
ENERGY-EFFICIENT DIGITAL HARDWARE PLATFORM
FOR LEARNING COMPLEX SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Jae Ha Kung

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2017

Copyright © Jae Ha Kung 2017

ENERGY-EFFICIENT DIGITAL HARDWARE PLATFORM
FOR LEARNING COMPLEX SYSTEMS

Approved by:

Dr. Saibal Mukhopadhyay, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Sudhakar Yalamanchili
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Arijit Raychowdhury
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Dr. Sek Chai
Center for Vision Technologies
SRI International

Date Approved: March 16, 2017

ACKNOWLEDGEMENTS

I sincerely appreciate my advisor Professor Saibal Mukhopadhyay for the full support

in every aspect of my doctoral studies. He has been a great academic mentor, and his

research vision and guidance let me grow as an independent researcher. Having discussion

with him significantly improved the quality of my research work and developed my ability

to approach and solve fundamental problems that have great impact. Beside being the

academic advisor, he helped me when I was having personal difficulties as if that was his

own. It was always been a pleasure to personally talk with him and I will remain thankful.

I also want to thank my thesis committee members, Professor Sudhakar Yalamanchili,

Professor Arijit Raychowdhury, Professor Hyesoon Kim and Dr. Sek Chai for their time,

efforts and suggestions in improving the quality of the dissertation.

I thank the former and the current colleagues in GREEN Lab at Georgia Tech for pro-

viding me an enjoyable environment and going through the hard times together. I am

thankful to work with and to know Dr. Minki Cho, Dr. Kwanyeob Chae, Dr. Denny Lie,

Dr. Sergio Carlo, Dr. Wen Yueh, Dr. Amit Trivedi, Dr. Boris Alexandrov and Dr. Zakir

Ahmed who had graduated before me. Also, it was great to spend time with the future

PhDs, Monodeep Kar, Jong Hwan Ko, Taesik Na, Faisal Amir, Arvind Singh, Yun Long

and Burhan Mudassar. Especially, I am thankful to Duckhwan Kim for being a great team-

mate for many research works and being a sincere friend. I will never forget the moments

spent with my colleagues and hope everything goes well with their future studies and other

plans.

Finally, I greatly appreciate my beloved wife and children, Hana Kang, Jiho and Jia

Kung, for supporting my back in all aspects of my life. I also thank my family members in

South Korea for all the sacrifices they have made for me.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . ix

List of Figures . x

Chapter 1: Introduction . 1

Chapter 2: Background on System Learning Methods 4

2.1 Model-based Learning . 4

2.1.1 Scientific Modeling: Formulation of Dynamical Systems 4

2.1.2 Hardware Platform for Model-based Learning 5

2.1.3 Computing Model for Simulating Dynamical Systems 5

2.2 Data-driven Learning . 6

2.2.1 Fundamentals of Neural Networks 6

2.2.2 Impact of Noise on Neural Networks 9

2.2.3 Neuromorphic Hardware . 11

Chapter 3: Highly-Efficient Model-based System Learning
on Integrated Circuits . 14

3.1 Background: Thermal Analysis of ICs . 15

iv

3.1.1 Need for Post-silicon Thermal Analysis 15

3.1.2 Related Work on Full-chip Temperature Estimation with Limited
Number of Sensors . 15

3.1.3 Thermal System Identification (TSI) 17

3.2 MIMO Thermal Filter . 19

3.2.1 Superposition Principle . 19

3.2.2 Definition of MIMO Thermal Filter 21

3.3 Test Chip: Thermal Emulator . 22

3.3.1 Extraction of MIMO Thermal Filter 22

3.4 Experimental Results . 24

3.4.1 Extraction of MIMO Thermal Filter 24

3.4.2 Accuracy of the Temperature Prediction Using MIMO Thermal Filter 26

3.5 Temperature Estimation at Locations Without Temperature Sensors 29

3.5.1 Interpolated Thermal Filter . 29

3.5.2 Experimental Validation . 31

3.6 Hardware Design of MIMO Thermal Filter 34

3.7 Summary of the Chapter . 36

Chapter 4: A Generic and Energy-Efficient Accelerator for Simulating Dynam-
ical Systems . 38

4.1 Computation Model . 40

4.1.1 Mapping Linear Systems . 41

4.1.2 Mapping Nonlinear Systems . 42

4.2 Operation of DE Solver . 44

v

4.3 System Architecture . 46

4.3.1 Real-Time Template Weight Update 46

4.3.2 Storage of States, Inputs, and Templates 49

4.3.3 Processing Engine Architecture 50

4.4 Dataflow in Proposed DE Solver . 50

4.4.1 Exploration of Different Dataflow Schemes 50

4.4.2 OS Dataflow in Proposed DE Solver 53

4.5 System Analysis of DE Solver . 55

4.5.1 Benchmark Differential Equations 55

4.5.2 Miss Rate Analysis for Weight Update 57

4.5.3 Performance Comparison . 58

4.5.4 Integration with High-bandwidth Memory 59

4.5.5 Power Consumption of DE Solver 60

4.6 Related Work . 61

4.7 Summary of the Chapter . 62

Chapter 5: Power-Aware Digital Feedforward Neural Network for Learning Static
Nonlinear Systems . 63

5.1 Background . 64

5.1.1 Feedforward Neural Network . 64

5.1.2 Prior Work on Neural Network Hardware 65

5.2 Power Analysis of Processing Engines . 66

5.3 Approximate Synapses Selection . 68

5.3.1 Design Methodology . 68

vi

5.3.2 Greedy Algorithm for Low-Power Design 73

5.4 Full System Power Analysis . 76

5.5 Summary of the Chapter . 80

Chapter 6: Energy-Efficient Learning of Dynamic Nonlinear Systems 81

6.1 Preliminaries . 82

6.1.1 Recurrent Neural Network . 82

6.1.2 Training of Recurrent Neural Network 83

6.1.3 Approximate Feedforward Neural Network 84

6.1.4 Sequence Classification Using RNN 85

6.2 Approximate Computing in RNN . 86

6.2.1 Static Approximation in RNN . 86

6.2.2 Dynamic Approximation in RNN 87

6.2.3 Feedback Controller in Digital RNN 88

6.3 Simulation Results . 91

6.3.1 Benchmark: Human Activity Recognition 91

6.3.2 Operation of Dynamic Approximation 91

6.3.3 Digital RNN with Dynamic Approximation 94

6.3.4 Energy-Accuracy Trade-off . 95

6.4 Summary of the Chapter . 98

Chapter 7: Analysis of Energy-Accuracy Tradeoff in Digital Cellular Nonlinear
Network . 99

7.1 Background . 101

vii

7.1.1 Fundamentals of Cellular Nonlinear Network (CeNN) 101

7.1.2 Dynamic Route of CeNN . 102

7.2 Impact of Error on CeNN . 103

7.2.1 Impact of Error on Cell Dynamics 104

7.2.2 Convergence Time Constraints . 107

7.2.3 Experimental Characterization of Error Propagation 107

7.3 Design of a Digital CeNN . 110

7.3.1 Hardware Design of CeNN . 110

7.3.2 Power and Bit Error Rate Analysis of Digital CeNN 113

7.4 Energy-Accuracy Tradeoff in CeNN . 114

7.4.1 Analysis of Image Quality . 114

7.4.2 Energy-Accuracy Tradeoff . 116

7.5 Impact of Applications . 117

7.5.1 Simple Image Processing Applications 117

7.5.2 Case Study: Fingerprint Preprocessing Application 119

7.6 Discussions . 121

7.6.1 Effect of Truncation in the Templates 121

7.6.2 Adaptive Precision Control . 123

7.7 Summary of the Chapter . 123

Chapter 8: Conclusion . 125

References . 144

viii

LIST OF TABLES

3.1 Verification of the superposition principle by using the RC-based thermal
simulator [119] . 20

4.1 The power consumption of modules in PE array having 64 (PEs-L1 LUT)
pairs. 61

4.2 The overall power consumption including PE array and global buffer (data
banks + shared template buffer). 61

4.3 The comparison of the proposed DE solver to previous hardware platforms
for cellular nonlinear network. 62

5.1 The system analysis in terms of power, area, and recognition accuracy . . . 79

6.1 The classification of each dataset into training, validation and inference sets 92

6.2 Power consumption and area breakdown of the proposed RNN hardware
with dynamic approximation . 96

7.1 SSIM Index by Running an Edge Detection Algorithm with Different Pre-
cision Bit-width . 115

7.2 Simulation Results on Adaptive Precision Control 123

ix

LIST OF FIGURES

3.1 An illustrative simulation result using RC-based thermal simulator [119] of
the thermal coupling with variations on thermal conductivity of TIM; (a)
an example floorplan used for the simulation, (b) transient temperature of
power consuming block A, and (c) that of non-power consuming block B. . 16

3.2 The basic concept of Thermal System Identification (TSI) method [3]. The
method requires FFT/IFFT computation. 17

3.3 Superposition of heat energy from two power sources at a certain tempera-
ture observation point. 20

3.4 (a) A simple floorplan example with multiple power sources and tempera-
ture sensors and (b) the corresponding matrix equation of the MIMO ther-
mal filter. 21

3.5 The die photo of the test chip; five digitally controllable heaters, five digital
sensors, and SPI registers [134]. 22

3.6 (a) A block diagram of the test chip and the microcontroller, (b) a schematic
of resistor banks to control power (heat) generation, and (c) a schematic of
a delay-based digital temperature sensor. 23

3.7 The 'EN' signal for the digital sensor reading with 64 cycles of sinusoidal
power pattern applied at the heater. 24

3.8 (a) The heater power and (b) the measured temperature both in time- and
frequency-domain at 10Hz. Note that the temperature has some delay to
follow power transition (∼3ms). 25

3.9 (a) The amplitude response and (b) the phase response of the MIMO ther-
mal filter extracted from our test chip when heater 'B' is turned on. 26

3.10 (a) Two sets of tested input power pattern at each heater and (b-c) the com-
parison between the measured temperature and the estimated one when in-
put power pattern is set 1 (b) and set 2 (c). 27

x

3.11 The comparison of the estimated temperature in sensor #1 (only showing
#1 for brevity) without sensor error and with sensor error (100 simulations)
for (a) normal power and (b) low power temperature sensor case. 28

3.12 (a) The normalized gain of each sensor (except sensor #1) at different fre-
quencies of the heater 'B'; the distance from the heater to each sensor is
denoted inside the parentheses and (b) the normalized gain of each sensor
(except sensor #1) as a function of the distance from heater 'B'. 31

3.13 The comparison between the actual thermal filter response and the interpo-
lated one at sensor location #1 when heater 'B' is on. 32

3.14 (a) A tested floorplan assuming sensor #1 is not available, (b) applied power
pattern at heater 'A' (no power consumption elsewhere), and (c) the accu-
racy of temperature estimation at location #1 using the proposed interpo-
lated thermal filter. 33

3.15 The accuracy of temperature estimation at location #1 (assuming there is no
temperature sensor at #1) when power pattern set 2 is used from Fig. 3.10(a). 33

3.16 (a) The comparison between the actual thermal filter response and the inter-
polated one at sensor location #5 when heater 'B' is on and (b) the accuracy
of temperature estimation at location #5 when power pattern set 2 is used
from Fig. 3.10(a). 34

3.17 On-chip time-domain MIMO thermal filter implementation: (a) the thermal
filter banks and (b) the pipelined thermal filter. 35

3.18 A block diagram of an on-chip digital thermal filter implementation. 36

3.19 (a) The layout of the on-chip thermal filter after the physical synthesis and
(b) its dynamic power consumption and the computation time. 37

4.1 Programmable computing model by using Cellular Nonlinear Network (CeNN)
with some dynamical systems that can be modeled by CeNN. 39

4.2 A 2-dimensional CeNN processing array having cell states locally coupled.
This structure can be extended to a multilayer CeNN platform to handle
coupled systems. 41

xi

4.3 The overall operation of the proposed CeNN-based differential equation
(DE) solver. With a given dynamical system, template weights and other
parameters are set to program the DE solver (binary bit stream is used to
program). Then, a sub-block in each state map (each layer) is fed into PE
array to perform convolution on them. When real-time weight update is
required, it looks at LUTs at different levels. 44

4.4 The overall architecture of CeNN-based DE solver. Look-up Tables (LUTs)
allow nonlinear and real-time weight updates with complex functions. . . . 47

4.5 The data format stored in off-chip LUT of an examplary nonlinear function
required for real-time weight update. 47

4.6 The operation of real-time weight update to compute state nonlinear tem-
plate Â. 49

4.7 The detailed circuit block diagram of a global template buffer and a pro-
cessing element. 51

4.8 The comparison between different dataflow schemes for consecutive time
steps with 3×3 template (kernel). Other than OS dataflow, entire template
weights are used during the convolution operation. 52

4.9 Data prefetching from off-chip DRAM to on-chip global buffer for 32×32
input. There are two bank groups (primary and support) to utilize intra-PE
data transfer. 54

4.10 Dataflow modes from data banks to PE array during convolution operation.
A proper mode selection for the convolution operation with 3×3 template
is shown as an example. 55

4.11 The accuracy comparison between GPU (64bit floating-point) and CeNN-
based solver (32bit fixed-point). 56

4.12 The miss rate depending on the size of on-chip LUTs for two different
dynamical systems. 57

4.13 The performance comparison on six different benchmark differential equa-
tions. The speed-up using the proposed CeNN-based solver with DDR3 is
shown compared to the performance using GPU (GTX 850). 59

4.14 The performance improvement by using 3D memory stack with higher
memory bandwidth. 60

xii

5.1 (a) The operation of feedforward neural network. (b) The backpropagation
training algorithm computing the error sensitivity (∂E/(∂wji)). 64

5.2 The power dissipation of the accurate multiplier (black) and the approxi-
mate multiplier (gray). 67

5.3 The cumulative probability of (a) quantization error due to precision control
and (b) the additional error induced by using an approximate multiplier with
error correction of 20 MSBs (x-axis is logarithmic scale). 68

5.4 Diagram illustrating the advantage of approximating synapses over approx-
imating neurons on a given trained feedforward NN. 69

5.5 Recognition rate from MNIST dataset when approximation of synapses
(only precision control) is allowed to meet a set of given power constraints.
The percentage of approximate synapses to meet each power constraint is
provided in the plot as well. The analysis assumes only two precision levels. 71

5.6 MNIST recognition rate with accurate (100% accurate) and approximate
(40% approximate, 60% accuarte) PEs (a) at different rates of approximate
synapses and (b) at different power constraints. 73

5.7 (a) Overview of the proposed greedy algorithm with γ = 0.4. (b) Ex-
perimental result on quality-aware low-power design methodology. This
method dynamically selects (solid line) precision bit-widths which increase
accuracy with less power increase. (c) Recognition rate comparison be-
tween two, three, and four different bit-precisions at varying power con-
straints. 74

5.8 Comparison of the proposed algorithm to just doing software (reduced bit-
precisions) or hardware (approximate PEs) approach. Proposed approach
couples both reduced bit-preciosn and approximate PE. 77

5.9 A system diagram: (a) a processing engine (PE), (b) the overall NN system
including PEs, caches and controllers and (c) the layout of the components
connected to each channel; 3 SRAMs and 24 PEs (40% approximate and
60% accurate) with required controllers. 78

6.1 Overview of RNN: (a) RNN with one hidden layer where recurrent con-
nections (Whh) are established between hidden neurons. (b) The same
topology unfolded in time. 82

xiii

6.2 Overview of approximate synapse for low-power operation of digital neu-
romorphic hardware. Here, precSet represents the fixed bit-precision set
and rPrec is the ratio of each bit-precision. 85

6.3 Block diagrams of video classification using RNN. Local feature extractor
is used to recognize important local features to obtain an input sequence
for RNN. Then, RNN outputs a sequence which can be post-processed to
decide which activity a subject in the video is performing. 86

6.4 The proposed approximation algorithm for RNN in video (or sequence)
classification. 88

6.5 The proposed feedback controllers to implement dynamic approximation
for RNN in hardware. 90

6.6 The operation of the dynamic approximation to adaptively change bit-precisions
of synapses. (a) Confidence level of each activity and (b) the resulting prec-
Set by using hysteretic controller. (c) Confidence level of each activity and
(d) the resulting precSet by using proportional controller (handclapping).
(e-f) The same set of experiment for different human activity (boxing). . . . 93

6.7 Synthesis and placement of the RNN hardware with dynamic approxima-
tion. A small data controller is placed near the center. 95

6.8 Simulation results showing normalized accuracy vs. normalized power for
each benchmark with different computation methods: single fixed point,
static approximation and dynamic approximation (hysteretic or proportional). 97

7.1 (a) Structure of a M × N CeNN with a cell locally connected to neighbor
(gray) cells and (b) dynamic behavior of the state (Xi) and the output (Yi)
of two randomly selected cells (Ci). 100

7.2 Dynamic routes and two equilibrium points of the state xij(t) when g(t) =
0 [188]; dynamic route of a cell changes due to error ε (direction reverses
in the shaded area). 103

7.3 Histogram of error in CeNN state and CeNN output at time step (a) n = 1
and (b) n = 5. The analysis is shown with the hole filling at 5% bit error rate.108

7.4 Impact of the feedback template A on error propagation by looking at em-
pirical CDF with Pb = 5%: (a) detailed trajectory of error propagation for
hole filling algorithm and (b) comparison of the error propagation between
two different templates (A1: edge detection and A2: hole filling). 109

xiv

7.5 (a) Convergence time increase due to error and (b) accuracy degradation in
terms of SSIM of the CeNN output when number of iterations is fixed for
real-time CeNN under different Pb’s. 110

7.6 Digital CeNN implementation of a single cell consists of a CeNN node and
a processing element (PE). 111

7.7 Simple timing diagram showing CeNN computation steps using the hard-
ware with one ALU as shown in Figure 7.6. 112

7.8 (a) Bit error rate (Pb) at different supply voltages and precision bit-widths
and (b) the corresponding power dissipation. The various options for energy-
accuracy trade are shown with selected target Pb. 114

7.9 The comparison of empirical CDF of the absolute state error between re-
duced precision and voltage over scaling (VOS). 115

7.10 Energy-accuracy tradeoff plot using (a) edge detection and (b) hole filling
applications. 117

7.11 The impact of voltage scaling and precision control on output image quality
for various applications. 118

7.12 Overall block diagram of the fingerprint preprocessing application [197],
which can be divided into two main algorithms (sharpening and enhance-
ment). Solid lines represent the main flow while dotted lines represent the
sub-flow of the application. 119

7.13 Allocation of energy reduction schemes for each algorithm in the finger-
print preprocessing application depending on the strength of feedback tem-
plate A. 120

7.14 (a) Input fingerprint image and enhanced fingerprint images with (b) 64-
bit floating point representation, (c) 12-bit precision without error, (d) 8-bit
precision without error, (e) 12-bit precision with 0.5% bit error, and (f) 8-bit
precision with 0.5% bit error. 121

7.15 Impact of template truncation on the output quality of CeNN considering
the halftoning example: (a) the halftoning templates depending on the pre-
cision bit-width, (b) the power versus quality for template and operand trun-
cation, and (c) images comparing SSIM index with template truncation. . . 122

xv

CHAPTER 1

INTRODUCTION

System learning is the most fundamental research area in the engineering domain. It is a

modeling method to map external stimulations (inputs) to the corresponding measurements

(outputs) with/without physically analyzing the system between them. Applications of the

system learning method are electical circuit analysis (two-port network [1]), acoustic sig-

nal processing [2], thermal analysis (power-temperature relation [3]), particle physics [4],

aircraft engine analysis [5], neural function characterization [6], to name a few. The system

can be simple enough, such as a linear time-invariant system, to be easily identified by a

simple mathematical model, i.e. a transfer function or a physical equation. However, it can

be a quite complex system, such as a nonlinear dynamic system, which is highly difficult

to understand with a mathematical representation. Even further, the presence of noise in

the system or in input signals makes the learning process more challenging.

Historically, for some engineering or real-world problems, systems of interest were

formulated by a set of mathematical equations; model-based learning. A variety of phys-

ical, biological, chemical behaviors around us are modeled by differential equations. For

instance, heat propagates through a medium described by the well-known Poisson's equa-

tion [7]. Biological evolution of a species can be modeled by the reaction-diffusion equa-

tion [8]. In the engineering domain, joint movements of bipedal robots [9] or path planning

of drones [10] can be modeled by coupled differential equations (DE). The model-based

learning is efficient in that there is no need to process large volume of data. Yet, numerical

simulation of physical models takes long time to run, e.g. Newtons method, finite element

method (FEM), or Runge-Kutta method. Thus, many researchers have presented different

reduction methods to simplify the learning of physical models [11, 12].

In many other applications, however, physical understanding of the system is not straight-

1

forward. For those applications, black box model is utilized for the system learning process.

Black box modeling is the method assuming the system as a black box and only utilizes the

input and output data from a set of experiments; data-driven learning. Neural network is

a good substitute in representing that black box. The strength of the neural network comes

from the nonlinear activation function (mostly, sigmoid type functions) associated with

each neuron in the network. The nonlinear function allows the neural network to express

or approximate nonlinear functions [13]. Depending on the type of connections, neural

network is able to express a static nonlinear system (feedforward) or a dynamic nonlinear

system (both feedforward and recurrent).

There connected portable devices through the network is ever increasing, called Internet

of Things (IoT), and they communicate and exchage a bulk of data. The overflowing data

are collected from sensors, embedded devices, and personal electronics and they can be

processed on-line to understand some unknown systems. Thus, the advantage of neural

networks in evaluating those unknown systems related to collected data can be utilized in

mobile platforms. Although, application of a neural network as an embedded processing

platform has received significant interest [14, 15], low operating power with feasibility of

dynamic scaling of energy, performance, and quality-of-result is of critical importance to

make it viable as an accelerator in mobile SoCs.

In this thesis, the primary objective is to present the energy-efficient operation of dig-

ital hardware to identify a physical system in real-world applications. This is done by

first presenting the highly-efficient digital hardware to identify a thermal system of an in-

tegrated circuit (IC) where frequency-domain analysis is utilized for the learning process

(Chapter 3). This is followed by the design of generic and energy-efficient solver for sim-

ulating wide classes of dynamical systems; equivalently, coupled differential equations as

a physical model (Chapter 4). To deal with more complex systems, a neural network is

selected as the data-driven learning method. The widely-accepted training algorithm of

neural networks is being analyzed to develop an energy-efficient hardware platform during

2

the inference of a target neural network, either feedforward or recurrent (Chapter 5, 6). At

last, the algorithmic analysis of the impact of error (hardware induced error for achiev-

ing low-power operation) on performance for one class of neural networks, called Cellular

Nonlinear Network (CeNN), is performed to achieve better energy-efficiency (Chapter 7).

The detailed analysis on this computing model is essential in that it is capable of serving as

either model-based or data-driven learning method.

3

CHAPTER 2

BACKGROUND ON SYSTEM LEARNING METHODS

2.1 Model-based Learning

2.1.1 Scientific Modeling: Formulation of Dynamical Systems

Scientific modeling is the process of understanding and predicting specific behaviors of

objects or systems. The established model is used to develop fundamentals of science for a

long time, from physics and chemistry to earth science and social science. As some systems

in real life is extremely complex, scientists make many assumptions to simplify the model

to ease the analysis. These assumptions may cause inaccurate estimation of the underlying

object/system, for instance the classical Bohr's atomic model. Also, a single modeling may

not be sufficient to fully describe the system (or the object) of interest. In that case, multiple

models can be coupled together to represent the system with better accuracy.

The dynamical system, represented as coupled ordinary/partial differential (continuous

time) or difference (discrete time) equations (ODE/PDE), is a scientific model for describ-

ing systems varying in time. The solution of dynamical systems is an important computing

problem. The scientific simulations, a key driver for high-performance computing, are

defined by solution of coupled ODEs/PDEs. There are many real-time control problems

such as bipedal robotic walking, UAV path planning, or aircraft control that necessitates

real-time ODE/PDE solution for fast actions [9, 16, 17, 18].

More recently, there is a growing interest in computing with dynamical systems, e.g.

reaction-diffusion equations or oscillatory networks [19, 20, 21, 22, 23]. The concept of

building a Turing complete machine using reaction-diffusion equations has been proposed

[20]. The coupled oscillators based dynamical systems are being explored as a platform for

solving complex problems [24, 25, 26, 27]. Computing with biophysical neuron with dy-

4

namics modeled using coupled PDEs is another well-known example of dynamical system

based computing [22, 23]. The dynamical system based computing is showing promise in

solving complex problems in computer vision, graph theory, optimization, to name a few

[22, 23, 26, 27].

2.1.2 Hardware Platform for Model-based Learning

There are three major trends in designing hardware platforms for accelerating solution of

coupled ODE/PDE to support dynamical system analysis. First, the Graphical Proces-

sor Unit (GPU) helps accelerate ODE/PDE solution for scientific computation [28, 29].

The GPU-based platforms provide the advantage of programmability, but in general are

more power hungry and less energy-efficient. Second, the FPGA-based coprocessors have

also been developed to speed up the computation of conventional numerical analysis meth-

ods [30, 31, 32]. However, FPGAs only accelerate the numerical algorithms, do not provide

a different computing model. Finally, there is significant effort in exploring ASICs and non-

CMOS devices to accelerate specific dynamical systems, for example, simple first/second

order equations, oscillatory networks, and spiking systems [22, 23, 25, 26, 27, 33, 34]. The

ASIC-based approach provides high energy-efficiency, but lack the capability of solving

different types of dynamical systems in a single platform. Likewise, directly using the in-

ternal dynamics of a device to build a computing platform does not provide the ability to

‘program’ a required dynamical behavior.

2.1.3 Computing Model for Simulating Dynamical Systems

A fundamentally different computing model for dynamical system analysis is Cellular Non-

linear Network (CeNN) [35]. The CeNN is composed of an array of cells where each cell

follows an ODE based dynamics [35]. Each cell in CeNN is connected to (local) neighbor-

ing cells resulting in a system of coupled ODEs. The weight of local connections, referred

to as the templates, defines the coupling and hence, the nature of the system of the equa-

5

tions. A multilayer CeNN can realize a system defined by multiple coupled PDEs, where

each layer represents the ‘first-order’ equation. The advantage of CeNN based computa-

tion originates from the inherent ODE-based cell dynamics, the high-degree of parallelism,

local connectivity, and programmability to solve wide classes of ‘system of equations’.

Although the CeNN platform is most widely known for image processing, several past

efforts have shown that a multilayer CeNN with linear and nonlinear templates can be used

to solve different types of coupled differential equations [36, 37, 38, 39, 40, 41]. There

are many studies on how to map a scientific model to CeNN algorithm [38, 39, 41, 42,

43]. Significant research efforts have also been directed to design digital and analog CeNN

chips for image processing applications [44, 45, 46, 47]. However, the mapping algorithms

developed in prior studies mostly focused on specific equations and/or linear templates.

Likewise, the hardware acclerators were designed for image processing applications with

spatially and/or temporally invariant templates. Therefore, the prior efforts are not suffi-

cient to develop a generic dynamical system simulator with nonlinear interactions between

equations leading to space and time variant templates.

2.2 Data-driven Learning

2.2.1 Fundamentals of Neural Networks

A neural network (NN) is an algorithmic approach for statistical learning of unknown com-

plex functions or systems with large dataset. Various types of NN have been developed over

last few decades and utilized in a wide range of applications [48, 49, 50, 51, 52]. NNs have

high-degree of parallelism providing opportunities for high system performance with large

number of simple processing engines (PEs). The hardware engines for the neural network

have received attention for embedding in mobile platforms to perform various applica-

tions, for example, medical diagnosis [53], mobile robot motion control [54] and vision

systems [55].

In general, NN is composed of nodes (i.e. neurons) and directed edges (i.e. synaptic

6

weights). Each node has activation functions which compute the output of the node with

respect to the state of a neuron. This activation function is typically a sigmoid type function

or Rectified Linear Unit (ReLU). Depending on the connectivity of neurons, the behavior

of the neural network changes significantly (either static or dynamic). In the following

subsections, different types of neural networks will be discussed along with their learning

algorithms and applications.

A) Feedforward Neural Network

Having unidirectional connections between two nodes at different layers, the network is

called a feedforward neural network. The most simplest structure of the feedforward NN

is a perceptron proposed by Rosenblatt [56]. In Rosenblatt’s perceptron, the output of a

neuron is computed by the linear sum of inputs followed by the hard limiter (activation

function). In general, a feedforward NN is multiple layers of these perceptrons called

multilayer perceptron (MLP) [48]. Due to the nonlinearity of each neuron, MLP is suitable

for estimating or identifying any static nonlinear system [57].

The learning (or training) of a feedforward NN is a challenging optimization problem

(parameter and/or structure optimization). There are two methods on training the feedfor-

ward NN: 1) iterative gradient descent (backpropagation algorithm) [58, 59, 60, 61] and

2) evolutionary algorithm (e.g. genetic algorithm) [62, 63, 64]. Mostly, the backpropa-

gation algorithm is used for training due to its lower computational complexity compared

to the genetic algorithm. However, it normally tends to settle at a local minima while the

genetic algorithm is better at finding the global minimum. Since each optimization method

has its pros and cons, hybrid training algorithms are proposed as well for better training

performance in terms of the accuracy and the complexity [65, 66].

The applications of interest for the feedforward NN are image recognition (or classifi-

cation) [60, 67, 68] and function approximation [69, 70, 71]. As explained, the feedforward

NN is a good candidate for approximating static nonlinear functions (or systems). That is

7

why it is suitable for classifying images. Basically, the classification problem is equivalent

to approximating a nonlinear function that separates the state space into desired number of

regions. Thus, for the system learning problem, if a system that we are trying to approxi-

mate is desribed by a static nonlinear equation can be identified by utilizing the feedforward

NN.

B) Recurrent Neural Network

Given a MLP, if there are additional recurrent connections (forming any cycles in the net-

work), the neural network becomes a recurrent neural network (RNN) [51]. Over several

decades, various types of recurrent NNs have been proposed depending on where recurrent

connections are established. Nonlinear AutoRegressive with eXogenous inputs (NARX)

model has only recurrent connections (delayed by arbitrary time steps) from the output

to the input layer (no recurrent connections within the network) [13]. If there are recur-

rent connections from a single hidden layer to the input layer delayed by unit time step,

the network is called Simple Recurrent Network (SRN) [72]. The network is known as

a Recurrent MultiLayer Perceptron (RMLP) when recurrent connections are from multi-

ple hidden layers to their previous layers [73]. Owing to the recurrent connections in the

network, RNN is capable of approximating any dynamic nonlinear systems in theory [74].

As can be expected, training RNN is more complicated than that of the feedforward NN

due to its learning capaility of temporal information. There are two conventional training

algorithms: 1) BackPropagation Through Time (BPTT) [75] and 2) Real-Time Recurrent

Learning (RTRL) [76]. The BPTT algorithm is simply the extension of the (standard)

backpropagation algorithm in that it unfolds the temporal behavior of RNN to form a lay-

ered feedforward NN. The number of layers of the constructed multilayer feedforward NN

linearly increases by an additional time step involved in the training. Also, the memory

space required to perform BPTT algorithm increases as the length of a training sequence

increases [48].

8

To overcome these limitations, truncated BPTT algorithm has been proposed by Williams

and Peng [75]. Another critical problem that BPTT-type algorithms have is vanishing (or

exploding) gradient problem pointed out by Bengio [77]. To deal with this concern, Long

Short-Term Memory (LSTM) architecture [52] and Hessian-free training method [78] are

proposed. These two novel idea shed light on RNN as a promising NN architecture again.

Because of the limited memory space in hardware, BPTT-type algorithms are suitable

for off-line training of RNN. For on-line training, RTRL algorithm can be performed which

updates the synaptic weights while operating the network [76]. To train RNN in real-time,

the RTRL algorithm approximates the gradient of total error with respect to weight changes

by an instantaneous estimate of the gradient for each time step [48]. This deviation from

the actual gradient can be minimized by reducing the learning rate η, which determines

how fast the gradient descent algorithm evolves. However, the computational complexity

of the RTRL algorithm is high since it requires the weight update at every time steps.

As explained, RNN is capable of dealing with systems having nonlinear temporal be-

haviors which depend on external input sequences. There have been extensive studies on

applications of the RNN owing to its ability to utilize the history of past inputs or states.

They include appproximation of dynamic systems [79, 80, 81], mapping finite state ma-

chines [82, 83], language modeling [84, 85], and associative memory [86, 87], to name

a few. Since RNN is more general definition of neural network compared to feedforward

NN, detailed understanding of its behavior is required for further development. Finding a

good application using RNN is still an open problem by many scientists and RNN has a

great amount of potential due to the ability to approximate nonlinear systems.

2.2.2 Impact of Noise on Neural Networks

Understanding the impact of noise on training and/or operation of feedforward NNs is an

important research topic to implement them in hardware [88]. When the given network

is prone to error from either connection weights or neuron states, the output accuracy of

9

the network will degrade significantly by small perturbations. Thus, error tolerant training

methods or guidelines to allow well-defined level of noise (not sacrificing accuracy much)

have to be studied. Towards this direction, fault-tolerant training methods [89, 90, 91] have

been proposed to realize feedforward NN tolerant to errors to some extent. The effects of

noise from the synaptic arithmetic unit during neural network training are studied and noise

injection training scheme is proposed [89]. Limiting the absolute value of each connection

weight during training, when the value exceeds certain threshold, to flatten the distribution

of the magitude of weights enhanced the error tolerance of a feedforward NN [90]. In [91],

the convergence of fault injection-based traininng algorithm has been provided.

Apart from the feedforward NN, neural networks with recurrent connections may have

stability (or convergence) issues under noise even at the operation of the network. There

have been a number of works on providing sufficient conditions for the global stability

of various classes of RNNs [92, 93, 94, 95, 96, 97, 98, 99]. It has been shown that a con-

trolled amount of additive errors can improve the convergence and regularization in training

RNNs [92]. Recently, the stability condition of RNNs considering transmission delays has

been studied [93]. Moreover, the global exponential stability of RNNs considering random

noise as well as time delays has been explored [94]. In [94], upper bounds of delays and

additive noise for maintaining global exponential stability are mathematically shown. Sim-

ilar stability criteria studies have been done for other classes of (recurrent) neural networks

as well [95, 96, 97, 98, 99]. Many researches have provided the mathematical estimation of

the upper limit of connection weight matrices in delayed neural networks (DNNs), which

guarantees global stability of DNNs [95, 96, 97]. Most recently, a new criteria for global

stability of DNN is shown considering parameter uncertainties on the delayed connection

weight matrix [98]. In addition, the stability analysis on Hopfield neural networks (HNNs)

with time delays has been done [99].

10

2.2.3 Neuromorphic Hardware

Neuro-inspired architecture is increasingly recognized as a new paradigm since it is capable

of dealing with applications that a conventional von Neumann architecture could not solve

efficiently. To accelerate NN computations, many research scientists focused on designing

neuromorphic hardware accelerators [100, 101, 102, 103, 104, 105, 106, 107]. Specifi-

cally, digital implementation of NNs provide the advantage of easier integration, higher

scalability (can handle variable input size), and better programmability.

A) Digital Implementation of Neuromorphic Hardware

The most efficient feedforward NN in image classification and object recognition is a con-

volutional neural network (ConvNet) [108, 109]. Naturally, its promising performance in

those applications led research on hardware implementation of ConvNet accelerators. A

group led by Yann LeCun, a ConvNet pioneer, first demonstrated FPGA-based ConvNet

based on parallel filter banks to detect objects in real-time [15, 100]. FPGA demonstration

was followed by ASIC design of a ConvNet processor, named NeuFlow, developed by a

hardware group at Yale University [101]. The computation in NeuFlow is done by parallel

processing units where required data stream is provided by Smart Direct Memory Access

(Smart DMA) module.

The dataflow model used in NeuFlow limits its energy efficiency since it requires ex-

plicit data transfer between processing units. To lower energy consumption in design-

ing ConvNet, a standalone neuromorphic hardware (DaDianNao) with localized memory

banks (eDRAM) for each computing unit is proposed [102]. To compensate memory la-

tency and wire congestion, the proposed architecture has a mesh structure with distributed

on-chip memory. Recently, another type of energy-efficient ConvNet engines (Hardware

Convolution Engine (HWCE) [103] and Origami [104]) was presented. Both accelerators

are streaming-based engines integrated with a shared-memory (shared-L1) cluster of RISC

processors. They reduce memory access pattern by making only one pixel value to be

11

changed during 2D convolution.

Apart from the ConvNet, Researchers at IBM initiated SyNAPSE project to build a

brain-like chip which realizes a spiking neural network (SNN) which is known to have

the most similar behavior with human brain. Along the way, neurosynaptic core, having

256 digital spiking neurons, has been fabricated in 45nm process; here, spiking neurons

can have either 0 or 1 as a state value [105]. This neuromorphic chip locally stores and

computes the state of each neuron (utilizing crossbar synapses) and each neuron consumes

only 45pJ. Most recently, an advanced version of such low-power spiking neural network

engine, named TrueNorth, was presented [106]. This brain-like chip is composed of 4,096

parallel processors which represents one million spiking neurons [107].

B) Approximate Computation in Neuromorphic Hardware

Approximate and accuracy-aware computing has emerged as an attractive approach for

low-power neuromorphic hardware by trading-off energy and quality-of-result under per-

formance constraints [110, 111, 112, 113]. The most common way to approximate com-

putation is reducing the bit precision of operands [110, 111, 112]. By carefully forcing

some LSBs to zero, effective power saving can be achieved with slight degradation in out-

put quality. Most recently, stochastic rounding during training of ConvNet to effectively

reduce the bit precision is proposed [112]. Another method to approximate NN hardware

is by implementing approximate multipliers as processing engines [113]. An approximate

multiplier is designed with iterative logarithmic multiplier having computation error less

than 1%. However, having only approximate PEs is limited in saving power while main-

taining the output quality.

Even though there have been some level of research on the impact of approximation

in neural computation, most research works only deal with feedforward NNs. Having

recurrent connections in the network will show completely different error behavior due

to the error propagation in temporal direction. Also, having both reduced precision and

12

approximate processing units is not evaluated yet. Thus, the impact of hardware-induced

error in recurrent-type networks and the approximation methods utilizing both precision

control and approximate hardware will be addressed in the thesis.

13

CHAPTER 3

HIGHLY-EFFICIENT MODEL-BASED SYSTEM LEARNING

ON INTEGRATED CIRCUITS

For an integrated circuit (IC), thermal behavior of the chip is a critical design factor as scal-

ing of device technology significantly increases the dynamic and leakage power of silicon

ICs [114, 115]. Higher power density elevates junction temperature and triggers higher

leakage current which leads to thermal runaway. Higher temperature also degrades circuit

reliability and performance and increases cooling and packaging cost [116]. The thermal

problem becomes more intriguing in multi-core processors due to the thermal coupling be-

tween neighboring cores and components [117]. Even if a specific core/component is in a

low power mode, its temperature can increase when a neighboring core is in the high-power

mode due to thermal coupling. For example, measurements on an AMD Fusion processor

executing a compute intensive CPU workload demonstrated up to a 13◦C rise in tempera-

ture in the adjacent idle CPU and GPU cores [118]. As the workload/power pattern of a

processor dynamically changes, so does the effect of the thermal coupling and hence, the

junction temperature.

The effective thermal management of multicore processors requires on-line estima-

tion of the full-chip thermal patterns. The design-time thermal modeling methods ([119,

120, 121, 122]), although highly accurate for pre-fabrication analysis, are less effective

for on-line analysis. It is in principle difficult for design-time modeling to account for

post-fabrication (chip-to-chip and potentially time dependent) variations in leakage power,

thermal properties of the package, and workload dependent power patterns [123, 124, 125,

126]. On-chip temperature sensors are used in recent processors to sense runtime tem-

perature changes, but they only provide current temperature at specific locations. Several

spatial reconstruction methods on temperature distribution have been proposed [127, 128,

14

129, 130] that can predict full-chip (spatial) temperature distribution including at locations

without sensors but only at a given time. These methods do not estimate transient tem-

perature variations at locations without sensors; therefore, has limited ability to estimate

spatiotemporal temperature variations.

3.1 Background: Thermal Analysis of ICs

3.1.1 Need for Post-silicon Thermal Analysis

The design-time thermal analysis methods do not account for the post-fabrication variations

in electrical or thermal properties. For example, leakage power can experience significant

variations. Specifically, the process variations affect the leakage power considerably; leak-

age current varies 23% to 30% on average [123]. This amount of variation is noticeable

since the leakage power is more than half of total power consumption in recent technology

nodes. Likewise thermal properties of the package components, e.g. heat spreader, heat

sink, and thermal interface materials (TIM), are difficult to extract. The extraction of such

properties requires complex measurements and characterizations [124]. These properties

can also have chip-to-chip or time dependent variations; for example, the properties of

interface materials can vary due to the delamination [125] or the quality of interface adhe-

sion [126]. Fig. 3.1 illustrates how the variations in the thermal properties of a chip can

change temperature variations including thermal coupling showing the need for post-silicon

thermal analysis.

3.1.2 Related Work on Full-chip Temperature Estimation with Limited Number of Sensors

On-chip temperature sensors are placed in developing recent processors to relieve the

performance degradation or reliability hazard caused by elevated chip junction tempera-

ture [131, 132]. Temperature sensors, however, are limited to providing current tempera-

ture at specific locations where the sensors are placed. Moreover, if the sensors were placed

at distant locations from actual hotspot due to placement or routing problems, temperature

15

(a)

1mm

A: block w/ power

density 45W/mm2

B: block w/ no

power consumption0.1mm
0

.1
m

m

A

B

No Variation 10% Variation

(b)

70

30

Te
m

p
. a

t
A

 [
°C

]

0.0 0.5

Time [ms]

1.51.0 2.0

40

60

50

(c)

30

Te
m

p
. a

t
B

 [
°C

]

0.0 0.5

Time [ms]

1.51.0 2.0

35

45

40

50
-10% Variation

Figure 3.1: An illustrative simulation result using RC-based thermal simulator [119] of the
thermal coupling with variations on thermal conductivity of TIM; (a) an example floorplan
used for the simulation, (b) transient temperature of power consuming block A, and (c) that
of non-power consuming block B.

readings may be lower than the actual maximum temperature (optimistic).

Several thermal analysis methods have been proposed to reconstruct spatial temperature

variations of an IC from limited sensor data [127, 128, 129, 130] . Spatial reconstruction

methods are proposed to establish full-chip temperature distribution based on reasonable

number of on-chip sensors. Interpolation scheme is used to estimate temperature at lo-

cations without sensors [127]. To achieve energy efficiency, only a subset of sensors is

activated using a dynamic sensor selection mechanism. For more accurate hotspot tem-

perature estimation, thermal characterization using signal reconstruction techniques has

been proposed [128]. This technique uses space-domain filters to characterize spatial dis-

tribution of temperature. To deal with uncertainties in real-time power consumption, tem-

perature estimation using a linear estimator, approximating power density as a Gaussian

random variable, has been proposed [129]. Also, a runtime temperature estimation method

using Kalman filter has been proposed [130]. This work provides methodology dealing

with noisy sensor readings and process variations. However, these methods only provide

full-chip temperature distribution at a given time [127, 128, 129] or next time step [130]

(limited to reactive thermal management).

16

Thermal System Identification

Thermal Filter

H
T
(
ω
)

Run Applications or
Frequency Sweep Test

Measure Power
& Temperature

Extract Thermal Filter using FFT
for Power & Temperature

Chip

Package

Power Spectra
P(w)

Temp. Spectra
T(w)=H(w)xP(w)

Temperature T(t)Power P(t)

FFT IFFT

t [sec] t [sec]ω ω ω

Figure 3.2: The basic concept of Thermal System Identification (TSI) method [3]. The
method requires FFT/IFFT computation.

3.1.3 Thermal System Identification (TSI)

A post-silicon thermal analysis methodology - Thermal System Identification (TSI) - has

been proposed to estimate temperature considering inherent variations after fabrication of

the chip [3]. Fig. 3.2 briefly describes the entire process of the TSI method. TSI char-

acterizes the relation between power and temperature of a packaged IC in the frequency

domain using on-chip power and temperature measurements. Then, this relation is being

used to predict temperature variations in time at one location with a given power pattern

using transformation between time and frequency, such as Fast Fourier Transform (FFT).

This method enables proactive thermal management; future temperature estimates can be

utilized in dynamic thermal management (DTM) techniques such as workload allocation

in advance.

TSI exploits the well-known analogy between electrical current and heat conduction.

By using this analogy, temperature is analogous to voltage, heat flow is analogous to cur-

rent, thermal conductivity is analogous to electrical conductivity (∝ 1/R), and heat capac-

ity is analogous to capacitance (C). This analogy forms the basis of thermal analysis using

distributed RC networks [119]. The first-order RC circuit is a simple low-pass filter which

17

makes it possible to think of a thermal system as a complex low-pass filter. Further, an RC

network is a linear system which enables the application of superposition principle.

For a simple understanding of TSI, assume a single point (x, y) on a given chip. Power

consumption, P(t), at location (x, y) is also assumed to be given. Temperature increase from

ambient temperature, 4T(t), is then obtained by performing a convolution between power

and the impulse response of a thermal system, hT(t). It can be written as

4T (t) = hT (t) ∗ P (t). (3.1)

The convolution operation is simply multiplication in the frequency domain. Hence, Fourier

Transform of (3.1) becomes

4T (ω) = HT (ω) ∗ P (ω), (3.2)

where HT(ω) is the thermal filter response between the power generation and the tempera-

ture observation point (one-to-one). Here, TSI can be defined as a method to learn HT(ω)

in the relation of (3.2). TSI exploits the presence of on-chip temperature sensors at vari-

ous locations of a chip. Essentially one can apply a periodic power pattern with varying

frequency and estimate the associated temperature variation from the sensors at different

locations. The measured results can be used to construct the amplitude and phase response

of thermal filters between the locations of power dissipation to the locations of temperature

sensors.

The method presented in this thesis advances the state-of-the-art of post-silicon thermal

analysis over the prior work. First, unlike the prior work, in this thesis, the MIMO thermal

filters that consider multiple power sources and multiple temperature sensors were consid-

ered and experimentally verified. The experimental verification of the MIMO filter makes

TSI more applicable for multi-core processors with thermal coupling between different

components (power sources, e.g. cores). The experimental verifications are performed us-

18

ing a 130nm test chip that emulates arbitrary power (and hence, thermal) patterns. Second,

the prior work only presented the ability to estimate transient temperature variations at the

specific sensor locations. The work reported here overcomes this limitation and developed

methods to predict temporal variation in temperature even at locations without sensors.

3.2 MIMO Thermal Filter

3.2.1 Superposition Principle

The power consumption of each functional block generates a certain amount of heat on

a silicon die. The heat is naturally being conducted via silicon substrate. This physical

phenomenon of generated heat is well described by the Fourier's heat conduction equation,

which is

ρCp
dT (~r, t)

dt
= κ∇2T (~r, t) + p(~r, t). (3.3)

where ρ, Cp, and κ are material properties, ~r is the location of interest, and t is time. ~r

could be (x, y) or (x, y, z) depending on the dimension of heat conduction. Here, T (~r, t) is

temperature and p(~r, t) is power density at ~r.

Among several approaches solving (3.3), the Green's function approach well describes

the temperature change at ~r with respect to power sources at different locations, ~rj =

(~r − ~r′j) [133]. Using the Green’s function, temperature at ~r can be computed by

T (~r, t) =

∫∫
g(‖~r′‖, f0) · p(~r − ~r′, t) · ~r′dr′dθ′ (3.4)

where g(‖~r′‖, f0) is the Green's function which is a function of distance ‖~r′‖ and the fre-

quency f0 of the power source. Consider two power sources p1(~r − ~r′1, t) and p2(~r − ~r′2, t)

on the chip (Fig. 3.3(a)). Computation of (3.4) assuming there exists one power source

gives us the temperature increase due to that heat energy as depicted in Fig. 3.3(b) and (c).

Since the integral is a linear operator in (3.4), actual T (~r, t) can be computed by adding

19

p
2

(b) (c)(a)

Power SourceTemp. Observation Point

r’
2

T(r,t)

r’
1

p
1

(A)

(B) (C)

T(r,t)

r’
1

p
1

(A)

(B) (C)

p
2

r’
2

T(r,t) (A)

(B) (C)

Figure 3.3: Superposition of heat energy from two power sources at a certain temperature
observation point.

Table 3.1: Verification of the superposition principle by using the RC-based thermal simu-
lator [119]

On T↑ at A On T↑ at B On T↑ at C
B 8.63◦C A 2.84◦C A 1.31◦C
C 1.10◦C C 1.07◦C B 3.89◦C

B,C 9.77◦C A,C 3.94◦C A,B 5.23◦C

each temperature result; T1(~r, t) and T2(~r, t). This simple example gives us the insight of

the superposition principle of the heat conduction.

The superposition principle is being verified by using a RC-based thermal simulator

with a simple example [119]. The same floorplan is used as shown in Fig. 3.3(a). Assume

each block consumes 2.44W (A), 7.37W (B), and 3.07W (C). These numbers are merely

random power numbers. Two functional blocks (B and C) are turned on and temperature is

observed at the remaining block (A). It is compared with the temperature estimate, which

is the addition of temperature increase when each functional block (B or C) is turned on in

isolation. Table 3.1 shows the simulation results and it verifies the superposition principle

very well. The first two rows represent the temperature increase at a certain location when

one functional block is operating. The last row represents the temperature rise due to the

operation of two functional blocks. Additive increase of the first two temperatures is about

the same as the temperature increase in the last row.

20

(a)

A B

C

Temp. Sensor

Functional Block

H
1A
(ω

0
) H

1B
(ω

0
) H

1C
(ω

0
)

H
2A
(ω

0
) H

2B
(ω

0
) H

2C
(ω

0
)

H
3A
(ω

0
) H

3B
(ω

0
) H

3C
(ω

0
)

H
1A
(ω

n
) H

1B
(ω

n
) H

1C
(ω

n
)

F
re

q
u
e
n
cy

In
cr

e
a
se

s

..
..
..

..
..
..

..
..
..

(b)

T
1
(ω

0
)

1

2

3
T

2
(ω

0
)

T
3
(ω

0
)

T
1
(ω

n
)

..
..
..

=

P
A
(ω

0
)

P
B
(ω

0
)

P
C
(ω

0
)

P
A
(ω

n
)

..
..
..

.

Figure 3.4: (a) A simple floorplan example with multiple power sources and temperature
sensors and (b) the corresponding matrix equation of the MIMO thermal filter.

3.2.2 Definition of MIMO Thermal Filter

On the basis of the superposition principle, a MIMO thermal filter can be extracted and

utilized in estimating spatiotemporal temperature variations. Each thermal filter response

(Hij(ω) equivalent to HT (ω) in (3.2)) between one power source and a sensor location at a

given frequency ωk can be extracted by

Hij(ωk) = 4Ti(ωk)/Pj(ωk), (3.5)

where i is the sensor index, j is the power source index, and k is the frequency index. Recall

that a sine- or square-wave power pattern with a fixed frequency ωk is applied during the

thermal filter characterization step. Assume there are three power sources (A, B, and C)

and three temperature sensors (1, 2, and 3) on the chip (Fig. 3.4(a)). In this case, nine

different thermal filter responses should be extracted to establish MIMO thermal filter.

By the superposition principle, temperature at one location can be estimated by sum-

ming temperature changes due to multiple power sources. Thus, temperature increase at

sensor i when the fundamental frequency of a power source is ωk becomes

4Ti(ωk) =
∑

j∈{A,B,C}

Hij(ωk) · Pj(ωk). (3.6)

21

Heater A

Heater B

Heater C

Heater D

Heater E

2mm

1
m

m

SPI

Digital Temperature Sensor

1

2

3

4

5

Figure 3.5: The die photo of the test chip; five digitally controllable heaters, five digital
sensors, and SPI registers [134].

Then, the relation between power and temperature can be written in a 3-dimensional matrix

equation:

4T(ω) = HT(ω) ·P(ω), (3.7)

where HT(ω) is defined as the MIMO thermal filter. Using the relation given by (3.7), the

estimation of temporal variations in temperature at sensor locations is possible in the pres-

ence of multiple power sources. The estimation of spatiotemporal temperature variations

at any locations of interest using the extracted MIMO thermal filter will be discussed in

Section 3.5.

3.3 Test Chip: Thermal Emulator

3.3.1 Extraction of MIMO Thermal Filter

The proposed MIMO thermal filter is verified using a test chip, referred to as the field pro-

grammable thermal emulator, designed and fabricated in 130nm CMOS technology [134].

The test chip has three major components, digital heaters, delay-based temperature sensors,

and SPI registers. These components are highlighted and indexed in the die photo of the

test chip (Fig. 3.5). An external microcontroller is connected to the SPI interface of the test

chip to program desired input power patterns or read digital sensor outputs (Fig. 3.6(a)).

22

(a) (b) (c)

Figure 3.6: (a) A block diagram of the test chip and the microcontroller, (b) a schematic
of resistor banks to control power (heat) generation, and (c) a schematic of a delay-based
digital temperature sensor.

The programmable CMOS heater is based on n-well resistor to generate heat directly

onto the junction. The same sized resistors are grouped together to make 250Ω, 125Ω,

62.5Ω, and 31.25Ω. Each resistor bank has an NMOS footer to digitally control the current

conducted across the heater as shown in Fig. 3.6(b). Four different resistor banks allow us

to program 16 distinctive levels of quantized power through the SPI interface. Since using

the SPI interface, it is possible to turn on/off each heater one-by-one at a time.

The delay-based digital sensor is a nine stage ring oscillator (RO), which is designed

to update the counter value every 2ns; operate at 500MHz (Fig. 3.6(c)). By using BJT-

based analog temperature sensor, the sensitivity (temperature increase per count) is pre-

calculated. Thus, temperature increase is computed by

∆T = (Countamb − Countcurr)× sensitivity, (3.8)

where Countamb and Countcurr represent the count value of the RO at the ambient and

current temperature, respectively. The count value is inversely proportional to the temper-

ature. The sensitivity of the test chip used throughout the experiment was 0.303◦C/count.

If (Countamb − Countcurr) = 100, then the temperature rise becomes 30.3◦C. To increase

the accuracy of the counter value, the toggle in the digital sensor has been counted for 64

cycles with same power pattern applied at each cycle.

23

Figure 3.7: The 'EN' signal for the digital sensor reading with 64 cycles of sinusoidal power
pattern applied at the heater.

Throughout the experiment, an external microcontroller is used to program the power

pattern of heaters and to store the temperature readings via SPI interface. There are 32 4-bit

(one footer at each resistor bank) registers to program up to 32 states and these states are

used to generate time-varying power pattern. Also, SPI is connected to sensor buffers (16

8-bit registers) in the test chip to read out the digital sensor measurement.

3.4 Experimental Results

3.4.1 Extraction of MIMO Thermal Filter

Using the test chip described in Section 3.2, the sinusoidal input power pattern at 12 dif-

ferent frequencies is applied to each heater to extract MIMO thermal filter. As mentioned

earlier, 64 cycles of sinusoidal waves are programmed to the heater to increase the accu-

racy of the digital sensor readings (Fig. 3.7). Each cycle has 32 states because there are 32

registers for programming the input power pattern. These register values are circulated to

repeat 64 times. Further, the sine wave consists of 16 quantized levels controlled by four

resistor banks (Fig. 3.6(b)).

The applied power pattern at one heater, e.g. assume heater 'B' in Fig. 3.5, naturally

heats up all digital sensors to some extent. The counter at each sensor starts counting when

EN signal is 'high (Enable)' and stops counting at the following 'high (Read)' EN signal as

24

0 20 40 60 80
0

20

40

60

80

0
0.000

0.008

0.016

t [ms]

Freq. [Hz]

P
o
w

e
r

[m
W

]
A
m

p
li
tu

d
e

0 20 40 60 80 100
5

15

25

35

0 50 100 150

t [ms]

Freq. [Hz]

T
e
m

p
.

[◦
C
]

A
m

p
li
tu

d
e

0

2

4

6

(b)(a)

Re Im Re Im

28ms 31ms

100

10Hz10Hz

50 100 150

Figure 3.8: (a) The heater power and (b) the measured temperature both in time- and
frequency-domain at 10Hz. Note that the temperature has some delay to follow power
transition (∼3ms).

in Fig. 3.7. To read out the temperature at each sensor location through the SPI interface,

the count value is stored into a sensor buffer, which has 16 8-bit registers (Fig. 3.6(a)).

Here, the count value is represented by 32-bit, which requires four registers to store the

full range of its value. It makes the sensor buffer to store 4 sensor outputs at a time; four

pairs of 'EN' signals are activated in a single sine wave (Fig. 3.7). To read counter values

at all 32 states, the same process (reading four sensor outputs) is done by shifting 'EN'

signals by one state to the right (thus, repeated eight times). Each count value stored in

a sensor buffer is divided by 64 to obtain an average count value for the corresponding

power. Finally, SPI interface allows us to externally obtain the results in sensor buffers.

Using (3.8), temperature increase due to the applied sinusoidal power pattern is computed.

The jth column of the MIMO thermal filter matrix HT in (3.7) can be obtained by

applying a power pattern at heater j and measure temperature at all five sensors. Tem-

perature is obtained by using the test method described previously. The upper figure in

Fig. 3.8(b) shows the temperature measurement according to the applied power pattern at

10Hz (Fig. 3.8(a)). Note that there is some delay in temperature tracking the power transi-

tion (∼3ms at 10Hz); this results in the phase difference. The power and temperature are

then transformed to the frequency domain (using FFT) to compute each element in HT by

25

G
a
in

P
h
a
s
e
 [

°
]

Freq [Hz]

(b)(a)

Sensor In
dex

420

400

320

340

360

380

0

1000

10

100

1

2

3

4

5

Freq [Hz] Sensor I
ndex

0

-3

-2

-1

0

1000

10

100

1

2

3

4

5

Figure 3.9: (a) The amplitude response and (b) the phase response of the MIMO thermal
filter extracted from our test chip when heater 'B' is turned on.

using (3.5). Power and temperature in frequency domain are also presented at the bottom

of Fig. 3.8(a) and (b) as a reference. The amplitude of the power or temperature in fre-

quency domain dominates at the fundamental frequency, which is 10Hz in this example.

Fundamental frequencies (ωk/2π) from 1Hz to 1kHz were tested during the MIMO thermal

filter characterization.

Similarly, all elements in HT can be computed. As a result, the amplitude and the phase

response are extracted when heater 'B' is turned on. As shown in Fig. 3.9, the amplitude

response of the MIMO thermal filter is similar to a low pass filter. The gain at sensor #2 is

the largest since it is at the closest location to the heat source. The phase response also has

to show low-pass like response [135]. The extracted phase response, however, is somewhat

different due to the responsiveness of our delay-based digital sensor. The negative phase

means temperature change lags the transition in power, which is expected.

3.4.2 Accuracy of the Temperature Prediction Using MIMO Thermal Filter

Using the extracted MIMO thermal filter, temperature variation at each sensor location is

estimated. Temperature estimates are compared to measured temperature using on-chip

digital temperature sensors. Two different random power pattern sets are tested to verify

the accuracy of the MIMO thermal filter. The set 1 uses two heaters ('A' and 'D') while

set 2 turns on all five heaters. The input power set 1 is represented by gray solid line

26

60

0

40

20

Heater A

P
o

w
e

r
[m

W
]

60

0

40

20

P
o

w
e

r
[m

W
]

60

0

40

20

P
o

w
e

r
[m

W
]

Heater B

Heater C

60

0

40

20

P
o

w
e

r
[m

W
]

60

0

40

20

P
o

w
e

r
[m

W
]

Heater D

Heater E

60

0

40

20

Sensor #1

Δ
 T

e
m

p
. [

˚C
]

60

0

40

20

Δ
 T

e
m

p
. [

˚C
]

60

0

40

20

Δ
 T

e
m

p
. [

˚C
]

Sensor #2

Sensor #3

60

0

40

20

Δ
 T

e
m

p
. [

˚C
]

60

0

40

20

Δ
 T

e
m

p
. [

˚C
]

Sensor #4

Sensor #5

0 403224168

60

0

40

20

Sensor #1

Δ
 T

e
m

p
. [

˚C
]

60

0

40

20

Δ
 T

e
m

p
. [

˚C
]

60

0

40

20

Δ
 T

e
m

p
. [

˚C
]

Sensor #2

Sensor #3

60

0

40

20

Δ
 T

e
m

p
. [

˚C
]

60

0

40

20

Δ
 T

e
m

p
. [

˚C
]

Sensor #4

Sensor #5

(a)
Time [ms]

0 403224168

(b)
Time [ms]

0 403224168

(c)
Time [ms]

Set 1 Set 2

Set 1 Set 2

Measured Estimated

Figure 3.10: (a) Two sets of tested input power pattern at each heater and (b-c) the compar-
ison between the measured temperature and the estimated one when input power pattern is
set 1 (b) and set 2 (c).

and set 2 is shown with black dotted line in Fig. 3.10(a). Fig. 3.10(b) and (c) show the

variations in temperature when power pattern set 1 and set 2 are used, respectively. For

both cases, measured temperature by using on-chip delay-based temperature sensors is

shown with black solid line and the estimated temperature with red dotted line. As shown

in the figure, it is possible to estimate on-chip temperature with high accuracy using the

proposed MIMO thermal filter. To analyze the accuracy, estimation error is computed by

(Tmeasured − Testimated). As a result, average estimation errors were 0.62◦C for set 1 and

1.98◦C for set 2, where the standard deviation (σ) of error for each case was 0.21◦C and

0.11◦C.

However, there can be noise in temperature sensors, for example, due to variations in

process parameters of the sensor or thermal noise, which affects the extraction process of

thermal filter response. Note the measured sensor responses already capture the effect of

27

60

0

40

20

Sensor #1

Δ
 T

e
m

p
. [

˚C
]

0 403224168
Time [ms]

No Error Error

(b)

60

0

40

20

Sensor #1

Δ
 T

e
m

p
. [

˚C
]

0 403224168
Time [ms]

(a)

[μ=2.03˚C, σ=1.02˚C] [μ=2.05˚C, σ=1.03˚C]

Figure 3.11: The comparison of the estimated temperature in sensor #1 (only showing #1
for brevity) without sensor error and with sensor error (100 simulations) for (a) normal
power and (b) low power temperature sensor case.

sensor noise. However, to further evaluate the effects of sensor noise and hence, estima-

tion errors introduced in the extracted thermal filters, additional noise has been applied to

temperature sensor readings and extracted the thermal filter response. Two different cases

are simulated: 1) normal-power temperature sensors (>1µW) [136, 137] and 2) low-power

temperature sensors (<1µW) [138]. For normal-power sensors, they have sensing error

range about [-0.8◦C:0.8◦C] while low-power sensors have error range about [-1.5◦C:1.5◦C].

Thus, the standard deviation of 0.3◦C and 0.5◦C for each case is selected when generating

random errors on sensor readings.

By applying the same power patterns, the set 2 in Fig. 3.10(a), the temperature using

re-extracted (erroneous) thermal filter is estimated. As a reference, the average estima-

tion error was 1.98◦C with standard deviation of 0.11◦C when there is no sensor error. A

hundred different sets are simulated by applying random noise with Normal distribution

to sensor readings during the filter extraction for each case (normal- and low-power). As

a result, each average estimation error compared with measurement data was 2.03◦C and

2.05◦C with standard deviation of 0.12◦C and 0.13◦C. The comparison plot for sensor #1

between temperature estimation without sensor error and with error (100 simulations) is

also shown in Fig. 3.11. This indicates that the MIMO thermal filter can predict the tem-

perature variation with reasonable accuracy even under reasonable sensor noise.

28

3.5 Temperature Estimation at Locations Without Temperature Sensors

3.5.1 Interpolated Thermal Filter

In the previous section, the accuracy of the estimated temperature at sensor locations using

the MIMO thermal filter is validated. Temperature estimation at locations without tem-

perature sensors is also important to reconstruct the full-chip thermal map using limited

number of temperature sensors. Especially, estimating/predicting the hotspot temperature

where sensors are not placed is very important.

The extracted MIMO thermal filter directly interprets the physical relation between

power and temperature. It differs from the previous work that uses the sensor readings to re-

construct the full-chip temperature distribution [127, 128]. Even though some other works

appreciate the relation between power density and temperature solving the heat conduction

equation (3.3), they use constant thermal parameters for package components [129, 130].

The variations in these thermal parameters will result in computation error during post-

silicon temperature estimation. In addition, the accuracy of temperature estimation relies

on the distribution of power density [129] or the location of temperature sensors [130].

In this thesis, I present the interpolation method to establish thermal filter response at

any locations of interest with no sensors. Each Hij(ωk) has the amplitude and the phase

information. The amplitude of each thermal filter, |Hij(ωk)|, changes over space (distance)

and is affected by ωk. Assume temperature sensor #1 is not available in Fig. 3.5. If we

are interested in the temperature at location #1, we need to estimate |H1j(ωk)| from the

extracted |H2j(ωk)| ∼ |H5j(ωk)|. Due to the strong spatial correlation of within-die vari-

ations [139], the extracted thermal filter response of the sensor closest to the location of

interest is used as a baseline for the interpolation. Since the location of sensor #2 is the

closest to location #1, interpolated amplitude response of |H̃1j(ωk)| can be obtained by

|H̃1j(ωk)| = f(|H2j(ω0)|, ‖~r1 − ~rj‖, ωk), (3.9)

29

where ‖~r1 − ~rj‖ is the distance from the observation point #1 to the power (heat) source

j, ωk is the kth frequency component of the power source, and |H2j(ω0)| is the gain at

ω0 (the lowest test frequency; 1Hz in our experiments) of sensor #2. f(·) is an empirical

function due to the process variations and different packaging, thus it needs to be fitted post

fabrication.

The gain far from the power source decreases relatively slower as the frequency ωk

increases. This is mainly because the heat energy does not affect the temperature at remote

locations when the power oscillates quite fast; note that more heat flows vertically to a heat

spreader when the frequency of power source increases [133]. For the simplicity, the same

phase response obtained at the closest sensor location can be used. Then, the estimated

phase at location #1 becomes

∠H̃1j(ωk) = ∠H2j(ωk). (3.10)

Now, the thermal filter response at a location without the temperature sensor becomes

H̃1j(ωk) = |H̃1j(ωk)| · ej∠H̃1j(ωk), (3.11)

where H̃1j(ωk) is defined as the interpolated thermal filter.

The limitation of interpolation could be under-fitting the extracted filter response. To

achieve high accuracy even with less data points, we have to keep in mind that the accuracy

of fitting the thermal filter response at lower frequencies is more important than that at

higher frequencies (DC gain is the most important value to be fitted). Thus, when fitting

the curve, the best approach is to fit all data points but if that is not feasible targeting for the

lower frequency portion is a good option. Also, placing temperature sensors to collect data

with various distances from each heat source is necessary since the interpolation method is

utilized (thus, more data higher accuracy). Having sensor data at similar distances is not

preferred.

30

1.00

0.84N
o

rm
a

liz
e

d
 G

a
in

0.0 1.00.40.30.20.1
Frequency [kHz]

0.80.70.60.5 0.9

0.88

0.92

0.96

Sensor #4 (1.19µm)
Sensor #5 (1.16µm)

Sensor #2 (0.17µm)
Sensor #3 (0.89µm)

1.00

0.88N
o

rm
a

liz
e

d
 G

a
in

0.0 1.20.40.2
Distance [µm]

0.80.6 1.0

0.92

0.96

Sensor #4

(1.19µm)

Sensor #5

(1.16µm)

Sensor #2

(0.17µm)

Sensor #3

(0.89µm)

(a) (b)

δ

Figure 3.12: (a) The normalized gain of each sensor (except sensor #1) at different fre-
quencies of the heater 'B'; the distance from the heater to each sensor is denoted inside the
parentheses and (b) the normalized gain of each sensor (except sensor #1) as a function of
the distance from heater 'B'.

3.5.2 Experimental Validation

To validate the accuracy of the proposed interpolated thermal filter, let us assume sensor #1

is not available from our test chip. Then, we have to reconstruct the filter response at the

sensor location #1 from the data already extracted by using temperature sensors (#2∼#5). To

observe the impact of the frequency of a heat source on the gain, I have plotted the normal-

ized gain of each sensor when heater 'B' is turned on with different fundamental frequencies

(Fig. 3.12(a)). The gain is normalized to the gain at 1Hz (the lowest test frequency) of each

temperature sensor. The gain at a location far from the heat source decreases relatively

slower compared to the locations closer to the heat source. In Fig. 3.12(a), the distance

from heater 'B' to each sensor location is denoted inside the parentheses. Fig. 3.12(a) tells

us that the gain decays as a function of both distance and frequency. This decaying func-

tion D is inversely proportional to frequency and decays faster if the observation point

(distance) is closer. Thus, D is empirically defined by fitting the curve in Fig. 3.12(a):

D(‖~ri − ~rj‖, ωk) = (2π/ωk)
α/‖~ri−~rj‖β , (3.12)

where ‖~ri − ~rj‖ is the distance from the observation point i to the power source j, α and

β are fitting coefficients, and ωk is the kth frequency component of the power source. For

31

410

350

A
b

so
lu

te
 G

a
in

0.0 1.00.40.30.20.1

Frequency [kHz]

0.80.70.60.5 0.9

370

390

Actual

Interpolated

Figure 3.13: The comparison between the actual thermal filter response and the interpolated
one at sensor location #1 when heater 'B' is on.

our test chip, α = 0.12 and β = 0.25 are used. These fitting coefficients in (3.12) can be

adjusted to fit the amplitude response post fabrication.

So far, the gain normalized to the gain at 1Hz of each temperature sensor was used.

However, the absolute gain of each temperature sensor differs depending on its distance

from the heat source. As predicted, the gain decreases if the distance of an observation

point increases. From our test chip, the relation between the gain of each temperature

sensor at 1Hz and the distance from the heat source is obtained. The gain is negatively

linear to the distance as shown in Fig. 3.12(b). From this simulation result, the absolute

gain at the observation point, where no temperature sensor is available, can be obtained by

linear interpolation:

|Hij(ω0)| = |Hi∗j(ω0)|+ δ · (‖~ri − ~rj‖ − ‖ ~ri∗ − ~rj‖), (3.13)

where δ is the slope of the linear function (refer to Fig. 3.12(b)), ω0 = 1Hz, and i∗ is the

sensor index closest to the observation point i, i.e. sensor #2.

By multiplying the result of (3.13) with (3.12), it is possible obtain an interpolation

function f(·) in (3.9) for the location i. Fig. 3.13 shows the comparison between the inter-

polated and actual thermal filter response for location i = #1 when heater 'B' is turned on.

This process is done for each heater (A∼E) to obtain the complete thermal filter response

at location #1. By using the interpolated thermal filter, it is possible to estimate temperature

at a location without temperature sensor. Further, the interpolated thermal filter enables the

32

2

3

B

4

5

Sensor location

Point of interest

X

AX
CX

DX

EX

X Power source

1

60

0

40

20

Heater A

P
o

w
e

r
[m

W
]

0 403224168
Time [ms]

(a) (b) (c)

30

0

20

10

Δ
 T

e
m

p
. [

˚C
] Location #1

0 403224168
Time [ms]

Measured Interpolated

Figure 3.14: (a) A tested floorplan assuming sensor #1 is not available, (b) applied power
pattern at heater 'A' (no power consumption elsewhere), and (c) the accuracy of temperature
estimation at location #1 using the proposed interpolated thermal filter.

60

0

40

20

Δ
 T

e
m

p
. [

˚C
] Location #1

0 403224168
Time [ms]

Measured Interpolated

Figure 3.15: The accuracy of temperature estimation at location #1 (assuming there is no
temperature sensor at #1) when power pattern set 2 is used from Fig. 3.10(a).

estimation of temperature higher than readings from on-chip temperature sensors. This is

not possible for estimation methods solely relying on sensor readings.

Assume that there is no sensor at location #1 while other sensors are available (Fig. 3.14(a))

and functional block 'A' is consuming power (Fig. 3.14(b)). Then, temperature is estimated

by using the interpolated thermal filter obtained by (3.11). The estimation result is shown

in Fig. 3.14(c) and the estimation error was 0.73◦C on average (σ = 0.81◦C). For the veri-

fication of the more general case, input power pattern set 2 in Fig. 3.10(a) is used (all five

heaters are turned on). The estimated temperature using the interpolated thermal filter is

compared to the measured one from temperature sensor #1 (Fig. 3.15). As shown in the

figure, it accurately estimates actual temperature with a small error bound. The estimation

error was 2.08◦C on average while σ of the error was 1.09◦C.

To increase the credibility of the interpolation result, the same set of experiments was

33

60

0

40

20

Δ
 T

e
m

p
. [

˚C
] Location #5

0 403224168

Time [ms]

Measured Interpolated

(b)(a)

370

310

A
b

so
lu

te
 G

a
in

0.0 1.00.40.30.20.1
Frequency [kHz]

0.80.70.60.5 0.9

330

350

Actual Interpolated

Figure 3.16: (a) The comparison between the actual thermal filter response and the inter-
polated one at sensor location #5 when heater 'B' is on and (b) the accuracy of temperature
estimation at location #5 when power pattern set 2 is used from Fig. 3.10(a).

performed assuming that sensor #5 is not present. By applying the same method as in the

example when sensor #1 is not present, an interpolated thermal filter for the location #5

is compared with the actual thermal filter response when heater 'B' is on (Fig. 3.16(a)). It

has more flat curve compared with the thermal filter response of sensor #1 case (refer to

Fig. 3.13). This is because location #5 is far from heater 'B' compared to sensor #1 making

the heat affect less even with the steady power source (less gain at lower frequencies). In

addition, the same power pattern (set 2 in Fig. 3.10(a)) is used for the general verification.

As a result, temperature was estimated with average error of 1.98◦C with σ of 0.12◦C

(Fig. 3.16(b)).

3.6 Hardware Design of MIMO Thermal Filter

In this section, hardware designs of the proposed MIMO thermal filter will be discussed.

So far, the accuracy of temperature estimation using MIMO thermal filter was verified even

at any locations of interest. Temperature at each observation point (~ri) can be predicted by

matrix multiplication in frequency domain when power distribution is provided by using

an architecture level power estimator [140, 141, 142]:

∆T (~ri, t) = F−1{∆T (~ri, ω)} = F−1{
n∑
j=1

Hij(ω) · P (~rj, ω)}. (3.14)

34

1-to-1

Digital Thermal Filter
1-to-1

Digital Thermal Filter

(a)

1-to-1

Digital Thermal FilterP
A

P
B

P
C

T
i

1-to-1

Digital Thermal Filter

(b)

0

1

sel

T
i

P
A

P
B

P
C

Figure 3.17: On-chip time-domain MIMO thermal filter implementation: (a) the thermal
filter banks and (b) the pipelined thermal filter.

For the computation of (3.14), FFT is required before the multiplication to obtain the power

spectra. After the multiplication, IFFT is utilized to obtain the temperature in the time-

domain. This FFT/IFFT operation can be performed in software or hardware. To achieve

faster responsiveness (less slowdown in applying DTM techniques), computation should

be done in hardware. To remove the use of a complex FFT/IFFT hardware as in (3.14), a

simple on-chip digital thermal filter has been designed to predict the temperature at a single

location [135]. To extend the usage into a MIMO thermal system, thermal filter banks or

a pipelined thermal filter can be designed as shown in Fig. 3.17. On-chip thermal filter

banks can be placed any locations where the placement of the thermal filter does not affect

routing of critical interconnects. This is another advantage of using thermal filters instead of

temperature sensors which should be placed near hot spots to increase the accuracy [131].

To estimate the area, the dynamic power and the performance of the proposed digital

hardware in [135], Nangate 45nm technology library [143] is used and synthesized the RTL

design using Synopsys Design Compiler [144]. Then, PnR is executed for more accurate

area estimation using Cadence Encounter [145]. An on-chip thermal filter is composed of

a multiplier and an adder which performs the convolution operation. Also, a 2-to-1 mux

is placed to selectively add previously computed values. A block diagram of the designed

on-chip thermal filter is shown in Fig. 3.18. For the physical synthesis, a target frequency

is set to 100MHz. To meet the target clock frequency after the physical synthesis, RTL

synthesis is re-executed with tighter timing constraints (6ns). Then, PnR is re-executed

35

R
e
g
is
te
r

R
e
g
is
te
r

AdderMultiplierP T
13 13 13

13

13 13

Coe cients
2-to-1

MUX
13

1
Select

Figure 3.18: A block diagram of an on-chip digital thermal filter implementation.

satisfying the target clock frequency as shown in Fig. 3.19(a).

Operating at 100MHz, the reported area was 0.0022mm2 which is reasonably small

to put multiple thermal filters in a SoC (Fig. 3.19(a)). The total power consumption was

364.2µW after PnR (Fig. 3.19(b)). In terms of performance, it predicts temperature in

'n2/2' cycles when the length of the input power pattern is 'n'. For instance, when the

power pattern consists of 1,000 data points and the filter operates at 100MHz, we can

obtain temperature estimates in 5ms (Fig. 3.19(b)). When the sampling time of the power

pattern is 1ms, one second of temperature profile can be predicted within 5ms. As expected,

the computation time can be reduced by increasing the clock frequency, and hence, at

the expense of higher power. As a projection to actual implementation, a hundred on-

chip thermal filters to handle 10×10 MIMO thermal system occupy the area of 0.22mm2

(consuming 36.4mW). It is definitely possible to utilize these on-chip filters to estimate

larger than 10×10 MIMO thermal system by combining filter banks and pipelined filter

topology.

3.7 Summary of the Chapter

The proactive estimation of thermal fields is an important ingredient in the design of the

next generation of multicore processors. It is challenged by die-to-die and package varia-

tions in physical properties precluding accurate design time characterization. In this chap-

ter, a new methodology for the post-silicon estimation of thermal fields was presented. The

36

(b)(a)

20 200
Frequency [MHz]

P
o
w

e
r [m

W
]

0.1

0.0

0.2

0.3

C
o
m

p
.

T
im

e
 [

m
s
]

10

0

20

30

46.2µm

4
7
.0

µ
m

Figure 3.19: (a) The layout of the on-chip thermal filter after the physical synthesis and (b)
its dynamic power consumption and the computation time.

approach is measurement based approach to the construction of a MIMO thermal filter.

This methodology employs an interpolation method that enables the accurate estimation of

the temperature at any location of interest. The accuracy of the proposed MIMO thermal

filter is demonstrated with several experiments in a 130nm CMOS test chip. With the pro-

posed MIMO thermal filter, temperature was estimated to be within 2◦C error (3.5%). The

estimation error was within 2.1◦C even at the location without temperature sensor using

the interpolated thermal filter. Finally, the time-domain hardware designs of the proposed

MIMO thermal filter are illustrated. Collectively, these techniques enable proactive thermal

management based on models customized to the specific silicon and packages.

37

CHAPTER 4

A GENERIC AND ENERGY-EFFICIENT ACCELERATOR FOR SIMULATING

DYNAMICAL SYSTEMS

In Chapter 3, the efficient learning of a specific system, the heat propagation in ICs, was

presetend. However, there is a variety of systems with completely different behaviors, thus

the hardware accelerating the system learning of the specific type is not desirable. Accord-

ingly, the fast and energy-efficient simulation of more generic systems defined by coupled

ordinary/partial differential equations becomes an important problem. The accelerated sim-

ulation of coupled ODE/PDE is critical in learning/analyzing physical systems as well as

computing with dynamical systems. In this chapter, the design of a fast and programmable

accelerator for simulating dynamical systems will be discussed. This solver will enable the

model-based learning even more efficient and generic.

The computation speed and the programmability are key features in designing a real-

time generic solver to analyze dynamical systems. There are control problems necessitating

the real-time update to enable faster response such as bipedal robotic walking, UAV path

planning, or aircraft control [9, 16, 17, 18]. Some systems can be in massive-scale making

the computation time too high in applying complex numerical algorithms [146, 147, 148].

Also, a hardware platform should be programmable to cover a wide range of dynamical

systems, including coupled or even chaotic systems. The programmability implies not only

the generality of target systems but also the granularity of its solution space.

Mostly, dynamical systems are modeled as coupled differential equations [9, 149, 150,

151]. The coupling between oscillators, where an individual oscillator showing simple and

periodic dynamical behavior, can describe richer classes of dynamical systems [24, 25].

The acceleration of finding a numerical solution of a given dynamical system (or coupled

differential equation) has been active research focus in both scientific and engineering do-

38

Biological Neuron Modeling

Chaotic System

x

y

Lorenz

System

w
00

w
01

w
02

w
10

w
11

w
12

w
20

w
21

w
22

Program weights to solve

different dynamical systems

CeNN Processors

Time

M
em

b
ra

n
e

P
o

te
n

ti
al

Differential Equation Solving

Reaction-Diffusion

Figure 4.1: Programmable computing model by using Cellular Nonlinear Network (CeNN)
with some dynamical systems that can be modeled by CeNN.

mains [28, 148, 152, 153]. As the numerical complexity of solving sets of differential

equations limits the accruacy of solution, having a programmable accelerator along with

CPU/GPU clusters is required.

A fundamentally different computing model for dynamical system analysis is Cellular

Nonlinear Network (CeNN) [35]. The CeNN is composed of an array of cells where each

cell follows an ODE based dynamics [35]. Each cell in CeNN is connected to (local)

neighboring cells resulting in a system of coupled ODEs. The weight of local connec-

tions, referred to as the template, defines the coupling and hence, the nature of the system

of the equations. A multilayer CeNN can realize a system defined by multiple coupled

PDEs, where each layer represents the ‘first-order’ equation. The advantage of CeNN

based computation originates from the inherent ODE-based cell dynamics, the high-degree

of parallelism, local connectivity, and programmability to solve wide classes of ‘system of

equations’ (Fig. 4.1).

Although the CeNN platform is most widely known for image processing, several past

efforts have shown that a multilayer CeNN with linear and nonlinear templates can be used

to solve different types of coupled differential equations [36, 37, 38, 39, 40, 41]. There

are many studies on how to map a specific equation to CeNN algorithm [38, 39, 41, 42,

39

43]. Significant research efforts have also been directed to design digital and analog CeNN

chips for image processing applications [44, 45, 46, 47]. However, the mapping algorithms

developed in prior studies mostly focused on specific equations and/or linear templates.

Likewise, the hardware accelerators were designed for image processing applications with

spatially and/or temporally invariant templates. Therefore, the prior efforts are not suffi-

cient to develop a generic dynamical system simulator with nonlinear interactions between

equations leading to space and time variant templates.

4.1 Computation Model

A CeNN is defined as a regular structure where cells are locally connected to their neigh-

boring cells within a given radius. The dynamics of each cell in CeNN is defined by:

∂xij(t)

∂t
= −xij(t) +

∑
C(k,l)∈Nr(i,j)

Âkl(t) · xkl(t)+

∑
C(k,l)∈Nr(i,j)

Akl · ykl(t) +
∑

C(k,l)∈Nr(i,j)

Bkl · ukl(t) + z

(4.1)

yij(t) = f(xij(t)) =


−1 for xij(t) < −1

xij(t) for |xij(t)| ≤ 1

1 for xij(t) > 1

(4.2)

where i is the row index, j is the column index, xij(t) is the state, yij(t) is the output,

uij(t) is the input, z is the offset, Â is the state (feedback) template which is a function of

time-varying state variables xij(t) and xkl(t), A is the output (feedback) template, and B

is the feedforward template for each cell C(i, j). Here, Nr(i, j) represents neighbors of a

cell C(i, j) within radius r where (k, l) is the index of those cells.

In multilayer CeNN, each 2D array defines one equation discretized in space, while

the connections between nodes in different layers represent the coupling between differ-

ent equations (Fig. 4.2). The prior efforts in exploring CeNN based differential equation

40

Processing Engine (PE)

2.0 0.01.3

4.6 -1.2

-0.6

1.5

0.1 3.1

Connection strength

represented as a kernel

Equation 0

Equation 1

Equation 2

Coupled ODE dynamics

Multilayer Cellular Nonlinear Network

Figure 4.2: A 2-dimensional CeNN processing array having cell states locally coupled.
This structure can be extended to a multilayer CeNN platform to handle coupled systems.

solvers only focused on space-/time-invariant linear templates. We develop a more generic

approach to map multiple coupled equations with nonlinear interactions by programming

the template weights, (Âkl(t), Akl, and Bkl).

The first step is to determine the number of layers as a function of the number of vari-

ables involved and the highest order of derivatives for each variable in the system. Second,

we identify each first-order differential equation and map that to a layer within the mul-

tilayer CeNN. Assume a dynamic system described by the following coupled differential

equations:

ω̈ = f1(ω, ϕ) and ϕ̇ = f2(ω, ϕ). (4.3)

As CeNN cell dynamics is described by the first-order ODE, equation (4.3) is re-written as

ω̇ = χ and χ̇ = f1(ω, ϕ) and ϕ̇ = f2(ω, ϕ). (4.4)

Third, while mapping an equation to a layer in CeNN, we will identify whether the equation

involves linear or nonlinear templates, and program the templates following the methods

explained in Sections 4.1.1 and 4.1.2.

4.1.1 Mapping Linear Systems

A dynamical system can be described as a scalar ODE given as ϕ̇ = g(x) where g : R→ R

is a continuous function. Let us first explain the mapping process when g(x) is a linear

41

equation, for example, heat equation given by:

∂ϕ(x, y, t)

∂t
= κ ·∆ϕ(x, y, t), (4.5)

where ϕ(x, y, t) is temperature at location (x,y) at time t and κ is thermal conductivity. As

CeNN cell dynamics in equation (4.1) is an ordinary differential equation (ODE), Laplace

operator is discretized by Euler method. Then, equation (4.5) can be approximated as

∂ϕ(x, y, t)

∂t
= κ · {ϕ(x+ h, y, t) + ϕ(x− h, y, t)− 2 · ϕ(x, y, t)

h2

+
ϕ(x, y + h, t) + ϕ(x, y − h, t)− 2 · ϕ(x, y, t)

h2
},

(4.6)

where h is the step size in R2 Euclidean space. With an infinitesimal h, the approximation

error goes to zero. Then, heat diffusion shown in equation (4.5) can be solved by CeNN

model by setting parameters in equation (4.1) to

Â = κ ·


0 1/h2 0

1/h2 −4/h2 + 1 1/h2

0 1/h2 0

 ,A = 0,B = 0, z = 0. (4.7)

Likewise, if the system of interest is described by a partial differential equation, we need to

discretize the equation in space by using finite difference method to make them ODE [38,

154]. This discretization decides the linear part of state (feedback) template Â. Note that

in most physical systems, the output template A will be zero; it is used for applications like

image processing or associative memory.

4.1.2 Mapping Nonlinear Systems

The proposed approach for mapping equations with nonlinear templates uses Taylor series

based approximation for wide range of nonlinear functions (beyond polynomial). Assume

that there is an additive nonlinear physical behavior observed on top of heat propagation in

42

the system. The equation (4.5) converts to

∂ϕ(x, y, t)

∂t
= κ ·∆ϕ(x, y, t) + l(ϕ(x, y, t)), (4.8)

where l(·) is a continuous and infinitely differentiable nonlinear function. Using Taylor

series expansion a nonlinear function can be approximated by a polynomial function at

specific point ‘p’. By applying the Taylor series of degree three on function l(·) at p,

equation (4.8) becomes

∂ϕ(x, y, t)

∂t
≈ κ ·∆ϕ(x, y, t) + {l(p) + l(1)(p) · (ϕ(x, y, t)− p)

+l(2)(p) · (ϕ(x, y, t)− p)2 + l(3)(p) · (ϕ(x, y, t)− p)3}.
(4.9)

With simple derivation from equation (4.9), the parameters in equation (4.1) becomes

Â = κ ·


0 1/h2 0

1/h2 −4/h2 + 1 1/h2

0 1/h2 0

 +


0 0 0

0 α 0

0 0 0

 ,A = 0,B = 0, z = c3

where



α = c0 + c1 · ϕ(x, y, t) + c2 · ϕ(x, y, t)2

c0 = l(1)(p)− 2p · l(2)(p) + 3p2 · l(3)(p)

c1 = l(2)(p)− 3p · l(3)(p)

c2 = l(3)(p)

c3 = l(p)− p · l(1)(p) + p2 · l(2)(p)− p3 · l(3)(p)

(4.10)

It implies that CeNN computing model requires real-time weight updates when a non-

linear function is involved in a given dynamic system. As shown in equation (4.10), the

nonlinear template having α has to be recomputed with respect to the current cell state

ϕ(x, y, t). By providing c0, c1 and c2 data to CeNN hardware platform, the state template

Â can be updated with specialized hardware computing new α value. Note that c0 ∼ c3 can

be pre-computed with a given l(·) and stored as a look-up table (LUT) in off-chip memory.

43

N
layer

 = 2

Size
input

= 1024x1024

Template
linear

 = {A
uu

,A
uv

,

 A
vu

,A
vv

}

Weight_Update_Indicator =

Size
kernel

 = 3x3

Program

{U
uu

,U
uv

,

 U
vu

,U
vv

}

0 0 0

0 1 0

0 0 0

layer 1: u

layer 2: v∂u(x,y,t)

∂t
= -(- u) - v + D(+)

u3

3

∂2u

∂x2

∂2u

∂y2

∂v(x,y,t)

∂t
= -λ[-u-bv-a]

Given dynamical system:

reaction-diffusion

Set parameters for

CeNN-based DE solver

0 1 0

1 -4 1

0 1 0

0 0 0

0 α 0

0 0 0

u2

3
(1 -)Linear Nonlinear

Real-Time Weight

Update REQUIRED!

Convolution with

given template weights

Real-time weight

update if required

PE Array

PE PE PE PE

PE PE PE PE

PE PE PE PE

..
.

...

...

...

..
.

..
.

..
.

..
.

.......

Convolution

on sub-block

1
2

0 0 0

0 1 0

0 0 0

PE

Look at

L1 LUT

L2 LUT

When L1 misses,

look at L2 LUT

0

50

100

150 0

50

100

150

−2

−1.5

−1

−0.5

0

0.5

1

1.5

0

20

40

60

80

100

120

140 0

50

100

150

−2

0

2

Iterate computation

for next output layer

Done

for layer 1

Iterate over

state layers

1
2

3bit 3bit 4bit 31bit 1bit 31bit 1bit

A
uu

U
uu

U
vv

A
vv

...

N
layer

Size
kernel

Size
input

Initial state map

Figure 4.3: The overall operation of the proposed CeNN-based differential equation (DE)
solver. With a given dynamical system, template weights and other parameters are set to
program the DE solver (binary bit stream is used to program). Then, a sub-block in each
state map (each layer) is fed into PE array to perform convolution on them. When real-time
weight update is required, it looks at LUTs at different levels.

The degree of the polynomial function determines the accuracy of approximation.

4.2 Operation of DE Solver

Before going into architecture details, the basic operation of the proposed CeNN-based

differential equation (DE) solver is explained.

Set parameters: Fig. 4.3 illustrates the entire process of solving a coupled dynamical

system described by the well-known reaction-diffusion (RD) equation. For a given equa-

tion, one can extract the required number of layers for the DE solver (refer to Section 4.1).

As RD equation has two variables involved, u ∈ R2 and v ∈ R2, a two-layer CeNN model

is used for simulating it. There is a nonlinear function involved in updating the activator

44

u, but only linear term is present when updating the inhibitor v. The nonlinear function

is programmed to the DE solver by having state template Âuu (self-feedback template for

layer u) with real-time update as the function depends on u(t).

As such a nonlinear function can be any function depending on the system of interest,

LUTs are utilized to store sampled function values and coefficients of Taylor series to

compute function values between sampled points (refer to Section 4.3.1 for details). By

looking up LUTs, it is possible to update the template weights at each cycle if required.

Thus, we need an indicator to let PEs identify an equation that needs the real-time weight

update. This update indicator flag is appended in the template data as shown in Fig. 4.3

(Uuu appended to Auu making the total data bit-width 32bit).

Program DE solver: Accordingly, there are several parameters to be loaded to pro-

gram the DE solver. They are input size (Sizeinput), kernel size (Sizekernel), number of

layers (Nlayer), space-invariant and linear templates (Templatelinear), and binary indi-

cator matrices for real-time weight update (WUI). This can be programmed by using a

bit stream pushed to the DE solver. The bit size representing each parameter bounds the

maximum value of that parameter. For instance, if 3 bits are used to represent Nlayer, then

a coupled dynamical system with up to 8 layers (equivalently, 8 equations) can be solved.

The size of kernel or input is programmed by providing the side length; to program 3×3

kernel, 3 is given in the bit sequence. For the input size, the side length is constrained to be

the power of 2. Thus, the exponent is programmed in the bit sequence; 1010(2) to program

1024×1024 input size.

Other than state template (Â), feedforward template (B) and offset (z) are also provided

to the solver. They are appended to the bit sequence as well which adds another 148-Byte

data at the end. For most cases, B and z do not require real-time update thus no weight

update indicator is needed. In summary, a set of templates can be considered as a program

for the DE solver to simulate a specific dynamical system.

Computation: After the DE solver is programmed, a PE array performs convolution

45

on a sub-block in the state map of single variable (e.g. u). At each clock cycle, multipli-

cation between the weight and the state value within a convolution is performed. For 3×3

convolution with 8 × 8 PEs, it takes nine cycles to complete convolutions for 64 cells of

one state variable. Then, the PE array moves to a sub-block at the same position but for

the next variable (equivalently, layer) to be computed. As RD equation has two variables,

convolution is done over 8×8 sub-blocks for two layers to get the updated sub-block of one

layer. Then, the result is written back to off-chip memory for the computation in the next

cycle.

Real-time weight update: During the multiplication, each PE checks WUI bit in the

weight data and if the computation requires weight update it looks at a local (L1) LUT.

If it misses, it looks at higher level (L2) LUT while setting PEs in idle mode. By having

the intermediate level of shared LUT between off-chip memory and local LUT, we reduce

the number of expensive accesses to DRAM. By retrieving the function value for the given

state, PE becomes active again and completes the multiplication at next clock cycle. After

the convolution for one output layer (update on one variable) is done, the computation

moves to next layer to update next state variable. For RD equation, it needs to update two

(output) variables; u and v.

4.3 System Architecture

Fig. 4.4 shows the overall architecture of the proposed generic DE solver. The system archi-

tecture is composed of memory system, the real-time template update, and the processing

engine cluster.

4.3.1 Real-Time Template Weight Update

A memory-centric approach using a hierarchy of look-up-tables (LUT) for real-time tem-

plate update is proposed. An LUT is created to store the nonlinear function using Taylor-

series expansion around different values as illustrated in Fig. 4.5. We store the finite number

46

LUT

..
.

State

..
.

Input

..
.

Off-Chip DRAM

PE Array

PE PE PE PE

PE PE PE PE

PE PE PE PE
..
.

...

...

...

..
.

..
.

..
....

.......

L1 LUT

Global

Template Buffer

Global Buffer
..
.

Programmable DE Solver

.......

Bank(0)

Bank(1)

Bank(31)

L2 LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE PE

PE PE

L2

LUT

PE

PEPE

PE

L2 LUT
When L1 misses,

look up L2 LUT

Communicates with

a DRAM channel

More channels, better parallelism

with real-time template update

Figure 4.4: The overall architecture of CeNN-based DE solver. Look-up Tables (LUTs)
allow nonlinear and real-time weight updates with complex functions.

LUT for [l(x) = 0.5x2 - 0.012x3 + sin(x)]

l(p) c0 c1 c2 c3p

1.0
2.0
3.0
4.0
5.0
6.0

1.3295
2.8133
4.3171
6.4752
10.041
15.129

-0.5057
5.7828
22.615
18.939
-38.280
-115.98

1.9234
-2.1182
-7.6191
-5.5109
6.9339
19.427

-0.6123
0.3441
0.9180
0.5816
-0.3557
-1.0322

-0.8055
-5.8461
-24.058
-24.806
62.513
219.47

7.0

0.0

-1.0
0151631324748636495111

can vary the degree of expansion

by trading-off throughput/power

with accuracy

Figure 4.5: The data format stored in off-chip LUT of an examplary nonlinear function
required for real-time weight update.

of exact values for l(x) in equation (4.9), i.e. l(p) at points ‘p’, expand l(x) in Taylor series

around ‘p’, and store the coefficients (c0 ∼ c3). Therefore, stored data corresponding to a

point p is a tuple DLUT = {l(p), c0, c1, c2, c3 − l(p)}. Note, as l(p) is stored, we store c3 in

equation (4.10) without the term l(p).

A two-level cache hierarchy to manage the LUTs is utilized. The full LUTs are stored

in the main memory. A part of the data is stored in a shared L2 LUT (one per memory

channel of a chip), and multiple distributed L1 LUTs (one per processing engine). The

performance of the solver depends on miss rates from the LUTs (mrL1 or mrL2). As the

LUT access is determined by the state of the CeNN cell, the miss rate depends on the size

47

of on-chip LUTs and the distribution of states in the CeNN model.

As the number of LUT blocks is small in L1, the index is directly matched, multi-bit

XNOR operation between higher 16 bits among 32bit of cell state and index in L1 LUT,

to find the required value. For L2 LUT, as the size is much larger, direct matching is

impossible. Therefore, a hash function utilizing modulo is being used as search index. The

modulo by power-of-2 is used as the size of L2 LUT is 2N and it is simple to design in

hardware.

When there is a miss at L1 LUT, required data is copied (also fetched to PE at the same

time) from L2 LUT if the data is present. The L1 LUT has write pointer which increments

by one (cyclic) to provide write address whenever L1 LUT misses. When L2 LUT misses,

expensive DRAM access happens thus we get multiple data points whenever it happens. In

the proposed DE solver, it fetches eight data points whenever L2 LUT misses. For instance,

if data for p = 3.0 was required in Fig. 4.5 and both on-chip LUTs missed then the solver

fetches data from p = 0.0 to p = 7.0 in DRAM. When storing these data to L2 LUT, the

same hash function is used to synchronize the data address with read operation.

After the function value l(p) at point ‘p’ and coefficients (c0, c1, c2, c3) are loaded, each

PE needs to decide whether to directly use the exact l(p) or approximate function value

using coefficients. This can be checked by looking at lower 16bit of state data as the off-

chip LUT contains exact l(p) with p represented by higher 16bit. Assume we have 32bit

state (fixed-point) where the first half bits are integer and the rest are fractional. Then,

‘p’ will be an integer number for look-up index in LUTs. If the fractional part is non-

zero, containing at least one high(1) bit in lower 16bit, we need to approximate a nonlinear

template by computing α in equation (4.10). This is done by a specific hardware called,

Template Update Module (TUM), attached to each PE (Fig. 4.6).

48

WUI
Temp.

Demux

Index
Value

Hash

Function
...
...
...

PE

......

...

...

Template Update

Module (TUM)

Hit

1 Extra Cycle

if L2 LUT Hits

Miss
DRAM LUT

Access

State Hit

Direct

Match

Index Value L1 LUT

Miss
L2 LUT

State

Weight

by mr
L1

by mr
L2

Figure 4.6: The operation of real-time weight update to compute state nonlinear template
Â.

4.3.2 Storage of States, Inputs, and Templates

The state x, input u, template weights (Â,B), and values of nonlinear functions are stored

in the off-chip memory. There are 32 data banks in the proposed system and the half of

them are dedicated to state x, the rest to input u of CeNN model. The data banks for each

data type (x or u) are grouped into two (primary and support).

For each main memory channel, a global buffer consisting of data banks, and one level 2

(L2) LUT cache for nonlinear template update are present (Fig. 4.4). The off-chip memory

communicates with the on-chip global buffer, and the global buffer pushes required data

to a processing engine (PE) array which consists of a template buffer, L1 LUT cache for

template updates, and PEs.

In the PE array, a template buffer is placed to store and broadcast template weight for

the current convolution computation. The sequencing over this template decides which

equation that PE array is currently solving (refer to Section 4.4). The data size filled in the

template buffer is N2
layer · l2kernel for each template type (either feedback or feedforward);

lkernel is the length of a template. The finite state machine is used to address the template

weight for each convolution operation.

49

Whenever a real-time weight update is required as a function of the current cell state,

each PE searches for the value of that function or coefficients to perform series expansion

from its local L1 LUT. If the required data is present, a PE computes its convolution without

waiting. If not, the PE will wait for extra clock cycles to search the data from the connected

L2 LUT.

4.3.3 Processing Engine Architecture

The detailed block diagram of PE array is shown in Fig. 4.7. There are N2
layer convolution

templates in DE solver to handle and each convolution template has the size of Sizekernel.

Each template weight is prefetched from shared template buffer by having two counters;

one for layer indexing and the other for convolution indexing. Then, PEs start to compute

convolution with the given weight and convolution index. By having proper data controller

and muxes, the dedicated dataflow mode is used to move around the data within PEs as

well as from data banks. The backup register in Fig. 4.7 helps PE promptly retrieve data

when there is row change in template (refer to mode 2 in Fig. 4.10). The data prior to the

horizontal shift is retrieved to move data to the upper PE of each PE (via xV or uV path).

For mode 1 and mode 3, the data is moved to left within PE array; xH or uH path is for

this purpose. This PE structure is simpler than the one presented in [155] as our PE only

requires single-word register for state and input (no FIFO buffers needed).

In the following section, the proper dataflow method is explored suited for the proposed

DE solver with real-time weight update. Also, the data movement in the memory system is

explained in detail.

4.4 Dataflow in Proposed DE Solver

4.4.1 Exploration of Different Dataflow Schemes

The main operation of CeNN is the convolution between cell state (or external input) and

programmed template kernel Â (or B). Thanks to the improvement of convolutional neural

50

PE Array

PE PE PE PE

PE PE PE PE

PE PE PE PE

..
.

...

...

...

..
.

..
.

..
.

..
.

.......

Conv_ID

Counter

CLK
PE

Row_ID

Counter

Column I/O Column I/O

SRAM

(Input Template B)

SRAM

(State Template A)

2∙log
2
(N

layer
) bit

ˆ

32bit

Reg

CLK
PE

RC_flag
Modulo

Conv_ID

Size
kernel

x or u

d
bak

Backup Reg

x
V
 or u

V

MAC MAC

32bit Adder

32bit 32bit
32bit

Âx psum

0 z

u psumB

32bit
x

H

x
bak

x
V

u
H

u
bak

u
V

Backup

Reg (x)

Backup

Reg (u)

‘x’ from

bank

‘u’ from

bank

32bit

32bit

connected to

u
H
 of left PE/

u
V
 of upper PE

connected to

x
H
 of left PE/

x
V
 of upper PE

to all PEsto all PEs

Shared Template Buffer

2∙log
2
(Size

kernel
) bit

Figure 4.7: The detailed circuit block diagram of a global template buffer and a processing
element.

network, various dataflow schemes exploiting data reuse are proposed and evaluated; op-

timized for the convolution computation [155, 156, 157, 158, 159, 160]. As CeNN-based

DE solver requires the real-time weight update, the dataflow scheme that maximizes the

throughput differs from the previous analyses.

In [160], various dataflow schemes are summarized and compared. The dataflow scheme

can be grouped into four categories: no local reuse (NLR [156]), weight stationary (WS

[157]), output stationary (OS [155, 158, 159]), and row stationary (RS [160]). According

to the analysis in [160], RS dataflow showed the best energy-delay product by minimizing

DRAM access and maximizing data reuse within memory units in lower hierarchy. How-

ever, one important thing to note is that other than OS dataflow different kernel (template)

weights are given to PEs for convolution operation. In OS dataflow, one template weight is

shared by all PEs in the processing array (refer to Fig. 4.8).

As shown in equation (4.4), some equations have a nonlinear function involved which

is a function of the current state. Thus, a real-time weight update by accessing on-chip/off-

chip LUTs is often needed for differential equation solving. By fetching coefficients from

51

Target Node for Convolution

Weight Stationary (WS) Row Stationary (RS)

W
00

W
01

W
02

W
10

W
11

W
12

W
20

W
21

W
22

Processing Engine

Input

Old Data New Data

t = k

t = k+1

Input

W
02

W
01

W
00

W
12

W
11

W
10

W
22

W
21

W
20

Psum

(row0)

t = k

Psum

(row1)

Psum

(row2)

Input

W
02

W
01

W
00

W
12

W
11

W
10

W
22

W
21

W
20

Psum

(row0)

Processing Engine

Psum

(row1)

Psum

(row2)

t = k+1

Processing Engine

Input W
00

Target Nodes for Convolution

Input W
01

W
22

Output Stationary (OS)

Input

......t = k

t = k+8

Old Data

New Data

t = k+1

Figure 4.8: The comparison between different dataflow schemes for consecutive time steps
with 3×3 template (kernel). Other than OS dataflow, entire template weights are used
during the convolution operation.

the LUT, we are able to update the template with complex functions. Depending on the

size of on-chip LUTs, miss rate will vary. Whenever there is a LUT miss, DRAM needs to

be accessed which is expensive in terms of delay and energy consumption.

For dataflows other than OS dataflow, DRAM will be accessed at a clock cycle when at

least one weight value in the template requires the update and on-chip LUT misses. Then,

the number of DRAM access for the proposed DE solver becomes

#DRAMaccess = (mrL1 ·mrL2) · Sizeinput ·N(Ull∗ 6= 0), (4.11)

where mr is the LUT miss rate and N(Ull∗ 6= 0) is the number of templates requires

weight update. For the example shown in Fig. 4.3, it requires 100K DRAM accesses if

(mrL1 ·mrL2) = 0.1 and N(Ull∗ 6= 0) = 1.

52

By using OS dataflow, the number of DRAM access for real-time weight update is

#DRAMaccess =
(mrL1 ·mrL2) · Sizeinput ·N(Ull∗ 6= 0)

#PEs
. (4.12)

This is due to the weight sharing among all PEs, thus DRAM is accessed at that specific cy-

cle when weight update is required. Then, the estimated number of DRAM access becomes

1.6K for the same scenario (#PEs× less).

This analysis shows that OS dataflow is better than other dataflow schemes for the

convolution where template needs to be updated over time. As CeNN state evolves over

time, the advantage of utilizing OS dataflow piles up.

4.4.2 OS Dataflow in Proposed DE Solver

Before start computing, required data should be pushed from DRAM to the on-chip global

buffer. There are 16 state banks and 16 input banks in the global buffer for 8×8 PEs in the

system. Among 16 data banks, 8 banks are in the primary group and the remaining banks

are in the support group. This is to utilize intra-PE data transfer to reduce data delivery

energy from banks to local registers in the PE array.

As the process of input data (ukl) prefetching is identical to state data (xkl) prefetching,

only the dataflow for states of entire layers in CeNN model is discussed. Each row block

in a data bank stores nPEx = 8 words where there is a [nPEy × nPEx = 8 × 8] PE

array. The state map is divided into 8×8 sub-blocks where convolutions for those cells are

handled by PE array at a time. Each bank in the primary group stores data for a row in the

processing sub-block; bank (k− 1) has data for the kth row in each sub-block. The support

group stores state data in an interleaved fashion as shown in Fig. 4.9. Assuming external

memory as DDR3 (2 channels), each channel handles data prefetching for each bank type

(primary or support).

After the state and the input data are prefetched to the global buffer, template weights

53

(0,0) (0,8)
Bank0 Bank8

(0,7) (0,15)
Bank0 Bank8

(0,16) (0,24)
Bank0 Bank8

(0,23) (0,31)
Bank0 Bank8

@ cycle 0 @ cycle 7 @ cycle 8 @ cycle 15

(1,0) (1,8)
Bank1 Bank9

@ cycle 64

(24,16) (24,24)
Bank0 Bank8

@ cycle 56

(24,23)
Bank0

@ cycle 63

(24,31)
Bank8

DDR3

(0,1) (0,9)
Bank0 Bank8

@ cycle 1

B
a

n
k
0

B
a

n
k
1

B
a

n
k
2

B
a

n
k
3

B
a

n
k
4

B
a

n
k
5

B
a

n
k
6

B
a

n
k
7

B
a

n
k
8

B
a

n
k
9

B
a

n
k
1

0

B
a

n
k
1
1

B
a

n
k
1

2

B
a

n
k
1

3

B
a

n
k
1

4

B
a

n
k
1

5

(7,0) (7,8)
Bank7 Bank15

@ cycle 448

B
a

n
k
0

B
a

n
k
1

B
a

n
k
2

B
a

n
k
3

B
a

n
k
4

B
a

n
k
5

B
a

n
k
6

B
a

n
k
7

B
a

n
k
8

B
a

n
k
9

B
a

n
k
1

0

B
a

n
k
1
1

B
a

n
k
1

2

B
a

n
k
1

3

B
a

n
k
1

4

B
a

n
k
1

5

B
a

n
k
0

B
a

n
k
1

B
a

n
k
2

B
a

n
k
3

B
a

n
k
4

B
a

n
k
5

B
a

n
k
6

B
a

n
k
7

B
a

n
k
8

B
a

n
k
9

B
a

n
k
1

0

B
a

n
k
1
1

B
a

n
k
1

2

B
a

n
k
1

3

B
a

n
k
1

4

B
a

n
k
1

5

Primary Group Support Group

Figure 4.9: Data prefetching from off-chip DRAM to on-chip global buffer for 32×32
input. There are two bank groups (primary and support) to utilize intra-PE data transfer.

are pushed to the template buffer in PE array. The total number of weight data to be

prefetched is N2
layer × l2kernel (36 for the example in Fig. 4.3). After all data is prepared for

DE solver, the convolution operation begins to solve a differential equation. There are four

modes during the convolution and they are shown in Fig. 4.10. A dataflow mode is selected

depending on which convolution operation is currently being handled by PE array:

1. Mode 0: if (conv id = 0)

2. Mode 1: if (0 < conv id < lkernel)

3. Mode 2: if (bconv id
lkernel

c > 0, mod(conv id, lkernel) = 0)

4. Mode 3: if (bconv id
lkernel

c > 0, mod(conv id, lkernel) > 0)

The proper mode selection for the convolution with 3×3 template (kernel) is shown in

Fig. 4.10.

As 64 PEs are present in the system (Fig. 4.4), 64 convolutions with 3×3 template is

completed in 9 clock cycles (w.r.t. CLKPE) when there is no weight update. If there is the

54

Primary Group

PE Array

Mode 0

B
a
n
k
0

B
a
n
k
1

B
a
n
k
7

......

......

Mode 2

Intra-PE

Dataflow

Primary Group

B
a
n
k
0

B
a
n
k
1

B
a
n
k
7

......

B
a
n
k
8

B
a
n
k
9

B
a
n
k
1
5

Support Group

......

Mode 1

Intra-PE

Dataflow

......

Mode 3

B
a
n
k
8

B
a
n
k
9

B
a
n
k
1
5

Support Group

......

......

Mode Selection for

3x3 Template

0 11

2

2

3

3

3

3

Figure 4.10: Dataflow modes from data banks to PE array during convolution operation.
A proper mode selection for the convolution operation with 3×3 template is shown as an
example.

need for real-time weight update for any element in the template, then the required clock

cycles increase accordingly.

4.5 System Analysis of DE Solver

In this section, the performance and energy-efficiency of the proposed architecture with

CeNN computing model are analyzed when solving wide classes of differential equations.

4.5.1 Benchmark Differential Equations

To evaluate the efficiency of the proposed CeNN-based DE solver, six differential equa-

tions describing various dynamical systems are considered. For the simplest benchmark,

heat diffusion is selected as it is described by single PDE in which only linear template is

present. The Navier-Stokes equation is used to simulate single PDE with nonlinear tem-

plate. To simulate coupled systems, Fisher’s and reaction-diffusion (RD) equations are

selected. Among these, the RD equation can be used as another set of computing model,

which is capable of simulating Turing machine [161]. Also, physical behaviors of corti-

cal neurons can be modeled by coupled differential equations. They are called Hodgkin-

Huxley (HH) model [162] and Izhikevich model [163]. These spiking models are can-

didates for a basic unit in neuromorphic computing engines. Thus, the CeNN-based DE

solver not only finds the solution for a given differential equation, but it also accelerates the

55

M
em

b
ra

n
e

P
o

te
n

ti
al

 [
m

V
]

GPU
Proposed

-100

40

20

0

-20

-40

-60

-80

Time [ms]
0 400100 200 300

Izhikevich Model

Mean(error) = 7.50e-8

σ(error) = 6.39e-8

M
em

b
ra

n
e

P
o

te
n

ti
al

 [
m

V
]

-72

-52

-56

-60

-64

-68

Time [ms]
0 104 6 8

Hodgkin-Huxley Model

Mean(error) = 3.92e-4

σ(error) = 3.51e-4

2

GPU
Proposed

Navier-Stokes (layer 1 @ t = 1sec)

Mean(error) = 3.35e-3 σ(error) = 2.27e-3

GPU

0

16

12

8

4

0

63

21
42

0

63

21

42

Proposed

0

16

12

8

4

0

63

21
42

0

63

21

42

xy xy

Mean(error)

σ(error)

Heat RDFisher’s
4.09e-7

1.03e-7

8.01e-8

3.51e-8

6.48e-5

5.55e-5

Figure 4.11: The accuracy comparison between GPU (64bit floating-point) and CeNN-
based solver (32bit fixed-point).

simulation of other computing models for faster development.

When designing the DE solver, the bit-precision of a system has to be carefully deter-

mined. If the system is designed to compute with floating-point, the accuracy will be high

but the energy-efficiency significantly degrades compared to fixed-point counterparts. For

the power-constrained environment, such as mobile platforms or robotic controllers, the

DE solver should perform fixed-point computation. Also, it becomes possible to run mas-

sive simulations with different conditions in parallel by utilizing mutiple (energy-efficient)

DE solvers in finding a number of solutions to obtain near-optimal solution for a complex

and large problem.

For six benchmark equations, we compared solutions with GPU (64bit floating-point)

and the proposed DE solver (32bit fixed-point). The results on different dynamical systems

56

0

0.2

0.4

0.6

0.8
L1 LUT L2 LUT

(4,32) (8,64) (16,128)

Reaction-Diffusion

0

0.2

0.4

0.6

0.8

(4,32) (8,64) (16,128)

Navier-Stokes

(L1 Size, L2 Size)

M
is

s
R

at
e

M
is

s
R

at
e

Figure 4.12: The miss rate depending on the size of on-chip LUTs for two different dy-
namical systems.

are summarized in Fig. 4.11. The average and standard deviation of absolute error for three

benchmarks (Navier-Stokes, HH model, and Izhikevich model) are shown with the solution

of each example. The error values for other differential equations are also provided as a

table in Fig. 4.11. For spiking models, spikes were well-matched with the GPU simulation.

4.5.2 Miss Rate Analysis for Weight Update

As mentioned before, there exists trade-off between on-chip LUT size and miss rate. Sev-

eral design choices are simulated and the results are shown in Fig. 4.12. They are simu-

lated with two representative differential equations; one is reaction-diffusion and the other

is Navier-Stokes equation. For both cases, miss rate of L1 LUT when there is only four

blocks in the cache is about 0.7 which is quite high. The miss rate reduces by increasing the

capacity, but with the support of larger L2 LUT the miss rate drops significantly (to 0.15-

0.3) with one extra cycle. As the energy-efficiency is also crucial in some applications,

the size of L1 and L2 LUT is selected to be 4 blocks and 32 blocks each for the following

simulations.

57

4.5.3 Performance Comparison

According to the analysis in Section 4.5.1, the proposed DE solver runs with 32bit fixed-

point. To simulate the performance, a cycle-level simulator is developed including all archi-

tecture details explained in Section 4.3. The simulator takes parameters in Fig. 4.3 with a

configuration file (memory type, Sizekernel, Sizeinput, Nlayer, Templatelinear, and WUI).

In the simulator, memory specification (bandwidth, # of channels, bus-width, latency),

global buffer (# of banks, bank size, mrL2), shared template buffer (buffer size), and PE

array (# of PEs, latency, mrL1) are parameterized. The miss rates, mrL1 and mrL2, are ex-

tracted from Matlab simulation and fed to the simulator to consider actual state distribution

of each benchmark.

The data prefetching from DRAM is performed in burst mode and burst length is as-

sumed to be 8. Thus, the data are pushed to global buffer for eight consecutive cycles and

data controller waits for tCCD for another burst to happen. For the real-time weight update,

when PE array gets required data from data banks, it checks WUI-bit in weight data and

either computes or checks LUTs for nonlinear template. The clock cycle of PE array is 1/4

of DRAM (or L2 LUT) clock as four PEs are connected to one L2 LUT.

By assuming DDR3 as an off-chip memory, the performance comparison between CPU,

GPU, and the proposed DE solver is summarized in Fig. 4.13. The performance depends

on the number of layers, the number of nonlinear weight updates, and the number of grid

cells to be computed. About 46.48× (13.52×) performance improvement over CPU (GPU)

on average is achieved by using the CeNN-based DE solver with DDR3. Two channels are

assumed for DDR3 and this limits the performance as each channel connects to 8 L2 LUTs

(Fig. 4.4). In the worst case, these 8 LUTs will miss and request data from DRAM forming

a long request queue. As there are 16 L2 LUTs in our DE solver, the system throughput

maximizes by having 16 memory channels with concurrent access.

58

Heat Fisher's Navier-Stokes RD HH model Izhikevich

CPU (i7-4710) GPU (GTX850) Proposed w/ DDR3

P
er

fo
rm

an
ce

in
 L

o
g
-S

ca
le

 [
m

s]

10-1

100

101

102

103

105

106

104

Dynamical System

4.05x

1.41x

3.66x

58.94x11.68x

1.39x

Figure 4.13: The performance comparison on six different benchmark differential equa-
tions. The speed-up using the proposed CeNN-based solver with DDR3 is shown compared
to the performance using GPU (GTX 850).

4.5.4 Integration with High-bandwidth Memory

The memory-centric nature of the proposed architecture suggests that a higher bandwidth

and concurrent accesses between compute and memory can enhance the system perfor-

mance. As illustrated in Fig. 4.4, having more memory channels, so that each channel con-

nects to individual L2 LUT, improves system throughput as the PE array can handle concur-

rent L1 LUT misses with better parallelism. A higher degree of parallelism also reduces the

time required to push the states, inputs, and weights into the compute layer. Therefore, the

integration of the CeNN based computing platforms with memory systems providing con-

current high bandwidth accesses, such as Hybrid Memory Cube (HMC) [164], is explored

as well.

The effect of high-bandwidth memory for different benchmarks is evaluated (Fig. 4.14).

Note that HMC provides two different interfaces: one externally connects to processors

(HMC-EXT) and the other internally connects to processor-in-memory (HMC-INT). The

simulation results show that integration with HMC significantly improves the performance

compared to the one with GPU (Fig. 4.14). By using HMC-INT (or HMC-EXT), the per-

formance improves by 23.67× (or 77.37×) on average. As the I/O clock frequency of

HMC-EXT (10GHz) is much faster than that of HMC-INT (2.5GHz), the performance im-

59

Heat Fisher's Navier-Stokes RD HH model Izhikevich

GPU (GTX 850) CeNN (DDR3) CeNN (HMC-INT) CeNN (HMC-EXT)

Dynamical System

P
er

fo
rm

an
ce

in
 L

o
g
-S

ca
le

 [
m

s]

10-1

100

101

102

103

105

104

Figure 4.14: The performance improvement by using 3D memory stack with higher mem-
ory bandwidth.

provement is higher. However, this naturally leads to higher power consumption in the

memory system and the processing array.

4.5.5 Power Consumption of DE Solver

To validate the power-efficiency of the proposed DE solver, the PE array is designed and

synthesized using 15nm FinFET technology [165]. The power consumption of global

buffer (L2 LUTs + data banks) is estimated by using PCACTI [166]. The power consump-

tion is estimated assuming HMC-INT as an off-chip memory. As the maximum I/O clock

frequency of HMC-INT is 2.5GHz, we synthesized the PE array to operate at 600MHz

clock frequency. The L2 LUT runs at the same frequency as DRAM to maximize PE uti-

lization at the worst case. The read operation of data banks or the shared template buffer

runs at 600MHz which is synchronized to PE operation.

A PE array contains 64 PEs with 64 L1 LUTs. Each PE includes two backup registers,

two MACs, one adder, and control logics (Fig. 4.7). This is denoted as ALU in Table 4.1.

The template update module (TUM) is attached to ALU to form a PE. Table 4.1 shows

the power estimation of PE array: 64 (PE-L1 LUT) pairs. The power consumption of 16

L2 LUTs or 32 banks is summarized in Table 4.2. Each L2 LUT has 16 lines of 64 Byte

data (1KB); each line contains four look-up data. The global buffer has state data banks,

input data banks, and shared template buffer where total size is about 2MB. As a result,

60

Table 4.1: The power consumption of modules in PE array having 64 (PEs-L1 LUT) pairs.
PE Array Power (mW) Area (mm2)

PE
TUM 1.20 0.00308
ALU 1.12 0.00287

TUM+ALU 2.32 0.00594
PEs 148.48 0.380

L1 LUTs 51.20 0.0698

Table 4.2: The overall power consumption including PE array and global buffer (data banks
+ shared template buffer).

System Power (mW) Area (mm2)
PE Array 199.68 0.450
L2 LUT 63.61 0.00627

Global Buffer 260.16 0.625
Total 523.45 1.082

the power consumption of the proposed DE solver becomes 523mW which is ∼100× less

than GPU (50∼100W). Also, the area of the proposed DE solver becomes ∼1.1mm2.

4.6 Related Work

There has been research focus on developing hardware platforms for implementing CeNN

model [44, 45, 46, 47, 167, 168]. They are categorized by underlying circuit type: analog/mixed-

signal, FPGA, or fully digital platforms (Table 4.3). The analog CeNN hardware is fast and

energy-efficient but it lacks accuracy (only 8bit precision), scalability, and programmabil-

ity [45, 46, 47, 168]. There are emulated digital [167] and fully digital platforms [44] which

give some level of programmability with higher accuracy. However, these works are only

capable of dealing with linear time-invariant templates. Some emulated digital platforms

provide specialized hardware units to handle nonlinear templates [154, 42]. Yet, they fail

to provide architecture support to cover more general functions other than polynomial.

The proposed CeNN-based DE solver significantly improves the programmability com-

pared to any previous platforms with proper architecture for real-time template update.

This versatility is achieved along with high efficiency (∼103 GOPS/W). Accordingly, the

61

Table 4.3: The comparison of the proposed DE solver to previous hardware platforms for
cellular nonlinear network.

ACE16k [46] Q-Eye [168] GAPU [167] VAE [44] This Work

Type Analog/
mixed-signal

Analog/
mixed-signal FPGA Digital Digital

Technology 0.35um 0.18um 0.15um 0.13um 15nm
PEs 16560 25344 1024 120 64

Power (W) 4.0 0.1 10.0 0.084 0.523
Area (mm2) 92 25 - 4.5 1
Peak GOPS 330 0.1 1.3 22 54

GOPS/W 82.50 0.1 0.13 261.90 103.26
Nonlinear

Weight Update Yes

proposed DE solver will enable the efficient simulation of ‘computing with dynamical sys-

tems’.

4.7 Summary of the Chapter

This chapter presents the programmable differential equation (DE) solver based on CeNN

computing model. The generic mapping of wide classes of dynamical systems to CeNN

model is presented along with the architecture support to accelerate the computation. This

solver allows more efficient way of model-based learning on various systems. The proposed

DE solver includes a spatial PE array with LUTs for real-time weight update which enables

handling nonlinear functions involved in differential equations. This real-time weight up-

date is the important feature to make the solver truly programmable. The performance sig-

nificantly improves by∼24× to∼77× on average with the use of high bandwidth memory.

The energy efficiency improves by three to four orders of magnitude by using CeNN-based

DE solver.

62

CHAPTER 5

POWER-AWARE DIGITAL FEEDFORWARD NEURAL NETWORK FOR

LEARNING STATIC NONLINEAR SYSTEMS

An artificial neural network (ANN) can be considered as one of data-driven system learning

methods. To train a neural network, large dataset is used to make the network accurately

estimate certain behaviors of the underlying system. Among various types, a feedforward

neural network (NN) is widely used due to its simplicity and ease of training [48]. An illus-

tration of the operation and training of a feedforward NN is shown in Fig. 5.1. The network

has only one directional pass with an input layer, one or more hidden layers, and an output

layer. Recently, there have been active studies on digital NN hardware design to realize

feedforward NN algorithms [14, 169]. As significantly large number of computations are

required, the energy efficiency is a critical factor in ANN hardware design [111, 113].

This chapter presents a design method for the power-aware digital feedforward NN

platform using approximate computation by integrating bit-precision control and imprecise

hardware. To achieve this goal, a digital feedforward NN hardware having both accurate

and approximate processing engines (PEs) is designed. An approximate PE employs recent

developments in approximate multipliers to reduce energy [113, 170]. First, the proposed

approach determines a set of approximate synapses in NN that have least impact on output

quality using a greedy algorithm. The algorithm identifies them from the error sensitiv-

ity computed during the training phase (Fig. 5.1(b)). This error sensitivity provides the

information of how much output error is coming from small perturbation at each synap-

tic weights in the network. Next, the selected approximate synapses are processed with

reduced bit-precision and/or using approximate PEs to reduce energy dissipation. The

precision control limits the bit-width of operands by forcing zero to some LSBs during

run-time (software approach). Utilizing approximate PEs, however, is a hardware design

63

∂E(n)

∂w
ji
(n)

......

......

......

......

w(2)

w(n)

(a)

E(n)

Figure 5.1: (a) The operation of feedforward neural network. (b) The backpropagation
training algorithm computing the error sensitivity (∂E/(∂wji)).

approach. When accurate PEs are replaced by approximate PEs, we sacrifice accuracy for

power reduction.

5.1 Background

5.1.1 Feedforward Neural Network

A neural network with acyclic connection from input layer to output layer is defined as a

feedforward NN [48, 49, 50]. A feedforward NN is common structure thanks to its sim-

plicity compared to a recurrent neural network. In each layer, a neuron has multiple input

connections from some (or all) of neurons in the previous layer. These connections are

called synaptic weights which determines the functionality of a given NN. In the feedfor-

ward NN, the state of a neuron in layer k is defined as

xj(k) = ϕ(
∑
i

wji(k − 1) · xi(k − 1)), (5.1)

where xj(k) is the state of jth neuron in layer k,wji(k−1) is the synaptic weight connecting

between ith neuron in layer (k − 1) to jth neuron in layer k and ϕ(·) is the activation

function. The computation of (5.1) from input layer to output layer is called a feedforward

phase (Fig. 5.1(a)).

64

To train the feedforward NN, each synaptic weight wji is updated to minimize the error

in the output layer generally with a given desired output (supervised learning). To update

the weight, backpropagation algorithm is used that computes the sensitivity of each weight

to the output error (∂E/(∂wji)) from output layer back to input layer (Fig. 5.1(b)). Using

the error sensitivity (gradient), each weight is updated as follows:

wji(n+ 1) = wji(n)− η · ∂E(n)

∂wji(n)
, (5.2)

where η is learning rate and E(n) is the error function in layer n. According to (5.2),

synaptic weights are updated based on the gradient and the learning rate until the output

error is less than predetermined threshold.

5.1.2 Prior Work on Neural Network Hardware

Due to high parallelism in NN algorithms, there have been several works on design of

a digital NN hardware. Most of previous works are based on the field programmable gate

array (FPGA) [14, 169] and few of them discuss a system with an external memory [14]. In

feedforward NN described in (5.1), multiplication and addition are dominant mathematical

operations. Thus, the arithmetic unit is the key factor in designing low-power NN hardware.

Multilayer perceptron with 288 processing engines using FPGA is demonstrated [169].

Although it achieves high parallelism with a large number of processing engines, there

is no power-aware NN hardware design approach. Even though a full digital NN system

with 8 processing engines (FPGA) and external memory controller (ARM core) has been

implemented in [14], it also does not provide any power saving methods.

Recently, approximate computation based neuromorphic hardware design methods have

been proposed [111, 113]. The most common way to approximate computation is reducing

the precision bit-widths of operands [111]. By carefully forcing some LSBs to zero, effec-

tive power saving can be achieved with slight degradation in output quality. However, the

65

proposed algorithm in [111] identifies approximate neurons instead of synapses which may

cause error as discussed in Section 5.3. Another method to approximate NN hardware is by

implementing approximate multipliers as processing engines [113]. An approximate mul-

tiplier is designed with iterative logarithmic multiplier having computation error less than

1%. However, having only approximate PEs is limited in saving power while maintaining

the output quality as will be discussed in Section 5.3. Moreover, the prior works mainly

focused on the PEs while evaluating approximate computation, neglecting the full-chip

architecture, memory controller, and external DRAM.

5.2 Power Analysis of Processing Engines

In this section, we first analyze the power dissipation of the basic processing engine (PE),

a multiply-accumulate unit. The power consumption is critical in implementing NN hard-

ware on a mobile platform. The power consumption can be reduced by selectively pro-

gramming some LSBs to zero (software approach) [111]. Since the switching activity

significantly reduces for those bits, precision control is a popular technique used to achieve

low-power operation of digital circuits. In addition, we can further reduce power consump-

tion by replacing accurate multipliers in some PEs with approximate multipliers in design

time (hardware approach).

Accurate PE: First, we estimate the power consumption of an accurate multiplier de-

signed and synthesized in 130nm CMOS technology. Since the precision control is ef-

fective power reduction method, power consumptions at seven different bit-precisions are

simulated with input activity of 0.3 (black bar in Fig. 5.2). As shown in Fig. 5.2, reducing

the bit-width from 32bit to 8bit, the power can be saved by ∼53%. The cumulative error

distributions due to quantization at different bit-precisions are shown in Fig. 5.3(a). The

reference bit-width for the error computation is 32bit. As a notation, Q1,7,8 represents 1

sign bit, 7 integer bits and 8 fractional bits (fixed-point representation is used). The proba-

bility of quantization error increases as the reduction in bit-width increases as expected. As

66

Figure 5.2: The power dissipation of the accurate multiplier (black) and the approximate
multiplier (gray).

the bit-width reduces to 12bit or 8bit, most of errors are quite large (between 101 ∼ 102)

due to the overflow error at integer part. Depending on the power constraint, we can select

the bit-precision to be used for low-power operations.

Approximate PE: To save more power coupled with precision control, the approximate

multiplier with partial error recovery [170] is utilized for a selected NN computations. This

approximate multiplier preprocesses its inputs to let multiplicand have mostly 1’s and let

multiplier have mostly 0’s to minimize the probability of error. The power saving is ob-

tained by simplifying the adder cell for the computation of partial products. A simple error

recovery circuit to reduce approximation error is also proposed to recover predetermined

number of MSBs [170]. The approximate multiplier is also designed and synthesized using

the 130nm CMOS. The power consumptions at the same bit-precisions are also simulated

with the input activity of 0.3. As in Fig. 5.2 (gray bar), the power consumption is reduced

by 29% by using the approximate multiplier compared to that using the accurate multiplier

for 32bit precision. In 8bit case (zeros are forced at 24 LSBs), the power saving becomes

83% compared to the power consumption using the accurate multiplier. This additional

power saving can be realized by carefully selecting some NN computations as approximate

which is explained in Section 5.3.

The amount of additional error introduced by the use of approximate multiplier is ana-

lyzed when compared to the computation with all accurate multiplier at each bit-precision

67

Figure 5.3: The cumulative probability of (a) quantization error due to precision control and
(b) the additional error induced by using an approximate multiplier with error correction of
20 MSBs (x-axis is logarithmic scale).

(16bit, 12bit and 8bit) with error recovery of 20 MSBs (Fig. 5.3(b)). Since most of errors

in 20 MSBs are recovered, less than 3% of errors are larger than 10−2. The interesting

observation is that as we force zeros at some LSBs (precision control) the additional error

introduced by using approximate multiplier (over the precision control) become smaller.

This observation is favorable for aggressive power saving with an integrated approach of

precision control and approximate PE. This error distribution is used when simulating feed-

forward NN with approximate PEs involved.

5.3 Approximate Synapses Selection

5.3.1 Design Methodology

A) Approximate Synapses

The underlying idea of deciding how to approximate is utilizing the error sensitivity (∂E/(∂wji)

in (5.2)), similar to [111]. This is easy to implement since the backpropagation computes

the sensitivity factor during the training phase. We are merely using the existing values for

the approximation process. This sensitivity vector is sorted in ascending order to utilize it.

In [111], neurons are approximated by looking at the average gradient of error with re-

68

Figure 5.4: Diagram illustrating the advantage of approximating synapses over approxi-
mating neurons on a given trained feedforward NN.

spect to weights connected to a neuron. However, due to the averaging effect, some weight

connections (synapses) that have large impact on output may be undesirably approximated.

This is explained with a simple diagram having two neurons in Fig. 5.4. For a given trained

NN, error sensitivity of each synapse is precomputed with a training data. These values are

then averaged for each neuron; neuron A has average error sensitivity of 0.9 while neuron

B has 0.93. Then, synapses connected to neuron A will set as approximate and use reduced

bit-precisions. The problem here is that it ignores the synaptic weight 3.0 in A which is the

largest among all synapses of two neurons. The proposed algorithm identifies approximate

synapses instead of neurons. Using the identical example (Fig. 5.4), the same number of

synapses are approximated in ascending order from the lowest synaptic weight, 0.1. As

expected, synapses with low error sensitivity are selected. This fine-grained scheme is

effective in reducing power consumption of the digital feedforward NN hardware.

B) Approximation by Precision Control

As a test application, a well-known hand-written digit recognition, MNIST, is selected us-

ing 28-by-28 sized input images (784 input neurons) [171]. To avoid simulation results

from an overfitted feedforward NN, five different NN topologies are simulated with vari-

able number of hidden layers and neurons in each layer. By comparing the correspond-

69

ing recognition accuracy of each NN, feedforward NN with two hidden layers is selected.

There are 144 neurons (12-by-12) in hidden layer 1 and 64 neurons (8-by-8) in hidden layer

2. Since MNIST classifies 10 different single digits, the number of output neurons is 10.

The objective of approximating synapses (for now, reducing bit-precision) is to lower

power consumption of PEs. Using the power estimates from hardware simulation in Sec-

tion 5.2, it is possible to obtain the ratio of the number of approximate synapses to all

synapses (N) to achieve a given power constraint. In general, we can have mprec bit-

precisions available, then total power consumption (Ptot) of PEs become

(N −
mprec−1∑
k=1

nk) · Pmprec +

mprec−1∑
k=1

(nk · Pk), (5.3)

where Pk is the power consumption of a PE at kth bit-precision (Pmprec is power at 32bit).

However, since there are too many possible solution sets with a single equation, it is im-

possible to decide the best solution that satisfies the power constraint while achieving good

output quality.

To simplify the analysis, we first consider there are two possible bit-precisions: 32bit

(full precision) and 12bit (reduced precision). Operating PEs at each bit-precision results

in P32bit and P12bit accordingly. The target power (average power constraint of PEs) is

denoted as Ptarget. Then, the ratio r12bit = n12bit/N has to satisfy

(N − n12bit) · P32bit + n12bit · P12bit ≤ N · Ptarget

r12bit =
n12bit

N
≤ (

Ptarget − P32bit

P12bit − P32bit

).
(5.4)

In the first equation of 5.4, the right-hand side represents the total power constraint in

computations involving all N synapses. The left-hand side divides the power consumption

to accurate (32bit) and approximate synapse computation (12bit). Thus, r12bit has to be set

satisfying the second equation in (5.4).

Likewise, the percentage of approximate synapses to satisfy different power constraints

70

0% 26% 39% 53%
79%

92%

66%

13%

Figure 5.5: Recognition rate from MNIST dataset when approximation of synapses (only
precision control) is allowed to meet a set of given power constraints. The percentage of
approximate synapses to meet each power constraint is provided in the plot as well. The
analysis assumes only two precision levels.

is computed (indicated in Fig. 5.5). After sorting the absolute value of error sensitivity (also

called gradient) in ascending order, we simply select r12bit of synapses from the sorted

list to meet a given power constraint. The recognition rate of MNIST at a given power

saving percentage (compared to the power consumption with full precision; 32bit) is ob-

tained. As observed in Fig. 5.5, the recognition accuracy begin to fall when power saving

exceeds 20%. This means that approximating 40∼50% of synapses can be considered ac-

ceptable but approximating beyond that in MNIST application is not recommended since

it sharply degrades recognition accuracy. These approximate synapses are, so far, realized

by programming reduced bit-precisions (software approach) achieving some level of power

savings (Fig. 5.5).

C) Power Saving Using Approximate Multiplier

In the previous subsections, how to set approximate synapses was explained by utilizing

the error sensitivity obtained during the backpropagation algorithm. If the feedforward NN

hardware needs to be employed in more power constrained platforms, we can replace some

PEs with approximate PEs in design time (hardware approach). As shown in Fig. 5.2, an

approximate PE reduces power by 51% on average over various bit-precisions compared

to an accurate PE. This additional power saving would be very attractive only if utilizing

71

approximate hardware on the feedforward NN platform does not degrade quality much.

Fortunately, when the bit-precision is reduced, the additional errors introduced by ap-

proximate PEs become non-observable (Fig. 5.3(b)). This is because some LSBs are forced

to zeros by precision control and the approximate PE does not produce any error at bits that

are zeros. This is favorable as explained when approximate PE operation is coupled with

reduced precision. However, the number of approximate PEs is predetermined in design

time. Then, some computations involving accurate synapses may be fed into approximate

PEs. The optimal number of approximate PEs cannot be determined in advance since the

ratio of approximate synapses is different depending on the application that the NN hard-

ware is running.

As mentioned earlier, depending on a given Ptarget, some synapses, which are not set as

approximate, need to be fed into approximate PEs to ensure full parallelism. The following

condition needs to be satisfied to meet Ptarget in general with multiple bit-precisions nprec:

Ptarget ≥
m−1∑
k=1

rk · Papp(k) +

nprec∑
k=m+1

rk · Pacc(k)

+min(1− γ, 1− x) · Pacc(nprec)

+max(x− γ, 0) · Pacc(m)

+max(γ − x, 0) · Papp(nprec)

+min(x, γ) · Papp(m),

(5.5)

where rk is the ratio of kth bit-precision among all, x =
∑m

k=1 rk represents the ratio of

bit-precisions that entirely/partially fed into approximate PEs, γ is the ratio of approximate

PEs to all PEs (0.4 in the example) and Pacc(k) (Papp(k)) is the power consumption of an

accurate (approximate) PE operating at kth bit-precision. Note that γ is predetermined

when designing the NN hardware with approximate PEs and x is the value to be determined

depending on Ptarget. Similar to the case in Section 5.3.1, various design choices make it

impossible to decide one solution from (5.5).

72

(a) (b)

Figure 5.6: MNIST recognition rate with accurate (100% accurate) and approximate (40%
approximate, 60% accuarte) PEs (a) at different rates of approximate synapses and (b) at
different power constraints.

For simple understanding, it is assumed there are two different precisions (32bit and

12bit). It is also assumed that the proposed feedforward NN hardware consists of 40%

of approximate PEs and 60% of accurate PEs. To compare the accuracy with 40% ap-

proximate PEs (60% accurate PEs) to that with 100% accurate PEs, r12bit is varied to have

the same number of approximate synapses. The resulting recognition rate is shown in

Fig. 5.6(a). There is little accuracy degradation by using 40% approximate PEs compared

to the accuracy having 100% accurate PEs in the system until when 77% of synapses are

approximated. Note that it consumes less power with 40% approximate PEs when the num-

ber of approximate synapses is same (Fig. 5.6(b)). This means that with approximate PEs

we can save more power by approximating the same number of synapses.

5.3.2 Greedy Algorithm for Low-Power Design

To find the minimum power at a given quality constraint when various bit-precisions are

available, a fine-grained greedy algorithm is proposed that iteratively selects the lower

power consuming bit-precision at a time until it satisfies the target quality. This greedy

algorithm is described in Algorithm 1 and illustrated in Fig. 5.7(a). As proposed in Sec-

tion 5.3.1, the precomputed error sensitivity (Grad) is utilized by sorting the list from low

to high (this is important to maximize the output quality while saving significant power).

73

∂E

∂w
ji

r1

rm

rn

..
..
..

a
p

p
rx

.
a

c
c
u

ra
te

a
u

to
tu

n
e

 p
re

c
. ra

tio
 r
k

..
.

Figure 5.7: (a) Overview of the proposed greedy algorithm with γ = 0.4. (b) Experi-
mental result on quality-aware low-power design methodology. This method dynamically
selects (solid line) precision bit-widths which increase accuracy with less power increase.
(c) Recognition rate comparison between two, three, and four different bit-precisions at
varying power constraints.

Briefly, the algorithm starts from the least quality with the lowest possible power and in-

crease bit-precision in a way that results in less increase in power consumption (Fig. 5.7(b)).

First, we initialize the precision ratio set (Rprec) so that the NN hardware has the min-

imum precisions (all 8bits); equivalently the minimum power. Rprec = {1.0, 0.0, , 0.0}

means that the system has only 8bit precisions for all NN computations. Then, initial feed-

forward phase using Rprec is performed to compute the current quality and power estimates

on testing dataset (Dtest). Pest is a set of power estimates of both accurate and approximate

PE obtained by hardware simulation as in Section 5.2. After the initialization, the algorithm

iterates until the target quality is met. At each iteration, two different bit-precision ratio sets

(Rtrial1, Rtrial2) are generated. Using these two trial sets, corresponding quality and power

estimates are computed by performing feedforward phase. After a feedforward phase, each

score value is computed (the weighted sum of normalized quality increase and the nega-

tive of normalized power increase). By comparing two scores, the algorithm selects the

bit-precision ratio with better score. When it meets the target quality, the power consump-

tion with output precision set is obtained. After Rprec is decided, we identify synapses in

ordered Grad whether to fed into accurate or approximate PE by adding one dirty bit to

indicate this.

74

Algorithm 1 Power-aware feedforward NN design methodology
Input:

Grad: Computed error sensitivity
Pest: Estimated power
γ: Ratio of approximate PEs
Qconst: Quality constraint
Dtest: Test dataset

Output:
Pmin: Minimum power
Rprec: Precision ratio set

1: Begin
2: Initialize Rprec ← {1.0, 0.0, ..., 0.0}
3: [Q,P]← apprx feedforward(γ,Rprec,Dtest,Pest)
4: while Q < Qconst do
5: [Rtrial1,Rtrial2]← generate nextRprec(Rprec)
6: [Qtrial1, Ptrial1]← apprx feedforward(γ,Rtrial1,Dtest,Pest)
7: [Qtrial2, Ptrial2]← apprx feedforward(γ,Rtrial2,Dtest,Pest)
8: Score1← compute score(Qtrial1, Ptrial1, Q, P)
9: Score2← compute score(Qtrial2, Ptrial2, Q, P)

10: if Score1 > Score2 then
11: [Rprec, Q, P]← update(Rtrial1, Qtrial1, Ptrial1)
12: else
13: [Rprec, Q, P]← update(Rtrial2, Qtrial2, Ptrial2)
14: end if
15: end while
16: Pmin ← P
17: return Pmin,Rprec

18: End

75

The overall transient process of Algorithm 1 is shown in Fig. 5.7(b). Here, three differ-

ent bit-precisions are used; 32bit, 16bit and 8bit with a quality constraint of 0.9 for MNIST

application. Also, 40% of PEs are replaced by approximate PEs. The number of bit preci-

sions can be larger than this for finer grained search. As a result, 0.9017 recognition rate is

achieved with 56% power saving compared to the result with all 32bit computation using

100% accurate PEs (0.9053 recognition rate is achieved).

In addition, the results of the proposed algorithm with two (12 and 32bit), three (8, 16

and 32bit) and four (8, 12, 16 and 32bit) bit-precisions are compared in Fig. 5.7(c). For two

bit-precisions, equation (5.5) is used to compute the percentage of synapses (r12bit) to be

precision controlled. Using the proposed greedy algorithm, the precision ratio sets for three

and four bit-precision cases are obtained. Going from two to three bit-precisions increases

the accuracy significantly with the same power saving; however, improvement is marginal

from three to four bit-precisions, and saturates beyond that.

In Fig. 5.8, the efficiency of the proposed algorithm is shown by comparing the resulting

accuracy and the amount of power saving with only precision control (software approach),

approximate neurons with only precision control ([111] with 3-level bit-precision) or only

approximate PEs (hardware approach). For the software approach, 50% of synapses are

computed with 16bit and the rest with 8bit (obtained by the proposed algorithm with 100%

accurate PEs). For [111], 62.5% of neurons are selected as approximate and precision is

reduced to 16bit (the rest with 32bit) by using their algorithm. For the hardware approach,

100% approximate PEs are used for the computation. The proposed greedy algorithm

effectively reduces power consumption (56%) with negligible quality degradation with a

given digital feedforward NN hardware.

5.4 Full System Power Analysis

The full system of digital feedforward NN is implemented in 130nm CMOS based on the

system architecture shown in Fig. 5.9. The external DRAM we assumed is 8-channel 3-D

76

Software

Approach

Hardware

Approach

Proposed

Algorithm [111]

Figure 5.8: Comparison of the proposed algorithm to just doing software (reduced bit-
precisions) or hardware (approximate PEs) approach. Proposed approach couples both
reduced bit-preciosn and approximate PE.

wide I/O with 2KB page size using 64bit bus width. The number of PEs and SRAMs are

obtained so as to guarantee the full utilization of PEs with a given memory specification.

The 192 PEs are synthesized to operate at 50MHz while 24 SRAMs (4KB each) connected

to PEs operate at 400MHz in 1.2V. One of the most important parts in the system is the

memory controller, which delivers the data from cache to PE or from DRAM to cache

based on the network topology. We should note that all data sequences from memory is

pre-determined; therefore PEs do not have to request data to memory, but data is delivered

from memory to PEs in order. In addition, memory address is not random, but is organized

thus data will be fetched from memory row by row (implemented by a simple counter).

Approximate H/W controller is placed to identify computations that should go into the

approximate PEs. One dirty bit is used for the decision.

The full system of digital feedforward NN is implemented in 130nm CMOS based on

the system architecture shown in Fig. 5.9. The external DRAM we assumed is 8-channel 3-

D wide I/O with 2KB page size using 64bit bus width. The number of PEs and SRAMs are

obtained so as to guarantee the full utilization of PEs with a given memory specification.

The 192 PEs are synthesized to operate at 50MHz while 24 SRAMs (4KB each) connected

to PEs operate at 400MHz in 1.2V. One of the most important parts in the system is the

memory controller, which delivers the data from cache to PE or from DRAM to cache

77

Figure 5.9: A system diagram: (a) a processing engine (PE), (b) the overall NN system
including PEs, caches and controllers and (c) the layout of the components connected to
each channel; 3 SRAMs and 24 PEs (40% approximate and 60% accurate) with required
controllers.

based on the network topology. We should note that all data sequences from memory is

pre-determined; therefore PEs do not have to request data to memory, but data is delivered

from memory to PEs in order. In addition, memory address is not random, but is organized

thus data will be fetched from memory row by row (implemented by a simple counter).

Approximate H/W controller is placed to identify computations that should go into the

approximate PEs. One dirty bit is used for the decision.

The systems are compared in terms of total power, area and output quality between

the system with 100% accurate PEs at full precision (system1: completely accurate), the

one with 100% accurate PEs with 50% of 16bit computation and the rest with 8bit (sys-

tem2; software approach), the one with 100% approximate PEs at full precision (system3;

hardware approach) and the one with 40% approximate PEs (60% accurate PEs) with bit-

precisions obtained by Algorithm 1 (proposed). The overhead of dealing with dirty bits

is negligible since the power and area of DRAM and SRAM controller is dominant. The

power, area and accuracy analysis between four different systems are summarized in Ta-

ble 5.1. The power consumption of PEs in the proposed system is 1.05W while that of

other components is same. The PE power is reduced by 57% compared to the system 1.

However, due to the noticeable SRAM power, the system power is reduced by 38% com-

78

Ta
bl

e
5.

1:
T

he
sy

st
em

an
al

ys
is

in
te

rm
s

of
po

w
er

,a
re

a,
an

d
re

co
gn

iti
on

ac
cu

ra
cy

Po
w

er
(W

)
A

re
a

(m
m

2
)

R
ec

og
ni

tio
n

R
at

e
sy

st
em

1
sy

st
em

2
sy

st
em

3
pr

op
os

ed
sy

st
em

1
sy

st
em

2
sy

st
em

3
pr

op
os

ed
PE

s
2.

47
1.

94
1.

76
1.

05
6.

49
6.

49
5.

72
6.

18
sy

st
em

1
0.

90
5

(r
ef

)
SR

A
M

s
1.

29
1.

29
1.

29
1.

29
7.

20
7.

20
7.

20
7.

20
sy

st
em

2
0.

90
2

(-
0.

3%
)

C
on

tr
ol

le
rs

0.
02

4
0.

02
4

0.
02

4
0.

02
4

0.
58

0.
58

0.
58

0.
58

sy
st

em
3

0.
83

2
(-

7.
3%

)
To

ta
l

3.
78

(r
ef

)
3.

26
(-

14
%

)
3.

07
(-

19
%

)
2.

36
(-

38
%

)
14

.2
7

14
.2

7
13

.5
0

13
.9

6
pr

op
os

ed
0.

90
2

(-
0.

3%
)

sy
st

em
1:

10
0%

ac
cu

ra
te

PE
s

at
fu

ll
pr

ec
is

io
n,

sy
st

em
2:

10
0%

ac
cu

ra
te

PE
s

w
ith

50
%

of
16

bi
tc

om
pu

ta
tio

n
an

d
th

e
re

st
w

ith
8b

it,
sy

st
em

3:
10

0%
ap

pr
ox

im
at

e
PE

s
at

fu
ll

pr
ec

is
io

n,
pr

op
os

ed
:4

0%
ap

pr
ox

im
at

e
PE

s
an

d
60

%
ac

cu
ra

te
PE

s
w

ith
60

%
of

16
bi

tc
om

pu
ta

tio
n

an
d

th
e

re
st

w
ith

8b
it.

79

pared to system1. This amount of power saving is achieved by sacrificing only 0.4% of

recognition accuracy.

5.5 Summary of the Chapter

This chapter presents a design method for a low-power digital feedforward neural net-

work platform using approximate computing. The proposed approach identifies approxi-

mate synapses using the error sensitivity vector precomputed during the training phase of

a feedforward NNs. The computation energy of approximate synapses are reduced using

a coupled software (precision control) and hardware (approximate PEs) based approxima-

tion schemes. A greedy algorithm is presented to select the optimal bit-precisions of the

synapses. The integrated approach helps reduce the full-chip power of a digital NN en-

gine (processing engines, on-chip caches, and controller) integrated with a 3-D Wide I/O

DRAM by 38% with little (0.4%) quality degradation compared to an accurate design. In

summary, the proposed coupled software-hardware based approximate computing can help

design low-power digital NN for learning static nonlinear systems in future SoCs.

80

CHAPTER 6

ENERGY-EFFICIENT LEARNING OF DYNAMIC NONLINEAR SYSTEMS

In Chapter 5, a low-power design method for feedforward neural network hardware is pre-

sented. Recently, deep learning architecture such as AlexNet [49] or GoogLeNet [172]

have been widely used for complex problems like image classification and object recog-

nition. However, deep learning architectures based on feedforward neural networks are

not suitable for applications with sequential data processing. A recurrent neural network

(RNN), illustrated in Figure 6.1, is capable of dealing with systems having temporal be-

haviors with external input sequences. Consequently, RNN has ability to memorize the

history of past inputs or states and is useful for applications that require the notion of time,

for example, language modeling [84], medical diagnosis [173], human activity recogni-

tion [174] and mapping finite state machines [83], to name a few. RNN is a more general

NN compared to the deep learning networks, and has great potential due to its ability to

approximate nonlinear dynamical systems. The research on algorithm and application of

RNN is rapidly progressing [175, 176], but there is relatively little effort in energy-efficient

RNN hardware.

This chapter presents the concept of feedback-controlled dynamic approximation for

energy-accuracy trade-off in RNN. The approximate computing using reduced bit-precision

and/or in-exact arithmetic have been investigated to enable energy-accuracy trade-off in

hardware accelerators for feedforward NNs [111, 112]. However, approximate computa-

tion for digital RNN is currently unexplored. The main challenge for approximation in

RNN is that, unlike feedforward NNs that operate on stationary inputs, an RNN operates

on input sequences. Some parts of a given sequence may allow approximation while some

parts may require precise computation. The recurrent connectivity in RNN can also lead

to propagation of error over time. Hence, on-line, real-time, and dynamic control of the

81

u
1

u
2

u
3

y
1

(a)

h
1

h
2

h(t-1)

y(t-1) y(t)

... ...

u(t-1) u(t)

h(t)

(b)

u=[u
1
,u
2
,u
3
]T
h=[h

1
,h
2
]T

y=[y
1
]

W
hh

W
hu

W
yh

W
hu

W
yh

W
hh

Figure 6.1: Overview of RNN: (a) RNN with one hidden layer where recurrent connections
(Whh) are established between hidden neurons. (b) The same topology unfolded in time.

approximation is required in RNN and is presented in this chapter.

6.1 Preliminaries

6.1.1 Recurrent Neural Network

Recurrent neural network (RNN) is the network where states of hidden neurons (the neu-

rons in a hidden layer) evolve over time. A RNN is designed by additional recurrent con-

nections (forming any cycles in the network) in a feedforward neural network, such as

multilayer perceptron [51]. There are various types of RNNs depending on where recur-

rent connections are established. The following dynamics define the standard RNN where

recurrent connections are formed from outputs of neurons in a hidden layer to their inputs

(Figure 6.1(a)).

h(t) = Whh · (h(t− 1)) + Whu · u(t) + bh

y(t) = Wyh · σ(h(t)) + by

(6.1)

where u(t), h(t), y(t) are inputs, states of hidden neurons and outputs at time t, respec-

tively; Whu, Whh, Wyh represent the weight matrices; and bh, by are the biases. Acti-

vation function of a neuron in the hidden layer is denoted as σ(·); mostly, a sigmoid type

function. Owing to the recurrence in the network, RNN is capable of approximating any

dynamic nonlinear functions [74].

The operation of RNN can be easily understood by unfolding the recurrent connections

82

in time (Figure 6.1(b)). By running RNN, we can predict an output vector sequence, y =

[y(0),y(1), ...,y(T)] for discrete-time case, with given an input vector sequence, u =

[u(0),u(1), ...,u(T)] where u(k) ∈ <nin and y(k) ∈ <nout. The goal is to minimize

(total) prediction error

Etot =
∑
k

E(k) =
∑
k

‖y(k)− y∗(k)‖2/2 (6.2)

where y∗ is the target output in supervised learning. The error function Etot can be differ-

ent depending on applications. Thus, the proper training of RNN has to be performed to

minimize the prediction error during the inference.

6.1.2 Training of Recurrent Neural Network

Training RNN is more complex than training feedforward NN due to its ability to learn

temporal information. The backpropagation through time (BPTT) [177] is a well-known

training algorithm that extends the (standard) backpropagation algorithm by unfolding the

temporal behavior of the RNN to form a layered feedforward NN. The objective of BPTT

is to minimize the total error Etot in (6.2) by changing weight matrices for each training

epoch. In RNN training, an epoch is one input vector sequence u. Each weight update is

given by

∆wji = −η∂Etot
∂wji

(6.3)

where wji is a connection weight from node i to j and η is the learning rate. The number of

layers of constructed multilayer feedforward NN linearly increases by an additional time

step involved in the training. Thus, the memory space required for BPTT increases as the

length of a training sequence increases, making this method mostly suitable for off-line

training of RNN.

For on-line training, real-time recurrent learning (RTRL) can be performed which up-

dates the synaptic weights while operating the network [75]. To train RNN in real-time,

83

RTRL tries to minimize the instantaneous error (k) in (6.2). The RTRL approximates the

gradient of total error with respect to weight changes by an instantaneous estimate of the

gradient:

∆wji,k = −η ∂Ek
∂wji

(6.4)

where k is the current time step. The computational complexity of RTRL is high since

weight update is required at every time steps.

6.1.3 Approximate Feedforward Neural Network

The recent studies have developed low-power feedforward NNs using approximate com-

puting [111], [Chapter 5]. The error sensitivity of each synaptic weight (∂E/∂wji) is com-

puted during conventional backpropagation training of a feedforward NN. This information

is utilized for the practice of approximate computing (e.g. precision control) in inference

stage. As an early work regarding this topic, Venkataramani et al. minimized power by

reducing bit-precisions for those neurons with lower average error sensitivity (approximate

neuron) [111]. A layer with the most power consumption is selected and neurons in that

layer are iteratively selected for approximation. This approach can limit the power reduc-

tion under a quality constraint as a neuron may have a few strong connections but low

average error sensitivity, selecting such a neuron for approximation may limit quality.

Even better, approximate synapse is presented in Chapter 5 which is a fine-grained

approach to identify synaptic weights (edges) instead of neurons in the network (see Fig-

ure 6.2). This approach sorts entire error sensitivities and assign lower bit-precisions from

a fixed bit-precision set (e.g. [24bit, 16bit, 8bit]) to synaptic connections with lower error

sensitivities. A greedy algorithm is presented that starts with the least possible bit-precision

(e.g. 100% 8bit operation) and iteratively increases the ratio of higher bit-precisions until

the inference of validation set reaches a given quality constraint.

84

=
∂E

∂W
hu

∂E

∂W
yh,

Figure 6.2: Overview of approximate synapse for low-power operation of digital neuro-
morphic hardware. Here, precSet represents the fixed bit-precision set and rPrec is the
ratio of each bit-precision.

6.1.4 Sequence Classification Using RNN

Figure 6.3 illustrates the video classification (or any sequence classification) using RNN.

First, an input data sequence is fed into a local feature extractor. This local feature extractor

can be any type of pre-processors to identify important local features (or raw input data

can be used directly). The features at each time step are passed through RNN algorithm

to compute output sequences. The number of output neurons in RNN is identical to the

number of video activities to classify. Each output neuron corresponds to each activity.

By looking at each output vector, the maximum index at each time step k is computed (by

Max index identifier). Finally, the video activity is decided by selecting the one with the

largest probability in the maximum index set for a pre-defined time length L (in Classifier).

This time length L is named as decision window. This process is continued until the input

sequence ends (until T in Figure 6.3).

85

...

u
1

u
2

u
nu

y
1h

1

h
nh

...

... y
ny

...... ...

...

...

RNN

... ...

Figure 6.3: Block diagrams of video classification using RNN. Local feature extractor is
used to recognize important local features to obtain an input sequence for RNN. Then,
RNN outputs a sequence which can be post-processed to decide which activity a subject in
the video is performing.

6.2 Approximate Computing in RNN

6.2.1 Static Approximation in RNN

The method of approximate synapse for RNN is adopted as the static approximation. Ap-

proximate synapse algorithm (or approximate neuron) has been presented with feedforward

NN. However, there is little effort on the application of approximate computing in RNN

which naturally propagates error through time. For this reason, static approximation in

RNN is evaluated as well as dynamic approximation which will be presented in the next

subsection. Our approach can also utilize approximate neuron, however, for brevity only

approximate synapse is considered.

When BPTT training algorithm is used, the only difference between the feedforward

NN and RNN is an additional weight matrix Whh. Thus, the approximate synapse al-

gorithm can be directly applied to RNN for computing rPrec (refer to this as static ap-

proximation). During BPTT training algorithm, the following error sensitivity vectors are

computed: ∂Etot/∂Whu, ∂Etot/∂Whh, ∂Etot/∂Wyh. Then, static approximation algo-

rithm sorts entire error sensitivities in ascending order to assign bit-precisions from low to

high. As a result, it outputs rPrec, e.g. [0.1, 0.3, 0.6] when three possible bit-precisions are

86

available.

Note the power reduction using the static approximation is limited by the choice of

the input bit-precision set, e.g. [24bit, 16bit, 8bit]. The minimum required bit-precision

for reasonable accuracy at the lowest power dissipation is difficult to determine a-priori

and will depend on applications. Also, the feedforward NN takes stationary inputs, not a

sequence. However, RNN deals with input sequences, there may be parts of the sequence

that is difficult to classify with lower precision while other parts may be fairly easy. Hence,

there is a need to dynamically modulate the level of approximation of each synapse over

time for better power management in digital RNN.

6.2.2 Dynamic Approximation in RNN

The dynamic approximation algorithm is proposed for the energy-efficient operation of dig-

ital RNN for sequence classification problems. It utilizes the static approximation as a basis

to determine the bit-precision ratios (rPrec) and dynamically changes the bit-precision set

(precSet). The proposed feedback control system is not limited to precision control but can

be applied to any approximate computing methods, such as imprecise hardware or voltage

over-scaling. The rPrec is kept constant for entire RNN computations during the operation

of dynamic approximation. However, precSet is adaptively changed which deviates from

static approximation (Figure 6.4).

The limitation is that static approximation uses the pre-determined bit-precision set.

This set cannot be changed when each input is equally important as in the feedforward NN.

In RNN, there may be input sequences which are easy to detect the corresponding activity

even with very low bit-precisions. On the other hand, some input sequences will make

RNN to have less confidence in decision of which class (or activity) the given sequence

falls in. In this scenario, reducing bit-precision may lead to decision error (accuracy degra-

dation). Therefore, adapting precSet by looking at the current decision confidence will

allow better power management in RNN. This confidence level can be checked by looking

87

RNN

Apprx. synapse

algorithm

Feedback

controller

Max index

identifier
Classifier

Static

approx.

Dynamic

approx.

Figure 6.4: The proposed approximation algorithm for RNN in video (or sequence) classi-
fication.

at the actual counting value, equivalently a probability mass function (PMF), of the current

decision index in decision window. This is compared to pre-determined Threshold. Then,

the feedback controller changes precSet according to the relation between confidence level

and Threshold. For instance, when the confidence is higher than the Threshold, precSet

can be reduced to precSet∗ = [18bit, 10bit, 6bit] instead of using [24bit, 16bit, 8bit] (see

Figure 6.4). The entire process of the dynamic approximation algorithm is also described

in Algorithm 2. This entire process can be performed in software level. However, when the

sequence that we are dealing with has faster sampling rate (such as speech), the feedback

control has to be fast enough to compute next precSet (precSet∗) in time.

6.2.3 Feedback Controller in Digital RNN

For analysis, two different feedback controllers are designed and compared: 1) hysteretic

controller and 2) proportional controller. A digital RNN with the feedback controller

is shown in Figure 6.5. The dynamic precision control is done sequence by sequence

(discrete-time control). A hysteretic controller has two thresholds (upper and lower). The

operation is quite simple: if confidence level exceeds upper threshold, bit-precisions in

precSet are decreased by one. Likewise, if the confidence level is less than lower threshold,

88

Algorithm 2 Dynamic Approximation in RNN
Input:

grad: error sensitivity
Whu,Whh,Wyh: weight matrices
Qtarget: target quality
Dvalid,Dtest: datasets
precSet: initial bit-precision set
Threshold: reference threshold for feedback controller

Output:
recog: recognition accuracy

1: Begin
2: rPrec← static approximation(Qtarget, grad ,Dvalid, precSet)
3: for i in |Dtest| do
4: initialize maxCntArray to [0, 0, ..., 0]
5: initialize decWindow
6: while ith Dtest sequence ends do
7: RNNOUT ← RNN(ith Dtest sequence,W, rPrec, precSet)
8: max idx← max index identifier(RNNOUT)
9: decWindow← update window(max idx, decWindow)

10: [Confidence, decision idx]← classifier(decWindow)
11: precSet← feedback control(Confidence, Threshold, precSet,
12: prev decision, decision idx)
13: set prev decision to decision idx
14: maxCntArray[decision idx] increase by 1
15: end while
16: recog← update recognition accuracy(maxCntArray)
17: end for
18: return recog
19: End

89

6-bit magnitude
comparator

(LSB) (MSB) (LSB) (MSB)

A
5

A
0

B
5

B
0

6-bit magnitude
comparator

(LSB) (MSB)

......

Confidence
(A)

......

Upper
threshold

(B0)

(LSB) (MSB)

A
5

A
0

B
5

B
0

A�B

A B

......

Confidence
(A)

......

Lower
threshold

(B1)

M
U

X

A!B

0

-1

1
precSet

Limiting
unit

precSet*

Confidence

-Threshold

"bit

A<B

"bit "bit

Hysteretic

controller
Proportional

controller

Feedback

controller

Apprx.

synapse

generator rPrec

Digital

RNN
u y

RNN w/ dynamic approximation

Figure 6.5: The proposed feedback controllers to implement dynamic approximation for
RNN in hardware.

bit-precisions in precSet are increased by one. When the confidence of classifiers output is

between upper and lower threshold, precSet is kept as it is.

Another possible controller is a proportional controller. Hysteretic controller has a

drawback when the confidence level bounces back and forth near upper (or lower) thresh-

old which may lead to increase in switching power. The proportional controller changes

precSet depending on difference between a given threshold and confidence level. The num-

ber of bits to be changed in the precSet is defined as follows:

diff = Threshold− Confidence,

∆bits = bα · diff + 0.5c
(6.5)

where α is the proportional factor and ∆bits is the number of bits to be increased or de-

creased in precSet. The α is set to 8 for following experiments (making it power of 2

simplifies hardware by using a shifter). Due to the proportionality, the controller does not

change the precSet when it reaches near the threshold.

As common for both controllers, precSet bounces back to the pre-defined (reasonably

high) bit-precision set if the current decision differs from the previous decision. The change

90

of decision may be caused by approximation error (due to the reduced bit-precision) or

different activities detected (which is important to track with high precision). Also, there

are upper and lower limits where bit-precision can reach. The upper limit may be set by

hardware design specification (the maximum bit-width in hardware). The lower limit is set

to keep the accuracy above a certain level.

6.3 Simulation Results

6.3.1 Benchmark: Human Activity Recognition

To verify the proposed method, benchmarks are briefly introduced in this subsection. To

validate the effect of dynamic approximation in RNN hardware, datasets related to human

activity recognition are selected as benchmarks [178, 179, 180]. KTH dataset contains 6

different human actions performed by 25 subjects in four different scenarios recorded by

a camera [178]. Another dataset used in the experiment is UCFG dataset which consists

of 10 different actions performed by 12 subjects in four different directions (this dataset

is recorded by the ground camera) [179]. The last dataset is USC-HAD in which the data

is captured by using wearable sensors (3-axis accelerometer and gyroscope) [180]. It con-

tains 12 different daily human activities captured from 14 subjects with 5 trials. Each

dataset is divided into three sets: training, validation and inference sets as summarized in

Table 6.1. In the simulation, space-time interest points (STIP [181]) is utilized as a local

feature extractor for KTH and UCFG datasets. Since USC-HAD dataset is already mea-

sured by wearable sensors, raw data are directly used as local features. Sampling rates

are also noted in Table 6.1. Since video sampling rate is low, both software and hardware

approaches are possible for the dynamic approximation.

6.3.2 Operation of Dynamic Approximation

To simulate RNN with dynamic approximation (Figure 6.4), a recurrent neural network

with each feedback controller is implemented using Theano library [182]. The hidden

91

Table 6.1: The classification of each dataset into training, validation and inference sets
Benchmark Category Subject Index

KTH
(25fps)

Training 11,12,14,15,16,17,18,25
Validation 1,4,19,20,21,23,24
Inference 2,3,5,6,7,8,9,10,22

UCFG
(60fps)

Training 1,2,3,4
Validation 5,6,7
Inference 8,9,10,11,12

USC-HAD
(100Hz)

Training 6,9,10,11,12
Validation 1,3,5,14
Inference 2,4,7,8,13

neurons are fully connected with each other. With the training set in Table 6.1, a RNN

is trained for each dataset using BPTT training algorithm. The resulting synaptic weight

matrices and error sensitivities are used in the experiment. The operations of the proposed

RNN with feedback control are shown in Figure 6.6. In this example, a handclapping (a-

d) and a boxing (e-f) video are used where each has 200 input sequences. The decision

window L is set to 50. A subject is performing each activity and the objective of RNN is to

correctly classify the video.

Figure 6.6(a) and (b) show the operation of a hysteretic controller. The upper threshold

is set to 0.7 and lower threshold is set to 0.5. Since the maximum confidence level at initial

video frames (identify as boxing) exceeds the upper threshold, precSet[0] and precSet[1]

are reduced by one at each sequence which are 24bit and 16bit initially. The minimum

bit-precision (8bit) is not controlled in this example. As the confidence level stays between

upper and lower thresholds, bit-precisions are kept as it is. At around sequence 35, the

activity with the maximum confidence level changes from boxing to handwaving, thus the

precSet sharply increases to the pre-defined bit-precisions. The bit-precision continues to

change depending on the confidence level.

The same video set is used to show how proportional controller modifies precSet [Fig-

ure 6.6(c) and (d)]. Initially, as in the hysteretic controller, precSet decreases due to high

confidence level. The difference is that precSet reaches the minimum set faster than hys-

92

H
a
n
d
cl
a
p
p
in
g

H
a
n
d
w
a
v
in
g

B
o
x
in
g

(c
)

(d
)

(b
)

(a
)

H
a
n
d
cl
a
p
p
in
g

H
a
n
d
w
a
v
in
g

B
o
x
in
g

(e
)

H
a
n
d
w
a
v
in
gB
o
x
in
g

(f
)

H
a
n
d
w
a
v
in
gB
o
x
in
g

Fi
gu

re
6.

6:
T

he
op

er
at

io
n

of
th

e
dy

na
m

ic
ap

pr
ox

im
at

io
n

to
ad

ap
tiv

el
y

ch
an

ge
bi

t-
pr

ec
is

io
ns

of
sy

na
ps

es
.

(a
)

C
on

fid
en

ce
le

ve
lo

f
ea

ch
ac

tiv
ity

an
d

(b
)t

he
re

su
lti

ng
pr

ec
Se

tb
y

us
in

g
hy

st
er

et
ic

co
nt

ro
lle

r.
(c

)C
on

fid
en

ce
le

ve
lo

fe
ac

h
ac

tiv
ity

an
d

(d
)t

he
re

su
lti

ng
pr

ec
Se

tb
y

us
in

g
pr

op
or

tio
na

lc
on

tr
ol

le
r(

ha
nd

cl
ap

pi
ng

).
(e

-f
)T

he
sa

m
e

se
to

fe
xp

er
im

en
tf

or
di

ff
er

en
th

um
an

ac
tiv

ity
(b

ox
in

g)
.

93

teretic controller. This comes from the proportionality as in (6.5). It is also true when

bit-precisions are required to be increased. Since hysteretic controller does not change bit-

precision within the threshold band, the confidence level can go below the lower threshold.

However, proportional controller keeps the confidence level near threshold quite well (Fig-

ure 6.6(c)). The same experiments on boxing activity shows that the feedback controller

keeps bit-precision set at the lower limit when the input sequence is quite easy to classify

which shows why the dynamic approximation is beneficial [6.6(e) and (f)].

6.3.3 Digital RNN with Dynamic Approximation

This subsection presents the design of the digital RNN engine with a feedback controller,

synthesized in 28nm CMOS technology. In digital neuromorphic hardware, the most

power-consuming block is the processing engine (PE) consisting of a multiply-and-accumulate

(MAC) unit and a data controller. For reasonable performance of RNN accelerator, 16 PEs

are assumed in the system where they can handle MAC computations in parallel. The bit-

width of PE is designed to be 24bit and 20 LSBs can be controlled to force zeros depending

on the bit-precision of each computation (see inset of Figure 6.7). Full-precision of a MAC

unit is set to 24bit by simulating each benchmark with different bit-precisions.

The last 2bits in each data work as dirty bits to inform which bit-precision to be used

(all simulations reflect this). The precSet∗ is realized by the generation of a mask to addi-

tionally force zeros to simplify hardware. The static control is possible without the feed-

back controller and the AND gate. It is important to compute the area/power overheads

of the feedback controller compared to the other on-chip hardware components required to

implement digital RNN with dynamic approximation. Since the dynamic approximation

requires a controller per memory channel that controls data for PEs, four data controllers

are designed in the system (assume 4 memory channels). The remaining components are

also shown in Figure 6.7.

The digital RNN with dynamic approximation is integrated and synthesized in 28nm

94

PE0

PE1 PE2

PE3

PE4

PE5 PE6

PE7

PE8

PE9 PE10

PE11

PE12

PE13 PE14

PE15

APS

CTRL

...

Feedback

controller

Static control Dynamic

control

Data

CTRL

Data

CTRL

Data

CTRL

Figure 6.7: Synthesis and placement of the RNN hardware with dynamic approximation.
A small data controller is placed near the center.

technology. The power consumption and area are reported in Table 6.2 (prior to the place-

ment) and the layout after the placement is shown in Figure 6.7. The total area is 0.096mm2

after the placement. The most power is consumed by the PE group (96.97%). Four data

controllers, the only additional component to realize dynamic approximation, takes negli-

gible portion (0.31%) of power consumption. Likewise, the area of four controllers occu-

pies only 1.22∼1.36% of the total area. Even though proportional controller has smaller

form factor than the hysteretic controller, both options do not impose much hardware over-

head. The overhead from the static approximation is only 0.06mW of power (0.15%) and

451.3µm2 of area (0.57%).

6.3.4 Energy-Accuracy Trade-off

The baseline operation of the RNN engine is with a single fixed point for all computations

(e.g. 100% 24bit). The minimum bit-precision to maintain the highest possible recognition

accuracy is selected for each benchmark as a baseline (refer to Figure 6.8). This is to make

95

Table 6.2: Power consumption and area breakdown of the proposed RNN hardware with
dynamic approximation

16 PEs
Data CTRL
(Hyst, Prop)

Max Index
Identifier Classifier

Power
(mW)

40.48 0.131, 0.128 0.596 0.539
96.97% 0.31%, 0.31% 1.43% 1.29%

Area
(µm2)

70053.92 1077, 964 4194.19 3914.17
88.41% 1.36%, 1.22% 5.29% 4.94%

sure not to overemphasize the efficiency of the dynamic approximation algorithm. The

experimental results by utilizing the static approximation algorithm in RNN is obtained as

well. For both cases, the average power is computed by:

Pavg =
∑
i

rPrec[i] · PprecSet[i] (6.6)

where rPrec[i] is the ith precision ratio (e.g. 0.6), precSet[i] is the ith bit-precision used in

the system (e.g. 18bit) and PprecSet[i] is the power dissipation of a single PE when comput-

ing with precSet[i]. For a RNN with dynamic approximation, the power consumption of

a PE changes over time because the operating bit-precision of a PE changes dynamically.

Thus, the average power consumption of single PE can be computed by:

Pavg =
∑
i

rPrec[i] · (
T∑
k=1

PprecSet(k)[i]/T) (6.7)

where T is the length of an input sequence and precSet(k) is the precSet at time step k.

Using the Theano simulator, recognition accuracy of each dataset is obtained by using

inference dataset and results are shown in Figure 6.8. Compared with the baseline case,

the proposed dynamic approximation degrades accuracy by 4.64% (hysteretic) and 3.93%

(proportional) on average. With this slight accuracy degradation, average power consump-

tion of a PE is reduced by 35.72% (hysteretic) and 36.36% (proportional) on average. Also,

the accuracy degradation and power saving are compared with those obtained by using the

96

1.05

0.80

1.00

0.95

0.90

0.85

Normalized Power

N
o

rm
a

liz
e

d
 a

c
c
u

ra
c
y

1.20.4 0.6 0.8 1.0

UCFG

1.05

0.80

1.00

0.95

0.90

Normalized Power

N
o

rm
a

liz
e

d
 a

c
c
u

ra
c
y

KTH

1.10.6 0.7 0.8 0.9 1.0

8bit

12bit

Static

Prop

Hyst
Prop

Static

Hyst

24bit

12bit

16bit

0.85

Recognition accuracy: 77.8%

Avg. power of a PE: 1.29mW

Recognition accuracy: 62.1%

Avg. power of a PE: 2.53mW

1.05

0.80

1.00

0.95

0.90

0.85

Normalized Power

N
o

rm
a

liz
e

d
 a

c
c
u

ra
c
y

1.10.6 0.7 0.8 0.9 1.0

USC-HAD

16bit

12bit

Static

Prop

Hyst

Recognition accuracy: 65.5%

Avg. power of a PE: 1.75mW

Figure 6.8: Simulation results showing normalized accuracy vs. normalized power for each
benchmark with different computation methods: single fixed point, static approximation
and dynamic approximation (hysteretic or proportional).

static approximation. The additional power (equivalently, energy) reduction by using dy-

namic control is 13.82% on average while sacrificing accuracy by 3.2% on average. Note

the blind control of the bit-precisions of all computations can lead to significant degradation

in quality. Between two feedback control methods, a proportional controller gives slightly

better performance with less power consumption. This is due to the fact that hysteretic con-

troller stops changing bit-precision within the threshold band which may degrade accuracy

as in Figure 6.6(a) at around sequence 140.

97

6.4 Summary of the Chapter

This chapter presents the dynamic approximation algorithm for energy-efficient operation

of digital RNN. The proposed approach adaptively controls the level of approximation

in synaptic weights depending on the confidence level of output sequence. The easy se-

quences are computed with more approximation and hard sequences with less approxi-

mation. The dynamic control of the bit-precision is considered to verify the proposed

approach. The analysis shows that the dynamic approximation allows significant power

saving with graceful degradation of quality. The presented approach can enable applica-

tion of RNN at the sensor/camera front-ends for real-time activity detection/recognition.

98

CHAPTER 7

ANALYSIS OF ENERGY-ACCURACY TRADEOFF IN DIGITAL CELLULAR

NONLINEAR NETWORK

In previous chapters, the energy-efficient hardware platforms of two different system learn-

ing methods, model-based and data-driven, are presented. In Chapter 4, Cellular Nonlinear

Network (CeNN) is selected as a computing algorithm to accelerate the model-based sys-

tem learning. However, CeNN model can be used in data-driven learning as well since

the network can be trained with large data by Hebbian learning [183] or a genetic al-

gorithm [184] to estimate underlying systems. Therefore, it is important to understand

energy-accuracy tradeoff for CeNN algorithm as it is capable of serving as either model-

based or data-driven system learning. As test benchmarks for the analysis, various image

processing applications are selected.

There hardware accelerators for neural and non-Boolean image processing have gained

significant interest for mobile System-on-Chips (SoCs) [185, 186, 187]. CeNN is a neuro-

inspired parallel computing architecture using a two-dimensional array of cells where each

cell is connected to a set of local neighbors (Figure 7.1) [188]. The cell dynamics is

determined by an ordinary differential equation (ODE) with local interaction defined by

feedback A and feedforward B templates. The CeNN has shown significant performance

advantage on image processing problems, thanks to the concurrent processing and local

connectivity.

Although, application of CeNN as embedded image processing platform has received

significant interest [189, 190], low operating power with feasibility of dynamic scaling of

energy, performance, and quality-of-result is of critical importance to make CeNN viable

as an accelerator in mobile SoCs. Boolean image processors often allow errors during

computation to achieve low power with graceful degradation in image quality [191, 192,

99

M

N

0

-3

3

6

1 3 5 7 9

of Iterations (n)

S
ta

te
 (
X

i(n
))

0

-2

2

1 3 5 7 9

of Iterations (n)

O
u

tp
u

t
(Y

i(n
))

-1

1

(a) (b)

C1

C2

Figure 7.1: (a) Structure of a M × N CeNN with a cell locally connected to neighbor
(gray) cells and (b) dynamic behavior of the state (Xi) and the output (Yi) of two randomly
selected cells (Ci).

193]. The voltage over scaling (i.e. reducing voltage below the minimum limit imposed

by critical path delay) has been proposed to reduce voltage with controlled increase in bit-

error-rate (BER) [191]. Methods have focused on protecting more significant bits (MSBs),

reduction of bit-width (precision control), and design of imprecise adders and multipliers

to reduce power [192, 193].

This chapter explores the potential of accuracy-aware processing to reduce power dis-

sipation and enable dynamic energy scaling in CeNN based image processors. The image

processing using CeNN and using conventional Boolean architecture fundamentally differs

in two ways: (i) algorithms are implemented directly in the ODE based cell dynamics; and

(ii) computation is performed by local interactions between cells in a network. There is a

need to understand the impact of error in CeNN to evaluate the potential of energy-accuracy

tradeoff.

100

7.1 Background

7.1.1 Fundamentals of Cellular Nonlinear Network (CeNN)

Fig. 7.1(a) shows an M × N CeNN having cells placed in M rows and N columns. The

state of each cell is computed by the sum of the weighted inputs and outputs from the cell

and its neighboring cells. The differential equation of each cell is described as [188]:

C
∂xij(t)

∂t
= − 1

R
xij(t) +

∑
C(k,l)∈Nr(i,j)

Akl · ykl(t) +
∑

C(k,l)∈Nr(i,j)

Bkl · ukl + z (7.1)

yij(t) = f(xij(t)) =


−1 for xij(t) < −1

xij(t) for |xij(t)| ≤ 1

1 for xij(t) > 1

(7.2)

where i is the row index, j is the column index, xij(t) is the state, yij(t) is the output, uij is

the input, z is the offset, A is the feedback template, and B is the feedforward template for

each cell C(i, j). Here,Nr(i, j) represents neighbors of a cell C(i, j) within radius r where

(k, l) is the index of those cells. Figure 7.1(a) depicts the CeNN structure with r = 1.

The weights of template A and B (representing the local interconnection) as well as off-

set z are programmed by users depending on which image processing applications to run.

The templates are learnt for different applications offline by using a CeNN truth table [194]

or a genetic algorithm [184]. As learning is performed off-line, the energy impact of learn-

ing, and hence, potential of energy-accuracy tradeoff during learning is not considered.

The dynamic range of xij(t), which is the maximum range of the state, and the stability

of CeNN are proved in [188]. The stability of CeNN guarantees that the system converges

to a stable state at t → ∞. When CeNN reaches the steady-state, the following properties

should be satisfied:

∂xij(t)

∂t
= 0, lim

t→∞
|xij(t)| > 1 for ∀(i, j). (7.3)

101

These properties are true when (Aij > 1/R) is satisfied in (7.1). As a result, the output of

each cell in CeNN always provides a constant value as the transient decays to zero:

lim
t→∞

yij(t) = ±1. (7.4)

This is evident by looking at the steady-state condition (7.3) and the output function in

(7.2).

7.1.2 Dynamic Route of CeNN

The stability of a CeNN system can be understood further by looking at a dynamic route

as shown in Figure 7.2. This basically shows the transient of a state variable (∂xij(t)/∂t)

depending on the state of a cell, xij(t). The dynamic route for each cell is defined by

rewriting the right-hand side of (7.1) [188]:

C
∂xij(t)

∂t
= −f(xij(t)) + g(t), (7.5)

where

f(xij(t)) = −Aij · yij(t) +
1

R
xij(t) (7.6)

and

g(t) =
∑

C(k,l)∈Nr(i,j),C(k,l)6=C(i,j)

(Akl · ykl(t) +Bkl · ukl) +Bij · uij + z. (7.7)

In (7.6), yij(t) can be written as a function of xij(t). The shape of a piecewise linear plot

(Figure 7.2) is determined by −f(xij(t)) and offsets by g(t), called offset level.

For convenience, let’s assume R = 1, C = 1, Aij = 2 and g(t) = 0. This assumption

can be made without violating parameter requirements as in [188]. R and C values can be

predetermined by the user and weights of each template are determined accordingly during

the learning process. Then, a cell has two stable equilibrium points at -2 and 2. The arrow

on the route shows how xij(t) settles to its stable equilibrium points as time goes by. For

102

dXij (t)

dt

X ij (t)

stable points unstable points

1

1-1

-1

0

g(t)=0

g(t)=ε<0

D
0

D
1

D
2

D
3

2-2

Figure 7.2: Dynamic routes and two equilibrium points of the state xij(t) when g(t) =
0 [188]; dynamic route of a cell changes due to error ε (direction reverses in the shaded
area).

instance, if xij(t) is having a value on region D2 or D3 (xij(t) > 0), the state tends to settle

at 2. After reaching the steady-state, when (7.3) is satisfied, xij(∞) equals to 2 which

makes yij(∞) = 1 by (7.2).

7.2 Impact of Error on CeNN

In this section, the error characteristics of a CeNN is analytically studied, specifically fo-

cusing on error propagation. The first-order Euler approximation can be applied to obtain

a discrete-time CeNN equation (by setting discretization step h = RC = 1). Then, the

CeNN equation (7.1) with an additive error (eg) becomes

xij(n+ 1) =
∑

C(k,l)∈Nr(i,j)

Akl · ykl(n) +
∑

C(k,l)∈Nr(i,j)

Bkl · ukl + z + egij(n+ 1). (7.8)

where n represents the current time step (iteration index) and egij is the amount of gener-

ated error added to the next state value at C(i, j). Essentially, an additive random error

is assumed generated in each step of the CeNN computation. The error may have any

distribution. The state xij(n + 1) of CeNN deviates from its original value depending on

the magnitude of egij . Note equation (7.8) considers the addition of error as a real number

103

(analog value) to obtain a more generic understanding. In Section ??, the sources of error

in digital cells due to voltage over scaling (physical bit flip error due to timing violation)

and reduced bit-precision (quantization error) are considered, both of which lead to egij in

equation (7.8).

7.2.1 Impact of Error on Cell Dynamics

To understand the effect of error, the abscissa is divided into four different domains (D0 ∼

D3) in Figure 7.2. The worst scenario is when the sign of xij(t) changes (move from

D2/D3 to D0/D1) due to error forcing an output yij(∞), that is supposed to settle at 1,

to converge at -1, which degrades accuracy significantly. Even though the sign of xij(t)

has not been changed, |xij(t)| may stay below 1 (D1 or D2), and yij(∞) does not settle to

either -1 or 1. Since the CeNN converges to its equilibrium points when (7.3) is satisfied

for all cells, CeNN may run forever (convergence time→∞) unless there is a constraint on

the number of iterations.

The equilibrium points are determined by g(t) described in (7.7). Assume g(t) is de-

fined as g(n) in digital CeNN. Then, g(n) is dynamically affected by
∑
Akl · ykl(n), which

is the sum of feedback effects from neighbor cells; other variables remaining constant.

Now, let’s analyze the effect of error propagation in CeNN. First, we need to understand

whether an error added to the state will lead to error in the output (input to output error

propagation). Next, how error generated during state computation in the current iteration

propagates through the network to affect the state computation in the next iteration is math-

ematically analyzed.

Error propagation of the state to output: The error may not propagate to cell C(i, j)

when |xij(n)| > 1 because yij(n) is clamped to -1 or 1 [see (7.2)]. In this case, error affects

the output yij(n+1) only when egij(n+1) is large enough to change state to |xij(n+1)| < 1

or to an opposite signed value. Thus, two error terms are defined: state error εxij and output

error εyij = NL(εxij, xij), where NL(·) is a nonlinear function which bounds the error

104

propagation due to (7.2). NL(·) is a function of εxij and xij since εyij depends on the value

of (εxij + xij). It can be defined as follows:

εyij =


−2 if (εxij + xij) ≤ −1

(εxij + xij)− 1 if |(εxij + xij)| < 1, xij ≥ 1

0 if (εxij + xij) ≥ 1

(7.9)

εyij =


−(xij + 1) if (εxij + xij) ≤ −1

εxij if |(εxij + xij)| < 1, |xij| < 1

1− xij if (εxij + xij) ≥ 1

(7.10)

εyij =


0 if (εxij + xij) ≤ −1

(εxij + xij) + 1 if |(εxij + xij)| < 1, xij ≤ −1

2 if (εxij + xij) ≥ 1

(7.11)

Note that CeNN converges to either -1 or 1 without any error. The condition (7.9) and

(7.11) are thus dominantly observed as CeNN system converges. This implies that the

distribution of εyij finally has high probability at 0, -2, or 2 independent of the distribution

of εxij . In Section 7.2.3, this observation is numerically validated using error rates from a

digital cell.

Error propagation through the network: Let us first examine both error terms at n = 1:

εxij(1) = egij(1),

εyij(1) = NL(εxij, xij(0)) = NL(egij(1), xij(0))

(7.12)

where xij(0) is an initial state of CeNN and egij is assumed to be a random variable. At

n = 2, the state error then becomes

εxij(2) =
∑

C(k,l)∈Nr(i,j)

Akl · εykl(1) + egij(2) =
∑

C(k,l)∈Nr(i,j)

Akl ·NL(egij(1), xkl(0)) + egij(2).

(7.13)

105

By generalizing (7.13) at time step (n + 1), the state error is expressed as (7.14). Here,

εxij(n + 1) is represented as a function of egij of which distribution is given. According to

(7.14), the impact of output error εykl, propagated from neighboring cells and the cell itself

at previous time step, is amplified by weights of the feedback template Akl. It implies that

applications with strong feedback are likely to have enhanced error propagation (and hence,

more quality degradation) compared to applications with weaker feedback.

εxij(n+ 1) =
∑

C(k,l)∈Nr(i,j)

Akl · εykl(n) + egij(n+ 1)

=
∑

C(k,l)∈Nr(i,j)

Akl ·NL(εxij(n), xij(n− 1)) + egij(n+ 1) = · · ·

=
∑

Akl ·NL(
∑

Akl ·NL(· · · (
∑

Akl ·NL(egkl(1), xij(0))

+egij(2)) · · ·) + egij(n)) + egij(n+ 1).

(7.14)

Due to the nonlinearity of NL(·), equation (7.14) cannot be expressed as a closed form

expression. If |xij| ≥ 1, yij reaches its equilibrium point (either 1 or -1) which may clamp

out the impact of small error. For an intuitive understanding, therefore, let’s focus on the

range of |xij| < 1 where small error is propagated through the network. This condition is

important to understand the role of error at the early stage of CeNN operation where states

are within the linear region. In this case, (7.13) becomes:

εyij(2) = εxij(2) =
∑

C(k,l)∈Nr(i,j)

Akl ·εykl(1)+egij(2) =
∑

C(k,l)∈Nr(i,j)

Akl ·egij(1)+egij(2). (7.15)

Noting that egij is an independent and identically distributed random variable, indices of cell

position and time can be removed. Then, the standard deviation of εyij(2) becomes

σ(εyij(2)) =

√ ∑
C(k,l)∈Nr(i,j)

(Akl · σ(eg))2 + σ2(eg) =
√

(ASUM2 + 1) · σ2(eg) (7.16)

where ASUM2 =
∑
A2
kl . Then, the variance of output error at time step m (assuming |yij|

106

does not reach 1) is:

σ2(εyij(m)) = (
m∑
p=0

ApSUM · σ
2(eg)). (7.17)

The equation (7.17) implies that the generated error at each cell propagates through the

network and its variance is amplified by the sum of squared element values of the feedback

template (A) at each time step. This gives us the intuition of avoiding error at early stage

of CeNN operation in applications with larger feedback template.

7.2.2 Convergence Time Constraints

As discussed at the beginning of Section 7.2.1, strict convergence may not be achieved with

error since (xij(n) − xij(n − 1) 6= 0) and the state xij(n) with error may also settle at an

incorrect level. Thus, a (relaxed) convergence time is defined for the following experiments.

The convergence time considering the pseudo steady-state is defined as:

|xij(nconv − xij(nconv − 1)| < β, |xij(nconv)| ≥ 1 (7.18)

where nconv is the convergence time and β is a fluctuation bound (β = 2 is used in our

simulation). We say that CeNN is converged when all CeNN cells satisfy (7.18). This con-

vergence time may vary depending on the error rate, which will be shown in Section 7.2.3.

Hence, for image processing under performance constraints (e.g. real-time case), the effect

of error on output quality needs to be compared with a fixed number of iterations (conver-

gence time constraint).

7.2.3 Experimental Characterization of Error Propagation

In this subsection, the error propagation in CeNN is characterized. A fully digital realiza-

tion of the CeNN dynamics is considered and random bit-errors are applied while comput-

ing (7.8) for each cell at each step. First, the numerical error distributions of the state xij

and the output yij of CeNN cells are examined. As an example, the hole filling is used with

107

OutputState

0 4-4 2-2
0

1875

1250

2500

#
 o

f
O

cc
u

rr
e

n
ce

s

Error

625

n = 1

(a)

0 4-4 2-2
0

1050

700

1400

#
 o

f
O

cc
u

rr
e

n
ce

s

Error

350

n = 5

(b)

Figure 7.3: Histogram of error in CeNN state and CeNN output at time step (a) n = 1 and
(b) n = 5. The analysis is shown with the hole filling at 5% bit error rate.

the size of input image 50×50. The bit error rate (Pb) is set to 5% with 12-bit precision. The

state/output error εxij (or εyij) is computed by subtracting the state (output) of CeNN under

error to that evaluated without error at each iteration time. Since the bit flip error is allowed

with probability of Pb for all bit positions, the state error is uniformly distributed except

at 0 (95% of cells have no error). The error distribution with 5% bit error rate is shown

in Figure 7.3(a), for n=1, and Figure 7.3(b), for n=5. The distribution of the state error at

n = 1 is the generated error [eg in (7.8)] which is a property of the hardware. As expected

the distribution is non-Normal. The computed standard deviation of the generated error at

n = 1 is 2.05. The distribution of the state error at n = 5 captures the effect of error propa-

gation [as discussed in (7.14)]. The distribution of the output error has several sharp peaks

as iteration goes due to the bounding function NL(·) as in (7.9)∼(7.11). The distribution

of the output error at n = 5 shows peaks at -2, 0, or 2 as predicted in Section 7.2.1.

Next, the impact of feedback template (A) on error propagation is verified. For com-

parison, two different applications are selected: edge detection and hole filling. The edge

detection (A1) has zero neighboring feedback weights while the hole filling (A2) has feed-

back weight of 1 for directly connected neighbor cells (inset in Figure 7.4(b)). Empirical

cumulative distribution function (CDF) is utilized to identify the impact of error propa-

gation depending on the feedback template weights. Figure 7.4(a) shows the error prop-

agation behavior of hole filling template. It is observed that with increasing number of

108

1480 2 10

1.0

0.0

0.8

0.6

0.4

0.2

4 12
Absolute Error |εX|

P
ro

b
ab

ili
ty

(b)

2 0

000

0
0 0 0

3 1

010

1
0 1 0A1 A2

n = 1 (A1)
n = 5 (A1)
n = 1 (A2)
n = 5 (A2)

61460 2 8

1.0

0.0

0.8

0.6

0.4

0.2

4 10

P
ro

b
ab

ili
ty

(a)

n = 1
n = 3
n = 5
n = 10

Due to
error propagation

12
Absolute Error |εX|

Figure 7.4: Impact of the feedback template A on error propagation by looking at empirical
CDF with Pb = 5%: (a) detailed trajectory of error propagation for hole filling algorithm
and (b) comparison of the error propagation between two different templates (A1: edge
detection and A2: hole filling).

iterations, there is higher probability of having larger error showing error propagation as

expected from (7.14). Figure 7.4(b) compares the error propagation characteristics between

two applications to study the effect of feedback template on the error characteristics. Note

empirical CDF at n = 1 is identical between two applications, since the generated bit er-

ror eg at n = 1 is determined mainly by the characteristics of the hardware. Since the

same processing engine for both applications is used, the identical error distribution is ex-

pected. However, there is higher probability of having larger error with template A2 than

with A1 at n = 5 (Figure 7.4(b)). This verifies that larger feedback weights accelerate error

propagation as expected from equation (7.14).

Finally, the effect of template weights and bit error (Pb) on convergence time is studied

considering the templates A1 and A2. Due to larger fluctuations in the state value with in-

creased Pb, the (relaxed) convergence time increases and may not converge (Figure 7.5(a)).

Also, for image processing under performance constraints, we need to compare output

quality after a fixed number of iterations. The edge detection algorithm is selected (A1) for

illustration. Structural similarity (SSIM) index [195] is used to estimate the output image

quality with error. For the baseline, the maximum number of iterations is fixed to 20 (it

takes 3 iterations with no error). SSIM falls below 0.8 when the Pb becomes larger than

109

20

15

10

5

0

C
o

n
v.

 T
im

e

D
o

e
s

n
o

t

co
n

v
e

rg
e

A
1

A
2

(a)

0.0 0.3 0.6 0.9
Bit Error Rate (%)

20 37

Input

image

S
S

IM
 (

Y
ij
)

Max # of iterations

0.5

0.6

0.7

0.8

0.9

1.0

(b)

0.0 0.3 0.6 0.9
Bit Error Rate (%)

Figure 7.5: (a) Convergence time increase due to error and (b) accuracy degradation in
terms of SSIM of the CeNN output when number of iterations is fixed for real-time CeNN
under different Pb’s.

0.5% (black line in Figure 7.5(b)). The output images at some Pb’s (0, 0.4, and 0.9%)

are shown in Figure 7.5(b). It is evident that increasing bit error rate increases the com-

puted standard deviation of the error magnitude as well. In other words, a higher standard

deviation of the error magnitude results in more convergence time and less image quality.

7.3 Design of a Digital CeNN

A CeNN cell is designed in 130nm CMOS for experimental analysis of energy-accuracy

tradeoff. Two approaches are considered for power scaling, namely, voltage scaling and

reduced precision. In this analysis, reduced precision is referred to as reducing precision

bit-width as well as voltage but ensuring zero bit errors. The voltage over scaling (VOS) is

referred to as reducing voltage below a critical limit that generates random bit errors due to

timing violations in the critical path. During VOS the supply voltage is controlled to reach

a finite bit error rate.

7.3.1 Hardware Design of CeNN

A digital CeNN cell, defined by equation (7.8), includes (i) a node consisting of storage

elements for state (xij), input (uij), and output (yij); and (ii) a processing element (PE) that

110

CeNN cell

Output (Y
kl

)

Input* (B×U
kl

)

Output

(Y
ij
)

Input*

(B×U
ij
+Z)

State

(X
ij
)

CeNN Node

A

CeNN Processing Element

0

bit-width controller

Figure 7.6: Digital CeNN implementation of a single cell consists of a CeNN node and a
processing element (PE).

executes the multiplication and addition. Figure 7.6 illustrates a block diagram of a CeNN

cell showing the node and the PE. In the CeNN node, there are three registers for input,

output, and state respectively and a clamping module for the output function. In the CeNN

node, the bold lines represent the propagated input (ukl) and output (ykl) from neighbor

cells. The node delivers its input and output or the propagated input and output from the

neighbor cells to its PE (data controller).

By using the data given by the CeNN node, a PE connected to each node computes

the next state, xij(n + 1). A simple step-by-step diagram of PE computation is shown in

Figure 7.7. To complete the computation of spatial convolution using a 3×3 template using

a Multiply-Accumulate unit (MAC), a PE needs nine clock cycles. In Figure 7.7, each Ti

represents this nine clock cycles. Since (
∑

C(k,l)∈Nr(i,j)Bkl · ukl + z) is a constant over

time, it is pre-computed and stored in an input register file as a modified input (Input* in

Figure 7.6). By doing so, only one MAC unit is required in a PE design reducing the area

and power overhead. This pre-computation step requires nine clock cycles before running

the application (T1 in Figure 7.7). After the pre-computation of input phase, template A is

programmed in the PE since the template is assumed to be spatially invariant. Then, each

step of CeNN state computation is performed until it reaches the iteration limit n.

111

Input*: (BxUkl) or (BxUij)+Z

Pre-computation &

store in designated registers

Xij(1) = ∑AxYkl(1) + Input*

1st iteration of

CNN state computation

Xij(n) = ∑AxYkl(n) + Input*

nth iteration of

CNN state computation

.

T1 T2 Tn Tn+1

Figure 7.7: Simple timing diagram showing CeNN computation steps using the hardware
with one ALU as shown in Figure 7.6.

The input and the output of CeNN are scaled between -1 and 1 while the values of

template could be any non-integer values [188]. The baseline CeNN cell considers 12-

bit signed fixed point representation (e.g. Q3,8: 1-bit sign, 3-bit integer, 8-bit fractional

number) to reduce the overhead of an arithmetic logic unit (ALU). Although the fixed-

point number system has a limited range that may cause overflow, we should note that the

input and the output of CeNN are always between -1 and +1 preventing the overflow of the

state from changing the output if that limited range is able to represent [-1,1]. It will be

shown that the 12-bit fixed-point representation results in only a minor quality degradation

compared to the ideal (floating-point) representation; however, significantly reduces the

hardware complexity.

Reducing data precision can reduce the power dissipation and delay, since it decreases

the number of transitions in the ALU. However, a reduced precision also implies a higher

numerical error. Therefore, while reduced precision is useful for low-power, as observed

in Section 7.2.3, it is important to be able to change to higher precision mode for stronger

feedback templates. The entire CeNN operates at the same precision level during the oper-

ation of an application (fixed precision control). However, the precision can be controlled

from one application to the other. This is done by designing the CeNN cell such that some

of LSBs can be selectively set to zero. For example, Q3,2,6 means that 3 bits are integer

part, 2 bits are fractional part, and 6 bits are zero (i.e. 6-bit precision). This is achieved by

placing bit-width controllers before the inputs of a MAC and the input of a 2-input adder

112

(Figure 7.6). We should note that truncating LSBs of integer part may degrade CeNN

accuracy since values between -1 and 1 are important in CeNN.

The variable supply voltage of the CeNN cells (nodes and PEs) is also considered to

reduce the power dissipation. As reducing voltage increases the delay of the critical paths

within the PE, for a fixed frequency operation, reducing voltage beyond the critical limit

leads to random bit errors due to timing violations. This is referred to as the voltage over

scaling (VOS). As discussed in Section 7.2.3, the bit errors modulate output quality and

convergence. Further, the effects of bit-errors due to voltage scaling also depends on tem-

plates.

7.3.2 Power and Bit Error Rate Analysis of Digital CeNN

The designed CeNN cell is simulated using SPICE to estimate the power, delay, and bit

error rate at different voltages and precisions. Note in this study only the precision of the

operands is reduced (reduces power in the PEs), the precision of the template is kept fixed at

12-bit. The clock frequency and convergence time (number of iterations) are kept constant

for all analysis to guarantee same performance under all conditions. The maximum delay of

the CeNN node is 1.18ns and that of the CeNN PE is 2.47ns at 1.2V with 12-bit precision.

Power dissipation is also simulated using 3ns clock period and random input vectors (at

A, B, offset z, and image input uij). The CeNN node consumes 392.45µW while the PE

consumes 2.97mW at 1.2V with 12-bit precision.

When LSBs are set to zero (reduced precision), the maximum signal propagation length

in the ALU reduces and hence, the maximum delay in ALU decreases. Therefore, for a

target Pb, reducing the precision allows more headroom on voltage scaling. In addition,

reducing precision also reduces the number of transitions in ALU and hence, the switching

power. Figure 7.8 shows Pb and power dissipation at different supply voltages from 0.8V

to 1.2V with 12, 8, and 6-bit precisions. Figure 7.8(a) shows that Pb sharply increases

(by about 0.1/30mV) when the supply voltage is below the critical threshold (Vcrit). As

113

 B
it

 E
rr

o
r

R
a

te
 (
P
b
)

P
o

w
e

r
(m

W
)

12-bit 8-bit 6-bit

0.81.2 1.1 1.0 0.9 0.81.2 1.1 1.0 0.9
0.0

0.1

0.2

0.3

0.4

0.5

0.0

1.0

2.0

3.0

4.0

P
b
=0.005, 0.88V, 12-bit

P
b
=0.005, 0.86V, 8-bit

P
b
=0, 0.88V, 8-bit

3.359mW @ 1.2V, 12-bit

③

②

①

③

②

①

1.665mW (-51%), 0.7647 ③②①

(a) (b)

Supply Voltage (V)

1.204mW (-64%), 0.9382 1.144mW (-66%), 0.7451

Supply Voltage (V)

Figure 7.8: (a) Bit error rate (Pb) at different supply voltages and precision bit-widths and
(b) the corresponding power dissipation. The various options for energy-accuracy trade are
shown with selected target Pb.

expected, Vcrit for 6-bit or 8-bit precision is lower than that of 12-bit precision. For example,

Vcrit of Q3,8,0 (12-bit) to meet Pb = 0.005 is 0.88V while it is 0.86V for Q3,4,4 (8-bit).

Reducing precision from 12-bit to 8-bit results in 34% change in power at a given VDD

(=1.2V).

7.4 Energy-Accuracy Tradeoff in CeNN

7.4.1 Analysis of Image Quality

Now, let’s consider the role of reduced precision and higher Pb on the image quality. Ta-

ble 7.1 shows SSIM of edge detection results on grayscale image using different bit preci-

sions. The input image is assumed to be 12-bit pixels. Also, in this analysis the templates

are assumed to be 12-bit (full precision). In contrast to black-and-white image, a grayscale

image needs finer precision to represent 256 levels between -1 and 1.

Then, the error characteristics considering reduced precision versus random bit error are

compared. To characterize the quantization error due to reduced precision, the 8-bit CeNN

operation is compared with 12-bit operation. The state and output errors are computed by

114

Table 7.1: SSIM Index by Running an Edge Detection Algorithm with Different Precision
Bit-width

SSIM 12-bit (Q3,8,0) 8-bit (Q3,4,4) 6-bit (Q3,2,6)
No error 0.9987 0.9382 0.7669
Pb = 0.5% 0.7647 0.7451 0.5949

30 1 4

1.0

0.0

0.8

0.6

0.4

0.2

2 7
Absolute Error |εX|

P
ro

b
ab

ili
ty

65

n = 1 (8 bit)
n = 5 (8 bit)
n = 1 (VOS)
n = 5 (VOS)

Figure 7.9: The comparison of empirical CDF of the absolute state error between reduced
precision and voltage over scaling (VOS).

subtracting the state (output) of CeNN with 8-bit precision to that with 12-bit. The error

distribution due to quantization is studied (not shown for brevity) for n = 1 and n = 5 to

verify the prediction. As expected, it is observed the error is mostly concentrated near zero

and the (numerical) standard deviation of the error is 0.02 at n = 1. This can be considered

as eg in (7.8). As noted in Section 7.2.3, the standard deviation of eg for 5% bit error

rate is about 2.05. Therefore, a smaller error rate is expected with reduced precision than

VOS. Figure 7.9 shows the empirical CDF of absolute state error. As shown in Figure 7.9,

the amount of error is initially larger for VOS due to the nature of error (expected by

higher standard deviation). Moreover, error is generated in each step [i.e. egij(n) in (7.14)]

and propagated from neighbor cells. Therefore, it is concluded that reducing precision

introduce less error than increasing bit-error-rate.

Table 7.1 shows the quality degradation with reduced precision and random bit errors.

It shows that using 8-bit instead of 12-bit slightly degrades the image quality while 6-bit

precision degrades the image quality significantly. Considering voltage scaling and random

115

bit error, both 12-bit and 8-bit precisions still show SSIM higher than 0.7 (Pb = 0.5%) while

6-bit precision has SSIM less than 0.6. It means that finer precision smaller than 2-2 is

desired to represent fractional number during the CeNN operation.

7.4.2 Energy-Accuracy Tradeoff

The VOS and the reduced precision are considered to evaluate potential of energy-accuracy

tradeoff in CNN (Figure 7.8). The analysis always assumes full (12-bit) precision for the

templates, while the precision for the operands are changed. First, VOS is applied while

keeping the 12-bit precision to achieve a target Pb (= 0.5%) (À). Second, precision is re-

duced to 8-bit and voltage is scaled (from 1.2V to 0.88V) while maintaining Pb = 0 (Á).

Third, VOS is applied at reduced precision (8-bit) to meet the target Pb (= 0.5%) (Â). It is

observed that 8-bit precision operating at critical voltage (∼0.88V) but without error gives

64% power saving from the baseline (1.2V with 12-bit precision) while maintaining SSIM

> 0.9. The above analysis shows that energy-accuracy tradeoff by reduced precision is

more effective. This is because, even a small Pb due to VOS can result in a wider range of

numerical error due to potential of flipping in MSBs.

In Figure 7.10, energy dissipation versus image quality is shown using two representa-

tive image processing applications, edge detection (weak feedback) and hole filling (strong

feedback). The x-axis in the figure represents the normalized energy dissipation of the

CeNN PE. Figure 7.10 shows that the energy can be dynamically scaled for the CeNN but

at the expense of quality-of-results. There are two choices to scale energy: i) reducing pre-

cision and ii) scaling supply voltage. For the same amount of change in energy (e.g. from

1.00 to 0.46) reducing precision gives more accurate output image than scaling voltage.

Moreover, the SSIM index of hole filling application falls more sharply compared to edge

detection case when voltage falls below the critical point. This again shows that degrada-

tion in image quality for equivalent change in supply voltage and hence, energy dissipation,

depends on the application characteristics.

116

0.0

0.2

0.4

0.6

0.8

1.0

S
S

IM
 In

d
e

x

12bits 8bits 6bits

Normalized Energy
1.00

(a)

0.86 0.67 0.46 0.36 0.31 0.25 0.20

Normalized Energy
1.00

(b)

0.86 0.67 0.46 0.36 0.31 0.25 0.20
0.0

0.2

0.4

0.6

0.8

1.0

S
S

IM
 In

d
e

x

Figure 7.10: Energy-accuracy tradeoff plot using (a) edge detection and (b) hole filling
applications.

7.5 Impact of Applications

7.5.1 Simple Image Processing Applications

In this section, the role of application is analyzed (i.e. depending on strength of the template

A) on the energy-accuracy tradeoff. Only 12-bit and 8-bit are considered for illustration.

Six different applications are simulated: edge detection, diffusion, halftoning, binarization,

rotation detector, and hole filling [196]. To investigate the tradeoff between energy saving

and image quality, three different options described in Figure 7.8 are used: 12-bit at 0.88V

(Pb = 0.5%), 8-bit at 0.88V (Pb = 0), and 8-bit at 0.86V (Pb = 0.5%). Each result is

compared to the image obtained by using an ideal (64-bit) floating point representation

(Figure 7.11). The 64-bit floating point is set as reference in order to show 12-bit at 1.2V

is good enough as a baseline design of the digital CeNN. As the number of iterations and

the clock period are fixed, the performances of the CeNN under all of the above scenarios

are constant.

Edge detection, which has zero neighbor feedback weights, generates the reasonable

image quality even with both VOS and reduced precision (66% saving by Â). The degrada-

tion of image quality, however, is visible with non-zero feedback weights. Since diffusion,

halftoning, and binarization have weaker feedback than rotation detector and hole filling,

117

Edge
Detection

Halftoning

Input Image 12-bit, 1.2V 12-bit, 0.88V 8-bit, 0.88V 8-bit, 0.86V

Rotation
Detector

2 0

000

0

0 0 0

-0.07 -0.1 -0.07

-0.07 -0.1 -0.07

-0.1 1.5 -0.1

-0.8 5 -0.8

-0.8 5 -0.8

55 5

64-bit Floating

(Reference)

Diffusion

Hole
Filling

3 1

010

1

0 1 0

Binarization

0 0.9 0

0 0.9 0

1.80.9 0.9

0.1 0.15 0.1

0.1 0.15 0.1

0.15 0 0.15

0.9987 0.7647 0.9382 0.7451SSIM Index

0.9998 0.6959 0.9689 0.6900SSIM Index

0.9558 0.4263 0.5826 0.1561SSIM Index

0.9997 0.6806 0.9264 0.6927SSIM Index

1.0000 0.5623 1.0000 0.5623SSIM Index

1.0000 0.4846 1.0000 0.4846SSIM Index

Figure 7.11: The impact of voltage scaling and precision control on output image quality
for various applications.

those applications with 0.5% error rate still show the recognizable output images with salt

and pepper noise while rotation detector and hole filling cannot show any desired output

image. Hence, only precision control can be utilized for algorithms with strong feedback

such as rotation detector and hole filling (power saving is limited; 64% saving by Á).

For the diffusion or binarization algorithm, both VOS and precision control can be utilized

depending on the error tolerance of the application they are involved in.

118

Input

Fingerprint
Sharpening

Sharpened

Fingerprint
Lowpass

Di usion

Contrast Stretching

Inversion

Di used

Stretched

Fingerprint

Application Image

o set Z

[Sharpening] [Enhancement]

Hole Filling

Binarization ErosionInversion

Logic AND

Binarization

Hole Filling Erosion Binarization

Inversion

Enhanced

Fingerprint

Initial state input

Figure 7.12: Overall block diagram of the fingerprint preprocessing application [197],
which can be divided into two main algorithms (sharpening and enhancement). Solid lines
represent the main flow while dotted lines represent the sub-flow of the application.

7.5.2 Case Study: Fingerprint Preprocessing Application

As shown in Figure 7.11, errors propagate and degrade the output quality significantly on

some applications. Thus, VOS should be utilized only for applications with weak neigh-

bor feedback or less number of iterations. In this subsection, a fingerprint preprocessing

application [197] is tested, which consists of multiple image processing algorithms. The

preprocessing (enhancement) is a crucial step before doing the fingerprint recognition. The

fingerprint recognition system is important for the security and is used in various mobile

platforms for biometric analysis [198]. The opportunities for energy-accuracy tradeoff are

studied in the different intermediate tasks considering reduced precision for all tasks and

voltage over scaling (along with reduced precision) for tasks with weak feedback weights.

This goal is to understand whether reduced precision can maintain application quality and

what is opportunity for additional energy-quality tradeoff with VOS for certain tasks.

Overall block diagram of the fingerprint preprocessing is shown in Figure 7.12. There

are two main algorithms; sharpening and enhancement. The sharpening stage removes

noise or shaded regions in the input image. The enhancement stage fills up the hole in

important fingerprint lines. In detail, there are nine different image processing algorithms

in use; sharpening, lowpass filtering, diffusion, contrast stretching, inversion, hole filling,

119

9 -1

-1-1-1

-1

-1 -1 -1

2 2

222

2

2 2 2

Sharpening

Lowpass

Erosion 1 1

111

1

1 1 1

Hole Filling 3 1

010

1

0 1 0 Di!usion

Contrast

Stretching

Inversion

0 0

000

0

0 0 0

0.1 0.15 0.1

0.1 0.15 0.1

0.15 0 0.15

1 0

000

0

0 0 0

Binarization 2 0

000

0

0 0 0

Logical AND 2 0

000

0

0 0 0

Allow

Precision Control Only

Allow

Voltage & Precision Control

Figure 7.13: Allocation of energy reduction schemes for each algorithm in the fingerprint
preprocessing application depending on the strength of feedback template A.

binarization, erosion, and logic AND. As observed, hole filling has strong feedback which

makes the application prone to bit flip error caused by VOS (refer to Section 7.5.1). In

addition, sharpening, lowpass filtering, and erosion also have strong feedback templates as

shown in Figure 7.13. Other than these four algorithms, weights of feedback templates are

relatively weak or zero so that we could allow VOS and precision control.

Figure 7.14(c) and (d) show enhanced fingerprints when 12-bit and 8-bit are used, re-

spectively. SSIM index higher than 0.9 indicates precision control maintains quality-of-

results. The baseline energy consumption is computed when 12-bit is used. The fingerprint

preprocessing requires total 727 iterations of CeNN operation and each iterations needs

nine clock cycles to complete the convolution computation, which makes 6,543 clock cy-

cles. Considering that clock cycle is 3ns, total energy consumption of a single CeNN PE

required for fingerprint recognition with 12-bit precision at 1.2V is 6,543cycles× 3ns/cycle

× 3.36mW = 65.95nJ. When 8-bit precision is used, 23.63nJ (64.17% reduction in energy

consumption) is required for the entire computation.

120

SSIM Index

64-bit Floating
(Reference) 12-bit 1.2V

0.9810

Input Image

(a) (b) (c)

 12-bit 0.88V

0.8444

(e)

0.9166

8-bit 0.88V

(d)

0.8167

8-bit 0.86V

(f)

12-bit 1.2V 8-bit 0.88V

[Precision Control Only] [Voltage & Precision Control]

①

②

①

②

Normalized Energy 1.00 0.710.36 0.35

Figure 7.14: (a) Input fingerprint image and enhanced fingerprint images with (b) 64-bit
floating point representation, (c) 12-bit precision without error, (d) 8-bit precision without
error, (e) 12-bit precision with 0.5% bit error, and (f) 8-bit precision with 0.5% bit error.

The voltage over scaling could be allowed (0.5% bit error rate) on some algorithms

with weak feedback template (on the right side of Figure 7.13) for more energy savings.

Other than hole filling, sharpening, lowpass filtering, and erosion, the remaining image

processing algorithms are simulated with 0.5% bit error. As a result, Figure 7.14(e) and

(f) are obtained by using 12-bit and 8-bit precision, respectively. Then, 304 iterations are

computed with no error while the remaining 423 iterations are computed with 0.5% bit

error. Although, major connections are still recognized, the SSIM drops to 0.8. With VOS,

energy consumption becomes 46.59nJ with 12-bit precision (Figure 7.14(e)) and 22.95nJ

with 8-bit precision (Figure 7.14(f)). If we compare against the 12-bit implementation

without VOS (i.e. Figure 7.14(c)), adding VOS to selective tasks saves 29.36% energy

reduction. However, if we compare against the reduced precision (8-bit) without VOS, the

additional energy saving by allowing error is negligible, but an appreciable degradation in

image quality is observed.

7.6 Discussions

7.6.1 Effect of Truncation in the Templates

The discussions in Section 7.5 considered templates are always kept at 12-bit and with no

error. To investigate the role of truncation in the templates, we have simulated three dif-

121

(c)

(b)

[Halftoning Template]

-0.07 -0.1 -0.07

-0.07 -0.1 -0.07

-0.1 1.5 -0.1

0.07 0.1 0.07

0.07 0.1 0.07

0.1 0.32 0.1

A B

-0.0703 -0.0996

-0.0703 -0.0996

-0.0996 1.5

-0.0703

-0.0703

-0.0996

0.0703 0.0996

0.0703 0.0996

0.0996 0.3203

0.0703

0.0703

0.0996

12 bit

-0.0625 -0.0938

-0.0625 -0.0938

-0.0938 1.5

-0.0625

-0.0625

-0.0938

0.0625 0.0938

0.0625 0.0938

0.0938 0.3125

0.0625

0.0625

0.0938

8 bit

(a)

Operand: 12-bit

Template: 12-bit

[Reference]

SSIM Index

8-bit

8-bit

0.45470.5826

8-bit

12-bit

SSIM Index

N
o

rm
a

li
ze

d
 P

o
w

e
r

0.00

1.00

0.75

0.50

0.25

0.00 1.000.800.600.400.20

Power Saving (64%)

Power Saving (10%)

Operand: 8-bit

Template: 8-bit
Voltage: 0.88V

Operand: 8-bit

Template: 12-bit
Voltage: 0.88V

Operand: 12-bit

Template: 12-bit

Figure 7.15: Impact of template truncation on the output quality of CeNN considering the
halftoning example: (a) the halftoning templates depending on the precision bit-width, (b)
the power versus quality for template and operand truncation, and (c) images comparing
SSIM index with template truncation.

ferent cases: 12-bit operands with 12-bit templates (baseline), 8-bit operands with 12-bit

templates (the operand truncation), and 8-bit operands with 8-bit templates (both template

and operand truncation). In all cases the designs are simulated to operate at minimum

voltage without a timing error. The operands are the state, the output, and the input of

CeNN. The template values of feedback (A) and feedforward (B) considering 12-bit and

8-bit resolution are shown in Figure 7.15(a). The output using 12-bit operands with 12-

bit templates is the baseline for the comparison purpose. Compared to the 8-bit operand

and 12-bit template (SSIM ∼0.58), using 8-bit template degrades quality (SSIM ∼0.45).

On the other hand, for a constant 8-bit operand, using the 8-bit truncated templates pro-

vides 10% additional energy saving compared to the 12-bit template case as illustrated

in Figure 7.15(b). Figure 7.15(c) shows output images for the three different cases. The

above analysis shows that template truncation, along with operand truncation, can lead to

additional energy saving at the expense of graceful degradation in quality.

122

Table 7.2: Simulation Results on Adaptive Precision Control
12-bit 12 to 8 8 to 12 8-bit

Edge Detection 0.9987 0.996 0.9454 0.9382
Diffusion 0.9998 0.9946 0.9742 0.9382

Halftoning 0.9558 0.9549 0.5829 0.5826

7.6.2 Adaptive Precision Control

In this subsection, the potential of adaptive precision, i.e. changing the precision during

the evolution of the network, will be discussed. To evaluate the opportunity, two cases of

adaptive precision are simulated: (1) higher precision at the early stage and lower precision

at the later stage of the network (12-bit at initial 5 iterations and 8-bit at the remaining

iterations) and (2) lower precision at the early stage and higher precision at the later stage

of the network (8-bit at initial 5 iterations and 12-bit at the remaining iterations).

Simulation results are shown in Table 7.2 considering edge detection, diffusion, and

halftoning. Using higher bit precision at early stage of CeNN operation and using lower

bit precision at the remaining iterations results in high accuracy with large energy savings.

For the opposite case (8-bit to 12-bit), accuracy does not improve much from the 8-bit case

even though 2/3 of the total iterations (15 iterations) used 12-bit. This is because small

error propagates through the network when the state xij of CeNN is in the linear region

(|xij| < 1) [see (7.17)] i.e. at the early stage of the dynamics. Hence, higher precision at

early stage helps improve accuracy. The adaptive precision control (12-bit to 8-bit) saves

48.12% of energy compared to the 12-bit case while using 8-bit saves 64.16% with more

quality degradation.

7.7 Summary of the Chapter

This chapter analyzes the error characteristic of CeNN based image processing to evaluate

the potential of energy-accuracy tradeoff. The algorithmic analysis shows that errors di-

rectly modulate the cell dynamics and their impacts not only degrade the image quality but

123

also affect the convergence time (performance). In particular, the effect of error is more

prominent for applications with higher feedback weights as error propagates more strongly

through the network. The algorithmic analysis has been coupled with circuit level power,

performance, and error rate simulation of digital CeNN cells considering reduced precision

and voltage scaling. It is observed that reduced precision provides a better energy-accuracy

tradeoff than voltage over scaling, particularly, for applications with strong feedback tem-

plate. Application dependent precision and voltage control was observed to be an effective

approach to reduce CeNN power at target performance with graceful quality degradation.

124

CHAPTER 8

CONCLUSION

In this thesis, design algorithms and realization of energy-efficient hardware platforms for

complex system learning are presented. Two different approaches are explored for the same

purpose, model-based and data-driven learning. Each approach has its own advantages,

thus, one needs to select a proper learning method depending on the type of the underlying

system.

For the model-based approach, the method to efficiently understand thermal behavior

of an IC is studied and related hardware components are evaluated. Post-silicon thermal

analysis is a challenge as physical uncertainties are present during the chip fabrication and

with different packaging. The cohesive method of frequency-domain analysis and interpo-

lation is presented to simplify learning process. Some systems, however, are modeled by

highly nonlinear functions making it difficult to simplify the mathematical model. For these

systems, a time-consuming numerical simulation should be performed. Therefore, the chal-

lenge is to accelerate the simulation in hardware platforms. To tackle this, a programmable

accelerator is presented for simulating coupled differential equations. This solver exploits

cellular nonlinear network (CeNN) as a computing model supported by novel system ar-

chitecture to handle nonlinear computations. As a result, the proposed system significantly

improves performance in solving wide classes of differential equations by innovating sys-

tem design techniques at different levels.

For those cases where large set of data can be collected, i.e. IoT-based systems, the

data-driven approach such as deep learning can be a good candidate to understand an un-

known system or solve a complex problem. As the number of computations exponentially

increases with the size of the network in deep neural network (DNN), the energy-efficiency

becomes a critical factor to utilize DNN as an embedded computing solution. Accord-

125

ingly, the design algorithms for low-power NN accelerators suited for embedded platforms

are presented. To achieve this, approximate computing is utilized during the inference so

that the energy consumption of accelerators can be significantly reduced. The challenge

in allowing approximation in NN algorithms is the reliability; maintaining high accuracy

in the presence of approximation error. To tackle this challenge, the mathematical analy-

sis on how hardware-induced error propagates through a feedback-type NN, called cellular

nonlinear network (CeNN) is performed. For more widely accepted NNs, an automated

algorithm which selects synapses with different approximation level is presented and is

extended to dynamic precision control depending on time-varying inputs for RNN.

In conclusion, I believe that combining both approaches (heterogeneous learning plat-

form), model- and data-driven methods, will allow better learning of complex systems or

faster exploration of solution spaces for given differential equations with high efficiency.

For instance, pollution in the water can be modeled by a set of transport equations. How-

ever, due to environmental variabilities, actual spread of wastewater cannot be accurately

modeled. Thus, the model might be supported by analyzing real data points by capturing

aerial images and processing with deep convolutional neural network. By doing this, we

will be able to perform in-situ fine-tuning of parameters in the given mathematical model

or even discover additional physical expressions for unkown phenomena. This simple ex-

ample can be extended to wide classes of problems and it will be helpful to find impactful

applications of the heterogeneous learning platform.

126

REFERENCES

[1] R. C. Jaeger and T. N. Blalock, Microelectronic circuit design. 2006.

[2] B. Fang, A. G. Kelkar, S. M. Joshi, and H. R. Pota, “Modeling, system identi-
fication, and control of acoustic-structure dynamics in 3-D enclosures,” Control
Engineering Practice, vol. 12, no. 8, pp. 989–1004, 2004.

[3] M. Cho, W. Song, S. Yalamanchili, and S. Mukhopadhyay, “Thermal system iden-
tification (TSI): A methodology for post-silicon characterization and prediction of
the transient thermal field in multicore chips,” in IEEE Semiconductor Thermal
Measurement and Management Symposium (SEMI-THERM), 2012, pp. 118–124.

[4] G. Louppe, K. Cho, C. Becot, and K. Crammer, “QCD-aware recursive neural
networks for jet physics,” Computing Research Repository (CoRR), vol. arXiv:
1702.00748v1, 2017.

[5] C. Evans, P. J. Fleming, D. C. Hill, J. P. Norton, I. Pratt, D. Rees, and K. Rodriguez-
Vazquez, “Application of system identification techniques to aircraft gas turbine
engines,” Control Engineering Practice, vol. 9, no. 2, pp. 135–148, 2001.

[6] M. Wu, S. V. David, and J. L. Gallant, “Complete functional charaterization of
sensory neurons by system identification,” Annual Review of Neuroscience, vol.
29, pp. 477–505, 2006.

[7] K. D. Cole, J. V. Beck, A. Haji-Skeikh, and B. Litkouhi, Heat conduction using
Green's functions. CRC Press, 2011.

[8] S. Kondo and T. Miura, “Reaction-diffusion model as a framework for understand-
ing biological pattern formation,” Science, vol. 329, no. 5999, pp. 1616–1620,
2010.

[9] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames, “Models, feedback
control, and open problems of 3D bipedal robotic walking,” Automatica, vol. 50,
pp. 1955–1988, 2014.

[10] S. A. Bortoff, “Path planning for UAVs,” in Proceedings of the American Control
Conference, IEEE, 2000, pp. 364–368.

[11] M. H. Gutknecht, “A brief introduction to Krylov space methods for solving linear
systems,” in Frontiers of Computational Science: Proceedings of the International
Symposium on Frontiers of Computational Science, Y. Kaneda, H. Kawamura, and

127

M. Sasai, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 53–62,
ISBN: 978-3-540-46375-7.

[12] W. F. Ford and J. A. Pennline, “Accelerated convergence in Newton's method,”
SIAM Review, vol. 38, no. 4, pp. 658–659, 1996.

[13] S. Chen, S. A. Billings, and P. M. Grant, “Non-linear system identification using
neural networks,” International Journal of Control, vol. 51, no. 6, pp. 1191–1214,
1990.

[14] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 G-ops/s mo-
bile coprocessor for deep neural networks,” in IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), 2014, pp. 696–701.

[15] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello, “Hard-
ware accelerated convolutional neural networks for synthetic vision systems,” in
IEEE International Symposium on Circuits and Systems (ISCAS), 2010, pp. 257–
260.

[16] Y. Hurmuzlu, F. Genot, and B. Brogliato, “Modeling, stability and control of biped
robots - a general framework,” Automatica, vol. 40, pp. 1647–1664, 2004.

[17] B. Li and Z. Shao, “A unified motion planning method for parking an autonomous
vehicle in the presence of irregularly placed obstacles,” Knowledge-Based Systems,
vol. 86, pp. 11–20, 2015.

[18] T. Luukkonen, “Modelling and control of quadcopter,” Aalto University, Tech.
Rep., 2011.

[19] F. Rothganger, C. D. James, and J. B. Aimone, “Computing with dynamical sys-
tem,” IEEE International Conference on Rebooting Computing (ICRC), pp. 1–3,
2016.

[20] S. Bandini, G. Mauri, G. Pavesi, and C. Simone, “Computing with a distributed
reaction-diffusion model,” in Machines, Computations, and Universality: 4th In-
ternational Conference, MCU 2004, Saint Petersburg, Russia, September 21-24,
2004, Revised Selected Papers, M. Margenstern, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 93–103, ISBN: 978-3-540-31834-7.

[21] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, “Information processing
capacity of dynamical systems,” Scientific Reports, vol. 2, 514 EP –, Jul. 2012.

[22] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R.
Lester, A. D. Brown, and S. B. Furber, “SpiNNaker: A 1-W 18-core system-on-

128

chip for massively-parallel neural network simulation,” IEEE Journal of Solid-State
Circuits, vol. 48, no. 8, pp. 1943–1953, 2013.

[23] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R.
Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S.
Modha, “A million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014. eprint:
http://science.sciencemag.org/content/345/6197/668.
full.pdf.

[24] P. C. Matthews, R. E. Mirollo, and S. H. Strogatz, “Dynamics of a large system of
coupled nonlinear oscillators,” Physica D: Nonlinear Phenomena, vol. 52, no. 2,
pp. 293–331, 1991.

[25] D. E. Nikonov, G. Csaba, W. Porod, T. Shibata, D. Voils, D. Hammerstrom, I. A.
Young, and G. I. Bourianoff, “Coupled-oscillator associative memory array oper-
ation for pattern recognition,” IEEE Journal on Exploratory Solid-State Computa-
tional Devices and Circuits, vol. 1, pp. 85–93, 2015.

[26] N. Shukla, A. Parihar, M. Cotter, M. Barth, X. Li, N. Chandramoorthy, H. Paik,
D. G. Schlom, V. Narayanan, A. Raychowdhury, and S. Datta, “Pairwise coupled
hybrid vanadium dioxide-MOSFET (HVFET) oscillators for non-boolean asso-
ciative computing,” in 2014 IEEE International Electron Devices Meeting, 2014,
pp. 28.7.1–28.7.4, ISBN: 0163-1918.

[27] A. Parihar, N. Shukla, S. Datta, and A. Raychowdhury, “Computing with dynamical
systems in the post-CMOS era,” in 2016 IEEE Photonics Society Summer Topical
Meeting Series (SUM), 2016, pp. 110–111.

[28] J. Krüger and R. Westermann, “Linear algebra operators for GPU implementation
of numerical algorithms,” in ACM Transactions on Graphics (TOG), ACM, vol. 22,
2003, pp. 908–916.

[29] W. R. D. Boyd III, “Massively parallel algorithms for method of characteristics
neutral particle transport on shared memory computer architectures,” PhD thesis,
Massachusetts Institute of Technology, 2014.

[30] O. Storaasli, “Computing faster without CPUs: Scientific applications on a re-
configurable, FPGA-based hypercomputer,” in 6th Military and Aerospace Pro-
grammable Logic Devices (MAPLD) Conference, 2003.

[31] L. Zhuo and V. K. Prasanna, “High performance linear algebra operations on re-
configurable systems,” in Proceedings of the 2005 ACM/IEEE Conference on Su-
percomputing, IEEE Computer Society, 2005, pp. 1–12.

129

http://science.sciencemag.org/content/345/6197/668.full.pdf
http://science.sciencemag.org/content/345/6197/668.full.pdf

[32] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. S.
Trew, A. McCormick, G. Smart, et al., “Maxwell-a 64 FPGA supercomputer.,”
Adaptive Hardware Systems, vol. 7, pp. 287–294, 2007.

[33] A. D. Little and A. C. Soudack, “On the analog computer solution of first-order
partial differential equations,” Mathematics and Computers in Simulation, vol. 7,
no. 4, pp. 190–194, 1965.

[34] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and S. B.
Furber, “SpiNNaker: Mapping neural networks onto a massively-parallel chip mul-
tiprocessor,” 2008 IEEE International Joint Conference on Neural Networks, pp. 2849–
2856, 2008.

[35] L. O. Chua and L. Yang, “Cellular neural network: Theory,” IEEE Trans. Circuits
Syst, vol. 35, pp. 1257–1272, 1988.

[36] L. O. Chua, M. Hasler, G. S. Moschytz, and J. Neirynck, “Autonomous cellular
neural networks: A unified paradigm for pattern formation and active wave prop-
agation,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 42, no. 10, pp. 559–577, 1995.

[37] T. Roska, L. O. Chua, D. Wolf, T. Kozek, R. Tetzlaff, and F. Puffer, “Simulat-
ing nonlinear waves and partial differential equations via CNN–part i: Basic tech-
niques,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 42, no. 10, pp. 807–815, 1995.

[38] F. Gollas and R. Tetzlaff, “Modeling complex systems by reaction-diffusion cel-
lular nonlinear networks with polynomial weight-functions,” in 2005 9th Interna-
tional Workshop on Cellular Neural Networks and Their Applications, IEEE, 2005,
pp. 227–231.

[39] A. Slavova and P. Zecca, “Complex behavior of polynomial FitzHugh–Nagumo
cellular neural network model,” Nonlinear Analysis: Real World Applications, vol.
8, no. 4, pp. 1331–1340, 2007.

[40] A. C. B. Delbem, L. G. Correa, and L. Zhao, “Design of associative memories using
cellular neural networks,” Neurocomputing, vol. 72, no. 10, pp. 2180–2188, 2009.

[41] B. Zineddin, Z. Wang, and X. Liu, “Cellular neural networks, the Navier–Stokes
equation, and microarray image reconstruction,” IEEE Transactions on Image Pro-
cessing, vol. 20, no. 11, pp. 3296–3301, 2011.

[42] S. Kocsárdi, Z. Nagy, Á. Csı́k, and P. Szolgay, “Two-dimensional compressible
flow simulation on emulated digital CNN-UM,” in 2008 11th International Work-

130

shop on Cellular Neural Networks and Their Applications, IEEE, 2008, pp. 169–
174.

[43] J. C. Chedjou and K. Kyamakya, “A universal concept based on cellular neural
networks for ultrafast and flexible solving of differential equations,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 26, no. 4, pp. 749–762,
2015.

[44] S. Lee, M. Kim, K. Kim, J.-Y. Kim, and H.-J. Yoo, “24-GOPS 4.5-digital cellu-
lar neural network for rapid visual attention in an object-recognition SoC,” IEEE
Transactions on Neural Networks, vol. 22, no. 1, pp. 64–73, 2011.

[45] P. Kinget and M. S. J. Steyaert, “A programmable analog cellular neural network
cmos chip for high speed image processing,” IEEE Journal of Solid-State Circuits,
vol. 30, no. 3, pp. 235–243, 1995.

[46] A. Rodrı́guez-Vázquez, G. Liñán-Cembrano, L Carranza, E. Roca-Moreno, R. Carmona-
Galán, F. Jiménez-Garrido, R. Domı́nguez-Castro, and S. E. Meana, “ACE16k: The
third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 5, pp. 851–
863, 2004.

[47] B. E. Shi and T. Luo, “Spatial pattern formation via reaction-diffusion dynamics
in 32×32×4 CNN chip,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 51, no. 5, pp. 939–947, 2004.

[48] S. S. Haykin, Neural networks and learning machines, 3rd. 2009, pp. 152–257.

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems 25, 2012, pp. 1097–1105.

[50] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[51] H. Jaeger, “A tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the “echo state network” approach,” German National Research Center for
Information Technology, Tech. Rep., 2002.

[52] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[53] O. Karan, C. Bayraktar, H. Gumuskaya, and B. Karlik, “Diagnosing diabetes using
neural networks on small mobile devices,” Expert Systems with Applications, vol.
39, no. 1, pp. 54–60, 2012.

131

[54] D. Janglova, “Neural networks in mobile robot motion,” International Journal of
Advanced Robotic Systems, vol. 1, no. 1, pp. 15–22, 2004.

[55] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy, B. Martini, and E. Culurciello,
“An efficient implementation of deep convolutional neural networks on a mobile
coprocessor,” in IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS), 2014, pp. 133–136.

[56] F. Rosenblatt, “The perceptron-a perceiving and recognizing automaton,” Cornell
Aeronautical Laboratory, Tech. Rep. 85-460-1, 1957.

[57] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neu-
ral Networks, vol. 4, no. 2, pp. 251–257, 1991.

[58] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[59] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the mar-
quardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989–
993, 1994.

[60] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proc. International Conference on Artificial Intelligence
and Statistics (AISTATS), Society for Artificial Intelligence and Statistics, 2010,
pp. 249–256.

[61] L. Gong, C. Liu, Y. Li, and Y. Fuqing, “Training feed-forward neural networks
using the gradient descent method with the optimal stepsize,” Journal of Computa-
tional Information Systems, vol. 8, no. 4, pp. 1359–1371, 2012.

[62] D. J. Montana and L. Davis, “Training feedforward neural networks using genetic
algorithms,” in Proc. International Joint Conference on Artificial Intelligence, Mor-
gan Kaufmann Publishers Inc., 1989, pp. 762–767.

[63] P. Koehn, “Combining genetic algorithms and neural networks: The encoding prob-
lem,” Master’s thesis, The University of Tennessee, Knoxville, 1994.

[64] A. R. M. Kattan, R. Abdullah, and R. A. Salam, “Training feed-forward neural
networks using a parallel genetic algorithm with the best must survive strategy,” in
Proc. International Conference on Intelligent Systems, Modelling and Simulation,
IEEE Computer Society, 2010, pp. 96–99, ISBN: 978-0-7695-3973-7.

[65] J.-R. Zhang, J. Zhang, T.-M. Lok, and M. R. Lyu, “A hybrid particle swarm optimizationback-
propagation algorithm for feedforward neural network training,” Applied Mathe-
matics and Computation, vol. 185, no. 2, pp. 1026–1037, 2007.

132

[66] S. Mirjalili, S. Z. M. Hashim, and H. M. Sardroudi, “Training feedforward neu-
ral networks using hybrid particle swarm optimization and gravitational search al-
gorithm,” Applied Mathematics and Computation, vol. 218, no. 22, pp. 11 125–
11 137, 2012.

[67] Y. V. Venkatesh and S. K. Raja, “On the classification of multispectral satellite im-
ages using the multilayer perceptron,” Pattern Recognition, vol. 36, no. 9, pp. 2161–
2175, 2003.

[68] T. Raiko, H. Valpola, and Y. Lecun, “Deep learning made easier by linear transfor-
mations in perceptrons,” in Proc. International Conference on Artificial Intelligence
and Statistics (AISTATS), vol. 22, 2012, pp. 924–932.

[69] A. J. Meade Jr. and A. A. Fernandez, “Solution of nonlinear ordinary differen-
tial equations by feedforward neural networks,” Mathematical and Computer Mod-
elling, vol. 20, no. 9, pp. 19–44, 1994.

[70] L. P. Aarts and P. van der Veer, “Neural network method for solving partial differ-
ential equations,” Neural Processing Letters, vol. 14, no. 3, pp. 261–271, 2001.

[71] S. Ferrari and R. F. Stengel, “Smooth function approximation using neural net-
works,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 24–38, 2005.

[72] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–
211, 1990.

[73] G. V. Puskorius, L. A. Feldkamp, and L. I. Davis Jr., “Dynamic neural network
methods applied to on-vehicle idle speed control,” Proceedings of IEEE, vol. 84,
no. 10, pp. 1407–1420, 1996.

[74] H. T. Siegelmann and E. D. Sontag, “Turing computability with neural nets,” Ap-
plied Mathematics Letters, vol. 4, no. 6, pp. 77–80, 1991.

[75] R. J. Williams and J. Peng, “An efficient gradient-based algorithm for on-line train-
ing of recurrent network trajectories,” Neural Computation, vol. 2, no. 4, pp. 490–
501, 1990.

[76] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully
recurrent neural networks,” Neural Computation, vol. 1, no. 2, pp. 270–280, 1989.

[77] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-
dient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2,
pp. 157–166, 1994.

133

[78] J. Martens and I. Sutskever, “Learning recurrent neural networks with Hessian-free
optimization,” in Proc. International Conference on Machine Learning (ICML),
2011.

[79] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems by contin-
uous time recurrent neural networks,” Neural Networks, vol. 6, no. 6, pp. 801–806,
1993.

[80] L. Jin, P. N. Nikiforuk, and M. M. Gupta, “Approximation of discrete-time state-
space trajectories using dynamic recurrent neural networks,” IEEE Transactions on
Automatic Control, vol. 40, no. 7, pp. 1266–1270, 1995.

[81] X.-D. Li, J. K. L. Ho, and T. W. S. Chow, “Approximation of dynamical time-
variant systems by continuous-time recurrent neural networks,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 52, no. 10, pp. 656–660, 2005.

[82] P. Tino, B. G. Horne, C. L. Giles, and P. C. Collingwood, “Finite state machines
and recurrent neural networks – automata and dynamical systems approaches,” in
Neural Networks and Pattern Recognition, Academic Press, 1998, pp. 171–220.

[83] K. Arai and R. Nakano, “Stable behavior in a recurrent neural network for a finite
state machine,” Neural Networks, vol. 13, no. 6, pp. 667–680, 2000.

[84] I. Sutskever, J. Martens, and G. Hinton, “Generating text with recurrent neural
networks,” in Proc. International Conference on Machine Learning (ICML), Om-
nipress, 2011, pp. 1017–1024.

[85] A. Graves, “Generating sequences with recurrent neural networks,” Computing Re-
search Repository (CoRR), vol. arXiv: 1308.0850, 2013.

[86] S. Miyoshi, H.-F. Yanai, and M. Okada, “Associative memory by recurrent neural
networks with delay elements,” Neural Networks, vol. 17, no. 1, pp. 55–63, 2004.

[87] Z. Zeng and J. Wang, “Design and analysis of high-capacity associative memories
based on a class of discrete-time recurrent neural networks,” IEEE Transactions
on Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 38, no. 6, pp. 1525–
1536, 2008.

[88] M. Stevenson, R. Winter, and B. Widrow, “Sensitivity of feedforward neural net-
works to weight errors,” IEEE Transactions on Neural Networks, vol. 1, no. 1,
pp. 71–80, 1990.

[89] A. F. Murray and P. J. Edwards, “Enhanced MLP performance and fault tolerance
resulting from synaptic weight noise during training,” IEEE Transactions on Neural
Networks, vol. 5, no. 5, pp. 792–802, 1994.

134

[90] S. Cavalieri and O. Mirabella, “A novel learning algorithm which improves the
partial fault tolerance of multilayer neural networks,” Neural Networks, vol. 12, no.
1, pp. 91–106, 1999.

[91] J. P.-F. Sum, C.-S. Leung, and K. I.-J. Ho, “On-line node fault injection training
algorithm for MLP networks: Objective function and convergence analysis,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 23, no. 2, pp. 211–
222, 2012.

[92] K.-C. Jim, C. L. Giles, and B. G. Horne, “An analysis of noise in recurrent neu-
ral networks: Convergence and generalization,” IEEE Transactions on Neural Net-
works, vol. 7, no. 6, pp. 1424–1438, 1996.

[93] Z. Wu, H. Su, J. Chu, and W. Zhou, “Improved delay-dependent stability condition
of discrete recurrent neural networks with time-varying delays,” IEEE Transactions
on Neural Networks, vol. 21, no. 4, pp. 692–697, 2010.

[94] Y. Shen and J. Wang, “Robustness analysis of global exponential stability of recur-
rent neural networks in the presence of time delays and random disturbances,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 23, no. 1, pp. 87–96,
2011.

[95] J. Cao, “Global stability conditions for delayed CNNs,” IEEE Transcations on
Circuits and Systems-I: Fundamental Theory and Applications, vol. 48, no. 11,
pp. 1330–1333, 2001.

[96] V. Singh, “Global robust stability of delayed neural networks: Estimating upper
limit of norm of delayed connection weight matrix,” Chaos, Solitons and Fractals,
vol. 32, no. 1, pp. 259–263, 2007.

[97] Y. He, M. Wu, and J.-H. She, “An improved global asymptotic stability criterion
for delayed cellular neural networks,” IEEE Transactions on Neural Networks, vol.
17, no. 1, pp. 250–252, 2006.

[98] S. Arik, “New criteria for global robust stability of delayed neural networks with
norm-bounded uncertainties,” IEEE Transactions on Neural Networks and Learn-
ing Systems, vol. 25, no. 6, pp. 1045–1052, 2014.

[99] R. Yang, H. Gao, and P. Shi, “Novel robust stability criteria for stochastic Hop-
field neural networks with time delays,” IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics, vol. 39, no. 2, pp. 467–474, 2008.

[100] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Akselrod,
and S. Talay, “Large-scale FPGA-based convolutional networks,” in. in Machine
Learning on Very Large Data Sets: Cambridge University Press, 2011.

135

[101] P.-H. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun, and E. Culurciello, “Neu-
Flow: Dataflow vision processing system-on-a-chip,” in IEEE International Mid-
west Symposium on Circuits and Systems (MWSCAS), 2012, pp. 1044–1047.

[102] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and
O. Temam, “DaDianNao: A machine-learning supercomputer,” in Proc. IEEE/ACM
International Symposium on Microarchitecture (Micro), 2014, pp. 683–688.

[103] F. Conti and L. Benini, “A ultra-low-energy convolution engine for fast brain-
inspired vision in multicore clusters,” in Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2015, pp. 683–688.

[104] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini, “Origami:
A convolutional network accelerator,” in Proc. Great Lakes Symposium on VLSI,
ACM, 2015, pp. 199–204, ISBN: 978-1-4503-3474-7.

[105] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, “A
digital neurosynaptic core using embedded crossbar memory with 45pj per spike in
45nm,” in IEEE Custom Integrated Circuits Conference (CICC), 2011, pp. 1–4.

[106] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N.
Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B.
Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “Truenorth: Design
and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, no. 10, pp. 1537–1557, 2015.

[107] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R.
Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S.
Modha, “A million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[108] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[109] Y. LeCun, F.-J. Huang, and L. Bottou, “Learning methods for generic object recog-
nition with invariance to pose and lighting,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2004, pp. 97–104.

[110] J. L. Holt and J.-N. Hwang, “Finite precision error analysis of neural network hard-
ware implementations,” IEEE Transactions on Computers, vol. 42, no. 3, pp. 281–
290, 1993.

136

[111] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “AxNN: Energy-efficient
neuromorphic systems using approximate computing,” in Proc. International Sym-
posium on Low Power Electronics and Design (ISLPED), 2014, pp. 27–32, ISBN:
978-1-4503-2975-0.

[112] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with
limited numerical precision,” Computing Research Repository (CoRR), vol. abs/1502.02551,
2015.

[113] U. Lotric and P. Bulic, “Applicability of approximate multipliers in hardware neural
networks,” Neurocomputing, vol. 96, pp. 57–65, 2012.

[114] M. Horowitz, “Scaling, power and the future of CMOS,” in Proc. 20th International
Conference on VLSI Design Held Jointly with 6th International Conference: Em-
bedded Systems (VLSID), Washington, DC, USA: IEEE Computer Society, 2007,
pp. 23–29.

[115] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4,
pp. 23–29, 1999.

[116] H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil,
“Hotspot-limited microprocessors: Direct temperature and power distribution mea-
surements,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 56–65, 2007.

[117] M. Janicki, J. H. Collet, A. Louri, and A. Napieralski, “Hot spots and core-to-
core thermal coupling in future multi-core architectures,” in 2010 26th Annual
IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-
THERM), 2010, pp. 205–210.

[118] I. Paul, S. Manne, M. Arora, W. L. Bircher, and S. Yalamanchili, “Cooperative
boosting: Needy versus greedy power management,” in Proc. 40th Annual Interna-
tional Symposium on Computer Architecture (ISCA), Tel-Aviv, Israel: ACM, 2013,
pp. 285–296, ISBN: 978-1-4503-2079-5.

[119] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R.
Stan, “HotSpot: A compact thermal modeling methodology for early-stage VLSI
design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
14, no. 5, pp. 501–513, 2006.

[120] S. Im and K. Banerjee, “Full chip thermal analysis of planar (2-D) and vertically in-
tegrated (3-D) high performance ICs,” in Proc. IEEE Int. Electron Devices Meeting
(IEDM), 2000, pp. 727–730.

137

[121] Y. Zhan and S. S. Sapatnekar, “High-efficiency green function-based thermal sim-
ulation algorithms,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 9, pp. 1661–1675, 2007.

[122] J. Kung, I. Han, S. Sapatnekar, and Y. Shin, “Thermal signature: A simple yet
accurate thermal index for floorplan optimization,” in Proc. 48th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2011, pp. 108–113.

[123] H. Chang and S. S. Sapatnekar, “Full-chip analysis of leakage power under pro-
cess variations, including spatial correlations,” in Proc. 42nd Design Automation
Conference (DAC), 2005., 2005, pp. 523–528.

[124] “ASTM: Standard test method for thermal transmission properties of thermally
conductive electrical insulation materials,” ASTM International, Tech. Rep. D 5470-
12, 2012.

[125] A. Chowdhury, B. Guenin, C. Woo, S. Kim, and S. Lee, “The effect of die attach
layer delamination on the thermal performance of plastic packages,” in Proc. 48th
Electronic Components and Technology Conference (ECTC), 1998, pp. 1140–1147.

[126] J. Abdul, Y. Wang, N. Guo, A. U. Rehman, and K. C. Chan, “Ultrasonic evaluation
of the silicon/copper interfaces in IC packaging,” IEEE Transactions on Electronics
Packaging Manufacturing (TEPM), vol. 26, no. 3, pp. 221–227, 2003.

[127] J. Long, S. O. Memik, G. Memik, and R. Mukherjee, “Thermal monitoring mech-
anisms for chip multiprocessors,” ACM Trans. Archit. Code Optim., vol. 5, no. 2,
9:1–9:33, Sep. 2008.

[128] R. Cochran and S. Reda, “Spectral techniques for high-resolution thermal charac-
terization with limited sensor data,” in Proc. 46th ACM/IEEE Design Automation
Conference, 2009, pp. 478–483.

[129] Y. Zhang, A. Srivastava, and M. Zahran, “Chip level thermal profile estimation
using on-chip temperature sensors,” in Proc. IEEE International Conference on
Computer Design (ICCD), 2008, pp. 432–437.

[130] S. Sharifi and T. S. Rosing, “Accurate direct and indirect on-chip temperature sens-
ing for efficient dynamic thermal management,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 29, no. 10, pp. 1586–
1599, 2010.

[131] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza, S.
Meyers, E. Fang, and R. Kumar, “An integrated quad-core opteron processor,” in
Proc. IEEE International Solid-State Circuits Conference (ISSCC), 2007, pp. 102–
103.

138

[132] J. Shor, K. Luria, and D. Zilberman, “Ratiometric BJT-based thermal sensor in
32nm and 22nm technologies,” in Proc. IEEE International Solid-State Circuits
Conference (ISSCC), 2012, pp. 210–212.

[133] A. Nowroz, G. Woods, and S. Reda, “Improved post-silicon power modeling us-
ing AC lock-in techniques,” in Proc. 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2011, pp. 101–107.

[134] W. Yueh, K. Z. Ahmed, and S. Mukhopadhyay, “Field programmable thermal emu-
lator (FPTE): An all-silicon test structure for thermal characterization of integrated
circuits,” in IEEE Semiconductor Thermal Measurement and Management Sympo-
sium (SEMI-THERM), 2014, pp. 66–71.

[135] J. Kung, M. Cho, S. Yalamanchili, and S. Mukhopadhyay, “On-line real-time tem-
perature and power estimation of an IC using time-domain thermal filters,” in Proc.
IEEE Electrical Performance of Electronic Packaging and Systems (EPEPS), 2013,
pp. 199–202.

[136] M. A. P. Pertijs, A. Niederkorn, X. Ma, B. McKillop, A. Bakker, and J. H. Huijsing,
“A CMOS smart temperature sensor with a 3σ; inaccuracy of ±0.5◦C from -50◦C
to 120◦C,” IEEE Journal of Solid-State Circuits (JSSC), vol. 40, no. 2, pp. 454–
461, 2005.

[137] P. Chen, C. C. Chen, T. K. Chen, and S. W. Chen, “A time domain mixed-mode
temperature sensor with digital set-point programming,” in Proc. IEEE Custom In-
tegrated Circuits Conference (CICC), 2006, pp. 821–824.

[138] T. Yang, S. Kim, P. R. Kinget, and M. Seok, “16.4 0.6-to-1.0V 279µm2, 0.92µW
temperature sensor with less than +3.2/−3.4◦C error for on-chip dense thermal
monitoring,” in Proc. IEEE International Solid-State Circuits Conference (ISSCC),
2014, pp. 282–283.

[139] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos, “Modeling
within-die spatial correlation effects for process-design co-optimization,” in Proc.
6th International Symposium on Quality of Electronic Design (ISQED), Washing-
ton, DC, USA: IEEE Computer Society, 2005, pp. 516–521, ISBN: 0-7695-2301-3.

[140] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-
level power analysis and optimizations,” in Proc. 27th Annual International Sym-
posium on Computer Architecture (ISCA), 2000, pp. 83–94.

[141] S. Gupta and F. N. Najm, “Power modeling for high-level power estimation,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 1, pp. 18–
29, 2000.

139

[142] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework for multi-
core and manycore architectures,” in Proc. 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2009, pp. 469–480.

[143] Nangate, Sunnyvale, CA, 45nm open cell library, http://www.nangate.
com/.

[144] Synopsys, Mountain View, CA, Design compiler user guide, 2010.

[145] Cadence, San Jose, CA, Encounter digital implementation system menu reference,
2011.

[146] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, “Using Krylov methods in the
solution of large-scale differential-algebraic systems,” SIAM Journal on Scientific
Computing, vol. 15, no. 6, pp. 1467–1488, 1994.

[147] T. Han, Y. Han, et al., “Solving large scale nonlinear equations by a new ODE
numerical integration method,” Applied Mathematics, vol. 1, no. 03, p. 222, 2010.

[148] J. Michalakes and M. Vachharajani, “GPU acceleration of numerical weather pre-
diction,” Parallel Processing Letters, vol. 18, no. 4, pp. 531–548, 2008.

[149] K. M. Cuomo and A. V. Oppenheim, “Circuit implementation of synchronized
chaos with applications to communications,” Physical Review Letters, vol. 71, no.
1, p. 65, 1993.

[150] N. Foster and R. Fedkiw, “Practical animation of liquids,” in Proceedings of the
28th annual conference on Computer graphics and interactive techniques, ACM,
2001, pp. 23–30.

[151] N Chakrabarti and G. Lakhina, “Collisional Rayleigh-Taylor instability and shear-
flow in equatorial Spread-F plasma,” Annales Geophysicae, vol. 21, pp. 1153–1157,
2003.

[152] L. Li, “A low order acceleration scheme for solving the neutron transport equation,”
Master’s thesis, Massachusetts Institute of Technology, 2013.

[153] R. Bialecki, A. J. Kassab, and A. Fic, “Proper orthogonal decomposition and modal
analysis for acceleration of transient FEM thermal analysis,” International Journal
of Numerical Methods in Engineering, vol. 62, no. 6, pp. 774–797, 2005.

[154] Z. Nagy, Z. Vörösházi, and P. Szolgay, “Emulated digital CNN-UM solution of
partial differential equations,” International Journal of Circuit Theory and Appli-
cations, vol. 34, no. 4, pp. 445–470, 2006.

140

http://www.nangate.com/
http://www.nangate.com/

[155] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O.
Temam, “ShiDianNao: Shifting vision processing closer to the sensor,” in ACM
SIGARCH Computer Architecture News, ACM, vol. 43, 2015, pp. 92–104.

[156] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-based
accelerator design for deep convolutional neural networks,” in Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ACM, 2015, pp. 161–170.

[157] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini, “Origami:
A convolutional network accelerator,” in Proceedings of the 25th edition on Great
Lakes Symposium on VLSI, ACM, 2015, pp. 199–204.

[158] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-centric accel-
erator design for convolutional neural networks,” in 2013 IEEE 31st International
Conference on Computer Design (ICCD), IEEE, 2013, pp. 13–19.

[159] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with
limited numerical precision,” CoRR, abs/1502.02551, vol. 392, 2015.

[160] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” in Intl. Symp. on Computer Architec-
ture (ISCA), IEEE, 2016.

[161] S. Bandini, G. Mauri, G. Pavesi, and C. Simone, “Computing with a distributed
reaction-diffusion model,” in International Conference on Machines, Computa-
tions, and Universality, Springer, 2004, pp. 93–103.

[162] A. L. Hodgkin and A. F. Huxley, “The dual effect of membrane potential on sodium
conductance in the giant axon of Loligo,” The Journal of physiology, vol. 116, no.
4, p. 497, 1952.

[163] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural
Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[164] Hybrid Memory Cube Consortium, Hybrid memory cube specification 1.0, 2013.

[165] Nangate FreePDK15 Open Cell Library, http : / / www . nangate . com /
?page_id=2328.

[166] A. Shafaei, Y. Wang, X. Lin, and M. Pedram, “Fincacti: Architectural analysis and
modeling of caches with deeply-scaled finfet devices,” in 2014 IEEE Computer
Society Annual Symposium on VLSI, IEEE, 2014, pp. 290–295.

141

http://www.nangate.com/?page_id=2328
http://www.nangate.com/?page_id=2328

[167] Z. Vörösházi, A. Kiss, Z. Nagy, and P. Szolgay, “Implementation of embedded
emulated-digital CNN-UM global analogic programming unit on FPGA and its
application,” International Journal of Circuit Theory and Applications, vol. 36, no.
5-6, pp. 589–603, 2008.

[168] Á. Rodrı́guez-Vázquez, R. Domı́nguez-Castro, F. Jiménez-Garrido, S. Morillas, J.
Listán, L. Alba, C. Utrera, S. Espejo, and R. Romay, “The Eye-RIS CMOS vision
system,” in Analog circuit design, Springer, 2008, pp. 15–32.

[169] A. Savich, M. Moussa, and S. Areibi, “A scalable pipelined architecture for real-
time computation of MLP-BP neural networks,” Microprocessors and Microsys-
tems, vol. 36, no. 2, pp. 138–150, 2012.

[170] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approximate
multiplier with configurable partial error recovery,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2014, pp. 1–4.

[171] MNIST database, http://yann.lecun.com/exdb/mnist/.

[172] C. Szegedy, W. Liu, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” Computing Research Repos-
itory (CoRR), vol. abs/1409.4842, 2014.

[173] Z. C. Lipton, D. C. Kale, C. Elkan, and R. C. Wetzel, “Learning to diagnose with
LSTM recurrent neural networks,” Computing Research Repository (CoRR), vol.
abs/1511.03677, 2015.

[174] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Sequential deep
learning for human action recognition,” in Proc. Second International Conference
on Human Behavior Understanding, ser. HBU’11, Amsterdam, The Netherlands,
2011, pp. 29–39, ISBN: 978-3-642-25445-1.

[175] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback recurrent neural
networks,” in Proc. International Conference on Machine Learning (ICML), 2015.

[176] W. De Mulder, S. Bethard, and M.-F. Moens, “A survey on the application of re-
current neural networks to statistical language modeling,” Computer Speech and
Language, vol. 30, no. 1, pp. 61–98, 2015.

[177] P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[178] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: A local SVM
approach,” in Proc. 17th International Conference on Pattern Recognition (ICPR),
vol. 3, 2004, pp. 32–36.

142

http://yann.lecun.com/exdb/mnist/

[179] A. Nagendran, D. Harper, and M. Shah, New system performs persistent wide-area
aerial surveillance, SPIE Newsroom.

[180] M. Zhang and A. A. Sawchuk, “USC-HAD: A daily activity dataset for ubiquitous
activity recognition using wearable sensors,” in Proc. ACM Conference on Ubiq-
uitous Computing, Pittsburgh, Pennsylvania: ACM, 2012, pp. 1036–1043, ISBN:
978-1-4503-1224-0.

[181] I. Laptev, “On space-time interest points,” Int. J. Computer Vision, vol. 64, no. 2-3,
pp. 107–123, Sep. 2005.

[182] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N.
Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: New features and speed im-
provements,” in Deep Learning Workshop at Neural Information Processing Sys-
tems (NIPS), 2012.

[183] P. Szolgay, I. Szatmari, and K. Laszlo, “A fast fixed point learning method to imple-
ment associative memory on CNNs,” IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, vol. 44, no. 4, pp. 362–366, 1997.

[184] T. Kozek, T. Roska, and L. O. Chua, “Genetic algorithm for CNN template learn-
ing,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Ap-
plications, vol. 40, no. 6, pp. 392–402, 1993.

[185] M. Browne and S. S. Ghidary, “Convolutional neural networks for image process-
ing: An application in robot vision,” in Australian Joint Conference on Artificial
Intelligence, 2003, pp. 641–652.

[186] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two
decades of progress,” Neurocomputing, vol. 74, no. 1-3, pp. 239–255, Dec. 2010.

[187] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa, R. Berner, M. Rivas-Perez, T.
Delbruck, S. C. Liu, R. Douglas, P. Hafliger, G. Jimenez-Moreno, A. C. Ballcels,
T. Serrano-Gotarredona, A. J. Acosta-Jimenez, and B. Linares-Barranco, “Caviar:
A 45k neuron, 5m synapse, 12g connects/s AER hardware sensory-processing-
learning-actuating system for high-speed visual object recognition and tracking,”
IEEE Transactions on Neural Networks, vol. 20, no. 9, pp. 1417–1438, 2009.

[188] L. O. Chua and L. Yang, “Cellular neural network: Theory,” IEEE Transactions on
Circuits and Systems, vol. 35, no. 10, pp. 1257–1272, 1988.

[189] ——, “Cellular neural networks: Applications,” IEEE Transactions on Circuits and
Systems, vol. 35, no. 10, pp. 1273–1290, 1988.

143

[190] D. Feiden and R. Tetzlaff, “Cellular neural networks for motion estimation and
obstacle detection,” Advances in Radio Science, vol. 1, pp. 143–147, 2003.

[191] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 6, pp. 813–823, 2001.

[192] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by optimizing the
necessary precision/range of floating-point arithmetic,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 8, no. 3, pp. 273–286, 2000.

[193] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “IMPACT: Im-
precise adders for low-power approximate computing,” in IEEE/ACM International
Symposium on Low Power Electronics and Design, 2011, pp. 409–414.

[194] L. O. Chua and T. Roska, Cellular neural networks and visual computing: Founda-
tions and applications. 1st ed. Cambridge University Press, 2002, pp. 258–266.

[195] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Transactions on Image
Processing, vol. 13, no. 4, pp. 600–612, 2004.

[196] K. Karacs, G. Y. Cserey, A. Zarandy, P. Szolgay, C. S. Rekeczky, L. Kek, V. Szabo,
G. Pazienza, and T. Roska. (2010). Software library for cellular wave computing
engines.

[197] Q. Gao, P. Forster, K. R. Mobus, and G. S. Moschytz, “Fingerprint recognition
using CNNs: Fingerprint preprocessing,” in Proc. IEEE International Symposium
on Circuits and Systems (ISCAS), vol. 3, 2001, pp. 433–436.

[198] R. Bolle and S. Pankanti, Biometrics, personal identification in networked society:
Personal identification in networked society, A. K. Jain, Ed. Norwell, MA, USA:
Kluwer Academic Publishers, 1998, ISBN: 0792383451.

144

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background on System Learning Methods
	Model-based Learning
	Scientific Modeling: Formulation of Dynamical Systems
	Hardware Platform for Model-based Learning
	Computing Model for Simulating Dynamical Systems

	Data-driven Learning
	Fundamentals of Neural Networks
	Impact of Noise on Neural Networks
	Neuromorphic Hardware

	Highly-Efficient Model-based System Learning on Integrated Circuits
	Background: Thermal Analysis of ICs
	Need for Post-silicon Thermal Analysis
	Related Work on Full-chip Temperature Estimation with Limited Number of Sensors
	Thermal System Identification (TSI)

	MIMO Thermal Filter
	Superposition Principle
	Definition of MIMO Thermal Filter

	Test Chip: Thermal Emulator
	Extraction of MIMO Thermal Filter

	Experimental Results
	Extraction of MIMO Thermal Filter
	Accuracy of the Temperature Prediction Using MIMO Thermal Filter

	Temperature Estimation at Locations Without Temperature Sensors
	Interpolated Thermal Filter
	Experimental Validation

	Hardware Design of MIMO Thermal Filter
	Summary of the Chapter

	A Generic and Energy-Efficient Accelerator for Simulating Dynamical Systems
	Computation Model
	Mapping Linear Systems
	Mapping Nonlinear Systems

	Operation of DE Solver
	System Architecture
	Real-Time Template Weight Update
	Storage of States, Inputs, and Templates
	Processing Engine Architecture

	Dataflow in Proposed DE Solver
	Exploration of Different Dataflow Schemes
	OS Dataflow in Proposed DE Solver

	System Analysis of DE Solver
	Benchmark Differential Equations
	Miss Rate Analysis for Weight Update
	Performance Comparison
	Integration with High-bandwidth Memory
	Power Consumption of DE Solver

	Related Work
	Summary of the Chapter

	Power-Aware Digital Feedforward Neural Network for Learning Static Nonlinear Systems
	Background
	Feedforward Neural Network
	Prior Work on Neural Network Hardware

	Power Analysis of Processing Engines
	Approximate Synapses Selection
	Design Methodology
	Greedy Algorithm for Low-Power Design

	Full System Power Analysis
	Summary of the Chapter

	Energy-Efficient Learning of Dynamic Nonlinear Systems
	Preliminaries
	Recurrent Neural Network
	Training of Recurrent Neural Network
	Approximate Feedforward Neural Network
	Sequence Classification Using RNN

	Approximate Computing in RNN
	Static Approximation in RNN
	Dynamic Approximation in RNN
	Feedback Controller in Digital RNN

	Simulation Results
	Benchmark: Human Activity Recognition
	Operation of Dynamic Approximation
	Digital RNN with Dynamic Approximation
	Energy-Accuracy Trade-off

	Summary of the Chapter

	Analysis of Energy-Accuracy Tradeoff in Digital Cellular Nonlinear Network
	Background
	Fundamentals of Cellular Nonlinear Network (CeNN)
	Dynamic Route of CeNN

	Impact of Error on CeNN
	Impact of Error on Cell Dynamics
	Convergence Time Constraints
	Experimental Characterization of Error Propagation

	Design of a Digital CeNN
	Hardware Design of CeNN
	Power and Bit Error Rate Analysis of Digital CeNN

	Energy-Accuracy Tradeoff in CeNN
	Analysis of Image Quality
	Energy-Accuracy Tradeoff

	Impact of Applications
	Simple Image Processing Applications
	Case Study: Fingerprint Preprocessing Application

	Discussions
	Effect of Truncation in the Templates
	Adaptive Precision Control

	Summary of the Chapter

	Conclusion
	References

