], and minimizing change in vol-
ume [11]. Perhaps most closely related to the optimization work
in this paper is using an image-driven priority queue to simplify a
model [12]. All of these are greedy approaches, and therefore are
all prone to creating suboptimal meshes.

View-dependent simplification divides the simplification task
into two components [6, 14, 22]. During the pre-processing stage,

Technical report GIT–GVU–00–16, June 2000

a sequence of simplification operations (e.g. edge collapse) are per-
formed, and a tree of interdependencies of these operations is also
built. During on-line rendering, information about the viewpoint
is used to decide which of the simplification operations should be
performed, and this determines the mesh to be displayed. Although
we use rendered images from different viewpoints to perform opti-
mization, the work presented in this paper isnot a view-dependent
simplification approach in the sense that this term is used in the lit-
erature. In our approach, we use rendered images during off-line
optimization.

There have been several approaches towards incorporating color
and texture information into the simplification process. Hoppe uses
additional terms in his energy measure to capture information about
mesh color [5]. Cohen et al. place restrictions on the deviation that
texture coordinates may undergo in order to prevent sliding of the
texture [2]. Garland and Heckbert extended their quadric error met-
ric to incorporate color and/or texture coordinates [4]. Hoppe [7]
describes a similar quadric-based method that uses the memoryless
scheme from [11]. Lindstrom and Turk use an image metric that
unifies differences in geometry and surface properties, and take into
account both scalar attributes and texture content [12].

3 OVERVIEW OF ALGORITHM

Our algorithm begins with two input meshes, the original detailed
mesh and a simplified version of this mesh that has the desired num-
ber of vertices. It is unimportant what method is used to create the
simplified mesh, and we show results from several methods later.
The user picks the number of viewpoints to use (from six to twenty-
four is typical), and the algorithm creates this number of rendered
images of both the original and the simplified meshes. Then, using
a method described in detail later, an edge in the simplified mesh is
selected for improvement. The algorithm then attempts a number
of changes to the mesh at and around this edge to create a mesh
whose rendered images are closer to those of the original mesh. (A
hardware-assisted method of rapidly updating the rendered images
will be described later.) Possible changes to the mesh include mov-
ing two or more vertices, edge swapping, or even avertex teleport
(moving a vertex between entirely different portions of the mesh).
Which of these changes are tried is based on how costly each at-
tempt will be relative to the likely improvement each change will
yield. When the method is done considering a particular edge, a
new edge is selected and the process repeats.

4 THE ENERGY FUNCTION

In this section we lay the groundwork for using comparisons be-
tween images to steer the optimization of a model. Our measure
of similarity is based on the work by Lindstrom and Turk [12] in
which an image metric is used to order a set of edge collapses.
Their method, however, uses geometry-based heuristics for posi-
tioning the vertices and and a greedy method for choosing edge col-
lapses that often yields a suboptimal connectivity. Our optimization
method, on the other hand, uses the image metric directly to deter-
mine the best vertex positions and what changes to make to the
connectivity. First we describe how multiple images of the original
and a simplified model are compared in order to judge the similar-
ity of the models. Then we explain how to efficiently evaluate the
metric during optimization.

4.1 Comparing Models Using Images

An image metricis a function over pairs of images that gives a non-
negative measure of the distance between the two images. While
several perceptually motivated image metrics exist, we will limit

Figure 1: Twelve uniformly distributed views of a model. The viewpoints correspond
to the vertices of a regular icosahedron.

our discussion to the mean-square error (MSE) metric1 because
of its computational efficiency and the convincing results it pro-
duces for our application. We note that our image-driven opti-
mization framework easily allows other image metrics to be used,
such as [13, 16]. As an example, we have incorporated Bolin and
Meyer’s perceptual image metric [1] with our optimization method,
but found it to give less pleasing results than MSE in most cases.
Even though some of our examples include colored models, we
compute a single luminance channelY for each image using the
standard NTSC coefficients and measure only differences in lumi-
nance, which has worked well for all of our test models.

We cannot hope to capture the entire appearance of an object in
a single image. Ideally, we wish to capture the set of all radiance
samples that emanate from the surface of an object under all possi-
ble lighting conditions. This is obviously not possible in practice.
To capture a large collection of radiance samples, we render images
from a number of different camera positions, typically between six
and twenty-four, around the object and apply the image metric to
this entire set of images (Figure 1). Our measure of similarity can
then be computed as follows: Given two sets ofl luminance im-
agesY = {Yh} andY ′ = {Y ′h} of dimensionsm × n pixels, the
mean-square difference is

dMS(Y,Y ′) =
1

lmn

lX
h=1

mX
i=1

nX
j=1

�
yhij − y′hij

�2
(1)

While the number of views required and the “optimal” place-
ment of viewpoints vary between objects, we have chosen to use a
uniform distribution of views, which has worked well for all models
that we have optimized so far. For each view, we place a single light
source near the viewer to illuminate the front of the model. For the
results presented in this paper, we used 20 images of256×256 pix-
els each during optimization, and placed the model on a gray (50%
intensity) background.

1Although MSE does not satisfy the triangle inequality property of a
metric, we will use it only to determine whether one mesh is a better ap-
proximation than another, for which triangle inequality is irrelevant. Many
geometry-based measures of similarity are likewise expressed as quadratic
functions [3, 9, 11].

2

Technical report GIT–GVU–00–16, June 2000

4.2 Definition of Energy Function

In the context of optimization, we will refer to the quality measure
presented in the previous section as theenergy functionE (cf. [9]).
That is,E is a function of the rendered imageŝY of some ideal
model M̂ that we wish to reproduce, and imagesY of the cur-
rent modelM being optimized. In order to make the optimization
procedure efficient, we need a fast method for computing image
differences. Whenever a new mesh is produced by making anop-
timization move, i.e. moving some of its vertices or changing its
connectivity, we must conceptually use the image comparison pro-
cedure described above, which requires rendering the entire model
from multiple viewpoints, capturing the images, and applying the
image metric to each image to measure the visual quality of the
mesh. In practice, however, we can accelerate this process by up-
dating the images incrementally and evaluating the image metric
over the affected pixels only, assuming the difference between con-
secutive meshes is small. In this section, we describe a fast method
for evaluating thechangein energy without having to iterate over
the entire triple sum in Equation 1.

The absolute energyE is useful for comparing the relative qual-
ity of two meshes and determining when the optimization con-
verges. However, we are often more interested in the change in
energy∆E incurred by an optimization move. A beneficial move
results in a negative change as a low-energy state is preferred.
Thus, instead of computing absolute energies, we will focus on
how to evaluate changes in energy efficiently. The procedure de-
scribed here generalizes the computation of edge collapse energies
described in [12] to arbitrary connectivity and geometry changes.

Let Ŷ,Y, andY′ be the collections of images of the target model
M̂ , the current modelM , and the modelM ′ after performing an
optimization move onM , respectively. Then the change in energy
associated with the move is:

∆E = E(M ′)− E(M)

= lmn
�
dMS(Ŷ ,Y ′)− dMS (Ŷ,Y)

�

=

lX
h=1

mX
i=1

nX
j=1

h�
ŷhij − y′hij

�2 − (ŷhij − yhij)2
i

Note that any pixel satisfyingyhij = y′hij makes no contribution to
∆E. In fact, this holds for the majority of pixels due to the spatial
locality of the optimization moves used in our algorithm. Each op-
timization move entails replacing a small set of trianglesT with T ′.
These two sets may be topologically equivalent, but their geometric
extents may differ whenever their supporting vertices are moved.
Thus, the only pixels that can differ between the imagesY andY ′
whenT is replaced withT ′ are the ones covered byT ∪ T ′. For
efficiency, we compute for each viewh an axis-aligned bounding
boxRh = Ih × Jh in screen space around these triangles, which
is a conservative estimate of the affected pixels. By visiting this
smaller set of pixels only, we obtain an expression for∆E that is
faster to evaluate:

∆E =
lX

h=1

X
i∈Ih

X
j∈Jh

h�
ŷhij − y′hij

�2 − (ŷhij − yhij)2
i

(2)

4.3 Fast Image Updates

So far, we have described how to evaluate∆E given sets of im-
agesŶ,Y, andY ′. We will now explain how to efficiently generate
these images. Our approach is to maintain imagesY of the most
optimal model found so far and, for each optimization move con-
sidered, make incremental changes to these images to produceY ′.
If the move is beneficial,Y is replaced byY ′. As pointed out in the

previous section, only parts ofY ′ need to be generated, and we de-
scribe in this section data structures and algorithms for efficiently
querying what portions of the mesh to render in order to produce
the necessary subimages. Our approach to fast image updates has
been tailored to systems with graphics hardware, and our imple-
mentation usesOpenGL[21] and thepixel buffer[10] extension for
hardware-assisted off-screen rendering.

The optimization algorithm begins by rendering imagesŶ of the
target model and stores these away. In addition, we render images
Y of the coarse model that is to be optimized, which are gener-
ated from scratch only once and are subsequently updated via small
local changes. Since the evaluation of the energy function, and con-
sequently the generation ofY ′, resides in the innermost loop of the
optimization algorithm, it is imperative that this step is efficient. In
particular, we need a fast algorithm for replacing a small set of tri-
anglesT with T ′ without having to re-render the entire mesh. This
is conceptually done by “un-rendering” the trianglesT , revealing
any obscured parts of the surface, and then rendering the replace-
ment trianglesT ′. Unfortunately, un-rendering is not commonly
supported in hardware, but we can limit the number of triangles that
have to be rendered by exploiting spatial locality and subdividing
the image space intotriangle buckets. We maintain a pair of hash
tables, indexed by the triangle identifiers, for each pixel row and
column (Figure 2). This data structure, explained in detail below,
allows us to perform rectangular range queries to efficiently cull
away most triangles that do not intersect the regionRh = Ih × Jh
in each viewh that contains the trianglesT ∪ T ′. The result of the
range query is a setTRh that is guaranteed to contain all triangles,
visible and obscured, that overlap the region. Since the procedure
is the same for all viewsh, we will omit the subscripth in the fol-
lowing paragraph for the sake of readability.

Triangle culling is accomplished by computing the union of
the vertical bucketsTI = ∪i∈ITi and the horizontal buckets
TJ = ∪j∈JTj spanned byR, and then lettingTR = TI ∩ TJ
be a conservative (but generally tight) estimate of the set of tri-
angles contained inR. We accelerate the computation of unions
by maintaining an additional set of tables∆Ti = Ti \ Ti−1 that
are the set differences between consecutive pixel columns/rows).
That is, ∆Ti contains the triangles whose left-most vertex is in
column i. Then we can rewriteTI as a union of disjoint sets
Tmin I∪∆Tmin I+1∪· · ·∪∆Tmax I . In general, the hash tables∆Ti
are considerably smaller than the tablesTi. The intersectionTR can
then be computed in linear time by associating a “time stamp” with
each triangle. Prior to computingTR, a unique time stamp is cho-
sen. While building the setTI , all triangles encountered are marked
with the new time stamp. AsTJ is traversed, only the triangles with
the given time stamp are added toTR.

To replaceT with T ′, we first clear each regionRh in which
these sets of triangles are contained. We then render the triangles
TRh \ T , i.e. all triangles inRh except those we wish to un-render.
We complete the operation by rendering the setT ′, producing the
imagesY ′, which then allows us to evaluate∆E. The use of these
data structures to cull away triangles increased the overall speed of
the algorithm by a factor of six for the bunny model in Figure 7a.
For optimization with 20 views, roughly 100 evaluations of∆E
can be made per second.

5 OPTIMIZATION PROCEDURE

Mesh optimization can be described as a process of searching the
spaceM of all possible meshes for the mesh that minimizes some
given metric, subject to a set of constraints. In this paper, the goal
of optimization is to produce a model with a few number of trian-
gles that is visually similar to a target model with a larger number of
triangles. In contrast to meshsimplificationalgorithms such as [12]
and the mesh optimization algorithm by Hoppe et al. [9], which are

3

Technical report GIT–GVU–00–16, June 2000

∪

∪

∩ TR

TI

TJ

∪

∪

∩

TI

TJ

TR

Figure 2: The triangle bucket data structure. The triangles of the model are projected
onto the two image axes and are maintained in hash tables for all pixel rows and
columns. This data structure allows for all trianglesTR (shown in violet) that intersect
the rectangular regionR surrounding the trianglesT ∪T ′ to be accessed quickly. The
set of trianglesT = ddvee surrounding a single vertexv is here shown in red. We
findTR by computing the intersection of the trianglesTI (magenta) and the triangles
TJ (blue-green).

also driven by this goal, we will assume that an already simplified
mesh is provided, which is used as a starting point in our optimiza-
tion method, and which we seek to improve with respect to some
measure of visual similarity in relation to the target model. The
optimization is constrained by fixing the number of vertices in the
coarse mesh, although we allow its vertices to move and its connec-
tivity to change.

The space of all meshes that we seek to explore can be param-
eterized in terms of the mesh connectivity, geometry, and surface
attributes such as colors, normals, and texture. Formally, we de-
fine a meshM = (K,X,S) as a triplet consisting of asimplicial
complexK that defines the connectivity, a set of vertex positions
X that define the geometry, and a set of surface attributesS. We
distinguish between the topological entityv ∈ V and the corre-
sponding geometric realizationφ(v) = x ∈ X ⊂ R

3 of a ver-
tex. Each attribute is bound to a vertexv, a trianglet, or acorner
(v, t) formed byv and one of its incident trianglest. While the
geometry and surface attributes considered here are continuous pa-
rameters, the mesh connectivity is discrete. To optimize both, we
will take an approach similar to that of Hoppe et al. [9] by using a
two-level nested optimization; an inner, continuous optimization in
which vertices and surface attributes are modified while fixing the
connectivity, and an outer, discrete optimization in which simple
atomic changes to the connectivity are made. Our general approach
is to to select a set of edges in the mesh to improve, as suggested by
anoracle, interleaved with a sequence of randomly chosen edges.
This oracle (described in detail later) identifies edges that may be
the cause of large differences between the images of the original
and current mesh. For each chosen edge, we try a sequence of con-
nectivity moves of varying complexity, and optimize a small set of
vertices in the neighborhood of the edge until the connectivity move
results in a decrease in the energy function.

In addition to the use of an oracle to guide the optimization, ver-
sus random descent, our optimization method differs from Hoppe
et al.’s [9] in several ways. First, we do not use optimization to
simplify a mesh—we use it to improve a low vertex count mesh
that was produced by any mesh simplification method. Second, our
optimization is not guided by a geometric measure of distance, but
rather by image differences. By using an image metric to guide
optimization, we can capture all of the relevant factors that make
up the appearance of a mesh without explicitly creating an energy
term for each one. We thus avoid the tricky issue of how to bal-
ance such factors as geometric distance, color, and texture against
one another. Third, the method we use to optimize vertex positions
is entirely different from the conjugate gradient approach used by
Hoppe et al. Finally, our selection of which operation to perform
upon an edge is not random, but is decided based on which oper-

ee e

e e

e e e e

Figure 3: The simplex operatorsbsc anddse.

ation would result in a non-negligible improvement to the mesh.
Although our work owes a debt to Hoppe et al.’s pioneering tech-
nique, we claim that our method is as different from their approach
as most of the dozens of published mesh simplification methods are
from one another.

In the remainder of this section, we will first describe the
low level details of the continuous and discrete optimization, and
then conclude by discussing the strategy for choosing connectivity
moves and the set of edges to optimize. In describing the algo-
rithm, we will make frequent use of the two simplex operatorsbsc
(the (n − 1)-simplices that make up ann-simplexs) anddse (the
(n + 1)-simplices thats is a subset of) [11]. Figure 3 illustrates
these simplex operators.

5.1 Continuous Optimization of Mesh Geometry

In this section we will explain how to optimize the geometry of a
small portion of a mesh. The goal of this optimization is to improve
the visual appearance of the mesh by making a series of small ad-
justments to the vertex positions, such as lengthening a protrusion,
smoothing out undesired wrinkles and bumps on the mesh, enhanc-
ing creases and other fine details, etc. Specifically, given a mesh
with a fixed connectivity and a subsetV of its vertices, we wish to
move the vertex positionsX = φ(V) simultaneously until a local
optimum in the visual quality of the mesh is found. We can easily
generalize this procedure to include (continuous) surface attributes,
in which case we simply concatenate vertex positions and attributes
to form a single higher dimensional parameter vector. For simplic-
ity, however, we will restrict our discussion to vertex positions only.

Multidimensional methods for continuous optimization prob-
lems fall into one of two categories: methods that make use of
derivative information of the objective function in order to make
an educated guess about where, or at least in what direction, the
minimum lies, and slower methods that rely on function evalua-
tions only. Unlike in [9], where the energy function is a closed form
quadratic expression, our energy function is given by discrete image
differences that depend non-trivially (although generally smoothly)
on the input parameters (the vertex positions and attributes). There-
fore, we use an optimization procedure that relies only on sampling
the energy function itself. We have chosen to use thedownhill sim-
plex methodfor this task because it is easy to implement and gen-
erally requires only a small number of function evaluations before
converging on a minimum [15]. This method takes as inputn + 1
vectors that specify the vertices of ann-simplex, evaluates the func-
tion at these vertices, and proceeds by making a sequence of moves,
such as reflections, contractions, and expansions, which are chosen
based on the current function values at the vertices of the simplex.
The energy function is then evaluated whenever a vertex in the sim-
plex is moved. Near a local minimum, the simplex contracts until
the function values become sufficiently close. Thus, by tracking the
hyper-volume of the simplex, which always expands or contracts by

4

Technical report GIT–GVU–00–16, June 2000

a power of two, we can estimate when a minimum has been found.
To apply the downhill simplex method to our problem, we begin

by constructing a basis for the set ofm mesh verticesV that we
wish to optimize, with positionsX = {xi}mi=1. Even though the
vertices need not be related geometrically or topologically what-
soever, we will assume that they are confined to a small neigh-
borhood in the mesh. For example, ifm = 4 (a number of ver-
tices frequently optimized at a time in our algorithm), then we need
to producen = 3m = 12 linearly independent 12-dimensional
vectors (thexyz -coordinates for the four vertices). In addition to
the vertex positionsX in M—the current mesh—which collec-
tively make up ann-vectorpT

0 =
�
x1

T x2
T · · · xm

T
�

for
one of the vertices in the initial simplex, we can compute the re-
mainingn vertices{pi}ni=1 of the simplex by choosing the unit
coordinate axes inRn as a basis, and displacing these vertices a
small distanceδ from p0 along each corresponding basis vector,
i.e. pi = p0 + δêi, 1 ≤ i ≤ n. Each suchpi naturally consti-
tutes an initial estimate of the location of the optimalX, and it is
important that these estimates are reasonably close to the expected
minimum for fast convergence. Consequently, we choose the mag-
nitudes of the displacements based on the local geometry around
the vertex setV . One might suspect that using local coordinate
frames derived from the geometry of the mesh (as opposed to us-
ing the arbitrary canonical basis inRn) would produce better and
less biased offsets. However, we have not found this to be true in
practice.

Once the initial simplex has been formed, the continuous opti-
mization ofX is performed by making repeated evaluations of the
energy function, until the process converges or a predefined limit on
the number of evaluations is exceeded. We are currently imposing
a limit of 32n evaluations to avoid spending too much effort on one
small region of the mesh.

So far we have not discussed how to choose the set of vertices
V to optimize as this decision is tightly linked to the outer, discrete
optimization, which we will discuss in the following subsection.

5.2 Discrete Optimization of Mesh Connectivity

Most simplified meshes can be improved greatly by optimizing the
positions of their vertices alone. After a while, however, a point of
diminishing returns will be reached as changes to the connectivity
are needed to further improve the mesh. This is generally required
for one of two reasons: either the local mesh connectivity is not ap-
propriate for its given geometry, which can be handled by making
one or moreedge swaps; or the mesh tessellation is too fine or too
coarse in relation to the geometric complexity, which we address
by transferring vertices from one area to another using avertex tele-
port operation. These two connectivity moves are described in the
remainder of this section.

To explore the entire space of all meshes, we need a way of gen-
erating all possible mesh connectivitiesK for a given set of vertices
V . While the number of meshes with a fixed number of vertices is
finite, the vast majority of these meshes are not useful to us. Rather
than generating the complexes from scratch, this type of combina-
torial optimization is often done by making incremental changes
to a good initial estimate of the optimal connectivity. For mani-
fold meshes of fixed topological type, it can be shown that theedge
swapoperator (Figure 4) is sufficient to produce any desired (man-
ifold) connectivity. While this operation is useful for making local
changes to the connectivity, it is not practical for distributing ver-
tices over the mesh, as a long chain of edge swaps in conjunction
with geometry optimization might be required to transfer a single
vertex from one area to another. Instead, we transfer vertices us-
ing a more global and atomic operation. In essence, we need two
atomic operations; one for vertex removal, and one for adding a ver-
tex to the mesh. To remove a single vertex, we useedge collapse,

swap

split

collapsee

e′ v v

Figure 4: The edge swap, split, and collapse operations.

while edge splitis used to introduce a vertex (Figure 4). These
two operations, when used together, make up thevertex teleport
operation. We chose edge split instead ofvertex split—the dual
of edge collapse—for two reasons: The edge split results both in a
uniquely defined connectivity and a unique position for the new ver-
tex (assuming the edge is split at its midpoint), whereas vertex split
requires not only the specification of which edges to “pull apart”,
but also how to assign coordinates and surface attributes to the new
vertex. Secondly, by using edge split we can treat the discrete op-
timization as a sequence of improvements made to the edges of the
mesh via a small set of well-defined, atomic operations.

Recall that the discrete optimization is wrapped around an inner
continuous optimization. Whenever a connectivity move is made,
we optimize the geometry of the nearby vertices and accept the
move if it leads to a decrease in the energy function. We will discuss
how to choose what moves to make on what edges in the following
sections, and focus the remainder of this section on providing the
final details of how to perform each move.

Since the initial connectivity might be far from optimal, we
would like to avoid expending too much effort optimizing the ge-
ometry during the early stages. Instead, we define for each con-
nectivity move multiple levels of geometry optimization, ranging
from simple vertex placement heuristics to optimizing successively
larger sets of vertices simultaneously. The idea is to allow an ef-
ficient but less accurate optimization strategy as long as the mesh
quality can be improved, and to employ higher degrees of optimiza-
tion to fine-tune the mesh near an optimum. Since the expected
number of function evaluations is roughly linear in the number of
vertices to be optimized, we favor optimizing small sets of vertices,
and expand the sets whenever insufficient progress is made. Table 1
contains the vertex set optimized for each connectivity move. In ad-
dition to the edge swap, split, and collapse operations, we include a
“no-op” move which corresponds to optimizing the local geometry
without making any changes to the connectivity.

While the set of connectivity operations used in our algorithm
allows a large space of meshes to be explored, it is not complete,
i.e. it is not possible to constructall meshes with a fixed number
of vertices from a given initial mesh. For example, there is no way
to merge two disjoint components or to change the genus of the
mesh. Nor is it possible to open a hole in the mesh or to split a
boundary loop in two. In order to keep the algorithm simple, we
rely on starting from a good initial model that has the appropriate
topology, but not necessarily the optimalconnectivity.

5

Technical report GIT–GVU–00–16, June 2000

connectivity optimization level
move 0 1 2 3

no-op bec bbdeecc bdbecec
swap be′c bbde′ecc bdbe′cec
split v bdvec v ∪ bdbecec
collapse v v v ∪ bbdeecc \ bec bdvec

Table 1: Vertex sets optimized for each connectivity move and optimization level. Ex-
amples ofe, e′, andv are shown in Figure 4. For the edge split and collapse operations,
v is initially placed at the edge midpoint. Geometry optimization is performed on lev-
els 1–3, but not on level 0, e.g. the position ofv is optimized on level 1 in the edge
collapse operation, but remains at the edge midpoint on level 0.

5.3 Choosing Connectivity Moves

After developing the necessary tools for locally optimizing the ge-
ometry and connectivity of the mesh, we will now turn our attention
to the issue of how to intelligently choose what parts of the mesh to
optimize and what operations to use in order to most efficiently re-
duce the mesh energy. In this section, we assume that we are given
an edgee to optimize, but are left with the decision as to what con-
nectivity moves to attempt and what vertices arounde to optimize.

As mentioned in the previous section, we associate multiple
nested sets of vertices to optimize with each connectivity move.
For flexibility, we will treat the different optimization levels with
each move as independent operations. By keeping a history of the
performance of each operation, we can choose whether to attempt
an operation on an edge based on its efficiency, i.e. the expected
reduction in energy per time unit. For each connectivity move and
optimization level, we maintain statistics of the average energy re-
duction∆E and its standard deviationσ, the average completion
time2 t, as well as the frequency of utilizationf . These averages
are all computed using a nonuniform weighting function that expo-
nentially attenuates the statistics over time.

Following our goal to make quick downhill moves in the energy
function whenever possible, we generally attempt only the most ef-
ficient connectivity move on an edge. However, in order to keep the
statistics up to date, we must sometimes attempt less efficient oper-
ations. We balance this choice based on statistical probabilities by
computing a confidence interval for the expected energy reduction.
Let the superscript∗ refer to the currently most efficient operation.
For large enough samples, we can assume that∆E follows a nor-
mal distribution. We can estimate the odds that an operationO is
more efficient than the currently best operationO∗ as follows. First,
find then that satisfies∆E−nσ = ∆E∗ t

t∗ . The probabilityP that
O performs better thanO∗ is thenP = 1− erf(n√

2
), whereerf is

the standard error function.O should be attempted if its relative uti-
lization is lower than the probability of success, i.e. iff

f+f∗ < P .
In actuality, we perform this computation in reverse. We derive an
n from f andf∗, and attemptO if the following inequality holds:

∆E < min

�
∆E∗

t

t∗
+
√

2 erf−1

�
f∗

f + f∗

�
σ, ∆Etotal

�
(3)

where∆Etotal is the total change in energy accumulated from pre-
vious operations, which is reset to zero each time an edge is opti-
mized. This term is included to avoid attempting a new, possibly
expensive move when significant progress has already been made
optimizing the current edge.

By using a probabilistic algorithm to determine if a move should
be performed, several moves per edge may be attempted in addi-
tion toO∗. We use a predetermined order of operations, and begin
each at the lowest optimization level. The most simple move—the
no-op—is attempted first. For each of its three optimization levels,
we evaluate Inequality 3, and attempt the corresponding operation
if the condition is satisfied. If insufficient progress is made (or if

2The time is measured in number of function evaluations instead of sec-
onds to ensure that the optimization is deterministic and reproducible.

none of these operations is efficient enough to attempt), we con-
clude that the geometry is locally optimal for the given connectiv-
ity, but allow for the possibility that the connectivity is not optimal
with respect to the geometry of the target model. Consequently, we
attempt the next cheaper move; the edge swap. Note that this move
is only defined ife is manifold and does not form a surface attribute
boundary. If the edge swap optimization does not significantly re-
duce the energy either, we investigate whether the surface is locally
undersampled by attempting a vertex teleport.

The vertex teleport operation begins by splittinge via insertion
of a vertexv at its midpoint. In order for the edge split to be
accepted, it must lower the energy enough to offset the expected
increase in energy associated with the “cheapest” edge collapse.
While the exact value for the lowest collapse energy is not always
known ahead of time, we estimate it using the lowest energy known
when the previous edge collapse was completed, and attenuate this
energy over time to ensure that one bad estimate does not entirely
inhibit future teleport attempts. If the edge split does not meet this
energy constraint, we undo it and proceed with the next optimiza-
tion level. Otherwise, we must find an edge to collapse commensu-
rate with the decrease in energy provided by splittinge.

Similar to several simplification algorithms, we maintain a pri-
ority queue of edges, sorted by estimates of the edge collapse ener-
gies. As with other operations, we associate an optimization level
l with each estimate. Initially, each collapse candidate is set to a
default state of zero energy and an optimization level of negative
one. After a set of verticesV is optimized, we reset the state of
the edgesbddV eec to the default state and thus indirectly request
that their energy estimates be updated since they are likely to have
changed. When an edge collapse is requested, we dequeue the low-
est energy edge. If its estimated energy is lower than the threshold
given by the previous edge split, we verify the estimate by collaps-
ing and optimizing the edge at its given optimization level. If, on
the other hand, the threshold is exceeded, the optimization level is
incremented and a (hopefully) lower collapse energy is obtained. If
the edge collapse is still not acceptable, the edge is either reinserted
into the queue, if the optimization level is lower than the maximum,
or is placed in a temporary list, as its energy cannot be lowered, al-
lowing other edge collapses to be considered, and we repeat the
procedure.

In each iteration of this search for a valid edge collapse, we de-
queue the edge with lowest collapse energy and whose optimization
level has not reached the maximum. Due to this search order, from
lowest to highest collapse energy, the likelihood of finding a valid
edge collapse decreases rapidly over time, and we terminate the
search if the probability of success is lower than 0.3%, i.e. using a
3σ confidence interval. This often preempts a futile search after a
few seconds, which might otherwise take a long time to complete.

If an edge is found whose collapse energy is lower than the
threshold, the teleport operation completes successfully. Otherwise,
we conclude that there is no edge collapse compatible with the pre-
vious edge split. Instead of undoing the split, however, we simply
proceed by collapsing the cheapest edge. While this will result in
an energy increase, it is a rare occurrence, but not necessarily a bad
one as it allows for occasional uphill moves that may get us out of
local minima. We also note that since the edges created in the pre-
vious edge split are candidates for collapse, we should always in
theory be able to collapse one of these edges to revert back to the
mesh as it was before the edge split.

5.4 Choosing Edges to Optimize

The outermost loop in our optimization method consists of choos-
ing a set of edges to optimize. Quite naturally, some edges are
better candidates than others, yet it is not immediately obvious how
to rank them to maximize the reduction in the energy function. We

6

Technical report GIT–GVU–00–16, June 2000

can, however, order the edges by theirpotential for improvement
by making use of difference images. That is, for a given choice of
image metric and associated difference images, ouroracle deter-
mines which areas of the mesh are high in energy, and which have
a potential for large improvement. We have found this oracle to be
useful for detecting artifacts in the mesh that can quickly be im-
proved, which is an advantage over methods like [9] that rely solely
on random descent.

Periodically, we compute for each edge its potential energy by
projecting its vertices onto the screen and summing up the pixel
differences from blurred versions of the difference images, similar
to [20]. The edges are then sorted by their potential energy, and
the oracle recommends a small set of the highest energy edges for
optimization. The difference images are also used to measure the
overall mesh energy, which is useful for monitoring the progress
of the optimization. The user can then terminate the optimization
when a satisfactory energy level has been reached.

As alluded to above, the oracle does not always produce edges
that can be improved greatly, and sometimes outputs roughly the
same set of edges twice in a row. For this reason we interleave the
set of edges suggested by the oracle with a batch of randomly cho-
sen edges. At the beginning of each iteration, in which we optimize
a total of 64 edges, we balance these two sets based on the amount
of progress made in the previous iteration. The resulting optimiza-
tion procedure is very flexible and adjusts quickly to changes in the
mesh that are either beneficial or detrimental.

6 RESULTS

The models discussed in this section were optimized on a 250 MHz
R10000 Silicon Graphics Octane with IMPACTSR graphics and
256 MB of RAM. We include examples of models that were op-
timized between a few minutes and up to six hours.

Our first example of mesh optimization is for a bunny model that
has been simplified using a variant of Rossignac and Borrel’s ver-
tex clustering method [18], for which we have removed all double-
sided faces, thus creating a few holes in the mesh. Figure 7a shows
the cluster-simplified model, and Figures 7b through 7e show suc-
cessively improved models using the image-guided optimization.
In addition to smoothing out the rough surface, the optimization
is able to close holes in the mesh through properly chosen edge
collapses. The percentages in the captions correspond to the mesh
energies relative to the model in Figure 7a.

Our mesh optimization method is also able to improve upon
high-quality geometric simplification results. Figures 7f and 7i
show two models that have been produces by memoryless simplifi-
cation [11]. Figures 7g and 7j show the results after optimization.
Notice that the shapes of the ears are better captured by the opti-
mized meshes. Figure 7h shows the original bunny model for com-
parison. Figure 5 shows the mesh energy as a function of time for
the models in Figures 7e, 7i, and 7j, while Figure 6 shows the (final)
mesh energies for several levels-of-detail of the bunny. These ener-
gies were computed using 24 views that were all different from the
ones used during optimization. Notice that our optimization method
always outperforms Lindstrom and Turk’s image-driven simplifica-
tion method [12] using this quality measure, regardless of which
model is used as input to the optimization. In fact, we have found
that using the memoryless method followed by optimization takes
less time than using image-driven simplification to reach the same
energy level. However, the best meshes are obtained when the two
image-driven methods are used together.

Figure 8b is a Gouraud shaded dragon. We improved a memory-
less simplified version (Figure 8a) by optimizing both geometry and
vertex normals (Figure 8c). By not constraining the normals to unit
length, the algorithm was sometimes able to artificially darken or
brighten regions without changing the surface normal direction. As

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

0 1 2 3 4 5 6

time (hours)

en
er

g
y

(%
)

image-driven simplification memoryless simplification vertex clustering

Figure 5: Mesh energy as a function of time for various bunny models. Each curve cor-
responds to a different initial model, produced by the image-driven [12] (693 vertices),
memoryless [11] (686 vertices), and vertex clustering [18] (769 vertices) simplification
algorithms. The energy is measured relative to the model produced by the image-driven
simplification method, and starts at 380% for vertex clustering.

1

10

100 1,000 10,000

model size (vertices)

en
er

g
y

memoryless simplification (ms) image-driven simplification (ids)

optimized from ms optimized from ids

Figure 6: Mesh energy for bunny models at different levels of detail. The lower two
curves correspond to the final, optimized models, whereas the upper curves correspond
to the models before optimization.

a result, details near the head, legs, and chest have been recovered
in the optimized model.

Figure 9 shows a memoryless simplification, the original, and an
optimized version of a textured torus. The simplified model’s ge-
ometry and texture coordinates were improved using our optimiza-
tion method. Notice that the large black zeros are better placed after
optimization, and that the long curved lines are better matched. In-
sets in Figures 9a and 9c show the image differences between the
coarse meshes and the original model of Figure 9b.

Our final example is a textured frog model, shown in Figure 10a.
This model is actually composed of several connected components,
with different components for the body, the legs, and the eyes. Such
“stuck together” models are commonly used in video games and in
feature film special effects. Figure 10b is a frog model simplified
by the memoryless algorithm, and several problems are evident.
The front right foot has been entirely eliminated, and the remain-
ing feet are also poorly preserved. One striking artifact is the dis-
torted eye shape, caused by severe texture stretch and interpene-
trating geometry. There is also cracking evident between the legs
and the body because these components were never joined in the
first place, and edge collapses around the places where they inter-
penetrate have caused a mismatch between components. Simpli-
fication methods are not often used on such models because none
of the geometric quality measures recognize these problems. We
used image-driven simplification to produce a considerably better
looking model, shown in Figure 10c. However, several artifacts
remain, mainly because this method does not optimize the vertex
positions with respect to the image metric. The image-driven opti-

7

Technical report GIT–GVU–00–16, June 2000

mization method, on the other hand, not only recognizes all these
problems, but successfully “repairs” the damaged parts. Figure 10d
shows the result of optimizing the vertex and texture coordinates
of the model from Figure 10c. Optimization has fixed the cracks
and improved both geometry and texture, resulting in a model of
substantially higher visual quality.

7 CONCLUSIONS AND FUTURE WORK

We have presented a method of improving the appearance of an
already-simplified model using optimization that is guided by im-
ages. This is the first mesh optimization method that takes into
account not just the geometry of a model but also properties such
as textures and surface normals. This approach fixes problems in a
simplified mesh that simplification methods are insensitive to, such
as cracks between surface parts and object interpenetration.

One avenue for future work is to explore the use of more
perceptually-based image metrics. A more unusual possibility is
to try optimizing a mesh that looks nothing like the target mesh.
The two meshes might be a horse and a tiger, and the result of the
optimization would then produce a morph between these two dis-
similar shapes. Success on this problem would probably require
more global mesh moves than those we have used to date. Other
intriguing potential applications of our method include remeshing,
geometry compression, and design and parameterization of bump
or displacement maps.

References
[1] Mark R. Bolin and Gary W. Meyer. A perceptually based adaptive

sampling algorithm. In Michael Cohen, editor,Proceedings of SIG-
GRAPH 98, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 299–310. Addison Wesley, July 1998. ISBN 0-89791-999-
8. Held in Orlando, Florida.

[2] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-
preserving simplification. In Michael Cohen, editor,Proceedings of
SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference
Series, pages 115–122. Addison Wesley, July 1998. ISBN 0-89791-
999-8. Held in Orlando, Florida.

[3] Michael Garland and Paul S. Heckbert. Surface simplification using
quadric error metrics. In Turner Whitted, editor,Proceedings of SIG-
GRAPH 97, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 209–216. Addison Wesley, August 1997. ISBN 0-89791-
896-7. Held in Los Angeles, California.

[4] Michael Garland and Paul S. Heckbert. Simplifying surfaces with
color and texture using quadric error metrics. In David Ebert, Hans
Hagen, and Holly Rushmeier, editors,IEEE Visualization ’98, pages
263–270. IEEE, October 1998. ISBN 0-8186-9176-X.

[5] Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor,
Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, An-
nual Conference Series, pages 99–108. Addison Wesley, August 1996.
ISBN 0-201-94800-1. Held in New Orleans, Louisiana.

[6] Hugues Hoppe. View-dependent refinement of progressive meshes.
In Turner Whitted, editor,Proceedings of SIGGRAPH 97, Computer
Graphics Proceedings, Annual Conference Series, pages 189–198.
Addison Wesley, August 1997. ISBN 0-89791-896-7. Held in Los
Angeles, California.

[7] Hugues Hoppe. New quadric metric for simplifying meshes with
appearance attributes. In David Ebert, Markus Gross, and Bernd
Hamann, editors,IEEE Visualization ’99, pages 59–66. IEEE, October
1999. ISBN 0-7803-5897-X. Held in San Francisco, California.

[8] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Surface reconstruction from unorganized points.
Computer Graphics (Proceedings of SIGGRAPH 92), 26(2):71–78,
July 1992. ISBN 0-201-51585-7. Held in Chicago, Illinois.

[9] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Mesh optimization. In James T. Kajiya, editor,Pro-
ceedings of SIGGRAPH 93, Computer Graphics Proceedings, Annual
Conference Series, pages 19–26, August 1993. ISBN 0-201-58889-7.
Held in Anaheim, California.

[10] Renate Kempf and Jed Hartman.OpenGL on Silicon Graphics Sys-
tems. Silicon Graphics, Inc., 1998. SGI Document Number 007-2392-
002.

[11] Peter Lindstrom and Greg Turk. Fast and memory efficient polygonal
simplification. In David Ebert, Hans Hagen, and Holly Rushmeier,
editors,IEEE Visualization ’98, pages 279–286. IEEE, October 1998.
ISBN 0-8186-9176-X.

[12] Peter Lindstrom and Greg Turk. Image-driven simplification. Tech-
nical Report GIT–GVU–99–49, Georgia Institute of Technology, De-
cember 1999. To appear in ACM Transactions on Graphics.

[13] Jeffrey Lubin. A visual discrimination model for imaging system de-
sign and evaluation. In Eli Peli, editor,Vision Models for Target Track-
ing and Recognition, Series on information display, pages 245–283.
World Scientific, 1995.

[14] David Luebke and Carl Erikson. View-dependent simplification of ar-
bitrary polygonal environments. In Turner Whitted, editor,Proceed-
ings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Con-
ference Series, pages 199–208. Addison Wesley, August 1997. ISBN
0-89791-896-7. Held in Los Angeles, California.

[15] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery.Numerical Recipes in C: The Art of Scientific Com-
puting, pages 408–412. Cambridge University Press, second edition,
1992.

[16] Mahesh Ramasubramanian, Sumanta N. Pattanaik, and Donald P.
Greenberg. A perceptually based physical error metric for realistic
image synthesis. In Alyn Rockwood, editor,Proceedings of SIG-
GRAPH 99, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 73–82. Addison Wesley Longman, August 1999. ISBN
0-20148-560-5. Held in Los Angeles, California.

[17] Rémi Ronfard and Jarek Rossignac. Full-range approximation of tri-
angulated polyhedra.Computer Graphics Forum, 15(3):67–76, Au-
gust 1996. ISSN 1067-7055.

[18] Jarek Rossignac and Paul Borrel. Multi-resolution 3d approximations
for rendering complex scenes. In Bianca Falciendo and Toshiyasu L.
Kunii, editors,Modeling in Computer Graphics, IFIP series on com-
puter graphics, pages 455–465. Springer-Verlag, 1993.

[19] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen.
Decimation of triangle meshes.Computer Graphics (Proceedings of
SIGGRAPH 92), 26(2):65–70, July 1992. ISBN 0-201-51585-7. Held
in Chicago, Illinois.

[20] Greg Turk and David Banks. Image-guided streamline placement. In
Holly Rushmeier, editor,Proceedings of SIGGRAPH 96, Computer
Graphics Proceedings, Annual Conference Series, pages 453–460.
Addison Wesley, August 1996. ISBN 0-201-94800-1. Held in New
Orleans, Louisiana.

[21] Mason Woo, Jackie Neider, and Tom Davis.OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 1.1. Addison
Wesley, second edition, 1997. ISBN 0-201-46138-2.

[22] Julie C. Xia and Amitabh Varshney. Dynamic view-dependent simpli-
fication for polygonal models. In Roni Yagel and Gregory M. Nielson,
editors,IEEE Visualization ’96, pages 327–334. IEEE, October 1996.
ISBN 0-89791-864-9.

8

Technical report GIT–GVU–00–16, June 2000

7a
.

V
e

rt
ex

cl
us

te
rin

g
(V

=
76

9)
7b

.
O

pt
im

iz
ed

(1
:4

9,
75

.3
%

)
7c

.
O

pt
im

iz
ed

(1
1:

36
,5

1.
5%

)
7d

.
O

pt
im

iz
ed

(1
:0

2:
14

,3
6.

5%
)

7e
.

O
pt

im
iz

ed
(6

:0
0:

19
,2

5.
3%

)

7f
.

M
e

m
or

yl
e

ss
si

m
pl

ifi
ca

tio
n

(V
=

34
1)

7g
.

O
pt

im
iz

e
d

(E
=

59
.7

%
)

7h
.

O
rig

in
al

m
od

el
(V

=
34

,8
34

)
7i

.
M

e
m

or
yl

e
ss

si
m

pl
ifi

ca
tio

n
(V

=
69

3)
7j

.
O

pt
im

iz
e

d
(E

=
58

.8
%

)

8a
.

M
e

m
or

yl
e

ss
si

m
pl

ifi
ca

tio
n

(
V

=
4,

09
5)

8b
.

O
rig

in
al

m
od

el
(V

=
43

5,
54

5)
8c

.
O

pt
im

iz
e

d
(E

=
33

.5
%

)

9

Technical report GIT–GVU–00–16, June 2000

9a. Memoryless simplification (V = 580) 9b. Original model (V = 33,173) 9c. Optimized (E = 51.0%)

10a. Original model (V = 24,070) 10b. Memoryless simplification (V = 333)

10c. Image-driven simplification (V = 309) 10d. Optimized (E = 60.1%)

10

