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Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 

August 11, 1983 

(404) B94-372 ❑ 

Dr. S. B. Oblath 
Savannah River Plant 
E. I. DuPont de Nemours S Co. 
Aiken, SC 29808 

First Monthly Progress Letter 
Project AX-0598188 - Our Project E-26-627 

Dear Dr. Oblath: 

The above project got under way at the beginning of July, 1983. Mr. John C. 
Oliver, a Ph.D. candidate in our School at this point is the only research 
assistant working on this problem. As other areas of work are identified 
additional staff will be involved, probably starting next month. 

For mutual information purposes Mr. Oliver and I visited SRP on July 8 to 
discuss the present status of the lysimeter tests, which were inspected, and 
to gather information on currently available data on the tests and previous 
work on modeling. 

Since then the applicability of using a one-dimensional transport equation 
for modeling soil columns was checked and verified. The solution to the 
convective - dispersive transport equation used in DP-1591 was verified and 
implementation of the appropriate subroutines in the code MODEL 2, used to 
generate the data in DP-1591, was accomplished. Further work to verify 
these data is in progress. 

Independently we are looking at flow paths around waste packages and 
leaching conditions under unsaturated flow conditions. This work is 
expected to be related to the lysimeter model in the coming months. 

Yours sincerely, 

Geoffrey G. Eichholz 
Project DirectoL 

GGE/vw 

/cc. W. F. Brown (OCA) 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 

October 14, 1983 14041 094 3 rid...) 

Dr. S. B.Oblath 
Waste Disposal Technology Division 
Savannah River Laboratory 
E. I. DuPont de Nemours & Co. 
Aiken, SC 29808 

Monthly Progress Report - Project E26-627  

Dear Dr. Oblath: 

In confirmation of our discussion at yesterday's meeting with you and Dr. 
Stone, I want to summarize the status of the project at this stage. We feel 
that the existing saturated flow model has been checked adequately and the 
necessary corrections have been made. Further work on that model is 
probably unprofitable at this stage. 

Other models have been reviewed, primarily, those developed under ONWI 
auspices. These models will be further evaluated and tablulated with 
respect to their suitability to describe unsaturated flow under near-
surface conditions. Ultimately the model will have to be formulated as a 
one-dimensional, two-region cylindrical system. 

Additional information needs to be obtained particularly on two subjects: 

a. The nature of the flow through or around the waste package. 

b. The effective leach rate that occurs when water movement is unsatu-
rated or cyclic. 

We are trying to address the second aspect already in conjunction with some 
other work we are doing and expect to correlate results. With regard to the 
first one, we hope to run some small-scale tests to look at the effect of 
comparing crushed and uncrushed laboratory waste and to get a general idea 
of the hydraulic conductivity changes introduced by the waste package. We 
would appreciate it if you would send us a package of clean but equivalent 
lab trash. 

Please call me if there are any additional questions. 

Yours truly, 

Geoffrey G. Eichhoi-
Regents' Professor`_. 

CCE/vw 

cc: W. F. crown (OCA) 



Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 

C4043 594-3720 

November 11, 1983 

Dr. S. B. Oblath 
Waste Disposal Technology Division 
Savannah River Laboratory 
E.I. DuPont de Nemours & Co. 
Aiken, SC 29808 

Monthly Progress Report - Project E26-627  

Dear Dr. Oblath: 

During the past month, work has been concentrated in two areas: 
the adaptation of an unsaturated model to lysimeter conditions and flow 
conditions around an inhomogeneous waste package. We hope to have 
an unsaturated one-dimensional model working early in the new year. 
Extension to the two-dimensional case may be relatively simple. In 
view of John Oliver's impending departure, we are trying to maintain 
continuity in effort through Messers. Harry K. Anderson and F. N. deSousa. 
We are also documenting the final version of the saturated model for 
the record. 

We have started putting together a simulated waste package containing 
miscellaneous waste materials in an ice cream container. This will 
be tested for permeability and flow patterns in air and water at various 
stages of compaction. 

Leach tests have been started on TVA waste resin samples using 
slowly circulating soil-equilibrated water. It is planned to run four 
loops in parallel to establish baseline leach conditions in saturated 
flow. Since the activity levels are low, this is expected to be a 
relatively long-range test. 

Please call me if there are any additional questions. 

Yours truly, 

Geoffrey G. Eichholz 
Regents' Professor 

GGE/ctm 

cc: W. F. Brown (OCA) 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 

February 8, 1984 
(4041 554.3720 

Dr. S. B. Oblath 
Waste Disposal Technology Division 
Savannah River Laboratory 
E. I. Du Pont de Nemours & Co. 
Aiken, SC 29808 

Monthly Progress Report - Project E-26-627 

Dear Dr. Oblath: 

During the past month work has continued on the development of a two-dimensional 
flow model to describe flow in the lysimeter through and around the waste layer. 
Mr. D. Y. Suh has been added to the team to provide additional programming 
expertise for this work. 

Several crushing tests have been conducted on simulated waste materials, 
resembling those in the lysimeters, to measure the change in permeability, 
compared with surrounding soil, the waste layer has introduced. At this time it 
looks as if the compacted layer may short-circuit some surrounding soil and serve 
as a water-reservoir; this would be expected to accelerate leaching. It is 
proposed to insert the crushed waste layer into a short soil test bed to 
determine this effect. 

Further tests have been conducted to measure the residual soil moisture in 
drained columns. 	For sand the residual water content seems to be fairly 
independent of pore size. Tests are continuing on Savannah River soil samples. 

Please call me if there are additional questions. 

Yours truly, 

Geoffrey G. Eichho 
Regents' Professor 

GGE/vw 

cc: W. F. Brown (OCA) 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



Georgia institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 

(494) e94 -3720 

march 8, 1984 

Dr. S. B. Oblath 
Waste Disposal Technology Division 
Savannah River Laboratory 
E.I. DuPont deNemours & Company, Inc. 
Aiken, SC 29808 

Monthly Progress Report - Project E-26-627  

Dear Dr. Oblath: 

During the past month considerable progress has been made on the 
development of a new computer model to simulate the movement of waste 
materials in the lysimeters under unsaturated conditions. The model 
will be a two-dimensional finite element model, solving the transport 
and flow equations simultaneously. A computer program for unsteady 
unsaturated flow has been completed, using a one-dimensional finite-
element method for space and an explicit finite difference method for 
time. Work is in progress to make the program an implicit one to verify 
stability and accuracy of the method. 

A very simple program has been written to study the two-dimensional 
finite-element method. It is proposed next to complete the program for 
the implicit method and to combine this with an explicit one into a 
predictor-corrector method. 

Measurements have continued to determine drying rates on soil 
columns and the residual water content. As expected, higher clay-
content soils have higher water retention, but conductivity measurements 
indicate that little of that retained water may contribute to migration 
effects. It is planned to design experiments to determine whether the 
clay-retained water contributes to waste leaching. 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTLIN:TY INGTITu I ION 



Further crushing tests have been conducted on simulated waste with 
interesting results. It is evident that not all the waste would be fully 
crushed by the overlying soil at 10 ft depth. Even when further 
compacted, the waste layer remains relatively open and permeable. This 
raises the question whether water flow would be diverted into waste 
volume and stored there, increasing the leach rate. We are starting some 
simple tests using a sand bed in a large barrel to study the flow into 
and around such a simulated waste layer. 

We would welcome a visit from you to discuss this work. Please call 
me if there are any questions. 

Yours sincerely, 

G.G. Eichholz 
Regents' Professor 

cc: W.F. Brown (OCA) 



Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF MECHANICAL ENGINEERING 

May 11, 1984 	 Please reply to: 

NUCLEAR ENGINEERING AND 

HEALTH PHYSICS PROGRAM 

CHERRY EMERSON BUILDING 

GEORGIA INST. OF TECH. 

ATLANTA, GEORGIA 30332 U. S.A_ 

Dr. S.B. Oblath 
Waste Disposal Technology Division 
Savannah River Laboratory 
E.I. Du Pont de Nemours & Co. 
Aiken, SC 29808 

Monthly Progress Report - Project E-26-627  

Dear Dr. Oblath: 

During the past month we have continued work in two areas: 
The 1-D and 2-D flow models have been corrected and it is expected 
to introduce the transport model by the end of the month. The code 
will then be compared with the experimental results which you sent 
with your letter of April 13. 

On the experimental side, work has progressed irn a small 
cylindrical system in a drainable drum to simulate the flow and 
moisture distribution. Two lysimeter systems are being designed; 
in one water infiltration into the cylindrical waste volume can 
occur from above only; in the other, lateral flow is possible as 
well. (See attached sketch) A number of nickel-plated electrodes 
have been made up, to be embedded in various regions in the 
lysimeter to monitor moisture conditions. This should help 
indicate whether the compacted waste region attracts water, causes 
perching, or speeds up drainage through that region. 

Though we expect to continue this work under a renewed contract 
we will prepare an annual report as a final report on the present 
contract before June 30, 1984. 

Vnilv-n Q4 	 

G.G. Eichholz 
Regents' Pro e 

cc: O.H. Rodgers (OCA) 

Telephone:.  404-894-3720 	Telex: 542507 GTRIOCAATL 	Fax: 404-034 311-20 (Verily: 404-894-4E35U) 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY IN 3TITUTION 



Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF MECHANICAL ENGINEERING 

June 11, 1984 	
Please reply to: 

Dr. S. B. Oblath 
Waste Disposal Technology Division 
Savannah River Laboratory 
E.I. Du Pont de Nemours & Co. 
Aiken, SC 29808 

NUCLEAR ENGINEERING AND 

HEALTH PHYSICS PROGRAM 

CHERRY EMERSON BUILDING 

GEORGIA INST. OF TECH. 

ATLANTA. GEORGIA 30332 U.S.A.. 

Monthly Progress Report - Project E-26-627  

Dear Dr. Oblath: 

During the past month work has proceeded steadily on all three fronts. 
Improvements have been made in the calculational model and we hope to be 
able, next month, to compare it with the latest lysimeter results. 

A simulated waste pellet has been inserted into a cylindrical soil-filled 
drum and we are monitoring water flow to establish the flow regime into, 
through, or around the waste material. 

Additional tests are proceeding to obtain drainage coefficients for SRP 
soil and to predict unsaturated flow conditions. These tests will, 
hopefully, provide a correlation between soil type, permeability, drainage 
rates, and residual moisture content. 

A final project report is being written to summarize the year's results. 
Many of these are still only preliminary in nature and it is expected to 
complete the work under the renewal contract being negotiated at present. 

Yours sincerely, 

G. G. Eichholz, 
Regents' Professor 

GGE/swm 

,../cc: O. H. Rodgers 

Telephone: 404-884-3720 	Telex: 542507 GTRIOCAATL Fax: 404-894-3 1 20 (Verify: 4❑4-884-4E350) 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 
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SUMMARY 

The project described in this report was undertaken in support of the 

current studies conducted by the Savannah River Laboratory on the 

migration of radionuclides from on—site disposal trenches. These studies 

center on a series of lysimeters which have been installed to simulate 

various waste forms and flow conditions in local SRP soil and under local 

climatic conditions. 

The work described here, which is being continued, addresses three 

separate but related tasks: 

1. The development of an improved transport model to describe and 

predict waste flow observations in the lysimeters; 

2. Experimental tests to characterize the flow characteristics of 

unsaturated SRP soil; and 

3. Leach tests on simulated waste material in a configuration 

resembling that of the lysimeters to provide guidance to the 

model development in describing the modification in flow pattern 

and source term introduced by the waste volume. 
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INTRODUCTION 

Solid radioactive wastes have been stored at the Savannah River:Plant (SRP) 

since the early days of operation and low-level wastes have been buried 

there in shallow trenches. In order to assess any potential environmental 

impact, extensive tests have been conducted at various times to study the 

characteristics of the underlying soil, the hydrology and the 

meteorological factors affecting water flow through potential disposal 

sites (1,2,3). In addition, extensive studies have been conducted to 

assess the suitability of the SRP site as a permanent disposal site for 

high-level wastes (4,5,6). Reference 6, in particular, contains much of 

the relevant literature. The impact calculations in that Statement are 

more thoroughly developed for the airborne pathway than the liquid one, 

which is primarily based on the AQUAMAN code (7) and the ORNL methodology 

(8). These models typically assume a uniform geological medium 

surrounding the waste, saturated flow conditions, and do not readily 

accommodate the special conditions associated with a back-filled near-

surface trench in a humid climate, such as is found at SRP. 

To obtain some experimental evidence regarding the specific leaching and 

migration conditions in SRP soil, an extensive field study was initiated 

there in 1981, which uses a large number of lysimeters to define leaching 

and migration rates from "typical" buried wastes(9). These lysimeters, 

shown diagrammatically in Fig. 1, were constructed of corrugated aluminum 

pipe sections that were coated with asphalt. They are 6 or 10 ft. in 



diameter and 10 ft. deep. The bottom of the lysimeter rests on a gravel 

bed and percolated water can be pumped out and sampled. Ordinarily, only 

natural precipitation provides the water flow through the lysimeter, which 

therefore, varies considerably with the seasons. The principal difference 

between lysimeters was the nature of the waste buried, some of which is 

shown in Fig. 2 (9). Most of the waste contained either fission products 

or plutonium traces on a rather heterogeneous mixture of laboratory 

materials, such as beakers, wipers, containers, gloves and metallic 

objects, that were poorly or not all consolidated . Initial observations 

have been reported by Oblath, Stone and Wiley (10) and showed the 

appearance of cobalt-60 and some cesium-137 in the porous cup samplers 

beneath the waste form. These tests have supplemented other observations 

on waste migration at the SRP waste disposal area. (11). 

The lysimeter tests are intended to be of a long-term nature and planned to 

be conducted over several years into the future. However, to be useful it 

is important to be able to explain any observations and to correlate them 

with the site characteristics, waste characteristics and rainfall in a way 

that permits extrapolation to the actual disposal area. This requires the 

development of an adequate calculational model and this is the major 

objective of the present project. 
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FIGURE 1. Lysimeter Cross Section (Ref. 9) 



FIGURE 2. Separations Laboratory Glove Box Waste in Lysimeter (Ref. 9) 



MODEL DEVELOPMENT 

To describe the migration of waste material through the backfill and soil 

underlying the waste trench, it is important to identify the various 

processes involved. Figure 3 diagrammatically indicates the main stages 

which in one form or other underlie all models. These are the rate of 

water infiltration, the leaching of radionuclides from the waste form, the 

subsequent movement of the dissolved or absorbed radionuclides with the 

ground water, the selective removal or retardation of the radioactive 

material on rock or soil surfaces, and the emergence of the potentially 

contaminated water into the accessible environment. 

The basic procedure for choosing a suitable model has been indicated 

recently by Simmons and Cole (12), who list a number of current programs. 

There are a fair number of transport models in the literature that simulate 

mass transport processes, using typically the same transport equations 

which are solved through finite-element or finite-difference methods. 

Among these are the models of Duguid and Reeves (13), Papadopoulos and 

Winograd (14), Lu (15), Oztunali and Aikens (16), Silvieira et al. ( 17 ), 

Cleary and Ungs (18) and Burkholder and Rosinger (19). For unsaturated 

conditions, Yeh and Luxmoore (20) have described a model and a literature 

review has been done at Georgia Tech. by de Sousa (21). 
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For simplicity most models have been based on a one-dimensional 

description, with vertical flow through a homogeneous saturated medium 

whose characteristics could be described simply in terms of the hydraulic 

conductivity or porosity and the surface absorption capacity, K d . Hooker 

and Root (9), in their description of the SRP lysimeter tests, adopted 

Cleary's model (18) in a preliminary form to analyze flow behavior. 

One of the motivations of the present project was the realization that the 

lysimeters in practice do not satisfy the assumptions of the saturated 

models. Relying as they do on rather spasmodic rainfall, and 1983 was a 

very dry summer, the soil is not normally saturated and this was recognized 

early and reported by Horton (22). In addition, the rather large 

obstruction posed by the waste material in the lysimeters makes it unlikely 

that the flow will percolate smoothly, solely in a vertical direction. For 

that reason another objective of the present work is to develop a 2-

dimensional model, that can take into account the diversion of water flow 

owing to the presence of the waste material. 

As a starting point, the applicability of using a one-dimensional 

saturated transport equation was checked. The solution to the convective 

dispersive transport equation in Ref (9) was verified and the appropriate 

subroutines in the code MODEL 2 used to generate the data in Ref. 9 were 

implemented. It was found that some corrections had to be made in that 

code. Adequate agreement was obtained for the corrected code with 

computations done independently at Georgia Tech and SRP. 



To deal adequately with actual conditions in the lysimeters it was decided 

to develop a new program that would be two-dimensional and capable of 

dealing with unsaturated flow conditions. In preparation for this, the 

parameters involved were identified and are listed in Table 1. 

As Table 1 shows, the principal factors affected in moving from a saturated 

to an unsaturated flow model are the hydraulic conductivity, the time 

integration and the variable water content, as well as the major transition 

to a finite-element solution. Table 2 compares several of the unsaturated 

models that have been described in the literature. Each of them has some 

obvious advantages and disadvantages. FEMWASTE probably comes closest to 

the proposed approaches described in Table 1. 

The principal difference between the models listed in Table 2 and the 

situation encountered in the SRP lysimeters is imposed by the cylindrical 

geometry of the lysimeters. This is illustrated in Fig.4 which compares 

the one-dimensional geometry assumed by the Cleary model (9) with a 

configuration that allows for the diversion of water flow into or around 

the waste volume. This gives rise to the need to develop a two-dimensional 

model in cylindrical coordinates. This work is still in progress and the 

present description sho'lld be considered only preliminary in nature. 



TABLE I 

MODEL COMPARISON 

TRANSPORT EQUATION: 

PARAMETER SATURATED UNSATURATED FUTURE 

DIMENSION 

HOMOGENEITY 

ISOTROPY 

TIME ANALYSIS 

DISPERSION COEFFICIENT(D) 

WATER CONTENT (0) 

WATER FLUX (q) 

1 

HOMOGENEOUS 

ISOTROPIC 

UNSTEADY 

CONSTANT 

CONSTANT 

CONSTANT 

1-2 

HOMOGENEOUS 

ISOTROPIC 

UNSTEADY 

D(0) 

VARIABLE 

VARIABLE 

1-2 

HETEROGENEOUS 

ANISOTROPIC 

UNSTEADY 

D(0,z) 

VARIABLE 

VARIABLE 

FIRST ORDER DECAY (LIQ)(cK) YES YES YES 

FIRST ORDER DECAY(SOL)(4) NO YES YES 

ZERO ORDER DECAY(LIQ)(Y) NO NO YES 

HYDRAULIC CONDUCTIVITY(K) CONSTANT K(0) K(e,z) 

K(0) CONSTANT BROOKS-COREY DIFFERENT MODELS 

0(h) CONSTANT GARDNER DIFFERENT MODELS 

SORPTION LINEAR LINEAR DIFFERENT MODELS 

BOUNDARY CONDITION EXPON. DECAY CONSTANT SEVERAL 

SOLUTION ANALYTICAL FEM FEM 

TIME INTEGRAL ANALYTICAL IMPLICIT FD IMPLICIT, EXPLICIT 

CRANK-NICOLSON 

FEM SOLUTION NO LINEAR LINEAR,HERMITIAN 

COMPRESSIBILITY(0e) NO NO YES 

SATURATED - PREVIOUS MODEL 

UNSATURATED - MODEL BEING DEVELOPED 

FUTURE - OPTIONS THAT CAN BE INCLUDED IN THE FUTURE 



TABLE 2 

UNSATURATED MODELS  

PARAMETER SEGOL SUMATRA-1 TARGET FEMWASTE MLTRAN 

DIMENSION 

COMPRESSIBILITY (a') 

2-3 

YES 

1 

NO 

3 

NO 

2 

YES 

2 

YES 

DISPERSION COEFFICIENT(D) D(0) D(0) D(0) D(0) NO 

FIRST ORDER DECAY(LIQ)(00 NO YES YES YES NO 

FIRST ORDER DECAY(SOL)(/) NO YES YES YES NO 

ZERO ORDER DECAY(LIQ)( a ) YES YES NO NO NO 

HYSTERESIS NO NO NO NO NO 

SORPTION NO LINEAR FREUNDLICH LINEAR LINEAR 

SOLUTION FEM FEM IFD FEM IFD 

FEM SOLUTION HEXAHEDRAL HERMITIAL QUADRIL. 

CUBIC 

FEM - FINITE ELEMENTS 

IFD - INTEGRATED FINITE DIFFERENCES 

SEGOL - GENEVIEVE SEGOL (32) 

SUMATRA-1 - M. Th. VAN GENUCHTEN (28) 

TARGET - DAMES & MOORE (31) 

FEMWASTE - G. T. YEH & D. S. WARD (29) 

MULTRAN - A. E. REISENAUER (33) 
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THE UNSATURATED FLOW AND TRANSPORT MODEL 

INTRODUCTION 

The current waste disposal practices often place undesirable materials in 

environments in which the movement of the pollutants occurs under variably 

unsaturated conditions. The transport processes are, in general, 

described by a set of partial differential equations which are a function 

of the state variables of pressure and concentration. 

What makes the unsaturated flow and transport equations difficult to solve 

is the fact that the hydraulic conductivity and the water content are a 

function of the pressure head. This implies that the resulting equations 

are non-linear, and consequently the approximating algebraic equations 

will also be non-linear. To handle this non-linearity, further 

assumptions are made in order to linearize the algebraic equations, or the 

solution is reached by iterative methods. 

This report presents the efforts done in developing a 1-dimensional and a 

2-dimensional finite element model that can be used to simulate the water 

flow and solute transport through unsaturated soils. A description of the 

model, as it is now, is presented, as well as the steps that are going to be 

taken in the near future. Also, a brief description of the capabilities 

that the model may have in the future is presented. 



II-FLOW AND TRANSPORT EQUATIONS 

1-FLOW EQUATION 

The water flow equation comes from the combination of the Darcy's law with 
the continuity equation. The Darcy's law is 

(1) 

Where 	is the volumetric flux, K is the hydraulic conductivity, h is the 
pressure head, and H is the hydraulic head. The continuity equation can be 
written as 

v. ,c+ 
bi - 

Where e is the volumetric water content and t is time. 
Combining eq. 1 and 2. 

Le_ = 	0-0v a t 

The hydraulic head, H, is given by 

+ h 

where z is the elevation head. Introducing eq. 4 into eq. 3. 

a =v. (K(h)v (2+1-)) 	 (5) 

(2)  

(3)  

(4)  



For simplicity, writing eq. 5 in one dimension 

_ 
Ti(K (h) .#7,) + 	 (h)  

at 

But 

sZh —/h. l_e_ 
az de az 

Hence 

k 	
i÷ 

al) d KCh) a -_a_.(K (h) 	a z 	z. at — az 

The quantity 	30 	is called specific water capacity. 

_ 	
‘- 

Ktel 	.1161.91 	 (8) 
at — az c(e) a2 	z  

The hydraulic diffusivity is defined as the ratio 	(0)/(:(e). 
Consequently 

39_ d 	
I 

(c, (9)3(2, 	(0) 	 (9) 
— az N.. 	32 	3 z  

It is seen that eq. 9 is written in terms of the water content, 9; the same 
derivation is applied if the chosen variable is the pressure head, h. In 
this case, the equation is given by: 

dh _ 3 (1,c ( 	h ).4.1c0-%1 
z • (1 0) 

The term C* is equal to C(e) for unsaturated soils, but for saturation it 
is given by: 

(6) 

(7)  

-16- 



e 4.  m 
 3h 

where n is the porosity, S
s 
is the specific storage efficient and S

w 
is the 

degree of saturation. The second term on the right-hand side of eq. 11 is 

zero for a saturated medium. 

The other term, on the other hand, is insignificantly small compared to the 

second term when the soil becomes unsaturated; in this case, C* is equal to 

oe/,Th , which is the value of C(8) in eq. 8. The reason for having 

introduced C(6) as wah instead of eq.11 is because eq. 8 cannot be 

applied to a saturated soil, since Ic(e).-1, 0. 

As is pointed out by Raudkivi and Callander (27), the equation using e 
as the variable is better for numerical solutions of unsaturated flow 

because changes in 8 and D are two or three or ders of magnitude smaller 

than corresponding changes in h and 39/Jh . However, as 9 approaches 

saturation the driving potential becomes independent of moisture content 

and D(9) tends to infinity. Consequently, solutions involving saturation 

and unsaturation have to use the equation using pressure head. 

2. Transport Equation 

The governing partial differential equation is based on the following 

principle of mass conservation (Yeh, 1982 and Van Genuchten, 1978): 

Rate of change of mass = (advection in - advection out) 

+(Dispersion in - Dispersion out) 

-Decay 

(12) 



Equation 12 is transformed from a verbal description into the following 
mathematical equation: 

( (,+p S) = V 	Dvc- c) + ocec.4-p7)s -1-ye 4.0(`)11(ec+ps) (13) 
?t 

where: 

-3 C is the solution concentration kn 
D is the dispersion coefficient (L T ) 
S is the absorbed concentration 
q is the volumetric flux (LT ) 
co. is a first-order rate constant (liquid phase) (T

-11
) 

)1 is a first-order rate constant (solid phase) (T1 -1  
Y is a zero-order rate constant (liquid phase) (ML -  T ) 
p is the bulk density (ML ) 
og!is the compressibility of the medium (L

-1
) 

B is the volumetric moisture content 
h is the pressure head (L) 

In order to solve eq. (13), it is necessary to determine the moisture 

content (8) and the volumetric flux (9.). In general, most of the available 

models assume the moisture content to be a unique function of the pressure 

head (h), and use equation 10 (the flow equation) to determine 8. The 

volumetric flux is also obtained from eq.(10) by making use of Darcy's law 

(eq.1). However, the relation between 8 and h is an hysteretic one; this 

is due to the fact that air is entrapped in the pore spaces during wetting 

of the soil. Consequently, for a given pressure head the water content 

values are generally smaller during wetting than drying. Hysteresis will 

be included in the model, probably by using the procedure given by Gilham 

et al. (26). 

The dispersion coefficient (D) represents the effects of both molecular 

diffusion and mechancial dispersion. It is a tensor given by 



where: 

	e Dk; = 0,10 	+ Co-L-cx,r)tiz.,u3it 	T Szj 	
(14) 

aT is the transverse dispersivity (L) i
Lis the longigudinal dispersivity (L) 

St; is the Kronecker delta 
ais the molecular diffusion coefficient (L

2
/T) 

T
m
is the tortuosity 

U is the magnitude of the velocity vector 
U. is the i-th component of velocity vector 
U. is the j-th component of velocity vector 

One also needs an expression relating the absorbed concentration (s) with 

the solution concentration C(c). Many models are available to describe 

absorption or ion exchange, such as equilibrium and kinetic models. In 

general, the available models use the linear absorption isotherm 

S=KC (15) 

where K is the distribution coefficient; the model being developed will 

incorporate several different sorption models. 

3-Initial and Boundary Conditions  

In order to completely describe the transport of radioactive materials 

through unsaturated soils, it is necessary to specify the initial and 

boundary conditions. In general, it is assumed that the initial conditions 

are given by: 

h
(x,z,o) = 

h
o(x,z) 

(16) 

C (x,z,o) = Co(x,z) 



The specification of boundary conditions is the most difficult task in 

groundwater flow and transport modeling (29). The boundary conditions may 

be one of the following: Dirichlet boundary, for which the functional value 

is prescribed, Neumann boundary, for which the flux due to the gradient of 

the function is known, or Cauchy boundary, for which the total flux is 

given. A more difficult problem arises when the boundary condition is not 

known a priori; either one of the three boundary conditions may prevail and 

change with time. These boundary conditions are given by: 

Dirichlet: 

Cauchy: 

Neumann: 

C, 
kx,z,t) = Cd (xb, zb, t)  

Fr; (■7 c—e D.v = cic.(xi:oz 6 1  t) 

""1-1 . B D .v 

(17) 

The conditions imposed on the variable boundary, which is normally the 

soil-air or soil-water interface, are either Neumann with zero 

concentration gradient or Cauchy with the total flux given. 



III - MODEL DESCRIPTION 

1. INTRODUCTION 

The model that is being developed is a 1-D and 2-D finite element model. 

From section II, it was shown that in order to completely describe the 

movement of radioactive materials through unsaturated soils, it is 

necessary to simultaneously solve the flow and transport equations (Eq. 10 

and Eq. 13.). In this first step, the flow equation is being studied and 

the description of the present model is given in the next section. Section 

111.3 presents the steps that will be taken in the near future in order to 

completely characterize the transport of radionuclides through unsaturated 

soils. 

2. Water Flow Model  

In this initial stage, a finite-element model was developed to solve the 

water flow equation, which is written as a function of the water content 

(Eq. 9). Since the z direction was chosen to be in the downward direction, 

the resultant equation is 

c)isi 	3 k(e)  )(3  = 	( D020-32-) (18) 

In general, when the finite element method is used to solve a differential 

equation, the following steps are followed (29): 

(1) Divide the region into elements and nodes, 
(2) Define base functions for each node. 
(3) Define weighting functions for each node. 
(4) Approximate the function in terms of basis functions and node 

values. 
(5) Define the residual as the difference between true solution and 

approximate solution. 
(6) Set weighed residual to zero, 
(7) Derive the matrix equation, 
(8) Incorporate boundary conditions to the matrix equation, 
(9) Use initial conditions to advance the solution through time. 



The following description is applied to the 1-dimensional model; the 2-

dimensional model has a similar derivation. 

In this initial simulation, the model was kept as simple as possible 

because the idea was to check if the formulation of the finite element 

method was working properly. 

In the finite element approach the dependent variable is approximated by 

A 

h (z )t) h CZ)) 	(z) 0-3 a) 
3%.*i 

(19) 

where the CZ) are the selected basis functions and the aj(t) are the 

associated, unknown, time-dependent coefficients which represent the 

solutions of eq. 18 at specified nodes. Because only a finite number of 

basis functions are used in the expansion, eq. 19, the residual obtained 

when eq. 19 is substituted in eq. 18 is not zero; however, this residual 

may be minimized by requiring that L(h) be orthogonal to a set of mutually 

independent weighting functions. In the Galerkin method, these functions 

are equal to the basis functions. 



The equation can be written as 

_ 	r 1D1)) el 	1./.(0) 	e  
a t 	.)z c(e) ez 	ee 	3Z 

1-D Model  
Distance = L 
Number of nodes = rn 	 n = no. of elements 

Galerkin Form: 

 

2 node element 

 

= 	G) 	B_  K(e)  

	

C(e) 	3 e  (assumed constant in 
each element for 
simplicity) 

_ r  
at — cT—z - LA z. 

Basis functions: 	6 = N. 	+ NI; a; 	(linear approximation) 

= 	Nv, 	(N` e`) 	 1342 (Nie;.)]ct.z = o 	(21) 

N. = 	+ z = 

At each interaction, A and B are constant. 

I = j t\it fE1)-t (H'ei - -A (Pk l(Nceo)  +B  A (N ` e‘ )-11 	= ° ( 22) 

-C) 
Term 1 in eq. 22 

— Nk a .z.  (A z  (NE )) az 



Integrating by parts: 
(6 	 6 	 6 
)0_ u 	—( v cLu + uv

, 
 

u= N k 	(iv 	A (4 (tqLeL)) 

d 	
3Z, NI K 
	v = A -1-(1%. E);.) 

Term 1 in eq. 22 

2 e. 
A -a-- (N. 9-) -a- NI 	+ NJ A 	ni 

0  az 	L  
• 	 U 	 0 

$093 
 -Tz• ( NJ,: d.z. 

 

(23) 

9 = NJ e L  + N4 93 	 - — 3- 
) — 

 

= 	eL+ 	e)  
z 3Z 	Z — 

,)e _ _ 
az. - 	2. G • + 	G. 

' 

If Nk 
 = N i 

 

S A 	+ 	' ) (- -t)ct.z = -9- ( 	- 9; ) 
0 	2  

If N = N. 
k 	j 

	

- + 	) 	elz = 	(- 	+%) 
J 	9. e 	e ' 	 g. 

In matrix form: 

    

 

A 
Q 

 

—1 

Term 1 

  

 

—1 

 

 

1 

S 
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Term 2 in eq. 22 

If N
k  = N. = 1  1 

Term 2 becomes 

fiz Nix B ilt (NIL GL ) ct 7— 

5, fv, p (— --i- G.,. + --fr  9;) cl. Z. 

t 

IL ( I-  i ) D (_tee` + le> ),--4- z = B ( et ÷ (-1)1.11 (1- i)ctZ 

- 1},  (-9,, +9 3 ) 

If Nk  = Nj , Term 2 becomes 

ft  i- B (- ÷ eL + --1- 93) a.z ::: B (--4:  -I- 19 fc 9; i dz. 

= -I?: (- ei+ ei) 

Using natural coordinates 

S jz 	13  (__ 4. 4  4 ) a z . 	12. ea 41 d- 2  '-' 9  i 

_a (+) -= tl. (—ei. 4- 03) 

Same thing for 4 72 

1 	 -25- 



2 Nk 	 Eh)) az 

In matrix 
Term 3 

# 	'.• 

form 

e, In matrix form: Term 2 	

r Term 3 in eq. 22 	 ] 	613 

L2  14. (r4z dz. 
3t 

P!`4- 1- 
 (1)41-k-i.) 

3! 

	

Q  = 		 

1!1'_ 1.  

3! 	6 

 6 	3t 
1 
6 	3 

3 

d es  
d.t 

M 

Without using natural coordinates: Nk=N i  

S 2  O 5 A 
N I, (NL 	clz 

at  ( 1— ÷)(i — i) jt Gtz 

2z z cL z  = 	( (1- .7E 4. = Q OL  
3 3t 

(Q. 
3 0  t\h< (N i  Lei_) 	

Q. 
cLz = 	(i_ 	

1- 	
c1.2 

crt 	 7 3 t 

I 0 	a.-z. 
Z 	ALL 	 6 	3 t 



If N = N. 
k 	j 

Z 	 d_ z  — es ( z1 1 _ 2 )Eh 
0 	2. 	)-/ 	 331.'- 1 	3 	at 

( 9. 

	

(1-- -1) (-1)# cLz = 1 	, 

	

6 	,) -t 

The equation is then: 

[N] Pyzi 	D31{ , }+[s7Iel 
	

0 

rsi+E sliAi 

+LAM} = 0  
Boundary Conditions:  

The boundary condition is only applied to the first element (infiltration 
rate). 

The boundary condition is: 	=-D(e) ap + K(B) 

where q is given 

	 = 	 k(0)  
aZ 	D(e) 	t (e) 



For each interaction, a— and K(e)  are assumed constant X) 	D(0) 
D(e)an _KO) = 

Z 
mixed Neumann boundary condition. 

It will be assumed, at first, that the column of soil is infinite (no 

boundary condition at the end of the column is applied; no flux is then 

assumed at the extremity). 

In order to introduce this boundary condition, we have to analyze the 

boundary term: 

Term 4 in eq. 23 becomes 

N,,, DC 0) 3_ (N;. 	) 

	

From the boundary conditions _ 	+ HO)  
()Z. - 	 (8) 	C) (e) 

Term 4 

	

+ Ce)) f ¢  = 	)) 1 

In 9,(2nd node of first element) we do not have a boundary condition. 

In 0, Nk  = 1 and 

Term 4 

(24- 	K(e ) 

In matrix form: 

f p  I 	4;K(e) 



(24) 

It t+ot  

At 
2 01 t-fark. 

e 	f), 	(25) 
-a7E-  

The equation is then: 

Now it is necessary to solve the partial differential equations 

The first approximation is 

 

{ 9}  
a t 

substituting 

Which eq. 19 we determine 	{ }t4.6.t 	using the initial conditions. Once 

Lt 	is obtained, then a better solution is used (implicit finite 

difference). 

Expanding 

{ 

9  }t4tAt 

= } 4.-13-  it t 2 <it 

in Taylor series: 

( tit 2  4 	e 1 
‘- '2. ) 	2 ! 	--11.7.  It Hi- 	(a.t?)  

{ 0 	„ fel - of 
ti-et 2 

Subtracting 

1 cie 
IcT-tIt46.t+(-)

2 	
[ 

it4At. -F R ( at3 ) 



HIP} —[m] Hi, fel 
i c19 1 M 1-1 1 A ]*4Ati e  4At 4 

At 

Substituting 

9 it4At 
	at (E M 1 { P }i — [M] [ A lt { 9  L4 Emf{?}t46;1. 1%1 111(2)Liele 

The final equation is then 

[A]t4.,) 

	

= 	[m] - EAlt ) 	{P 	P It+At ) 
	

(26) 

Equation 24 is used to determine in a first approximation 

using the initial condition. 	With 	{e} t*Ae  ,Me,,,mand D;14. at  can be 

evaluated; and eq. 26 is then used until {e}t+At  is determined with the 

desired precision. Then the boundary condition is changed and the process 

is repeated until convergence is obtained. Then a new time step can be 

started. 

Figure 5 shows the flow diagram used to implement the model. 

The relations used in the model between water content and pressure head and 

water content and hydraulic conductivity are: 

(0— e„ 	( 1/41). 

m- en. 

K (e) = KS  Srn‘ 

(Ref.25) 

(Ref.25) 

(27) 

where X is the pore size distribution index, K
s 
is the saturated hydraulic 

conductivity, S is the moisture saturation (S=6/m), n is the porosity, @k is 

the residual water content, and /0_ is the air-entry value. As has already 

been mentioned, the derivation of the 2-dimensional model is similar to 

that presented for the 1-dimensional model. 
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Although the model was a simple one, with many assumptions, it was useful 

in checking the basic structure of the finite element formulation, since 

the finite element structure of a model is always the same (only the matrix 

coefficients change when the differential equation is changed). 

3. Model Development  

The water flow model is now being developed for the equation using the 

pressure head as the dependent variable. This model is being developed in 

a more general way than the previous one was and the simplifications 

adopted in the water content model are being eliminated. When the model is 

ready, then it will be possible to compare it with some analytical 

solutions for both saturated and unsaturated conditions. Once the flow 

model is running properly, the transport model will be implemented. Table 

1 presented the capabilities of the model being developed; it also compares 

the unsaturated model with the saturated model that was used before by the 

Savannah River Plant. Some of the possible options that can be included in 

the future are also shown in the table. 



IV - MODEL IMPLEMENTATION 

1 - INTRODUCTION 

The general description of the water flow model using the water content as 

the dependent variable was presented in the last section. This section 

presents the numerical implementation of the equations derived previously. 

Both 1-dimensional and 2-dimensional models are described, and a brief 

explanation of each subroutine is shown. Also, the results obtained for a 

simple situation are presented. 

2 - MODEL DESCRIPTION 

In order to develop a finite element model, there are some standard steps 

that are usually taken. First of all the region under study is divided 

into elements and nodes. For the 1-D model, the region was divided in 10 

nodes, 19 elements equally spaced, although different element length was 

also possible. For the 2-D model, the region was divided in 24 triangular 

elements, 21 nodes. After the region is characterized, the base functions 

are defined for each mode. For the 1-D model, a linear base function was 

used 

2 

Ni CL. bi 

For the 2-D model, the base functions used are 

3 
e 	Ni 

(.7.1 
	eL 

(28)  

(29)  

az+ bLz* C., r 



After the base functions are chosen, the weighting functions are selected. 

The method used was the Galerkin method, and in this case the weighting 

functions are chosen to be equal to the base functions. 

The next step is then to approximate the functions in terms of basis 

functions and node values. This was shown in section 111.2 for the 1-D 

model; the same procedure is applied to the 2-D model. 

Once the approximating functions are prepared, the residual is defined as 

the difference between the correct solution and the approximate solution; 

the weighted residual is then set equal to zero and the matrix equation is 

then derived. The boundary condition is then incorporated and the 

resultant differential matrix equation is then solved using a finite 

difference scheme. All these steps are also shown in section 111.2 for the 

1-D model. 

After the matrix equations and the finite difference schemes were 

prepared, the numerical model was developed. 

3. 1-D MODEL  

The 1-D model consists of one main program and 10 subroutines. 

The main program is responsible for the organization of the model. 

Basically, it performs the scheme shown in Figure 5. 

Subroutine ERROR is responsible for the convergence of the results; it uses 

the following equation to determine if there is convergence or not of the 

dependent variable. 
14. 

L 	J 
	E  

where E is the desired precision. 
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Subroutine INPU is used to introduce the values of all variables needed; 

these variables are: length of the column, total time of analysis, time 

increment, number of elements, coordinates of the nodes, initial water 

content, boundary condition time during which the boundary conditions 

applied, residual water content, air entry value, pore size distribution 

index, saturation, hydraulic conductivity, and porosity. 

Subroutine SET performs the coordinate transformation; it changes the 

global coordinates of each element to local coordinates. 

Subroutine ELEM generates the local element matrices by calculating each 

coefficient of the matrices necessary to solve the matrix equation. 

Subroutine ASSEM is used to assemble the local matrices in a global matrix. 

Subroutine BOUN introduces the value of the boundary condition 

(infiltration rate) 

Subroutine CALC1 solves eq. (24) 

Subroutine CMULT multiplies a non-synmetric band matrix by a vector 

Subroutine CALC2 solves eq. (25) 

Subroutine OUT prints the value of the water content of each node at each 

time interval. 

Subroutine LEQT2B calculates the inverse of a matrix. 

The resultant 1-D model is shown in Appendix A. 
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4. 2 -MODEL 

The 2-D model is basically composed of six subroutines. 	The MAIN 

subroutine represents the structure of the program; it performs the scheme 

shown in Figure 5. It also introduces all the values needed by the program 

(such as INPU of the 1-D model) and is also responsible for the output; it 

presents the water content values of each node at each time interval. It 

also solves Eq. 26 

The ABC Subroutine evaluates the coefficients of the matrices necessary to 

formulate the base functions. 

The ITGL Subroutine performs the integration of the terms which form the 

residual, over each element. 

The SETUP Subroutine is called by the ITGL subroutine in order to perform 

the necessary integrations. 

The UNSAT Subroutine calculates the diffusivity and the derivative of the 

hydraulic conductivity in relation to the water content, at each 

iteration. 

The MKMTX Subroutine assembles the local element matrices in a global 

matrix. 

The 2-D model is shown in Appendix B. 



5 - RESULTS OF THE MODEL DEVELOPMENT WORK 

A very simple situation is being used to check the output of the models. A 

20 cm long sand column is simulated. The initial water content of the sand 

column is uniform and equal to 0.2. A constant infiltration rate is 

assumed at the top of the column; no flow is allowed at the bottom. The 

following parameters were used. 

Saturated hydraulic conductivity = 4.5 m/day 

Porosity = 0.4 

Total time = 2.0 min. 

Time internal = 0.01 min 

Flux at boundary = 0.05 cm/min 

Error = 0.002 

Residual water content = 0.1. 

Air-entry value = 30.0 cm 

Pore size distribution index = 5.0 

m = 3.0 

The output of the 1-D model is shown in Table 3. It is seen that the 

results were consistent and that there are no longer fluctuations in the 

water content values. These results show that the structure of the program 

is working well, and so the hydraulic head flow equation is now being 

developed. When it is working, it will be possible to compare the output 

with some analytical situations for saturated cases. The 2-D model still 

presented some output fluctuations, but these have since been eliminated. 

This work is being continued in the coming months. 
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EXPERIMENTAL FLOW TESTS 

One of the basic uncertainties in the lysimeter tests concerns the nature 

of the source term and the type of flow that exists in the waste material 

region itself. For instance, it is not intuitively obvious, whether the 

waste material on compaction by the overlying soil will form a barrier to 

throughflow or will leave cavities that may invite perched water. 

Depending on these flow conditions, it then becomes important to determine 

if water from the overlying area is diverted around the waste, in effect 

greatly reducing the leach rate, or diverted into it from neighboring flow 

cells, thus relatively increasing flow through the waste volume and, 

potentially, raising the leach rate. 

To answer these questions several tests were devised that, on a smaller 

scale, attempted to reproduce conditions in the lysimeters. 

A. Condition of Waste Material  

Reference 9 contains several pictures of the type of laboratory trash 

loaded into the lysimeters. A listing of the composition was obtained from 

SRL and is presented in Table 4. Comparable waste material was collected 

from the Nuclear Research Center at Georgia Tech for compression tests. At 

SRP the waste was loaded into the lysimeters in plastic bags that were then 

punctured to admit water flow. That the waste degrades and perishes to a 

variable extent was evident when some SRP trenches were exhumed after 14 

years of burial (DP-1456); Figs 6 and 7 are examples of what was found. 

The simulation waste was placed into 3-gallon ice cream cartons for ease of 

handling. Two aspects of the behavior of the waste material were of 

interest: a)the degree of collapse or compression the waste would suffer 

after backfilling of the trenches or lysimeters; and b)the change in 

permeability to water flow the collapsed waste would present. 
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Fig. 6 Example of exhumed waste 



Fig. 7 Example of exhumed SRP waste 



TABLE 4 

FORMULA FOR SYNTHETIC SOLID WASTE 

(VOLUME BASIS) 

25% Kimwipes, handiwipes, paper towels, and atomic wipes (sanitary pads) 

20% Plastic bags 

20% Assorted glassware and glass sample vials 

15% Polyethylene bottles and caps (500 cc and smaller) 

10% Disposable pipette tips 

10% Metallic waste (small tools, bolts, clamps, forceps, etc.) 

The pressure of the moist overlying soil under 6 feet of backfill was 

estimated to be about 11 lb/in. 2  To measure changes in permeability, 

without changing the consistency of the waste, it was decided to measure 

changes in permeability to air flow only. Fig. 8 illustrates the set up. 

To perform the compression tests, a tight-fitting ram had to be constructed 

to fit the inside of the cartons. The material was then compressed several 

times in succession and the flow rate measured under constant conditions. 

Table 5 summarizes the results for two different waste batches. It is 

evident, that even after applying a pressure of over 13 psi, well above the 

estimated soil load, there are still appreciable gaps in the waste package, 

allowing ample air flow, and therefore water flow, easily in excess of that 

passing through the surrounding soil. Fig. 9 shows a picture of the 

compacted waste in its container. 



 

air flow 
inlet 

 

Fig. 8 Flow Test Arrangement 



/o 	14. 7;;;,--  .4 chi i 

Experiment #2: 2nd Compaction; .17 lbs/in 2 
 Airflow: 5.11 ft /min 

Volume: 336.69 inches 3  
Height Reduction: to 4.75 inches 

, 

Experiment #2: 3rd Compaction; 13.41 lbs/in 2 
 Airflow: 4.47 ft3/miq 

Volume: 257.3 inches i 
Height Reduction: 5.62inches 



Table 5 

Waste Compression Tests 

Initial height of waste in container: 10 inches 

SUMMARY OF AIR FLOW EXPERIMENTS 

Experiment 	 Pressure 

(lb/in2 ) 

1 	 0 

2 	 0 

Height 

(inches) 

10 

6.62 

4.5 

3.0 

10 

Air Flow 

(cf/m) 

9.90 

12.78 

9.27 

9.27 

10.68 

4.6 6.25 6.39 

9.17 4.75 5.11 

13.41 3.25 4.47 

3 0 10 15.01 

4.7 5.5 12.14 

9.17 4.25 6.39 

13.41 3.25 6.39 

4 0 10 15.33 

4.7 5.25 12.41 

9.17 4.25 9.59 

13.41 3.25 6.39 

These tests show that for the type of waste material employed the waste 

volume, under compression, would not present a barrier to vertical flow nor 

encourage flow diversion around the waste volume. Instead, it is possible 

that water is diverted into the waste region from surrounding soil, at 

least until the waste material has degraded further, to the condition shown 

in Figures 6 and 7. Since the waste material in the SRP lysimeters is 

relatively fresh, any modeling of the flow process must envisage the 

possibility of lateral infiltration into the waste cavities and, even, for 

relatively impermeable backfill soil, the occurrence of perched water 

within the waste region. The next section discusses test work under way to 

study those processes. 
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B. Flow diversion through the Waste Volume  

To provide some input data to the two-zone computer model of Fig.  4 	Y 

experimental tests have been undertaken to measure the change in flow rate 

resulting from the presence of the permeable waste. These tests are still 

in progress. The tests consists of two phases which are illustrated in Fig 

10. Sand initially, later SRP soil, is loaded into a drum designed to 

provide a two-zone flow regime. The compacted waste is loaded on top of an 

isolated sand bed, separated from the outer zone by a wooden barrier. By 

embedding electrical conductivity electrodes at various levels in the 

inner and outer zones moisture conditions can be monitored to indicate any 

flow diversion through the waste volume or into it as the test bed is 

wetted at intervals with known amounts of water. At this writing the first 

test, with the waste volume open to lateral flow, has been operating for 

three weeks and no significant diversion has been observed while the bed is 

running at low total moisture content. Moisture content will be stepped up 

gradually and it hoped to maintain a material balance to account for all 

water present. Fig. 11 shows the location of the electrodes and their 

general design. The electrodes were calibrated in a separate bed against 

moisture measurements by conventional means. 

Conductivity Measurements  

In order to avoid the problems due to hysteresis, the electrodes used were 

in direct contact with the soil, without the porous block. As is reported 

by Gardner (25), the major drawbacks of this method are uncertain 

electrical contact between electrodes and the soil, and soil 

heterogeneity, which prevents uniform flow of current in the soil. Since 

the soils used were artificially packed, and since the soils are well 

characterized, it seems that the soil heterogeneity does not represent a 

major problem in the present case. Consequently, if good electrical 

contact is obtained when the electrodes are placed in the soil, the method 

should give satisfactory results. 

4 
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Fig, 10 Diagram of Flow Diversion Experiments. 
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For each of the four soils used, the indirect method should be calibrated 

against a direct method; the direct method was chosen to be the gravimetric 

one with oven drying which is explained in a later section. 

The electrodes that were used in this study are shown in Figure 11. Two 

copper electrodes are held together by a rigid plastic bar; the plastic bar 

has 2 small holes, 5 cm apart, through which two solderless terminals are 

inserted. One end of the terminal is connected to the copper electrode, 

while the other end is connected to an electrical cable, which connects the 

electrode to the measuring device. In order to avoid corrosion of the 

copper electrodes, they were nickel-plated. The plating procedure was 

adapted from Rodgers (1960), and Gray (1953). Basically, the copper 

electrodes were first degreased with detergent (Alconox); they were then 

rinsed with water and acid-dipped (20 parts of water to 1 part of H
2 
 SO

4 
 ). 

' 
after being rinsed with hot and cold water, the electrodes were plated for 

15 minutes in a nickel sulfate-nickel chloride bath. 

The electrodes were checked for reproducibility with excellent results. 

The conductivity measurement system was calibrated for each type of soil by 

preparing progressively wetter samples and determining the moisture 

content for each. The volumetric water content is obtained as 

e = .x, 

where p h,  and p
w are the bulk density and water density respectively. The 

percent saturation is given by 

S = —9— x 100 nr‘ 

and this quantity is related to the current measured when a standard 

voltage is applied to the electrode system. To avoid electrochemical 

changes it was found to be important to use pre-equilibrated water in 

making up the wet soil samples. Figs. 12 to 15 show the calibration curves 

obtained. For most measurements the error in the resistance measurement 

was of the order of 1.5 percent. 
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Fig, 12 	Electrode Calibration: G.T. Sand 



Fig. 13, Electrode Calibration; Rollo Sand, 
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Fig.14. Electrode Calibration 	SP' P1 Soil. 



Fig. 15. Electrode Calibration: SRP #2 Soil. 



Flow Diversion Test  

As mentioned before, these tests are under way at the time of writing. The 

following procedure is being used: 

1. The sand being used for the first run was analyzed with the 

results presented in the following section. 

2. After calibrating the conductivity probes the drum was filled 

with the material listed in Table 6 which had been compressed 

from 10 in. to 3 in. in height. 

3. Eleven sets of probes were inserted in the sand bed as it was 

filled and compacted in the locations indicated in Fig 16. 

Figure 17 shows the appearance of the drum after filling. 

4. Baseline measurements were obtained with the dry bed. 

5. Subsequent runs, involving vertical moisture profiles and 

comparison of the inner and outer zone were obtained after 

injecting 2 gallons of distilled water with a watering can on 

successive occasions. 

TABLE 6 

Material Used in Flow Diversion Tests 

1. Uncontaminated clinical waste materials. 

Volume 

Kim wipes, paper towels, and etc 	 130.5g 	25% 

plastic bags 	 73.5g 	20% 

assorted glass ware 	 336.6g 	20% 

polyethylene bottles and cups 	 210.0g 	15% 

disposable pipet tips 	 119.6g 	10% 

metals 	 253.6g 	10% 

total weight 1223.6g 

2. 3 gallon ice cream carton. 

9.5" diameter, 10" height. 

The waste, at first, had 10" of height in the carton and then was 

compacted to 3" height by pressing it from the top with 13.5 lb/in of 

weight on it. 
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Results and Discussion  

It was found that, in the initial state, water was not distributed 

homogeneously in the sand which filled the drum. In filling the drum, the 

sand contained a small amount of water and due to the time interval of 

filling the drum layer by layer, evaporation of moisture from the sand 

happened. This resulted in inhomogeneous distribution of water in the 

sand. 

Although water content at each position of electrode had changed after 

watering, this uneven distribution of the initial water content in the sand 

maintained the same profile as the initial state of this experiment, even 

15 days after watering with 2 gallons of distilled water. For example, the 

water content at electrode positions #1 to #6 increased to about 300% of 

that at the initial state identically. 

In the initial experiment, results were not expected to be obtained 

quantitatively. However several facts could be observed qualitatively: 

One fact observed is that, with very low initial water content, water 

infiltration rate through the sand was very low; comparing runs #2 and #3 

with run #1, this can be seen easily. After 2 gallons of watering, it took 

50 min for water to infiltrate through 13 inches of height of the sand; 

this might be caused by low hydraulic conductivity of the sand when it is 

relatively low in water content. 

Another important fact observed is that, although the initial distribution 

of water in the sand was not homogeneous, the existence of waste seemed to 

retard infiltration of water. Looking at saturation values at positions of 

electrodes #1 to #6, which were located at identical depth, the sand right 

below the waste seemed to have less water content than the sand outside the 

wood box. This effect can be explained by the fact that while the free 

volume in the waste is being filled by water, all gradients are inward and 

after pressure is applied, equilibrium pressure in the free volume with 

that of the surrounding soil is established, fluid within the volume of 

waste will flow with its regional ground water flow. (30). 



Another reasonable consideration can be that there was water-absorbing 

material, like kimwipes and papertowels, which might absorb a considerable 

amount of water to retard the flow of water. 

Experiment 2 started with the initial state of water content which was the 

last state of run #1. This means that, as the initial water content, the 

sand contained about 300% higher water content than that of the initial 

state in experiment 1. 

The first results of run #2 showed fast changes of saturation values which 

were measured right after watering: The deepest electrodes (#1 to #6) read 

about 200% increase in water content. However, at t = o, water content 

values began to increase or decrease slowly, but faster than in experiment 

#1. For rapid and big changes in saturation values at t = o one may assume 

that water might have filled and been kept in the big voids of the waste 

volume from the experiment 1, and then the water in the voids was flushed 

out rapidly by the change of pressure caused by the new water source. 

Following this, the same retardation of water flow through the waste 

occurred as was observed in experiment 1. 

In run #3, fast and large changes of water content at the deepest positions 

were not observed. This was thought to be because of the long drainage 

time in experiment #2 (15 days). Because of that, the water which might 

have filled the voids in the waste volume is thought to have been drained 

down. 

C. Soil Material Characterization  

To compare the behavior of SRP soil with other soil materials and to enable 

one to extrapolate measured values to a more general case that can be 

projected by the calculational model, it is important to characterize the 

soil materials used. The principal parameters of interest are hydraulic 



conductivity or permeability, ion exchange capacity, residual moisture 

content and draining rate. These must be experimentally determined and 

related to the inherent properties of the soil materials, i.e. bulk 

density, porosity, particle size and composition. 

1 - Bulk Density 

One of the important parameters for any soil study is the bulk density. 

The bulk density is defined as the ratio between the dry weight of the soil 

and the total volume in undisturbed conditions. 

Samples of the four soils under study (Georgia Tech Sand, Rollo Sand, 

Savannah River Plant Soil #1 and #2) were oven dried for 24 hours at 105+5 
o
C as is recommended by the ASTM (34). A plastic vial with known volume 

(21.3cm
3
) was then used to obtain 3 samples of each soil; these samples 

were then weighed and the obtained result are shown in Table 7. 

TABLE 7 - BULK DENSITIES (g/cm2)  

SAMPLE # 	G.T.SAND 	ROLLO SAND 	 SRP #1 	SRP #2 

1 1.38 1.40 1.25 1.19 

2 1.39 1.39 1.24 1.20 

3 1.37 1.41 1.24 1.21 

AVERAGE 1.38 1.40 1.24 1.20 

The bulk density was obtained with two different measurements: the weight 

and the volume of the dry soil. The volume of the sample vial was 

determined by weighing the vial, filling it with distilled water and 

weighing again; the difference between these weighings is then divided by 

the density of the water at the temperature the measurements were done.

WV  
V- 

PU 
Where V is volume, W

v+w 
and W

v 
are the weights of the vial with water and 

the empty vial, respectively, and (r) 	is the density of the water. 
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Three measurements were performed and all three presented the same result, 

21.30 cm3 . Since there was no variability in the results, the error 

associated with this measurement is the error due to the instrument 

readings, which can then be assumed as half the value of the smallest 

instrumental division, in this case, 0.05g. Assuming the error associated 

with the water density is negligible, and using the water densityat25 ° as 

0.997g/cm3 the error associated with the volume determination is 0.07 cm 3 

and V = 21.30 + 0.07 cm3
. Table 8 presents the results of these 

measurements. 

ROLLO SAND 

G.T.SAND 

SRP #1 

SRP #2 

WEIGHT (g) 

29.879+0.159 

29.39410.095 

29.48410.113 

25.50310.179 

TABLE 8 - BULK DENSITY 
, VOLUME (cat3  ) 

21.30+0.07 

21.300.07 

21.3010.07 

21.30+0.07 

BULK DENSITY (g/cm3 ) 

1.40+0.01 

1.3840.01 

1.2410.01 

1.20.±0.01 

2 - Porosity  

Porosity is another soil parameter that has to be determined in order to 

well characterize the soils. The porosity of a soil is defined as the 

fraction of the total volume of the material which is occupied by pores or 

interstices; these pores may be filled with water if the soil is saturated, 

or with air and water if the soil is unsaturated. The porosity may be 

written a function of the bulk density. 

n = 1 

where n is the porosity, A is the bulk density, and /04.  is the particle 

density. 

For soils and gravels, the predominant mineral is quartz, and a density of 

2.65 g/cm
3 
 is generally used as the density of the solid fraction of the 

soil (Bauer et al., 1972). Consequently, using a particle density value of 



2.65+0.01g/cm3  will cover the whole range of interest. With the values 

given in Table 8 for the bulk density, the porosity of the four soils was 

calculated and the results are shown in Table 9. The errors were 

calculated by applying the error propagation formula; these errors are 

also shown in Table 9. 

U 

TABLE 9 - POROSITY 

ROLLO SAND 

G.T.SAND 

SRP #1 

SRP #2 

BULK DENSITY (g/cm3 ) 

1.4010.01 

1.38+0.01 

1.24+0.01 

1.20+0.01 

PARTICLE DENSITY(g/cm3 ) POROSITY 

	

2.65+0.01 
	

0.472+0.004 

	

2.65+0.01 
	

0.479+0.004 

	

2.65±0.01 
	

0.53210.005 

	

2.6510.01 
	

0.547±0.005 

3 - Particle Size Analysis  

The porosity and the bulk density are not the only parameters used to 

characterize a soil; among some others, the size range of particle in the 

soil is important. The determination of the particle-size distribution of 

a soil sample is called mechanical analysis; the results of the mechanical 

analysis are generally presented in graphical form, known as the 

distribution curve. 

The method used in this study to determine the distribution curve is that 

recommended by the American Society for Testing and Materials (35, 36). 

Basically, the soil sample is allowed to contact a dispersive agent (sodium 

hexameta phosphate) for about 16 hours; the sample is then placed overnight 

in a shaker in order to disperse all particles. At the end of the 

dispersion stage, the sample is introduced in a sedimentation cylinder, 

and hydrometer readings are taken at fixed time intervals. The hydrometer 

used was the 151H, which is recommended by the ASTM (36). After the 

readings are taken, a sieve analysis is performed in order to determine the 

size distribution of the sand fraction. The calculation are then done as 

shown in Ref. 36. 
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The distribution curve of the four soils under study was determined, and 

the results are shown in Table 10-13; Figures 18-21 show the distribution 

curve of the four soils, and Table 14 shows the resultant sand, silt, and 

clay fractions of the four soils. 

TABLE 10 - PARTICLE SIZE DISTRIBUTION - G. T. SAND 

DIAMETER % PASSING DIAMETER % PASSING 

(Am) (%) (P.m) (%) 

1410.0 90.7 23.0 1.5 

1000.0 80.7 13.0 1.5 

707.0 65.8 9.3 0.7 

500.0 46.6 6.6 0.7 

250.0 10.4 5.0 0.7 

105.0 2.9 3.5 0.0 

75.0 2.6 2.7 0.0 

36.0 1.5 1.3 0.0 

TABLE 11 - PARTICLE SIZE DISTRIBUTION - ROLLLO SAND 

DIAMETER % PASSING DIAMETER % PASSING 

(Mm) (%) (P.m) (%) 

1410.0 86.0 36.4 1.2 

1000.0 51.3 23.0 1.2 

707.0 12.8 13.3 1.2 

500.0 4.5 9.4 1.2 

250.0 1.3 6.7 0.6 

105.0 1.1 4.7 0.6 

75.0 1.1 3.4 0.0 
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TABLE 12 - PARTICLE SIZE DISTRIBUTION - SRP #1 

DIAMETER 

(p.m) 

%PASSING 	 DIAMETER 

(Z) 	 ()Am) 

% PASSING 

(Z) 

1410.0 97.1 	 7.6 30.4 

1000.0 94.5 	 5.4 29.7 

500.0 80.4 	 3.8 29.7 

250.0 61.0 	 2.7 29.0 

75.0 34.8 	 2.0 28.3 

63.0 34.2 	 1.1 27.7 

29.0 33.1 	 1.0 27.0 

18.4 32.4 	 0.8 26.3 

10.7 31.7 	 0.7 25.6 

TABLE 13 - PARTICLE SIZE DISTRIBUTION -SRP #2 

DIAMETER % PASSING 	 DIAMETER Z PASSING 

(p.m) (Z) (fpm) (%) 

1410.0 97.1 16.5 42.3 

1000.0 94.6 9.6 41.6 

500.0 84.2 6.9 40.9 

250.0 62.1 4.9 40.3 

75.0 43.3 2.4 39.6 

63.0 43.1 1.0 38.9 

25.8 43.0 



TABLE 14 - SOIL PROPERTIES 

SOIL 	BULK POROSITY SAND SILT CLAY RESIDUAL* 

TYPE 	DENSITY FRACTION FRACTION FRACTION WATER CONTENT 

(g/cm3 ) (%) (V (%) (Z) 
ROLLOSAND 1.40 0.472 98.9 1.1 0.0 0.8 

G.T. 	SAND 1.38 0.479 97.4 2.6 0.0 0.7 

SRP #1 	1.24 0.32 62.0 9.0 29.0 10.0 

SRP #2 	1.20 0.547 56.0 4.0 40.0 16.0 

*Approximate values from Figs. 12 - 15 

D. Residual Water Content  

The residual water content is defined as the amount of water retained by a 

material when water is removed by the force of gravity; although it has a 

very simple definition, the residual water content is very difficult to 

determine in practical situations. The importance of this soil parameter 

is that it reflects the maximum degree of unsaturation that a soil can 

reach and, consequently, the minimum rate that a solute in the soil will be 

transported by the water. 

In order to determine the residual water content, a large column filled 

with a soil would have to be left draining for a long time and, when no more 

water flows from the column, the water content is then determined; this is 

not a very practical procedure, and so the electrical resistance of the 

soil was used to estimate the residual water content. 

In a previous experiment, Whang (1984) used the electrical resistance 

method to estimate the residual water content of several sands. Basically, 

several short columns (8.2 cm long, electrodes 5 cm apart) were filled with 

saturated sand and were allowed to drain, while the electrical resistance 

was measured from time to time. When the current reached zero (infinite 



resistance), the residual water content was determined. 	When the 

resistance reaches zero, it means that the water in the soil is no longer 

interconnected, and although it may not be the point at which the water 

stops flowing due to gravity, as it is defined, it is at least a good 

indication of the residual water content. When Whang applied the same 

method for soils containing an appreciable amount of clay (SRP#1 and 

SRP#2), the current did not reach zero; consequently, the point used for 

the residual water content was chosen when the current reading remained 

constant for some time. This result is expected, since as the soil 

particle decrease in size, the force attracting the water to the soil 

particles increase and, although the water in the soil is still 

interconnected, the gravity force is not enough to separate the water from 

the soil particles, and there is no water flow in the soil. Whang's 

results are shown in Table 15. 

TABLE 15 - RESIDUAL WATER CONTENT 

SOIL TYPE 	 RESIDUAL WATER CONTENT 

MESH SIZE 	 (%) 

14-16 	 0.50 

16-20 	 0.16 

25-30 	 0.18 

30-55 	 0.25 

40-50 	 0.33 

50-60 	 0.61 

SRP#1 	 12.50 

SRP#2 	 16.70 

In the experiments described in this report, the calibration of the soils 

was done starting from dry soils; consequently, it is almost impossible to 

use the results in order to estimate the residual water content. However, 

if the point at which the current changes from zero to any value is used as 

an indication of the residual water content, it is possible to compare the 

results obtained with the results obtained by Whang; the values shown in 



Table 16 were obtained from Figs 12-15. 

TABLE 16 - RESIDUAL WATER CONTENT 

SOIL TYPE 

ROLLO SAND 

G.T. SAND 

SRP #1 

SRP #2 

RESIDUAL WATER 

CONTENT 

0.89 % 

1.59 

10.51 

17.37 

Comparing the results presented in Tables 15 and 16, it is seen that they 

are in good agreement. In order to check if these results could be assumed 

as a valid estimation of the residual water content, a long sand column (26 

cm long, 2 cm diameter) was filled with sand (15-20 mesh size) and 

saturated. It was then left draining for more than 3 months. After that 

time, the current readings (electrodes at each 2cm) were equal to zero in 

the top portion of the column (top 10cm), and then the readings increased 

reaching a maximum at the bottom of the column. The water content 

corresponding to the top 10cm was found to be w = 3.4 x10
-4 , which is close 

to the value reported by Whang for the same sand size (w = 4.5 x 10-4 ). 

However, the bottom of the column presented an average water content of w = 

1.5 x 10 -3 , which is an order of magnitude higher. One possible 

explanation for this high water content at the bottom is that a paper 

filter was used to support the sand, and it is suspected that this filter 

was not very permeable, and so it did not allow the water to drain freely. 

These tests are being repeated and expanded. 



CONCLUSION 

This report constitutes a progress report on work done at the Georgia 

Institute of Technology in support of the Savannah River Laboratory 

lysimeter studies. These investigations centered on the development of a 

suitable computer model and on experimental tests to establish realistic 

flow paths within the lysimeters and to study the unsaturated flow 

conditions existing there. 	Considerable progress has been made on all 

these tasks and is reported here. 	A two-dimensional model has been 

described and is at present in process of being debugged and tested. The 

program presented in Appendix B is indicative of the nature of the model, 

but should be considered as preliminary only at this stage. 

The experimental tests have shown that the Savannah River soils tested will 

retain a residual moisture level of 10-16%. Ordinarily, unsaturated flow 

conditions prevail and both waste leach rates and migration rates would be 

expected to be well below those indicated for saturated flow. Waste 

compression tests have been performed and show that material of the type 

placed in the lysimeters will not be flattened entirely by the overlying 

soil and may well present a preferred pathway for the infiltrated water. 

The possibility of water perching in the waste volume then depends on the 

drainage rate in the lower half of the lysimeter. 

These and related aspects will be the subject of continuing 

investigations. 
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Appendix A 

Program of the one-dimensional model. 

PROGRAM NUM (DADOS,CUTPUT,SAIDAJAPE7=DACOS,TAPE6=CUTFUT, 
1 	 TAPE7=SAIDA) 
DIMENSION 2.(20),TETIN20),ICON(20,2),NEWN(2),ZE(2),SE(2,2), 

BE(2,2),M2,2),AE(2,2),A8(20,3),XM8(20,3),PC(20), 
2 	- 	AGT(20,3),AP(20),XMI(20,20),TETIX(20),A07.(20,3), 

XA(2',),3),TETI3(20),U(20,5),XY(2),TETB(20) 
CALL INPU(XL,TIME,TIVAL,NELL94,Z,TETIN,B0UND,ICON,TIMEL .  

1 XERR,AI,BI,PM,HCOS,PORO,PLISP,ISS,MNODE) 
7I=0 

1 	DO 5 1=1,20 
MCH29 H 11444 CHF* • 

PO(I)=0. 
*******• 	 MCH29 

DO 5 J=1,3 
AO(I,J)=0 

5 	XMO(I,J)=0 
* 	PG(1)=) 	********************************DELETED ON MCH29****** 

DO 20 I=1,NELEM 
TETI1=TETIN(1) 
TET12=TETIN(I+1) 
DO 10 J=1,2 

IC 	NEWN(J)=ICOM(I,J) • 
CALL SET(NEWN,ZE,Z,NNOIE,ISP,XL,NELEM) 
CALL ELEM(ZE,TE7I1,3E,HAM,AE,AI,BI,PM,HCOS,PORC,PL, 

1 TETI2) 
CALL ASSEMINE'A,AE,A007!,XMO) 
CALL 130UNBOLD,P,TInD,TI,TETIN,HCOS,nRO,PM) 
CALL OALOIC7:.AL,K,AJETIN,XMO,AOP) 
IJOB=0 
N=20 
NLC=1 
NUcr.i 
IA=20 
DO 110 1=1,2C • 
DO 110 J=1,20 
"41,1T(I,J)=0. 
IF(I.EQ.J) XMT!I,J)=1. 

11;) 	CONTINUE 
CALL LEGT2B(XMO,N,NLO,NUC,IA,XMT,N,IA,IJ0B,U,N,V,IER) 
WRITE(6,WISP,IER 
CAL! CMULTUMT,AGP,TETIX) 
ITI=0 
TI=TI+TIVA 

;.1`.: CALL BOUN(BOUNC,,TIMEX,TI,TETIX,HOr,PCRC,FM) 
120 00 150 1=1,20 

DO 150 J=1,3 
AC, ZY„J)=40I,, 

ItC• 	CONTINUE 
PI=Prj(1) 
0C 2(.:0 1=1,20 
20 200 J=1,3 
AOrf,j)=0. 



DO 300 1=1,NELEM 
TETII=TETIX(i) 
TETI2=TETIX(I+1) 
DO 250 J=1,2 

250 	NEWN(J)=1CON(I,J) 
iilf****4144****** 	 MC1129 

- 	CALL SET(NEWN,ZE,Z,NNIEE,ISP,XL,NEE11) 
***444#444444*** MCH29 

CALL E1.EN(ZE,TETI1,3E,DE,XM,AE,AI,BI,P41,HCOS,PCRO,PL, 
1 -  TETI2) 

300 CALL ASSEM(NEWN,AE,AG,XM,XMO) 
CALL CALC2(TIVAL,PO,AO,TETIN,XMAGP,PLAGZAA) 
DO 310 1=1,20 
DO 310 ,.1,20 
RIT(I,J)=0 

XMT(I,J)=1 
210 CONTINUE 

CALL LEOT2B(XA,N,NLC,NIX,IA,XMT,N,IA,IJOB,U,N,XY,IERI 
CALL CMULTUNT,AGP,TETIS1 

C FEB29 
C 

CALL ERROWTETIX,TETIS,IE,XERR) 
IRIE.M.0)00 TO 350 
TETIX(1)=TETIS(I) 
GO TO 120 
IRTI.GLI)DO TO 280 
IT1=1 

260 00 370 1=1,20 
TETI;M=CE 

0 TETIt1;=TET:3:) 
GO TO 115 

2P-0 CALL ERRONTETEN,TETIS,IEOERR .; 
IRIE.EQ.0)00 TO 400 
ITI=IT1+1 
GO TO 260 

40'3 WITEUMITI 
41) CALL OUT(TI,TETE2,2) 

IFiT1.3E.TIME1G0 TO 450 
DO 420 1=1,20 

420 	TETIN(I)=TETIX(1) 
GO TO 1 

450 CONTINUE 
STOP 
END 
SUBROUTINE ERROP777 7EN7:713"ERR 
DIENSION TETENC2 ),TE718(20) 

TETINnI;TETEN 	■IC1-09 
TTI=0 
TTII=0. 
CO 1 1=1,20 
TTT=TETEN(11-TETISC‘' 
TT=IABS(ITTM42. 
TT:=77I+TT 
rT1T=TTII+CTETENiI)), 



  

CONTINUE 
TTIII=SORT(TTI/TTII) 
IF(TTIII.GT.'7,ERR)G0 TO 2 
IE=0 
GOTO 3 
IE=1 
RETURN 
END 

 

 

C • 

FEB29 - • • 

SUBROUTINE INPUIXL,TIME,TIVAL,NELEN,Z,TETIN,BOUND,ICON,TIMEX, 
1 XERR , AI , BI , PM , HCOS , PORO,PL,ISP,ISS,NNODE) 
DIMENSION Z(20),TETIN(20),IC0N(20,2) 
DO 1 I=1.20 • 	- 	• - 
Z(I)=0. 

	

1 	TETIN(I)=0. 
RE0(5 ,10XL , TIME , TIVAL,EOUND,NELEM,TIEX,XERR 
WRITE( 7, 200)XL , TIME , TI0AL,80UNO,NELEM,TIMEX,XERR 
NNODE=NELEM+1 
READ(5,41)ISP,ISS • 
IF(ISP.L.T.1)G0 TO 3 
DO 2 I=I,NKIOCE 
Z;1)=:I-1)*YLINNOCE 

	

- 
	

WRIT:7(7,400)1,7.W 
al TO 5 

	

• 3 	2C 4 I=1,NNO7 
READ(5,4-)Z(I) 
WRITE(7,400)1,7.0 

	

5 	DO 6 I=1,NELEN 
DO 6 J=1,2 

	

6 	ICON(I,J)=I+J-1 
IF(ISS.J.1)CO TO 3 
READ(74)TETO 
WRITE(7,950)TE7O 
Co 7 I=1,N40DE 

	

7 	TETIN(I)=TETO 
GO TO 10 

	

3 	DO 9 I=1,NNODE 
READ(7,0TETIN(1) 
4RITE(7,400)1,TETII) 

	

9 	"ONTINUE 

	

4V 	READ(5,4)AI,8I,PI,HCO3,w3R0,PL 
WRITE(7,900)AI,3!,PM,HCS,P0RO,PL 
F8PIAT(/ , 2X , 3(43). 1X,F8.3,4,14,2(2X,F3.3)) 
:=ORt.t:j(4,14,6X,R.3) 
c;701;7(/70,6IFS.:3,4): 
Fi-JR'!fA7(1,4X,Fr,:,3) 
RETUF! 
END 
SUPFMTINE 



DIMENSION 2(20),ZE(2),NEWN(2) 
INISP.LT.IM TO 1 
ZE(1)=0. 
ZE(2)=(XLYNNOCE) 
GO TO 5 

I 	J=NEWN(1) 
JJ=NEWN(2) 
ZE(1)=0. 
ZE(2)4(JJ)-Z(J) 

5 	RETURN 
END 

• SUBROUTINE ELENZEJETI1 , SE,BE,XM,AE,AI,BI,PM,HCOS,PORO,PL, 
1 TETI21 
DIMENSION ZE ( 2) , XM(2,2),SE(2,2),BE(2,2),AE(2,2) 
IRPORO.GT.TETII)G0 TO 1 
TETI1=PORO 
GO TO 2 

1 	IF(TET11.0E.APOO TO 2 

YN=4POR0-41) 

3 

2 	IFIPORO.OT.TET12)60 TO 3 

XM(1,2)=AL/6 

PFL=iliPL) 
1=P_L=Ftfl)/9!.J 

XM(1,1)=4L/3 

0(2,1)=ALI6 

TETI2=4I+0.001 
4 	

YMM-4D-4I) 

00 TO 4 

YM=(TET11-141) 

TET12=PORO 

TETII=AI+0.001 

IFITETI2.0E.ADOO,TO 

XM(2,2)=ALI2 
PMM=PM-1 
EMM=-(9M*HCOS)*(TETII*4PVIMP0R0+4PM) 
AMM=(( - 1)*X03* -JETI1m-PM)/(PORC4.415M))-;::3IIP1)*(YN**PPL)/iYM** 

1PPLL)) 
8Mrit1=- (PM*HC0S)*(TETI23L4PMM)/(9OV**m 
AM111.=(( - 1)*U4COSOTETI2 4*/(POPO(B1/PLCYN**PFt)/(rIm - 

IWPLL)) 
SE(I,1)=-1.CAMI:AU 
SE(1,2)=(4/k) 
:5E(2,1)=04;V/Pi ) 
SE2,2)=(AMr!1/44-1.) 

2E(1,2)=2):-1,) 
sE(2,1)=(B2) 
8E(2,2)=(Em..m/2)“-1.) 
C0 1,-) 1=1,2 

J=I,2 

RE 7L;P'A 
EF-2. 



SUBROUTINE AKEM(NEWN,AE,A0,XM,XMO) 
DIMENSION NEWN(21,AE2,2),20,3) , XM2,21,XMOi20,3) 
IUBU=2 
DO 10 1=1,2 
DO 10 'J=1,2 -  
11=NEWN(I) 
JJ=NEUN(J) 
M=1119W+JJ—II 
A8(II,KK)=AG(I1,100+API,J) 
XMOCII,O)=XMO(II,KK)+XM(I,J) 

10 	CONTINUE 
RETURN • 
END 
SUBROUTINE CALCI(TIVAL,PG,AG,TETINAMO,AOP) 
DIMENSION PO(20),40(20,3),TETIN(20),XM8(20,3),A0Tf20,3) 
1,X3R(20)• 
DO. 1 1=1,20 
A8F(I)=0. • 

1 	CONTINUE 
DO 2 1=1,20 
DO 2 J=1,3 
A0T(1,J)=UMO(1,j)—(TIVAL0/0(I,J))) 

2 	CONTINUE 
DO 3 J=2,3 
L=J-1 
AG15 (1)=A6P(1)WAGT(1,j))*(TETIN(L))) 

.3 	CONTINUE 
46P(1)=A17:17, (1)+TIVAL*P0;1) 
DO 4 1=2,19 
DO 4 J=1,3 

AOP(1)=40P(T)WPOT([`J))*(TETIN(K))) 
4 	CONTINUE 

DO 5 J=1,2 
L=1S+J 
40P(20)=AGP(20)+“AOT20,J))*(TETIN(L))) 
RETURN 
ENT 
SUBROUTINE BJUN(DOUND,PG,TIMEX,TI,TETIN,HCOS,PCRO,PM) 
DIM7NSION RO20),TETIN(20) 
IF(TI.LE.TIMEX)O0 TO 1 
PS/1/=V 
CO TO 2 

I 	P8(1)=8OUND—HCOSWFTIN(I)/pc8O)ofFm 
2 	03NTINUE 

RETURN 
END 
SUBRMINE CILLTL,;MT,WJP,TETIX) 

'.', 4,T(20,2',D),AOP20),TET:x20 1  
D3 1 I=1,20 
TE-1D=1") 
:I) 2 :=: , 21 

2 ..!=1.21) 



RETURN 
END 
SUBROUTINE CALC2(TTVAL,PO,A,TETIN,XMO.A0P,PI,AOLN) 
DIMENSION POI20),A620,3;,TETINi20),XMC7;20,3),W2(20), 

IAGV20,3),TETIX20(20,3 ■ ,AOT(20,3) 
CO 1 1=1 , 20 
AGP(I)=0 
CONTINUE 
DO 2 1=1,20 
BO 2 J=1,3 

AOT(I,J)=M2/TIVAL)*(XMOCLJ)))-ACIVI,J)) 
XA(1,J)=M2JTIVAL)*XM3(I,J1)+40(I,J)) 
DO 3 J=2, :a .  
L=J-1 

3 	47(1)=A0P(1)+(A0T(1,J)*TETINCLIY 
AGP:1)=AGP(1)+P6(1)+PI 
DO 4 1=2,19 
DO 4 J=1,3 . 

 K=I+J-2 
4 	40P(1)=AGP(1)+AGT(1,J)*TETIN(4') 

DO 5 J=1,2 
L=18+J 

5 	AGP(20)46P(20)+46T(20,J)*TETIN(L) 
RETURN 
ENO 
SUBROUTINE OJCII,TETIX,Z) 

TETDf2,Z;20) 

WRITE(6,20,711) , TETIn1),1=1,3) 
FORMAT(//,154,"TI:1E =",1X,F3.3) 
FORMAT(/,4WNrJOE"8X,"COCRDINATE',8X,"',4ATER CONTE!-:7) 
FORMAT4X,I=,9X,72.2,10X,FS..3) 
RETURN 
-ND  

• 
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Appendix B 

Program of the two-dimensional model. 

****************************************** 
Q.=-1-.K(PHIGRAD.H 

BASIC FN.= A + E*7. 	C*R 
*******h.*********41********* ,f- 4***********###* 
* APRIL 29 1954 
************************************ 
* 	PREPARED BY DEOG YOUNG SNR . .. 
* 	MARCH 25 02:1S,1984• 
**************** ****######********# 

* 
* 

PROGRAM CAPABILITY 	TO SOLVE 2 DIMENSIONAL UNSTEADY 
UNSATURATED WATER FLOW OR RADIOACTIVE MATERIAL 
TRANSPORTATION 

GENERAL VARIABLES 

ND 	 NUMBER OF NODES 
NE 	 NUMBER OF ELEMENTS 
NODfNE,3) 	NODES OF AN ELEME,k1T - 
R(ND) 	RADIUS OF A NODE 
Z(ND) 	ELEVATION OF A N8'i=71 

.4, 

 

* 	- 	' 

PRAr-If7T: IN EACH ELEMENT FOP 	i".ACH MODEL 
* 

-, NSAT UNSAT'= 	1 	SAT, -= 0 : 
4 BT -1 /NE) D(K(TH))/D(TH)  * 
* DTH(NE) HYDTAULIC DIFFUSIVITY * 
* KS 	- 5:;ATHRATr=D CONMjCTIVTTY * 
* RAmM(NE). CC.C.CCCOCCCPARETERS USED TO UNSATURATED MODEL * 
* EM(NE) M 	PARAMETERS USED TO UNSATURATED MODEL * 
* DTH(NE) FOR SAM CONDITION 
* -EN(NE) N 	. 	PARAMETERS USED TO UNSATURATED MODEL * 	• 
* BTH(NE) 	FOR SA . r. 	CONDITION 
* PHL(NE) PHI-_ 	PARAMETERS OSED TO UNSATURATED MODEL * 

•R• 
THR(NE) THETA-R 	PARAMETERS USED TO UNSATURATED MODEL , , 

* 
-,;. * 
* BOUNDARY CONDITIONS-NODES AND RELATED VALUES .-* 
-.- * 
* • * 

* 
* 

* * 
PARAMETERS TO CONTROL THE PROGRAM * 

* - * 
-.. * 
* AL(PHA) OPTION Fr:* 	T_hP 	NTE ,7:RA . TI:ON * 

AL=0 	EX"'LICIT 
AL=1/2 	C;RANK-NICoLSON 

, , 
* 

* 
i. TIN 

TMAX -  

AL=1 	IMPLICIT 
TIME INTERVAL 	

f 

TIME LIMIT 

, , 
, 
, 

* 
4 ITHA':;:  ITERATION LIMIT • * 
',' 	• ERR TOLERANCE OF CONYERGENCY * 

- 

******-41********************##*###***********41-*************###*:*********.; 
*— , 

-78- 



WRITE(6,121) 
121 F3RMAT(////5X. 

I .'ELEMENT',T14 

YT 
********************************************************************** 

PROGRAM TWOD(IN,OLIT,TAPE5=IN,TARE6=OUT) 
PARAMETER(NE=18,ND=16) 
REAL LRI,LHS,KS 
COMMON/COEFF/R(ND),Z(ND),A(NE,3),_B(NE,3),C(NE,3),VOL(NE) 
COMMON/ITGR/DTI(NE,3 ,2),D2I(NE,3,3),LPI(NE,3,3),BC(ND) 
COMMON/GAUS/LHS(ND,ND),RCLMN(ND) 
COMMON NOD(NE,S) 
COMMON RHS(ND,ND) 
COMMON/THS/TH(ND),THL(ND) 
COMMON/SAT/DTH(NE),BTH(NE) 
COMMON/ELM/RAMM(NE),EM(NEY,EN(NE),PHL(NE),THR(NE),XS(NE) 

READ # OF NODES AND ELEMENTS 
* 	 

• CALL MAIN 
STOP 
END 

**************************************************** 
*** MAIN ROUTINE OF THIS PROGRAM ***************** 
-::-*-,1.?.E.************************'******************* 

SUBRO1JTINE MAIN 
PARAMETT:R(NE=18,ND=16) 
REAL LPT,LHS , KS 

FEM3)*15 
COMMELM/RAMM(NE),EMfNEEN(NE),PHL(NE 
OOMMON/OOEFFIRkNT;),),A(NE,3),B(NE,3) 
COMMON/ITOR/LITI(NE,3,:3),DZI(NE,3,3),LPIC 
COMMON/GAUS.P..HS(NINCLMN(ND) 
COMMON NOD(NE,2) 
COMMON RHS(ND,NO: 
COMMN/THS/TH(N5),L(NO 
COMMON/SAT/DTH(NE),BTH(NE) 
DATA FEMP'EXPLICITCRANK—NICHOLSON','IMPLICIT'l 

; 	  
* 	READ THE CONSTANTS FOR EAC::i ELEVENT 

,'CONSTANTS FOP EACH ELEMENT''/5X,26( - * .')//2X, 
,'NODE1 	..-:_!0E3 .',T30,/RAMMDA/,T43,W 

,( NOD(I . ,J) ,J=. -2.), RAMM (I ), E N ( I) ,EN( I), P HL (I ) 

. 

),THR(NE),KS(NE) 
,C(NE,::),VOL(NE) 
NE,3,3),BC(ND) 

COCr;T: .,,AT.:%=.: OF NCDES 

CCNCITONS AND OPTIONS 

READ;5,*)AL_,TMAX,I7, A:4,E7-1:R,TIN„NSAT,s114.7., 



READ(5,*)TB,TS 
KM=INT(AL*2.4-1.) 
WRITE(6,113)FEM(KM),TIN,TMAX,ITMAX,ERR,Q 
WRITE(6,116)TB,TS .  
IF(NSAT.NE.0)THEN 
WRITE(6,114 
ELSE 
WRITE(6,115)• : _.•• 
ENDIF 

113 FORMAT(/' 	FEM TYPE 
1 	//".•TIME INTERVAL 	 MIN." 

W MAXIMUM TIME 	="7F5.2," 
2 	 MAX. # OF ITERATION r?.;15 	 _ 

2. 	- //7.  -CONVERGENCE 
2 	//' WATER FLOW RATE • 	 GM/MIN/CM**2') 

114 FORMAT(//' UNSATURATED CONDITION"//) 
115 FORMAT(// SATURATED 	CONDITION"//) 
116 FORMAT(/'.FLOW-IN BEGINS AT - :',F7.2,' MIN"/ 

	

' FLOW-IN ENDS 	AT 	:",F5.2," MIN'//} 
* 

      

      

* INTIALIZE TH AND THL AND PRINT TH 

    

       

00 20 I=1,ND 
RFAD(!f , $)TH(I). 
THL(fl ,=TH(I) 
11'.:7.ITTNuF 
Wr4!TE(.6,400)R:1)  
WRITE(67500)(R- CI),I=1,.1H0) 
LL=NDIIHe -- - 
DO 212 I=1,LL 

II=KK-IHO+1 
2 WRITE(6,502)Z(KK),(TH(LM),LN -2-.- 11,KK) 

DETERMINE CONSTNATS OF BASIS.FUNCTION.FOR EACH ELEMENT 

BASIS FUNCTION=A(I ) +B(I)*Z(I)+C*R(1) 

CALL AErC 
- 	 - 	 * 

• 1:.ITECATE OVER AN ELEMEW '4"IR.T. ',SOT --- DrI 	 * 

	

LAPLACE-- LPI 	 * 
ID/OZ 	DZI 	 * 

- -- 	 - 	 * 
f7,ALL ITOLTIN,O) 	 ( 

*- 	 - 	 -- 	 *- 
* AON ITERATION PARWgETEP-DECININO TIME 

* BECiX.NW;NG OF TIME Li210P 

TIME=0. 
111 	TIME ---- TIME.1-T 

;7;) 

CO -!TNU:E. 
IT=0 



I 

SLIM= ` . 

      

       

       

* 	HERE IS BEGINNING OF ITERATION 
• - FOR UNSATURATED SPATIAL INTEGRATION 

222 . - IT=IT+1 
IF(TIME.GE.TB.AND.TIME.LTTS)THEN 

•• DO 31 I=1,ND 
31 	RCLMN(I)=BC(1) 

ELSE 	• 
Dn 32 I=1,ND 
RCLMN(I)=0. - .. 
ENDIF 	• 

* - 
DETERMINE CONDUCTIVITY AND. DIFFUSIVITY FOR EACH ELEMENT" 

SUBROUTINE SHOULD BE SUPPLIED BY USER ACCORDINi3 TO 
THE MODEL=, TO SE USED. 

IF(W:AT.E12.0)THEN • 
DO- SS I=1,NE 

DTHi:I)=EM(IY 
BTWI)=FN(I) 

CONTI•-•E - 
ELSE 
OALL. 

              

              

MAKE RIGHi HANDSJCE MATRIX 
MAKE LEFT HAND SIDE MATRIX; 

        

              

•CALL n<MTk(AL) 

         

SOLVE THE MATRIX EQ. TO GET THE. VALUE OF TH(ND) 

 

CALL GAUSSE(IFLAG) 

    

CHECK HE  .:ONVERGENCE 

  

SU = M 

T.T.E.T.TMAX)THEN 

//Ef)-(,'" .# OF -:".TEFTJ•:iN:3 	=EDED 

TG 

77,ME AN L? 	TEE 7H .NC; 

iME 
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. 	 . 

400 FORMAT(///*- 	TH•AT THE TIME OF',1FE15.3/1) 
WRITE(6,500)(R(I),I=--1,IHO) 	• 	 • 

500 FnRMAT(//10X,'ELEVATION. 	RADIUS',730,/y. ,1R(:, E15.3/9)(7110(1/1 
LL=ND/IHO 
DO 122 1 .=1,LL 
KK=I*IHO 
II=KK-1H0+1 

122 WRITE(6,502)Z(KK),(TH(LM),LM=II,KK) 
502 • FORMAT(1PE22.3,T30,1P6E15.3/) 

WRITE(6,401)IT 	 • 
401 FORMAT(/5X,%4,^ TIMES ITERATED'///) 

IF(IT.EQ.•ITMAX)RETURN 	1: 
IF(TIME..LE.TMAX)GO.TO 
RETURN 
END 

i**-4.*******************************q.':**************************** 
**** SUBROUTINE. TO GENERATE COEFFICIENTS OF BASIS FUNCTIONS *** 
**4i******************###*#4************************####*#****44.-*** 

SUBROUTINE ABC 
PARAMETER(NE=18,ND=16) 
COMMON/COEFF./R(ND),Z(ND),A(NE,),S(NE,3),C(NE,3),VOL(NE) 
COMMON NOD(NE,3) 
DIMENSION 7E(3),R2(3) 
DO 10 I=1,NE 
o0 . 20 J=1 , 2 

R2(J)=R(K) 
• 20 	CONTINUE 

A(T.,1)=ZE(2)*R2(2)-ZE()*R2 
A(I,2=1:E(3)*R2(1)7ZE(1)*R2( 
AiI,3)=2E(1)*R2(2)-ZE2)*R2(1; 	 - 
B(I,1)=R2(2)-R2(3) 
B(I,2)=R2(3i-R2(1) 
B(1,3)=R2(1)-R2(2) 
C(171)=ZE(3)-ZE(2) 
C(I,2)=ZE(1)-ZE(3)' • 
C(I,3)=1E(2)-ZE(1) 
VOL(L) ,%:(A(I,1).+A(I,2)-!-AI,3)-)/2. 
CONTINUE 
R77URN 

:::*****Ii:*********************************************** 
INTERATE OVER AN ELEIT **** ,4::******************* 

i"f:************-:...'******4***************11- 4.f-********** 
SUBROUTINE ITGL(TIN,Q) 
PARETER(NE ,,..12,ND=16 
REAL. LPI 
CONC/COEFF/R(ND),ZMD),ANE,3),B(NE,3),C(NE),VOL(NE) 
COMMITOR/LITI(NE,3,3),DT.I(NE,,3),LPI(NE,.?,RC(No) 

NOD(NE,:!) 
DTMEJION S9),7E(3),RE3) 
PHI=41592 

DO 1!, I=1,ND 
4 
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• * INTEGRAL OF BASIC VARIABLE. IS S(K). 

DO 10 I=1,NE 
20 J=1,3 

K=NOD(I,J) 

RE(J)=R(K)._ 
20 CONTINUE 

	

K=1 	IS INTEGRAL OF 

	

K='2 	IS INTEGRAL OF 

	

K=:3 	IS INTEGRAL OF 

	

K=4 	IS INTEGRAL• OF 

	

K=5 	IS INTEGRAL OF 

	

* • • K=4 	IS INTEGRAL OF• 

	

K=7 	IS INTEGRAL OF 
• K=S 	IS INTEGRAL OF 
• K=9 	IS INTEGRAL. OR 

Zr 
Z**2*R 
R**2 
Z*R**2 

7*R**S 
R**4 
R**Fi 

• ************* MAY  
CALL SETUPOD,O,RE(1).72),RE(3),ZE(1),ZE2),ZE(3),S(1)) 
CALL SETUP(0,1,RE(',RE2),RE(3)4-ZE(1),Z(2),ZE(.3),S(2)) 
CALL SETUP0,2,REr-H,H:(2),RE3),7_E(1),17E(2),ZE(3),S())... 
CALL. SET 1 _'P (1,0, RE(1 ) .2)4RE(3),ZE(1) , IE(2),ZE(3),S(4)) 
CALL SE-7,71,1,RE,2),RE(.3),ZE?,1)-7F(2),ZE(3),S(5)) 
CALL SE722,0,REL,R2).;.RE?),ZE(1),72),T.7.E(),S(4))• 
CALL SET:F 2, 1 , RE1) , R2)7RE?),ZE(1),E(2),ZE(3),S(7)) 
CALL SET...3,0,REI.),F2)/RE3),ZE(1),Z.E(.2)-,ZE(3),S(S)) 
CALL SETUR;4,04RE-RF(2RE),ZE(1),Z.E(2),ZE(3),S(9)) 

.,.;;-***************** 	******************END 
Vi=4.*VOLI)**2 

DC 50 M=1.,3 
DTI(I , L , N)=2.*PHIA (..?: , L)*13(I,M+AI,M)*B(I,L))*S(2)4- 

A(I,L)*A(I,M1,Y4. 
(A 1:-L)*C(7 , M)+A(1,M)*C(I,L))*S(4)+ 

(B(I , L)*CT,M+S(1,M)*C(I,L))*S().-1- 
O(I'L'*C(J.-)*S(6))/(TIN*VV) 

, 7 m 	*PH I*( C ( I , L. ) 	( 	 (. 1 ) 	( I 7 ) 3',E! 	) *5 ( 	) 
/VV*SIGN 

)*S(4)/VV*SIi7,N 

f -_ONT. EON 
VALUE 
	

* 
IN7EORT:T 	:=!NLY) 
	

Y. 

NN -=N17:E 	7L 
R1=REO 
Fc2=PE .  
S2=R1 ,  
33=!' 
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*•*• 	AS(N,N) * UN) = ROLMN(N) 	 **************•. 

	

****** 	RESULTS: 	- AS(N,N)-)>> I(N,N) UNIT MATRIX ************• 

	

****** 	 ROLMN(N) 	>>> X (N) 	ROOTS 	**************- 

	

****** 	 IFLAG=100 SINGULAR MATRIX 	**********K-*** ,- -  
****************************************************************** 

SUBROUTINE GAUSSE(IFLAG)- 
PARAMETER(NE=18,ND=i6) 
COMMON/GAUS/AS(ND,ND),RCLMN(ND) 
N=ND 
IFLA0=0 • 
DO. 100 I=1,- N 

10 	IF(AS(L,I)..EGI.O..)THEN • 
IFLA0=IFLAG+1'. 
IF(J.LT.N)THEN 
B=RCLMN•(J) 
RCLMN(j)=ROLMN(I) 
RCLMN(I)=B 
DO 200 K=1,N 
A=AS.J,K) 	• 
AS(J,K.)=AS(I,K) 
AS(I,K)=A 

'7'00 'CONTINUE 
ELSE 

PETL=R 
ENCIF 

GO TO' 10 
FNDIF 
AI=A1,7 
DO 50 II=1,N 
AS(I,77)(1,II)/A 
ROLMN(I=CLN(I)/AI 
DO 300 Km=1,N 
IF(K.ECT)GO 
AK=ASr,i) 
RCLMN(KLMN(K)-RCLMN(I)*AK 
DO 400 L=  N 
AS(K,L=A(K,L)-AS(I,LK 
OONTINI.S: 
COTINUF.. 
CONTINU 
RETURN 

. END 



QIN=2.*RHI*(A(I,L)*S2/2.+C(1,L)*33/3.)/2./VOL(1)**TIN 
Br(NN)=BC(NN)+QIN*SION 

50 CONTINUE 
10 CONTINUE 

RETURN 
END 

**************** MAY ln ************************BEnIN 
SUBROUTINE SETUP(IiJ,R1,R2,R3,7.1,Z27,73,84. 
C=(7.2-.7.1)/(R3-R1) 	. _ 	 •. 
A=(Z. 2-1:1)/(R2-R1) 	• 
D=(R3i*ZI-R1*Z3)/(RS-R1) , - .• 
B.=(R2*7.1-R1*212)/(R2-R11... 

S=0. - 
R=R1 

10 	 RR2=R**(1+2)/(I+2) 
RR3= R**(I+3)/(I+3) 
RP4= R**(I+4)/(I+4) 
RP5= R**(I+5)/(14-5) 
IF(J.EC!„0)THEN 
S=S+RP3*(A-C)+RP2*(B-0) 
ELSE IF (J.E(D.I)THEN 
!=;=!:-..:+(RP4*(A*4-C*C)+RE3*(A*B-C*E1)*2.+PP2*(BB-D*E0)/2. 
ELSE IF (J.E0.2)THEN 

S:--z-S 4.iR5*(A**3-17.:**3)+(RP4*(A*A*B-C*C*fl)-i-RP*(A*R*Ei 
-C4. 1:-.1*a))*3.1-RP2*(B**3-D**3))/75. 

S=S*-1.) 
IF(R.EQ.R1)THEN 
R=R2 
GO TO 1!) 

F;ZIF 
RETURN 
END 

**4******************************* .jjNE20 
********************-MAY 13 **=-*************************END 
-.*************************************.******************* 
*** CALCULATE CONDUCTIVITY (BTH) 	DIFFUSIVITY (nTR) ***** 
,f:-.. , 5,.**********,g.********************************************* 

SL73F<IUTTH: UNST 	• 

!0:- /TH'::TH(ND),THL(N7. 
c_:ulSA;- /DTH(N),BTH(1 , .E 
CON ,:ONIELNIRAMM(E),EM(NE),(NE),NE)THPNE),KSCNE) 

BE SUPPLIED 2.'!' * 

i7, E7 	 TH VALUE CVER Ar ELEMENT 

THAV-1- HR()/(EN(71H-7-1R(1)*.+1,mt.,7(I)) 

-84- 



CONTINUE 
RETURN 
END 

.************************************************************* 
*** MAKE THE LEFT HAND SIDE MATRIX LHS(ND,ND) ***************** 

:** MAKE-  THE RIGHT HAND 'SIDE MATRIX RHS(ND,ND)- THEN *********** 
*** MAKE THE RIGHT HAND COLUMN MATRIX RCLMN(ND)=RHS(ND,ND)*THL(ND) 
**************************************************************** 

	

-    	 .* 

?*-r.:********************************************************* 

• LH.S4N,ND=SYSTEM MATRIX OF (DTI-AL*(DTH*LPI+BTH*DZM 
- MATRIX-  MATRIX. OF ((1-AL)*(DTH*LPI+DTH*D21)±DT) 	,--*, * 

11". 

* 
SUBROUTINE MKmTX(AL) 
PARAMETER(NE=18,ND=i6) 
REAL LRI,LHS 
COMMON NOD(NE,::0 
COMMON/ITGR/DTI.(NE,3,3),DZI(NE,3,3),LPI(NE,3,3),BC(ND)_ 
COMMON/GAUS/LHS(N2,-N2),RCLMN(ND) 

- COMMON RHS(ND,ND) 	- • 	- 
00MmON/THS/TH(ND),THL<ND> 
r:OMMON/SAT/DTH(NE),ET; .4(NE) • 

CLEAR MATP:X FOR 

20 tO 	 - 

DO iC 
RHE'(I,J)=0. 
LHE;(1,J)=0. 
CONTINUE 

GENERATE SW;TEN MATRIX 

DO 20 NNE=1,NE 
DO 20 I=1, 3 
II=NOD(NNE,I) 
DO 20 J=1,3 
JJ-NOD(NNE,J) 
LH::(II,J,J)=LH(II,J ,J)+DTI(NNE,I,J)-AL*(DTH(NNE)*LRI(NNE,I,-J) 

-1-FiTH(NNE)*DZ(NNE,T,J)) 

1 • 	 (2TH(NNE)*LPINNE,I,J)+BTH(Ni ., E)*DZ:NNE,I,J)) 
ok-JTINUF 

:31I'1EATE RIGHT HAND SIDE 01-_,LU7M MATRIX 
- -* 

NEW•VALUE 

32 30 I=1.ND 
J-L , N2 

RCLM(I)=RiTLMWF.)-!-RHI,J)', THLL) 

END 

,--********** ,4, -:*-,,,******************,.,************** 
mTX 	 :7LTMINAT 	*--:************. 

_..,!..***.*****-**-4- ...*************************4*** 
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