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SUMMARY

Seismic surveys have become the primary measurement tool of exploration

geophysics, both onshore and offshore, with significant signal processing needed to

estimate the properties of earth subsurface via seismic wave propagation. The typical

workflow for seismic includes three phases: acquisition, imaging, and interpretation.

A high-quality imaging result for interpretation necessitates accurate data acquisition

and efficient imaging algorithms. However, seismic data gathers may suffer from

noisy and missing traces during acquisition which could possibly limit their use in

the following imaging phase. As a convincing quantitative imaging technique, full

waveform inversion (FWI) searches for the correct velocity model that can match

the acquired seismic dataset. However, due to the high dimensionality of the model

space, FWI is inherently a challenging problem, so that regularization techniques

are typically applied to yield better posed models. Moreover, FWI also suffers from

its prohibitive computational costs that mainly arise from forward modeling of the

seismic wavefield for multiple sources at each iteration of a nonlinear minimization

process. The dimensionality of the problem and the heterogeneity of the medium

both stress the need for faster algorithms and sparse regularization techniques to

accelerate and improve imaging results.

This thesis presents a new reconstruction method to mitigate noise and interpo-

late missing traces in the acquired seismic dataset, as well as a new FWI framework

to estimate subsurface models more accurately and efficiently. Both contributions

involve sparse approximation of various types of data with respect to adaptive dictio-

naries that are learned by different strategies. The new seismic data reconstruction

method involves a sparse representation over a parametric dictionary, which bridges

xiv



a gap between model-based and data-driven sparse approximations. The new FWI

framework adapts velocity model perturbations to orthonormal dictionaries that are

trained in an online manner, and then exploits compressive sensing to significantly

reduce the computational cost by requiring many fewer calculations of the forward

model. Numerical experiments on synthetic seismic data and velocity models indicate

that the new methods can achieve better performance compared to other state-of-the-

art methods.
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CHAPTER I

INTRODUCTION

1.1 High-resolution Earth Model Imaging

The earth is a complex and heterogeneous medium with properties ranging from

the mineral composition scale (' 10−6 m) to the global scale (' 106 m). Exploration

geophysics is the study of the earth model through physical methods, such as seismic,

gravitational, magnetic, electrical and electromagnetic, using sensors at or near the

surface of the earth to elucidate and detect the underlying structures of its subsurface.

These methods play a critical role in the oil and gas industry as they are frequently

used to identify reservoir characteristics such as faults and traps. Drilling for oil

is expensive gambling. With project costs increasing year by year, an oil company

could lose a large investment when exploring or developing a field that fails to yield

hydrocarbons at profitable rates. To hedge these risks, sophisticated measurements

are used to estimate the potential profitability of a field as early as possible in the

development process.

1.1.1 Seismic Methods and Related Systems

Seismic methods are widely used to explore the earth’s subsurface, in order to

give oil companies a more astute indication about the production potential of a field.

A seismic survey is always conducted to build a better picture of the hydrocarbon

content in a reservoir before actual drilling commences. There are four stages in a

seismic survey: (1) seismic acquisition, (2) seismic data preprocessing, (3) seismic

migration, and (4) image interpretation. Figure 1.1 depicts an overall field setup for

a seismic survey conducted on land. A seismic source, such as vibroseis (attached to

a truck for land surveys), or an airgun (attached to a vessel for marine surveys), is

1



used to generate seismic waves. Seismic waves are transmitted from the source and

reflect from different rock layers when they travel between layers where rock proper-

ties change. Seismic receivers such as geophones (for land surveys) and hydrophones

(for marine surveys) are deployed on the surface to record seismic waves in the form

of data traces, which contain different wave fronts corresponding to various inter-

actions of the background wavefield with heterogeneities in the earth’s subsurface.

The resulting seismic dataset, after carefully preprocessing, is then used for seismic

migration to obtain a reliable image of the subsurface that describes the properties

of deep underground geological structures.

Oil and Gas Deposits

Geophones

Vibration SourceRecording Device

Figure 1.1: A land seismic survey illustration

1.1.2 Seismic Migration and Modeling

Seismic waves that propagate through the earth are governed approximately by

the acoustic, elastic and viscous properties of the rock in which they are traveling.

When they propagate through an interface between two rock types with different

densities and seismic velocities, seismic energy is either reflected, refracted or atten-

uated. The reflected seismic energy arrives at the surface and is recorded by the

receivers. Figure 1.2(a) illustrates a simple homogeneous (constant P-wave velocity)

2



medium with an isolated scattering point at some depth and the corresponding seismic

data with a hyperbolic diffraction pattern. While the actual subsurface is far more

complicated than that shown in Figure 1.2(a), the seismic data can be represented

as a superposition of many diffraction curves generated by each of many point-like

anomalies in the subsurface. Figure 1.2(b) illustrates another example with a dipping

reflector, where the envelope of many weak diffractions from closely spaced scattering

points along the reflector forms a straight reflection line. Note that the reflection

is displaced laterally from the true reflector position, and this lateral mispositioning

of reflections from dipping reflectors gives rise to the term seismic migration for the

process that corrects the positioning. The purpose of seismic migration is to remove

distortions from seismic records by moving events to their correct spatial positions

and by collapsing energy from diffractions back to their positions at the reflectors

[50].

Lateral direction

Depth

x

z

source-receiver

scattering point

Lateral direction

Time

x

t

(a) Schematic depth section (top) and seismic
data (bottom) for a single scattering point

x

z

x

reflector

reflection

Lateral direction

Depth

Lateral direction

Time

t

(b) Schematic depth section (top) and seismic
data (bottom) for a dipping reflector

Figure 1.2: Illustrations of seismic migration

The wave equation is an important second-order partial differential equation

(PDE) used to model the propagation of seismic waves in a medium, and it serves

3



as the foundation of seismic migration. As a simple example, the 2D acoustic wave

equation for a medium with constant density is as follows
(
m(x)

∂2

∂t2
−∇2

)
p(x, t; xs) = f(x, t; xs), (1.1)

where x , (x, z) is the 2D Cartesian coordinates in which x is the lateral coordinate

and z is the vertical coordinate, m(x) ,
1

v2(x)
is the model parameter, i.e., squared

slowness, of position x given that v(x) is the acoustic wave velocity, ∇2 ,
∂2

∂x2
+
∂2

∂z2

is the 2D Laplace operator, p(x, t; xs) is the acoustic pressure wavefield as a function

of position x and time t, parameterized by the source position xs, f(x, t; xs) is the

source excitation function generated at position xs and f(x, t; xs) = f(t)δ(x−xs) for

a point source. The PDE (1.1) can be solved both forward and backward in time.

In the analysis of seismic migration, it is appropriate to assume m(x) is a back-

ground incident model that is sufficiently smooth on the scale of a wavelength. De-

noting the reflector as a small perturbation δm(x) imposed on the background model

m(x), the scattered wavefield δp(x, t; xs) satisfies the following PDE based on the

Born approximation theory [51, 139] (see Appendix B for details):
(
m(x)

∂2

∂t2
−∇2

)
δp(x, t; xs) = −δm(x)

∂2p

∂t2
(x, t; xs). (1.2)

Unlike (1.1) in which the relationship between m(x) and p(x, t; xs) is nonlinear, (1.2)

maps δm(x) to δp(x, t; xs) in a linear way. This is because the background wave-

field p(x, t; xs) is determined by the background model m(x), hence can be regarded

as fixed for the purpose of determining the scattered wavefield. Therefore, if one

compactly denotes (1.1) as a nonlinear forward modeling process from the model

m , {m(x)} to the data d , {p(xr, t; xs)} sampled at receiver locations xr by using

the nonlinear operator F(·)

d , F(m), (1.3)

then its Born approximation can also be compactly denoted as a linearized for-

ward modeling process from the reflector δm , {δm(x)} to the scattered data

4



δd , {δp(xr, t; xs)} by using the Jacobian matrix J ,
∂F
∂m

δd , Jδm. (1.4)

Given the recorded data denoted by dobs, reverse time migration (RTM) [6, 86, 138]

is a preferred approach for estimating δm even if it is structurally complex. It uses

the adjoint linear operator J† that maps the recorded scattered data dobs−F(m) to

the model space

δmRTM = J† (dobs −F(m)) . (1.5)

In many RTM implementations, amplitudes of the reflectors are ignored and con-

sidered fairly unreliable. However, the preservation of the amplitudes becomes a

main concern for modern seismic migration algorithms. Least-squares reverse time

migration (LSRTM) [114] is able to generate amplitude-preserved imaging results by

minimizing the linear least-squares misfit function

J(δm) ,
1

2
‖(dobs −F(m))− Jδm‖2

2 , (1.6)

whose closed-form solution is

δmLSRTM =
(
J†J
)−1

J† (dobs −F(m)) . (1.7)

Comparing LSRTM (1.7) with RTM (1.5), it is obvious that LSRTM applies the

preconditioning matrix
(
J†J
)−1

to the RTM result. Since J†J is usually hard to

compute and invert, most LSRTM implementations minimize (1.6) by using iterative

gradient descent algorithms [37, 125] where the RTM result (1.5) can be regarded as

the first iteration of LSRTM.

1.1.3 Full Waveform Inversion

The purpose of full waveform inversion (FWI) [65, 127] is to recover the model

m by fitting the forward modeling data F(m) to the recorded data dobs in a com-

prehensive way, such that not only the scattering waves caused by reflectors but all

5



information in waveforms, such as travel times, amplitudes, converted waves, multi-

ples, etc., are accounted for. Using a conceptually similar idea with LSRTM, FWI

searches for a best estimate to m by minimizing the following least-squares misfit

function

E(m) ,
1

2
‖dobs −F(m)‖2

2. (1.8)

FWI searches the minimum of E(m) in an iterative manner mk+1 = mk + δmk,

k = 0, 1, 2, . . . where δmk is the optimal descent direction (a.k.a. model perturbation)

that minimizes E(m) in the vicinity of the current model mk. Hence, one can expand

E(m) in a small vicinity δm of mk with a Taylor polynomial of degree two

E(m) = E(mk) + δmTgk +
1

2
δmTHkδm + o(‖δm‖3) (1.9)

where gk ,
∂E(mk)

∂m
denotes the gradient of the misfit function E(m) evaluated at

mk and Hk ,
∂2E(mk)

∂m2
denotes the Hessian matrix whose elements are the second-

order partial derivatives of E(m) at mk. In each iteration, by letting the gradient of

E(m) expressed in (1.9) with respect to δm be zero, δmk satisfies

Hkδmk = −gk. (1.10)

After calculating the gradient gk and the Hessian matrix Hk, one is able to determine

the optimal model perturbation δmk at each FWI iteration. Since the relationship

between the data and the model is nonlinear in FWI, many iterations are required to

make the misfit function converge toward a minimum. A schematic workflow of FWI

is depicted in Figure 1.3.

1.1.4 Numerical Wave Modeling

Many numerical schemes have been proposed for modeling seismic wave propaga-

tion based on PDEs like (1.1). Explicit finite-difference time-domain (FDTD) meth-

ods were originally developed in the early 1970’s [4, 61], and have been widely used in
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Figure 1.3: Schematic FWI Workflow

both research and industry. Since the early 1990’s, finite-difference frequency-domain

(FDFD) methods [2, 103, 104] have been actively applied for seismic modeling. The

prerequisite of FDFD methods is to have the frequency-domain wave equations in

hand. For example, by applying the temporal Fourier transform to the acoustic wave

equation (1.1) with a point source, its frequency-domain equivalent is

(
−m(x)ω2 −∇2

)
p̂(x;ω,xs) = f̂(ω)δ(x− xs), (1.11)

where ω = 2πf is the (angular) frequency parameter, f̂(ω) is the Fourier transform

of f(t) and p̂(x;ω,xs) is the frequency-domain acoustic pressure wavefield generated

by a monochromatic point source term f̂(ω)δ(x − xs). FDFD methods discretize x

in (1.11) like FDTD methods discretize x and t in (1.1).

The FDTD methods are intuitive and easy to understand. As the name suggests,

since it is a time-domain technique, when a broadband pulse is used as the source

function, the wavefield over a wide range of frequencies can be obtained with a single
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simulation. However, FDTD requires having a small discretized time step to sat-

isfy the Courant-Friedrichs-Lewy condition [30] for stability. Therefore, a long-time

simulation of wave propagation would lead to very huge computational cost.

The FDFD methods have some major differences with the FDTD counterparts.

FDFD is easier to implement because there are no time steps that need to be computed

sequentially, hence FDFD is able to pick only a proportion of frequencies to compute,

leading to a smaller data space dimension. FDFD reduces the frequency-domain wave

equation (1.11) to a system of linear equations that can be compactly written as

B(m, ω)p̂(ω; xs) = f̂(ω; xs) (1.12)

where B(m, ω) is the impedance matrix [85] that is square, non-symmetric, sparse

and complex-valued and is characterized by the model m and the frequency ω, and

the column vectors p̂(ω; xs), f̂(ω; xs) collect all p̂(x;ω,xs), f̂(ω)δ(x− xs) as entries,

respectively.

Since each frequency ω is independent of each other in (1.11), one would solve

p̂(x;ω,xs) with multiple source f̂(ω)δ(x−xs) at multiple frequencies simultaneously,

using parallel computing if possible.

1.2 Sparse Signal Processing

Many different classes of signals, such as images, videos, seismic datasets and

velocity models are compressible, and can be well approximated by a linear com-

bination of only a few atoms from an appropriate dictionary. Consider a discrete

signal y ∈ RN , which can be approximated as a linear combination of unique vectors

di ∈ RN , i = 1, . . . , L, and N ≤ L, as

y =
L∑

i=1

xidi + n (1.13)

where x , [x1, . . . , xL]T ∈ RL is the coefficient vector, and n ∈ RN is the approxima-

tion error. Each vector di is called an atom and the set of all atoms D , {d1, . . . ,dL}
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is called a dictionary. An atom is used interchangeably as a column vector of

D , [d1, . . . ,dL] ∈ RN×L, and if D is an explicit matrix, then (1.13) can be written

as y = Dx + n. Any signal y is “sparse” or “compressible” over D if only K � L

entries in x are nonzero values while the remaining (L − K) values are zero. This

concept can be mathematically described as ‖x‖0 , #{i : xi 6= 0, i = 1, . . . , L} = K

where the `0-norm ‖ · ‖0 counts the nonzero entries.

Research into designing good dictionaries D for different families of signals has

never rested. It is always appealing to look for the sparsest coefficient vector x that

solves

min
x
‖x‖0 subject to ‖y −Dx‖2 ≤ ε (1.14)

Available dictionary design techniques fall into two categories. The first category

assumes a specific type of signal regularity that can be constructed by an analytic

model. This generally leads to model-based transforms with implicit dictionaries that

are described by structured algorithms, and exemplified by wavelets [84], ridgelets

[36], curvelets [20, 21, 25], contourlets [34], seislets [49], etc. They have already

been widely used for seismic data processing [53, 54, 73, 78, 117, 140, 143]. The

second category infers a dictionary from a set of examples by directly placing sparsity

constraints on the coefficients. This sort of data-driven dictionary is written as an

explicit matrix, and is better able to adapt to nonintuitive signal regularities beyond

piecewise smoothness.

1.2.1 Multi-scale Transforms: From Wavelets to Curvelets

Multi-scale transforms are model-driven processes based on a top-down strategy.

They design fix-shaped filters (mother atoms) to capture multi-dimensional signals

with assumed features such as scan-lines and smooth curves with sparse coefficients.

Hence their success in applications relies on how well the signals fit the assumptions.

These transforms have efficient algorithmic implementations in the spatial-frequency
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domain and, as a result, their representations as dictionaries D are implicit.

The most basic discrete multi-scale transform is the discrete wavelet transform

[32], whose dictionary D =

{
ψj,k(t) ,

1√
2j
ψ

(
t− k · 2j

2j

)∣∣∣∣j, k ∈ Z
}

is a set of dyadic

scaled (by a factor of 2j) and shifted (by a factor of k · 2j) versions of the mother

wavelet ψ(t). A signal y can be uniquely represented in a wavelet expansion

y =
∑

j

∑

k

xj,kψj,k (1.15)

where the wavelet coefficients are xj,k = 〈y,ψj,k〉. Practically, low- and high-pass

filter banks are used to implement wavelet atoms. Figure 1.4(a) shows a 2D wavelet

dictionary that is a Kronecker product of two 1D wavelet dictionaries across three

scales, and whose atoms are isotropic and optimal to horizontal, vertical and diagonal

scan-lines in the sense of approximation error [84].

(a) Wavelets (b) Curvelets

Figure 1.4: Wavelet and curvelet atoms

Most natural signals such as images exhibit piecewise smooth curves. However, a

2D discrete wavelet transform cannot represent curves with sparse coefficients since

its atoms lack directional selectivity. The curvelet transform [20, 21, 23, 24, 33] was

proposed to overcome this problem, and it allows an optimal sparse representation of
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piecewise smooth curves with respect to approximation error [20, 21]. The curvelet

dictionary can be written as

D =
{
ψj,l,k(u) , ψj

(
Rθl

(
u− u

(j,l)
k

))∣∣∣j, l ∈ Z, θl = 2π · 2−bj/2c · l,k , (k1, k2) ∈ Z2
}

where ψj(u) is the dilated mother curvelet which is a function of the 2D coordinate

u whose frequency support is a band-pass wedge, Rθ is the rotation operator by

θ radians such that ψj(Rθ(u)) has an oriented trapezoid window in the frequency

domain with angle θ, and u
(j,l)
k , R−1

θl

(
2−j · k1, 2

−j/2 · k2

)
to make sure the curvelets

have a parabolic scaling relation: width ≈ length2. Given this curvelet dictionary, a

2D signal y can be represented in a curvelet expansion

y =
∑

j

∑

l

∑

k

xj,l,kψj,l,k (1.16)

where the curvelet coefficients are xj,l,k = 〈y,ψj,l,k〉. Compared to wavelets, curvelets

have one more parameter l that controls the direction of the atom. Figure 1.4(b)

shows some curvelets from a dictionary across three scales, in which one can see these

needle-shaped atoms are anisotropic and possess very high directional selectivity.

(a) Using wavelets
(b) Using curvelets

Figure 1.5: Approximation of a curve using wavelet and curvelet atoms

Figure 1.5 illustrates the approximation of a curve with multi-scale wavelets and
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curvelets. Wavelets are isotropic and their frequency-domain supports are fixed-

area windows for one scale, so that capturing a curve requires many coefficients in

different scales, as shown in Figure 1.5(a). On the contrary, curvelets are anisotropic

and their frequency-domain supports are directional windows with parabolic scaling.

Therefore, representing a curve requires only a few coefficients per scale, as shown in

Figure 1.5(b).

1.2.2 Dictionary Learning

Dictionary learning, unlike the top-down design strategy of multi-scale transforms,

is a data-driven process that infers the dictionary D ∈ RN×L, N ≤ L, from a set of

training examples. In this case, D is typically an explicit matrix that yields the spars-

est representations for the training examples. Learning D is a bottom-up machine

learning strategy by enforcing sparsity constraints on the coefficients and adapting

the elements of D to the training examples.

A probabilistic framework is used in the development of dictionary learning [71,

95, 96]. It starts with the sparse approximation model that represents an arbitrary

signal y ∈ RN as

y = Dx + n (1.17)

where x ∈ RL is a sparse coefficient vector and n ∈ RN is Gaussian noise.

It is worth noting that though y is always a column vector in this context, it does

not refer only to a 1D signal. For example, a 2D image patch of size nz×nx where nz

and nx is the height and width of the patch, respectively, is equivalent to a vector y

of length N = nznx after reshaping, and reshaping can convert any multi-dimensional

signal to a 1D vector y ∈ RN . The terms patch and its reshaped vector can be used

interchangeably. For example, Figure 1.6 illustrates three 2D image patches as well

as their reshaped column vectors from a model perturbation image.
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For patch-based dictionary learning, it is also a convention to present the dictio-

nary matrix D by reshaping each dictionary atom of length N = nznx back to a

block of size nz × nx for better visualization of their geometric features, as shown in

Figure 1.7. Hence one can illustrate atoms of D as blocks. The sparse approximation

y ≈ Dx is illustrated in Figure 1.8 with vectors or patch blocks interchangeably.

50 100 150 200 250 300 350

20

40

60

80

100

120

(a) Three training patches of size nz × nx extracted
from a model perturbation

[ ]· · · · · · · · ·

(b) Three training patches that are
reshaped into column vectors of length

N = nznx

Figure 1.6: Examples of training patches vectorized into columns

[ ]· · · · · · · · ·

(a) Three dictionary atoms as column
vectors of length N = nznx in D

(b) All dictionary atoms in D are reshaped into 2D
blocks of size nz × nx for better visualization

Figure 1.7: Dictionary atoms are reshaped into blocks for better visualization.

Given a matrix of R training examples Y , [y1,y2, . . . ,yR] ∈ RN×R, the dictio-

nary learning method seeks the dictionary matrix D̂ that maximizes the likelihood

function P (Y|D):

D̂ = argmax
D

P (Y|D). (1.18)

With the assumption that each example yi, i = 1, . . . , R, is drawn independently,
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Figure 1.8: Approximation of the patch y by a few dictionary atoms is written as a
matrix-vector product y ≈ Dx =

∑
i

xidi, but is equivalent to summing a few atoms

from the dictionary visualized in Figure 1.7.

the likelihood function is

P (Y|D) =
R∏

i=1

P (yi|D). (1.19)

Thus the maximum likelihood (ML) expression of (1.18) becomes

D̂ = argmax
D

R∏

i=1

P (yi|D) = argmax
D

R∑

i=1

log (P (yi|D)) (1.20)

where P (yi|D) can be expressed in terms of its coefficients xi as

P (yi|D) =

∫

xi

P (yi,xi|D)dxi =

∫

xi

P (yi|xi,D)P (xi)dxi. (1.21)

Because the analytic solution of this integration is difficult to solve, Olshausen and

Field [95] handled this by replacing the integral with the maximum, which gives

D̂ = argmax
D

R∑

i=1

max
xi

{log (P (yi|xi,D)P (xi))} . (1.22)

Since the coefficient vector xi is sparse, each element could be assumed to be a zero-

mean, independent and identically distributed (i.i.d.) Laplacian random variable with

scale 1/µ. Also, each element of the noise term n could be assumed to be a zero-mean

i.i.d. Gaussian random variable with σ2 as variance. Then,

P (yi|xi,D) = Cg exp

(
− 1

2σ2
‖yi −Dxi‖2

2

)

P (xi) = Cl exp (−µ‖xi‖1) ,

(1.23)

where Cg and Cl are normalization constants.
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After inserting (1.23) into (1.22), the overall ML estimation problem for learning

the dictionary D becomes

D̂ = argmin
D

R∑

i=1

min
xi

{
1

2σ2
‖yi −Dxi‖2

2 + µ‖xi‖1

}
. (1.24)

This problem can be solved with an iterative alternating optimization scheme, which

first finds the sparsity coefficients {xi} given a fixed dictionary D and then updates

the elements of D with the known and fixed sparse coefficients {xi}.

The probabilistic framework leads to many successful dictionary learning algo-

rithms, including the K-singular value decomposition (K-SVD) [1], the method of

optimal directions (MOD) [45], generalized principal component analysis (GPCA)

[134], orthonormal dictionary learning [115, 116], unions of orthonormal bases [69],

and others.

1.2.3 Compressive Sensing

The sparse approximation of a signal y = Dx + n with the condition that ‖x‖0 =

K motivates the idea of compressive sensing (CS), proposed by Candès, Romberg,

Tao [22] and Donoho [39], to acquire a much smaller number of measurements for

processing such signals more efficiently as compared to the classical Nyquist-Shannon

sampling theorem. Instead of using y ∈ RN by sampling at twice the bandwidth

of its continuous signal, CS suggests measuring another signal z ∈ RM through a

subsampling matrix W ∈ RM×N (M ≤ N) as

z = Wy = WDx + Wn = Θx + η (1.25)

where Θ , WD ∈ RM×L is the measurement matrix and η , Wn is the mea-

surement error. The design of Θ must allow stable reconstruction of y ∈ RN from

z ∈ RM . A tractable necessary condition for stable reconstruction of y relies on the

mutual coherence of Θ [38, 40, 41]

µ(Θ) = max
i 6=j

|θHi θj|
‖θi‖2‖θj‖2

. (1.26)
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The condition M ≥ µ(Θ)2K logN guarantees recovery of y from z with high proba-

bility [108]. Proper subsampling matrices W that come with small mutual coherence

µ(Θ) include i.i.d. Gaussian random matrices [39], random convolution Toeplitz ma-

trices [108] and randomly selected rows from identity matrices [55, 80], etc.

The reconstruction of y is equivalent to finding the sparsest coefficients x that

satisfy (1.25), which can be formulated as follows

x̂ = argmin
x
‖x‖0 subject to ‖z−Θx‖2 ≤ ε (1.27)

where ε is an estimate of the reconstruction error. This problem can be reformulated

into two different forms. The first one is

x̂ = argmin
x
‖z−Θx‖2 + µ‖x‖0, (1.28)

where µ is the Lagrange multiplier that tunes the trade-off between the approximation

error and sparsity constraint. Another one is

x̂ = argmin
x
‖z−Θx‖2 subject to ‖x‖0 ≤ τ (1.29)

where τ is an estimate of the sparsity level.

Unfortunately, solving optimization problems such as (1.27), (1.28) and (1.29)

with `0-norm constraints is generally NP-hard for arbitrary Θ [90]. In practical,

greedy strategies such as matching pursuit (MP) [83], orthogonal matching pursuit

(OMP) [99, 132] and their variants have been developed to approximately solve these

problems. Another workaround is to replace the `0-norm ‖x‖0 with the `1-norm

‖x‖1 =
∑L

i=1 |xi| [39], yielding the following three problems that can be solved by

convex programming methods

x̂ = argmin
x
‖x‖1 subject to ‖z−Θx‖2 ≤ ε, (1.30)

x̂ = argmin
x
‖z−Θx‖2 + µ‖x‖1, (1.31)
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and

x̂ = argmin
x
‖z−Θx‖2 subject to ‖x‖1 ≤ τ. (1.32)

Among them, (1.30) is defined as basis pursuit denoising (BPDN) problem [28] and

(1.32) has the name of least absolute shrinkage and selection operator (LASSO) [130,

131]. These formulations are equivalent as long as the parameters ε, µ and τ are

appropriately selected [133] and such an equivalence relation plays an important role

in sparse signal processing problems.

1.3 Thesis Organization

The objective of this thesis is to improve the quality of the recorded seismic data

and the efficiency of seismic inversion algorithms so as to deliver high-fidelity earth

models that can be used for oil and gas reservoir exploration and characterization.

The thesis is organized as follows.

Chapter 2 proposes a novel seismic data reconstruction scheme using a double-

sparsity dictionary learning method. Section 2.2 introduces the K-SVD algorithm

that is a renowned implementation of dictionary learning. Section 2.3 investigates

the structure of the adaptive dictionary learned from the seismic data and proposes a

double-sparsity dictionary learning method in which the learned dictionary D is con-

structed as a multiplication of a base dictionary Φ corresponding to a fixed analytic

transform with a sparse matrix A that actually needs to be learned. Such a cascaded

form for the learned dictionary strikes a good balance among complexity, adaptivity,

and performance. Section 2.4 describes the overall seismic dataset denoising scheme

as a fused iterative procedure that comprises signal denoising and dictionary update.

Section 2.5 extends the discussion of dictionary learning to the case that the noise is

nonhomogeneous, or more specifically, entire traces are missing. Section 2.6 presents

some experimental results that demonstrate the effectiveness of the algorithms.
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Chapter 3 proposes a novel CS-based framework for the FWI problem using spar-

sity promotion based on orthonormal dictionary learning. Section 3.2 reviews the

FWI problem in the frequency domain by iteratively updating the model perturba-

tion via the Gauss-Newton method, and analyzes its high data dimensionality and

intensive computational complexity in detail. Section 3.3 introduces the orthonormal

dictionary learning as a fast and efficient algorithm and then proposes an adaptive

transform called the Sparse Orthonormal Transform (SOT) based on the learned or-

thonormal dictionary for representing the entire model perturbation. In order to

match the iterative property of FWI, an online approach for orthonormal dictionary

learning is also proposed in this section, where the dictionary is continually updated

by using training patches extracted from the model perturbations in previous iter-

ations, so that the sequence of learned dictionaries can adapt to the variations of

patches in later iterations and the extra learning overhead is greatly reduced. Section

3.4 proposes the CS-based framework for FWI by coupling both compressive sub-

sampling and the adaptive SOT-based sparse representation into the Gauss-Newton

least-squares problem for each FWI iteration. The result shows that the model per-

turbation can be well recovered after an `1-norm sparsity constraint is applied on

the SOT coefficients even when only a small proportional of seismic data is used

for inversion. Section 3.5 presents some numerical experiments on velocity models

to demonstrate that the SOT-based sparsity promoting regularization can provide

robust FWI results with greatly reduced computation.

Chapter 4 summarizes the main contributions of the thesis and discusses some

potential future extensions for this line of research.

Appendix A presents a flexible and scalable software package with the name Seis-

mic Simulation, Survey, and Imaging (SSSI) that was developed along with the thesis

for seismic simulations and inversion. It was developed in both MATLAB R© and C,

18



and provides basic building blocks for seismic inversion such as numerical wave mod-

eling by finite difference methods (FDTD and FDFD), the construction of Green’s

functions and the Jacobian matrix, etc. Some large-scale matrix-vector multiplica-

tions are overloaded by efficient matrix-free functional operations. Parallel computing

is extensively implemented in the software to accelerate processing. This software

can be downloaded from the website of The Center for Energy and Geo Processing

(CeGP) at http://cegp.ece.gatech.edu. Appendix B gives a brief review of the

Born approximation that is indispensable for the seismic inversion algorithms.
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CHAPTER II

SEISMIC DATA RECOVERY THROUGH

SPARSITY-PROMOTING DICTIONARY LEARNING

2.1 Introduction

Seismic data quality is vital to geophysical applications. However, a seismic

dataset is often contaminated by random and ambient noise sources, such as ground

roll, reverberating refractions, equipment malfunctions, etc. In addition, real data

acquisition may encounter different sorts of obstacles, such as buildings, highways,

fences, etc. These obstacles, coupled with limited recording capacity or greater cost,

result in missing or nonuniform spatial traces. Noisy and missing traces will hamper

the ability to obtain reliable subsurface images, making seismic data reconstruction

a critical step in seismic data processing flows prior to seismic imaging.

Seismic data can be reconstructed in a transform domain where signal sparsity is

exploited, e.g., wavelet [27, 143], contourlet [118], or curvelet [53, 54, 92] transforms.

These transforms assume specific types of regularities within signals and build ana-

lytical, and thus fixed, multi-scale bases for sparse representation. Transform-domain

methods are efficient and treat the seismic dataset as a whole volume. However, this

may not be the best strategy when the seismic dataset exhibits repetitive localized

features of wave fronts. Alternatively, dictionary learning methods that infer explicit

and adaptive dictionary matrices from patch-based training sets can also be used to

reconstruct corrupted seismic data [7, 126, 142]. These methods offer refined dictio-

naries that adapt to the localized features of the data under processing and yield much

better performance in many applications. However, one disadvantage of dictionary

learning is high overhead including the need to store explicit dictionary matrices.
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This chapter [145] proposes a seismic data reconstruction scheme based on a novel

dictionary learning method called double-sparsity dictionary learning. This method is

motivated by a hypothesis that the learned dictionary atoms themselves may be rep-

resented by sparse coefficients over another more fundamental dictionary and suggests

forming the overall dictionary as a multiplication of a fixed transform and a sparse

matrix. Such a cascaded form of the learned dictionary combines the efficiency from

a fixed transform with the adaptability from dictionary learning.

The rest of this chapter is organized as follows. Section 2.2 reviews the renowned

K-SVD algorithm for dictionary learning. Section 2.3 introduces the motivation of

dictionary model with double-sparsity constraints and the details of the sparse K-

SVD algorithm. Section 2.4 describes the patch-based seismic data denoising using

the learned double-sparsity dictionary. Learning separate multi-scale dictionaries and

performing denoising in different subbands of a multi-scale transform are also pre-

sented in this section. Section 2.5 extends the method to seismic dataset inpainting

where many traces are missing. Section 2.6 gives the numerical experiments of de-

noising and inpainting.

2.2 The K-SVD Algorithm

Given a training set Y , [y1,y2, . . . ,yR] ∈ RN×R in which each element is a

column vector of length N , the goal of dictionary learning is to find a matrix D ∈

RN×L, N ≤ L, that is able to represent Y with a set of sparse coefficients summarized

as X = [x1,x2, . . . ,xR] ∈ RL×R. This is an ML estimation problem with respect to

D which has been discussed in Chapter 1:

D̂ = argmin
D

R∑

i=1

min
xi

{
1

2σ2
‖yi −Dxi‖2

2 + µ‖xi‖1

}
. (1.24 revisited)

This problem does not have any constraint on the elements of the dictionary matrix

D as it does for those of coefficients xi; thus, the näıve solution of (1.24) tends to

increase the element values of D in order to allow those of xi to become as small as
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possible. This issue can be handled by constraining each atom of D to be normalized

to one in the `2-norm so that the element values of xi are kept at an appropriate level

[96]. Then, the dictionary learning problem becomes

{
D̂, X̂

}
= argmin

D,X
‖Y −DX‖2

F + µ‖X‖1 subject to




‖dj‖2 = 1

∀j = 1, . . . , L

(2.1)

where ‖ · ‖F is the Frobenius norm.

The K-SVD algorithm is able to solve (2.1) by using an iterative strategy that

alternates between two steps in which each step reduces (2.1) into a problem that

involves only one unknown by fixing another one as known. The first step finds the

sparse coefficients in X of all input training patches in Y with the current dictionary

estimate D, so that (2.1) is reduced into

X̂ = argmin
X
‖Y −DX‖2

F + µ‖X‖1. (2.2)

According to the equivalence relation among (1.30), (1.31) and (1.32), the above

problem can be decoupled into R distinct LASSO problems for sparse representations

of training examples yi, ∀i = 1, . . . , R, over the fixed dictionary D as

xi = argmin
x
‖yi −Dx‖2

F subject to ‖x‖1 ≤ t, ∀ i = 1, . . . , R (2.3)

where t is the `1-norm sparsity level of each coefficient vector x.

The second step updates the current dictionary estimate D with the known sparse

coefficients X found in the first step, and reduces (2.1) into

D̂ = argmin
D
‖Y −DX‖2

F subject to




‖dj‖2 = 1

∀j = 1, . . . , L.

(2.4)

This problem can be solved by updating one atom dj at a time, while preserving the

`1-norm sparsity constraints on xi. In order to achieve this, updating the atom dj

only takes those training examples in Y whose sparse representations in X have used

22



dj into account. The column index set of these training examples in Y that have

used dj for sparse representation is denoted by Ij and can be obtained by locating

nonzero elements in the j-th row of X, i.e.,

Ij , {r|1 ≤ r ≤ R, xjr 6= 0}, (2.5)

so that all coefficients corresponding to dj can be denoted by Xj,Ij , which is a row

vector that takes elements with index Ij from the j-th row of X and is updated along

with dj as well.

The objective function in (2.4) that considers only the columns with index Ij from

Y can be written as

∥∥YIj −DXIj
∥∥2

F
=

∥∥∥∥∥

(
YIj −

∑

i 6=j

diXi,Ij

)
− djXj,Ij

∥∥∥∥∥

2

F

=
∥∥Ej − djXj,Ij

∥∥2

F

(2.6)

where Ej , YIj −
∑
i 6=j

diXi,Ij is the residual matrix if the atom dj is removed. There-

fore, the resulting problem for updating the atom dj as well as its corresponding

coefficients Xj,Ij becomes

{
dj,X

T
j,Ij

}
= argmin

d,x

∥∥Ej − dxT
∥∥2

F
subject to ‖d‖2 = 1. (2.7)

This is a simple rank-1 matrix approximation problem and hence can be directly

solved by the SVD of Ej. If the SVD of Ej is denoted by Ej = UΣVT , then the atom

dj is updated by the first column of U, and the updated corresponding coefficients

XT
j,Ij are updated by the first column of V multiplied by the first diagonal element

(i.e., the largest singular value) of Σ, which leads to

Ej = UΣVT ⇒





dj = u1

XT
j,Ij = σ11v1.

(2.8)

The detailed implementation of the K-SVD algorithm is summarized in Algorithm

2.1.
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Input: Training set Y ∈ RN×R, signal sparsity level t, and number of training
iterations K

Output: Learned dictionary D ∈ RN×L, sparse coefficient matrix X ∈ RL×R

Initialization: D← D0 (a pre-chosen matrix), X← 0
1 repeat
2 for i← 1 to R do

// Sparse coding

3 xi ← argmin
x
‖yi −Dx‖2

2 subject to ‖x‖1 ≤ t;

4 end
5 for j ← 1 to L do
6 Ij ← {r|1 ≤ r ≤ R, xjr 6= 0};

// Atom removal

7 dj ← 0;
8 Ej ← YIj −DXIj ;

// Atom updating

9 Ej ← UΣVT ; // Compute SVD

10 dj ← u1;
11 XT

j,Ij ← σ11v1;

12 end

13 until K training iterations ;

Algorithm 2.1: The K-SVD algorithm

For applications in image processing, any attempt to directly use full-size images

for dictionary learning would yield intractable computational complexity. Instead, one

should feed the dictionary learning algorithm with small image patches of size nz×nx
such that N = nznx is of moderate size. Besides the complexity issue, small patches

exhibit better local self-similarities than large patches and, therefore, the resulting

dictionary can have better representation ability on local features. Such locality can

be turned back into a global treatment of full-size images by appropriately tiling the

small patches, which will be described later.

2.3 Double-Sparsity Dictionary Learning

The K-SVD algorithm [1] trains the dictionary D ∈ RN×L that is adapted to a

training set Y ∈ RN×R by solving the dictionary learning problem (2.1). It has been

widely used to handle various image processing and computer vision tasks, such as
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denoising [44, 68], inpainting [72, 82, 119], super-resolution [100, 141], etc.

Compared with fixed multi-scale dictionaries, the learned dictionaries are more

adaptive to the data and produce better results. However, these gains do not come

for free. Dictionary learning algorithms based on the iterative alternating optimiza-

tion approach bring extra computational overhead. Since the learned dictionaries are

explicit matrices, extra space is required to store their elements, and applying signal

reconstruction by matrix-vector multiplication would be less efficient than applying

multi-scale transforms with fast algorithms. Furthermore, no prior structural infor-

mation is involved in the construction of the dictionary, yet this would not always be

the case. In the seismic application, datasets have distinct structural patterns, which

can help to guide the design of dictionaries.

What would be an appropriate dictionary to represent seismic data? A seismic

dataset is a collection of data traces, each one of which is a recorded continuous wave-

form from a seismic source. Many traces together provide a spatio-temporal sampling

of the wavefield, which contains wave fronts along straight lines and hyperbolae that

correspond to direct ray paths and reflections with normal moveouts, respectively.

This structural information can be exploited to improve dictionary learning.

As an example, Figure 2.1(b) demonstrates an example of a learned dictionary

with L = 256 atoms obtained by the K-SVD algorithm on a set of 16 × 16 patches

(N = 256) from a synthetic seismic dataset shown in Figure 2.1(a). Though there are

no constraints posed by the algorithm, we can notice the strong resemblance among

atoms in the resulting dictionary, which suggests that the atoms themselves may

share some underlying structures that can be represented over a more fundamental

base dictionary with sparsity.
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(a) Synthetic seismic dataset

(b) Learned dictionary by K-SVD algorithm from
16× 16 patches in (a).

Figure 2.1: Synthetic data and a learned dictionary

2.3.1 A Dictionary Model with Double Sparsity

The resemblance among atoms in the dictionary obtained by the K-SVD algorithm

suggests that atoms can have sparse representations over some base dictionary. This

concept is called “double-sparsity”, which was first proposed in the image processing

literature [111].

The double-sparsity dictionary model can be described as

D = ΦA (2.9)

where Φ ∈ RN×L is the base dictionary generally chosen to have a quick implicit

implementation and A = [a1, a2, . . . , aL] ∈ RL×L is a sparse matrix to be learned

in which each column satisfies ‖ai‖1 ≤ p for some sparsity level p. Therefore, the

double-sparsity dictionary can be regarded as a two-level cascaded combination of

two dictionaries. Usually, the base dictionary Φ is selected as a synthesis operator of

some fixed transform that comes with a fast implementation. The sparse matrix A

can be regarded as an extension to the existing analytic transform, adding a new layer
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of adaptivity on the fixed Φ. Comparing with the regular unstructured dictionary D

which is a fully explicit matrix, the double-sparsity dictionary model (2.9) is signifi-

cantly more efficient because only a few elements in A need to be learned, stored and

transmitted. More importantly, due to its fewer degrees of freedom, such a dictionary

model reduces the chance of overfitting the noise in the training set and produces

robust results even with limited training examples. These properties are particularly

advantageous for the process of denoising and inpainting of seismic datasets.

By inserting the double-sparsity dictionary model (2.9) into (2.1), the double-

sparsity dictionary learning optimization problem is formulated as

{
Â, X̂

}
= argmin

A,X
‖Y −ΦAX‖2

F + µ‖X‖1 subject to





‖aj‖1 ≤ p

‖Φaj‖2 = 1

∀j = 1, . . . , L

(2.10)

2.3.2 The Sparse K-SVD Algorithm

The sparse K-SVD algorithm is a dictionary learning algorithm specifically de-

signed to learn the sparse dictionary A ∈ RL×L by solving the optimization problem

(2.10). It is a variant of the K-SVD algorithm and hence inherits its basic strategy

of iteratively alternating between sparse representation and dictionary update.

Algorithm 2.2 presents the sparse K-SVD algorithm with details. Similar to the

K-SVD algorithm, in each learning iteration, the first step decouples (2.10) into R

distinct LASSO problems as

xi = argmin
x
‖yi −ΦAx‖2

F subject to ‖x‖1 ≤ t, ∀ i = 1, . . . , R (2.11)

and determines the sparse representation xi of each training example yi with the

current dictionary D = ΦA fixed.

Different from the K-SVD algorithm, the second step in each iteration updates

each sparse column aj of the matrix A to formulate the renewed atom dj = Φaj. Still,
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by denoting a column index set Ij of the training examples in Y whose representations

use dj as (2.5), the objective function to update aj is equivalent to

∥∥YIj −ΦAXIj
∥∥2

F
=

∥∥∥∥∥

(
YIj −

∑

i 6=j

ΦaiXi,Ij

)
−ΦajXj,Ij

∥∥∥∥∥

2

F

=
∥∥Ej −ΦajXj,Ij

∥∥2

F

(2.12)

where Ej = YIj −
∑
i 6=j

ΦaiXi,Ij is the residual matrix without the contribution of dj.

Therefore, the resulting problem to update aj and Xj,Ij is given by

{
aj,X

T
j,Ij

}
= argmin

a,x

∥∥Ej −ΦaxT
∥∥2

F
subject to




‖a‖1 ≤ p

‖Φa‖2 = 1

(2.13)

Unlike solving (2.7) in the K-SVD algorithm, (2.13) cannot be solved simply as a

rank-1 matrix approximation problem with SVD operations. Instead, [11] proposed an

alternative method, which guarantees a reduction of the objective function. Suppose

x in (2.13) is fixed and the norm constraint ‖Φa‖2 = 1 is temporarily put aside, aj

can be optimized by solving the following problem

aj = argmin
a

∥∥Ej −ΦaxT
∥∥2

F
subject to ‖a‖1 ≤ p. (2.14)

However, this problem is difficult to solve. The following theorem provided in [111]

shows that (2.14) can be converted into a much simpler problem.

Theorem 2.1 Let E ∈ RN×M , Φ ∈ RN×L be two matrices, and a ∈ RL, x ∈ RM be

two vectors, and also let ‖x‖2 = 1, then the following equation holds

∥∥E−ΦaxT
∥∥2

F
= ‖Ex−Φa‖2

2 + f(E,x),

where f(E,x) is not a function of a.
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Proof The left-hand side can be expanded as

∥∥E−ΦaxT
∥∥2

F
= Tr

(
(E−ΦaxT )T (E−ΦaxT )

)

= Tr
(
ETE

)
− 2Tr

(
ETΦaxT

)
+ Tr

(
xaTΦTΦaxT

)

= Tr
(
ETE

)
− 2Tr

(
xTETΦa

)
+ Tr

(
xTxaTΦTΦa

)

= Tr
(
ETE

)
− 2xTETΦa + aTΦTΦa.

The right-hand side can be expanded as

‖Ex−Φa‖2
2 = (Ex−Φa)T (Ex−Φa)

= xTETEx− 2xTETΦa + aTΦTΦa

∴
∥∥E−ΦaxT

∥∥2

F
= ‖Ex−Φa‖2

2 + Tr
(
ETE

)
− xTETEx

= ‖Ex−Φa‖2
2 + f(E,x),

where f(E,x) , Tr
(
ETE

)
− xTETEx.

Theorem 2.1 suggests that aj can be optimized by solving the following sparse

representation problem of Ejx over Φ after normalizing x = XT
j,Ij/‖XT

j,Ij‖2

aj = argmin
a
‖Ejx−Φa‖2

F subject to ‖a‖1 ≤ p. (2.15)

After obtaining aj, XT
j,Ij can be solved by

XT
j,Ij = argmin

x
‖Ej −Φajx

T‖2
F (2.16)

This problem can be solved by matrix calculus. According to the left-hand side

expansion in Theorem 2.1, the gradient of ‖Ej −Φajx
T‖2

F with respect to x is

∂‖Ej −Φajx
T‖2

F

∂x
=
∂Tr

(
xTxaTj ΦTΦaj

)

∂x
− 2

∂xTET
j Φaj

∂x

= 2aTj ΦTΦajx− 2ET
j Φaj

Then the solution XT
j,Ij sets the gradient equal to zero and has the form

XT
j,Ij =

ET
j Φaj

‖Φaj‖2

, (2.17)

where the dictionary atom Φaj has been effectively normalized to unit length.
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Input: Training set Y ∈ RN×R, base dictionary Φ ∈ RN×L, signal sparsity
level t, atom sparsity level p, and number of training iterations K

Output: Sparse dictionary A ∈ RL×L, sparse coefficient matrix X ∈ RL×R

Initialization: A← I, X← 0
1 repeat
2 for i← 1 to R do

// Sparse coding

3 xi ← argmin
x
‖yi −ΦAx‖2

2 subject to ‖x‖1 ≤ t;

4 end
5 for j ← 1 to L do
6 Ij ← {r|1 ≤ r ≤ R, xjr 6= 0};
7 x← XT

j,Ij/‖XT
j,Ij‖2;

// Atom removal

8 aj ← 0;
9 r← YIjx−ΦAXIjx;

// Atom updating

10 aj ← argmin
a
‖r−Φa‖2

2 subject to ‖a‖1 ≤ p;

11 aj ← aj/‖Φaj‖2;

12 Xj,Ij ←
(
YT
IjΦa−

(
ΦAXIj

)T
Φa
)T

;

13 end
14 for j ← 1 to L do
15 Atom Replacing(Φaj);
16 end

17 until K training iterations ;

Algorithm 2.2: Sparse K-SVD algorithm
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2.3.3 Atom Replacing Techniques

In the sparse K-SVD algorithm all the dictionary atoms are presumed to be of

equal importance, although some ill-posed atoms should be replaced according to

certain criteria which will be described below. Such procedures can effectively avoid

local minima or overfitting and, therefore, improve the adaptability of the learned

dictionary.

The representation ability of the learned dictionary will be reduced if some atoms

happen to be very similar. Mutual coherence defined in (1.26) is a useful measurement

of the similarity among the atoms in a dictionary matrix D

µ(D) = max
i 6=j

dTi dj
‖di‖2‖dj‖2

. (1.26 revisited)

After all L columns of the matrix A have been updated in a training iteration,

µ(D) = µ(ΦA) will be examined. If there is a pair of (ai, aj) which makes µ(D)

exceed some threshold (say 0.99), one element (say, aj) should be replaced with the

representation of yk over Φ that satisfies

aj = argmin
a
‖yk −Φa‖2

2 subject to ‖a‖1 ≤ p (2.18)

where k refers to the index of the signal in Y that exhibits the largest approximation

error after taking the current sparse matrix A into account, i.e.,

k = argmax
i
‖yi −ΦAxi‖2

2. (2.19)

Because the number of training patches R is always much larger than the number of

atoms L, such a replacement prevents similar atoms from appearing again.

Besides the replacement of similar atoms, infrequently used atoms are also iden-

tified and replaced. As indicated before, the number of nonzero elements in j-th row

of X indicates that how many training signals in Y use dj in their representations. If

an atom is used by less than a threshold number (say 4) of training signals, then it is
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considered “less representative” and can be replaced with another one that represents

more training signals. This atom replacement within A can be done by solving the

optimization problem (2.18) as well.

2.4 Seismic Data Denoising with Learned Dictionary

After carrying out the double-sparsity dictionary learning, it is safe to use the

dictionary D = ΦA to denoise small seismic data patches based on the assumption

that each patch has a sparse representation over the dictionary.

A small patch of noisy seismic data that has nx traces and nz time samples per

trace can be reshaped into a vector w0 ∈ RN where N = nznx. Based on the additive

noise model, w0 has the form of

w0 = s0 + n0 (2.20)

where s0 ∈ RN is the unknown denoised seismic data patch to be estimated and

n0 ∈ RN is a vector of random noise whose elements are N (0, σ2). Since w0 is

assumed to have a sparse representation over the learned dictionary D = ΦA, the

goal of denoising is to estimate s0 as well as the sparse representation x0 from w0 by

solving the following problem

{ŝ0,x0} = argmin
s,x

‖s−ΦAx‖2
2 + µ‖x‖1 + λ‖s−w0‖2

2. (2.21)

Besides the sparsity penalty term µ‖x‖1, another penalty term λ‖s −w0‖2
2 controls

the proximity between the noisy measurement w0 and its denoising estimate s.

There are still two unknowns in (2.21) when the dictionary D = ΦA is already

known. Similar to the approach that is used in the K-SVD and sparse K-SVD al-

gorithms, (2.21) can be iteratively solved by decoupling it into two alternating opti-

mization steps, each solving one unknown while keeping the other one fixed.

Algorithm 2.3 describes the iterative two-step alternating optimization process of

denoising a single seismic data patch with the learned dictionary D = ΦA. It starts
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Input: Learned dictionary D = ΦA, a vectorized noisy seismic data patch
w0 ∈ RN , number of denoising iterations K

Output: Denoised seismic data patch ŝ0, sparse coefficient vector x0

Initialization: ŝ0 ← w0

1 repeat
2 x0 ← argmin

x
‖x‖1 subject to ‖ŝ0 −ΦAx‖2

2 ≤ Nσ2;

3 ŝ0 ← (λ+ 1)−1 (λw0 + ΦAx0);

4 until K denoising iterations ;

Algorithm 2.3: Denoise a seismic data patch with learned dictionary

with an initialization ŝ0 = w0. In each denoising iteration, the first step estimates x0

given that ŝ0 is fixed, which reduces (2.21) to the problem

x0 = argmin
x
‖ŝ0 −ΦAx‖2

2 + µ‖x‖1. (2.22)

This step actually seeks the sparse representation of ŝ0 over D = ΦA as (2.22) can

be translated to a BPDN problem

x0 = argmin
x
‖x‖1 subject to ‖ŝ0 −ΦAx‖2

2 ≤ Nσ2, (2.23)

which can be solved without the need of choosing µ explicitly.

The second step updates the estimator ŝ0 with the obtained x0, and it reduces

(2.21) into a simple least-squares problem

ŝ0 = argmin
s
‖s−ΦAx0‖2

2 + λ‖s−w0‖2
2, (2.24)

which has a closed-form solution ŝ0 = (λ+ 1)−1 (λw0 + ΦAx0).

Denoising small seismic data patches is not a difficult task as many pursuit algo-

rithms can be used to solve (2.22). Now it is time to handle a larger seismic dataset.

Let s ∈ RNzNx denote an unknown seismic dataset written as a vector that collects

Nx traces, each with Nz time samples, where Nz � nz and Nx � nx. The denoising

process aims to estimate s from its noisy version w = s + n contaminated by white

Gaussian noise n ∈ RNzNx with variance σ2 for each element. It is obviously impos-

sible to denoise w ∈ RNzNx by simply replacing w0 in Algorithm 2.3 with w, because
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the dictionary matrix D = ΦA has only N = nznx rows, which is much shorter than

the length of w.

In order to denoise the large seismic dataset w as a whole with the patch-sized

dictionary, one must work with small patches of size nz × nx from w and then tile

all denoised results back to form the estimator ŝ. By defining an operator Rij ∈

{0, 1}N×NzNx that extracts the (i, j)-th patch of size nz × nx from w ∈ RNzNx and

reshapes the patch into a vector of length N = nznx, Rijw ∈ RN is a noisy patch

that can be denoised by solving the optimization problem (2.21). Generalizing (2.21)

to consider all patches Rijw, ∀(i, j), the global denoising problem for the entire noisy

seismic dataset w can be formulated as

{ŝ,xij} = argmin
s,x

∑

(i,j)

‖Rijs−ΦAx‖2
2 +

∑

(i,j)

µij‖x‖1 + λ‖s−w‖2
2. (2.25)

Similar to the one-patch denoising case, the global denoising problem (2.25) can

be solved by an iterative algorithm that alternates between ŝ and xij. When ŝ is

fixed, (2.25) can be decoupled into many smaller BPDN tasks to get xij, and each

one has the form of

xij = argmin
x
‖x‖1 subject to ‖Rij ŝ−ΦAx‖2

2 ≤ Nσ2, ∀(i, j). (2.26)

After all xij have been obtained, (2.25) is reduced to the following least-squares

problem

ŝ = argmin
s

∑

(i,j)

‖Rijs−ΦAxij‖2
2 + λ‖s−w‖2

2, (2.27)

yielding the closed-form solution for s as

ŝ =


λI +

∑

(i,j)

R†ijRij



−1
λw +

∑

(i,j)

R†ijΦAxij


 . (2.28)

Since the matrix

(
λI +

∑
(i,j)

R†ijRij

)
is diagonal, this solution can be interpreted as

a weighted sum of the tiling result assembled by all reconstructed patches and the

original noisy data, followed by a pixel-by-pixel weighted averaging process.
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Input: Vectorized noisy seismic dataset w ∈ RNzNx , patch height nz, patch
width nx, atom size N = nznx, base dictionary Φ ∈ RN×L, number of
training iterations K

Output: Denoised seismic dataset ŝ ∈ RNzNx , sparse matrix A ∈ RL×L, sparse
coefficient matrix X ∈ RL×(Nz−nz+1)(Nx−nx+1)

Initialization: ŝ← w, A← I, X← 0
1 repeat

// Sparse Representation Stage

2 for i← 1 to Nz − nz + 1 do
3 for j ← 1 to Nx − nx + 1 do
4 xij ← argmin

x
‖x‖1 subject to ‖Rij ŝ−ΦAx‖2

2 ≤ Nσ2;

5 Place xij into X as a column with index (i− 1)(Nx − nx + 1) + j;

6 end

7 end
// Dictionary Update Stage

8 for k ← 1 to L do
9 Ik ← {r|1 ≤ r ≤ (Nz − nz + 1)(Nx − nx + 1), xkr 6= 0};

// Atom removal

10 ak ← 0;
11 x← XT

k,Ik/‖XT
k,Ik‖2;

12 r← YIkx−ΦAXIkx;
// Atom updating

13 ak ← argmin
a
‖r−Φa‖2

2 subject to ‖a‖1 ≤ p;

14 ak ← ak/‖Φak‖2;

15 Xk,Ik ←
(
YT
IkΦa− (ΦAXIk)T Φa

)T
;

16 end
17 for j ← 1 to L do
18 Atom Replacing(Φak);
19 end

20 until K training iterations ;
// Denoising Stage

21 ŝ←
(
λI +

∑
(i,j)

R†ijRij

)−1(
λw +

∑
(i,j)

R†ijΦAxij

)

Algorithm 2.4: Denoise seismic dataset using the double-sparsity dictionary
learned on patches from the noisy dataset
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Although the discussion in this section presumes the learned dictionary D = ΦA is

fixed, the design of the sparse matrix A could also be embedded within the denoising

process. This can be done by regarding A in (2.25) also as an unknown, fusing both

double-sparsity dictionary learning and seismic dataset denoising together into a new

problem with three unknowns

{
ŝ, Â,xij

}
= argmin

s,A,x

∑

(i,j)

‖Rijs−ΦAx‖2
2 +

∑

(i,j)

µij‖x‖1 + λ‖s−w‖2
2. (2.29)

As the previously constructed algorithms suggest, (2.29) can be solved by an iter-

ative three-step algorithm in which each step fixes two unknown estimators and solves

the remaining one. The first step assumes a fixed ŝ and Â to compute the sparse

coefficients xij by solving distinct LASSO problems like (2.11) for all Rij ŝ with a

pursuit algorithm. Once this step is done, the fixed ŝ and xij are used to update

each column of A by solving the problem like (2.13). Then s can be estimated by

using (2.28). However, the denoised seismic dataset ŝ reduces the noise variance σ2

which has been considered as known in the preceding two steps. Therefore, before

finding the denoised result ŝ, a practical implementation would need to perform sev-

eral more iterations of the sparse representation and dictionary update with the same

σ2. Algorithm 2.4 describes the overall seismic dataset denoising in detail.

2.4.1 Multi-scale Dictionary Learning & Denoising

If the base dictionary Φ corresponds to some multi-scale synthesis operator such

as the inverse wavelet transform, the optimization problem (2.10) can be modified

into the following equivalent form

{
Â, X̂

}
= argmin

A,X

∥∥Φ†Y −AX
∥∥2

F

subject to




∀i : ‖xi‖1 ≤ t

∀j : ‖aj‖1 ≤ p, ‖Φaj‖2 = 1.

(2.30)
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(a) Synthetic seismic dataset (b) Wavelet subbands

Figure 2.2: Synthetic seismic dataset and its wavelet subbands

Assuming that Φ corresponds to an orthogonal transform, or equivalently, the

synthesis operator of the transform, then Φ† denotes the analysis operator of the

transform. The optimization problem in (2.30) suggests that the sparse matrix A

can be learned not only in the raw data domain, but also in the analysis domain of a

transform in which the seismic data is decomposed into multi-scale subbands. Since

multi-scale transforms can capture the directional details of seismic wave fronts in dif-

ferent subbands, coefficients tend to be highly correlated across directions and scales.

It is essential to learn this structure similarity through some adaptive dictionaries.

Figure 2.2 shows B = 7 wavelet subbands of a synthetic seismic dataset after a two-

scale decomposition. Different subbands are separated by white lines. Therefore, in

the multi-scale dictionary learning process, each subband can be treated individually.

Separate sparse sub-dictionaries are trained for each subband first, and are then ap-

plied to denoise the subband coefficients using the patch-based approach. As Figure
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2.2(b) shows, the size of the subband is smaller in the deeper decomposition scale.

This enables the patch-based approach to have a global perspective since even a small

patch in the deeper scale represents a larger area in the data domain. Algorithm 2.5

presents the complete process of multi-scale dictionary learning.

Input: Seismic data y, multi-scale transform that can generate B subbands, signal
sparsity level t(b), b = 1, . . . , B and number of iterations k

Output: Sparse sub-dictionary A(b), sparse representation matrix X(b) and

approximation error e(b) ←
∥∥Z(b) −A(b)X(b)

∥∥2

F
, b = 1, . . . , B

Initialization : ∀b = 1, . . . B : A(b) ← A0; z(b) ← (Φ†y)(b);
1 for b← 1 to B do

2 Extract Patches: extract overlapping patches from the band coefficients z(b) to

construct the training set matrix Z(b);

3 Dictionary Learning: learn the subband-related sparse sub-dictionary A(b)

using the K-SVD algorithm (Algorithm 2.1) with input
{
Z(b), t(b),K

}

4 end

Algorithm 2.5: Multi-scale sparse K-SVD algorithm

As before, let y denote the vectorized seismic dataset contaminated by noise,

then its multi-scale transform result is a collection of coefficient subbands z(b) =

(Φ†y)(b) where b is the subband index. For the multi-scale wavelet transform with

S decomposition scales, b = 1, . . . , B = 3S + 1. After breaking up each subband

into patches and grouping them together in the columns of training sets Z(b), the

multi-scale dictionary learning problem can be expressed as

∀b :
{

Â(b), X̂(b)
}

= argmin
A(b),X(b)

∥∥Z(b) −A(b)X(b)
∥∥2

F

subject to





∀i :
∥∥∥x(b)

i

∥∥∥
1
≤ t

∀j :
∥∥∥a(b)

j

∥∥∥
2

= 1.

(2.31)

Similar to the global denoising problem (2.25), the sparse coding of z(b) over the sub-

dictionary A(b) as well as the denoising process of z(b) can be formulated as follows

∀b :
{

x
(b)
ij , û

(b)
}

= argmin
x,u(b)

∑

ij

∥∥∥R(b)
ij u(b) −A(b)x

∥∥∥
2

2
+
∑

ij

µij‖x‖1

+λ
∥∥u(b) − z(b)

∥∥2

2

(2.32)
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where û(b) is the denoised version of z(b) and its closed-form solution is

û(b) =

(
λI +

∑

ij

[
R(b)

ij

]T
R(b)

ij

)−1(
λz(b) +

∑

ij

[
R(b)

ij

]T
A(b)x

(b)
ij

)
. (2.33)

Finally, the denoised seismic data ŝ can be obtained by applying the inverse multi-

scale transform after all subbands across different scales have been denoised

ŝ = Φ

(⋃

b

û(b)

)
. (2.34)

2.5 Extension to Nonhomogeneous Noise

The double-sparsity dictionary learning method can be extended to the case where

the noise is nonhomogeneous. Specifically, the nonhomogeneous noise here refers to

the missing traces in addition to the usual additive noise. This problem is very im-

portant because real land seismic data acquisition may encounter different sorts of

obstacles, such as buildings, highways, fences, etc. These obstacles, coupled with lim-

ited recording capacity or budget constraints, result in inadequate or irregular spatial

traces in the acquired seismic dataset. Both homogeneous and nonhomogeneous types

of noise can produce artifacts in seismic imaging results. Therefore, inpainting (trace

interpolation), along with denoising, has attracted much attention in research and

has become one essential step in industrial seismic data preprocessing workflow.

Previously, a variety of methods have been developed for seismic dataset inpaint-

ing. At the very beginning, [110] proposed a trace interpolation method by wave-

equation methods based on the principles of wave physics. Later, methods based on

the Fourier transform [43, 77, 146] have been adopted to reconstruct irregularly sam-

pled seismic signals for industrial applications. In the recent decade, multi-scale trans-

form methods are also widely used to fill the gaps among traces based on the sparsity

of seismic wave fronts in the transform domain, such as [49, 54, 55, 58, 89, 136, 143].

These methods process the dataset as a whole.
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In this section, the patch-based strategy is continually used for seismic dataset

inpainting. The sparsity-constrained minimization problem (2.29) is still helpful here,

yet cannot be directly solved for inpainting. It would treat all data samples as useful

information and try to estimate them with sparse coefficients, including the missing

trace samples with invalid values. In order to perform inpainting correctly, only

the information from available traces should be considered for dictionary learning.

This can be done by introducing a mask vector β ∈ {0, 1}NzNx whose elements are

determined by

βi =





1, wi is available

0, wi is missing.

(2.35)

By denoting � as the element-wise multiplication between two matrices or two vec-

tors, the following optimization problem, which is a weighted version of (2.29), be-

comes the key for seismic dataset inpainting
{

ŝ, Â,xij

}
= argmin

s,A,x

∑

(i,j)

‖(Rijβ)� (Rijs−ΦAx)‖2
2 +

∑

(i,j)

µij‖x‖1

+λ‖β � (s−w)‖2
2.

(2.36)

After initializing ŝ = w and using a fixed A, the sparse representation BPDN

problem for each patch Rij ŝ becomes

xij = argmin
x
‖x‖1

subject to ‖(Rijβ)� (Rij ŝ−ΦAx)‖2
2 ≤ ‖Rijβ‖0 · σ2, ∀(i, j),

(2.37)

where the use of β guarantees that the missing traces are not taken into account.

Then, in the process of updating each column ak of the matrix A using the fixed

ŝ and calculated xij, the following problem, which replaces (2.13), needs to be solved:

{
ak,X

T
k,Ik

}
= argmin

a,x
‖Bk � (Ek −ΦaxT )‖2

F subject to




‖a‖1 ≤ p

‖Φa‖2 = 1,

(2.38)

where the matrix Bk collects Rijβ in columns for those (i, j) that satisfy ((i−1)(Nx−

nx+1)+j) ∈ Ik and it has the same size with Ek. Different from (2.13), this problem is
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a weighted low-rank approximation problem. Unfortunately, due to the introduction

of the element-wise mask matrix Bk, Theorem 2.1 no longer holds for the objective

function in (2.38).

Alternatively, [91] put forward a simple but effective iterative algorithm to ap-

proach the local minima of the objective function in (2.38). The algorithm is based

on the expectation-maximization (EM) procedure in which the expectation step fills

in the current estimate of ΦaxT for all missing elements in Bk � Ek and the maxi-

mization step updates ΦaxT from the filled-in version of Bk � Ek.

Input: Ek ∈ RN×|Ik|, base dictionary Φ ∈ RN×L, mask matrix Bk ∈ RN×|Ik|,
number of iterations K

Output: ak ∈ RL, XT
k,Ik ∈ R|Ik|

Initialization: anew ← 0, xnew ← XT
k,Ik

1 repeat
2 aold ← anew;
3 xold ← xnew;
4 Solve the following problem with the assistance of Theorem 2.1

{anew,xnew} =





argmin
a,x

∥∥∥∥∥∥∥

E′
k︷ ︸︸ ︷[

Bk � Ek + (1−Bk)� (Φaoldx
T
old)
]
−ΦaxT

∥∥∥∥∥∥∥

2

F

subject to ‖a‖1 ≤ p, ‖Φa‖2 = 1

;

5 until K iterations ;
6 ak ← anew;
7 XT

k,Ik ← xnew;

Algorithm 2.6: Weighted low-rank approximation algorithm

To put it concretely, Algorithm 2.6 presents the iterative EM-based algorithm

that solves (2.38). Every time a and d are estimated, with the names aold and xold,

they are used to fill in Bk � Ek by generating a new observation matrix

E′k , Bk � Ek + (1−Bk)� (Φaoldx
T
old)

in the expectation step. Then, in the maximization step, a and d are updated by the
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filled-in observation matrix E′k

{anew,xnew} = argmin
a,x

∥∥E′k −ΦaxT
∥∥2

F
subject to




‖a‖1 ≤ p

‖Φa‖2 = 1.

(2.39)

The problem in the form of (2.39) can be solved with the assistance of Theorem 2.1,

where anew is a solution of a sparse coding problem like (2.15) and xnew has the form

like (2.17). The EM procedure converges to a local minimum very quickly, within

only a few (K ≈ 5) iterations.

Finally, when A and all xij are obtained, the last remaining problem of (2.36) for

the inpainting result ŝ is

ŝ = argmin
s

∑

(i,j)

‖Rijs−ΦAxij‖2
2 + λ‖β � (s−w)‖2

2. (2.40)

Note that the mask Rijβ has been removed in front of the reconstruction misfit

Rijs−ΦAxij since right now the entire s is being reconstructed including the missing

traces. Similar to the form of (2.28), the closed-form solution of (2.40) is

ŝ =


λdiag(β) +

∑

(i,j)

R†ijRij



−1
λ(β �w) +

∑

(i,j)

R†ijΦAxij


 . (2.41)

Algorithm 2.7 describes the overall seismic dataset inpainting in detail.

2.6 Numerical Experiments

In this section, the dictionary learning method is used to attenuate the noise

and fill in the missing traces in seismic data. The performance of the proposed

method is also compared with other denoising methods using the fixed contourlet and

curvelet transforms. The seismic dataset used in the experiments are synthesized 2D

pre-stack shot records that are available for download at public domains in Society

of Exploration Geophysicists (SEG) and Madagascar [81]. Assuming the seismic

noise is caused by a diversity of different, spatially distributed, mostly uncorrelated

but low-frequency sources, it can be modeled as zero-mean white additive Gaussian
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Input: Vectorized noisy seismic dataset w ∈ RNzNx with missing traces, mask
vector β ∈ RNzNx patch height nz, patch width nx, N = nznx, base
dictionary Φ ∈ RN×L, number of training iterations KT , number of atom
update iterations KU

Output: Inpainted seismic dataset ŝ ∈ RNzNx , sparse matrix A ∈ RL×L, sparse
coefficient matrix X ∈ RL×(Nz−nz+1)(Nx−nx+1)

Initialization : ŝ← w, A← I, X← 0
1 repeat

// Sparse Representation Stage

2 for i← 1 to Nz − nz + 1 do
3 for j ← 1 to Nx − nx + 1 do
4 xij ← argmin

x
‖x‖1 s.t. ‖(Rijβ)� (Rij ŝ−ΦAx)‖22 ≤ ‖Rijβ‖0 · σ2;

5 Place xij into X as a column with index (i− 1)(Nx − nx + 1) + j;

6 end

7 end
// Dictionary Update Stage

8 for k ← 1 to L do
9 Ik ← {r|1 ≤ r ≤ (Nz − nz + 1)(Nx − nx + 1), xkr 6= 0};

10 Bk collects Rijβ in columns for those (i, j) that satisfy
((i− 1)(Nx − nx + 1) + j) ∈ Ik;
// Atom removal

11 anew ← ak ← 0;
12 xnew ← XT

k,Ik ;

13 Ek ← YIk −ΦAXIk ;
// Atom updating

14 repeat
15 aold ← anew;
16 xold ← xnew;
17 E′k ← Bk �Ek + (1−Bk)� (ΦaoldxTold);
18 xold ← xold/‖xold‖2;
19 anew ← argmin

a
‖E′kxold −Φa‖22 subject to ‖a‖1 ≤ p;

20 anew ← anew/‖Φanew‖2;

21 xnew ← [E′k]
T Φanew;

22 until KU atom update iterations;
23 ak ← anew;
24 Xk,Ik ← xTnew;

25 end
26 for j ← 1 to L do
27 Atom Replacing(Φak);
28 end

29 until KT training iterations;
// Inpainting Stage

30 ŝ←
(
λdiag(β) +

∑
(i,j)

R†ijRij

)−1(
λ(β �w) +

∑
(i,j)

R†ijΦAxij

)

Algorithm 2.7: Inpaint seismic dataset using the double-sparsity dictionary
learned on patches from the noisy dataset with missing traces
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noise with standard deviation σ low-pass filtered at a stopband frequency (30 Hz

in the experiments). For the sake of numerical stability and better performance, a

standard normalization step is applied to rescale each data into the range [−1, 1] after

subtracting its mean. Two different base dictionaries Φ are used in the experiments

to learn the sparse matrix A and thereafter the overall dictionary D = ΦA. One

represents the single-scale discrete cosine transform (DCT) and another the multi-

scale discrete wavelet transform (DWT).

As one of the most commonly used quality metrics for the comparison of denoising

performance, peak signal-to-noise ratio (PSNR) is used in the experiments, which is

defined as

PSNR , 20 log10

(
smax

√
NzNx

‖s− ŝ‖2

)
(2.42)

where smax is the maximum possible value of the seismic data after normalization,

and Nx, Nz are the numbers of traces and time samples per trace, respectively.

2.6.1 Denoising with Fixed Transforms

This subsection investigates the prominent multi-scale directional transforms in-

cluding the contourlet and curvelet transforms for seismic data denoising. The con-

tourlet transform [34, 35] can capture smooth contours in a seismic dataset based on

a Laplacian Pyramid decomposition followed by directional filter banks applied on

each bandpass subband. Its atom elements are depicted in Figure 2.3(a). Based on

the frequency partition technique, the curvelet transform is able to represent curved

singularities more precisely with needle-shaped atom elements, which are shown in

Figure 2.3(b). In order to perform a due diligence comparison, the Fast Discrete

Curvelet Transform [20, 33], which is the latest curvelet implementation, is used in

experiments. Since both transforms are able to represent a seismic dataset with sparse
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coefficients, the following program formulation can be used for denoising,




x̂ = argmin
x
‖x‖1 subject to ‖w −Φx‖2

2 ≤ NzNxσ
2

ŝ = Φx̂

(2.43)

where Φ refers to the dictionary of the contourlet/curvelet synthesis operator.

(a) Contourlet Atoms (b) Curvelet Atoms

Figure 2.3: Atom elements of (a) contourlets and (b) curvelets on different scales and
directions in spatial domain

The public seismic dataset in the following experiments is provided by BP [48] as

part of the Madagascar software [81]. It has Nx = 240 traces and each trace contains

Nz = 384 time samples. Figure 2.4(a) is the original noise-free seismic dataset for

reference. Its noisy version contaminated by (low-pass filtered) Gaussian noise with

σ = 0.1 is shown in Figure 2.4(b), whose PSNR = 22.62 dB. The BPDN results based

on the contourlet and curvelet transforms are provided in Figure 2.5(a) and Figure

2.5(c) with PSNR = 29.02 dB and 29.58 dB, respectively, while the error panel figures

that show the difference between the reconstructed data and the original data are

given in Figure 2.5(b) and Figure 2.5(d), respectively. It is obvious that most of

the random noise is attenuated after many small coefficients are suppressed by the
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(a) Original seismic dataset
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(b) Noisy seismic dataset (PSNR = 22.62 dB)

Figure 2.4: The original and noisy seismic dataset

BPDN algorithm. However, many pseudo-Gibbs artifacts are produced around the

wave fronts, especially in the contourlet case where the atom elements have less sharp

directional features than curvelets. These artifacts that do not exist in the original

dataset may be harmful for further processing such as migration and full waveform

tomography.

2.6.2 Denoising with Single-scale Dictionary Learning

The following experiments provide seismic dataset denoising performance results

using the double-sparsity dictionary learning method based on the sparse K-SVD

algorithm. It starts by dividing the noisy dataset into overlapping patches with size

nz × nx = 16× 16 each, and randomly choosing 10000 among them as a training set

for the sparse K-SVD algorithm. A single-scale non-redundant N × N = 256 × 256

DCT matrix has been selected as the base dictionary for the sparse K-SVD algorithm

and the sparse matrix A is initialized to identity. Therefore, the size of the overall
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(a) Contourlet BPDN (PSNR = 29.02 dB)
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(b) Error Panel
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(c) Curvelet BPDN (PSNR = 29.58 dB)

Trace Index

T
im

e 
S

am
pl

e 
In

de
x

 

 

50 100 150 200

50

100

150

200

250

300

350

−0.2

−0.1

0

0.1

0.2

(d) Error Panel

Figure 2.5: Denoised results based on BPDN using the fixed multi-scale transforms
without dictionary learning: (a) denoised result by contourlet-based BPDN method
(PSNR = 29.02 dB), (b) is the difference of (a) to the original data, (c) denoised
result by curvelet-based BPDN method (PSNR = 29.58 dB), and (d) is the difference
between (c) and the original data.
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learned dictionary D = ΦA is 256 × 256. The atom sparsity level p is set to 25,

implying that the overall dictionary atoms are linear combinations of a small number

of arbitrary DCT atoms.

The non-redundant DCT base dictionary is demonstrated in Figure 2.6(a). Figure

2.6(b) depicts the learned sparse matrix A obtained by running the sparse K-SVD

algorithm for K = 20 training iterations. Figure 2.6(c) shows the overall learned

dictionary D = ΦA, in which each atom visualized in a block is a linear combination

of all DCT atoms visualized as blocks in Figure 2.6(a), with the coefficients visualized

in the block of the same position in Figure 2.6(b). It is obvious that some primary

directional features in the seismic wave fronts are characterized by the dictionary

atoms. These atoms are more adaptive to the dataset when compared to the fixed

directional transforms such as the contourlet, or curvelet, which exhibits atoms in

all directions. Therefore, the denoising result shown in Figure 2.7(a) is improved to

PSNR = 32.00 dB and the corresponding error panel is shown in Figure 2.7(b). Par-

ticularly, since all atoms in the learned dictionary are useful and well representative

for sparse coding and patch denoising, the problem of pseudo-Gibbs artifacts is solved.

Zoom-in denoising results are demonstrated in Figure 2.8. It is worth noting that the

result of BPDN with the curvelet transform in Figure 2.8(a) introduces pseudo-Gibbs

artifacts which cannot be ignored, while the dictionary learning method based on the

sparse K-SVD algorithm solves this problem, as shown in Figure 2.8(b).

Figure 2.9(a) compares the performance of the dictionary learning based denoising

method to the curvelet BPDN method versus different noise levels σ where 20000

training patches are used to learn the sparse matrix A with atom sparsity levels p = 25

and p = 100. This result indicates a significant improvement by using an adaptive

dictionary based on a fundamental transform. The denoising method performs quite

consistently for different settings, as can be seen from the mean and error bars in

Figure 2.9(b) and Figure 2.9(c). Figure 2.10 compares PSNR results of denoised
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(a) DCT Dictionary Φ (b) Learned Matrix A

(c) Overall Learned Dictionary D = ΦA

Figure 2.6: Base dictionary (DCT) and learned dictionaries
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(a) Denoising Result by D = ΦA
(PSNR = 32.00 dB)
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(b) Error Panel

Figure 2.7: Denoised result of dictionary learning method using DCT matrix as the
base dictionary is shown in (a) and (b) is the difference of (a) to the original data.
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(b) Dictionary Learning

Figure 2.8: Pseudo-Gibbs artifacts
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(c) Mean and error bar (p = 100)

Figure 2.9: PSNR versus noise level σ with 20000 training patches for dictionary
learning
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(c) 20000 Training Patches

Figure 2.10: PSNR versus training iterations K with different number of training
patches, and sparsity levels p
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seismic data during training iterations of the sparse K-SVD algorithm under different

parameter settings. 5000, 10000 and 20000 training patches are randomly selected

from the noisy dataset to learn dictionaries, with each dictionary parameterized with

different atom sparsity levels p ranging from 25 to 100. As the number of training

iterations or training patches of the algorithm increases, it can be observed that the

denoising performance consistently improves. These performance curves motivate a

way to choose parameters heuristically.

2.6.3 Denoising with Multi-scale Dictionary Learning

In this experiment, the multi-scale sparse K-SVD algorithm (Algorithm 2.5) is

used to learn separate and sparse sub-dictionaries for the sparse coding and denoising

of transform coefficients in different subbands. The final denoised seismic data is

obtained by applying the inverse transform on the denoised transform coefficients.

The Daubechies 8-tap wavelet transform [32], whose analysis operator is Φ†, is

used to decompose the seismic dataset with S = 3 scales, producing B = 3S+ 1 = 10

wavelet subbands. The patch size is fixed to nz × nx = 8 × 8 for all 10 subbands,

producing 10 dictionaries A(b) of size N × N = 64 × 64 for b = 1, . . . , 10. Figure

2.11 visualizes these 10 dictionaries, which are obtained using a total number of

10000 training patches across all subbands after K = 20 training iterations. The

effective dictionaries D(b) = ΦA(b) inherit the benefits of multi-scale capabilities of

the wavelet transform, while enjoying the adaptability of learning in the transform

analysis domain. In order to present the visualization of a single effective atom, one

can first generate a coefficient vector of length N with only one nonzero element,

multiply such a coefficient vector by the corresponding learned dictionary A(b), then

put the result in the b-th wavelet subband at a specific scale, and finally perform

the inverse wavelet transform with the wavelet synthesis operator Φ. Figure 2.12
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(a) Subband 1
(Coarsest Scale)

(b) Subband 2
(Scale 2, Horizontal Subband)

(c) Subband 3
(Scale 2, Vertical Subband)

(d) Subband 4
(Scale 2, Diagonal Subband)

(e) Subband 5
(Scale 3, Horizontal Subband)

(f) Subband 6
(Scale 3, Vertical Subband)

(g) Subband 7
(Scale 3, Diagonal Subband)

(h) Subband 8
(Scale 4, Horizontal Subband)

(i) Subband 9
(Scale 4, Vertical Subband)

(j) Subband 10
(Scale 4, Diagonal Subband)

Figure 2.11: Dictionaries learned from 10 wavelet subbands
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(a) An effective atom in subband 1
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(b) An effective atom in subband 2
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(c) An effective atom in subband 5
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(d) An effective atom in subband 8

Figure 2.12: Visualization of some effective atoms from different scales and subbands
trained on the synthesized seismic dataset after 3-scale wavelet decomposition
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(a) Denoising Result by D = ΦA
(PSNR = 33.01 dB)
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(b) Error Panel

Figure 2.13: Denoised result of dictionary learning method using DWT matrix as the
base dictionary is shown in (a) and (b) is the difference of (a) to the original data.

visualizes some effective atoms from different scales and subbands. Due to the multi-

scale property of the wavelet transform, patches of the same size in different scales

correspond to different areas in the original dataset domain. For this 3-scale wavelet

decomposition, the size of subbands b = 1, 2, 3, 4 are only 1/64-th of the original

dataset size, thus training 8 × 8 patches in these subbands yields effective atoms of

size 64×64, as shown in Figures 2.12(a) and 2.12(b). The size of subbands b = 5, 6, 7

are 1/16-th of the original dataset size, so that 8 × 8 patches in these subbands are

trained into 32× 32 effective atoms, as shown in Figure 2.12(c). Similarly, as shown

in Figure 2.12(d), training 8× 8 patches in the subbands b = 8, 9, 10, whose size are

1/4-th of the original dataset size, produces 16×16 effective atoms. Therefore, it can

be verified that these atoms are multi-scale, localized and adapted to subbands.

When the noise level σ = 0.1, the denoising result in Figure 2.13(a) and the
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Table 2.1: PSNR comparison in decibels of the denoised seismic dataset between
single-scale and multi-scale dictionary learning

σ 0.05 0.1 0.15 0.2 0.25 0.3
Single-scale 35.26 32.00 29.89 28.36 27.38 26.40
Multi-scale 36.57 33.01 30.73 29.07 27.62 26.51

corresponding error panel in Figure 2.13(b) show that this scheme outperforms the

single-scale method by about 1 dB under a similar combination of parameters. Com-

paring to the results shown in Figure 2.8, this result achieves better performance by

using many fewer training patches. Table 2.1 compares the PSNR performance of

the same denoised seismic dataset between the single-scale and multi-scale dictionary

learning approaches. Choosing a multi-scale base dictionary such as wavelets allows

the dictionary learning to work in each subband and squeezes more sparsity out of

the signals that have already been sparsified. The seismic dataset denoising results

have benefited from these properties.

2.6.4 Inpainting with Dictionary Learning

The following experiments provide seismic dataset inpainting performance results

based on the double-sparsity dictionary learning method with nonhomogeneous noise

extension. Figure 2.14 shows the original and noisy seismic datasets provided by BP

[48, 81] with 33% missing traces whose indices are randomly selected between 1 and

Nx = 240 and each trace has Nz = 384 time samples. Note that all the missing traces

have Not-a-Number (NaN) values and their corresponding values in the mask vector

β are set to zeros. Besides the NaN-valued missing traces, white Gaussian noise with

σ = 0.1 is also added to contaminate the available traces.

First, as baseline experiments, the fixed multi-scale contourlet and curvelet trans-

forms are used for seismic dataset inpainting. Similar to (2.43), the BPDN method

is used to find the sparse representation of the traces that are still available and the
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(a) Original seismic dataset
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(b) Noisy seismic dataset with 33% missing traces

Figure 2.14: The original and noisy seismic dataset with 33% missing traces

missing traces can therefore be inferred via inverse transform operations as follows




x̂ = argmin
x
‖x‖1 subject to ‖β � (w −Φx)‖2

2 ≤ ‖β‖0 · σ2

ŝ = Φx̂

(2.44)

where Φ refers to the dictionary of the contourlet/curvelet synthesis operator. Fig-

ure 2.15 presents the inpainting results based on the BPDN method using the con-

tourlet and curvelet transforms. The inpainting performance using the contourlets

can achieve PSNR = 27.50 dB while using the curvelets can achieve PSNR = 28.12 dB.

Still, just like in the pure denoising scenario, pseudo-Gibbs artifacts are quite obvious

in the inpainting results.

Next, inpainting experiments are carried out, following the procedure in Algorithm

2.7. In the patch-based inpainting framework, one can fill the “holes” whose sizes are

smaller than that of the atoms [82]. Therefore, in this case, the patch size is set to a

slightly larger size nz ×nx = 24× 24, and a non-redundant DCT dictionary Φ of size
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(a) Contourlet BPDN for inpainting
(PSNR = 27.50 dB)
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(c) Curvelet BPDN for inpainting
(PSNR = 28.12 dB)
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(d) Error Panel

Figure 2.15: Inpainting results based on BPDN using the fixed multi-scale transforms
without dictionary learning: (a) inpainted result by contourlet-based BPDN method
(PSNR = 27.50 dB), (b) is the difference of (a) to the original data, (c) inpainted
result by curvelet-based BPDN method (PSNR = 28.12 dB), and (d) is the difference
between (c) and the original data.
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(a) DCT Dictionary Φ (b) Learned Matrix A

(c) Overall Learned Dictionary D = ΦA

Figure 2.16: Base dictionary (DCT) and learned dictionaries
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(a) Denoising Result by D = ΦA
(PSNR = 32.11 dB)
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Figure 2.17: Inpainted result of dictionary learning method using DCT matrix as the
base dictionary is shown in (a) and (b) is the difference of (a) to the original data.
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Figure 2.18: PSNR versus percentage of missing traces
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N × N = 576 × 576 is selected as the base dictionary. Similarly, a total number of

10000 overlapping patches are randomly selected from the corrupted seismic dataset

for dictionary learning and the sparse matrix is initialized to identity. The atom

sparsity level p is set to 50. Figure 2.16(a) shows the non-redundant DCT base

dictionary, while the learned sparse matrix A after K = 20 training iterations is

visualized in Figure 2.16(b). The overall dictionary, D = ΦA of size 576 × 576, is

visualized in Figure 2.16(c).

Based on this double-sparsity learned dictionry, the inpainting result can be ob-

tained by (2.41). Its performance has been improved to PSNR = 32.11 dB, as shown

in Figure 2.17(a), and the corresponding error panel is shown in Figure 2.17(b). Com-

paring to the contourlet and curvelet transforms, this result exhibits no pseudo-Gibbs

artifacts around wave fronts. More experiments were performed in which the percent-

age of missing traces ranges from 10% to 60% and the PSNR performance curves are

provided in Figure 2.18. The reconstruction result with dictionary learning method

based on Algorithm 2.7 based on the sparse K-SVD algorithm yields much better

PSNR values than fixed transforms.
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CHAPTER III

EFFICIENT FULL WAVEFORM INVERSION BASED ON

ONLINE ORTHONORMAL DICTIONARY LEARNING

3.1 Introduction

Full waveform inversion (FWI) is a data-fitting procedure that minimizes the mis-

fit between recorded and calculated seismic data to create high-resolution quantitative

subsurface medium models. A conventional FWI method is carried out iteratively.

Each iteration consists of solving wave equations with the current model parame-

ters to generate seismic data, calculating the value as well as the gradient of the

misfit function, and updating the model parameters with an optimization method

[65, 127, 128, 135]. The efficiency of these three components determines the indus-

trial applicability of FWI. By recording the response of sequential sources on the

surface or in the water, a wide-aperture seismic survey typically covers a large area of

interest. Because the dimensionality of seismic datasets and models after finite differ-

ence discretization could be huge, computation of forward modeling, misfit calculation

and model updating in FWI could be very intensive.

Reducing the computational cost of FWI has been an active research area for many

years. When a frequency-domain FWI is carried out, one can divide the frequency

range of interest into several bands, and invert only a few frequencies per band,

sequentially from the low to high frequency bands, to help reduce the cost [18, 121].

Another well-known method for cost reduction is to generate simultaneous shots by

linearly combining many different sequential shots at different source positions with

random weights [8, 26, 64, 87], or randomly choosing a few sequential shots at each

FWI iteration [75, 137].
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Random source encoding or random sequential shots selection results in crosstalk

noise or subsampling aliasing and introduces harmful artifacts in the inversion result.

In order to alleviate these noisy artifacts, `1-norm sparsity regularization methods

for compressive sensing (CS) can be applied into FWI by assuming sparsity of the

velocity models over another domain. In previous research, these sparsity constraints

have been imposed in a variety of fixed transform domains, such as wavelet [78], seislet

[140] and curvelet [57, 73, 74].

This chapter [144] proposes a CS-based Gauss-Newton FWI framework in which

the sparsity of model perturbations is exploited by a novel adaptive transform called

the Sparse Orthonormal Transform (SOT). Unlike the traditional multi-scale trans-

forms whose dictionaries are fixed and predefined as analytical functions, SOT is

an adaptive transform whose dictionary is dynamically learned from a set of small

patches extracted from model perturbations and hence can achieve sparser represen-

tations for the same kind of signals. Such sparsity promotion enables a significant

reduction on the amount of data used in FWI.

The rest of this chapter is organized as follows. Section 3.2 reviews the Gauss-

Newton method of FWI and explains why its computational complexity is intensive.

Section 3.3 introduces the design process of SOT, including the efficient orthonormal

dictionary learning method as well as its online approach for practical implementation

in FWI problems. Definitions and operations that wrap a dictionary into a global

transform, and empirical methods of parameter selection are also introduced here.

Section 3.4 describes the randomization technique based on the linear property of wave

equations, introduces the practical optimization method for solving the least-squares

optimization method with `1-norm sparsity constraints, and summarizes the overall

compressive FWI framework based on the SOT. Section 3.5 provides the numerical

experiments of the proposed method on actual velocity models and compares the

performance with other FWI frameworks that use the full data set for inversion, as
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well as methods that use compressive data but employ the curvelet transform for

sparsity promotion.

3.2 Gauss-Newton method

As we have briefly introduced in Chapter 1, FWI aims to recover the model m

whose forward modeling data F(m) fits the recorded seismic data dobs. This can be

formulated by minimizing the following misfit function

E(m) ,
1

2
‖dobs −F(m)‖2

2. (1.8 revisited)

FWI searches for the minimum of E(m) in an iterative manner mk+1 = mk +

δmk, k = 0, 1, 2, . . . where δmk is the optimal model perturbation for each iteration.

Solving for δmk can be done with the second-order Taylor expansion of (1.8) in a

small vicinity δm of mk

E(m) = E(mk) + δmTgk +
1

2
δmTHkδm + o(‖δm‖3) (1.9 revisited)

where gk ,
∂E(mk)

∂m
denotes the gradient of the misfit function E(m) evaluated

at mk and Hk ,
∂2E(mk)

∂m2
denotes the full Hessian matrix whose elements are the

second-order partial derivatives of E(m) at mk. By setting the gradient of E(m)

expressed in (1.9) with respect to δm be zero and ignoring the o(‖δm‖3) term, δmk

satisfies

Hkδmk = −gk. (1.10 revisited)

The explicit expression for gk is

gk ,
∂E(mk)

∂m
= −<

{[
∂F(mk)

∂m

]†
(dobs −F(mk))

}
= −<

{
J†kδdk

}
(3.1)

where δdk , dobs−F(mk), and Jk ,
∂F(mk)

∂m
is the Jacobian matrix of F(·) which

indicates the sensitivity of the forward modeling data with respect to the model

perturbation. The Hessian matrix Hk can be written as

Hk ,
∂2E(mk)

∂m2
= <

{
J†kJk

}
−<

{[(
∂J†k
∂m1

)
δdk, · · · ,

(
∂J†k
∂mN

)
δdk

]}
. (3.2)
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The method that inserts (3.1) and (3.2) into (1.10) for solving δmk is referred to

as Newton’s method. However, the second term of Hk is small and hard to obtain

[105, 129] and, therefore, is dropped most of the time. When Hk in (3.2) is expressed

with only its first term Hk = <
{

J†kJk

}
, (1.10) becomes the following normal equation

[
<
{

J†kJk

}]
δmk = <

{
J†kδdk

}
. (3.3)

The method that solves for δmk with (3.3) is referred to as the Gauss-Newton method.

When Jk is full-rank, (3.3) has a unique solution δmk that actually minimizes the

following linear least-squares objective function

Jk(δm) ,
1

2
‖δdk − Jkδm‖2

2. (3.4)

Therefore, solving FWI with the Gauss-Newton method is equivalent to minimizing

(3.4) for every iteration. Furthermore, comparing (3.4) with the LSRTM misfit in

(1.6), one can see that each FWI iteration based on the Gauss-Newton method is

equivalent to an LSRTM problem in which the currently estimated mk is deemed to

be the background model.

3.2.1 Computation of the Gradient and Hessian Matrix

In order to compute the gradient gk and the Hessian matrix Hk for solving FWI,

the forward modeling operator F(m) needs to be specified. In the following dis-

cussion, the seismic wave propagation is modeled by the frequency-domain constant-

density wave equation

(
−m(x)ω2 −∇2

)
p̂(x;ω,xs) = f̂(ω)δ(x− xs). (1.11 revisited)

The model m , [m(x1), . . . ,m(xNzNx)]T is a vector of length NzNx for the model

parameters, where Nz and Nx are the number of grid points in the vertical and

lateral directions, respectively, i.e., the size of the model can also be regarded as

Nz × Nx after 2D reshaping. It is reasonable to assume the source shot signature
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f̂(ω) is known and fixed. Given the frequency-domain Green’s function Ĝ(x;ω,xs)

for the model m which is the solution of

(
−m(x)ω2 −∇2

)
Ĝ(x;ω,xs) = δ(x− xs), (3.5)

the general solution of the wave equation (1.11) can be expressed as

p̂(x;ω,xs) = f̂(ω)Ĝ(x;ω,xs), (3.6)

and the receivers collect p̂(xr;ω,xs) at their locations x = xr. Therefore, the operator

F(m) is defined to map the model m to a set of wavefield samples d , {p̂(xr;ω,xs)}

collected at all receiver locations xr for all source positions xs and all frequencies ω.

The Jacobian matrix Jk ,
∂F(mk)

∂m
can be computed based on the Born approxi-

mation theory [51, 139], which regulates the wavefield perturbation δ̂p(x;ω,xs) on the

background wavefield p̂k(x;ω,xs) resulting from a small model perturbation δm(x)

on the background model mk(x). By taking the temporal Fourier transform on both

sides of (1.2), the Born approximation of the frequency-domain wave equation (1.11)

has the form

(
−mk(x)ω2 −∇2

)
δ̂p(x;ω,xs) = ω2δm(x)p̂k(x;ω,xs), (3.7)

so that the solution collected at x = xr is

δ̂p(xr;ω,xs) = ω2f̂(ω)
∑

x∈U

δm(x)Gk(xr;ω,x)Gk(x;ω,xs). (3.8)

where the sum is taken over NzNx grid points x in the 2D subsurface medium U

to take all physically acceptable scattering scenarios into account. Thus, for one

specified source xs and a single frequency ω, the (i, j)-th element of the Jacobian

sub-matrix Jk(ω,xs) that reflects the small wavefield change δ̂p(xri ;ω,xs) at receiver

location xri due to a small model change δm(xj) at location xj, is given by

[Jk(ω,xs)]ij , lim
δm(xj)→0

δ̂p(xri ;ω,xs)

δm(xj)
= ω2f̂(ω)Gk(xri ;ω,xj)Gk(xj;ω,xs). (3.9)

67



The size of Jk(ω,xs) is Nr × NzNx where Nr is the number of receivers. To obtain

the entire Jacobian matrix Jk, (3.9) is used repeatedly to determine Jk(ω,xs) for all

sources and frequencies of interest, i.e., Ns sources xs ∈ S and Nω frequencies ω ∈ Ω.

Finally, all of these different sub-matrices Jk(ω,xs) are vertically concatenated to

form the huge matrix Jk of size NωNsNr × NzNx that can be used in the objective

function (3.4). Inserting Jk back into the matrix-based expressions of the gradient gk

and the (approximate) Hessian matrix Hk yields the element-wise formulation

gk(xi) =
[
−<

{
J†kδdk

}]
i

= −<
{∑

ω∈Ω

ω2f̂(ω)
∑

xs∈S

∑

xr∈S

Gk(xr;ω,xi)Gk(xi;ω,xs)
(
δdk(xr;ω,xs)

)} (3.10)

and

Hk(xi,xj) =
[
<
{

J†kJk

}]
ij

= <
{∑

ω∈Ω

ω4|f̂(ω)|2
∑

xs∈S

Gk(xi;ω,xs)Gk(xj;ω,xs)
∑

xr∈S

Gk(xr;ω,xi)Gk(xr;ω,xj)

}
.

(3.11)

3.2.2 Dimensionality Reduction Methods

From Equations (3.10) and (3.11), it is obvious that the complexity of the Gauss-

Newton method comes primarily from the computation and inversion of the Hessian

matrix Hk. Unfortunately, due to the fact that NωNsNr and NzNx are very large,

it is prohibitive to compute H−1
k directly with the entire data set in industrial-scale

FWI problems. In order to reduce the computational complexity of FWI, it has been

widely reported that for cases with a large acquisition aperture and wide frequency

bandwidth, Hk is almost diagonally dominant, so H−1
k can be further approximated

with a diagonal matrix [10, 60, 97, 102, 106, 120].

The development of CS theories provides another perspective to lower the com-

plexity of Gauss-Newton FWI by reducing the problem dimensionality rather than
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simplifying the Hessian matrix, when sparsity of the model can be exploited. This ap-

proach suggests that minimizing the linear least-squares objective function in (3.4) for

each Gauss-Newton iteration can be replaced by the following optimization problem

min
α

{
J

(W)
k (α) ,

1

2
‖Wkδdk −WkJkD(α)‖2

2

}
subject to ‖α‖1 ≤ τk (3.12)

where Wk is a subsampling matrix for dimensionality reduction which can be different

for each iteration k for better performance [57, 64, 73, 74, 137]; and the operator D
is a transform such that the model perturbation can be represented as δm = D(α)

with the coefficient vector α being sparse.

Leaving the design of Wk aside for a while, a fundamental consideration in em-

ploying this representation of the model perturbation is the choice of the transform

D. It is usually appealing to choose multiscale transforms such as wavelets, curvelets,

seislets, etc. These fixed transforms have proven their analytical optimality for sparse

representation of multidimensional signals with assumed features such as smooth lines

or curves, and hence their success in applications relies on how suitable the signals in

question fit the assumptions. In most cases, these multiscale transforms have efficient

algorithmic implementations in the spatial-frequency domain and, as a result, their

representations as dictionaries D are implicit. In the last several years, many authors

[57, 73, 74, 78, 140] have developed methods that exploit the sparsity of δm by using

various multiscale transforms to solve FWI problems efficiently.

The remainder of this chapter investigates how to exploit the sparsity of δm with

a novel transform based on explicit adaptive dictionaries rather than implicit fixed

dictionaries that exploit some assumed feature characteristics of the model. In par-

ticular, in each FWI iteration solving (3.12), a place is left for an adaptive transform

that changes at each FWI iteration. The key to this approach is to infer explicit

dictionary matrices Dk from a set of training examples and construct a transform Dk

based on these dictionaries that synthesizes δm from α. The similarity among differ-

ent model perturbations suggests that small patches of previously optimized model

69



perturbations {δmi}k−1
i=0 could be an appropriate choice for a training set. The next

section will discuss efficient dictionary learning algorithms that derive an adaptive

dictionary from a set of training examples for sparse representation as well as the

way to construct a transform operator based on this dictionary.

3.3 Sparse Orthonormal Transform

The CS technique can help to reduce the problem dimensionality of each Gauss-

Newton problem in FWI, as long as the model perturbation δm is sparse with respect

to some transform. Rather than directly applying fixed transforms based on off-the-

shelf dictionaries such as wavelets, curvelets, seislets, etc., a novel kind of transform

called the sparse orthonormal transform (SOT) is designed for sparsity promotion.

The SOT is based on adaptive dictionaries that are learned from model perturbations

to discover the inherent sparsity of δm at each FWI iteration.

As the probabilistic framework of dictionary learning suggests, given a matrix of R

training examples Y , [y1,y2, . . . ,yR] ∈ RN×R, the dictionary learning method seeks

the dictionary matrix D ∈ RN×L, N ≤ L, that can represent Y with a set of sparse

coefficients X = [x1,x2, . . . ,xR] ∈ RL×R. This process can be done by minimizing

the following empirical cost function

eR(Y,D) = ‖Y −DX‖2
F + λ‖X‖1 (3.13)

where λ is a Lagrange multiplier. The minimum of eR(Y,D) can be found by a

two-step iterative method in which the first step finds the sparse coefficients X given

the fixed dictionary D and the second step updates the dictionary D given the sparse

coefficients X.

However, unlike the dictionary learning methods introduced in Chapter 2, two

more features are incorporated into this case. First, the learned dictionaries are

made orthonormal, i.e., D ∈ RN×N and DTD = I, yielding a fast and straightforward

alternating optimization scheme. Since an orthonormal dictionary is a Parseval frame,
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finding sparse coefficient vectors only requires simple matrix multiplication. On the

other hand, an overcomplete or nonorthogonal dictionary loses this simplicity and

makes sparse representation a complex pursuit problem. Second, the dictionaries are

learned from training patches extracted from previously obtained model perturbations

in an online manner, so that the iterative property of the Gauss-Newton method can

be taken into account.

In this work, the R training examples yi, i = 1, . . . , R, that form the matrix

Y are extracted from patches of the optimized model perturbation δmk−1 obtained

from the previous (k − 1)-th FWI iteration. These patches cover all of δmk−1 and

can be overlapping so that the matrix D will be a generative dictionary that provides

sparse representations for all patches of δm in the following k-th FWI iteration. This

updating strategy, which is called online learning, plays a critical role for iterative

problems such as FWI.

3.3.1 Orthonormal Dictionary Learning

Imposing orthonormality on D provides a key property to solve the sparsity-

constrained minimization problem so that the computational complexity of dictionary

learning is greatly reduced. An efficient implementation of orthonormal dictionary

learning has been successfully applied in natural image compression [115, 116] and

seismic data denoising [19, 142]. With orthonormal dictionary learning and patch-

based processing, the SOT can be designed based upon the previous results of δm

without introducing significant extra computational complexity to FWI.

Orthonormal dictionary learning seeks the square dictionary matrix D ∈ RN×N

that minimizes the empirical cost function eR(Y,D) defined in (3.13) with the or-

thonormality constraint DTD = I

min
D,X
‖Y −DX‖2

F + λ‖X‖0 subject to DTD = I. (3.14)

Note that the `0-norm sparsity constraint is used here for the hard-thresholding
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method that will be discussed next. Like the K-SVD and sparse K-SVD algorithms in

the previous chapter, this problem can also be solved by using an iterative alternating

optimization approach, but much more efficiently.

In each iteration, the first step is to find the sparsest representations of all columns

of Y ∈ RN×R over a fixed orthonormal dictionary D, which is

X̂ = argmin
X

(
‖Y −DX‖2

F + λ‖X‖0

)
. (3.15)

If the hard-thresholding operator Hλ(·) with threshold λ is defined by

Hλ(X) =




xij, |xij| ≥ λ

0, |xij| < λ,

(3.16)

then the solution to (3.15) given by

X̂ = H√λ
(
DTY

)
(3.17)

is based on the following theorem.

Theorem 3.1 For any given D ∈ RN×N such that DTD = I and y ∈ RN , the

minimization problem given by

min
x

(
‖y −Dx‖2

2 + λ‖x‖0

)

has a unique solution x̂ = H√λ
(
DTy

)
.

Proof Since DTD = I, the objective function is rewritten as the sum of all compo-

nents

‖y −Dx‖2
2 + λ‖x‖0 =

∥∥x−DTy
∥∥2

2
+ λ‖x‖0

=
N∑

i=1

((
xi − dTi y

)2
+ λ|xi|0

)

where |x|0 = 1 if x 6= 0, and |x|0 = 0 otherwise. For any dTi y,

(
xi − dTi y

)2
+ λ|xi|0 =





(
xi − dTi y

)2
+ λ, if xi 6= 0

(
dTi y

)2
, if xi = 0
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and thus its minimum is the smaller value between λ and
(
dTi y

)2

min
xi

((
xi − dTi y

)2
+ λ|xi|0

)
=




λ, if

∣∣dTi y
∣∣ ≥
√
λ

(
dTi y

)2
, if

∣∣dTi y
∣∣ <
√
λ.

The corresponding argument of the minimum is x̂i = dTi y if
∣∣dTi y

∣∣ ≥
√
λ, and x̂i = 0

otherwise. Using the compact notation of (3.16), x̂i = H√λ
(
dTi y

)
and, thus, for all

components, x̂ = H√λ
(
DTy

)
.

The second step in solving (3.14) is to optimize the orthonormal dictionary D

that minimizes the reconstruction error for a fixed matrix of sparse coefficients X,

i.e.,

D̂ = argmin
D
‖Y −DX‖2

F subject to DTD = I. (3.18)

Such a problem is called the “orthogonal Procrustes problem” [113]. The following

theorem gives the solution to this problem.

Theorem 3.2 Consider the problem (3.18) in which two matrices X, Y ∈ RN×R

are given, define P , XYT ∈ RN×N and denote its SVD as P = UΣVT where

U, V ∈ RN×N are orthonormal matrices of singular vectors and Σ ∈ RN×N is the

diagonal matrix of singular values, then the orthonormal matrix D̂ = VUT ∈ RN×N

is the solution.

Proof

∵ ‖Y −DX‖2
F = Tr

(
(Y −DX)T (Y −DX)

)

= Tr
(
YTY

)
− 2Tr

(
YTDX

)
+ Tr

(
XTDTDX

)

= Tr
(
YTY

)
+ Tr

(
XTX

)
− 2Tr

(
XYTD

)

∴ argmin
D
‖Y −DX‖2

F = argmax
D

Tr
(
XYTD

)
subject to DTD = I
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∵ Tr
(
XYTD

)
= Tr (PD) = Tr

(
UΣVTD

)
= Tr

(
ΣVTDU

)

=
N∑

i=1

σiiv
T
i Dui

≤
N∑

i=1

σii

since σii > 0 and
∣∣vTi Dui

∣∣ ≤ 1,

∴ max
D

Tr
(
XYTD

)
=

N∑

i=1

σii.

The corresponding argument of the maximum is D̂ = VUT .

The orthonormal dictionary D can thus be learned by alternating between the

above two steps iteratively until the cost function eR(Y,D) is reduced to a limiting

value. For each learning iteration, orthonormal dictionary learning needs three matrix

multiplications that cost O(2RN2 + N3) and one SVD operation that costs O(N3)

to obtain both the sparse coding and the updated dictionary. Specifically, assume

that the model size is denoted by Nz ×Nx and the training patch size is denoted by

nz×nx, where nz � Nz, nx � Nx, and N = nznx. If all possible overlapping patches

are used for training, then the number of training patches R = (Nz − nz + 1)(Nx −

nx + 1), and each training iteration costs O((nznx)
2(Nz − nz + 1)(Nx − nx + 1) +

(nznx)
3). The number of training iterations does not depend on these sizes, hence the

overall complexity does not change in the sense of the Big-O notation. The foregoing

analysis motivates the fact that the patch size should be small for dictionary learning

algorithms; otherwise, the complexity would grow dramatically if nz or nx were large.

Based on Theorems 3.1 and 3.2, the orthonormal dictionary learning method can

find all sparse representations and update all dictionary atoms in one pass. On the

contrary, the overcomplete or nonorthogonal dictionary learning methods introduced

in Chapter 2 have to invoke computationally expensive processes such as MP, BPDN

or LASSO to sequentially modify sparse representations and dictionary atoms one
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by one. Therefore, the computational complexity of orthonormal dictionary learning

method is significantly less than the others.

3.3.2 Dictionary-based Block-wise Transform

Dictionary learning methods use patches to form dictionaries and, therefore, the

learned dictionary can only be applied on the patches rather than on the whole

image. Previously, dictionary learning was used in nearly-local problems such as signal

denoising or inpainting discussed in Chapter 2 where patches can be independently

processed one by one. In the FWI problem, it is necessary to recover the entire model

perturbation δm from compressive measurements. This, however, is a global problem

where the compressive measurements encode the whole δm and thus all patches of

δm need to be recovered at once. As a result, an invertible transform that can be

applied to the whole δm is required. This subsection shows how to convert the local

dictionaries D into a global transform D that can be applied on the whole domain of

δm, and such a transform is named the sparse orthonormal transform (SOT).

The whole model perturbation δm can be exactly represented as

δm = T −1
∑

(i,j)∈P

R†ij (Rij (δm)) (3.19)

where the operator Rij extracts the (i, j)-th patch of size N = nznx from δm, its

adjoint R†ij tiles the (i, j)-th patch of size N = nznx back to δm, and P refers to

an index set of the selected patches that fully cover δm. The averaging operator

T ,
∑

(i,j)∈P
R†ijRij is an invertible diagonal matrix so that T −1 is a grid-by-grid

(pixel-by-pixel) operation. Every block Rij (δm) ∈ RN has a sparse representation

αij ∈ RN over a learned orthonormal dictionary D ∈ RN×N , i.e., Rij (δm) = Dαij,

so the above representation of δm can be written as

δm = T −1
∑

(i,j)∈P

R†ij (Dαij) . (3.20)
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Since αij has the same length as Rij (δm), αij fits into the same (i, j)-th patch of a

global SOT coefficient α because αij = Rij(α). Therefore, the invertible SOT can

be expressed as

δm = T −1
∑

(i,j)∈P

R†ij (DRij(α)) =


T −1

∑

(i,j)∈P

R†ijDRij


 (α) = D(α)

α = T −1
∑

(i,j)∈P

R†ij
(
DTRij(δm)

)
=


T −1

∑

(i,j)∈P

R†ijDTRij


 (δm) = D†(δm)

(3.21)

where D , T −1 ∑
(i,j)∈P

R†ijDRij is the global SOT synthesis (i.e., inverse transform)

operator. The operator D decomposes the global coefficients α into blocks, recon-

structs all the blocks into model patches with D, and tiles the patches back to δm at

the correct positions. Its adjoint operator D† , T −1 ∑
(i,j)∈P

R†ijDTRij is the global

SOT analysis operator (i.e., transform) that decomposes the whole model perturba-

tion δm into patches, converts all the patches into coefficient blocks with DT , and

concatenates them into the global coefficient vector α.

In the design process of the SOT operators D and D†, it is usually preferred

to have an index set P such that all selected patches are non-overlapping. As each

patch Rij (δm) has its own independent sparse representation coefficient αij over

the dictionary D, a large number of overlapping patches would introduce too many

degrees of freedom in the global SOT coefficient vector α, compromise its sparsity

level, and hence impair the reconstruction of δm. Similar to the computational

complexity analysis for orthonormal dictionary learning, with the model size being

Nz ×Nx and the patch size being nz × nx, the computational complexity of applying

the SOT, or the inverse SOT, is O(nznxNzNx) since each patch transform costs

O((nznx)
2) and there are about (NzNx)/(nznx) non-overlapping model patches.

There might be an issue when δm of size Nz ×Nx cannot be evenly decomposed

into small patches of size nz ×nx. In order to comply with the prerequisite of P that

all selected patches should fully cover δm, some patches along the boundary need to
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be treated with further caution, which is discussed as follows.
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(b) Uneven partition on δm

Figure 3.1: Different non-overlapping and covering partition schemes on δm

Figure 3.1 depicts two different partition schemes where non-overlapping patches

fully cover δm. In Figure 3.1(a), an even partition scheme is used when Nz, Nx are

divisible by nz, nx, respectively. Figure 3.1(b) illustrates an uneven partition scheme

such that the top, bottom, left and right boundary patches, and four corner patches,

have different sizes smaller than nz×nx, which is the size of the interior blocks. Note
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that the uneven partition scheme is more general than its even counterpart as it can

be used in all cases, no matter whether nz | Nz and nx | Nx, or not.

Since all patches are aligned in both horizontal and vertical directions, the size

of the top-left corner patch determines the overall partition scheme as well as the

index set P , and hence can be denoted as n′z × n′x such that n′z ≤ nz and n′x ≤ nx.

Based on this definition, the top boundary patches are of size n′z × nx and the left

boundary patches are of size nz × n′x. If the size of the bottom-right corner patch

is defined as n′′z × n′′x, it is easy to find that n′′z =

(
(Nz − n′z)−

⌊
Nz − n′z
nz

⌋
nz

)
and

n′′x =

(
(Nx − n′x)−

⌊
Nx − n′x
nx

⌋
nx

)
where b·c rounds a real number to its largest

previous integer, and thus the bottom boundary patches have size n′′z × nx, the right

boundary patches have size nz × n′′x, the top-right corner patch has size n′z × n′′x and

the bottom-left corner patch has size n′′z × n′x. Therefore, at most 9 kinds of patches

with different sizes could be extracted in the uneven partition scheme. One would

possibly seek a solution that could train at most 9 kinds of dictionaries for patches of

different sizes. However, this is actually unnecessary since training so many different

kinds of dictionaries would be quite expensive.

A much simpler solution, without the need of training multiple dictionaries with

different sizes, would be padding zeros on the boundary of δm until it can be evenly

decomposed. Such a zero-padding operation can be implicitly incorporated into the

global SOT analysis operator D†. Taking Figure 3.1(b) as an example, D† first pads

zeros on the boundary of δm (the gray area) and expands its size to

((⌊
Nz − n′z
nz

⌋
+ 2

)
nz

)
×
((⌊

Nx − n′x
nx

⌋
+ 2

)
nx

)
.

Then it is possible to evenly decompose the zero-padded δm into patches, all of size

nz × nx, convert all patches into coefficients with DT and concatenate all coefficients

into the global coefficient vector α. For the adjoint, the global SOT synthesis operator

D decomposes the global coefficient α into blocks, reconstructs all blocks into model
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patches with D, tiles all reconstructed patches back to the zero-padded δm, and

finally, removes its zero-padding area to recover the original size of Nz ×Nx.
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(a) One reconstruction result with blocking artifacts
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(b) Averaged reconstruction results with 6 different P settings for blocking artifact alleviation

Figure 3.2: A reconstruction of δm with only 1% of the coefficients in α

A global reconstruction of δm by tiling all its non-overlapping patches recovered

from compressive measurements would lead to visible blocking artifact. An uneven

partition scheme provides a solution that can mitigate this issue. Since P can be

chosen freely now with flexible top-left corner patch sizes n′z×n′x, one can reconstruct

multiple δm with different P settings and average these results into one for blocking

artifact alleviation.

Figure 3.2 compares two reconstructed δm with only 1% of the coefficients in α,

in which one exhibits clearly visible blocking artifacts while another one does not.

The result shown in Figure 3.2(a) is affected by blocking artifacts because only one
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partition scheme has been used. These blocking artifacts are alleviated after six δm

are reconstructed with different P settings and then averaged together, as shown in

Figure 3.2(b).

3.3.3 Choice of Lagrange Parameter λ

The value of the Lagrange parameter λ in orthonormal dictionary learning (3.14)

controls sparsity because it determines the design of dictionaries for a particular

sparsity level and shapes the atoms of D, as transform coefficients with absolute

values smaller than
√
λ are hard-thresholded to zero. A small λ would yield marginal

change of D after each iteration since most elements in C = DTY would remain

unchanged for X̂. The extreme case is when λ = 0, then X̂ = C = DTY, and it is

trivial to solve (3.18) to obtain D̂ = D which does not change at all. On the contrary,

if λ were large, then most elements in C = DTY would be hard-thresholded to zeros

for X̂, and P = X̂YT = UΣVT would be a low-rank matrix, resulting in many atoms

in D̂ = VUT resembling the trivial standard basis. The extreme case is when λ = 1,

giving rank(P) = 0, and D̂ degrades to I. Some examples of D ∈ R384×384 learned

with different values of λ are shown in Figure 3.3, where each atom of D is reshaped

into a 2D block of size 16× 24 for visualization. For λ = 0.1 and λ = 0.2 in Figures

3.3(a) and 3.3(b), many of the dictionary atoms exhibit directional characteristics.

On the other hand, when λ = 0.8 in Figure 3.3(d) almost all of the dictionary atoms

have a single nonzero value, i.e., the trivial basis.

Nonlinear approximation (NLA) can be used to verify the sparse representation

capability of the learned orthonormal dictionary D (and the global SOT synthesis

operator D) for a δm. The NLA test keeps the l largest-magnitude coefficients

from α as α̃, and then evaluates the normalized mean square error (NMSE) of the

reconstruction

NMSE(δm;D, l) = 1−
∥∥∥∥

δm−D(α̃)

δm−mean(δm)

∥∥∥∥
2

2

, (3.22)
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(a) λ = 0.1

(b) λ = 0.2

(c) λ = 0.5

(d) λ = 0.8

Figure 3.3: Dictionaries D ∈ R384×384 trained with different values of λ
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which varies from −∞ (bad fit) to 1 (perfect fit).
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(a) δm used in the orthonormal dictionary learning process
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(b) δm used for NLA test

Figure 3.4: Two model perturbations δm extracted from consecutive FWI iterations
and used for orthonormal dictionary learning and the NLA test

The Lagrange parameter λ is usually related to an approximate noise level if

dictionary learning is applied in a denoising problem [44]. However, its selection in

a CS-based sparsity recovery problem still remains an open problem [122] so that

λ is chosen empirically. A simplified experiment can be conducted to compare the

NLA performance of learned orthonormal dictionaries D trained with different values

of λ. Different dictionaries D are learned from training patches of different sizes

extracted from a training model perturbation shown in Figure 3.4(a) and tested on

a testing model perturbation shown in Figure 3.4(b). The NLA performance curves

that indicate the relationship between NMSE and λ for different sparsity levels l (1%,

2% and 5% of largest-magnitude coefficients) are shown in Figure 3.5. In Figures
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(a) dictionary D ∈ R120×120 with patch size 10× 12
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(b) dictionary D ∈ R480×480 with patch size 20× 24
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(c) dictionary D ∈ R960×960 with patch size 30× 32

Figure 3.5: NLA performance curves of keeping 1%, 2% and 5% largest-magnitude
coefficients for different patch sizes
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3.5(a) to 3.5(c), the optimal λ that yields the highest NMSE depends on both the

sparsity level l and the patch size nz×nx, and the optimal λ tends to decrease if either

the sparsity level l or the patch size nz × nx increases. These results indicate that

λ ∈ (0.152, 0.252) is expected to deliver good reconstructions for reasonable sparsity

levels and patch sizes.

3.3.4 Online Orthonormal Dictionary Learning

The above orthonormal dictionary learning algorithm takes the training patch

set as a whole so that a dictionary D could be learned offline and would remain

static as a sparse representation. Generally speaking, such an offline approach cannot

effectively handle very large training sets, or dynamic training sets that vary over

time. In practice, FWI is an iterative problem where the optimized δmk that offers

training patches is changing over iterations. Therefore, to exploit the availability

of new training patches from δmk, an online approach is proposed for orthonormal

dictionary learning by minimizing the following expected cost function

e(D) , Ey

[
‖y −Dx‖2

2 + λ‖x‖0

]
= lim

R→∞
eR(Y,D) almost surely. (3.23)

Rather than spending too much effort on accurately minimizing the empirical cost

function eR(Y,D) in (3.13), [16] suggest minimizing e(D) since eR(Y,D) is merely

an approximation of e(D). Minimizing e(D) does not rely on the number of patches

R, but instead on the (unknown) stochastic characteristics of the training patches.

The online approach learns a new dictionary Dk every time a new δmk−1 is ready,

and the sequence of learned dictionaries can adapt to the variations of patches in

later iterations.

Algorithm 3.1 summarizes a general version of the online orthonormal dictionary

learning method in which the training examples y are drawn from a data stream

source. In particular, at the end of the (k − 1)-th FWI iteration, a batch of R

training patches, each of size nz × nx, are extracted from δmk−1 and normalized
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Input: a data source from which input data y ∈ RN are drawn, initial orthonormal
dictionary D0 ∈ RN×N , Lagrange multiplier λ, number of update iterations
T , mini-batch size R, Cauchy’s convergence error bound ε

Output: learned orthonormal dictionary DK , sparse representation matrix XK

Initialization : P0 = 0
1 for k = 1 to K do

2 Draw a mini-batch of data Yk−1 , [y
(k−1)
1 ,y

(k−1)
2 , . . . ,y

(k−1)
R ] from a data source;

3 Normalization: y
(k−1)
i ← y

(k−1)
i /‖y(k−1)

i ‖2, ∀i = 1, . . . , R;
4 D = Dk−1;
5 while ‖Yk−1 −DXk−1‖2F + λ‖Xk−1‖0 not converged with error bound ε do
6 Ck−1 = DTYk−1;

7 [Xk−1]ij =





[Ck−1]ij ,
∣∣∣[Ck−1]ij

∣∣∣ ≥
√
λ

0,
∣∣∣[Ck−1]ij

∣∣∣ <
√
λ

;

8 Pk = Pk−1 + Xk−1Y
T
k−1;

9 UΣVT = Pk ; // Compute SVD

10 D = VUT ;

11 end
12 Dk = D;

13 end

Algorithm 3.1: Online Orthonormal Dictionary Learning

into the range [0, 1] to form the matrix Yk−1 ∈ RN×R. Then we use the previous

dictionary Dk−1 ∈ RN×N as a warm start to represent Yk−1 with sparse coefficients

Xk−1 ∈ RN×R by hard thresholding with
√
λ, and obtain the updated dictionary Dk

for the following k-th FWI iteration with the orthonormal matrices of singular vectors

of Pk ∈ RN×N that accumulates XiY
T
i for i = 0, 1, . . . , k − 1. Essentially, the above

two alternating steps for learning Dk keep reducing the value of the function

êk(D) ,
1

kR

k−1∑

i=0

(
‖Yi −DXi‖2

F + λ‖Xi‖0

)
(3.24)

which, in effect, takes training patches of all previously optimized model perturbations

{δmi}k−1
i=0 into account. It is proved in [16] that êk(D) converges to e(D) with prob-

ability one if k is sufficiently large and, therefore, the online orthonormal dictionary

learning converges to a stationary point.
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3.4 Full Waveform Inversion with Dictionary-based Spar-
sity Regularization

Recall the LASSO optimization problem of each Gauss-Newton iteration k =

0, 1, 2, . . . under the CS framework:

min
α

{
J

(W)
k (α) ,

1

2
‖Wkδdk −WkJkDk(α)‖2

2

}
s.t. ‖α‖1 ≤ τk (3.12 revisited)

where right now Dk is the SOT synthesis operator based on the orthonormal dictio-

nary Dk trained for the k-th FWI iteration and α is the SOT coefficient vector. If

αk minimizes the objective function J
(W)
k (α) in (3.12), then its inverse SOT recovers

the optimal model perturbation δmk via

δmk = Dk(αk). (3.25)

In (3.12) the subsampling matrix Wk must be designed. The construction of Wk

can take advantage of the linearity property of wave equations. Because the com-

putational cost of an FWI iteration is in proportion to the number of seismic wave

modeling processes with respect to different source functions, a random source en-

coding method has been proposed to combine a large number of sequential sources

with random weights into only a few simultaneous shots. These simultaneous shots

are named supershots in the literature [8, 14, 64, 109, 123]. Due to the linear re-

lationship between a seismic wavefield and its source function, the random weights

can be incorporated into Wk and become the key to subsampling. Summing many

individual sources into a few simultaneous shots introduces crosstalk artifacts. Never-

theless, crosstalk can be mitigated during the inversion process by enforcing a sparsity

constraint in the SOT domain.
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3.4.1 Random Source Encoding – The Supershot Method

Consider a conventional seismic survey with Ns shots, in which each shot produces

a 2D acoustic seismic wavefield pj(x, t; xsj) modeled by a time-domain PDE
(
m(x)

∂2

∂t2
−∇2

)
pj(x, t; xsj) = f(t)δ(x− xsj), ∀j = 1, . . . , Ns (3.26)

where f(t)δ(x− xsj) is the point source function excited at location xsj .

The random source encoding method chooses a random time series wj(t) for each

source such that each element of wj(t) is an i.i.d. N (0, 1) random variable. Based

on the linearity of the Green’s function, if the point source function is replaced by

(wj(t) ∗ f(t))δ(x − xsj), where ∗ denotes convolution in the time domain, then the

output wavefield qj(x, t; xsj) modeled by the wave equation
(
m(x)

∂2

∂t2
−∇2

)
qj(x, t; xsj) = (wj(t) ∗ f(t))δ(x− xsj), ∀j = 1, . . . , Ns (3.27)

can be expressed as

qj(x, t; xsj) = wj(t) ∗ pj(x, t; xsj), ∀j = 1, . . . , Ns. (3.28)

Convolving all source functions f(t)δ(x− xsj) with different Gaussian time series

wj(t) and then stacking them together generates an encoded simultaneous shot, which

is also termed as a supershot in the literature. Because all wj(t) are stochastically

independent, any number of stochastically independent supershots can be generated

in this way by repeating the process. Suppose N ′s supershots are used for seismic

modeling, N ′s � Ns, then each supershot is defined by

f
(s)
i (x, t) =

Ns∑

j=1

(wij(t) ∗ f(t))δ(x− xsj), ∀i = 1, . . . , N ′s, (3.29)

where i is the supershot index and wij(t) is an independent random Gaussian time

series that encodes f(t)δ(x−xsj) for the i-th supershot. Similarly, the following wave

equation that models the supershot wavefield p
(s)
i (x, t)

(
m(x)

∂2

∂t2
−∇2

)
p

(s)
i (x, t) = f

(s)
i (x, t), ∀i = 1, . . . , N ′s (3.30)
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has the solution

p
(s)
i (x, t) =

Ns∑

j=1

wij(t) ∗ pj(x, t; xsj), ∀i = 1, . . . , N ′s. (3.31)

Modeling supershots and their corresponding wavefields in the frequency domain

is a more common practice in recent research [8]. Since convolution in the time

domain corresponds to multiplication in the frequency domain, a frequency-domain

supershot at the frequency ω has the expression

f̂
(s)
i (x;ω) =

Ns∑

j=1

ŵij(ω)f̂(ω)δ(x− xsj), ∀i = 1, . . . , N ′s, (3.32)

and the excited wavefield becomes

p̂
(s)
i (x;ω) =

Ns∑

j=1

ŵij(ω)p̂j(x;ω,xsj), ∀i = 1, . . . , N ′s. (3.33)

Figure 3.6 illustrates several frequency-domain wavefield examples with the fre-

quency ω/(2π) = 22.8 Hz, in which Figures 3.6(a), 3.6(b) and 3.6(c) show three regular

wavefields p̂(x;ω,xs) generated by three single shots at positions xs = 960 m, 1920 m

and 2880 m, respectively, and Figure 3.6(d) shows a supershot wavefield p̂
(s)
i (x;ω)

which encodes Ns = 384 shots on the surface with random Gaussian weights.

FWI uses the wavefield sample set d(s) ,
{
p̂

(s)
i (xr;ω)

}
collected at all receiver

locations xr for all supershots with different frequencies ω. Since each frequency is

processed independently in frequency-domain modeling, the number of frequencies

used in FWI can also be reduced to N ′ω < Nω, and this set of frequencies can be

randomly selected among all Nω frequencies, which then reduces the dimension of

d(s) to N ′ωN
′
sNr. According to (3.33), the relationship between d(s) and the full-

dimension data d for all receivers, single shots and frequencies can be written in a

compact matrix form as

d(s) = Wd. (3.34)

The subsampling matrix W of size N ′ωN
′
sNr ×NωNsNr is structured as

W , diag
{
ŵ(ω1), . . . , ŵ(ωN ′

ω
)
}
⊗ I (3.35)

88



Distance (m)

D
ep

th
 (

m
)

 

 

500 1000 1500 2000 2500 3000 3500

200

400

600

800

1000

1200 −400

−300

−200

−100

0

100

200

(a) Wavefield generated by a single shot at position xs = 960 m
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(b) Wavefield generated by a single shot at position xs = 1920 m
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(c) Wavefield generated by a single shot at position xs = 2880 m
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(d) Wavefield generated by a supershot encoding Ns = 384 shots with random Gaussian
weights

Figure 3.6: Wavefield examples generated by a single shot and a supershot with
frequency 22.8 Hz
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where each ŵ(ω) is a random matrix of size N ′s ×Ns whose (i, j)-th entry is ŵij(ω),

the different ŵ(ω) for the selected N ′ω frequencies are assembled together as a block

diagonal matrix, and the operator ⊗ denotes the Kronecker product whose right

operand I is an identity matrix of size Nr ×Nr.

According to the perturbation analysis based on Born approximation theory, the

wavefield perturbation δ̂p
(s)

(x;ω) on the background wavefield p̂(s)(x;ω) attributed

to a small model perturbation δm on the background model m satisfies the equation

(
−m(x)ω2 −∇2

)
δ̂p

(s)
(x;ω) = ω2δm(x)p̂(s)(x;ω). (3.36)

Similar to the regular point source case in (3.8), δ̂p
(s)

(xr;ω) can be expressed as

δ̂p
(s)

(xr;ω) = ω2f̂(ω)
∑

x∈U

δm(x)Ĝ(xr;ω,x)
Ns∑

j=1

ŵj(ω)Ĝ(x;ω,xsj), (3.37)

yielding the (i, j)-th entry of the Jacobian sub-matrix J(s)(ω) as

[
J(s)(ω)

]
ij
, lim

δm(xj)→0

δ̂p
(s)

(xri ;ω)

δm(xj)

= ω2f̂(ω)Ĝ(xri ;ω,xj)
Ns∑

l=1

ŵl(ω)Ĝ(xj;ω,xsl).

(3.38)

The entire Jacobian matrix J(s) stacks J(s)(ω) for all supershots and all frequencies

together, and its relationship between the full-dimension Jacobian matrix J for all

receivers, single shots and frequencies can be written as

J(s) = WJ. (3.39)

For each FWI iteration k, all ŵij(ω) can be regenerated so that the random sub-

sampling matrix varies with the iterations and can be denoted as Wk. This approach

suppresses crosstalk artifacts into incoherent Gaussian noise and yields better re-

construction results. Meanwhile, no artificial bias towards a specific random source

encoding pattern would be introduced into the solution by redrawing the random
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subsampling matrix. Such an approach has been recommended in previous research

on CS [62, 67, 79, 88] and FWI [56, 57, 73, 137].

Therefore, in (3.12), Wkδdk can be obtained as a whole by calculating the dif-

ference between the recorded receiver data d
(s)
obs , Wkdobs encoded by Wk and the

calculated receiver data d
(s)
k generated by supershots. WkJk can be regarded as the

compressive Jacobian whose components includes non-altered Green’s functions for

receivers and random encoded Green’s functions for sources.

The solution αk of the LASSO problem (3.12) relies on the choice of the sparsity

constraint τk. As suggested by [133], every LASSO problem implies a convex and

non-increasing function φ(τ) that associates the least-squares residual to the sparsity

level τ . In this problem, each FWI iteration k = 0, 1, 2, . . . needs to solve (3.12) and,

therefore, has an implicit φk(τ). Following the same idea used by [57, 73, 74], one

can estimate τk by using a linear approximation of φ′k(τ) at τ = 0, given in Theorem

2.1 of [133]

τk ≈ −
φk(0)

φ′k(0)
=

‖Wkδdk‖2
2∥∥∥D†k

(
[WkJk]

† (Wkδdk)
)∥∥∥
∞

(3.40)

where ‖·‖∞ is the maximum norm, [WkJk]
† is the adjoint of the compressive Jacobian

WkJk and performs the following calculation over the vector Wkδdk

[WkJk]
† (Wkδdk)

=

N ′
ω∑

m=1

ω2
mf̂(ωm)

Nr∑

n=1

Gk(xrn ;ωm,x)

N ′
s∑

i=1

Ns∑

j=1

[ŵk(ωm)]ij Gk(x;ωm,xsj)
[
δp

(s)
k

]
i
(xrn ;ωm).

(3.41)

The above expression is a function with respect to the medium grid points x, so that

it can be interpreted as a wavefield or image and hence can also be decomposed into

global SOT coefficient by D†k.
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3.4.2 Projected Quasi-Newton Method for solving the LASSO problems

The computational complexity of the FWI problem is reduced considerably after

reducing the data dimensionality from NωNsNr to N ′ωN
′
sNr. However, in order to

minimize the objective function J
(W)
k (α) in (3.12) with sparsity promotion on the

global SOT coefficient α, the descent direction of α must be projected into an `1-

norm ball with radius τk.

Input: Step length bounds 0 < amin < amax, γ(l), B(l), sufficient decrease
parameter ν, `1-norm bound τk

Initialization: αnew ← α(l), initial step length a =

[
p(l−1)

]T
p(l−1)

[p(l−1)]
T

q(l−1)
, function

maximum fmax ← −∞
1 while not converged do
2 αold ← αnew;
3 a← min{amax,max{amin, a}};
4 d← P (`1)

τk

(
αold − a∇Q(l)(αold)

)
−αold ; // ∇Q(l)(α) = B(l)α+ γ(l)

5 a← 1;

6 fmax ← max
{
fmax, J

(W )
k (αold)

}
;

7 while Q(l)(αold + ad) > fmax + νa∇Q(l)(αold)
Td do

8 Choose a ∈ (0, a) by backtracking;
9 end

10 αnew ← αold + ad;

11 a← [αnew −αold]T [αnew −αold]

[αnew −αold]T [∇Q(l)(αnew)−∇Q(l)(αold)]
12 end

Output: α̂← αnew

Algorithm 3.2: Spectral Projected Gradient (SPG) Algorithm

A limited-memory projected quasi-Newton method (l-PQN) proposed by [112]

can solve the LASSO problem (3.12) iteratively, based on a two-layer strategy. In

each iteration l = 0, 1, 2, . . . , the outer layer formulates a quadratic approximation

function Q(l)(α) of the objective function J
(W)
k (α) around the current iterate α(l)

Q(l)(α) , J
(W)
k

(
α(l)
)

+
(
α−α(l)

)T
γ(l) +

1

2

(
α−α(l)

)T
B(l)

(
α−α(l)

)
(3.42)

92



where γ(l) is the gradient of J
(W)
k (α) evaluated for α(l)

γ(l) ,
∂J

(W)
k

∂α

(
α(l)
)

= −<
{
D†k
(

[WkJk]
† (Wkδdk −WkJkDk

(
α(l)
)))}

(3.43)

and B(l) denotes a positive-definite approximation matrix of [WkJkDk]
†WkJkDk, the

Hessian matrix of J
(W)
k (α), at the l-th iteration of l-PQN. The inner layer iteratively

searches for a feasible descent direction by minimizing Q(l)(α) subject to the `1-norm

constraints

α̂ = argmin
α

Q(l)(α) subject to ‖α‖1 ≤ τk. (3.44)

This problem can be solved via the spectral projected gradient (SPG) algorithm

[12, 13] shown in Algorithm 3.2. For the sake of convenience, the following variables

are defined

p(l) , α(l+1) −α(l)

q(l) , γ(l+1) − γ(l).

(3.45)

In Algorithm 3.2, the Euclidean projection operator P (`1)
τ (α) that projects the

vector α onto the `1-norm ball with radius τ is defined as

P (`1)
τ (α) , argmin

β
‖α− β‖2

2 subject to ‖β‖1 = τ. (3.46)

A randomized algorithm that efficiently solves this projection problem is shown in

Algorithm 3.3 [42].

Input: α ∈ RN , τ > 0
1 Sort α s.t. |α1| ≥ |α2| ≥ · · · ≥ |αN |;

2 Find ρ = argmax
j

(
|αj| − 1

j

(
j∑
r=1

|αr| − τ
))

;

3 Define θ = 1
ρ

(
ρ∑
i=1

|αi| − τ
)

;

Output: β ∈ RN such that βi = sign(αi) ·max{|αi| − θ, 0}
Algorithm 3.3: Projection onto an `1-norm ball

After solving the inner-layer problem (3.44), the direction d(l) , α̂ − α(l) is

guaranteed to be a feasible descent direction since B(l) is a positive-definite matrix.
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In order to obtain the next iterate α(l+1) for the outer layer, a backtracking line search

method along the search direction d(l) can be applied to find a step length a ∈ (0, 1]

such that the Armijo condition [5]

J
(W)
k

(
α(l) + ad(l)

)
≤ J

(W)
k

(
α(l)
)

+ νa
[
γ(l)
]T

d(l) (3.47)

which ensures a sufficient decrease on the objective function is satisfied. In (3.47) the

sufficient decrease parameter ν is set to 10−4 as suggested by Nocedal [94]. Because

d(l) takes the `1-norm constraint into account, the next iterate α(l+1) also satisfies

the constraint for the selected value of a.

The positive-definite matrix B(l) that approximates the Hessian matrix of J
(W)
k (α)

can be built with the quasi-Newton methods, among which the limited-memory

Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) algorithm [93] is one of the most pop-

ular members. The l-BFGS algorithm maintains at most m past p(l) and q(l) vectors

for the Hessian approximation. It initializes B(0) = σ(0)I, and for l > 0, updates B(l)

by the following formula

B(l) = σ(l)I−
[
σ(l)P(l) Q(l)

]


σ(l)
[
P(l)
]T

P(l) L(l)

[
L(l)
]T −X(l)




−1 

σ(l)
[
P(l)
]T

[
Q(l)

]T


 (3.48)

where the scalar σ(l) ,

[
q(l)
]T

p(l)

[q(l)]
T

q(l)
, the matrices P(l) ,

[
p(l−m), . . . ,p(l−1)

]
, Q(l) ,

[
q(l−m), . . . ,q(l−1)

]
, X(l) , diag

{[
p(l−m)

]T
q(l−m), . . . ,

[
p(l−1)

]T
q(l−1)

}
and L(l) is de-

fined by

[
L(l)
]
ij

=





[
p(l−m−1+i)

]T
q(l−m−1+j), if i > j

0, otherwise.

Finally, Algorithm 3.4 summarizes the overall SOT-based sparse-promoting FWI

optimization procedure which is initialized by a smooth model msmth. The accuracy

of msmth directly affects the performance of FWI. To avoid FWI becoming trapped

in local minima, a good initial model can be found using other inversion methods
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such as traveltime tomography [17] or migration velocity analysis [124]. Each newly

optimized δmk becomes the source for R new patches for online dictionary learning in

order to update the dictionary to Dk+1, which will then be used in the corresponding

SOT operator Dk+1 for the sparse representation of δmk+1 in the next FWI iteration.

The entire workflow of the compressive FWI using the SOT is depicted in Figure 3.7.
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Figure 3.7: FWI workflow using SOT-domain sparsity promotion with adaptive trans-
form Dk based on online orthonormal dictionary learning

3.5 Numerical Experiments

In the following experiments, the Gauss-Newton FWI is performed on full data

using sequential point sources and compressive data using supershots. For the com-

pressive FWI, two kinds of transforms are used to promote the sparsity of the model

perturbation δm in transform domains, in which one is the fixed and non-adaptive
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Input: Recorded seismic data dobs , {p̂obs(xr;ω,xs)}, initial smooth model
msmth, number of FWI iterations K, receiver locations xr ∈ S, number
of receivers Nr, sequential shot locations xs ∈ S, number of sequential
shots Ns, number of supershots N ′s, number of frequencies Nω, reduced
number of frequencies N ′ω, patch height nz, patch width nx, atom size
N = nznx, convergence error bound ε

Output: FWI result mK

Initialization: k ← 0, m0 ←msmth, relative model change ∆0 ←∞
1 while ∆k > ε and k < K do
2 Randomly draw N ′ω out of Nω frequencies to form a set Ω′;

3 Generate N ′ω random Gaussian matrices ŵk(ω) , {ŵij(ω)} ∈ RN ′
s×Ns for all

frequencies ω ∈ Ω′ to produce Wk , diag
{
ŵk(ω1), . . . , ŵk(ωN ′

ω
)
}
⊗ I;

4 Generate supershots f̂
(s)
i (x;ω) =

Ns∑
j=1

ŵij(ω)f̂(ω)δ(x− xsj), ∀i = 1, . . . , N ′s;

5 Encode the recorded seismic data d
(s)
obs , Wkdobs;

6 Solve (3.30) to get p̂
(s)
i (x;ω) for all supershots ∀i = 1, . . . , N ′s, and

frequencies ω ∈ Ω′;

7 Collect d
(s)
k ,

{
p̂

(s)
i (xr;ω)

}
for all receivers xr ∈ S, supershots

∀i = 1, . . . , N ′s, and frequencies ω ∈ Ω′;

8 Wkδdk = d
(s)
obs − d

(s)
k ;

9 Collect Green’s functions G
(s)
i (x;ω) ,

Ns∑
j=1

ŵij(ω)Ĝ(x;ω,xsj) for all

supershots ∀i = 1, . . . , N ′s, and frequencies ω ∈ Ω′;

10 Collect Green’s functions Ĝ(xr;ω,xj) for all receivers xr ∈ S;

11 Solve





αk = argmin
α

1

2
‖Wkδdk −WkJkDk(α)‖2

2

s.t. ‖α‖1 ≤ τk ≈
‖Wkδdk‖2

2∥∥∥D†k
(

[WkJk]
† (Wkδdk)

)∥∥∥
∞





with l-PQN;

12 δmk = Dk(αk);
13 Learn Dk+1 from R patches of δmk using Algorithm 3.1 inside the outer

for loop;
14 mk+1 = mk + δmk;
15 ∆k = ‖mk+1 −mk‖2/‖mk‖2;
16 k ← k + 1;

17 end

Algorithm 3.4: Sparsity-Promoting FWI based on the SOT
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curvelet transform and the other one is the proposed adaptive SOT.

Two benchmark velocity models are used to verify the inversion algorithms in

realistic settings. First is the BG-Compass model whose exact form is shown in

Figure 3.8(a). This model is rescaled to Nz ×Nx = 100× 350 grid points and covers

a width of 3.5 km and a depth of 1 km. Full data generated by Ns = 350 shots

are recorded by Nr = 350 receivers equispaced along the surface of the model. The

well-known Marmousi model shown in Figure 3.9(a) serves as the second benchmark

velocity model. This model is rescaled to Nz×Nx = 120×384 grid points and covers

a width of 3.84 km and a depth of 1.2 km. Full data from Ns = 384 equispaced shots

on the model surface are recorded over Nr = 384 equispaced receivers. Therefore,

the grid spacing ∆x = ∆z = 10 m guarantees that a sufficient number of grid points

are used to represent the expected wavelengths and no grid dispersion happens. The

wavefields are simulated by discretizing the PDE (3.30) with an 8th-order staggered-

grid FDFD method [2] in which the left, right and bottom boundary reflections are

absorbed by perfectly matched layers [63].

The shot source is a Ricker wavelet centered at 20 Hz with 256 frequency compo-

nents spanning 3.0 to 48.1 Hz, and its spectrum f̂(ω) is assumed known and fixed.

FWI starts from an initial smooth model shown in Figure 3.8(b) for BG-Compass,

or Figure 3.9(b) for Marmousi. In practical implementations, FWI is carried out in

several consecutive frequency bands from low to high in order to avoid local minima

caused by cycle skipping [18, 121]. Here FWI are performed across five frequency

bands within the interval of 3.0 to 48.1 Hz, and thus the average number of frequen-

cies per band is Nω = 256/5 ≈ 52. In each frequency band, K = 20 FWI iterations

are executed. After 20 FWI iterations are completed on one frequency band, the

resulting more accurate model serves as the initial model for another 20 FWI itera-

tions on the next higher frequency band. Although it is computationally expensive to

perform FWI with the full data set from all Ns sequential shots and Nω frequencies,
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these results were obtained and are shown in Figure 3.8(c) and Figure 3.9(c) for both

models after 100 iterations.

For every FWI iteration using compressive data, only N ′s = 3 supershots and N ′ω =

16 random frequencies from each frequency band are used. Thus, the problem dimen-

sionality of the compressed objective function J
(W)
k (α) in (3.12) is (NωNs)/(N

′
ωN
′
s) ≈

400 times smaller than that of the full-data Gauss-Newton objective function Jk(δm)

in (3.4). This does not necessarily mean that a compressive FWI iteration runs 400

times faster than a full-data FWI iteration as actual implementations may vary, but

the reduced time on both forward modeling and objective function minimization, as

well as the reduced memory costs, are still considerable.

3.5.1 Sparsity Regularization using Curvelets

Before the invention of the SOT using online orthonormal dictionary learning,

the curvelet transform was the state-of-the-art method to exploit the sparsity of

δm in FWI [57, 73, 74]. Figure 3.10 shows the workflow of compressive FWI using

the curvelet transform for sparsity promotion. Each FWI iteration minimizes the

objective function J
(W)
k (β) defined in (3.12) where D is specified as the fixed and

non-adaptive curvelet transform C and β has the curvelet coefficients for δm.

The discrete curvelet transform based on the wrapping and mirror-extended tech-

niques, which is implemented in the software CurveLab by [20, 33], is used here.

The number of scales is set to 5, including the coarsest wavelet scale for the curvelet

transform, and the number of angles from the second coarsest scale to the finest scale

(the 5th scale) are 32, 64, 64, and 128, respectively. Such a curvelet transform has a

complexity of O(n2 log n) for a model of size n × n [20]. Since no machine learning

process is involved in the curvelet transform, its computational overhead is negligible

compared to the forward modeling and can therefore be ignored. The inverted image

results for the BG-Compass and Marmousi models using the curvelet-based method
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(a) Original model vtrue = 1/
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mtrue; blue triangles mark horizontal positions for vertical velocity
logs shown in Figure 3.15
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(b) Initial smooth model vsmth = 1/
√

msmth

Distance (m)

D
ep

th
 (

m
)

 

 

500 1000 1500 2000 2500 3000

200

400

600

800

1000

V
el

oc
ity

 (
m

/s
)

2000

3000

4000

(c) Result on the full data with all shots and frequencies after 100 iterations

Figure 3.8: The BG-Compass model with velocity range of 1500 to 4500 m/s, the
initial model and the FWI results using the full data
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(a) Original model vtrue = 1/
√

mtrue; blue triangles mark horizontal positions for vertical velocity
logs shown in Figure 3.16
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(b) Initial smooth model vsmth = 1/
√
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(c) Result on the full data with all shots and frequencies after 100 iterations

Figure 3.9: The Marmousi model with velocity range of 1500 to 5800 m/s, the initial
model and the FWI results using the full data
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Figure 3.10: FWI workflow using curvelet-domain sparsity promotion with a fixed
transform C

are provided in Figures 3.11(a) and 3.12(a), respectively, where the `1-norm sparsity

regularizations on β are imposed during the l-PQN iterations.

3.5.2 Sparsity Regularization using SOT

The orthonormal dictionaries Dk learned for SOT within the five frequency bands

are visualized as follows. Since the δm inverted in different frequency bands contain

different wavenumber components and their features have different scales, the online

orthonormal dictionary learning algorithm is reinitialized from k = 0 with a Discrete

Cosine Transform (DCT) orthonormal dictionary D0 every time FWI moves forward

to a new frequency band. For the case of the BG-Compass model, the default size

of the training patches from δm is nz × nx = 20 × 20, N = nznx = 400, so that

the dictionaries Dk ∈ R400×400. Similarly, for the Marmousi model, the default size

of training patches from δm is nz × nx = 16 × 24, N = nznx = 384, so that the

dictionaries Dk ∈ R384×384. Figures 3.13 and 3.14 show how the dictionaries evolve
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by Algorithm 3.1 during FWI iterations on different frequency bands, in which each

nz×nx patch of δm is a linear combination of the atoms visualized as blocks. Figures

3.13(a) and 3.14(a) are the DCT dictionaries D0 that initialize Algorithm 3.1 when

FWI starts processing a new frequency band. After completing K = 20 iterations

of FWI as well as online dictionary learning, Figures 3.13(b) – 3.13(f) and 3.14(b)

– 3.14(f) show the updated orthonormal dictionaries DK in each frequency band.

The Lagrange multiplier is empirically set as λ = 0.22 for both models so that an

appropriate trade-off can be kept between speed of convergence and capability of

sparse representation.

Distance (m)

D
ep

th
 (

m
)

 

 

500 1000 1500 2000 2500 3000

200

400

600

800

1000

V
el

oc
ity

 (
m

/s
)

2000

3000

4000

(a) Using the curvelet transform for sparsity promotion
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(b) Using SOT for sparsity promotion

Figure 3.11: Compressive FWI results with 3 supershots for the BG-Compass model
after 100 iterations

The results of compressive FWI using SOT with the default patch size for sparsity

promotion are shown in Figures 3.11(b) and 3.12(b) for BG-Compass and Marmousi,

respectively. Different patch sizes N = nz × nx are also tested for dictionaries Dk ∈
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(a) Using the curvelet transform for sparsity promotion
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(b) Using SOT for sparsity promotion

Figure 3.12: Compressive FWI results with 3 supershots for the Marmousi model
after 100 iterations
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RN×N with different sizes so that the robustness of the method can be studied (see

Figures 3.15, 3.16, and 3.17).

Figures 3.15 and 3.16 show vertical velocity logs for several lateral positions x on

the inverted models, marked by blue triangles underneath Figures 3.8(a) and 3.9(a).

Besides traditional vertical velocity logs, the quality of FWI can also be measured by

the following model fit metric proposed in [52]

M(k) ,

(
1− ‖vtrue − vk‖2

‖vtrue‖2

)
× 100% (3.49)

where vtrue = 1/
√

mtrue is the exact velocity model and vk = 1/
√

mk is the interme-

diate velocity model obtained at the k-th FWI iteration. The curves in Figure 3.17

compare the model fit metric M(k) versus FWI iteration number for both velocity

models. These results indicate that different patch sizes yield very similar curves

and suggest choosing a moderate patch size N = nz × nx that it is neither too huge

to train nor too small to represent. It is worth emphasizing that these results give

strong evidence that the proposed SOT based on the dictionary learning method can

produce inverted models with better visual quality and a higher performance metric

than the curvelet transform under the same subsampling ratio for FWI.

To further test the robustness of the method, a noisy seismic dataset is created by

adding white Gaussian noise (WGN), and then FWI is performed without any prior

denoising process. Figure 3.18 illustrates the wavefield generated by a supershot with

the frequency ω/(2π) = 22.8 Hz, where WGN is added such that the average signal

to noise ratio (SNR) equals to 10 dB. As before, N ′s = 3 supershots and N ′ω = 16

random frequencies are used for each frequency band.

In this noisy setting of the compressive FWI, both the curvelet transform and

the SOT are used for the sparsity promotion of δm. Figures 3.19 and 3.20 show the

FWI results based on the noisy data for both velocity models, followed by curves

showing the model fit metric M(k) versus FWI iterations in Figure 3.21. The results

indicate that the SOT can achieve better inverted models than the curvelet transform.
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(a) Initial DCT matrix D0 (b) DK for the first frequency band,
3.0–11.6 Hz

(c) DK for the second band, 12.1–20.8 Hz (d) DK for the third band, 21.3–29.9 Hz

(e) DK for the fourth band, 30.4–39.0 Hz (f) DK for the fifth band, 39.5–48.1 Hz

Figure 3.13: Initial dictionary D0 and the learned dictionaries DK by Algorithm 3.1
after K = 20 FWI iterations in each frequency band on the BG-Compass model.
Dictionary size is 400× 400; each atom is visualized as a 20× 20 block in the images.

105



(a) Initial DCT matrix D0 (b) DK for the first frequency band, 3.0–11.6 Hz

(c) DK for the second band, 12.1–20.8 Hz (d) DK for the third band, 21.3–29.9 Hz

(e) DK for the fourth band, 30.4–39.0 Hz (f) DK for the fifth band, 39.5–48.1 Hz

Figure 3.14: Initial dictionary D0 and the learned dictionaries DK by Algorithm
3.1 after K = 20 FWI iterations in each frequency band on the Marmousi model.
Dictionary size is 384× 384; each atom is visualized as a 16× 24 block in the images.
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(a) x = 875 m
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(b) x = 1750 m
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(c) x = 2625 m

Figure 3.15: Vertical velocity logs for the BG-Compass model. Three different patch
sizes are tested.
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(a) x = 960 m
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(b) x = 1920 m
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(c) x = 2880 m

Figure 3.16: Vertical velocity logs for the Marmousi model. Three different patch
sizes are tested.
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(a) BG-Compass model
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(b) Marmousi model

Figure 3.17: Model fit versus FWI iteration number for SOT-domain sparsity regu-
larization. Three different patch sizes are tested.

Meanwhile, comparing Figures 3.19(b) and 3.20(b) with Figures 3.11(b) and 3.12(b),

respectively, good FWI results can still be obtained with noisy data, which results

from the SOT-domain sparsity regularization.
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Figure 3.18: Noisy wavefield examples generated by a supershot with frequency
22.8 Hz, SNR = 10 dB

The extra computational overhead involved in learning the orthonormal dictionary

for SOT has been analyzed in Section 3.3. In addition to the theoretical complexity

analysis, it is useful to report one instance of the actual running time of forward

modeling, l-PQN optimization and orthonormal dictionary learning (with 16 × 24

patches) for 20 compressive FWI iterations (in one frequency band) on the Marmousi

model with 3 supershots and 16 random frequencies. As a comparison, the running
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(a) Using the curvelet transform for sparsity promotion
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(b) Using SOT for sparsity promotion

Figure 3.19: Compressive FWI results with 3 supershots for the BG-Compass model
after 100 iterations; input data is noisy with average SNR = 10 dB.
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(a) Using the curvelet transform for sparsity promotion
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(b) Using SOT for sparsity promotion

Figure 3.20: Compressive FWI results with 3 supershots for the Marmousi model
after 100 iterations; input data is noisy with average SNR = 10 dB.
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(a) BG-Compass model

0 20 40 60 80 100
75

80

85

90

95

FWI Iterations

M
od

el
 F

it 
(%

)

 

 

SOT (SNR=∞)
SOT (SNR=10dB)
Curvelet (SNR=∞)
Curvelet (SNR=10dB)

(b) Marmousi model

Figure 3.21: Model fit versus FWI iteration number of SOT-domain sparsity regular-
ization with noiseless data (blue line) and noisy data at average SNR = 10 dB (red
line)
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Figure 3.22: Running time profile of forward modeling, l-PQN optimization and
dictionary learning versus FWI iterations

times of forward modeling and l-PQN optimization for the full-data FWI are also

provided. These profiles are shown in Figure 3.22. The computing cluster used for

time profiling is based on 12-core Intel R© Xeon R© CPU with 64GB RAM. Both the

forward modeling and the l-PQN optimization are accelerated by parallel computing.

Figure 3.22 shows that the running time of forward modeling and l-PQN opti-

mization for the full-data FWI is over 10 times of that for the compressive FWI. It is

also noticeable that, after the first FWI iteration, the running time for orthonormal

dictionary learning falls rapidly to a negligible level compared to the cost of the other

two phases. The online learning approach exhibits this behavior because it always

updates the latest and best dictionary for the incoming model perturbation at each

FWI iteration. Once a good dictionary has been obtained, many fewer training itera-

tions are required for the updates. Therefore, it is safe to say that the actual overhead

from orthonormal dictionary learning is not significant.
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Figure 3.22 also shows the running time of forward modeling and l-PQN opti-

mization of compressive FWI using the curvelet transform for sparsity promotion.

The modeling time is almost the same as the SOT-based method since the compres-

sion ratio is exactly the same. The l-PQN optimization time of the curvelet-based

method is several times slower than the SOT-based method. The underlying reason

is not difficult to explain, as the curvelet transforms, especially for those with high

decomposition levels on scales and orientations, have a much larger redundancy ratio

(about 7.2 when curvelets are used at the finest scale [20]) than the SOT (exactly 1

if evenly decomposed into patches, or slightly larger than 1 if unevenly decomposed).

For example, the Marmousi model of size Nz ×Nx = 120× 384 has 144× 432 =

62208 grids after adding the perfectly matched layer of thickness 24 on left, right and

bottom. Its curvelet transform coefficient vector with 5 decomposition scales and 32,

64, 64, 128 angles on the 2nd to 5th scales, respectively, is of length 476450. Hence

the redundancy ratio is 476450/62208 = 7.66. On the other hand, the SOT coeffi-

cient vector with an uneven patch decomposition is of length 65664, and hence the

redundancy ratio is 65664/62208 = 1.06. Since many vector and matrix calculations

are involved in the l-PQN optimization in which some vectors and matrices are as tall

as the coefficient vector (see Algorithm 3.2 and Equations (3.43), (3.48), etc.), the

difference in computational time between the curvelet-based and SOT-based methods

can be found easily. As a final comment, it is possible to reduce the redundancy ratio

of the curvelet transform as well as the l-PQN optimization time by using simpler

transforms with less amount of curvelets, however the performance of the compressive

FWI with curvelets would be degraded.
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CHAPTER IV

CONCLUSIONS AND FUTURE EXTENSIONS

4.1 Conclusions

Based on the study of wave propagation characteristics under the surface of the

earth, seismic methods are extensively used in geophysical exploration. These meth-

ods acquire seismic data from an array of receivers deployed in the seismic survey area,

and obtain a subsurface image of the earth by means of seismic imaging. Therefore,

high-quality seismic data reconstruction has become a critical preprocessing step prior

to the standard seismic imaging techniques such as migration and inversion. With

well-reconstructed seismic data, FWI is able to estimate high-resolution subsurface

velocity models. However, FWI needs to use a great amount of seismic data and has

a very high computational complexity. One way to improve its efficiency is by incor-

porating compressive sensing techniques to reduce its internal data dimensionality by

exploiting sparse representation and approximation of signals.

Dictionary learning has now become a promising technique for sparse signal rep-

resentation and approximation. Compared to traditional transforms such as wavelet,

contourlet, curvelet, etc. with predefined dictionaries, dictionary learning methods are

better able to adapt to nonintuitive signal regularities beyond piecewise smoothness

and can generate sparser signal representations. The key idea of dictionary learning

is that the dictionary has to be inferred from a set of training signals, which can be

either an outside corpus or the signals generated during processing. In this thesis, the

latter category is chosen for dictionary learning as it would be impractical to obtain

a large set of seismic signals from outside sources due to many restrictions.
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In Chapter 2 of the thesis, I presented novel reconstruction techniques, includ-

ing denoising and inpainting, for seismic datasets based on a sparsity-promoting

dictionary learning method. Unlike previous methods that train fully explicit dic-

tionary matrices but sacrifice efficiency, this method only requires learning a sparse

matrix after choosing a base dictionary that corresponds to an efficient transform

and also incorporates some prior knowledge about the data. Moreover, motivated by

the underlying structural similarity among dictionary atoms, this method involves a

constraint that each atom in the learned dictionary is itself a linear combination of

atoms in the base dictionary. Such a method improves the efficiency and stability

of dictionary learning and provides a new layer of adaptivity to the existing efficient

transforms. The experimental results indicate that both denoising and inpainting

results significantly outperform traditional methods based on the fixed transforms.

In Chapter 3 of the thesis, I presented a novel and efficient compressive sens-

ing scheme that significantly reduces the computational complexity for FWI. The

new method exploits sparsity by representing model perturbations with a sparse or-

thonormal transform (SOT) such that each patch of the model perturbation can

be represented with sparse coefficients over adaptive data-driven dictionaries trained

from previous results. Compared to traditional fixed transforms that are only op-

timal for objects with piecewise smoothness, the SOT is better able to adapt to

nonintuitive signal regularities such as complex geophysical features. Compared to

the traditional overcomplete dictionary learning methods, the orthonormal dictionary

learning method is much more efficient and can work in an online manner. The SOT

enables a significant reduction in the amount of data used in FWI by invoking the

strategy of compressive sampling, which is implemented by generating a few super-

shots and selecting a small number of frequencies for forward modeling. After that,

the original Gauss-Newton problem becomes an LASSO problem which can be effec-

tively solved using a projected quasi-Newton algorithm. The experiments presented
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show that high-quality inverted velocity models can be obtained with both simple

and complex geophysical features by working with a small subset of the full seismic

dataset, even in the presence of noise.

4.2 Future Extensions

Future work based on this research, especially for the efficient FWI implementation

using the SOT-based FWI, could be undertaken into two ways. The first one is to

extend the 2D frequency-domain FWI into 3D. Solving 3D FWI problems is much

more expensive than its 2D counterpart. In 2D FWI problems, the velocity models are

of size Nz ×Nx, which may include tens of thousands of grid points. However, in 3D

FWI problems there is another lateral direction, the y-axis, such that velocity models

are of size Nz×Nx×Ny with millions of grid points. The seismic wave equation has to

be propagated over many more grid points in 3D models, so the computational cost

will grow very rapidly with the model size. This creates a situation where one can

learn 3D-atom dictionaries and use them to produce a sparse representation of the

3D model perturbations. Since dictionary learning reshapes model patches and atoms

into vectors no matter how many dimensions in space they occupy, one can reasonably

infer their computational complexity according to the learning steps in Algorithm 3.1.

If the 3D patch size is nz×nx×ny, where nz � Nz, nx � Nx, ny � Ny, and all possible

overlapping patches are used for training, then each orthonormal dictionary learning

iteration costs O((nznxny)
2(Nz−nz + 1)(Nx−nx + 1)(Ny−ny + 1) + (nznxny)

3), and

applying the SOT with the 3D dictionary to a 3D model costs O(nznxnyNzNxNy).

Because the 3D geometry permits extra freedom for subsampling, the compressive

sensing scheme presented in the thesis could reduce even more the dimensionality in

3D FWI problems.

The second avenue for future research is to extend the frequency-domain FWI us-

ing random source encoding and SOT-based sparsity promotion into the time domain.
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Although FWI problems in both the time and frequency domains minimize almost

the same least-squares misfit function between the recorded and modeled seismic

data, implementations can be quite different. In the frequency domain, the gradient

vector and Hessian matrix of the FWI misfit function are computed with the help of

monochromatic Green’s functions. In the time domain, the gradient of the FWI misfit

function can be constructed by cross-correlating the forward modeling wavefield from

a shot source with a backward modeling wavefield from data residuals [65, 127]. Time-

domain FWI takes all frequencies into account for inversion, and it can yield more

accurate results. In addition, it costs less memory than the frequency-domain FWI

since no Helmholtz operator matrix needs to be inverted. However, time-domain FWI

could take significant computation time when the time step is small or the simulation

time duration is long. Future research work could generate supershots directly in the

time domain to reduce the problem dimensionality and perform online orthonormal

dictionary learning on the patches of the optimized model perturbations in previous

time-domain FWI iterations to build adaptive SOTs for sparsity promotion.
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APPENDIX A

THE PARALLEL MATRIX-FREE FRAMEWORK FOR

SEISMIC SIMULATION, SURVEY AND IMAGING

A.1 Introduction

Numerical simulation of seismic wave propagation is the cornerstone of geophysi-

cal exploration. Large amounts of seismic data must be acquired in order to estimate

subsurface properties for the purposes of academic research and industrial produc-

tion. Every successful seismic inversion software framework consists of a seismic wave

modeling engine that solves wave equations with model parameters to generate seis-

mic data, and an optimization engine that updates the model parameters based on

the value, gradient and Hessian matrix of the data-misfit objective function. With

the rapidly increasing need for exploring geologically more complex subsurface areas,

computation of seismic wave modeling and model parameter optimization have come

to heavily rely on high performance computing (HPC).

In order to facilitate the development of new seismic inversion methods, solving

seismic equations has to be well encapsulated as robust, efficient and scalable software

modules. This appendix chapter introduces basic concepts of wave propagation using

finite difference method in both time and frequency domains.

A.2 Acoustic and Elastic Wave Equations

The earth is an elastic media such that the seismic body waves traveling through

the interior of the earth have two components: primary wave (P-wave) and secondary

wave (S-wave). P-waves arrive at receivers first as they travel faster than any other

waves. P-waves are also called pressure waves as they cause pressure vibrations formed
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by alternating from compression to expansion of the medium along the wave traveling

direction. Hence P-waves are a type of longitudinal wave. S-waves travel slower than

P-waves and are also called shear waves as they shear the medium instead of changing

the volume of the medium through which they propagate. Hence S-waves are a type

of transverse wave.

For simplicity, some industrial seismic processing only considers P-waves, which

are described by an acoustic wave equation. It is verified by borehole data that the

density variations of the medium are not the main source of reflected waves [59].

Therefore, it is usually safe to assume a constant density of the medium. Then the

acoustic wave equation can be written as

1

v2(x)

∂2p(x, t)

∂t2
−∇2p(x, t) = f(x, t) (A.1)

where x , (x, y, z) is the 3D Cartesian coordinates in which x, y are two lateral

coordinates and z is the vertical coordinate, v(x) is the velocity of acoustic wave,

and p(x, t) is the acoustic pressure wavefield. The Laplace operator is defined as

∇2 ,
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
. On the right-hand side of (A.1), f(x, t) is the source function

that provides the initial wave energy. The Ricker wavelet is widely used as a seismic

source function and its time-domain function can be written as

f(t) = (1− 2π2f 2
p t

2)e−π
2f2p t

2

(A.2)

where fp refers to the peak frequency.

Elastic wave modeling offers a more realistic simulation approach than acoustic

wave modeling to study seismic wave propagation in the earth. Using a compact

form, the full three-component elastic wave equation can be written as

∂2s

∂t2
= v2

p∇ (∇ · s)− v2
s∇× (∇× s) + f (A.3)

where s , [sx, sy, sz]
T is the vector wavefield of particle displacement in the 3D

Cartesian coordinate system (x, y, z), vp is the P-wave velocity, and vs is the S-

wave velocity. The vector f , [fx, fy, fz]
T is the 3D input source. Since P-waves
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and S-waves are coupled in s, a separation of two wave types is necessary if one

needs to process each type independently with tailored algorithms. The Helmholtz

decomposition [3] can decouple the vector wavefield s in (A.3) (ignoring the 3D input

source f) into a curl-free wavefield sp and a divergence-free wavefield ss for P-waves

and S-waves, respectively, that satisfy



∂2sp

∂t2
= v2

p∇ (∇ · s) = v2
p∇A

∂2ss

∂t2
= −v2

s∇× (∇× s) = −v2
s∇×B

(A.4)

where sp , [sxp, syp, szp]T , ss , [sxs, sys, szs]
T are the particle displacement vec-

tors caused by P-waves and S-waves, respectively. A , ∇ · s and B , ∇ × s =

[B1, B2, B3]T are auxiliary variables. Since particle velocity v ,
∂s

∂t
= vp + vs where

v , [vx, vy, vz]
T , vp , [vxp, vyp, vzp]T and vs , [vxs, vys, vzs]

T , for each component,

(A.4) can be expanded as a series of equivalent first-order elastic wave equations




∂vxp

∂t
= v2

p

∂A

∂x
,

∂vyp

∂t
= v2

p

∂A

∂y
,

∂vzp
∂t

= v2
p

∂A

∂z

∂vxs

∂t
= −v2

s

(
∂B3

∂y
− ∂B2

∂z

)

∂vys

∂t
= −v2

s

(
∂B1

∂z
− ∂B3

∂x

)

∂vzs
∂t

= −v2
s

(
∂B2

∂x
− ∂B1

∂y

)

(A.5)

where the auxiliary variables A, B1, B2 and B3 are updated by




∂A

∂t
=
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

∂B1

∂t
=
∂vz
∂y
− ∂vy

∂z

∂B2

∂t
=
∂vx
∂z
− ∂vz
∂x

∂B3

∂t
=
∂vy
∂x
− ∂vx

∂y
.

(A.6)

A.3 The Finite-difference Time-domain (FDTD) Method

Finite difference (FD) methods are widely used to solve wave equations numeri-

cally because they are easy to implement, and have high accuracy as well as efficiency

119



[4, 31]. In order to solve the wave equation with a FD method, the continuous func-

tions and velocity models are represented by their values at grid points and derivatives

are approximated by linear combination of these values. Instead of solving the wave

equation in a continuous domain analytically, FD methods provide an approximated

solution on these grid points.

The estimation of derivatives used in wave equations (A.1), (A.5) and (A.6) are

crucial for FD methods. By writing p(x, t) in full as p(x, y, z, t), the partial derivative

of p(x, y, z, t) with respect to, for example, x, is defined as

∂p(x, y, z, t)

∂x
= lim

∆x→0

p(x+ ∆x, y, z, t)− p(x, y, z, t)
∆x

, (A.7)

and can be approximated by a scaled difference

∂p(x, y, z, t)

∂x
≈ p(x+ ∆x, y, z, t)− p(x, y, z, t)

∆x
(A.8)

assuming that the grid spacing ∆x is a small finite value rather than infinitesimal.

After applying the approximation twice, a central finite difference scheme for the

second-order partial derivative can be approximated as

∂2p(x, y, z, t)

∂x2
=

∂

∂x

(
∂p(x, y, z, t)

∂x

)

≈ 1

∆x

(
∂p(x, y, z, t)

∂x
− ∂p(x−∆x, y, z, t)

∂x

)

≈ p(x+ ∆x, y, z, t)− 2p(x, y, z, t) + p(x−∆x, y, z, t)

∆x2
.

(A.9)

The estimations of derivatives with respect to other arguments y, z and t follow a

similar pattern. For simplicity, a more compact form of notation is introduced





vi,j,k , v(i∆x, j∆y, k∆z)

p
(n)
i,j,k , p(i∆x, j∆y, k∆z, n∆t)

f
(n)
i,j,k , f(i∆x, j∆y, k∆z, n∆t),

(A.10)

then the FDTD expression of the time-domain acoustic wave equation (A.1) can be
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written as

1

v2
i,j,k

p
(n+1)
i,j,k − 2p

(n)
i,j,k + p

(n−1)
i,j,k

∆t2
− f (n)

i,j,k

=
p

(n)
i+1,j,k − 2p

(n)
i,j,k + p

(n)
i−1,j,k

∆x2
+
p

(n)
i,j+1,k − 2p

(n)
i,j,k + p

(n)
i,j−1,k

∆y2
+
p

(n)
i,j,k+1 − 2p

(n)
i,j,k + p

(n)
i,j,k−1

∆z2
.

(A.11)

Simple algebraic manipulations lead to an iterative forward update expression for the

discretized acoustic pressure wavefield as

p
(n+1)
i,j,k =

v2
i,j,k∆t

2

∆x2

(
p

(n)
i+1,j,k − 2p

(n)
i,j,k + p

(n)
i−1,j,k

)

+
v2
i,j,k∆t

2

∆y2

(
p

(n)
i,j+1,k − 2p

(n)
i,j,k + p

(n)
i,j−1,k

)

+
v2
i,j,k∆t

2

∆z2

(
p

(n)
i,j,k+1 − 2p

(n)
i,j,k + p

(n)
i,j,k−1

)

+ 2p
(n)
i,j,k − p

(n−1)
i,j,k + v2

i,j,k∆t
2f

(n)
i,j,k.

(A.12)

In (A.12), all values of p(x, t) are computed on standard integer-grid points which

are illustrated as black circles marked in Figure A.1(a). This is an easy-to-understand

scheme which serves as an excellent introductory example. However, in order to obtain

better accuracy, a staggered-grid scheme needs to be used.

(i, j, k)

(i, j, k + 1)

(i, j + 1, k)

(i + 1, j, k)

z

x

y
(i + 1, j + 1, k)

(i + 1, j, k + 1)

(i + 1, j + 1, k + 1)(i, j + 1, k + 1)

(a) Standard Grid

(i, j, k)

(i, j, k + 1)

(i, j + 1, k) (i + 1, j + 1, k)

(i + 1, j, k + 1)

(i + 1, j + 1, k + 1)

(i, j + 1/2, k)

(i, j, k + 1/2)

(i + 1/2, j + 1, k)

(i + 1/2, j, k + 1)

(i + 1, j + 1/2, k + 1)

(i + 1, j + 1, k + 1/2)

(b) Staggered Grid

Figure A.1: Grid discretization modes

With a sophisticated design, it turns out that higher-order approximations of the

derivatives can be obtained with much reduced approximation error, if one can make
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use of the half-grid points, which are staggered with respect to the integer-grid points.

As a 3D example, Figure A.1(b) illustrates 8 different sets of staggered grids in which

7 of them marked by non-black colors are located in half-grid points.

The Taylor series of a function p(u) on the half-grid points can be written as





p

(
u+

2k + 1

2
∆u

)
= p(u) +

∞∑

n=1

1

n!

∂np(u)

∂un

(
2k + 1

2
∆u

)n

p

(
u− 2k + 1

2
∆u

)
= p(u) +

∞∑

n=1

(−1)n

n!

∂np(u)

∂un

(
2k + 1

2
∆u

)n (A.13)

where u refers to any one of the x, y, and z axis (denoted as u = x, y, z) and k =

0, 1, 2, . . . . The difference between the two lines in (A.13) cancels all the terms with

even n, and the result is

p
(
u+ 2k+1

2
∆u
)
− p

(
u− 2k+1

2
∆u
)

(2k + 1)∆u

=
∂p(u)

∂u
+
∞∑

n=1

1

(2n+ 1)!

∂(2n+1)p(u)

∂u(2n+1)

(
2k + 1

2
∆u

)2n

, k = 0, 1, 2, . . .

(A.14)

Using a linear combination of the finite differences based on (A.14), the partial deriva-

tive
∂p(u)

∂u
defined at integer grid points u = k∆u can be approximated as

∂p(u)

∂u

∣∣∣∣
u=k∆u

=
N−1∑

k=0

ak
p
(
u+ 2k+1

2
∆u
)
− p

(
u− 2k+1

2
∆u
)

(2k + 1)∆u

=
N−1∑

k=0

ak

[
∂p(u)

∂u
+

∆u2

3! · 22
(2k + 1)2∂

3p(u)

∂u3
+

∆u4

5! · 24
(2k + 1)4∂

5p(u)

∂u5
+ · · ·

+
∆u2N−2

(2N − 1)! · 22N−2
(2k + 1)2N−2∂

2N−1p(u)

∂u2N−1
+ o(∆u2N)

]
.

(A.15)

If the weights {ak}N−1
k=0 are assigned properly, all the terms on the right-hand side of

(A.15) can be eliminated except
∂p(u)

∂u
and the approximation error in the order of
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o(∆u2N). Therefore, {ak}N−1
k=0 should satisfy the following system of linear equations




1 1 · · · 1

12 32 · · · (2N − 1)2

14 34 · · · (2N − 1)4

...
...

. . .
...

12N−2 32N−2 · · · (2N − 1)2N−2







a0

a1

a2

...

aN−1




=




1

0

0

...

0




whose results for different values of N can be briefly exemplified as

N = 1 : a0 = 1

N = 2 : a0 = 9/8, a1 = −1/24

N = 3 : a0 = 75/64, a1 = −25/384, a2 = 3/640

...

This definition shows that the values of p(u) and
∂p(u)

∂u
are defined on staggered

grids. All p(u) values can be defined in the half-grid points while all
∂p(u)

∂u
values can

be defined in the integer-grid points, or vice versa. It is easy to find out that
∂2p(u)

∂u2

are also defined in the same grids as p(u) by using the approximation (A.15) twice.

The FDTD method of more complex systems such as elastic wave equations uses

more than one set of staggered grids, as shown in Figure A.1(b) with different colors,

to define a variety of variables such as particle velocities and auxiliary variables as

well as their partial derivatives.

The efficiency of FDTD can be further improved by parallel computing with Mes-

sage Passing Interface (MPI), a standard that exchanges data from the memory space

of one process to that of another process (running in another processor or another

computing node connected by high-speed network) through cooperative operations

and has become the industry standard of HPC.
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A.4 Absorbing Boundary Conditions

Seismic waves propagate in an unbounded subsurface medium in real seismic sur-

veys. For the sake of computational efficiency and storage, a seismic survey is only

simulated in a truncated region. If no special techniques are applied on the bound-

aries of the simulated region, the FD methods would generate strong reflections which

do not physically exist in the real seismic survey. In order to generate accurate seis-

mic data that can account for subsurface features and eliminate artificial boundary

reflections, a common method is to enforce the absorbing boundary condition (ABC)

[29, 46]. Figure A.2 illustrates a 2D scenario in which the truncated velocity model’s

left, right, and bottom boundaries are padded with absorbing boundaries of a certain

thickness. The top of the simulated region is considered to be the free surface of the

earth without an ABC being applied. An ABC attenuates the wave amplitudes in

those absorbing boundaries to zero and keep the wavefield unaltered outside of the

absorbing boundaries.

Truncated Simulation Region

absorbing boundary

absorbing 
boundary

absorbing 
boundary

Shot Source

Figure A.2: Absorbing boundaries of a 2D simulation region

The Perfectly Matched Layer (PML) method, which was originally derived for the

simulation of electromagnetism with Maxwell equations [9], produces an absorbing

boundary layer that can exponentially decay the outgoing waves from the boundary

124



of a truncated simulation region regardless of its incident angle and frequency. For

seismic wave simulations, the PML has also been successfully applied in both acoustic

and elastic wave equations [63].

0 < d(x) < 1

0 < d(z) < 1

z}|{ z}|{

{ }

0 < d(x) < 1

Truncated Simulation Region

0 < d(z) < 1

d(u) = 0

u = x, z

absorbing boundary

absorbing 
boundary

absorbing 
boundary

Figure A.3: The damping profile d(u)

By defining a damping profile function d(u), u = x, y, z, such that d(u) = 0 inside

the truncated simulation region and d(u) > 0 in the PML region, a new complex

coordinate ũ is introduced as

ũ(u) = u+
1

jω

∫ u

0

d(s)ds. (A.16)

Then, in wave equations, all partial derivatives with respect to u, i.e.
∂

∂u
, have to be

replaced by

∂

∂ũ
=

jω

jω + d(u)

∂

∂u
, (A.17)

yielding a split-PML scheme as each spatial coordinate u = x, y, z needs to be treated

separately.

Three steps are required to apply the PML to a time-domain wave equation.

First, the time-domain wave equation is transformed into the frequency domain. For

a first-order wave equation with the form

∂F

∂t
= c

∂G

∂u
(A.18)
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where c is a constant, F and G are arbitrary variables denoting particle velocity or

auxiliary variables, the frequency-domain representation is

jωF̂ = c
∂Ĝ

∂u
. (A.19)

Second, the spatial partial derivative
∂

∂u
is replaced by

∂

∂ũ
according to (A.17),

jωF̂ = c
∂Ĝ

∂ũ
=

jωc

jω + d(u)

∂Ĝ

∂u
. (A.20)

Third, the frequency-domain equation (A.20) is inverse transformed back to the time

domain,

∂F

∂t
+ d(u)F = c

∂G

∂u
. (A.21)

After these three steps, the FDTD method can be used as before to conduct the

numerical simulation.
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Figure A.4: 2D elastic wavefields generated by FDTD with split-PML

Figure A.4 shows a 2D elastic wave simulation based on a 6th-order staggered-grid

FDTD with the split-PML scheme. Figure A.4(a) shows the P-wave velocity model
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vp(x) with several faults while the S-wave velocity model vs(x) = vp(x)/
√

2, and the

black asterisk refers to the shot position xs. Figure A.4(d) plots the source excitation

as a Ricker wavelet with peak frequency fp = 10 Hz. Figures A.4(b), A.4(c), A.4(e),

A.4(f) depict the particle velocity wavefield snapshots at time t = 0.33 s for both

the x- and z-axis components caused by the P- and S-waves. The dashed rectangle

denotes the boundary between the simulation region and the PML. These figures

clearly show that all outgoing waves traveling outside the simulation region have

been absorbed in the PML.

Another nonsplit convolutional-PML scheme is introduced in [63] and is used for

both FDTD and FDFD methods of this thesis. It transforms (A.17) in the time

domain with this form

∂

∂ũ
=

∂

∂u
+ ζu(t) ∗

∂

∂u
=

∂

∂u
−
(
d(u)H(t)e−d(u)t

)
∗ ∂

∂u
, (A.22)

where H(t) is the Heaviside step function. By defining a new variable ψ
(n)
u ,

ζu(t) ∗
∂

∂u

∣∣∣∣
t=n∆t

, the convolution term in (A.22) can be computed as

ψ(n)
u = buψ

(n−1)
u + (bu − 1)

∂

∂u

∣∣∣∣
t=(n− 1

2
)∆t

(A.23)

where bu = e−d(u)∆t.

A.5 The Finite-difference Frequency-domain (FDFD) Method

The FDFD methods bring in new processing techniques and could offer several

advantages over the FDTD counterparts in certain situations. For example, taking

the temporal Fourier transform of (A.1) on both sides yields the frequency-domain

acoustic wave equation

− ω2

v2(x)
p̂(x;ω)−∇2p̂(x;ω) = f̂(x;ω). (A.24)

The spatial discretization of (A.24) is the same as the setting for the FDTD method,

using either a standard integer-grid scheme or a staggered-grid scheme in addition to

the PML.
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Figure A.5: Visualization of the sparsity pattern of an impedance matrix B(ω) of
size 120× 120 using the first-order FD for a specific frequency ω based on a very tiny
model of size 10× 12, where blue dots denote its nonzero entries

As an introductory example, by defining





vi,j,k , v(i∆x, j∆y, k∆z)

p̂
(ω)
i,j,k , p(i∆x, j∆y, k∆z;ω)

f̂
(ω)
i,j,k , f(i∆x, j∆y, k∆z;ω)

(A.25)

and using the first-order FD, the non-PML region of (A.24) can be discretized for a

specific grid point (i, j, k) at frequency ω as

− ω2

v2
i,j,k

p̂
(ω)
i,j,k −

[
p̂

(ω)
i+1,j,k − 2p̂

(ω)
i,j,k + p̂

(ω)
i−1,j,k

∆x2

]

−
[
p̂

(ω)
i,j+1,k − 2p̂

(ω)
i,j,k + p̂

(ω)
i,j−1,k

∆y2

]

−
[
p̂

(ω)
i,j,k+1 − 2p̂

(ω)
i,j,k + p̂

(ω)
i,j,k−1

∆z2

]
= f̂

(ω)
i,j,k

(A.26)

in which p̂
(ω)
i,j,k and its 6 direct neighbors form a linear equation. Therefore, a system

of linear equations parameterized by ω can be written as

B(ω)p̂(ω) = f̂(ω) (A.27)
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by reshaping p̂
(ω)
i,j,k and f̂

(ω)
i,j,k, ∀(i, j, k), into column vectors p̂(ω) and f̂(ω), respectively.

The square matrix B(ω) is the Helmholtz operator matrix, also called the impedance

matrix [85], whose coefficients are complex numbers and depend on the frequency,

the velocity model, the approximation coefficients and the PML settings. The square

matrix B(ω) is highly sparse because p̂
(ω)
i,j,k is only dependent on its adjacent grid

points such that each row of B(ω) only contains a few nonzero entries. Figure A.5

visualizes the sparsity pattern of a B(ω) of size 120× 120 using the first-order FD for

a specific frequency ω, based on a very tiny model of size 10× 12.

The linear system (A.27) can be solved with a direct-solver method such as invert-

ing B(ω) with the LU decomposition [2]. For large-scale simulations, the direct-solver

method is no longer affordable because B(ω) is so huge that inverting it requires

tremendous memory and computational costs. Alternatively, iterative wave-equation

solvers [47, 101, 107] are able to accomplish the task with lower memory requirements

but higher time costs.

The FDFD methods do not need to compute sequentially since no time steps are

involved. Hence one can solve wave equations only in the important part of spectrum.

Since the wave equations are independent over shot source positions and frequencies,

FDFD can be easily parallelized across them without the need of MPI to achieve

a better processing speed, provided that memory requirements are not a significant

limitation.
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(c) Green’s function at 30 Hz

Figure A.6: Green’s functions at different frequencies
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The Green’s function, which is the impulse response of a PDE, can be easily

obtained with FDFD by simply replacing the source term vector f̂(ω) in the right-

hand side of (A.27) with another column vector δ(x− xs) that has only one nonzero

element whose index corresponds to the source position xs,

B(ω)G(ω,xs) = δ(x− xs). (A.28)

Figure A.6 illustrates several Green’s function G(ω,xs) for the fault model shown

in Figure A.4(a), which are calculated at different frequencies ranging from 10 Hz to

30 Hz in parallel. The shot sources are located underground at a depth of 500 m.

As before, the boundary between the simulation region and the PML is marked by

dashed rectangle and all outgoing waves are absorbed inside the PML.
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Figure A.7: Products of two Green’s functions show the monochromatic wavepaths
for source/receiver pairs, where blue asterisks mark the source locations xs and blue
circles mark the receiver locations xr in the fault model.

The Green’s functions are core components for FWI. As was previously seen in

Section 3.2, the minimization of the FWI misfit function requires to generate its

gradient and Hessian matrix based on the Jacobian matrix, which stacks products of

two Green’s functions in a row-wise manner. One Green’s function corresponds to a

source location xs and another one corresponds to a receiver location xr. The product

of two Green’s functions corresponding to a pair of source and receiver is also referred

to as a wavepath. Figure A.7 shows several monochromatic wavepaths for different
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source/receiver pairs. For a seismic survey using Nω frequencies, Ns sources and Nr

receivers, a total of Nω(Ns +Nr) Green’s functions need to be evaluated with FDFD

to calculate the gradient and Hessian matrix for one FWI iteration, which could result

in expensive computational costs. This is the reason that HPC is extensively used

for FWI in the study of exploration geophysics.

On the other hand, it is far more difficult to compute Green’s functions with

FDTD because the time-domain impulse function δ(t)δ(x−xs) has an infinitely wide

spectrum. In order to obtain accurate FDTD results, the grid point spacing and

time step would need to be infinitely small to avoid grid dispersion and numerical

instability, which is going to be introduced next.

A.6 Grid Dispersion and Instability

The above introduction conveys the message that a variety of parameters need

to be determined for seismic wave simulations, such as grid point spacing, source

function spectrum, sampling rate, and time step, etc. For the sake of stability and

accuracy of the numerical scheme, some prior conditions should be honored when

adjusting parameters.

The Nyquist sampling criterion suggests that a sinusoid can be perfectly repre-

sented by at least n = 2 samples per wavelength. However, the Nyquist rate of n = 2

samples per wavelength is far from sufficient for FD methods because it leads to in-

accurate estimation of first and second derivatives. As a result, the high-frequency

wave components with short wavelengths will slow down and even stop propagating,

yielding the numerical artifacts known as grid dispersion.

To avoid the occurrence of grid dispersion, the grid point spacing ∆u needs to

fulfill the following criterion

∆u ≤ λmin

n
=

vmin

nfmax

(A.29)
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Figure A.8: Illustration of grid dispersion

where λmin, vmin are the minimal wavelength and velocity, respectively, n is the num-

ber of sampling points per minimal wavelength, and fmax is the maximal frequency

of the source function spectrum. For reliable simulations, [66, 70, 98] suggest using

n ≥ 10, i.e., the minimum wavelength should cover at least 10 grid points.

Figure A.8 illustrates the effects of grid dispersion on the wavefields, which are

generated in the same simulation region with a fixed grid point spacing ∆x = ∆z =

10 m. Several Ricker wavelet functions with increasing peak frequencies fp are used

as sources. When a low frequency fp is selected such that n ≥ 10 samples are used

to represent the minimum wavelength, the wavefields are sharply depicted in Figures

A.8(a) and A.8(b). For an increased fp with n = 4, then slight grid dispersion occurs
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as shown in Figure A.8(c). The effect of grid dispersion becomes obvious in Figure

A.8(d) when only the Nyquist rate n = 2 is used.
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Figure A.9: Illustration of instability

Similarly, in order to keep wave simulations stable, the temporal discretization

has to satisfy a sampling criterion such that the traveling distance of waves in a time

step ∆t must be no larger than the grid point spacing, i.e.,

2D case :
√

2 · vp,max ·∆t ≤ min{∆x,∆z}

3D case :
√

3 · vp,max ·∆t ≤ min{∆x,∆y,∆z}
(A.30)

where vp,max is the maximum P-wave velocity. The criterion (A.30) is called Courant-

Friedrichs-Lewy (CFL) condition [30]. Figure A.9 illustrates two simulation cases

in which the left one satisfies the CFL condition with a sufficiently small ∆t and

guarantees a stable wave propagation, while the right one violates it with a large ∆t

and results in a totally unstable wave propagation with infinite amplitudes.
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APPENDIX B

THE BORN APPROXIMATION

The Born approximation was proposed by Max Born [15] for scattering theory

in quantum physics and has been widely used in different areas. In the context of

seismic waves, when the velocity model is changed a little, it is reasonable to sup-

pose that the resulting wavefield would not change substantially, e.g., the scattering

waves as reflections that result from a rough perturbation to a smooth background

velocity model. The Born approximation provides a linear and invertible relationship

between the small model perturbation and the corresponding small wavefield change.

Therefore, it has become the basis of most inversion methods based on linearization.

As an example, this chapter derives the Born approximation of the seismic wave

equation based on the constant-density acoustic wave equation

m(x)
∂2p(x, t)

∂t2
−∇2p(x, t) = f(x, t) (B.1)

where m(x) ,
1

v2(x)
is an arbitrary velocity model and p(x, t) is the pressure wave-

field.

If an incident model m(x) is disturbed by a small perturbation δm(x):

m′(x) , m(x) + δm(x), (B.2)

the total pressure wavefield p′(x, t) generated by the same excitation that satisfies

m′(x)
∂2p′(x, t)

∂t2
−∇2p′(x, t) = f(x, t) (B.3)

can be explained as the summation of the incident pressure wavefield p(x, t) and the

wavefield perturbation δp(x, t):

p′(x, t) , p(x, t) + δp(x, t). (B.4)
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Subtracting (B.1) from (B.3) leads to the following equation

m(x)
∂2δp(x, t)

∂t2
−∇2δp(x, t) = −δm(x)

∂2p′

∂t2
(x, t). (B.5)

This equation cannot be solved yet since its right-hand side still depends on the

unknown δp(x, t) through p′(x, t). Nevertheless, δp(x, t) can be expressed as the

following temporal-spatial integration

δp(x, t) = −
∫ t

0

∫

R3

G(x, t− τ ; ξ)δm(ξ)
∂2p′

∂t2
(ξ, τ)dξdτ (B.6)

using the time-domain Green’s function G(x, t − τ ; ξ) whose source is located at

ξ. Mathematically, let G denote a temporal-spatial integral transform with kernel

G(x, t− τ ; ξ):

(Gf)(x, t) , −
∫ t

0

∫

R3

G(x, t− τ ; ξ)f(ξ, τ)dξdτ, (B.7)

then (B.6) can be compactly written as

δp = −Gδm∂2p′

∂t2
, (B.8)

and the total wavefield p′ including the wavefield perturbation δp becomes

p′ = p− Gδm∂2p′

∂t2
(B.9)

which is called Lippmann-Schwinger equation in the context of quantum physics [76].

Then equation (B.9) can be reformulated as

p′ =

(
I + Gδm ∂2

∂t2

)−1

p. (B.10)

This formulation makes an explicit nonlinear relationship between the total wavefield

p′ and the incident wavefield p.

The expression (I + A)−1 for some operator A can be expanded as a Neumann

series

(I + A)−1 = I +
∞∑

k=1

(−1)kAk = I−A + A2 −A3 + . . . (B.11)
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given that ‖A‖ < 1 in some kind of norm. In this case, (B.10) can be expanded as

p′ =

(
I + Gδm ∂2

∂t2

)−1

p

= p− Gδm ∂2

∂t2
p +

(
Gδm ∂2

∂t2

)(
Gδm ∂2

∂t2
p

)
− . . .

(B.12)

provided that

∥∥∥∥Gδm
∂2

∂t2

∥∥∥∥ < 1 is satisfied, and this expression is called a Born series.

Using the definition of G, the second and third terms of (B.12) can be explicitly

written as

− Gδm ∂2

∂t2
p , −

∫ t

0

∫

R3

G(x, t− τ ; ξ)δm(ξ)
∂2p

∂t2
(ξ, τ)dξdτ (B.13)

and
(
Gδm ∂2

∂t2

)(
Gδm ∂2

∂t2
p

)

,
∫ t

0

∫

R3

G(x, t− τ ; ξ)δm(ξ)
∂2

∂t2

[∫ τ

0

∫

R3

G(ξ, τ − µ;υ)δm(υ)
∂2p

∂τ 2
(υ, µ)dυdµ

]
dξdτ.

(B.14)

They refer to single scattering and double scattering, respectively. The physical

explanation of the single scattering is: the incident wavefield initializes the wave

propagation at time 0, generates scattering waves at location ξ and time τ due to

the model perturbation δm(ξ), and these scattering waves reach location x at time t.

The physical explanation of the double scattering is: the incident wavefield initializes

the wave propagation at time 0, generates scattering waves at location υ and time µ

due to the model perturbation δm(υ), then generates scattering waves a second time

at location ξ and time τ due to the model perturbation δm(ξ), and these scattering

waves reach location x at time t. Similarly, higher-order terms in (B.12) represent

multiple-time scatterings.

The Born approximation takes the single scattering as the approximation for the

wavefield perturbation

δp ≈ −Gδm ∂2

∂t2
p. (B.15)

136



This approximation can be translated back to a PDE,

m(x)
∂2δp(x, t)

∂t2
−∇2δp(x, t) = −δm(x)

∂2p

∂t2
(x, t). (B.16)

Comparing with (B.5), the right-hand side of (B.16) depends on the incident

wavefield p(x, t), which can be regarded as fixed for solving the wavefield perturba-

tion δp(x, t) since p(x, t) is determined from the incident model m(x) alone. There-

fore, a linear relationship between the model perturbation δm(x and the wavefield

perturbation δp(x, t) is established.
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