Player Localization Using Multiple Static Cameras for Sports Visualization

Raffay Hamid', Ram Krishan Kumar', Matthias Grundmann*, Kihwan Kim?*, Irfan Essa?, Jessica Hodgins'
Disney Research, Pittsburgh PA 15213
tGeorgia Institute of Technology, Atlanta GA 30332

t{raffay, ramkris, jkh}@disneyresearch.com, *{grundmann,kihwan23,irfan}@cc.gatech.edu

Figure 1: Enhanced Sports Visualization - The offside line and offense player in potential offside position are highlighted.

Abstract

We present a novel approach for robust localization of mul-
tiple people observed using multiple cameras. We use
this location information to generate sports visualizations,
which include displaying a virtual offside line in soccer
games, and showing players' positions and motion patterns.
Our main contribution is the modeling and analysis for the
problem of fusing corresponding players' positional infor-
mation as finding minimum weight K-length cycles in com-
plete K-partite graphs. To this end, we use a dynamic pro-
gramming based approach that varies over a continuum of
being maximally to minimally greedy in terms of the number
of paths explored at each iteration. We present an end-to-
end sports visualization framework that employs our pro-
posed algorithm-class. We demonstrate the robustness of
our framework by testing it on 60,000 frames of soccer
footage captured over 5 different illumination conditions,
play types, and team attire.

1. Introduction

Visualizing multi-player sports has grown into a multi-
million dollar industry [2]. However, inferring the state of
a multi-player game remains an open challenge, specially
when the context of the game changes dynamically (e.g.,
soccer, field hockey, basketball). Our work is geared to-
wards the visualization of this particular subset of sports.

A key technical challenge for sports visualization sys-
tems is to infer accurate player positions in the face of oc-
clusion and visual clutter. One solution for this is to use

multiple overlapping cameras [15], provided the observa-
tions from these cameras could be fused reliably. Our work
explores this question of efficient and robust fusion of visual
data observed from multiple synchronized cameras.

The main theoretical contribution of our work is a novel
class of algorithms that poses fusing location evidence of
players observed from multiple cameras as iteratively find-
ing minimum weight K-length cycles in a complete K-
partite graph. Nodes in each partite of this graph represent
blobs of detected players in different cameras. The edge-
weights in this graph are a function of pair-wise similarity
between blobs observed in camera-pairs, and their corre-
sponding ground plane distances (see Sec. 3.5). We model
the correspondence between a player’s blobs observed in
different cameras as a K-length cycle in this graph (Fig. 2).

Another important challenge in sports visualization is
the appropriate usage of player positions to generate visual-
izations that might be useful for the viewers, coaches, and
players. While there has been a lot of work in this regard
(see e.g. [14], and the references within), here we propose
a novel end-to-end visualization framework that is different
from most of the previous works in a few important ways.

First, our goal is to generate informative sports visual-
izations, and not to develop a decision making system [10].
Second, the design principle of our system is to have a
framework that is readily deployable to different playing lo-
cations. This is why unlike some previous works [3], we fo-
cus on only using static cameras. Finally, we are interested
to generate sports visualizations with minimal supervision.
This is different from previous systems [18] [7] that usually
work off-line, and require substantial supervision.

7’ N I ’

Common Ground Plane

Tt Cam 1
éf"— ~~~V§ Cam 2

Cam1 Cam3 Cam 3

/g\ '

Example Player Locations Corresponding Graph Representation

Figure 2: An example set of player positions in a soccer field is shown.
Nodes in the corresponding K (=3) partite graph represent the player blobs
detected in the 3 cameras projected to a common ground plane. In this
graph, edge weights are a function of pair-wise appearance similarity of
blobs and their corresponding ground plane distances (Sec. 3.5).

The particular visualizations we have developed include
displaying a virtual offside line in soccer games, high-
lighting players in passive offside positions, and showing
players’ motion patterns accumulated over time. To demon-
strate the robustness of our framework, we present its results
over 60, 000 frames of soccer footage captured over 5 dif-
ferent illumination conditions, play types, and team attire.

2. Multi-View Data Fusion

Data fusion using multiple information sources is a thor-
oughly studied problem [8]. Some of the recent work in
this regard has focused on combining low-level sensor data
to achieve robust inference [16] [19]. In this work however,
we focus on mid-level fusion that combines local inference
at each camera to reach a coherent global inference.

The problem of finding multi-object multi-frame cor-
respondence has previously been viewed from a variety
of different perspectives, including constrained optimiza-
tion [12], and greedy randomized search [23]. A wealth of
previous work to this end has also modeled their problems
using bi-partite graphs [22], the optimization for which is
well studied [1]. To overcome the constraints posed by the
bi-partite structure, there have been some recent attempts to
use complete K -partite graphs [1 1] [21].

Our approach however is different from such methods in
two important ways. First, given the temporal constraints of
previous problems, the graphs they have used consist of di-
rected edges. This restricts their search space, and makes
their solution depend on the order of individual graph-
partites. As we fuse data at a per-frame level, our prob-
lem does not pose temporal constraints, requiring us to use
undirected graphs. This necessitates our solution to be more
general in terms of exploring a larger search space, while
being independent of the order of individual graph-partites.
Second, graphs previously used have mostly acyclic struc-
ture, which is not true for our setting. This transformation
of optimization from acyclic to cyclic graphs is novel. In the

Tier 1

Tier 1

Tier 2 Tifer 2
Ti;er K-1 TierK-1
Tier K Tier K

Tier K+1 O Dst

(a) (b) (©

Figure 3: (a) A complete K -partite graph G with edge structure of only
one node shown. (b) A subgraph G, generated from G is shown, where
tiers 1 and K + 1 only contain node v. Besides the 1% and the (K + 1)%
tiers of G, its topology is the same as that of G. (c) A cycle c € G
spanning each tier of G once and only once is shown using solid lines.
Path p, € G, equivalent to the cycle ¢ € G is shown in dotted lines.

Tier K+1

remaining part of this section, we provide details regarding
our modeling and analysis of the problem at hand.

2.1. Problem Statement

Given a complete K -partite graph G with K tiers, find the
minimum weight cycle ¢ € G, such that ¢ passes through
each k € K once and only once.

A complete K -partite graph and a node-cycle are shown in
Fig. 3-a and c respectively. We iteratively find and remove
K-length minimum weight cycles from G until there remain
no more cycles in in the graph.

2.2. Naive Solution — Brute Force Search

A naive solution to our problem would be to first enumerate
all K-length cycles in the graph, and then search for the
minimum weight cycle in a brute force manner. With n
nodes in each of the K tiers, the total number of cycles to
enumerate would be O(n® K!). Even for relatively small
values of n and K, this solution is quite intractable, and a
more efficient solution is therefore needed.

2.3. Exploiting Problem Characteristics

Note that our problem exhibits two key characteristics that
could be exploited to formalize a more efficient solution.

1- Optimal Sub-Structure: The property of optimal sub-
structure implies that an optimal solution of a problem can
be constructed from optimal solutions of its sub-problems.
More specifically, in our case:

Lemma 1: A sub-path p between nodes {u, v} € c is the
shortest path between u and v [0].

2- Overlapping Sub-Problems: The property of overlap-
ping sub-problems implies that a problem can be broken
down into sub-problems which are re-used several times.
More specifically, in our case:

Lemma 2: A shortest path between nodes u and v is less
than or equal to the shortest path between u and an inter-
mediate node w, and the shortest path between w and v [0].

These properties enable us to use dynamic programming
based approach of memoization of the solution-set from one
step to the next in an incremental way. This allows us to
view the solution of our problem over a continuum of be-
ing maximally to minimally greedy in terms of the number
of paths explored at each iteration. Recall that the globally
optimal solution of our problem is NP-hard for k£ > 3 [21].
Therefore, the ability to choose its appropriate approximate
solution given the application requirements of search effi-
ciency versus optimality can be quite useful in practice.

2.4. From Cycles to Paths

As our problem is cyclic in nature, the edges we find must
start and end at the same node. Note that while using tradi-
tional dynamic programming, there is no guarantee that the
shortest path returned by the algorithm would necessarily
end at the same node as the source node. We therefore need
to modify our graph representation such that we could sat-
isfy the cyclic constraint of our problem, while still using a
dynamic programming based scheme.

Assume the size of all nodes V' &€ G is n. For each node
v € V, we can construct a subgraph G, with K + 1 tiers,
such that the only node in the 1% and the (K + 1) tier of
G, is v. Besides the 1% and the (K + 1) tiers of G,, its
topology is the same as that of G. (see Fig. 3-b). Note that
the shortest cycle in G involving node v is equivalent to the
shortest path in GG, that has v as its source and destination
(see Fig. 3-c). Our problem can now be re-stated as:

Modified Problem Statement: Given G, construct G,
Vv € V. Find shortest K length paths P = {p, € G,Yv €
V'} that span each tier once and only once. Find shortest
cycle in G by searching for shortest path in P.

We now present a class of algorithms for finding the shortest
path p, € G,. The overall shortest cycle in GG can then be
found by repeating this process Vv € V.

Algorithm 1 - Maximally Greedy Approach

for k=2,3,..., K do
for all u € V do
S={¢},Q={¢}
for allv € N(u, k) do
S =S U{Cyy -1} +w(v,u)} //Set of costs
Q = QU { P -1} + (v,t,)} //Set of paths
end for
i = index(max(S)); Squxy = S[i]; Qury = Qlil;
end for
end for
forallv € V do
S =SU{Cyrxy +w(v,s)}
Q=QU {P{U,K} + (’U,S)}
end for
i = index(max(.5)); Chest = S[i]; Poest = Q[1];

2.5. Finding the Shortest Path in G,
2.5.1 Notations and Definitions

Let T be the set of all tiers € G, and t, be the tier of a
node v € V. Let P, j_1} denote the shortest & — 1 length
path from source to v, and let Sy, j_1} denote the set of
tiers covered by Py, ;_1}. Let Cy, x—1y denote the cost
of Pp, p—1y. Similarly, let Py, ;_1¢,} denote the best k —
1 length path from source to v that does not pass through
t., and let S{w k—1,t.} denote the set of tiers covered by
Py k—1,t,}- Let Cpy g1, denote the costof Ppy 1,3
We define the neighborhood of u as:

. tu ¢ S{'U,Icfl}
v € N(u, k) iff { f £ by n

2.6. Algorithm 1: Maximally Greedy

Algorithm 1 considers the best £ — 1 length path stored in
each of the neighbors of a node u in order to compute the
best k length path from the source to u.

Algorithm Complexity: The complexity of Algorithm |1
for finding shortest path in G, is O(n?K), and for finding
shortest cycle in G'is O(n3K).

Bottleneck Cases: Note that Algorithm | proceeds in a
maximally greedy manner. Also, recall that we want to find
paths in GG, that span each tier once and only once. These
two factors can result in cases wherein computing the best k
length path for a node u, Algorithm 1 cannot query a certain
node v anymore, as the best £ — 1 length path at v already
passes through t,, (Fig. 4-a). If best paths at {Vv € V' \ u}
already span t,,, Algorithm | cannot converge anymore. We
can therefore state the convergence condition as:

KN (u, k) >0 V(u, k) (3]
Note that here convergence does not necessarily imply op-
timality. i.e., the state where the solution returned by an al-
gorithm is the same as that of exhaustive search (Sec. 2.2).
This is because due to the greedy search policy of Algo-
rithm 1, the invariant of Lemma 1 cannot always be guar-
anteed to hold. Algorithm 1 therefore greedily attempts to
find the best solution that it can, and as often as it can.

2.7. Algorithm 2: Exclude Each Tier at Least Once

Note that in Algorithm 1, if Py, ;_1} spans ¢, then the sub-
set of nodes {u|t, = tx} cannot use this path anymore. We
therefore need alternate paths ending at v that do not pass
through ¢; such that nodes {u|t, = ¢} could use these
alternative paths in next iterations. Algorithm 2 (see Ap-
pendix A) tries to achieve this by keeping the minimal set
of best k—1 length paths that exclude each tier at least once.
Figure 4-b shows how Algorithm 2 keeps alternate paths to
allow u to have a larger set of neighbors than that provided
by Algorithm 1.

Tier 1 @
Tier2 (O (XD O O
Ter3 O @ O O

Tier 4 O O O

Tier 5 @
(@) (b)

®@ O ©® O
O

Path length =2 Path length =2

O Ot —uyin O Ot — iy
O Ot—wiy W O bt—wye
O O t—tyi) O Ot —tuey
O Ou—w O Ot— i

o {60, (6,60, (6, 1), (5, 13}

Length 3 Paths Available At t;

® {6, 6,60, . 43}

Length 3 Paths Available At t,

©) (d

Figure 4: (a) While computing the best 3-length path for u, Algorithm 1 cannot query v, as the best 2-length path at v already passes through t,,. (b)
Algorithm 2 maintains the minimal set of shortest 2-length paths for v that exclude each tier at least once. The extra path stored in v allows Algorithm 2 to
query it, thus adding it to the neighborhood of w. (¢) The minimal set of tiers spanned by shortest 2-length paths for each tier are enlisted. Here, t1 — {¢3}
represents 2-length path from source ending at ¢1 and including ¢3. Also enlisted are all the 3-length paths available at t2. As all these paths share ¢1, the
nodes in ¢1 cannot probe nodes in t2 in the next iteration. (d) Algorithm 3 resolves this bottleneck by keeping paths for all combinations of tiers. While in
Fig. 4-c all 3-length paths available at ¢3 had ¢; in common, it is not the case anymore due to the extra path that spans {¢3,t4}.

Algorithm Complexity: The complexity of Algorithm 2
for finding p, € G, is O(n?K?%log(nK) + n?K?3). TIts
complexity for finding ¢ € G is O(n® K?log(nK)+n3K?3).
Bottleneck Cases: Algorithm 2 may still not always be able
to satisfy its defining condition of excluding each tier at
least once. The bottleneck arises if all the paths available
to a node u have a particular tier (say ¢.) in common. In the
next iteration, the nodes in ¢, would not be able to query u
(Fig. 4-c). If this is true Vu, Algorithm 2 would halt.

2.8. Algorithm 3: Combinatorial Approach

Algorithm 3 (see Appendix B) maintains the best k — 1-
length paths for all combination of tiers such that nodes in
all tiers can always query their neighbors. Fig. 4-d shows
how this approach avoids a bottleneck case faced by Algo-
rithm 2. Algorithm 3 is guaranteed to have [{N(u, k)}| =
HV \ {v|t, = tu}}| V{u, k}, and always satisfies Lemma
1. It therefore guarantees both convergence and optimality.

Algorithm Complexity: The number of K-length paths
maintained at each node by Algorithm 3 is 25~1. The
complexity of Algorithm 3 for finding shortest path in G,
is therefore O(n2%~1). Its overall complexity for finding
shortest cycle in G is O(n?25-1).

2.9. Empirical Analyses

To predict the behavior of our algorithm-class for applica-
tions with different number of cameras, we now present
simulation experiments using a complete K -partite graph
with 5 nodes in each tier, and the number of tiers varying
from 3 to 12. For each set of tiers, we generated 1000 ran-
dom graphs by sampling edge weights from a normal dis-
tribution A/(0, 1). Fig. 5-a shows that Algorithm 1 and Al-
gorithm 2 always return optimal solution for tiers < 4 and
< 6 respectively. Fig. 5-b, shows Algorithm 1 facing bottle-
necks quite rapidly, while Algorithm 2 converges more than
half the time for tiers < 8. Fig. 5-c highlights the greedy na-

T ol 7\\\\ — Combinatorial
N \\ — Maximally Greedy
N \. — Leave One Out
70] \\\ 1
AN

50 \ N
N\
0 -

\\
— Combinatorial < 30, \ h
— Maximally Greedy N 2 \\\
1o} — Leave One Out 10 SO
T2 4

3 4 5

% Rounds Correct

% Rounds Not Stuck

o2

6 7 8 9 10 1 s 6 7 8 9 1
(a) Number Of Graph Tiers (b) Number of Graph Tiers

~ .~ = = — Combinatorial
\ . — Combinatorial .
\\ _ = —Maximally Greedy ~ - ﬁ/laxlmglly %reedy
\ "\ — Leave One Out — Leave One Out
N R i

\
\ N
\\ \\
AN
NN
RN \

Logarithm Time (sec.)
\

\ -\
\

% Rounds Not Stuck & Correct

s 6 7 8 9_ 10
(c) Number Of Graph Tiers

3 4 5 6

7 8 o 10 0
(d) Number Of Graph Tiers

Figure 5: (a) Fraction of times algorithm returned optimal solution. (b)
Fraction of times algorithm converged. (c) Fraction of times algorithm
converged and gave optimal solution. (d) Logarithm based execution time.

ture of Algorithm 1 and 2 which do not guarantee optimality
even when they show convergence. Algorithm 3 however
consistently shows convergence and optimality, which nat-
urally comes at the cost of its reduced efficiency (Fig. 5-d).

3. Application: Multi-Cam Player Localization

As an application of our proposed algorithm-class, we
present an end-to-end computational framework for local-
ization of multiple soccer players captured using 3 synchro-
nized overlapping static cameras. To record an appropri-
ate soccer database we erected 40 feet high scaffolds, and
mounted synchronized full-HD cameras on them. We used
different team colors (red, yellow, blue, green, and white),
types of soccer plays (matches, drills), and lighting condi-
tions (morning, afternoon, and evening). Our framework is
illustrated in Fig. 6, and is explained in the following.

Input Frames —— Background Subtraction —» Shadow Removal —— Tracking & Classification — Data Fusion ————— Visualization

Figure 6: Block Diagram illustrating the main steps of the proposed computational framework. Note that the shadows in background subtraction step

have been manually colored orange here for better visualization.

3.1. Background Removal

We begin by adaptively learning per-pixel Gaussian mixture
models for scene background. The probability of a back-
ground pixel having value x,, is given as:

J
p(xn|background) = Z w;¢; 3)
j=1

where (; is the j*" Gaussian component, and wj is its
weight. The term ¢ is given as:

1

S @—u) = @)
oo T @

Cj(Xn; s ¥j) =
where yi; and 3J; are the mean and covariance of §t com-

ponent. These models are used for foreground extraction by
theresholding appearance likelihoods of scene pixels [13].

3.2. Shadow Removal

While there are numerous appearance based methods for
shadow removal [20], they mostly work best for relatively
soft shadows. In soccer games however, shadows can be
quite strong. We therefore rely on geometric constraints of
our multi-camera setup for robust shadow removal.

Consider Fig. 7, where only shadow pixels of the player
are view independent. This enables us to remove shadows
by warping extracted foreground in one view onto another,
and filtering out the overlapping pixels [15] [16]. We begin
by finding 3 x 3 planner homographies ., -, between each
pair of views 7, and m, such that for any point pair p, and
pp in 7, and T, the following holds':

Pa = ry,my, * Pb (5)
In cases where a player is partially occluded by a shadow,
simply relying on these geometric constraints might result

IRecall that 2-D homographies have 8 degrees of freedom (9 entries in
the Hr, x, with common scale factor). To determine each Hy, r, we
require at least 4 pairs of corresponding points in respective view pairs [9].

s~
p |
v
View 1 View 3
.~
View 2 -1 View3-1 Output

Figure 7: Homographies from view 2 «+ 1 and 3 « 1 are used to
project views 2 and 3 on view 1. As shadow pixels in view 1, and projected
view 2 and 3 overlap, they can be filtered out from view 1.

in losing image regions belonging to occluded parts of play-
ers. To avoid this, we apply chromatic similarity constraints
of original and projected pixels before classifying them
as shadow versus non-shadow. The intuition here is that
the appearance similarity of shadow pixels across multiple
views would be more than that for non-shadow pixels.

3.3. Player Tracking in Individual Cameras

We track the player blobs using a particle filter based frame-
work [17]. We represent the state of each player using a
multi-modal distribution, which is sampled by a set of par-
ticles. To propagate the previous particle set to the next,
following three steps are performed at each time-step:

Selection: A particle set s,” : n = [1 — N]| is sampled
from prior density p(x;—1|z;—1) [17]. Here x and z are
object-state and observation vectors.

Offense Team Templates Defense Team Templates

'

H&S
Histograms
. ‘_
. ‘_

Y
k)
B — Offense -vs- Defense
Classification

H&S
Histograms

Test Blob

Figure 9: View dependent blob classification using multiple player tem-
plates. Only one of the multiple views are illustrated here.

Prediction: Predicted states of particles s : n = [1 — N]|
are generated from s,” : n = [1 — N] using the dynamical
model. The dynamics are applied to state parameters as:

s’ =s"+A-vi_1 +B-w; where w~N(0,%) (6)

Here v;_1 is the velocity vector obtained from the previous
steps, while A and B are matrices representing the determin-
istic and stochastic components of the dynamical model.
Measurement: Here we compute the probability of the
state p(s}’ = z;|x;) and normalize the probabilities of all
particles so that they sum to one, i.e.,

o an
w = =) ™
Lp(zefxe = s})
These weights are used in the next frame for particle selec-
tion. Based on the discrete approximation of p(z:|x; = s'),
different estimates of the best state at time ¢ can be devised.

We use the maximum likelihood state
X; = arg rré%xp(zdxt =s;) 8)
t
as the tracker output at time ¢ (for more details, see [17]).

3.4. View Dependent Blob Classification

We classify the tracked blobs on a per-frame and per-view
basis. We pre-compute the hue and saturation histograms of
a few (~ 5 — 7) player-templates of both teams as observed
from each view. During testing, we compute this hue and
saturation histograms for the detected blobs, and find their
Bhattacharyya coefficient from the player-templates of the
corresponding view [4]. We classify each blob into offense
or defense teams based on the label of their nearest neigh-
bor templates. The pipeline of blob-classification for one
particular view is shown in Fig. 9.

3.5. Data Fusion for Player Localization

To transform players’ location observed from multiple cam-
eras into a shared space, we project the base-point of all

blobs observed from each camera into real-world coordin-
ates of the field (Fig. 6). These projected blobs are con-
sidered as nodes in our K -partite graph (Fig. 3-a). Edge-
weights on node-pairs are computed according to Eq. 9.

if d(bi,b2) > dn
Otherwise

©

0
w(Np, , Npy) = =B b)

Here np, is the node for a particular blob by, while B(by, bs)
is the Bhattacharyya coefficient [4] between b; and by. The
distance threshold, dy, is manually selected. For each cycle
we find in this graph (Sec. 2.1), we infer the player location
by averaging the strongest node-pair in the cycle.

As our proposed algorithms are equivalent for 3-tiered
graphs, they are all equally applicable for our current setup.
In sports broadcast however, the number of cameras can
vary from 10 to 25 [2]. Therefore, the analysis of how our
algorithm-class performs for different number of cameras
is crucial in choosing the most appropriate algorithm as the
number of cameras being used changes.

4. Results

We use our localization framework to visualize a virtual off-
side line, highlight players in passive offside state, and to
show players motion patterns. These are explained below.

4.1. Offside Line Visualization

An important foul in soccer is the offside call, where an
offense player receives the ball while being behind the sec-
ond last defense player (SLD)>. We want to detect the SLD
player, and to draw an offside line underneath him/her.

To test the robustness of our proposed system, we ran
it on approximately 60, 000 frames of soccer footage cap-
tured over 5 different illumination conditions, play types,
and teams’ attire (see Fig. 8). We compared the perfor-
mance of our proposed system with that of finding the SLD
player in each camera individually, and with naively fusing
this information by taking their average (see Table 1). Our
proposed fusion mechanism out performs the rest with an
average accuracy of 92.6%. The naive fusion produces an
average accuracy of 75.7%. The average accuracy across all
3 individual cameras over all 5 sets is 82.7%. To the best of
our knowledge, this is the most thorough test of automatic
offside-line visualization for soccer games available.

4.2. Passive Offside Visualization

Offence players can be in an offside state either actively
(get directly involved in the play while being behind the
SLD), or passively (be present behind the SLD and not get
directly involved in the play). Fig. 10 shows an example
illustrating the offense player in passive offside state auto-
matically highlighted using our proposed framework. Vi-

2We consider the defence goalie as the last defense player.

Set 1 - Color: Yellow/Red
Time of Play: Afternoon
Type of Play: Match

Set 2 - Color: Green/Red
Time of Play: Morning
Type of Play: Drills

Set 3 - Color: Blue/Yellow
Time of Play: Evening
Type of Play: Drills

Set 4 - Color: Red/White
Time of Play: Noon
Type of Play: Match

Set 5 - Color: Red/Yellow
Time of Play: Morning
Type of Play: Drills

Figure 8: Key-frames from each of the 5 tested sets along with their attributes are shown.

Camera 1 Camera 2 Camera 3 Naive Fusion Proposed Fusion
Frames %P PR %A %P %R %A %P PR Y0 A %P 9R Y0 A %P PR %A
Set 1 13,500 86.1 | 97.2 | 84.7 83.2 | 100 | 83.2 || 924 | 99.5 | 92.1 743 | 97.2 | 742 || 93.1 | 97.2 | 91.2
Set 2 11,500 62.1 | 99.1 | 61.8 81.5 | 100 | 81.5 88.1 100 | 88.1 739 | 100 | 73.9 95.6 | 993 | 95.2
Set3 7,500 723 | 100 | 72.3 742 | 100 | 74.2 88.8 | 100 | 83.8 64.8 | 100 | 64.8 89.8 | 100 | 89.8
Set 4 13,500 77.8 | 99.4 | 784 || 79.7 | 97.8 | 78.7 923 | 99.6 | 92.1 78.1 | 99.2 | 77.7 942 | 98.0 | 92.8
Set 5 13,500 86.1 | 100 | 86.1 855 | 100 | 855 93.9 | 100 | 939 87.6 | 100 | 87.9 955 | 982 | 94.0

Table 1: Comparative Results for Offside Line Visualization - P, R and A denote precision, recall, and accuracy. We consider True Positives as frames
where SLD is present and correctly detected. False Negatives are frames where SLD is present but not detected. True Negatives are frames where SLD is
absent and not detected. False Positives are frames where SLD is present and detected incorrectly, or SLD is absent but still detected.

Offside Line
[S
D2 (SLD) +

+

D4 -

Figure 10: Highlighting offence player(s) in passive offside state. Player
O is behind the SLD, while not being directly involved in the play.

sualizations such as these can be used in assisting viewers
predict whether or not an offside foul is likely to take place.

4.3. Visualizing Players’ Movement Flow

Visual broadcast of soccer games only shows an instanta-
neous representation of the sport, where no visual record of
what happened over some preceding time is usually main-
tained. There are two important challenges in having a
lapsed representation of a game. First, automatic detection
of players’ actions is hard. Second, summarizing these ac-
tions in an informative manner is non-obvious. To this end,
we consider players’ movement as a basic representation
of the state of a game [5], and use our framework to visu-
alize development of a game over a window of time (see
Fig. 11). Visualizing such holistic movements of players
accumulated over time can potentially help viewers’” under-
standing of how a game is progressing, identifying the vari-
ous defence and offence strategies being used, and predict-
ing the subsequent game-plan for each of the teams.

5. Conclusions and Future Work

We presented a modeling and search method for fusing evi-
dence from multiple information sources as iteratively find-

Offense Flow

Defense Flow

Figure 11: Players’ motion flow accumulated over some time. Here red
denotes the latest measurements while blue shows the earliest.

ing minimum weight K -length cycles in complete K -partite
graphs. We applied our method for soccer player localiza-
tion using multiple static cameras. We used this fused infor-
mation to generate different sports visualizations. Finally,
we demonstrated the robustness of our framework by test-
ing it on 60, 000 frames of a diverse set of soccer footage.

In our future work, we intend to explore how many cam-
eras are sufficient for our framework to perform optimally.
Note that we captured our data at 1080P resolution, and can
use it as low as 540P without impacting the performance.
However, further reduction in resolution would result in de-
tection and classification errors. In our future work, we
also want to apply our graph theoretic algorithm-class for
a wider set of correspondence problems, including match-
ing for depth estimation, trajectory matching using multiple
cameras, and motion capture reconstruction.

Appendix A.

Algorithm 2 - Leave Each Tier Out At least Once

for k =2,3,..., K do
for allu € V do
S ={¢},Q={¢}
for all v € N(u, k) do
S =SU{Cyr-1,t,3 +w(v,u)}
Q= QU{Prus 140y + (0,1,)}
end for
Sort(S); Rank(Q); T" = {T'\ t,}
forall¢; € T do
Find Py, 14,y € Q
Find O{v,lati} = COSt(P{u,]c,ti})
end for
end for
end for
forallv € V do
S =SU{Crk,sy +w(v,s)}
Q=QU{Pp, K¢ + (v.8)}
end for

Appendix B.

Algorithm 3 - Combinatorial Approach

for k =2,3,..., K do
forallu € V do
S={¢}.Q={¢}
for all v € N(u, k) do
for alli € ¢{v,k71} do
S =5U{Clr-19(411 T wlv,u)}
QRQ=QU {P{v,k—l,w{v)k,l,i}} + (v, to)}
end for
end for
Sort(S); Rank(Q); T" = {T \ t. };
Yiu,ky = Set of all (k-1) size subsets of T
foralli € ¢, ;) do
Compute Py i, .1y} € Q
Compute Cy k,y,, iy}
end for
end for
end for
forallv € V do
S =8SU{Cu Ky T W, 8)}
QR=QU {P{U7K7w{’u,f(,l}} + (v, 5)}
end for

Acknowledgements

Thanks to Pixar and the Diablo Valley College Woman’s
Soccer team for providing us with the field and soccer tal-
ent. Thanks to Iain Matthews and Jay Weiland for their help
in collecting the soccer data. Also, thanks to Maya Cakmak
for many useful discussions over the course of the project.

References

(1]
(2]

(3]

(4]

(53]

(6]
(7]
(8]
(9]
(10]

(11]

[12]

(13]

[14]
[15]

(16]

(17]
(18]
(19]

(20]

(21]

(22]

(23]

H. Alexander, C. Lucchesi, and B. Saip. Matching algo-
rithms for bipartite graphs. 1993. 2

J. Allen. The Billion Dollar Game: Behind-the-Scenes of the
Greatest Day In American Sport. Anchor, 2009. 1, 6

M. Beetz, N. v. Hoyningen-Huene, J. Bandouch, B. Kirch-
lechner, S. Gedikli, and A. Maldonado. Camera-based obser-
vation of football games for analyzing multi-agent activities.
In AAMAS, 2006. 1

A. Bhattacharyya. On a measure of divergence between two
statistical populations defined by their probability distribu-
tions. Calcutta Mathematical Society, 1943. 6

A. Bobick. Movement, activity, and action: The role
of knowledge in the perception of motion. Workshop on
Knowledge-based Vision in Man and Machine, 1997. 7

T. Cormen, C. Leiserson, R. Rivest, and S. C. Introduction
to Algorithms. MIT Press, 2002. 2

A. Ekin, T. A. Murat, and R. Mehrotra. Automatic soccer
video analysis and summarization. In /EEE IP, 2003. 1

D. Hall and S. McMullen. Mathematical Techniques in Mul-
tisensor Data Fusion. Artech, 2004. 2

R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000. 5

S. Hashimoto and S. Ozawa. A system for automatic judg-
ment of offsides in soccer games. In ICME, 2006. 1

0. Javed, K. Shafique, and M. Shah. Appearance modeling
for tracking in multiple non-overlapping cameras. In CVPR,
pages 26-33, 2005. 2

H. Jiang, S. Fels, and J. Little. A linear programming ap-
proach for multiple object tracking. In CVPR, 2007. 2

P. Kaewtrakulpong and R. Bowden. An improved adap-
tive background mixture model for realtime tracking with
shadow detection. In AVBS, 2001. 5

T. Kanade, P. Rander, and P. Narayanan. Constructing virtual
worlds from real scenes. In Multimedia, 1997. 1

S. Khan and M. Shah. Tracking multiple occluding people
by localizing on multiple scene planes. 7-PAMI, 2009. 1, 5
K. Kim and L. Davis. Multi-camera tracking and segmenta-
tion of occluded people on ground plane using search-guided
particle filtering. In ECCV, pages 98-109, 2006. 2, 5

E. Koller-Meier and F. Ade. Tracking multiple objects using
the condensation algorithm. JRAS, 2001. 5, 6

T. Koyama, I. Kitahara, and Y. Ohta. Live mixed-reality 3d
video in soccer stadium. In ISMAR, 2003. 1

P. Perez, J. Vermaak, and A. Blake. Data fusion for visual
tracking with particles. In Proc. IEEE, 2004. 2

A. Prati, I. Mikic, M. Trivedi, and R. Cucchiara. Detect-
ing moving shadows: Algorithms and evaluation. T-PAMI,
’2003. 5

K. Shafique and M. Shah. A non-iterative greedy algorithm
for multi-frame point correspondence. In IEEE T-PAMI,
pages 51-65, 2003. 2, 3

C. Veenman, M. Reinders, and E. Backer. Resolving motion
correspondence for densely moving points. 7-PAMI, 2001. 2
Z. Wu, N. Hristov, T. Hedrick, T. Kunz, and M. Betke. Track-
ing a large number of objects from multiple views. In ICCV,
2009. 2

