
DESIGN SPACE EXTRAPOLATION AND INVERSE DESIGN USING MACHINE
LEARNING

A Proposal for Doctoral Dissertation
Presented to

The Academic Faculty

By

Osama Waqar Bhatti

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

College of Engineering

Georgia Institute of Technology

December 2022

© Osama Waqar Bhatti 2022

DESIGN SPACE EXTRAPOLATION AND INVERSE DESIGN USING MACHINE
LEARNING

Thesis committee:

Dr. Madhavan Swaminathan, Advisor
Department of Electrical and Computer
Engineering, Department of Material Sci-
ence and Engineering
Georgia Institute of Technology

Dr. Sung-kyu Lim
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Saibal Mukhopadhyay
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Arijit Raychowdhury
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Suresh Sitaraman
Department of Mechanical Engineering
Georgia Institute of Technology

Date approved: October 31, 2022

To my loving mama and papa, without whom this would not have been possible.

ACKNOWLEDGMENTS

I was told I have a knack for solving harder problems easier and making simple prob-

lems harder. That approach is what led me strive for a doctoral degree. I would like to take

a moment and thank the wonderful people who have helped directly and indirectly in my

path to completing the dissertation.

Foremost, I would like to thank my advisor, Prof. Madhavan Swaminathan who con-

stantly instilled in me the drive to perform research tasks with success and provided me

with the opportunity to think outside the box. I have seen him in multiple roles, as a profes-

sor, a researcher, an academic advisor and more importantly an idea communicator. Every

interaction with him is a learning opportunity.

I would like to thank my committee members: Dr. Sung-kyu Lim, Dr. Arijit Ray-

chowdary, Dr. Saibal Mukhopadhyay, Dr. Suresh Sitaraman for their time and valuable

feedback to improve my research. I would like to thank the amazing people I had a chance

to take a class from: Prof. Andrew F. Peterson, Prof. Dhruv Bhatra and Prof. Hua Wang.

I also would like to thank the support and feedback that I received from industry mem-

bers of Center for Advanced Electronics through Machine Learning (CAEML). Especially

to Dr. Jose Hejase, Dr. Jing Wang, Sunil Sudhakaran from Nvidia, Dr. Dale Becker, Dr.

Xianbo Yang from IBM, and Dr. Kemal Aygun from Intel, for their invaluable insights

and feedback to constantly improve my research to address real-world problems. I am also

grateful for the wonderful post-docs I have had a chance to work with: Dr. Mourad Larbi,

Dr. Kallol Roy, Dr. Nikita Ambasana and Dr. Rahul Kumar. I would also like to pay my

regards to my baccalaureate degree advisor Dr. Syed Ali Hassan because of whom I got

the drive to start a doctorate program.

Many of the results in this thesis would not have been possible without the help and

motivation of my friends in the lab: Dr. Huan Yu, Dr. Sridhar Sivapurapu, Dr. Hakki

Mert Torun, Dr. Majid Ahadi, Mutee ur Rehman, Serhat Erdogan, Claudio Alvarez, Se-

iv

unghyup Han, Lakshmi Narasimha, Xiaofan Jia, Xingchen Li, Nahid Amoli, Eric Huang,

Kai-Qi Huang, Venkatesh Avula, Oluwaseyi Akinwande, Prahalad Murali, Pragna Bhaskar,

Pavithra Kuppakone and Pratik Nimbalkar. Thank you for all the joyful memories.

Outside of the academia life, I am also grateful to all the friends I have had a chance

to meet which kept life in Atlanta interesting: Mahmut Burak Okuducu, Ayesha Shahid,

Zulfiqar Zaidi, Wajahat Latif, Ahsan Cheema, Muhammad Ahmad Mustafa, Nazar Abbas

and Rehab Maqsood.

I was also fortunate enough to enjoy the support and company of my friends from

college: Haris Suhail, Uzair Akber, Akber Raza, Mani, Saad, Dogar and Bhalu. You guys

have been there virtually even though were distributed everywhere on the globe achieving

great things.

I owe my deepest gratuitude to my family: my mother Sabah and my father Waqar

Bhatti. It was you who taught me to get up everytime we fall and to keep cracking the

problem. I must also thank my partner in crime my brother Hamza, for always being

there as my punching bag, always showing me there is a better way to do things. He is

younger than me but he is intellectually and emotionally a natural inspiration to learn from.

Making our lives even richer is my sister-in-law Marryam who has been the most fun-

loving yet extremely capable person in regards to her profession and personal life. I also

owe the completion of this accomplishment to my Dada abu (paternal grandfather) Rasheed

Saqi who has deeply impacted my life values of hard work and honesty and my Nana abu

(maternal grandfather) Aman Ullah who has shown me that it is always more important to

be kind than right.

v

This thesis was funded in part by the National Science Foundation under Grant No. CNS

16-24810- Center for Advanced Electronics through Machine Learning(CAEML), 3D

Packaging Research Center (PRC) at Georgia Tech.

vi

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . xii

List of Figures . xiv

List of Acronyms .xviii

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Summary of Contributions . 2

1.3 Outline of the Dissertation . 4

Chapter 2: Literature Survey . 7

2.1 Design Space Exploration methodologies 7

2.2 Machine Learning Preliminaries . 10

2.3 Bayesian update Rule . 13

2.4 Stochastic Models . 14

2.5 Gaussian Processes for Machine Learning 15

2.6 Normalizing Flows . 17

Chapter 3: Neural Network Architecture for Frequency Response Extrapolation 21

vii

3.1 Problem Statement . 21

3.2 Recurrent Neural Networks (RNN) for Spectrum Extrapolation 22

3.3 Hilbert Transform for causal extrapolation 26

3.3.1 HilbertNet Architecture . 28

3.4 Numerical Example 1: Microstrip Circuit 37

3.5 Numerical Example 2: Co-planar waveguide 39

3.6 Numerical Example 3: RF Filter . 40

3.7 Numerical Example 4: Power Delivery Network 42

3.7.1 Discussion on Extrapolation Range 49

3.8 Computation time and cost . 50

3.9 Conclusion . 50

Chapter 4: Design Space Extrapolation Neural Network 52

4.1 Problem Statement . 52

4.1.1 Transposed Convolutional Net Architecture 53

4.2 Numerical Example 1: RF filter . 56

4.3 Numerical Example 2: Power Delivery . 58

4.3.1 Pole Tracking in design space . 63

4.4 Timing Analysis . 65

4.5 Conclusion . 65

Chapter 5: Inverse Design: Response Space to Design Space 67

5.1 Problem Description . 67

5.2 Invertible Architectures . 68

viii

5.2.1 Invertibility by construction . 68

5.2.2 Stochasticity . 69

5.2.3 INN Model . 69

5.2.4 Training . 70

5.2.5 Inference . 71

5.3 Numerical Example: Power Delivery . 72

5.4 Conclusion . 75

Chapter 6: Uncertainty Quantification and Comparison of Invertible Architec-
tures . 76

6.1 Invertible Architectures . 78

6.1.1 Fully Connected Neural Networks (FCNNs) 78

6.1.2 Conditional Generative Adversarial Networks (cGAN) 79

6.1.3 Invertible Neural Networks (INN) 80

6.2 Numerical Example: High-Speed Channel Link 81

6.2.1 Model Setup . 82

6.2.2 Results . 85

6.3 Uncertainty Quantification . 86

6.4 Numerical Example: Differential PTH Pair in Package Core 88

6.4.1 Model Setup . 90

6.4.2 Results . 90

6.5 Conclusion . 91

Chapter 7: AINN: adversarial invertible neural networks 93

ix

7.1 Problem Statement . 93

7.2 AINN Architecture . 97

7.2.1 Invertible Architecture . 98

7.2.2 Discriminators . 100

7.2.3 Training AINN . 100

7.3 Numerical Example 1: Patch Antenna . 101

7.3.1 Model Setup . 102

7.3.2 Results . 102

7.4 Numerical Example 2: Substrate Integrated Waveguide 105

7.4.1 Model Setup . 105

7.4.2 Results . 105

7.5 Numerical Example 3: Differential via pair for high-speed signalling 109

7.5.1 Model Setup . 109

7.5.2 Results . 111

7.5.3 Comparison . 112

7.6 Conclusion . 113

Chapter 8: Summary and Future Work . 118

8.1 Dissertation Summary . 118

8.2 Publications . 120

8.3 Future Work . 122

Appendices . 124

Appendix A: Power Delivery Rails and Plane Splitting 125

x

References . 128

Vita . 135

xi

LIST OF TABLES

3.1 Microstrip circuit parameters . 39

3.2 Coplanar Waveguide parameters . 41

3.3 PDN parameters . 47

3.4 Time resources . 51

4.1 Fifth order Hairpin filter parameters [Dimensionality=8] 57

4.2 Second order SIW filter parameters [Dimensionality = 11] 58

4.3 PDN characterization parameters . 59

4.4 Comparison of different models . 63

4.5 Simulation time comparison for DSE with full-wave simulation and Ma-
chine Learning(ML) methods [Dim is dimensionality] 66

5.1 PDN characterization parameters . 73

6.1 CHANNEL DESIGN SPACE . 83

6.2 Model Comparison . 86

6.3 Control Parameters of the PTH Structure 88

7.1 Patch Antenna Design Space Parameters 115

7.2 Performance of inverse design candidates for microstrip patch antenna . . . 115

7.3 SIW Design Space Parameters . 115

xii

7.4 Control Parameters of the PTH Structure 116

7.5 Model Comparison for PTH example . 116

7.6 Simulation time comparison for AINN with full-wave simulation and Ma-
chine Learning(ML) methods . 117

xiii

LIST OF FIGURES

1.1 Design Space Exploration . 6

2.1 (a) Single neuron. (b) Feed forward neural network [9] 11

2.2 Illustration of (a) Spectrum Extrapolation and (b) Design Space Extrapola-
tion inR2 . 12

2.3 Design space and spectrum extrapolation using Frequency Extrapolator
Neural Network (FENN) and Design Space Extrapolator Neural Network
(DSENN) . 18

2.4 Updating prior to obtain the posterior after seeing the likelihood according
to (Equation 2.1). Here, prior P (H) is assumed to be a Gaussian distri-
bution with large variance. After observing the evidence based on the hy-
pothesis, the prior is updated to the posterior P (H|E) with less variance,
and hence with more confidence [30]. Note: This is shown for illustration
purposes only since the distributions can be arbitrary. 19

2.5 Different GP kernels and their combinations 20

3.1 Neural network architecture for Design Space and Frequency Extrapolation 22

3.2 Recurrent Neural Network (RNN) . 23

3.3 Challenges in modeling of a vanilla RNN 24

3.4 Long Short-term memory unit cell [39] . 25

3.5 Impedance Response Scaling: window-based scaling, each window width
decided by the peaks in window. Here P = 3. 29

3.6 Sequencing operation for N = 10 and S = 5 31

xiv

3.7 Forming feature and target sequences for N = 10 and S = 5 32

3.8 HilbertNet architecture:(i) in-band real part is fed to the LSTM RNN net-
work to get probabilistic output including in-band and out-of-band part, (ii)
Hilbert transform of the real part is taken to obtain imaginary part, (iii)
Losses are computed between the predicted real and imaginary real, and
the actual real and imaginary parts respectively. (iv) the model parameters
are updated through gradient descent after combining the losses 33

3.9 (a) Microstrip line (b) Transmission line circuit 37

3.10 Insertion Loss and Return Loss of microstrip circuit 38

3.11 (a) Stack up (b) Top view of coplanar waveguide 40

3.12 Insertion Loss and Return Loss of Coupled Waveguide in D-band 42

3.13 Fabricated 5th Order Interdigital Filter for 28GHz band 43

3.14 Uncertainty analysis for Insertion Loss for Interdigital filter 44

3.15 A typical power distribution network containing VRM, P/G planes, capac-
itor, C4 bumps, TSVs . 45

3.16 Impedance Response extrapolated . 46

3.17 Absolute impedance response extrapolation with 95% confidence bounds . 46

3.18 95% confidence intervals versus cutoff frequency (fc) 49

4.1 Proposed Network Architecture . 54

4.2 Fifth order Hairpin BPF Ring Resonator (a) structure and (b) design space
extrapolation results [refer to Table 4.1] 57

4.3 Second-order SIW filter (a) structure and (b) design space extrapolation
results [refer to Table 4.2] . 58

4.4 Impedance response changes with changing grid width 60

4.5 Loss Curves . 61

xv

4.6 Extrapolation of individual design space parameters from a single trained
model (a) Grid Width(µm), (b) Grid Spacing(µm), (c) Metal height(µm),
(d) TSV radius (µm), (e) Substrate thickness (µm), (f) C4 radius (µm) . . . 62

4.7 Frequency response of Nominal Value in the Extrapolation range, refer to
Table Table 4.3 . 64

5.1 RealNVP block enabling forward and backward propagation 68

5.2 INN architecture . 70

5.3 Illustration of a power delivery network [57] 73

5.4 Comparison of impedance response for ground truth input tuple and pre-
dicted input tuple . 75

6.1 Inverse Design Flow . 77

6.2 Traditional fully-connected neural network architecture (x: input, y: out-
put, hi: ith hidden layer, i = 1, .., L) . 79

6.3 Architecture for cGAN (x: input, y: output, z: latent noise, x̂: inverse
design solution) . 80

6.4 Architecture of Invertible Neural Network(x: input, y: output, z: latent
variable) . 80

6.5 Commercial SerDes channel used in numerical example 82

6.6 Posterior distributions for multiple models for the specified ytarget = {EW =
85ps, EH = 110mV } . 82

6.7 2D Histogram of the EH-EW of full factorial channel design space 84

6.8 Flow of inverse design and its uncertainty quantification. 87

6.9 Parameters of the differential PTH in package core [63]. 89

6.10 Inverse posterior distributions p(x|ytarget), black vertical line shows values
from the test set . 89

6.11 Forward simulation results comparison for INN predictions with 3D EM
solvers . 90

xvi

7.1 Inverse Design Flow [69] . 96

7.2 AINN architecture . 98

7.3 RealNVP block enabling forward and backward propagation 98

7.4 INN architecture . 100

7.5 Microstrip Patch Antenna Structure . 103

7.6 Predicted conditional posterior distribution of the design parameters. Can-
didate points are marked as red stars. Here, Ytarget = {G = 6dB, fc =
140GHz} . 104

7.7 SIW structure: (a) stackup (b) half top-view 106

7.8 AINN-SIW model setup . 106

7.9 Inverse Posterior distributions for SIW design space for Ytarget shown in
Fig.Figure 7.10 . 107

7.10 Comparison of responses from target response and response simulated from
AINN . 108

7.11 Parameters of the differential PTH in package core [63]. 109

7.12 Inverse posterior distributions p(x|ytarget), black vertical line shows values
from the test set, ytarget is as shown in Figure 7.13 110

7.13 Forward simulation results comparison for AINN predictions with 3D EM
solvers . 111

A.1 A typical circuit model for a power delivery network 125

A.2 Proposed input-output problem setup for power delivery application 126

A.3 Proposed input-output problem setup for power delivery application 126

A.4 Proposed input-output problem setup for power delivery application - di-
mensionality comparison . 127

A.5 Results for PDN problem setup showing probability distributions for VRM
areas and CPU chip direction . 127

xvii

xviii

Abstract

The objective of the proposed research is to investigate machine learning techniques for

power delivery, signal integrity and EM problems. Two broad design strategies have been

analyzed. Often one needs to predict the structure behavior outside the range of simula-

tions. This work deals with extrapolation in two domains. (1) We propose HilbertNet for

complex-valued causal extrapolation of frequency responses. The proposed architecture

accurately predicts the out-of-band frequency response by modelling the temporal corre-

lations between in-band frequency samples using specialized recurrent neural networks.

The proposed architecture has been applied to a wide variety of applications including

transmission lines, RF filters and power distribution networks. Furthermore, we quantify

the uncertainty of our predictions in the extrapolated band using Bayesian inference and

approximate it using variational techniques. Along with providing the mean output pre-

diction for out-of-band frequency values, we provide the output variance as a measure of

uncertainty as well. (2) We propose Transposed Convolutional Networks to model spatial

correlations in the design space. The design space comprises of all the geometrical and

material parameters characterizing the response. The convolutional networks can extrap-

olate the design space in as high as 11 dimensions because of inducing spatial bias into

the model. The technique is applied to 5G band RF filters as well as power delivery appli-

cations. Furthermore, we also focus on inverse design of electronic systems. The goal in

inverse design is to estimate the best set of design space values that generate the response

space. We employ invertible neural networks to model the non-linear mapping between the

design space and the response space. Using invertible networks, we can find the exact pos-

terior distribution of a high-dimensional mapping design space for a given desired target.

The technique has been applied in the areas of high-speed signaling and power delivery. We

use neural network discriminator in a adversarial manner to come up with multiple inverse

design solutions.

2

CHAPTER 1

INTRODUCTION

1.1 Motivation

With the tremendous growth of the semiconductor industry, compute power and memory

have become cheap and accessible. One interesting outcome of this growth has been the

adoption of Machine Learning (ML) into several fields traditionally dominated by physics

and mathematics [1, 2, 3, 4, 5, 6, 7, 8, 9]. Solving electrically large systems in analysing

their electromagnetic, thermal or mechanical behavior can be a time and memory inten-

sive process. But, as is well known today, such analyses become inevitable with (a) the

increase in operating frequencies, (b) the scaling in system and device size, and (c) the

hybrid nature of different components packaged in close proximity. As system complex-

ity increases, design cycles become longer as each design iteration requires multi-variable

analysis of electromagnetic structures. Contemporary examples of such complexity are

mmWave systems where multiple chiplets and micro-wave components are integrated on a

single substrate or package [10][11].

Finding an optimal design in such large and complex design spaces is one element of

the design cycle. But, it is also essential to know the “what-ifs” of fabrication process

and manufacturing variations that are known to impact the final product. The need to

estimate the response of a design in the presence of these known and unknown variations

makes Design Space Exploration (DSE) an indispensable step in the design cycle. A typical

flow chart for DSE is shown in Figure 1.1. DSE is an extensive analysis process that can

be described in five steps. The first step is to identify a set of microwave component or

system design parameters {x1, x2, ...xN}. The next step is to identify the design space

bounds {[a1, b1], [a2, b2], ...[aN , bN]} for each parameter xi. This is followed by selecting a

1

set of strategically identified designs for simulations or analysis in the frequency range of

interest [f1, fM]. Using the simulation/analysis results, an electrical model is developed for

performing DSE. This model can now be used to estimate the electromagnetic response of

the microwave component or system for (1) Identifying worst case response based on input

parameter combinations (2) Finding an optimal solution for a weighted aggregated cost

function or a pareto optimal solution for multiple objectives and (3) Analyzing sensitivity

for identifying the most critical parameters that affect the system response.

1.2 Summary of Contributions

More specifically, contributions of thesis can be summarized as:

• We develop specialized Long Short Term Memory Recurrent Neural Networks for

frequency response extrapolation. We then introduce Hilbert transform to correlate

real and imaginary part of the signal to enable causal complex-valued extrapolation.

Harnessing the Variational Inference based Bayesian approach, we assess the uncer-

tainty of predictions in the extrapolated space. In short, we propose a probabilistic

machine learning framework for extrapolating the frequency response of distributed

physical circuits. For the structures where there is hidden dependency between higher

and lower frequency features, we propose a method to extrapolate the response while

providing confidence intervals harnessing Bayesian recurrent neural networks (RNN)

thereby avoiding extensive simulations and saving computational time. To address

complex-valued impedance, Hilbert Transform is used to relate the real and imag-

inary parts where a Hilbert based RNN architecture is proposed called Hilbert Net

to extrapolate the frequency response. We apply the technique to four applications

(1) a simple microstrip transmission line circuit for proof of concept (2) Coupled

waveguide filter operating in D-band comparing with measured results, (3) 5th order

interdigital bandpass filter for 28GHz band and (4) complex stack-up power delivery

network having a sharply changing response to test the framework limits. Results

2

show that our architecture performs accurate extrapolation with a normalized mean

square error of 0.008 ohms squared with 95% confidence for a typical power deliv-

ery network. Using probabilistic networks, we achieve a tight confidence bound on

our results. Furthermore, the reliability of Hilbert Net is assessed as to how far the

response can be extrapolated.

• We propose a machine learning framework for predicting frequency response of a

power delivery network as a function of its extrapolated multidimensional geomet-

rical and material parameters. The proposed approach comprises of an ensemble of

architectures: (1) Fully Connected Upsampler for latent code generation (2) Con-

volutional Decoder to learn the frequency response from the latent code. The 14D

design space is converted to a Lth dimensional code which entails the frequency re-

sponse information. With the proposed architecture, a root mean squared error of

0.004 ohms is achieved when compared to the true value. We focus on extrapolation

of design space parameters while training on in-band values. We also illustrate how

frequency poles move with varying design space exploiting parameter sensitivity in

different frequency bands.

• We achieve an inverse mapping of a power delivery network’s physical and geometri-

cal properties to the impedance specification over a wide range of frequency through

invertible neural networks. Training the machine learning network involves learn-

ing over a variety of stackup specifications. Once the invertible network is trained,

the user can specify target impedance spec and obtain the probability density of the

values of the design space that most likely satisfies the design specifications.

• We present a machine learning based tool to quantify uncertainty for prediction prob-

lems regarding signal integrity. Harnessing invertible neural networks, we convert

the inverse posterior distribution given by the network to address uncertainty in fre-

quency responses as a function of design space parameters. As an example, we con-

3

sider a differential plated-through-hole via in package core and predict S-parameters

from its geometrical properties. Results show 3.3% normalized mean squared error

when compared with responses from a fullwave EM simulator.

• We present Adversarial Invertible Neural Networks - a machine learning based in-

verse design technique that generates the most suitable design solution for a desired

response for microwave and electronic system applications. We harness flow-based

invertible neural networks that are trained adversarially to make possible the inverse

design of high-dimensional parameterized structures. We illustrate our technique on

3 examples: (1) a simple patch antenna, (2) Substrate Integrated RF waveguide and

(3) a differential via pair in package. We compare our approach with other state-of-

the-art inverse design techniques as well. Results show that not only does the pro-

posed approach provide the most suitable inverse design solution in comparison to its

competitors but also suggests new inverse solutions to aid the designer. The posterior

generated by the model depicts the uncertainty associated with the solution.

1.3 Outline of the Dissertation

The rest of this thesis is organized as follows: Chapter 2 provides a brief background

on design space exploration strategies, machine learning preliminaries, neural networks,

Gaussian Processes and Bayesian uncertainty quantification (UQ), Chapter 3 presents a

LSTM-RNN network for frequency response extrapolation for distributed electromagnetic

structures, Chapter 4 presents a transposed convolutional neural network architecture to

predict high-dimensional frequency responses from design space of a EM structure, Chap-

ter 5 presents the inverse design techniques to predict the design space from a desired

response space with the application of a power delivery network, Chapter 6 developes tech-

niques for quantifying uncertainty using INNs for a differential via pair and also compares

various architecture for inverse design for a high-speed channel link, Chapter 7 discusses a

novel adversarial invertible neural network for high-dimensional inverse design, followed

4

by summary and future work in Chapter 8.

5

Figure 1.1: Design Space Exploration

6

CHAPTER 2

LITERATURE SURVEY

2.1 Design Space Exploration methodologies

DSE algorithms have been around since the early 1960s. The initial DSE techniques in-

volved statistically derived Design of Experiments (DoE)[12] based analysis. An important

element in the design of mmWave systems is the estimation of the electromagnetic response

of several sub-components making up the system. For DoE like methods, based on [13], the

number of measurements (or full-wave EM simulations) typically scales exponentially with

design space size which becomes a bottleneck, especially in high dimensional scenarios.

For quantifying uncertainty for DoE based approaches, stochastic DSE and optimization

methods have been developed [14], [15], [16]. Though known to work for linear or weakly

non-linear spaces, these methods generally do not scale well with increasing dimensionality

and non-linearity of design spaces. To address these limitations, evolutionary algorithms

for DSE were developed in the early 2000s. The evolutionary algorithms were based on bi-

ological mechanisms such as reproduction, survival, natural selection or swarm intelligence

and communication. Unlike previous methods, evolutionary techniques made no assump-

tions about the nature of the design space. Some of these methods applied to electrical

system design, include Particle Swarm Optimization (PSO) [17] and Genetic Algorithm

(GA) [18]. However, a few drawbacks of such evolutionary algorithm based methods were

(a) they required some heuristics (such as population size, mutation factors, accelerate con-

stant, inertia weight) which played an important role in performance and efficiency of the

algorithm, but could only be identified by screening or experience as they have no known

dependence on characteristics of the design space [19], (b) a large number of function eval-

uations were required and (c) convergence rates were problem dependent, often leading

7

to long compute times. ML based DSE approaches overcome several of these challenges

; namely, (a) they can be applied to non-convex response surfaces covering a much larger

design spaces (b) provide techniques for quantifying uncertainty around predictions and (c)

have implicit sensitivity information built into the algorithms.

DSE methods were developed to explore the system response within a bounded prede-

termined design space. But what-if the design space changed a little? Or the behavior at

certain frequencies beyond those analyzed was required?

Most of the above mentioned DSE approaches have one common drawback, namely

the inability to extrapolate accurately, the system response outside the predetermined de-

sign space. Hence, there are two different set of parameters that are of key interest to the

designer. One is the design space parameters that have been discussed so far, the other

set of parameters are the frequency points or the frequency sweep over which the system

response is evaluated. Extrapolation becomes useful for several reasons that include the

following: i) unknown resonances may reside just outside the bandwidth of interest which

may affect design decisions; ii) the parametric space is high-dimensional making it ex-

pensive to rely on expensive 3D simulations to extract the response; iii) the extrapolated

space might provide insight into alternate design solutions and iv) the information obtained

might point towards additional simulations to learn more about the component. In all these

scenarios if data can be obtained in the extrapolated space through additional simulations,

measurements or other means, that can only help towards developing a more robust model.

The main reason for the poor extrapolation capability of conventional DSE approaches is

the lack of ”memory” and ”learning” in the system. We focus this article on this aspect of

the problem, namely extrapolation along the frequency axis and in the design space for RF

and microwave component designs. By adding this memory and learning into the system,

models that can look beyond the bounds and help answer the what-ifs outside the space

can be created with reasonable accuracy, without having to add additional data points from

the extended space. Moreover, these models, along with the prediction of the system re-

8

sponse, in the extrapolated region, also provide uncertainty quantification that would aid

the designer to understand if more data samples are required in the extrapolated space.

One aspect of DSE is also the frequencies for which the designs are simulated. Higher

solution frequencies lead to finer meshes and more expensive system forward solves. This

limits the number of frequency points that can be simulated and makes it important to

have accurate interpolation and extrapolation techniques to estimate the frequency response

outside the solved points.

Extrapolation in design space has been discussed using evolutionary algorithms [20],

but these have not been broadly deployed for DSE methods in RF designs. For frequency

extrapolation, however, there are a few documented methods available in the literature.

The Cauchy Method [21] is one example, wherein the frequency response is modeled as

the ratio of two polynomials. Given sampled data, the coefficients of the polynomials

can be determined using singular value decomposition (SVD) techniques implemented us-

ing total least squares (TLS) solution. The method then relies on the theory of analytical

continuation to extrapolate the response in frequency. This method has been applied to

smooth frequency responses for extrapolation but tends to pose problems for non-smooth

responses. Another method to extrapolate in frequency has been presented in [22], where

the frequency response is represented as a sum of orthogonal polynomials. A GA is then

used to extract the necessary extrapolation parameters. It uses a fixed analytical function

describing the response without the ability to generalize on multiple frequency responses.

Another possibility is to rely on the frequency samples being correlated where this infor-

mation is used for extrapolation. This translates to constructing a generative model for

predicting the next sample given the history of samples. Under these constraints, series

forecasting techniques can be applied. Historically, autoregressive integrated moving av-

erage (ARIMA) models have been used for predicting the next value in stationary signals

[23]. Such a technique relies on finding seasonal trends and local periodicities in the sig-

nal. One common pitfall of this method is that it finds fewer parameters to describe the

9

signal, hence the extrapolation may suffer in accuracy. Furthermore, authors in [24] pose

the extrapolation problem as an optimization challenge and solve it using neural networks

which makes the extrapolation model smooth outside the training region. In this article,

we provide an outline of two ML based architectures that accomplish extrapolation in both

design space and frequency with high accuracy, for microwave and RF components with

over ten design variables and frequencies beyond 150GHz.

2.2 Machine Learning Preliminaries

ML is an alternative technique for creating mappings between multiple inputs and outputs

for a system. ML methods are often looked at as ”black box” approaches where map-

pings are generated without any domain expertise. However, for addressing electromag-

netic problems, using domain expertise, such as the shape of the frequency response, the

range of the physical and geometrical parameters of the structure and the resonant frequen-

cies of the system become important. A major advantage of a fully trained ML model is that

it can predict the output response in far less computational time than traditional methods,

as illustrated in subsequent sections. A perceptron, shown in Fig. Figure 2.1a is the back-

bone of any ML architecture. It computes an output value that is a non-linear function of a

weighted sum of the inputs. A typical Neural Network (NN) model is a layered network of

many such interconnected perceptrons. The NN consists of an input layer responsible for

data pre-processing, hidden layer(s) that perform computations on the transformed input

and an output layer for post-processing, as illustrated in Fig. Figure 2.1b. The NN thus

forms a mapping between a set of inputs x and outputs y. The ”learning” in the network

is performed by back-propagating the loss function from the output layer to the input and

adjusting the ”weights”, W , connecting the various perceptrons and the ”bias”, b, at each

perceptron, to minimize this loss function. The loss function is a measure of similarity

between the predicted output y and the true output ŷ. A gradient descent algorithm is used

to find the minima of the loss function in the model parameter space {W , b}. Such a net-

10

Input
Layer

Output
Layer

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑊𝑊1

𝑊𝑊2

�𝑦𝑦

𝐵𝐵1
(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝐵𝐵2

𝑋𝑋 ℎ1
𝜎𝜎 𝑊𝑊1𝑋𝑋 + 𝐵𝐵1 ℎ2

𝜎𝜎 𝑊𝑊2ℎ1 + 𝐵𝐵2 �𝑦𝑦𝑊𝑊3ℎ2 + 𝐵𝐵3

𝑊𝑊3

𝛿𝛿3

𝜕𝜕 �𝑦𝑦
𝜕𝜕ℎ2𝛿𝛿2

𝜕𝜕𝛿𝛿2
𝜕𝜕ℎ1𝛿𝛿1 𝑒𝑒 = �𝑦𝑦 − 𝑦𝑦2 2

𝜕𝜕𝑒𝑒
𝜕𝜕 �𝑦𝑦

Forward Propagation (Prediction)

Backpropagation (Training)

𝑤𝑤1𝑥𝑥1

𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛

𝑏𝑏

…

Σ
(Sum)

𝜎𝜎(⋅)
(Activation)

𝑤𝑤2𝑥𝑥2

(b)(a)

𝜎𝜎 𝑊𝑊𝑊𝑊 + 𝑏𝑏

Hidden Layers

Figure 2.1: (a) Single neuron. (b) Feed forward neural network [9]

work is capable of learning but incapable of remembering the trend of inputs in time or

frequency. To enable the model to be able to learn data dependencies over time, the per-

ceptron has to be a function of not only the current input but the previous input trends and

outputs. By making this change in the perceptron, the model becomes capable of predicting

the future trends and hence can be used for ”extrapolation”. ML architectures formed of

such compute and memory capable units are described in detail in the next section.

Design Space Exploration using ML of many core systems has been explored in [25]

wherein a local search and meta-search are used. The ML architecture is contained in the

meta-search which evaluates the design space and suggests potential starting states to ex-

plore. In [26], predictive models are constructed using feed-forward neural networks that

are applied to hybrid main-memory design. Linear regression techniques have been devel-

oped in [27] to show that performance of a system can be accurately predicted by using a

small fraction of the overall design space and by leveraging information from previously

simulated data. More recently, sensitivity analysis of design parameters have been devel-

oped [28] for high-dimensional microwave problems. State-of-the-art ML methods based

11

(a) (b)

Figure 2.2: Illustration of (a) Spectrum Extrapolation and (b) Design Space Extrapolation
inR2

on non-linear regression architectures have been applied to multidimensional inputs and

multiple outputs in [29]. All of these ML approaches work for DSE, however, they may

not be directly applicable for extrapolation of frequency spectrum or design space.

An example of a simulated circuit frequency response from DC to 12GHz is shown

in Fig. Figure 2.2a while system response surface at a single frequency, for two design

variables is shown in Fig. Figure 2.2b. Given these two typical examples in RF design,

the objective of this article is two fold namely, 1) extrapolation of the frequency response

beyond 12GHz, and 2) extrapolation of the design space, with both being enabled without

adding any additional data samples from the extrapolation range.

The technical approach for achieving such an extrapolation is illustrated in Fig. Fig-

ure 2.3. As shown in the figure, based on the design space parameters {x1, x2, ...xN},

selected designs, from within the design space bounds are simulated for a set of frequen-

cies {f1, f2, ...fM} using full-wave 3D EM solvers or circuit simulators that accurately

capture the system/component response h. These design parameters, and the correspond-

ing responses, are used to create a surrogate model g, that captures the system/component

response h, for generating training data within the design space. This data, is utilized to

train a Design Space Extrapolator Neural Network (DSENN) d(x, f) and Frequency Ex-

12

trapolator Neural Network (FENN), l(f) as shown in Fig. Figure 2.3. Both d and l are

trained to model the system response h. The training of these two networks is performed

separately. The DSENN is trained using data from within the design space to predict the

frequency response for a set of design parameters outside the design space. The FENN is

trained to predict the response for frequencies outside the simulated spectrum by learning

from the response within the spectrum. After training, given a set of design parameters that

lie outside the training range as inputs, component or system response is predicted using

the trained models d with l as a sub-block.

2.3 Bayesian update Rule

Bayes theorem is based on subjective probability as opposed to objective probability prac-

ticed by frequentists. In mathematical form it can be written as:

P (H|E) =
P (E|H)P (H)

P (E)
(2.1)

where H is the hypothesis, E the evidence, P (H|E) is the conditional probability of the

hypothesis when the evidence is considered (posterior), P (E|H) is the conditional proba-

bility of the evidence given the hypothesis is true (likelihood), P (H) is the probability of

the hypothesis before the evidence is considered (prior), and P (E) is the probability of the

evidence under any circumstance (marginal probability) given by:

P (E) = P (E|H)P (H) + P (E|H ′)P (H ′) (2.2)

where P (H ′) = 1−P (H) is the probability of the hypothesis not being true and P (E|H ′) is

the conditional probability of the evidence when the hypothesis is untrue. The denominator

term in (Equation 2.1) is generally a normalizer to ensure that the result in (Equation 2.1)

is always a probability that is bounded between 0 and 1.

As an example, in Fig. Figure 2.4, the prior is assumed to be a gaussian distribution

13

with large variance, where the random variable is the parameter x. By making use of the

likelihood and the prior, the posterior is computed with less variance. A smaller variance

translates into a better confidence in the prediction, or in other words smaller uncertainty.

Being subjective Bayes theorem allows for guesses where the prior distribution can be

assumed, making it powerful and applicable in several areas.

2.4 Stochastic Models

Traditionally, the outputs of a NN are deterministic. The challenge with deterministic NNs

is that the prediction is exact without any estimate of the probable error around predictions.

This often gives an incomplete picture of the system response and could be dangerous

unless the prediction uncertainties can be included. It is therefore important to quantify

the uncertainty around prediction which can be achieved using Bayes by Backpropagation

(BBB) [31] algorithm instead of the usual error backpropagation for training the NNs. In

such a NN, instead of assuming the weights and biases in the system to be deterministic

variables, they are assumed to be samples from prior distributions. The output y of the

network is then a probability distribution that is computed using the given independent

data input x. To obtain the distribution of outputs, the probability over all the various

weights is marginalized, given the inputs:

p(y|x) =
∫

p(y|x, θ)p(θ|x)dθ (2.3)

where θ represents the set of the parameters of the weights W and bias b distribution of the

model. The second term in Equation 3.13 is found using the Bayes’ rule:

p(θ|x) = p(x|θ) ∗ p(θ)
p(x)

(2.4)

Hence, the output of such a NN is now a distribution computed using marginalization of

the probability distributions of the weights and biases, given the input. As the output is a

14

distribution, its mean and variance are known. The mean is represented as the predicted

output and the variance is used to calculate the upper and lower confidence bounds around

the predicted mean thus, giving the end-user a quantification of uncertainty in the prediction

or the error bar around the prediction.

2.5 Gaussian Processes for Machine Learning

GP is the extension of standard multivariate Gaussian distribution to infinitely many vari-

ables, where any finite number of samples form a joint Gaussian distribution [32]. The

prior of GP is defined by two quantities, namely a mean µ and a covariance matrix K,

given by:

y = f(x) ∼ N (µ(X), KX) (2.5)

where N represents a GP. From (Equation 2.5) the mapping between the input and output

is enabled through the GP. For general non-linear regression, a constant mean function

µ(x) = m is used [33]. The kernel function K(x) that describes the relation between

points in the function is written as:

K(x) =


k (x1,x1) . . . k (x1,xt)

...

k (xt,x1) . . . k (xt,xt)

 (2.6)

Appropriate kernel functions can be applied to capture different patterns in the dataset.

For example Matern kernels can be used when the function is less smooth. A commonly

used kernel is the automatic relevance determination (ARD)[33] Matern 5/2 function given

15

by[34]:

k (xi,xj) = σ2
f

(
1 +
√
5r +

5

3
r2
)
e−

√
5r

r =

(
D∑

d=1

(xi,d − xj,d)
2

σ2
d

) 1
2

(2.7)

where σf and σd are the hyperparameters of K(x). These hyperparameters are updated

during the training process by minimizing the negative log marginal likelihood of the GP

to improve learning.

We can also combine different standalone kernels to construct new kernels, which can

then be applied to capture more complicated function behaviors, as illustrated in Fig. Fig-

ure 2.5. Further details on kernels are provided in [35].

Once the GP model is trained using the dataset D = {X,Y }, it can be used to predict

the unknown response y∗ for a new set of input data x∗ ∈ RM×D using the relationship:

p(y∗, Y |x∗, X, θ) = N


µX
µx∗

 ,

 KX KX,x∗

KT
X,x∗ Kx∗,x∗


 (2.8)

where θ is the set of hyperparameters used as part of the training process.

During the training process, our goal is to find the best hyperparameters, θ, that fits

the data and model. Fixing θ can create a combination of data and parameter related un-

certainties due to any inaccuracies related to the model used for prediction. Therefore,

we integrate over all possible θ and use a weighted sum of confidence intervals where the

bounds obtained with multiple θ values affect the final confidence bound. This can be

written as [9]:

p(y∗|x∗, Dt) =

∫
p(y∗|x∗, Dt, θ)p(θ|Dt)dθ (2.9)

where Dt = (Xt, Yt) is the data at the tth iteration of the training process. At a test

point x∗, the model predicts a distribution, p(y∗|x∗, Dt), that no longer depends on θ

16

and is a weighted sum of all possible distributions corresponding to fixed hyperparam-

eter p(y∗|x∗, Dt, θ). We can use Markov chain Monte Carlo (MCMC) [36] to learn the

analytically intractable distribution p(θ|Dt). Once the GP is trained, the predictions and

confidence intervals that also accounts for parameter-related uncertainties can be obtained

as in [37]. A

2.6 Normalizing Flows

In probability theory, we can use the change of variables formula for finding the pdf of a

transformed variable using a independent variable given as:

p(y = f(x)) = p(x) ∗ |Jyx|−1 (2.10)

where Jyx = ∇x(f) and f can be modeled as an invertible block from previous discussion.

From [38], the name “normalizing flow” can be interpreted as the following: (1) “Nor-

malizing” means that the change of variables gives a normalized density after applying an

invertible transformation and (2) “Flow” means that the invertible transformations can be

composed with each other to create more complex invertible transformations.

17

Figure 2.3: Design space and spectrum extrapolation using Frequency Extrapolator Neural
Network (FENN) and Design Space Extrapolator Neural Network (DSENN)

18

Figure 2.4: Updating prior to obtain the posterior after seeing the likelihood according
to (Equation 2.1). Here, prior P (H) is assumed to be a Gaussian distribution with large
variance. After observing the evidence based on the hypothesis, the prior is updated to the
posterior P (H|E) with less variance, and hence with more confidence [30]. Note: This is
shown for illustration purposes only since the distributions can be arbitrary.

19

Figure 2.5: Different GP kernels and their combinations

20

CHAPTER 3

NEURAL NETWORK ARCHITECTURE FOR FREQUENCY RESPONSE

EXTRAPOLATION

In this section, we present the techniques and methodologies for frequency response ex-

trapolation.

3.1 Problem Statement

Distributed electromagnetic structures, characterized by their frequency responses, have

important information embedded in them about the operation of a circuit. In most scenar-

ios, only band-limited data is available because broadband data might be computationally

expensive to simulate or unavailable. To this end, extrapolation in the frequency domain is

a compelling concept because it enables us to estimate the frequency response over a larger

range without performing extra measurements or simulations. Formally, the problem of

frequency extrapolation is to estimate the out-of-band frequency response given in-band

frequency response. Mathematically, considering a N-point in-band frequency response

data: D = {fi, Z(fi)}Ni=1, the goal is to find the extrapolation frequency response Z(fj)

where j = N + 1, ..., N + F for F points in the extrapolated band. An example archi-

tecture of the extrapolation NN is shown in Figure 3.1. The architecture consists of three

main blocks, a fully connected up-sampler, the DSENN and the FENN, connected in that

order. It is important to note that both the DSENN and FENN can be used in isolation as

well. However, when used as a system as explained in Section II, the input layer is formed

using the design space parameters that could be either geometry and/or material properties.

The dimension of the input space is generally much smaller than the number of frequency

points used to generate a system response. Therefore, the inputs are first up-sampled to a

larger dimensional latent space using a fully connected up-sampler such as a feed-forward

21

Figure 3.1: Neural network architecture for Design Space and Frequency Extrapolation

NN. This is then followed by a convolutional encoder. The outputs of the convolutional en-

coder are the real and imaginary components of the frequency response of the system. This

frequency response is then fed to a modified Recurrent Neural Network that is trained to

predict the extrapolated response from the inputs. Thus, in its entirety, the ML architecture

can predict an extrapolated frequency response of a design outside the design space. The

details of the convolutional encoder and modified RNN are given in this section.

3.2 Recurrent Neural Networks (RNN) for Spectrum Extrapolation

As mentioned in previous chapter, for a ML model to recognize a pattern and extrapolate it,

a regular perceptron needs to be replaced with a modified perceptron capable of processing

current and past inputs. The resulting network of such perceptrons is called a Recurrent

Neural Network (RNN), as shown in Figure 3.2. A circuit response in frequency is treated

as a set of sequenced data where fi is the frequency at index i and Zi is the response at

index i. The hidden state at index i, hi is a recurrent state that depends on the previous

trends in the input. This unit is the backbone of the recurrent architecture. This state, hi,

captures how the response has changed over the past frequency samples and how it will

behave at the next frequency sample. As hi changes from the beginning of the range to the

22

Figure 3.2: Recurrent Neural Network (RNN)

end, it holds the pattern of early frequency response trends. These kind of sequence models

capture seasonal trends. The hidden state provides a mapping between the input and the

output.

hm = tanh(Whhhm−1 +Wxhxm) (3.1)

ym = ς(C +Whyhm) (3.2)

where xm is the current input, hm−1 is the hidden state at the previous index, hm is the

current hidden state to be computed, and Wpq is the weight matrix of size pxq mapping

it from the p layer to the q. ς(x) = exi/Σje
xj is the softmax activation function i.e. the

normalized exponential function. This type of network shares the parameters that enables

it to learn sequences and patterns. Moreover, the hidden state stores essential features

necessary for the generation of the next value. Therefore, by adding a hidden state (can be a

scalar or a vector) to the model, we can add “memory” which makes the model “recurrent”.

This is the main reason for using a recurrent neural network(RNN) for extrapolation can be

justified. Such an architecture enables the network to learn from the past and the present,

and hence to extrapolate. There are, however, several challenges in the training of a RNN.

As the complexity of the problem increases, the amount of training data required and the

number of recurrent layers of the network increase. Training a deeper model with more

23

Figure 3.3: Challenges in modeling of a vanilla RNN

layers presents a challenge causes the gradient used for backpropagation to drop down to

zero, the effect called gradient vanishing [39]. In addition, training for a large amount of

data and tracking long sequence of input patterns requires more memory. We illustrate this

effect in Figure 3.3.

To circumvent these issues, long-short-term memory networks (LSTM) can be used as

described in [40]. The LSTM network is a special type of RNN with a unit cell as shown

in Figure 3.4. It consists of 4 perceptron gates: (1) a forget gate ft, (2) an input gate it,

(3) a cell gate gt and (4) an output gate ot. When the hidden state hi in the traditional

architecture is replaced with a LSTM unit cell, it becomes a LSTM-RNN. The drawback of

increased memory requirement is resolved with this architecture as it does not remember

”all” the information from the past. It is trained to remember only what is important for

extrapolation and forget everything else. These networks can have smaller number of layers

compared to traditional RNNs, thus overcoming the problem of vanishing gradients as well.

Mathematically,

24

𝑐𝑡−1

𝑥𝑡
ℎ𝑡−1

𝑊ℎ𝑓

𝑊𝑖𝑓

𝑏𝑓

𝑊ℎ𝑓

𝑊𝑖𝑓

𝑏𝑓

𝑊ℎ𝑓

𝑊𝑖𝑓

𝑏𝑓

𝑊ℎ𝑓

𝑊𝑖𝑓

𝑏𝑓

. ∑

.

.

𝑐𝑡

ℎ𝑡

𝑓𝑡

𝑔𝑡

𝑖𝑡

𝑜𝑡

𝜎

𝜎

𝜎

𝑡𝑎𝑛ℎ

𝜎

Figure 3.4: Long Short-term memory unit cell [39]

frm = σ(Wfixm +Whfhm−1 + bf) (3.3)

im = σ(Wiixm +Whihm−1 + bi) (3.4)

gm = tanh(Wigxm +Whghm−1 + bg) (3.5)

om = σ(Wioxm +Whohm−1 + bo) (3.6)

where cm is the cell state or memory and σ(r) = 1
1+e−r is the sigmoid function that

scales the input in a non-linear fashion between 0 and 1. The W s and b are the model pa-

rameters. They are learnt by the network during the forward and backward passes. As can

be seen from equations (3.3)-(3.6), LSTMs learn dependencies that are important enough

25

to retain and unnecessary enough to forget. The forget gate produces the values between

0 and 1 depending on the importance of the previous input for a given future sample. The

input gate produces a value between 0 and 1 based on the current input and the previous

hidden state. The cell gate is also a function of the previous hidden state and the current

input state. This is important since it dictates the memory being stored. The input gates and

the cell gates are multiplied and added to the forget gate to compute the cell state cm. This

enables the network to capture local periodicities and apply them for prediction farther in

temporal space as compared to the training range.

3.3 Hilbert Transform for causal extrapolation

Consider a complex valued signal with redundant negative frequency components i.e. an

analytical signal. In this case, we represent the impedance Z as a function of operating

frequency f as:

Z(f) = Zr(f) + jZi(f) (3.7)

where Zi is the reactive component and Zr is the resistive component of the impedance.

Given its Hermitian nature, we treat the impedance as an analytical signal. Given that the

Hilbert transform exists and Z(f) is analytic in the upper half plane of the imaginary part

of Z, the Kramer-Kronig relation are satisfied. For such a signal, the imaginary part can be

expressed as a Hilbert transform of the real part as:

Z(f) = Zr(f)− jH(Zr(f)) (3.8)

where H(·) is the hilbert transform and is defined as the convolution of 1/πf with the input

signal. It is given as:

H(x(f)) =
1

π ∗ f

∫ ∞

−∞

x(f ′)

f − f ′df
′ (3.9)

26

Since, discrete frequency samples are used in practice, we make use of the discrete hilbert

transform. It imposes the conditions that (i) the DFT of the complex analytic sequence

needs to be zero for negative frequencies and (ii) for positive frequencies the spectrum of

the analytic sequence needs to be two times the signal of the signal being computed on. In

the discrete frequency domain, the discrete imaginary part (Zi[f]) of the frequency response

is the discrete Hilbert transform and the real part of the response(Zr[f]). Mathematically,

Zi[f] = −HT [Zr[f]] (3.10)

As mentioned earlier, given the real part of the discrete impedance response, Zr[f], we

set the DC component to be zero. Next, since the negative frequency part has to be zero,

we double the positive frequencies uptil half the points to conserve total spectral energy.

Mathematically, the analytical signal with K samples can be expressed in terms of its fourier

transform, as in [41], given by:

HT (X[f]) =



X[0] for m = 0

2 ∗X[m] for 1 ≤ m ≤ K
2
− 1

X[K/2] for m = K/2

0 for K
2
+ 1 ≤ m ≤ K − 1

(3.11)

where HT [.] is the Hilbert transform for discrete sequences, X[.] is the K-point real

part of the frequency response signal. Computation of the Hilbert transform through this

method is presented in algorithm algorithm 1. This implementation ensures the causality

of the extrapolated signal [42]. Note that since computation of the imaginary part from the

real part requires ideally infinite points, we approximate them by having maximum 1.5*N

points. Thus, taking the hilbert transform induces some numerical errors. However, since

we have the ground true values for the supervised machine learning algorithm proposed,

27

the errors are minimized to produce the correct output.

Algorithm 1: Computation of Hilbert Transform
Input: real part, x = Re(z)
Output: y = H(x)

1: Flip the input signal: xflipped(f) = x(−f)
2: Form the double-sided signal xDS(f) = [xflipped(f), x(f)]
3: Take DFT: XDS = DFT (xDS)
4: Xsinglesided = 2 ∗XDS

5: Compute Hilbert transform according to equation Equation 3.11.
=0

[1]

3.3.1 HilbertNet Architecture

We develop a network model that combines the sequential modeling capability of recur-

rent nets while providing correlation between the real and imaginary parts of a frequency

domain signal through the Hilbert transform. Our approach is depicted in Figure 3.8.

Algorithm algorithm 2 illustrates the steps involved where input to it is the complex-

valued in band signal Zin−band(f) and output is the complex-valued extrapolated signal

Zout−of−band(f) with a confidence interval determined by the recurrent net. In other words,

let the dataset pair be {fi, Z(fi)}Ni=1 where N is the total frequency samples already avail-

able and simulated. The goal is to find the impedance response for the future F samples,

that is to find Z(fi) for i = N+1, . . . , N+F where F is the number of points in the extrap-

olated space. Consider, as an example, the impedance response of a typical power delivery

network which increases in amplitude, on average with increasing frequency. Moreover,

the density of resonances and anti-resonances that occur in a fixed frequency range also

increase. Feeding this raw signal to the network will force the network to predict values in-

creasing along the frequency axis which presents a training challenge. Thus, we preprocess

the response into frequency windows. The frequency response Z(fi) for i = 1,2,3,. . . .,N

where fN = fc i.e. the cutoff frequency. Here, N is the total number of frequency samples

we have for training. The whole response is divided into W windows with each window

28

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

0

1

w=1 w=2 w=3 w=4 w=5

P [peaks per window]

MinMax Scaling

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[individual windows]

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

|Z
|

[o
h

m
s]

Sc
al

ed
 |

Z
|

|Z
|

[o
h

m
s]

Sc
al

ed
 |

Z
|

Figure 3.5: Impedance Response Scaling: window-based scaling, each window width de-
cided by the peaks in window. Here P = 3. 29

containing P peaks or P poles/window. We can treat P as the hyperparameter for the

model differing for the type of application based on the designer’s needs. This means that

the windows get smaller in terms of frequency samples in high frequency range. In this

case, a peak is defined as a local maxima in that window but is open to other definitions for

other applications. This is illustrated is Figure 3.5. For each window, the individual scaling

is performed using:

Z
′

w(fi) =
Zw(fi)−min(Zw(fi))

max(Zw(fi))−min(Zw(fi))
(3.12)

where Z
′
w(fi) is the scaled impedance response at frequency fi for the window w and

max(.) and min(.) are the minimum and maximum values in the current window respec-

tively. The scaled values range from 0 to 1. This bounded input is easier for the network

to learn because it produces bounded output thus making it stable. For the training range,

min(.) and max(.) are stored to estimate the window ranges in the extrapolated region,

the details of which are given in the subsequent steps. In this work, as the impedance re-

sponse is complex-valued, we scale the real part of the impedance. However, this approach

is applicable for the imaginary part and the magnitude as well. After performing MinMax

Scaling, we form batches of sequences from the data D = {fi, Z ′(fi)}Ni=1. Each sequence

from the frequency response has S samples. The first sequence has samples from frequency

index 0 to S − 1, the second sequence has samples from frequency index 1 to S, the third

sequence has samples from frequency index 2 to S+1 and so on. For a total of N samples,

there are N − S + 1 sequences. As an illustration, we show this sequencing operation for

N = 10 and S = 5 in Figure 3.6.

After forming sequences, we form, feature and target sequences. Each next sequence

serves as the target sequence for a feature sequence. During the training process, the fea-

ture sequence acts as a multi-dimensional input and a target sequence acts as the output

sequence, thereby constructing a many-to-many recurrent network. We have depicted the

30

Figure 3.6: Sequencing operation for N = 10 and S = 5

31

Figure 3.7: Forming feature and target sequences for N = 10 and S = 5

sequences for the case N=10 and S=5 in Figure 3.7. This connectionist technique learns

effectively the patterns as the values change with frequency in the signal. Connection

based methods generally exploit the interrelationships between variables. It can gener-

ate complex representations about its environment. In this context, the LSTM-RNN is a

connectionist learning technique because it finds a a reproducible representation among

frequency indices. This learned representation is then used to extrapolate the response.

The LSTM-RNN network consists of a deeper hidden layer network that takes in a batch

size of G frequency sequences in sequential order with total of B batches. For each batch

32

of the input, the LSTM layer produces the future values of size F samples. Hence, during

the training phase, this action is iterated over all the batches and the mean squared error is

computed between the real part and the predicted real part. Once the training is done, the

inference phase follows. During the inference phase, the feature sequence has frequency

samples from index N − S to N and the target sequence has the N − S + 1 to N + 1 -

to predict the future sample. We do this F number of times to infer the F future samples.

Since there is no training data in this phase, we use our predictions to form the next set of

sequences.

in-band signal

In-band

Extrapolated
region

Hilbert
transform

𝑖𝑚𝑎𝑔

LOSS 2

Training loss: 𝐿 = 𝛼𝐿1 + 𝛽𝐿2

𝑜𝑁

𝑜3

𝑜2

𝑜1

… …
…. …

.

…
…

…
…

…
…

…
…

Softmax
layer(𝝌)

… …
…. …

.

K1
K2

K3
…….

…….

LOSS 1 𝑟𝑒𝑎𝑙

𝐿2 = 𝑀𝑆𝐸(𝑖𝑚𝑎𝑔, 𝑖𝑚𝑎𝑔[:N] 𝐿1 = -E[log(p(w|D))]+KL(q(w) || p(w|D))

𝑋𝑟𝑒𝑎𝑙
𝑋𝑖𝑚𝑎𝑔

K1
K2

K3

K1
K2

K3

K1
K2

K3

Figure 3.8: HilbertNet architecture:(i) in-band real part is fed to the LSTM RNN network
to get probabilistic output including in-band and out-of-band part, (ii) Hilbert transform
of the real part is taken to obtain imaginary part, (iii) Losses are computed between the
predicted real and imaginary real, and the actual real and imaginary parts respectively. (iv)
the model parameters are updated through gradient descent after combining the losses

Traditionally, the outputs of a Neural Network (NN) are deterministic. The challenge

with deterministic NNs is that the prediction is exact without any estimate of the probable

error around predictions. This often gives an incomplete picture of the system response

because in actual design, one may never have the extrapolated response to compare it to.

33

It is therefore important to quantify the uncertainty around prediction instead of the usual

error backpropagation for training the NNs. To address the uncertainty involved in our

predictions, we make use of the Bayes by Backprop (BBB) algorithm applied to RNNs

[43]. For such a purpose, instead of assuming variable deterministic parameters of the

Ws and bs matrices as in equations (3.3)-(3.6), we assume they are samples from a prior

distribution. The output Z is then a probability distribution that is computed using the given

the independent frequency data input D. Hence, we marginalize the probability over all the

various weights to get the distribution of outputs given the inputs as:

p(Z|D) =

∫
θ

p(Z|D, θ′)p(θ′|D)dθ′ (3.13)

where θ represents the set of the parameters of the weights distribution of the model and

θ′ is an iterator over it. The second term in equation (Equation 3.13), p(θ|D), is intracbe-

cause it marginalizes over all the model parameters i.e. every possibility of models which

is impossible to calculate analytically given finite compute time and resources. Consider

an arbitrary distribution qϕ(θ), parameterized by ϕ which is chosen from the set of known

distributions. The goal is to find the parameters of q(.) such that the two probability distri-

butions are similar. Therefore, we minimize the Kullback-Leibler (KL) divergence between

the two distributions. The KL divergence between two density functions f(.) and g(.) is

defined as:

KL[f(x)||g(x)] =
∫

f(x)log(
f(x)

g(x)
)dx (3.14)

Hence, the optimum set of parameters θopt is chosen such that KL divergence is minimized

given by:

θopt = argmin
θ

KL[qϕ(θ)||p(θ|D)] (3.15)

We can express the conditional distribution of the model parameters with respect to the

34

given data through the Bayes’ rule:

p(θ|D) =
p(D|θ) ∗ p(θ)

p(D)
(3.16)

The prior p(θ) is the set of parameters to which we believe could have generated our pre-

dictions in the extrapolated space. It represents the parameters set is supposed to look like

before training. When the model discovers a new batch of training data, the network makes

an informed judgement about the parameters by computing the posterior p(θ|D). To enable

this process we initially assume standard gaussian priors. The model parameters converge

to their true posterior distribution after training. The approximate variational distribution,

qθ(w) is chosen from a set of known distributions. Traditionally it is chosen as a mixture of

gaussians whose means are Bernoulli distributed. The loss function using the parameters

can be defined using:

L1(θ) = −Eq(θ){logp(Z|θ,D)} (3.17)

The loss function is the variational free energy which we have to minimize to achieve

the ”Evidence Lower Bound”. To harness gradient descent for a probabilistic model, we use

the local reparameterization trick [43], also shown in Algorithm algorithm 2. A standard

gaussian distribution is sampled ϵ ∼ N (0, 1). A model parameter, the elements of the

parameter space, w is then computed as w = µ + ϵ ∗ σ. For training, the update rule now

applies to the mean and standard deviation for each parameter for a given batch as indicated

in steps 11 and 12 of Algorithm algorithm 2. Therefore, the output of such the LSTM-RNN

is now a distribution computed using marginalization of the probability distributions of the

weights and biases, given the input sequences. As the output is a distribution, its mean and

variance are known. The mean is represented as the predicted output and the variance is

used to calculate the upper and lower confidence bounds around the predicted mean thus,

quantifying the uncertainty in the prediction or the error bar around the prediction.

The importance of uncertainty quantification was highlighted in the previous chap-

35

Algorithm 2: Training Hilbert-RNN architecture
Input: Zin−band(f), nepochs, dynamic learning rate
Output: Ẑout−of−band(f) with 95% confidence

1: Split Zin−band(f) into yr = Re[Zin−band(f)] and yimag = Imag[Zin−band(f)]
2: Adaptive Windowing operation on yr and MinMax scale according to eqn.

(Equation 3.12).
3: Form feature input and target output sequences top form a sequence set
4: Make B batches for G sequence set each
5: Sample ϵ ∼ N (0, 1). µ+ ϵ ∗ σ
6: Feed feature input sequences into LSTM-RNN with parameters θ to predict target

sequences for all batches to give output yr
7: Measure Loss between real in-band part and predicted real in-band part :

L1 = loss(yr, ŷr[: N])

8: Form extended real-valued response yreal = [yr, ˆyr[N : N + F]]
9: Compute Hilbert transform: HT(yreal) = ŷimag

10: Compute Loss: L2 = MSE(ŷimag[: N], yimag)
11: Combine losses: L = α ∗ L1 + β ∗ L2

12: Compute gradient of loss g = ∂L/∂θ
13: µ← µ− η ∗ g

B

14: σ ← σ − η ∗ g
B

15: Repeat steps 4 through 12, till nepochs reached
16: Zout−of−band(f) = ŷreal + j ∗ ŷimag

=0

ter. Frequency spectrum extrapolation with uncertainty estimates can be performed using

Bayesian RNN as described in [44]. By creating a unique wrapper around a Bayesian RNN,

a NN called ”Hilbertnet” is created. In the Hilbertnet, a Hilbert transform is used to gener-

ate a causal complex-valued extrapolation with 95% confidence region around predictions.

Input to the Hilbertnet, shown in Figure 3.8, is the in-band complex system response.

This is then passed to the Bayesian LSTM RNN. The Bayesian LSTM RNN extrapolates

the real-valued system response. Extrapolation of the imaginary part is obtained using the

Hilbert transform of the real part. Since the real response is finite in frequency, the Hilbert

transform becomes an approximation. Therefore the extrapolation introduces two types of

errors here; (1) the error between the real response produced by the LSTM-RNN and (2)

the error associated with the imaginary response produced by the Hilbert transform and

the imaginary in-band response. These two responses are combined to train the network

36

𝜖𝑟 ,𝑇𝑎𝑛𝛿

Port 1

Port 2

W

TH

L

Port 1 Port 2

L

C

Figure 3.9: (a) Microstrip line (b) Transmission line circuit

through BBB, thus enabling complex-valued causal extrapolation in the system frequency

response.

3.4 Numerical Example 1: Microstrip Circuit

As a first example, we apply our approach to a transmission line model as shown in Fig.

Figure 3.9. A shunt capacitor is attached at the end of the microstrip. As expected, this 2-

port system has a decaying insertion loss with increasing frequency with periodic ripples on

it. The circuit parameters are shown in Table Table 3.1. We are interested in extrapolating

the complex-valued return loss (S11) and insertion loss(S21). Frequency response data is

collected by simulating the circuit in a typical full-wave simulator from DC to 50GHz - a

total of 1500 points.

We use 750 of the data samples for the training phase from frequency 0GHz to 25GHz

and the other 750 for evaluation phase from frequency 25GHz to 50GHz. In this example,

we use 2 hidden layers for the LSTM network containing 10 and 15 unit cells respectively.

The results for the model are shown in Fig. Figure 3.10 that depict the comparison of real

and imaginary parts of the return and insertion loss.

We see that there is an oscillating response exhibited by the real and imaginary part

37

10

1.00

0.75

0.50

0.25

0

-0.25

-0.50

-0.75

-1.00

0.6

0.4

0.2

0

-0.2

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

20 30 40 500 10

20 30 40 500 10

Actual
Predicted mean

95% Confidence interval

0.75

0.50

0.25

0

-0.25

-0.50

-0.75

Frequency [GHz]

Actual

20 30 40

10 20 30 40

50

500

0

Extrapolated space

Extrapolated space

Extrapolated space

Extrapolated space

Figure 3.10: Insertion Loss and Return Loss of microstrip circuit

38

Table 3.1: Microstrip circuit parameters

Parameters Symbol Value

Conductivity σ 5.6 x 107 S/m

Metal height tmetal 25.4 µm
Width W 406 µm
Length L 254 mm

Loss Tangent Tanδ 0.02
Capacitor C 0.2 pF

Design Impedance Zo 50 ohms
Dielectric Thickness H 508 µm

Dielectric permittivity 4.5 ϵo

of insertion loss S21. The cutoff frequency is 25GHz. The network is able to learn the

sinosoidal trend. The patterns of change are remembered by the LSTM cells and hilbert

transform is able to recover the imaginary part from the real part since the signal is an-

alytical. We also show the confidence intervals for our predictions that cover 2 standard

deviations from the mean prediction. At the amplitude peaks, the prediction interval in-

creases depicting the realiability of the results at that frequency.

3.5 Numerical Example 2: Co-planar waveguide

We show our extrapolation results with co-planar waveguides using measured data as refer-

ence. A CPW, 4mm long, is fabricated on a glass substrate bounded with polymer making

a 3-layer stack up as shown in Fig. Figure 3.11. The polymer material used here is the

ABFGL-102 which is used on both sides of the glass substrate. The parameters of the CPW

are shown in Table Table 3.2. Insertion and return loss (in dB) extrapolation is performed

and results are compared with the measured results in D-band i.e. 110GHz to 170GHz.

The training frequency range includes 110-140 GHz band whereas uncertainty and predic-

tion evaluation is done from 140-170 GHz. For the CPW, we use two hidden layers with

39

𝐿

𝑎

𝑎

𝑏

𝑑
𝑇

𝜖𝑟𝑝𝑜𝑙𝑦

𝜖𝑟

𝜖𝑟𝑝𝑜𝑙𝑦

𝑊

𝑙

Figure 3.11: (a) Stack up (b) Top view of coplanar waveguide

10 and 15 LSTM unit cells respectively. The root mean squared loss between the mean of

the predicted frequency sample and the actual value is 10−2 dB. For this example, the given

results are in magnitude so, it is 1D extrapolation and does not involve Hilbert transform.

This algorithm relies on the interdependencies and trends among the waveguide since it is

a periodic structure relative to the length of the waveguide. The results for the model are

shown in Fig. Figure 3.12. Since, the model is trained on measured data, the confidence

bounds and the predictions are not as smooth because it also captures the measurement

noise effects.

3.6 Numerical Example 3: RF Filter

Consider an interdigital band pass filter from [Ali˙RF˙filter], shown in Fig. Figure 3.13.

The filter response is centered around 28 GHz. The frequency points simulated are 450

total. In this example, we show how the confidence bounds change as we get more sam-

40

Table 3.2: Coplanar Waveguide parameters

Parameters Symbol Value

Conductivity σ 5.6 x 107 S/m

Metal height T 9 µm
Width W 332 µm

Separation d 15µm
Length L 4 mm

Polymer height a 15 µm
Glass thickness b 100 µm

Metal width l 70 µm
Design Impedance Zo 70 ohms
Poly Loss Tangent Tanδpoly 0.044
Glass Loss Tangent Tanδglass 0.056

Poly-Dielectric permittivity 3.2 ϵo
Glass-Dielectric permittivity 4.9 ϵo

ples in the training range. The bandwidth and the peak insertion loss is controlled by the

length and width of the microstrip stubs. The spacing between the stubs controls the cou-

pling factor. We illustrate the effect of increasing N over the confidence bounds in Fig.

Figure 3.14. Before training, that is N = 0, we have a uniform prior over the network

parameters. Given new data to the model, the posterior is updated and provides new uncer-

tainty estimates to adapt to the newly simulated points. The training points are uniformly

distributed. At N = 100, the model is still unsure about its predictions since there is no

information about bandpass response in the training data yet. At N = 200 and eventually

N = 300, we see that the model, and the posterior is updated such as to minimize the KL

divergence. Hence, the 95% confidence region shrinks from a wide uniform region to one

that is centered around the mean. When the machine learning algorithm starts to train, the

uncertainty is maximum because the model cannot be certain about the prediction since

there is no training data. Thus, the weights of the model have some probability to go at any

41

130 140 150 160 170110 120
Frequency [GHz]

S1
1

[d
B

]

-10.0

-12.5

-15.0

-17.5

-20.0

-22.5

-25.0

S2
1

[d
B

]
0

-1

-2

-3

-4

S21 measured
S21 predicted

S11 measured
Extrapolated space

Confidence bounds
S11 predicted

Figure 3.12: Insertion Loss and Return Loss of Coupled Waveguide in D-band

value. Thus p(θ) is standard gaussian. Once, some training data is provided to the model,

the prior belief is being updated through the Bayes’ by Backprop algorithm and the pos-

terior function about the weights is shown as p(θ|D) ∝ p(D|θ)p(θ). The variance of the

posterior distribution is always lower than the prior because the model is updated. Thus,

the model is more informed. The 95% confidence region which is about ± 2σ, shrinks from

a larger value to a smaller one. The model parameters are now concentrated around their

means closer to the true value. In this example, we use an LSTM network with 4 hidden

layers with 15, 25, 32, 5 units respectively.

3.7 Numerical Example 4: Power Delivery Network

In power integrity applications, it is imperative to design the power delivery network (PDN)

that exhibits minimal power supply noise which is dictated by the value of target impedance

(Ztarget). A typical PDN is illustrated in Fig. Figure 3.15. To design such systems, CAD

42

Figure 3.13: Fabricated 5th Order Interdigital Filter for 28GHz band

43

15 20 25 30

0

-15

-30

-45

-60

-75

35 40 45 50 15 20 25 30

0

-15

-30

-45

-60

-75

35 40 45 50

Frequency [GHz]

|S
2

1
|

[d
B

]

Frequency [GHz]Frequency [GHz]

Simulated
Training points

Confidence Interval
*

*
*

*
*

*
*

Extrapolated

15 20 25 30

0

-15

-30

-45

-60

-75

35 40 45 50

|S
2

1
|

[d
B

]

Simulated
Training points

Confidence Interval
*

*
*

*
*

*
*

Extrapolated

*

*

*

*
*
*

*
* *

* * *

*

N =50

N =150

N =200

N =300

Frequency [GHz]

|S
2

1
|

[d
B

]

Simulated
Training points

Confidence Interval
*

*
*

*
*

*
*

Extrapolated

15 20 25 30

0

-15

-30

-45

-60

-75

35 40 45 50

|S
2

1
|

[d
B

]

Simulated
Training points

Confidence Interval
*

*
*

*
*

*
*

Extrapolated

*

*

*

Figure 3.14: Uncertainty analysis for Insertion Loss for Interdigital filter

44

VRM Die

Power
plane

Medium Frequency Capacitors

Ground
 plane

Capacitor

Figure 3.15: A typical power distribution network containing VRM, P/G planes, capacitor,
C4 bumps, TSVs

tools and analytical techniques are harnessed to inspect and improve the design of PDN.

The impedance response for power ground planes is derived in [45]. A segmentation

method is used to estimate the impedance properties of the PDN in [46]. Extrapolating

the frequency response is important since designers need to determine if there are any res-

onances in proximity to the modeled (or measured) data which is bandlimited.

We simulate the PDN using analytically derived formulae to compute the impedance re-

sponse using analysis tools available online [PDN3] for training our model and comparing

to it. Since the PDN consists of (i) interposer P/G grid (ii) PCB P/G plane (iii) C4/µ-bump

array (iv) TSV array and (v) via array, the impedance from each component is calculated

and then put together to give the PDN impedance (ZPDN). The impedance response de-

pends on the number, density and the placement location within the package containing the

PDN. Since the PDN typically contains various different inductive and capacitive elements,

one would expect the impedance response to have multiple resonant peaks and dips with

sharp transitions because of inductive and capacitive effects. We divide the complex-valued

45

Actual

HilbertNet Extrapolated

FFNN

ARIMA method
Simple RNN

Actual

HilbertNet Extrapolated

FFNN

ARIMA method
Simple RNN

Extrapolated
space

Extrapolated
space

Figure 3.16: Impedance Response extrapolated

|Z
|

[o
h

m
s
]

frequency [GHz]

Actual
Extrapolated

95% Confidence region
Extrapolated
space

Figure 3.17: Absolute impedance response extrapolation with 95% confidence bounds

impedance into real and imaginary to feed into algorithm algorithm 2. The parameters

characterizing the PDN are given in table Table 4.1. These values are chosen arbitrarily

to provide the shown impedance response. Our approach should be generalizable to other

46

values as well.

Table 3.3: PDN parameters

Parameters Symbol Value

Conductivity σ 9.27 x 107 S/m
Metal height tmetal 0.757 µm
Grid width Wgrid 27 µm

Grid spacing wgrid 168 µm
TSV radius rTSV 7.93 µm
TSV pitch pTSV 23.9 µm
C4 radius rC4 240 µm
C4 pitch pC4 0.72 mm

µ-bump radius rµ 12.125 µm
µ-bump pitch pU 45 µm

Substrate thickness himd 0.81 µ m

For this application, we use 1000 frequency points divided into a 70/30 train/test split

i.e. 700 linearly spaced frequency points ranging from 1 MHz to 12 GHz. For the LSTM-

RNN, we employ 3 hidden layers consisting of 10, 20, 10 unit cells, respectively. The

model uses dynamic adaptive learning rate trained by Adam optimizer through Pytorch

package. We place a gaussian prior on parameters of the model to get confidence bounds

on our predictions.

The quality of our prediction is measured by how close it predicts to the actual value

of impedance. Fig. 17 shows the extrapolated real and imaginary response in comparison

to the actual response. Here, we set the cuttoff frequency as 12 GHz beyond which is the

extrapolated space. The predicted values follow the correct trend. Thus, we can predict a

future pole given the information about the location and intensity of the past pole values

without limiting the designer to the topology of the PDN explicitly. The predicted values

are compared to the values obtained by other state-of-the-art techniques. We compare our

methods to ARIMA models [23], a simple feed-forward neural network (FFNN) and a

47

simple RNN method.

When producing results with ARIMA, we use the optimal (p, q, d) design tuple where p

is the order of the ’auto-regressive’ term, q is the order of moving average. It is the number

of lagged predictors the model takes into account while predicting the extrapolated value.

An ARIMA model is given by:

yt = α + β1yt−1 + ...+ βpyt−pϵt + ϕ1ϵt−1 + ...+ ϕqϵt−q (3.18)

where yt is the current predicted value and the βiyt−i terms denote the linear combi-

nation of lags upto p lags and the ϕiyt−q terms denote the linear combination of lagged

forecast errors upto q lags where i = 1, ..., p or q appropriately. We optimize p, q for the

given problem and obtained the results shown. The reason the ARIMA model is unable

to even slightly follow the pattern is because the parameters extracted are not enough to

determine the pattern. Such parameters are extracted once from the whole training set and

there is no learning involved.

The results are compared next with a simple feed-forward neural network. The FFNN

model learns the noise in the data but is unable to exhibit the pattern because it does not

have any memory. The model used for FFNN is a 4-layer model containing [15,40,100,35]

neurons each. Next, the proposed architecture is compared to a simple RNN. We do this

to illustrate the need for specialized LSTM units inside a regular RNN to accurately ex-

trapolate the response. We use a RNN with 3 layers having 10 recurrent cells each. We

can see that the output of the RNN is able to vary itself given the training range. However,

the range of the output is incorrect. This is because the RNN does not understand which

patterns are important and which patterns need to be forgotten by the network. Hence it is

unable to retain information for longer duration far off from the training sequence.

48

Actual Pole Frequency [GHz]

P
re

d
ic

te
d

 P
o

le
 F

re
q

u
en

cy
 [

G
H

z]

Figure 3.18: 95% confidence intervals versus cutoff frequency (fc)

3.7.1 Discussion on Extrapolation Range

Using the BBB for RNNs, we estimate model uncertainty in Fig. Figure 3.17. We plot the

absolute impedance response against frequency. The designer is provided with the upper

and lower bounds to assess the reliability of the predictions. This enables the designer to

simulate in the vicinity of the pole where the prediction is less confident as opposed to the

tighter bound. We also observe from the Fig. Figure 3.17 that as the predictions go far off

from the cutt-off frequency point, the model naturally becomes less confident. This is ex-

pected since the model has longer path to backpropagate and KL divergence loss increases.

We investigate this effect in Fig. Figure 3.18 where uncertainty estimates are compared

with actual versus predicted value. The closer the measurement is to the identity line the

more accurate the prediction is. Fig. Figure 3.18 shows the errorplot for the case where the

49

cutoff fc = 12GHz. It can be observed that till 16GHz the predictions are almost exact.

However, when we move on to higher frequencies, the variance of the prediction becomes

higher indicating that the model is less sure about those predictions. This is expected since

the training range of frequencies was way past that point. At 20GHz, the confidence bounds

grows loose. To make tighter bounds at higher frequencies, one way is to increase the cut-

toff frequency. This will not only add more training data and points but will make the model

comprehend more intricate seasonal and local periodicities. The composite loss considers

the two component losses, (1) coming from the LSTM-RNN marginal log likelihood (2)

coming from the error in hilbert transform as indicated in Section IV. Here, α = 0.5 is used

as an unbiased weight distribution from both sections of the network.

3.8 Computation time and cost

For different examples, different amounts of computational resources were harnessed. All

the examples were run on a windows machine with 16GB RAM and processor Intel(R)

Core(TM) i7-8565U CPU @ 1.80GHz. We are working with Python3.7.6 and Cuda toolkit

v11.3.1. The GPU used was NVIDIA GeForce GTX 1050 with Max-Q Design. We list

the computational cost for each example in table Table 3.4. We compare the computa-

tional time required for training and evaluation of HilbertNet with a simple RNN men-

tioned above. It can be observed that the time difference is not stark but accuracy for the

HilbertNet is higher.

For more details, the code is available here:

https://github.com/owbhatti/hilbertnet frequency extrapolation.

3.9 Conclusion

In summary, a method for causal extrapolation of complex-valued frequency response for

distributed structures is presented. The technique uses hidden dependencies in the response

to extrapolate it beyond the in-band range. We use recurrent neural networks to learn

50

https://github.com/owbhatti/hilbertnet_frequency_extrapolation

Table 3.4: Time resources

Example HilbertNet Simple RNN
Training Evaluation Training Evaluation

Microstrip Structure 20 min 10 ms 15min 10ms
Co-planar waveguide 23 min 8 ms 18min 7ms

RF filter 18 min 7 ms 15min 6ms
Power Delivery Network 34 min 17 ms 26min 16ms

these dependencies. The hilbert transform layer creates a relation from the real part to

the imaginary part, ensuring that the extrapolation is causal. The technique is applied

to four scenarios (1) microstrip line circuit (2) Co-planar waveguide measured results (3)

Interdigital bandpass filter and (4) Power delivery network, with the last being the most

challenging to extrapolate. The PDN provides an accuracy of 0.008 ohms. To address

model uncertainty, we employ Bayesian RNN that provides confidence. A quantitative

study of cutoff versus confidence bound is performed The model becomes less confident

with less training data and in predictions where the frequency points is far off from the

cutoff frequency. Furthermore, for a given error, it is possible to extrapolate upto a certain

range given by the variance of the predictions.

51

CHAPTER 4

DESIGN SPACE EXTRAPOLATION NEURAL NETWORK

4.1 Problem Statement

Traditional approaches include deriving analytical relations to output the frequency re-

sponse by lumped modeling of circuits which can then be used to perform extrapolation

in design space. However, such approaches are not accurate since they involve lumped

approximations that do not include the effect of parasitics at higher frequencies. To model

the non-linear mapping, how complex they may be, from the input design space to learn the

frequency response, it is essential to start from the distributed structure. Mathematically, it

is desired to find a mapping F such that

Z(f) = F (X, f) (4.1)

where Z is the complex-valued frequency response as a function of operating frequency

f and multimdimensional input design space parameter X ∈ RD where D is the dimen-

sionality of the input. Recently machine learning methods have shown to model non-linear

mappings between inputs and outputs. Vanilla fully-connected neural networks provide a

flatter response but lack spatial correlation between samples [47]. Since the input space

is continuous, we make use of convolutional neural layers to find patterns between similar

samples of data. However, this work is distinct in the sense that our aim is to predict the

in-band response for the out-of-bound geometric and material design parameters. Follow-

ing from equation (Equation 4.1), consider an out-of-bounds design tuple Xextrapolated. The

goal is now to find Z ′(f) as a function of the frequency response of in-bound tuples, the

52

previous training tuples and the frequency:

Z ′(f) = G(Z(f),Xextrapolated, f) (4.2)

Our approach combines both the neural networks to form an assembly network for mod-

elling the relationship between the frequency response and design parameters that not only

functions on the distributed structure but also saves computational time and extensive sim-

ulations to be performed repeatedly while doing so. Our framework uses complex-valued

frequency response as a correlated output having inter-channel correlations given the de-

sign tuple.

4.1.1 Transposed Convolutional Net Architecture

We propose an ensemble of two neural networks connected in series (1) Fully Connected

Upsampler which increases the multidimensional design space into a latent space with a

unique code for each sample and (2) Convolutional decoder consisting of transposed con-

volutional layers to compute the complex-valued frequency response for the power delivery

network. The full network architecture is shown in Figure 4.1. This work is presented in

[48].

The upsampler features a fully connected neural network containing linear layers with

each layer having more number of outputs as compared to that of inputs. The design

space having dimension D acts an an input to the upsampler and a latent code is in L-

dimensional space. The code produced as an output of the network contains the unique

feature vector to describe the response of the network as a function of the geometrical

and material parameter values. Such an upsampler is depicted in Figure 4.1. For such an

architecture, the output code is given

S = g1(g2(...gh(x))....) (4.3)

53

Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ¹⁵

Fully Connected
 Upsampler

Code
 S

Convolutional Decoder

h1

Xreal+ 1j* Ximag

X(f)

h2
y1

y2

Design Space
 X

Figure 4.1: Proposed Network Architecture

54

where gi is the transformation with activation function included from the ith to i + 1th

hidden layer with a total of h layers.

The convolutional Decoder consists of hidden transposed convolutional layers. A con-

volutional layer exploits the spatial correlations among the input vector for accurate feature

representation. A trained transposed convolutional network captures the hidden dependen-

cies in the data. In a vanilla convolutional neural network, output H of each layer l is

a cross-correlation product of the input I with a sliding kernel K given in the following

equation:

Hi,j = r((I ∗K)i,j) = r(
∑
m

∑
n

Km,n ∗ Ii−m,j−n) (4.4)

where i, j,m, n are non-negative integers spanning the input space and r(.) is the non-linear

activation function. The kernel K here plays a crucial role since, the output depends on how

the kernel is slid on top of the input plane. The specificity, stride and padding decide the

output dimensionality. Usually the kernel is designed as to decrease the dimensionality of

the output. To upsample the latent design frequency space to produce the actual whole fre-

quency response in the complex-domain, we make use of transposed convolutional blocks

[49]. Such blocks enable higher output dimensionality by using a transposed kernel G.

Again, we can write the convolution operation as

 H

 =

(
K

)
∗


I


(4.5)

55

but transposed convolutional layer has the kernel matrix transposed


H


=

 G

 ∗
 I

 (4.6)

The output size of the transposed layer is given as

Doutput =
Dinput + 2 ∗ padding − (Dkernel − 1)− 1

stride
+ 1 (4.7)

where Dx is the dimensionality of any vector x. Such an architecture is shown in Fig.??

4.2 Numerical Example 1: RF filter

A fifth order hairpin band-pass filter is shown in Figure 4.2a, from [50]. The filter response

depends on the length and width of the stub. The various design parameters of this hairpin

filter are listed in Table 4.1 along with their nominal design values. A DSENN is trained

using a range of design parameters and material properties around the nominal value as

shown in Table 4.1. The model is then tested using the values of design parameter and

material properties listed in the extrapolation space shown in Table 4.1. The predicted

frequency response of the nominal design in the extrapolation range is compared to that of a

full-wave 3D EM solver in Figure 4.2b. As expected, the nominal design in the extrapolated

space shows a distinct right shift in the cut-off frequency. The plot in Figure 4.2b indicates

very good correlation between the measured and the predicted data. For this example, we

use 140 design tuples for training and 100 designs for testing.

The next example is a second order Substrate Integrated Waveguide (SIW) filter pre-

sented in [51]. The filter structure and dimensions are shown in Figure 4.3a. The design

56

(a) F

[Refer to Table I]
S21 training nominal

S11 training nominal
S11 extrapolation nominal [Measured]

shift

S21 extrapolation nominal [Predicted]
S21 extrapolation nominal [Measured]

S11 extrapolation nominal [Predicted]

(b)

Figure 4.2: Fifth order Hairpin BPF Ring Resonator (a) structure and (b) design space
extrapolation results [refer to Table 4.1]

Table 4.1: Fifth order Hairpin filter parameters [Dimensionality=8]

Parameters Symbol Training Range Extrapolation Space
. . Min value Nominal value Max value Min value Nominal value Max value

Feed Length Lf 150 µm 250 µm 250 µm 250 µm 275 µm 280 µm
Feed width Wf 80 µm 100 µm 110 µm 110µm 157 µm 180 µm
Stub length L 750 µm 770 µm 850 µm 850 µm 1000 µm 1100 µm
Stub width W 50 µm 65 µm 75 µm 75 µm 100 µm 100 µm

Delta ∆L 100 µm 100 µm 100 µm 100 µm 100 µm 100 µm
Stub gap Ul 50 µm 50 µm 55 µm 55 µm 57 µm 60 µm

Gap 1 δ1 40 µm 45 µm 50 µm 50 µm 55 µm 60 µm
Gap 2 δ2 40 µm 45 µm 50 µm 50 µm 55 µm 60 µm

parameters are listed in Table 4.2. The filter response is a complex function of the design

space shown in Table 4.2. In Table 4.2, the nominal design values as well as the training

and extrapolation range are listed. For this example, we use 140 design tuples for training

and 100 designs for testing. The filter response for the nominal design in the extrapola-

tion range using the ML model is shown in Figure 4.3b. The training of the CNN based

model is done using latin-hypercube sampling (LHS) of the design parameters in the train-

ing range [52]. LHS sampling is a way for generating almost random samples from the

multidimensional distribution. It can be seen from Figure 4.3b that the CNN method has a

57

Table 4.2: Second order SIW filter parameters [Dimensionality = 11]

Parameters Symbol Training Range Extrapolation Space
. . Min value Nominal value Max value Min value Nominal value Max value

Transition width wt 0.1 mm 0.12mm 0.3mm 0.3mm 0.45mm 0.5mm

CPW width wCPW 20 µm 50 µm 70 µm 70 µm 75 µm 100 µm

CPW g-plane gCPW 10 µm 30 µm 45 µm 45 µm 50 µm 50 µm

Resonant width wres 600 µm 775 µm 800 µm 800 µm 810 µm 900 µm

Via edge-to-edge distance s 50 µm 50 µm 55 µm 55 µm 57 µm 60 µm

Metal height tCu 5 µm 9 µm 10 µm 10 µm 13 µm 20 µm
poly height tpoly 50 µm 70 µm 150 µm 150 µm 180 µm 250 µm

Via diameter dvia 100 µm 100 µm 105 µm 105 µm 108 µm 110 µm
Microstrip width wMS 50 µm 120 µm 120 µm 120 µm 300 µm 500 µm

Slot Depth dslot 40 µm 50 µm 60 µm 60 µm 85 µm 120 µm
Slot Width wslot 150 µm 175 µm 200 µm 200 µm 210 µm 300 µm

good prediction accuracy.

(a)
Frequency [GHz]

S-
p

ar
am

et
er

S21 Predicted [Extrapolation Nominal]

S21 Simulated [Extrapolation Nominal]

S21 Predicted [Training Nominal]

[refer to Table II]

shift

(b)

Figure 4.3: Second-order SIW filter (a) structure and (b) design space extrapolation results
[refer to Table 4.2]

4.3 Numerical Example 2: Power Delivery

The PDN characterization geometrical and material parameters are stated in Table Ta-

ble 4.1. We divide our design space into training and extrapolation space. To gather train

and test data, we make use of online available tool for PDN impedance analysis [11]. We

58

Table 4.3: PDN characterization parameters

Parameters Symbol Training Range Extrapolation Space
. . Min value Nominal value Max value Min value Nominal value Max value

Conductivity σ 1 x 107 S/m 5 x 107S/m 8 x 107 S/m 8 x 107 S/m 9 x 107 S/m 10 x 107 S/m

Metal height tmetal 0.5 µm 0.8 µm 0.8 µm 0.8 µm 0.95 µm 1 µm
Grid width Wgrid 10 µm 15 µm 20 µm 20 µm 27 µm 30 µm

Grid spacing wgrid 100 µm 125 µm 200 µm 200 µm 250 µm 300 µm
TSV radius rTSV 5 µm 10 µm 15 µm 15 µm 20 µm 25 µm
TSV pitch pTSV 15 µm 35 µm 60 µm 60 µm 70 µm 75 µm
C4 radius rC4 50 µm 100 µm 175 µm 175 µm 200 µm 275 µm
C4 pitch pC4 0.15 mm 0.5 mm 0.5 mm 0.5 mm 0.6mm 0.75 mm

µ-bump radius rµ 10 µm 10 µm 12 µm 12 µm 15 µm 15 µm
µ-bump pitch pU 40 µm 42 µm 45 µm 45 µm 47 µm 50 µm

Substrate thickness himd 0.7 µm 0.7 µm 0.85 µm 0.85 µm 1 µm 1 µm
Si-dielectric ϵSi 11.9 ϵo

Poly-dielectric ϵpoly 3.9 ϵo

perform a sensitivity analysis for the PDN to obtain insight into how frequency poles move

with changing parameters. For example, we conclude that small changes in parameter

Wgrid i.e. grid width are responsible for larger changes in the impedance response as com-

pared to other parameters. This effect is depicted in Figure 4.4. Furthermore, the change in

response is greater in high frequency as compared to low frequency. This is because of the

various parasitics that take effect at higher frequency as the inductances have a more pro-

nounced effect (|ZL| = wL where w is the angular frequency and L is inductance). As grid

width increases, the path from input to output on the plane increases which , in turn, affects

the plane impedance. It introduces multiple current return paths resulting in multiple poles

moving to higher frequencies.

In Table 4.3, the nominal value is shown which is arbitrarily picked to show that the

network able to interpolate. We train the network on 1000 design tuples with each design

tuple having its respective complex-valued frequency response whereas the extrapolation

space consists of 200 design points. An adaptive learning rate scheduler is employed to

minimize the training time while achieving the minimum loss on the test set. We use

59

0 2 4 6 8 10 12 14 16 18 20
frequency [GHz] -->

0

5

10

15

20

25

30

35

40

45

|Z
|

[o
h
m

s]
 -

->

W
grid

 =10 um

W
grid

 =14 um

W
grid

 =18 um

W
grid

 =22 um

W
grid

 =26 um

W
grid

 =30 um

Figure 4.4: Impedance response changes with changing grid width

normalized root mean square loss function for frequency point k:

Lreal,k =

√√√√ 1

N
∗

N∑
i=1

(real(Xi,k)− real(yi))2 (4.8)

Limag,k =

√√√√ 1

N
∗

N∑
i=1

(imag(Xi,k)− imag(yi))2 (4.9)

where N is the batch size and y is the target complex-valued variable vector. The composite

60

FFNN

Proposed Architecture

Epochs

M
SE

 L
o

ss

Figure 4.5: Loss Curves

loss is

Lk = α ∗ Lreal,k + β ∗ Limag,k (4.10)

where α, β ϵ R. After optimizing the values, we choose α = β = 1. Finally, the loss for all

frequency points is:

L =
1

F

F∑
k=1

Lk (4.11)

where F is the total number of frequency points. This loss is backpropagated to train the

network.

We compare the results against a vanilla feed-forward neural network (FFNN) trained

with the same loss function. The structure of the fully-connected neural network has been

61

10 14 22 2818

(a)

5 10 20 2515

(d)

Extrapolated space

fA

fB

fC

100 140 220 280180

(b)

(e)

Extrapolated space

fA

fB

fC

(c)

50 100 200 250150

(f)

Extrapolated space

fA

fB

fC

0.5 0.6 0.8 0.90.7

fA

fB

fC

Extrapolated space

fA

fB

fC

Extrapolated
 space

0.70 0.85 1.000.775 0.925

F
re

q
u

en
cy

 [
G

H
z]

F

re
q

u
en

cy
 [

G
H

z]

Extrapolated space

fA

fB

fC

PActual
Predicted

Figure 4.6: Extrapolation of individual design space parameters from a single trained model
(a) Grid Width(µm), (b) Grid Spacing(µm), (c) Metal height(µm), (d) TSV radius (µm),
(e) Substrate thickness (µm), (f) C4 radius (µm)

optimized to best fit the data. It contains 4 layers containing [10, 70, 200, 500] neurons

respectively to generate 1000 frequency samples whereas our proposed architecture for

this PDN comprises of 2 fully-connected layers and 3 transposed convolutional layers with

tanh(.) as the activation function used throughout. The model comparison is shown in

Table Table 4.4. We can see that while our proposed architecture takes a longer time to

train but the same loss value is minimized to 0.004 as opposed to 0.5 while running in a

comparable time.

We evaluate the loss curves for both architectures in Figure 4.5. FFNN achieves con-

vergence quicker than the proposed architecture but is stagnant thereafter.

62

Table 4.4: Comparison of different models

FFNN Proposed
architecture

Validation NMSE 0.5 0.004
Training time 1.5hrs 2hrs

Run time 0.206 sec 0.890 sec

4.3.1 Pole Tracking in design space

A complex-valued frequency response can be expressed in terms of its in-band poles and

residues along with proportional factor using vector-fitting[12] given in the following equa-

tion.

f(s) =
N∑
i

ri
s− pi

+ d ∗ s+ e (4.12)

where s = −σ + wj is the complex frequency point, pi is the i th pole, ri is the i

th residue ∀i = 1, 2, ..., N , d is the proportional factor and e is constant. As we move

across the design space, the pole frequency moves as shown in Figure 4.4. We investigate

this effect in-depth across six most sensitive design parameters. We choose three distinct

frequency points whose nominal training phase values are fA = 4.8GHz, fB = 11GHz

and fC = 18.5GHz. In Figure 4.6, we illustrate the progression from training space of

design parameters to extrapolated space. For example for Figure 4.6(a), we extrapolate

the grid width (wgrid) from 20µm to 30µm whereas the network is trained with the values

from 10µm to 20µm. The changes in most design space parameters is somewhat linear but

the distinction lies in the fact that a model trained with sample PDN responses is able to

extrapolate in a multidimensional space with a reasonable accuracy.

To show that the model can extrapolate successfully in all dimensions, we present the

predicted frequency response nominal point prediction is given in Figure 4.7. One can

63

R
ea

l(
X

)
[o

h
m

s]
Im

ag
(X

)
[o

h
m

s]

Actual

Proposed Approach
FFNN

Frequency [GHz]

Actual

Proposed Approach
FFNN

Figure 4.7: Frequency response of Nominal Value in the Extrapolation range, refer to Table
Table 4.3

64

observe that our proposed network is able to identify nearly all the peaks shown till 20GHz.

The prediction results is compared with the full-connected approach. At higher frequencies,

the FFNN architecture fails to learn the frequency response because of a lack of learning

data dependencies. This shows that convolutional architecture allows for parameter sharing

and exploitation of spatial dependencies in data to learn a complex frequency response.

4.4 Timing Analysis

Application of ML techniques to design space and spectrum extrapolation have an inherent

time and compute advantage that allows for assessing a large number of design variations

with minimum cost. Given that the dimensions of each case are greater than five, a min-

imum of 35 design combinations is usually required to perform a thorough DSE using a

three-point all-corner method. For this study, 100 design combinations are considered for

the DSE. A summary of the comparison of simulation time for 100 design variations for

three examples is shown in Table 4.5. This study is based on using a quad core i7 processor

with no other workload running. The time taken to generate the system response using ML-

based methods discussed above are compared to that of full-wave EM solver simulations,

for each example, for the 100 different cases. The time shown for the EM solvers are the

time required to simulate the number of design tuples. The benefit in compute time using

ML models comes at a cost of minimal loss in prediction accuracy (as could be seen from

the examples above), for a design or a set of frequency points outside the training range.

We also show the test errors for each application. The test error is the normalized mean

squared error over the entire frequency range over the test set.

4.5 Conclusion

We present a machine learning based approach to derive frequency response of distributed

electromagnetic structures in general as a function of their geometrical and material prop-

erties. The model architecture consists of a fully connected upsampler which is a feed-

65

Table 4.5: Simulation time comparison for DSE with full-wave simulation and Machine
Learning(ML) methods [Dim is dimensionality]

Test Case Dim Freq. range Freq ML based method EM solver Test
. . min max points Training Inference Total extrapolated tuples Errors

Hairpin filter [50] 8 20 GHz 36 GHz 500 20 min 20 sec 23 min 1143 min 0.08dB
SIW filter [51] 11 110 GHz 170 GHz 850 25 min 25 sec 24 min 2067 min 0.95dB

Power Delivery [48] 14 DC 20 GHz 1000 25 min 33 sec 80 min 2872 min 1.13dB

forward neural network to produce the code in the high dimensional latent space. The code

is fed to a transposed convolutional network to learn the frequency response at discrete

frequency points. Results show that such an architecture performs better than only the

fully-connected network approach and saves on computational time and resources in com-

parison to EM solvers. The proposed approach, while taking more time to train reduces the

normalized mean squared error by more than 90% for power delivery applications.

66

CHAPTER 5

INVERSE DESIGN: RESPONSE SPACE TO DESIGN SPACE

In this chapter, we describe the ongoing as well as the remaining work for the dissertation.

5.1 Problem Description

Recently, machine learning (ML) techniques have proven to be useful to form representa-

tions of data. A neural network maps inputs to outputs using a sequence of hidden layers.

Mathematically,

y = hL(...(h2(h1(x)))...) = fθ(x) (5.1)

where hi denotes the ith layer and x and y are inputs and outputs respectively. We can also

define all the composition of the hidden layers in a single function fθ where θ is a set of all

parameters specifying the network. To solve the inverse problem x = f−1
θ (y), there are two

major challenges: (a) Existence of inverse function: gθ = f−1
θ and (b) non-uniqueness with

the likelihood that gθ is not bijective. Using ML-based generative models, one can learn

rich representation given design and response data which is then used to solve the inverse

problem. Generative models for inverse design can be categorized into three categories: (i)

Generative-Adversarial-Networks (GANs) [53] where two neural networks generator and

discriminator are trained. However, GANs are trained using adversarial training schemes,

which are difficult to implement and it does not solve the many-to-one problem, (ii) Vari-

ational Autoencoders (VAEs) [54] where encoder and decoder models are trained to learn

the probability distribution of the latent space representing the output function. VAEs are

trained to minimize the Evidence Lower Bound (ELBO) which trains the model parame-

ters such as to best produce the given output. While these models are stochastic, they are

approximately Bayesian and estimate, at best, the latent representation. This requires huge

67

Figure 5.1: RealNVP block enabling forward and backward propagation

samples of training data that can become a computational burden. (iii) Invertible neural

networks (INNs) [55] can be used to learn distributions in data efficiently. In the ongoing

work, we propose the use of INNs to find the suitable set of design parameters for power

delivery networks given a set of desired envelope. Using INNs provides a rich insight

into multi-variable space thus enabling the designers to work with multiple suitable design

strategies.

5.2 Invertible Architectures

Invertible neural networks consists of invertible blocks designed by construction, enabled

by bidirectional training and efficient sampling techniques.

5.2.1 Invertibility by construction

To make a model invertible, we build on top of realNVP [56] model. Considering an input

variable X with D dimensions, it is randomly divided into two halves x1 and x2 each

of D/2 dimension. It is passed through the forward block shown in Figure 7.3(a). The

transformation becomes:

y1 = x1 (5.2)

68

y2 = x2 ∗ exp(s(x1)) + t(x1) (5.3)

where y1 and y2 are output halves of dimension D/2 which are then concatenated through

the same input shuffling order to make output Y . Here, s(.) and t(.) are any differentiable

and monotonous transformations which means they can be approximated as fully connected

neural networks. Computing the reverse path gives the block in Figure 7.3(b):

x1 = y1 (5.4)

x2 = {y2 − t(y1)} ∗ exp(−s(y1)) (5.5)

Note that in the reverse path, we need not compute the inverse of the neural networks

s(.) and t(.), hence there is no constraint on their invertibility. Hence, invertibility by

construction is achieved.

5.2.2 Stochasticity

We obtain a stochastic machine learning model by change of variables technique:

p(y = f(x)) = p(x) ∗ |Jyx|−1 (5.6)

where Jyx = ∇x(f) and f can be modeled as an invertible block from previous discussion.

5.2.3 INN Model

A composite INN architecture is shown in Figure 7.4. It is composed of invertible INN

blocks where each block is followed by a shuffling block. The shuffling block shuffles

the input data into halves for the next block. The depth of the network depends on total

number of blocks numblocks serves as a hyperparameter for the network. It depends on

69

Figure 5.2: INN architecture

data complexity. Additionally, we need to make both sides dimensionally consistent. The

constraint becomes:

Dtotal = Dx +D0x = Dy +Dz +D0yz (5.7)

where Dx is the dimensions of x, Dy is the dimensions of y, Dz is the dimensions of z. We

pad appropriately extra zeros D0x and D0yz . To ensure that the dimensions of the input and

output are same, we pad the auxillary variable z alongwith the appropriate zero-padding.

The augmented input and output vectors become Xaug = [x; 0x] and Yaug = [y; z; 0yz]

respectively.

5.2.4 Training

Once the INN model is set up, the network is trained. Consider the training dataset TS =

{XTSi
, YTSi

}Ni=1 where N is the number of training samples. First, we go through the

forward pass: [ypred; zpred] = fθ(x) and measure two losses. The first is the mean-squared

error (MSE) regression loss Ly between ypred and yTS:

Ly =
1

B

B∑
i=1

(ypred,i − yTS,i)
2 (5.8)

where B is the batch-size in one epoch. The second is the probability divergence loss Lz

between samples zpred and a random sample z ∼ p(z). This loss ensures the independence

70

between the variables y and z. The loss is given by:

Lz = MMD(q(x, y), p(y)p(z)) (5.9)

where p(z) is known, and p(y) is given by eq. (Equation 7.11). q(x, y) is a variational

approximate joint distribution obtained by the forward pass and MMD(.) is the maximum

mean discrepancy loss [MMD˙paper] which measures the similarity between two proba-

bility distributions. When y and z become independent, then the joint distribution will be

closer to the product of the marginal distribution and Lz → 0. Next, the reverse pass is run

from the model: xpred = f−1
θ ([y; z]). We estimate a reconstruction loss Lx between xpred

and xTS given as:

Lx = MMD(g(xpred), p(xTS)) (5.10)

where g(x) is the variational distribution. When the reconstruction loss goes down, it means

the reverse pass of the model is trained. All the losses combine to make the composite

training loss:

Ltotal = wxLx + wyLy + wzLz (5.11)

where wx, wy and wz are the relative respective weights for the losses. The training algo-

rithm pseudo-code is mentioned in Algorithm algorithm 3.

5.2.5 Inference

Once the training is done, we can perform inference on the model. For a given target output

Ŷ , we sample z from p(z) multiple times to compute the probability posterior p(X|Ŷ).

This distribution is the inverse design desired. In multidimensional case, we get p(X|Ŷ).

To find marginal distribution for a single variable xi where i = 1, 2, ..., Dx, we apply the

marginalization property:

p(xi|Ŷ) =

∫
p(xi, Xj|Ŷ)dXj (5.12)

71

Algorithm 3: INN training
Input: n epochs, learning rate: α, p(z) = N (0, IDz)
Output: training loss, trained model
while i ≤ n epochs do

for x batch, y batch ∈ (XTS, YTS) do
[ypred, zpred] = fθ(x batch)
Ly = MSE(ypred, y batch)
Lz = MMD(q(y, z), p(y)p(z))
sample z ∼ p(z)
xpred = f−1

θ ([y batch, z])
Lx = MMD(g(x), p(x))
Ltotal = wxLx + wyLy + wzLz

∀p ∈ model.parameters() :
p← p− α ∗ grad(Ltotal)

end
end

where the vector Xj = [x1, x2, ..., xi−1, xi+1, ..., xDx] contains all the dimensions except

the one whose marginal distribution is to be estimated.

5.3 Numerical Example: Power Delivery

We can apply our approach to the power delivery example as well. Designers evaluate a

PDN in terms of its impedance response ZPDN as a function of the operating frequency.

The impedance is desired to be less than a threshold value Ztarget over a range of fre-

quencies. A typical PDN is shown in Figure 5.3 which is adopted from [57]. It consists

of voltage regulator module (VRM), power ground plane (P/G), C4 bumps, microbumps,

through silicon vias (TSV) and decoupling capacitors.

Designers use CAD tools to extract the response to evaluate it for its reasonableness.

At a given frequency f , the impedance is given as a function of the design space:

ZPDN = T (XPDN , f) (5.13)

where T (.) is the forward mapping transformation, and the design space XPDN consists

72

Figure 5.3: Illustration of a power delivery network [57]

of all the geometrical and material properties that characterize the response. We simulate

the PDN using analytically derived formulae to compute the impedance response using

analysis tools available online [58]. The PDN consists of (i) interposer P/G grid (ii) PCB

P/G plane (iii) C4/µ-bump array (iv) TSV array and (v) via array. The impedance from

each component is calculated and then put together to give the PDN impedance (ZPDN).

The design space is shown in Table Table 5.1 and the response is simulated from 1MHz to

20GHz with 1000 uniformly spaced frequency points.

Table 5.1: PDN characterization parameters

Parameters Symbol Min value Max value

Conductivity σ 1 x 107 S/m 8 x 107 S/m

Metal height tmetal 0.5 µm 0.8 µm
Grid width Wgrid 10 µm 20 µm

Grid spacing wgrid 100 µm 200 µm
TSV radius rTSV 5 µm 15 µm
TSV pitch pTSV 15 µm 60 µm
C4 radius rC4 50 µm 175 µm
C4 pitch pC4 0.15 mm 0.5 mm

µ-bump radius rµ 10 µm 12 µm
µ-bump pitch pU 40 µm 45 µm

Substrate thickness himd 0.7 µm 0.85 µm
Si-dielectric ϵSi 11.9 ϵo

Poly-dielectric ϵpoly 3.9 ϵo

73

Inspecting a template of the impedance response in log-scale shows three distinct re-

gions. We have three frequency points f1, f2 and fmax as the maximum simulated fre-

quency. We define the envelope of the impedance response by dividing it into three regions.

Mathematically, the piece-wise function is:

E(f) =


R for 0 ≤ f ≤ f1

L ∗ (f − f1)
2 +R for f1 ≤ f ≤ f2

Bs ∗ f +Bc for f2 ≤ f ≤ fmax

(5.14)

where R is the constant coefficient before f1, L is the quadratic coefficient from f1 to f2,

and Bs, Bc are the linear slope and intercept coefficients from f2 to fmax. This is illustrated

in ??. Hence, for the INN model, the input is a design matrix X of size NxDx and the

output are the envelope coefficients Y = [R,L,Bs, Bc, f1, f2] since fmax is same for all the

examples.

For our INN model training, we have 800 training points and 200 testing points. We

show the dimensions as well as the input/output characterization for the model in ??. For

our example, we use a 4-dimensional latent variable z whose distribution is assumed to be

standard Gaussian. To verify our trained model, we show the forward results from the test

set. In this case, we set the target index Ytarget as indicated in Fig.??.

Ytarget = [R,L,Bs, Bc, f1, f2]

= [0.048, 9.09, 1.55, 2.7, 21MHz, 560MHz]

At the input side, we get a joint 7-dimensional posterior. We marginalize over all inputs

and achieve the distributions in ??. We sample the trained model 106 times. The orange

bar indicates the values of the input tuple from the test set that generated the Ytarget. We

observe that in most of the cases, the reference value from the test set lies on top of the

distribution where the model is most confident. This means the model has learnt the com-

74

Figure 5.4: Comparison of impedance response for ground truth input tuple and predicted
input tuple

plex 7-dimensional posterior distribution. Since, multiple design tuples might be producing

close envelopes, we simulate the design tuple we get from the INN model where it is most

confident i.e. the peak of the distribution and derive its envelope. The result of the process

is shown in Figure 5.4. We see that, when we simulate the predicted input design tuple, we

achieve an envelope that is very close to the target.

5.4 Conclusion

In this chapter, we harness flow-based invertible neural networks to model inverse mapping

of the geometrical and material properties to the impedance envelope spec of a typical

power delivery network. The proposed approach shows rich inverse distributions learnt by

the model. We can quantify the uncertainty in our predictions by analyzing the variances

of the posterior distributions of all the inputs.

75

CHAPTER 6

UNCERTAINTY QUANTIFICATION AND COMPARISON OF INVERTIBLE

ARCHITECTURES

This chapter consists of two parts. In the first part, we perform a comparison of state-of-

the-art inverse design strategies for a high-speed link. We take into account three machine

learning architectures: (1) traditional fully-connected neural networks, (2) conditional gen-

erative adversarial networks and (3) invertible neural networks. The metrics for evaluation

include quantitative mean-squared-errors on the test set as well as qualitative posterior

distributions’ similarity to the actual posterior distributions. We find that, on average, in-

vertible neural networks have minimum mean-squared error for the input design tuple and

their posterior shapes are in accordance with the actual distributions. Recently, machine

learning (ML) techniques have been quite successful to find forward and inverse mappings

between inputs and outputs [59], [60]. Neural networks minimize the error between the

predictions and actual outputs by training using back-propagation. However, traditional

neural networks are not invertible. Furthermore, generative models have been developed

to output posterior conditional distributions instead of one deterministic design solution.

Not only does this enable the designer to have multiple candidate choices but also give an

evaluation of the reliability of the model. Hence, several generative models have been used

for inverse design scenarios. In this chapter, we use a case study of a high-speed link for

comparing three popular inverse design strategies: (1) traditional fully-connected neural

networks (FCNN), (2) conditional generative adversarial networks (cGAN) [61] and (3)

invertible neural networks (INN) [55] which have been used recently for channel design

[62]. We perform the comparison both quantitatively and qualitatively. The inverse design

flow is shown in Fig. Figure 6.1.

In the second part, we present a machine learning based tool to quantify uncertainty

76

Figure 6.1: Inverse Design Flow

77

for prediction problems regarding signal integrity. Harnessing invertible neural networks,

we convert the inverse posterior distribution given by the network to address uncertainty in

frequency responses as a function of design space parameters. As an example, we consider

a differential plated-through-hole via in package core and predict S-parameters from its

geometrical properties. Results show 3.3% normalized mean squared error when compared

with responses from a fullwave EM simulator.

6.1 Invertible Architectures

We compare three foundational invertible architectures as described below.

6.1.1 Fully Connected Neural Networks (FCNNs)

FCNNs form forward mapping relationships between input and outputs. They comprise

of stacked layers of perceptrons which are a non-linear transformation of sum of scaled

inputs. In the inverse problem, we can form a mapping between the design space x and the

response space y as follows:

x = hL(...(h2(h1(y)))...) = fθ(y) (6.1)

where hi denotes the ith layer and x and y are inputs and outputs respectively. We can

also define all the composition of the hidden layers in a single function fθ where θ is a

set of all parameters specifying the network.The goal of training the FCNN is to minimize

the comparison criterion between the predicted and actual design values. In order to not

overfit the data, we make use of regularization techniques for better generalizability. An

illustration of a traditional FCNN is shown in Fig. Figure 6.2.

78

Figure 6.2: Traditional fully-connected neural network architecture (x: input, y: output,
hi: ith hidden layer, i = 1, .., L)

6.1.2 Conditional Generative Adversarial Networks (cGAN)

cGAN consists of modified adversarial generator and discriminator neural networks for

conditional data generation. Instead of feeding the generator with latent noise, we stack

the generator input with target labels desired. The output of the generator is the predicted

inverse design solution. The discriminator takes two sets of tuple as inputs. The first set

contains the real labels with real inverse solutions and compared with the cross-entropy

loss. The second set of the discriminator inputs consists of fake predicted tuples generated

by the model and real labels. Here the discriminator is trained against the adversarial loss.

In essence, the generator and the discriminator play a mini-max game where the generator

tends to mimic actual inverse design solution and the discriminator differentiates between

the real and fake samples. The architecture for cGAN is shown in Fig. Figure 6.3.

79

Figure 6.3: Architecture for cGAN (x: input, y: output, z: latent noise, x̂: inverse design
solution)

Figure 6.4: Architecture of Invertible Neural Network(x: input, y: output, z: latent vari-
able)

6.1.3 Invertible Neural Networks (INN)

INN consists of inputs x and outputs y, linked by a set of invertible learning blocks in-

terspersed with permutation and shuffling operations. On the output side, there are latent

variables z added to encode the information loss that happens at the time of forward mod-

eling. These latent variables are sampled from known distributions, which, when passed

through the trained network in the reverse direction, conditioned on an output y, result in

the conditional posterior distributions p(x|y). The architecture is shown in Fig. Figure 6.4.

The basic building block of the INN is an elegant arrangement of two complimentary affine

coupling layers. These affine coupling blocks can be modeled as fully-connected neural

networks that need not be invertible [56]. The transformation of the input xxx to output yyy

is trivially reversible in-spite of having function coefficients esi and ti which are built of

80

complex, fully connected neural networks [62]. The inputs and outputs are made of equal

dimensions by zero padding to retain symmetry of the structure and split into blocks that

are transformed as shown in the equations. Due to the use of element-wise additive and

multiplicative operations, the inverse of the transformation can easily be calculated with-

out requiring the individual inverse of si and ti, which could be intractable. The network

update in the training phase happens after one forward-and-reverse pass.The training of the

network is bi-directional. At every iteration, the gradients are updated after accumulating

losses in the forward and reverse directions. The losses in the forward direction are (1)

supervised loss, which in our case is the mean square error (MSE) between the simulated

y and predicted y′, (2) unsupervised loss on the joint distributions of the network outputs

and the product of marginal distributions of the simulation outputs and known latent distri-

butions, and (3) unsupervised loss on the distribution of the backward predictions on x and

known prior distribution on x. Maximum mean discrepancy (MMD) is used to calculate the

unsupervised loss, which only requires samples from the distribution. Compared to stan-

dard approaches, INN does not require a loss for direct posterior learning, which could be

misleading in the absence of sufficient data capturing complex multi-modal distributions.

The training of the INN is based on the forward process, which is known well.

6.2 Numerical Example: High-Speed Channel Link

High Speed Channel design is crucial to the successful operation of modern electronic

packages and integrated systems. Primarily, it is desired that the channel achieves a suitable

set of eye height and eye width specifications at the frequency of operation. However, to

meet specifications for a high-speed channel, designers go through multiple iterations of

trial and error which takes a lot of compute and design time. The input channel parameters

such as length and width of the channel, the characteristic impedance and the equalization

settings characterize the output eye parameters. Thus, the problem of inverse design of the

channel is to find the best suitable set of input parameters that obtains the target eye height

81

Figure 6.5: Commercial SerDes channel used in numerical example

and eye width at minimum. To this end, researchers have developed algorithms to optimize

the design solution for a given channel spec.

6.2.1 Model Setup

Figure 6.6: Posterior distributions for multiple models for the specified ytarget = {EW =
85ps, EH = 110mV }

We consider a typical high-speed channel routed from the transmitter to receiver as

shown in Fig. Figure 6.5. The design for signal integrity (SI) of such a channel requires

(i) breaking it into a topology, and (ii) feeding the various models of the channel to a step

response generator within the wrapper of a statistical eye analyzer. The equalizers are

82

placed at each end of this process and a random bit stream is passed through this system to

generate an eye-diagram.

In this example, we use an IBM® XBus differential channel, operating at 16 Gbps,

running between a transmitter and receiver sitting on land grid array (LGA) connectors.

We explore a full-factorial channel simulation for all the variables in the design space, with

28860 channels simulated using IBM® internal solver called High-Speed SerDes Clock

Data Recovery (HSSCDR). The design space consists of the length of the trace (LOA) in

the “Open Area Wiring” region shown in Fig. Figure 6.5 , the impedance of the trace (ZOA)

in that region and the receiver (Rx) equalizer design parameters. The equalizer used at the

Rx is a continuous-time linear equalizer (CTLE) with the option of a long-tail equalizer (l).

The design space limits and stepsparameters are shown in Table Table 6.1. The goal space

is a set of four one-shot vectors. Each vector corresponds to a specification in eye-height

(EH) and eye-width (EW). The joint-probability distribution of the EH-EW tuple is shown

in Fig. Figure 6.7. The goal space was divided into four regions based on an arbitrary

specification of EH = 110 mV and EW = 85 ps. Based on the values of EH and EW,

the output can take one of four values of a four-bit one-hot vector from the set {1000: if

EH ≥ 110 mV and EW ≥ 85 ps; 0100: if EH < 110 mV and EW ≥ 85 ps; 0010: if EH

≥ 110 mV and EW < 85 ps; 0001: if EH < 110 mV, EW < 85 ps}.

Table 6.1: CHANNEL DESIGN SPACE

Parameters Symbol Min Max Step

CTLE gain index gi 0 15 1
CTLE peaking frequency index pi 1 19 2

LTE state l 0 1 1
Open area trace length lOA 2 in. 24 in. 2 in.

Open area trace impedance ZOA 70 Ω 100 Ω 5 Ω

83

Figure 6.7: 2D Histogram of the EH-EW of full factorial channel design space

84

6.2.2 Results

To fully compare the approaches to inverse design, we present two perspectives: (1) Quan-

titative comparison, and (2) Qualitative comparison. For quantitative comparison, we pick

the best thought solution by the model and compare it with the ground truth value in the

test set. Furthermore, we compare the error produced by the predicted output and the actual

target design point. We pick 3 tuples. Given ytarget:

x̂FCNN = fFCNN(ytarget) (6.2)

x̂cGAN =x pcGAN(x|ytarget) (6.3)

x̂INN =x pINN(x|ytarget) (6.4)

Since, the inverse mapping might not be one-to-one, it is possible that multiple design

solutions achieve the same target spec. Hence, to be fair in our model comparison, we

simulate the inverse design solutions obtained by all the models and compare the resulting

eye parameters instead of comparing the input design tuples. In Table Table 6.2, we show

the mean squared error of eye height and eye width for all the 2474 test set channels.

Next, for qualitative comparison, we compare the posterior distributions of the generative

models. As a sample test case, we consider the output spec: ytarget = {EW = 85ps, EH =

110mV }. In Fig. Figure 6.6, we overlay the posterior distributions pINN and pcGAN . For

our channel, we also calculated the exact actual posterior distribution pactual. From the

posterior distributions, we can see that pINN and pcGAN are quite similar but differ in

the training and inference time. This is because of the difference in model complexity

and size. Both models were trained and evaluated on a windows machine with 16GB

RAM and processor Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz. We are working with

85

Python3.7.6 and Cuda toolkit v11.3.1. The GPU used was NVIDIA GeForce GTX 1050

with Max-Q Design.

Table 6.2: Model Comparison

Metrics FCNN cGAN INN

RMSE(EHtrue, ÊHmodel) 7.60 mV 4.33 mV 2.45mV
RMSE(EWtrue, ˆEWmodel) 10.11 ps 5.35 ps 2.22 ps

Training time 13 min 35 min 11 min
Inference time 35 ms 90 ms 11 ms

Model Size(parameters) ≈112k ≈ 547k ≈ 12k
Uniqueness information No Yes Yes

6.3 Uncertainty Quantification

In this section, we propose to utilize INNs to achieve inverse posterior distribution p(X|Y).

We then pick the most probable sample points from this distribution and undergo a forward

pass through the INN. This gives us the uncertainty bounds for the frequency response Y .

This approach is illustrated in Fig. Figure 6.8. As an example, we consider a differential

via pair and parameterize its design space. The S-parameters of the resultant structure are

the output response.

After training the INN, inference is performed. We sample z coming from a known

distribution p(z), generally assumed to be a standard Gaussian. We append the sampled z

with the target ytarget and go through backward pass of the network to obtain the inverse

posterior distribution p(x|ytarget). The expected value of this distribution gives us the mean,

and the variance of the distribution shows the sharpness of the input design tuple. The goal,

here, is to obtain the variance and mean of the forward posterior distribution p(y|x). To

achieve this, we consider a range of the most probable input design tuples provided by INN

86

Figure 6.8: Flow of inverse design and its uncertainty quantification.

87

Table 6.3: Control Parameters of the PTH Structure

Parameter Unit Min Max

µ-via Diameter dµ-via µm 30 70
µ-via Pad Diameter dpad,µ-via µm 31 140
BU Layer Thickness hBU µm 20 35

µ-via Top Antipad Radius ra,BU,TOP µm 100 500
µ-via Bot. Antipad Radius ra,BU,BOT µm 100 500

PTH Pitch vP µm 300 1200
Core Thickness hcore µm 100 1200

BU Cu Thickness tc,BU µm 10 20
Core Cu Thickness tc,Core µm 11 40

PTH Diameter dPTH µm 100 250
PTH Pad Diameter dpad,PTH µm 110 500

PTH Top Antipad Radius ra,PTH,TOP µm 50 500
PTH Bot. Antipad Radius ra,PTH,BOT µm 50 500

and undergo a forward pass to obtain upper and lower confidence bounds for our frequency

responses.

6.4 Numerical Example: Differential PTH Pair in Package Core

We consider an application of modeling a differential plated-through-hole (PTH) pair in

package core along with the microvias that connect to build-up layers. Such structures

are common since they enable vertical interconnection for signals. As such, the signal

integrity of such differential vias is crucial for high-speed interfaces. We achieve an inverse

surrogate model for the structure shown in Fig. Figure 7.11. Obtaining the inverse posterior

enables us to quantify uncertainty in the S-parameters of the shown structure.

88

Figure 6.9: Parameters of the differential PTH in package core [63].

vp

00 00 00 00 00

0 0 0 0 0

30 60 90 120 140

Prior - p(x)

Posterior - p(x|y)

Values from test set - x

argmax p(x|y)

dpad, PTH

tc,Core

dpad, u-via

Figure 6.10: Inverse posterior distributions p(x|ytarget), black vertical line shows values
from the test set

89

Frequency [GHz]

-8

-7

0

-1

-2

-3

-4

-5

-6

-10

-20

S21 [dB]

Actual
Predicted
95% Con�idence

Actual
Predicted
95% Con�idence

Frequency [GHz]

-30

-40

-50

-60

-70

S11 [dB]

Figure 6.11: Forward simulation results comparison for INN predictions with 3D EM
solvers

6.4.1 Model Setup

The design space is parameterized as a 13-D input design tuple. The minimum and maxi-

mum values are shown in Table Table 7.4. Each input combination in the design space has

a corresponding four-port scattering (S) parameter matrix from 0.1-100 GHz with steps of

100 MHz. The objective is to determine an invertible mapping from the design space X

and frequency response Y . Since the structure is partially reciprocal and symmetric, we

only consider S11, S12, S13, S14, S33 and S34. We take the magnitude of the S-parameters,

resulting in an output dimension of 6000. We draw 682 samples using Latin Hypercube

Sampling (LHS) and obtain S-parameters using Ansys HFSS. The data is split into train

and test sets for the INN model. We use 500 samples for training and the remaining for

evaluation of the model.

6.4.2 Results

We train the INN for 50 epochs with 100 iterations per epoch optimizing the model with

an intial learning rate of α = 0.01 using Adam optimizer. We train with an adaptive

90

exponentially decreasing learning rate until the model converges. On random, we choose

a desired response ytarget from the test set. Next, we sample z ∼ p(z) for 5,000 times to

obtain x = f−1
θ (y, z). For this application, we choose the dimensionality of z to be 1000.

The inverse distributions for each dimension of x is shown in Fig. Figure 7.12. We also

plot the prior distributions before conditioning on ytarget. Starting with a uniform prior, we

see that the posterior inverse distribution becomes dense around a certain range of design

tuples that the model suggests are most likely to produce the target distribution. For each

dimension, we choose the design tuple for which the model is most confident. These input

combinations are fed back into the INN to obtain a set of frequency responses. This range

determines the lower and upper bounds for the target frequency responses.

We simulate the chosen input ranges into a forward simulator to obtain confidence

intervals. In Fig. Figure 7.13, we plot the ytarget from the test set coming from the 3D EM

solver. We compare it with the output from the INN. We find that the mean of the predicted

frequency responses from the INN closely matches the test set values. Specifically, we use

the normalized mean-squared error as loss metric over each frequency response in the test

set:

NMSE =
1

NdDy

×
Dy∑
d=1

Nd∑
n=1

× (∑N
m=1(Sn,d[m]− ˆSn,d[m])2∑N

m=1(Sn,d[m]− 1
N

∑N
m=1 Ŝn,d[m])2

)
(6.5)

where Nd are the number of evaluation designs for the model and Dy = 6 represents the

magnitude of the learnt S-parameters. The NMSE value for the proposed approach is 3.3%.

6.5 Conclusion

In this work, we investigate the inverse design solutions for a high speed channel for 3 archi-

tectures: fully-connected neural networks, conditional generative adversarial networks and

91

invertible neural networks. We perform a deterministic as well as stochastic comparison.

The quality of the posteriors generated by cGAN and INN are similar to actual posteri-

ors. We conclude that inverse design, in general, can aid the designers to find a suitable

input combination. Furthermore, we propose a method to perform uncertainty quantifica-

tion of frequency response as a function of design space parameters using invertible neural

networks for signal integrity applications. Specifically, we illustrate a differential plated-

through-hole pair in package core as an example. We provide lower and upper confidence

bounds for output 4-port S-parameters. We achieve a normalized mean-squared error of

3.3% on the test set.

92

CHAPTER 7

AINN: ADVERSARIAL INVERTIBLE NEURAL NETWORKS

In this chapter, we present Adversarial Invertible Neural Networks [64] - a machine learn-

ing based inverse design technique that generates the most suitable design solution for a

desired response for microwave and electronic system applications. We harness flow-based

invertible neural networks that are trained adversarially to make possible the inverse design

of high-dimensional parameterized structures. We illustrate our technique on 3 examples:

(1) a simple patch antenna, (2) Substrate Integrated RF waveguide and (3) a differential

via pair in package. We compare our approach with other state-of-the-art inverse design

techniques as well. Results show that the proposed approach is able to find more accurate

solutions in comparison to its competitors. The posterior generated by the model depicts

the uncertainty associated with the solution. We get 0.08dB, 1.1dB mean-squared error and

1.11% normalized mean error in the respective three examples.

7.1 Problem Statement

Modern electronic systems rely on efficient design for their successful operation. For mi-

crowave components, the response surface depends on the geometrical and material prop-

erties of the electromagnetic structures. Recently, the number of physical and geometrical

dimensions has increased thus a more intricate design methodology is required. The total

design flow for microwave modeling includes forward design and inverse design. Gen-

erally, forward design comprises of determining a system’s forward response whereas the

problem of inverse design is to find out the best set of design space combinations that would

most likely lead to the desired response. For a design space X and observed noisy response

space Y , one can write:

Y = T (X) + ϵ (7.1)

93

where ϵ is random noise usually modeled as a standard gaussian and T (.) is the forward

transformation. The goal of inverse design is to find the design space from the noisy obser-

vations:

X = T−1(Y) (7.2)

However, the challenges with this formulation are twofold: (a) the inverse transformation

G = T−1 might not exist and (b) the inverse transformation may not be unique which

means it is a many-to-one problem. More traditionally, we can formulate the problem as an

optimization program [optimization˙PSO]. The goal is to find the optimum design tuple

X∗ that minimizes the error in a regularized manner. Mathematically,

X∗ = min
X

L(T (X), Y) + λR(X) (7.3)

where R(.) is a regularizer and L(., .) is an error metric for minimization. Generally, tra-

ditional optimization programs might not converge to a solution leading to the existence

problem identified earlier. Moreover, after converging, they output a single deterministic

solution which does not have any information about other inverse solutions possible. To

model the confidence in the solutions, probabilistic frameworks have been developed. The

Bayesian technique investigates the problem in a stochastic manner:

p(X|Y) =
p(Y |X)p(X)∫

X
p(Y |x)p(x)dx

(7.4)

where p(X) is the prior that is generally available with the training data, the likelihood

p(Y |X) is found through the known forward transformation T (.) and p(X|Y) is the inverse

posterior probability distribution to be estimated. While equation (Equation 7.4) while pro-

vides exact inverse posterior - it is analytically intractable and computationally expensive

to compute. To bypass this computation, many machine learning(ML) approaches have

been developed to directly estimate the distribution p(x|y) using deep generative modeling.

94

One way to model the relationship between two variables is through feed-forward neural

networks (FFNN). Such a structure maps the input function space to the output function

space. Given the dataset D = {xi, yi}Ni=1, FFNN can be represented as stacked intermedi-

ate non-linear layers to generate the output. To achieve the inverse solution, we input the

observations y and output the solution x to model the inverse function T−1:

x = hL(...(h2(h1(y)))...) = fθ(y) (7.5)

where hi denotes the ith layer and x and y are inputs and outputs respectively. We can

also define all the composition of the hidden layers in a single function fθ where θ is a set

of all parameters specifying the network. The goal of training the FFNN is to minimize

the comparison criterion between the predicted and actual design values. Recently, there

has been much work in microwave domain using FFNNs [65]. However, the feed-forward

network has no guarantees about uniqueness and reliability of the solution.

More recently, deep generative models have been developed to model input-output dis-

tributions using a latent variable z. There are three main architectures: (a) Variational

Autoencoders (VAEs) [54], [66] where encoder and decoder models are trained to learn

the probability distribution of the latent space representing the output function. VAEs are

trained to minimize the Evidence Lower Bound (ELBO) which trains the model parame-

ters such as to best produce the given output. While these models are stochastic, they are

approximately Bayesian and estimate, at best, the latent representation. This can require

huge samples of training data that can become a computational burden, (b) Generative ad-

versarial networks, [53] [67], where two neural networks generator and discriminator are

trained. While these models can work efficiently, they require a lot of training data and

are deterministic in nature and it does not solve the many-to-one problem and (c) Invertible

Neural Networks (INN) are flow-based generative models that consists of stacked invertible

transformations and can find the exact tractable posterior at inference time. A flow-chart

95

Figure 7.1: Inverse Design Flow [69]

for inverse design is illustrated in Figure 7.1. While training INN uses maximum mean dis-

crepancy (MMD), [68], as a measure of dissimilarity between two probability distributions

using samples. The metric is defined as the maximum difference in means of distributions

when transformed into a hilbert space. Mathematically,

MMD(x, y) = sup
f∈F
||µx − µy|| (7.6)

While MMD is a popular technique and has established statistical bounds [70], it has

been proved that the metric breaks at higher dimensions. In this work, we propose a solu-

96

tion to harnessing the power of invertible neural networks by training them adversarially

thereby bypassing the need for any error metric targeting high dimensional applications.

Since neural networks work with scalable dimensions - we propose using discriminators to

find if the sample generated by the model is coming from the predicted model or from the

train set. More specifically, we can summarize our contributions as follows:

• For the first time in author’s knowledge, we treat INN as a conditional generator

instead of a whole system and train them using adversarial discriminators at the input

and output side. We call this architecture as Adversarial invertible neural network.

• This gives rise to a hybrid generative model by combining the expressiveness of INNs

and the adversarial training schemes of GANs

• We harness INN as stochastic generative model to quantify uncertainty that the in-

verse design solution gives with regards to the desired parameters.

Much like GANs, the INN and the discriminators play a minmax game where the goal of

the INN is trained to maximized its likelihood of parameters given the data and produces

fake inverse samples and the discriminators at both sides are trained to distinguish between

fake and real samples. Furthermore, to validate our proposed architecture, we apply it in

three scenarios: (a) a patch antenna, (b) SIW interconnect and (c) a differential via pair in

package, given their importance in recent research areas.

7.2 AINN Architecture

In this section, we describe the architecture of AINN. It consists of an INN that acts as a

generator and two discriminator neural networks that acts as an adversary to train the INN.

The architecture is shown in Figure 7.2. The details are in the following subsections.

97

Figure 7.2: AINN architecture

Figure 7.3: RealNVP block enabling forward and backward propagation

7.2.1 Invertible Architecture

Invertible neural networks [55] consists of invertible blocks designed by construction, en-

abled by bidirectional training and efficient sampling techniques. To make a model invert-

ible, we build on top of realNVP [56] model. Considering an input variable X with D

dimensions, it is randomly divided into two halves x1 and x2 each of D/2 dimension. It is

passed through the forward block shown in Figure 7.3(a). The transformation becomes:

y1 = x1 (7.7)

98

y2 = x2 ∗ exp(s(x1)) + t(x1) (7.8)

where y1 and y2 are output halves of dimension D/2 which are then concatenated through

the same input shuffling order to make output Y . Here, s(.) and t(.) are any differentiable

and monotonous transformations which means they can be approximated as fully connected

neural networks. Computing the reverse path gives the block in Figure 7.3(b):

x1 = y1 (7.9)

x2 = {y2 − t(y1)} ∗ exp(−s(y1)) (7.10)

Note that in the reverse path, we need not compute the inverse of the neural networks s(.)

and t(.). Hence, invertibility by construction is achieved.

Since, we model the data samples coming from a distribution, a stochastic analysis is

needed. We obtain a stochastic machine learning model by change of variables technique

[71]:

p(y = f(x)) = p(x) ∗ |Jyx|−1 (7.11)

where Jyx = ∇x(f) and f can be modeled as an invertible block from previous discussion.

A composite INN architecture is shown in Figure 7.4. It is composed of invertible INN

blocks where each block is followed by a shuffling block. The shuffling block shuffles

the input data into halves for the next block. The depth of the network depends on total

number of blocks numblocks serves as a hyperparameter for the network. It depends on

data complexity. Additionally, we need to make both sides dimensionally consistent. The

constraint becomes:

Dtotal = Dx +D0x = Dy +Dz +D0yz (7.12)

99

Figure 7.4: INN architecture

where Dx is the dimension of x, Dy is the dimension of y, Dz is the dimension of z. We

pad appropriately extra zeros D0x and D0yz . To ensure that the dimensions of the input and

output are same, we pad the auxiliary variable z along with the appropriate zero-padding.

The augmented input and output vectors become Xaug = [x; 0x] and Yaug = [y; z; 0yz]

respectively.

7.2.2 Discriminators

We introduce two discriminators: one for the design space DX and one for the output space

DY . Both the discriminators are trained to distinguish the samples provided from the INN-

generator and the training data. The discriminators consists of fully-connected networks to

output a softmax version of the resultant signal:

Disc(X) = softmax(X) (7.13)

When converged, the discriminators DX and DY should not be able to tell the difference

between data samples coming from the INN-generator and the actual training data.

7.2.3 Training AINN

Algorithm algorithm 4 shows the training process for AINN. The input to the algorithm

is the training data and learning rate schedule. The output is a trained model capable of

producing directly the inverse surrogate function space. First, we split the data into batches

100

for training. Inside each training loop, we consider a batch of inputs and output tuple (x, y).

The inputs is passed through the INN, generating the output ypred and the latent variable

zpred. We find the fitting loss Ly between the training set data y and the predicted output

ypred:

Ly = MSE(y, ypred) =
1

B
∗ (ΣB

i=1(yi − yi,pred)
2) (7.14)

where B is the number of samples in a single batch. Next, we pass the output tuple

[ypred, zpred] as an input to the discriminator DY . We then find the binary cross entropy

(BCE) loss versus true labels:

BCE(p, q) = − 1

B
ΣB

i=1q ∗ log(pi) (7.15)

where pi is the probability output of the discriminator and q denotes if the loss is against

fake labels or true labels.

Next, we choose the y from the training batch and sample z ∼ p(z). This tuple is

then passed through the INN in the reverse direction to obtain xpred. Again, we find the

fitting MSE loss between the actual and predicted input tuple. We also train the discrimi-

nator DX in a similar fashion. After finding all four losses, they are combined in a linear

combination to obtain the total loss Ltotal. In practice, it has been found that the weights

wy, wgen, wDY
, wfit, wDX

are chosen such that the contribution from each loss component

is approximately equal. Having obtained the training loss, we then update the model pa-

rameters using gradient descent.

7.3 Numerical Example 1: Patch Antenna

We choose a single patch antenna as a first application to illustrate our model as a proof

of concept. A microstrip patch antenna is widely used in portable wireless devices. The

output specifications of the antenna are mainly the gain and the center frequency. These

metrics depend on the dimensions of the patch and the feed line.

101

7.3.1 Model Setup

For the inverse design model setup, our design space comprises of the physical dimensions

of the patch as well as the feedline. The design space is illustrated in Table 7.1 and is

shown in the corresponding Figure 7.5. Here, the inputs to the AINN is X = {Wp, Lp}

corresponding to various gains G, bandwidth BW and center frequency fc, forming the

output tuple Y = {G, fc}. We gather the dataset of 1000 different design points with a 3D

EM software. Furthermore, we have Dx = 2, Dy = 2, Dz = 6 and choose Dtotal = 12 for

this example.

7.3.2 Results

We set aside 800 design tuples for training randomly selected from the data and the remain-

ing 200 designs for evaluation of the model. For this case, we set learning rate α = 0.01

and choose an INN with 8 hidden stacked invertible blocks. The discriminator DX and DY

each consist of 4 fully-connected layers having [Dtotal, 6, 4, 1] neurons per layer. The loss

from the discriminator is used to train the discriminators. The model is run for 100 epochs

achieving desirable training loss. To validate our model, we choose a desired performance

metric of Ytarget = {G = 6dB, fc = 140GHz}. After the AINN is trained, we can gen-

erate the conditional posterior distribution p(x|ytarget). Figure 7.6 shows the joint inverse

posterior distribution. As is clear from the 2D contour, the distribution is bi-modal and

hence two candidate points are chosen for which the model is most confident about its pre-

dictions marked as red stars in the figure. For design verification, we simulate the picked

candidate points in 3D EM software and analyze the gain, bandwidth and center frequency

of resultant antennas. The performances of the candidate points are shown in Table 7.2.

We see that the AINN is able to capture the ambiguity associated with the inverse problem.

Both the candidate points are near to the performance spec.

102

Figure 7.5: Microstrip Patch Antenna Structure

103

Figure 7.6: Predicted conditional posterior distribution of the design parameters. Candidate
points are marked as red stars. Here, Ytarget = {G = 6dB, fc = 140GHz}

104

7.4 Numerical Example 2: Substrate Integrated Waveguide

Another application chosen for the illustration for inverse design is SIW Interconnect. SIW

technology is a promising candidate for interconnects for mmWave applications [72]. At

higher frequencies, the effect of parasitics from copper and dielectrics is profound - hence

the need to design low-loss interconnect. We illustrate here how AINN can be used for

determining the best physical parameters for a target response in D-band (110 GHz - 170

GHz). The SIW considered for this example is shown in Figure 7.7

7.4.1 Model Setup

The structure of the SIW is parameterized by a 10-dimensional space, with their ranges

shown in Table 7.3. Hence for the AINN, the design space X ∈ R10. The output Y of

the AINN is the full frequency response. We have 600 frequency points uniformly spaced

from 110 GHz - 170 GHz. At each frequency point, we have complex-valued 2-port S-

parameter matrix. Hence the output shape is (600, 2, 2, 2). Since the S-parameter matrix

is symmetric, we consider only S11 and S21 at each frequency point. We flatten the full

frequency response and hence the output dimensionality Dy comes out to be 2400 taking

into account the real and imaginary parts. An illustration for the AINN-SIW model setup

is shown in Figure 7.8. We have 185 examples for our training set and 25 examples for our

evaluation set. We use Ansys HFSS to extract the S-parameters of the SIW to model the

transmission losses in this paper.

7.4.2 Results

We run the AINN for 200 epochs, stopping early and keeping the model from overfitting.

An adaptive learning rate scheduler is applied to find the minimum loss function. Since, it is

easy to overfit the discriminator, we update the discriminator one time for every ten updates

of the INN-generator model. Once the model is trained, we can find inverse posterior

105

Figure 7.7: SIW structure: (a) stackup (b) half top-view

Figure 7.8: AINN-SIW model setup

106

Figure 7.9: Inverse Posterior distributions for SIW design space for Ytarget shown in
Fig.Figure 7.10

distributions for a specified target.

To obtain the joint inverse posterior p(x|Ytarget), we sample the 10-dimensional z-

vector 10,000 times. The distributions are shown with normalized densities in Fig.Figure 7.9.

The information given to the designer for this task is rich since, we can see how confident

the model is in predicting that the combination of the design tuple will produce the desired

response. The vertical orange line indicates the values from the test set that produced the

given response Ytarget. Note that the values might not be the only correct values since the

transformation from the design space to the response space is not bijective. For verification

purposes, we find the most confident design tuple: Xpred = argmaxX p(X|Ytarget).

To validate the findings of the model, we simulate the predicted design tuple and get

Ypred = T (Xpred) where T is the forward simulation model. In the ??, we compare the

RMSE for the S − parameter matrix averaged over all frequency points for all test cases.

We also show the correlation for Ypred and Ytarget in Figure 7.10. We can see that there is

good agreement between the predicted response and the target response.

107

Figure 7.10: Comparison of responses from target response and response simulated from
AINN

108

Figure 7.11: Parameters of the differential PTH in package core [63].

7.5 Numerical Example 3: Differential via pair for high-speed signalling

The third application to illustrate the capabilities of our proposed inverse surrogate model

is a differential via pair. Such structures are common in high-speed channels. During

package design, vias enable a vertical connection between traces and are often crucial to

signal transmission. The design space for such a pair must be parameterized to achieve

the desired channel bandwidth. The objective for this application is to learn an inverse

mapping between the geometrical parameters of the differential pair structure to four-port

differential broadband S-parameters. If an efficient inverse mapping is achieved, it can be

used to reduce iterative design cycles. We consider the via passing through package thru-

hole (PTH) as well as the microvias for connecting the package core to build-up layers. In

high-speed design, signal integrity for such models is crucial. The PTH structure is shown

in Figure 7.11. After getting the inverse design solutions, we can quantify uncertainty in

the S-parameters of the shown structure.

7.5.1 Model Setup

The shown structure is parameterized by a 13-D input design space. Each control param-

eters of the structure have their minimum and maximum bounds depicted in Table 7.4.

109

vp

00 00 00 00 00

0 0 0 0 0

30 60 90 120 140

Prior - p(x) AINN Posterior p(x|y) cGAN Posterior p(x|y)

argmax p(x|y) - AINN

dpad, PTH

tc,Core

dpad, u-via

Values from test set - x argmax p(x|y) - cGAN

Figure 7.12: Inverse posterior distributions p(x|ytarget), black vertical line shows values
from the test set, ytarget is as shown in Figure 7.13

Hence, any input design tuple X ∈ R13 has a corresponding response space tuple. The

response tuples are four-port scattering (S) parameter matrix from 0.1-100 GHz with steps

of 100 MHz. The PTH is a partially reciprocal and symmetric structure, hence, there are

only some unique S-parameters and others can be inferred from these ones. We only con-

sider S11, S12, S13, S14, S33 and S34, resulting in an output dimension of 6000. Hence, the

response space tuple is Y ∈ R6000. We gather our data using Latin Hypercube Sampling

(LHS) and obtain total 682 samples. We also obtain the corresponding S-parameters using

a commercial 3D EM solver such as Ansys HFSS. For our AINN model, we use 500 of the

total data to serve as training data and rest serves for evaluating the accuracy and efficiency

of our model. In this case, we use a discriminator DX as a 4-layer fully-connected neural

network consisting of [13, 10, 5, 1] neurons per layer and a response space discriminator

DY as a 6 layer FCNN consisting of [6000, 500, 255, 130, 25, 1].

110

Frequency [GHz]

-8

-7

0

-1

-2

-3

-4

-5

-6

-10

-20

S21 [dB]

Actual
Predicted
95% Con�idence

Actual
Predicted
95% Con�idence

Frequency [GHz]

-30

-40

-50

-60

-70

S11 [dB]

Figure 7.13: Forward simulation results comparison for AINN predictions with 3D EM
solvers

7.5.2 Results

We train the whole AINN architecture as shown in algorithm 4 for 200 epochs with an

adaptive learning rate scheduler with an initial value of 0.01 using Adam optimizer. After

200 epochs, the model converges until the discriminators cannot distinguish between the

real and fake frequency samples. To evaluate our model, we a desired response ytarget from

the test set. We stack the desired response with the latent variable z ∼ p(z) for 10,000 times

to obtain xpred = f−1
θ (y, z). After doing the reverse pass, we get the joint multidimensional

inverse posterior distributions required. Since, we cannot visualize a 13-D probability dis-

tribution function, we marginalize individual design space parameters on all dimensions

and illustrate those in Figure 7.12. To illustrate how AINN learns these distrubtions, we

also show the initial priors. This means before training the AINN thinks that all values in

the design space are equally probable. As training happens, the inverse distributions be-

come dense and focus around a certain value. This value is the one that the model is the

most confident to produce the desired target. We sample this distribution p(x|ytarget) 10

times and simulate the tuples. The simulated tuples give us a confidence region around the

mean prediction. Thus, we can quantify uncertainty in the AINN predictions.

111

As mentioned, we simulate the chosen input ranges into a forward simulator to obtain

confidence intervals. In Figure 7.13, we plot the ytarget from the test set coming from the

3D EM solver. We compare it with the output from the AINN. We can note that mean

of the predicted frequency responses from the INN closely matches the test set values.

Specifically, we use the loss normalized mean-squared error metric over each frequency

response in the test set:

NMSE =
1

NdDy

×
Dy∑
d=1

Nd∑
n=1

× (∑N
m=1(Sn,d[m]− ˆSn,d[m])2∑N

m=1(Sn,d[m]− 1
N

∑N
m=1 Ŝn,d[m])2

)
(7.16)

where Nd are the number of evaluation designs for the model and Dy = 6 represents the

magnitude of the learnt S-parameters. The NMSE value for the proposed approach is 3.3%.

7.5.3 Comparison

Furthermore, we compare other invertible architectures with the proposed AINN in their

respective performance criteria in the Table 7.5: (a) feed-forward neural network(FFNN)

has a fair amount of network parameters to tune. It is a deterministic model without any

guarantees for uniqueness, (b) conditional GAN (cGAN) is a method discussed earlier hav-

ing a traditional conditional generator and a discriminator that is trained adversarially. (c)

invertible neural network [73], that consists of multiple invertible blocks harnessing nor-

malizing flows has less number of parameters and finally the proposed approach. We can

also see that AINN has around the number of parameters as the INN including the number

of parameters from the disciminator. The training time for this example for different meth-

ods is also shown. Moreover, the NMSE for AINN is 9 times lower than the traditional

feed-foward neural network.

We also comment on the high-dimensionality of the examples used. This is illustrated

in Table 7.6. The compare the inference time for the ML-based AINN with the time taken

112

by the 3D EM solver to find the optimum tuple.

7.6 Conclusion

High dimensional inverse design poses challenges for modern microwave applications. We

present adversarial invertible neural networks that treat the INN as a conditional genera-

tor and propose discriminiators at both input and output sides to model high-dimensional

probability divergence. We illustrate our approach in three cases: (a) a single patch antenna

with 2 dimensions for visualization, (b) a SIW interconnect where design space is directly

mapped to S-parameters matrix, and (c) plated-thru hole in package core for modeling

high-speed vertical links.

113

Algorithm 4: Training AINN
Output: Trained model, training loss, inverse mapping
Initialization: Training set TS: (XTS, YTS), learning rate: lr, num epochs,
real labels = 1, fake labels = 0, p(z)

for i = 1 : num epochs do
for x, y ∈ (XTS, YTS) do

// Forward pass
[ypred, zpred] = fθ(x)
Ly = MSE(y, ypred)
// Train forward generative INN
dpred = DY ([ypred; zpred])
LZ,gen = BCE(dpred, true labels)
// Train Discriminator Y
d1 = DY ([y; z])
LDY,1

= BCE(d1, true labels)
d2 = DY ([ypred; zpred])
LDY,2

= BCE(d2, fake labels)
LDY

= 0.5 ∗ (LDY,1
+ LDY,2

)
// Reverse pass
z ∼ p(z)
xpred = f−1

θ ([y; z])
LX,fit = MSE(x, xpred)
// Train reverse generative INN
dpred = Dx(xpred)
Lx,gen = BCE(dpred, true labels)
// Train Discriminator X
d1 = DX(x)
LDX,1

= BCE(d1, true labels)
d2 = DX(xpred)
LDX,2

= BCE(d2, fake labels)
LDX

= 0.5 ∗ (LDX,1
+ LDX,2

)
Ltotal =
wy∗Ly+wgen∗LZ,gen+wDY

∗LDY
+wfit∗LX,fit+wgen∗LX,gen+wDX

∗LDX

// Backpropagate
∀p ∈ model.parameters()
p← p− lr ∗ ∇pLtotal

end
end

114

Table 7.1: Patch Antenna Design Space Parameters

Parameters Unit Min Max

Patch width Wp µm 500 900
Patch length Lp µm 500 900
Feed width Wf µm 50
Feed length Lf µm 900

Copper thickness tCu µm 9
Substrate thickness tsub µm 72.5

Table 7.2: Performance of inverse design candidates for microstrip patch antenna

Parameter
Performance

Wp Lp G fc
(µm) (µm) dB (GHz)

Design Target - - 6 140

Candidate 1 628 534 5.94 140.6
Candidate 2 593 681 6.11 138.2

Table 7.3: SIW Design Space Parameters

Parameters Unit Min Max

Transition width wt mm 0.1 0.5
Microstrip width wMS mm 0.05 0.5

CPW width wCPW µm 20 100
Out width wb µm 100 600

Transition width II wt2 µm 200 500
SIW width w mm 0.5 1.5

Polymer thickness tpoly µm 5 30
Copper thickness tCu µm 5 20
Glass thickness tsub µm 50 150
CPW g-plane gCPW µm 10 50

115

Table 7.4: Control Parameters of the PTH Structure

Parameter Unit Min Max

µ-via Diameter dµ−via µm 30 70
µ-via Pad Diameter dpad,µ−via µm 31 140
BU Layer Thickness hBU µm 20 35

µ-via Top Antipad Radius rBU,TOP µm 100 500
µ-via Bot. Antipad Radius rBU,BOT µm 100 500

PTH Pitch vP µm 300 1200
Core Thickness hCore µm 100 1200

BU Cu Thickness tc,BU µm 10 20
Core Cu Thickness tc,Core µm 11 40

PTH Diameter dPTH µm 100 250
PTH Pad Diameter dpad,PTH µm 110 500

PTH Top Antipad Radius ra,PTH,TOP µm 50 500
PTH Bot. Antipad Radius ra,PTH,BOT µm 50 500

Table 7.5: Model Comparison for PTH example

Metrics FCNN cGAN INN AINN
[53] [73] [This Work]

NMSE 9.3% 8% 3.32% 1.11%
Training time 120 min 90 min 78 min 80 min
Inference time 35 ms 90 ms 50 ms 42 ms

Model Size(parameters) ≈152k ≈ 547k ≈ 22k ≈35k
Uniqueness information No Yes Yes Yes

116

Table 7.6: Simulation time comparison for AINN with full-wave simulation and Machine
Learning(ML) methods

Application Patch Substrate Differential
—————————————- Antenna Integrated Via

Metrics Waveguide pair

Dimensionality

Dx 2 10 13
Dy 2 2400 6000
Dz 4 10 1200

Dtotal 10 2420 7500

Sample points Training 800 566 500
Inference 200 120 182

AINN Inference time 23 ms 32 ms 42 ms
EMsolver non-ML based 1143 min 2067 min 3300 min
Test Error 0.08 dB 1.1 dB (MSE) 1.11% (NMSE)

117

CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Dissertation Summary

This thesis consists of two main parts. (1) Forward Mapping from the design space to the

response space. and (2) Inverse Modeling and Design where we map the response surface

to the design space while keeping the problem well-posed.

In Chapter 3, a method for causal extrapolation of complex-valued frequency response

for distributed structures is presented. The technique uses hidden dependencies in the re-

sponse to extrapolate it beyond the in-band range. We use recurrent neural networks to

learn these dependencies. The hilbert transform layer creates a relation from the real part

to the imaginary part, ensuring that the extrapolation is causal. The technique is applied

to four scenarios (1) microstrip line circuit (2) Co-planar waveguide measured results (3)

Interdigital bandpass filter and (4) Power delivery network, with the last being the most

challenging to extrapolate. The PDN provides an accuracy of 0.008 ohms. To address

model uncertainty, we employ Bayesian RNN that provides confidence. A quantitative

study of cutoff versus confidence bound is performed The model becomes less confident

with less training data and in predictions where the frequency points is far off from the

cutoff frequency. Furthermore, for a given error, it is possible to extrapolate upto a certain

range given by the variance of the predictions.

Chapter 4 presents a machine learning based approach to derive frequency response of

a power delivery network and distributed electromagnetic structures in general as a func-

tion of their geometrical and material properties. The model architecture consists of a fully

connected upsampler which is a feed-forward neural network to produce the code in the

high dimensional latent space. The code is fed to a transposed convolutional network to

118

learn the frequency response at discrete frequency points. Results show that such an ar-

chitecture performs better than only the fully-connected network approach and saves on

computational time and resources in comparison to EM solvers. The proposed approach,

while taking more time to train reduces the normalized mean squared error by more than

90% for power delivery applications.

In Chapter 5, we harness flow-based invertible neural networks to model inverse map-

ping of the geometrical and material properties to the impedance envelope spec of a typical

power delivery network. The proposed approach shows rich inverse distributions learnt by

the model.

Chapter 6, we investigate the inverse design solutions for a high speed channel for 3 ar-

chitectures: fully-connected neural networks, conditional generative adversarial networks

and invertible neural networks. We perform a deterministic as well as stochastic compari-

son. The quality of the posteriors generated by cGAN and INN are similar to actual poste-

riors. We conclude that inverse design, in general, can aid the designers to find a suitable

input combination. Furthermore, we propose a method to perform uncertainty quantifica-

tion of frequency response as a function of design space parameters using invertible neural

networks for signal integrity applications. Specifically, we illustrate a differential plated-

through-hole pair in package core as an example. We provide lower and upper confidence

bounds for output 4-port S-parameters. We achieve a normalized mean-squared error of

3.3% on the test set.

In Chapter 7, we discuss high dimensional inverse design poses challenges for modern

microwave applications. We present adversarial invertible neural networks that treat the

INN as a conditional generator and propose discriminiators at both input and output sides to

model high-dimensional probability divergence. We illustrate our approach in three cases:

(a) a single patch antenna with 2 dimensions for visualization, (b) a SIW interconnect where

design space is directly mapped to S-parameters matrix, and (c) plated-thru hole in package

core for modeling high-speed vertical links.

119

8.2 Publications

The material presented in this thesis has resulted in following publications:

Conferences

1. O. W. Bhatti and M. Swaminathan, ”Impedance Response Extrapolation of Power

Delivery Networks using Recurrent Neural Networks,” 2019 IEEE 28th Conference

on Electrical Performance of Electronic Packaging and Systems (EPEPS), Montreal,

QC, Canada, 2019, pp. 1-3, doi: 10.1109/EPEPS47316.2019.193198.

2. O. W. Bhatti and M. Swaminathan, ”Design Space Extrapolation for Power Delivery

Networks using a Transposed Convolutional Net,” 2021 22nd International Sympo-

sium on Quality Electronic Design (ISQED), 2021, pp. 7-12, doi: 10.1109/ISQED51717.2021.9424309.

3. O. W. Bhatti, N. Ambasana and M. Swaminathan, ”Machine Learning Based Uncer-

tainty Quantification of Extrapolated Design Space and Frequency Response for RF

Structures,” 2021 IEEE MTT-S International Microwave Symposium (IMS), 2021,

pp. 16-19, doi: 10.1109/IMS19712.2021.9574988.

4. S. Han, O. W. Bhatti and M. Swaminathan, ”Reinforcement Learning for the Opti-

mization of Decoupling Capacitors in Power Delivery Networks,” 2021 IEEE Inter-

national Joint EMC/SI/PI and EMC Europe Symposium, 2021, pp. 544-548, doi:

10.1109/EMC/SI/PI/EMCEurope52599.2021.9559342.

5. N. Ambasana, O. W. Bhatti, M. Ahadi, M. Swaminathan, X. Yang, P. Roy, W. Becker,

”Invertible Neural Networks for High-Speed Channel Design Parameter Distribution

Estimation,” 2021 IEEE 30th Conference on Electrical Performance of Electronic

Packaging and Systems (EPEPS), 2021, pp. 1-3, doi: 10.1109/EPEPS51341.2021.9609225.

6. O. W. Bhatti, N. Ambasana and M. Swaminathan, ”Inverse Design of Power Delivery

Networks using Invertible Neural Networks,” 2021 IEEE 30th Conference on Elec-

120

trical Performance of Electronic Packaging and Systems (EPEPS), 2021, pp. 1-3,

doi: 10.1109/EPEPS51341.2021.9609211.

7. O. W. Bhatti et al., ”Comparison of Invertible Architectures for High Speed Chan-

nel Design,” 2021 IEEE Electrical Design of Advanced Packaging and Systems

(EDAPS), 2021, pp. 1-3, doi: 10.1109/EDAPS53774.2021.9657014.

8. O. W. Bhatti, O. Akinwande, and M. Swaminathan, ”Uncertainty Quantification with

Invertible Neural Networks for Signal Integrity Applications,” 2022 IEEE MTT-S

International Conference on Numerical Electromagnetic and Multiphysics Modeling

and Optimization (NEMO).

9. O. Akinwande, O. W. Bhatti , X. Li, and M. Swaminathan. 2022. Invertible Neu-

ral Networks for Design of Broadband Active Mixers. In Proceedings of the 2022

ACM/IEEE Workshop on Machine Learning for CAD (MLCAD ’22). Association

for Computing Machinery, New York, NY, USA, 145–151.

https://doi.org/10.1145/3551901.3556491

10. O. Akinwande, O. W. Bhatti and M. Swaminathan, ”Inverse Design of Embedded In-

ductor with Hierarchical Invertible Neural Transport Net (HINT),” 2022 IEEE Con-

ference on Electrical Performance of Electronic Packaging and Systems (EPEPS)

11. S. Han, O. W. Bhatti and M. Swaminathan, ”Reinforcement Learning for the Opti-

mization of Power Plane Designs in Power Delivery Networks,” 2022 IEEE Confer-

ence on Electrical Performance of Electronic Packaging and Systems (EPEPS)

Journals

1. S. Han, O. W. Bhatti and M. Swaminathan, ”Computation of Maximum Voltage

Droop in Power Delivery Networks,” in IEEE Access, vol. 8, pp. 197875-197884,

2020, doi: 10.1109/ACCESS.2020.3035046.

121

2. O. W. Bhatti, H. M. Torun and M. Swaminathan, ”HilbertNet: A Probabilistic Ma-

chine Learning Framework for Frequency Response Extrapolation of Electromag-

netic Structures,” in IEEE Transactions on Electromagnetic Compatibility, doi: 10.1109/TEMC.2021.3119277.

3. M. Swaminathan, O.W.Bhatti, Y. Guo, O. Akinwande, E. Huang, ”Bayesian Learning

for Optimization, Uncertainty Quantification and Inverse Design”, Special Issue of

TMTT, Feb’22

4. O. W. Bhatti, and M. Swaminathan, ”AINNs: Adversarial Invertible Neural Net-

works for high dimensional inverse design,” in IEEE Transactions on Microwave

Theory and Techniques [submitted]

5. S. Han, O. W. Bhatti and M. Swaminathan, ”Reinforcement Learning for the Opti-

mization of Decoupling Capacitors in Power Delivery Networks,” 2021 IEEE Inter-

national Joint EMC/SI/PI and EMC Europe Symposium, 2021, pp. 544-548, doi:

10.1109/EMC/SI/PI/EMCEurope52599.2021.9559342.

Magazine Articles

1. O. W. Bhatti, N. Ambasana and M. Swaminathan, ”Design Space and Frequency

Extrapolation: Using Neural Networks,” in IEEE Microwave Magazine, vol. 22, no.

10, pp. 22-36, Oct. 2021, doi: 10.1109/MMM.2021.3095706.

8.3 Future Work

In the context of this thesis, there are many streams of interesting future work that can be

adopted. In this work, we largely parameterize the design space and find an optimal map-

ping to the response space. We present CNNs, RNNs, FCNN, INNs for those tasks. One

of the important aspects to note is that these architectures are heavily supervised modeling.

One way to move forward is to use a reinforcement learning approach. In such an

approach, the model is not told what to do instead, the training agent learns what to do

122

by itself only by being provided a reward of some kind. For example, consider the SIW

structure shown earlier, the design target for S11 might be -20 dB at a frequency of interest.

Instead of parameterizing and fixing the design space variables, we can leave the model by a

policy and employ Q-networks or policy iteration schemes and provide a reward whenever

the model is able to make a move in the right direction. Another application is power plane

splitting. Such a problem is a sequential decision-making problem, whereby we do not

know the optimal power splitting scheme but we do know that the optimal power planes

will have suitable voltage droop and impedance condition satisfied.

Furthermore, To skip annotation time and compute, one can employ unsupervised or

at least semi-supervised machine learning techniques. Instead of collecting large amounts

of training data to find a good model fit, we need to focus on techniques by which we can

minimize the training set size while achieving a generalization error within reason.

123

Appendices
In this appendix, we introduce some pwoer delivery techniques with regards to work

done with ASUStek. I would like to acknowledge Andries Deroo and Yang from ASUS for

their help with understanding the problem and providing with automation frameworks.

APPENDIX A

POWER DELIVERY RAILS AND PLANE SPLITTING

As mentioned earlier, power delivery networks need to ensure a clean power supply from

the voltage regulator module (VRM) to the IC chip which acts as a current sink. As an

illustration, we show the lumped model for the PDN in Figure A.1 [74]. A good power

source needs to meet DC power requirement and reduce power fluctuation caused by AC

current switch.

In this work, we formulate the problem with finding the ultimate routing given con-

straints. The proposed model is shown in Figure A.2.

We start from the first two inputs. As shown in Figure A.3, the VRMs are located in a

contrained allowed area. The CPU chip is also shown.

The INN model is formulated as shown in Figure A.4.

We run the PDN-INN setup for 100 epochs and show the accumulated results in Fig-

ure A.5.

Figure A.1: A typical circuit model for a power delivery network

125

Figure A.2: Proposed input-output problem setup for power delivery application

Figure A.3: Proposed input-output problem setup for power delivery application

126

Figure A.4: Proposed input-output problem setup for power delivery application - dimen-
sionality comparison

Figure A.5: Results for PDN problem setup showing probability distributions for VRM
areas and CPU chip direction

127

REFERENCES

[1] B. Mutnury, M. Swaminathan, and J. Libous, “Macromodeling of nonlinear digital
i/o drivers,” IEEE Transactions on Advanced Packaging, vol. 29, no. 1, pp. 102–113,
2006.

[2] Q.-J. Zhang, K. Gupta, and V. Devabhaktuni, “Artificial neural networks for rf and
microwave design - from theory to practice,” IEEE Transactions on Microwave The-
ory and Techniques, vol. 51, no. 4, pp. 1339–1350, 2003.

[3] W. T. Beyene, “Application of artificial neural networks to statistical analysis and
nonlinear modeling of high-speed interconnect systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 26, no. 1, pp. 166–176, 2007.

[4] Q.-J. Zhang and L. Zhang, “Neural network techniques for high-speed electronic
component modeling,” in 2009 IEEE MTT-S International Microwave Workshop Se-
ries on Signal Integrity and High-Speed Interconnects, 2009, pp. 69–72.

[5] T. Lu, J. Sun, K. Wu, and Z. Yang, “High-speed channel modeling with machine
learning methods for signal integrity analysis,” IEEE Transactions on Electromag-
netic Compatibility, vol. 60, no. 6, pp. 1957–1964, 2018.

[6] C. H. Goay, A. Abd Aziz, N. S. Ahmad, and P. Goh, “Eye diagram contour model-
ing using multilayer perceptron neural networks with adaptive sampling and feature
selection,” IEEE Transactions on Components, Packaging and Manufacturing Tech-
nology, vol. 9, no. 12, pp. 2427–2441, 2019.

[7] Y. Liu, T. Lu, J. Y. Kim, K. Wu, and J.-M. Jin, “Fast and accurate current predic-
tion in packages using neural networks,” in 2019 IEEE International Symposium on
Electromagnetic Compatibility, Signal Power Integrity (EMC+SIPI), 2019, pp. 621–
624.

[8] H. Ma, E.-P. Li, J. Schutt-Aine, and A. C. Cangellaris, “Deep learning method for
prediction of planar radiating sources from near-field intensity data,” in 2019 IEEE
International Symposium on Electromagnetic Compatibility, Signal Power Integrity
(EMC+SIPI), 2019, pp. 610–615.

[9] M. Swaminathan, H. M. Torun, H. Yu, J. A. Hejase, and W. D. Becker, “Demystify-
ing machine learning for signal and power integrity problems in packaging,” IEEE
Transactions on Components, Packaging and Manufacturing Technology, vol. 10,
no. 8, pp. 1276–1295, 2020.

128

[10] K. K. Samanta, “3d/multilayer heterogeneous integration and packaging for next
generation applications in millimeter-wave and beyond,” in 2017 IEEE MTT-S Inter-
national Microwave and RF Conference (IMaRC), 2017, pp. 294–297.

[11] D. S. Green, C. L. Dohrman, J. Demmin, Y. Zheng, and T.-H. Chang, “A revo-
lution on the horizon from darpa: Heterogeneous integration for revolutionary mi-
crowavemillimeter-wave circuits at darpa: Progress and future directions,” IEEE Mi-
crowave Magazine, vol. 18, no. 2, pp. 44–59, 2017.

[12] D. Montgomery, Design and analysis of experiments. Hoboken, NJ: Wiley, 2020.

[13] A. Norman, D. Shykind, M. Falconer, and K. Ruffer, “Application of design of ex-
periments (doe) methods to high-speed interconnect validation,” Electrical Perfor-
mance of Electrical Packaging (IEEE Cat, no. 03TH8710), pp. 15–18, 2003.

[14] V. Sathanur, V. Jandhyala, and H. Braunisch, “A hierarchical simulation flow for
return-loss optimization of microprocessor package vertical interconnects,” IEEE
Transactions on Advanced Packaging, vol. 33, no. 4, pp. 1021–1033, Nov. 2010.

[15] E. Matoglu, M. Swaminathan, M. Cases, N. Pham, and D. Araujo, “Design space
exploration of high-speed busses using statistical methods,” Electrical Performance
of Electrical Packaging (IEEE Cat, no. 03TH8710), pp. 19–22, 2003.

[16] E. Matoglu, N. Pham, D. Araujo, M. Cases, and M. Swaminathan, “Statistical signal
integrity analysis and diagnosis methodology for high-speed systems,” IEEE Trans-
actions on Advanced Packaging, vol. 27, no. 4, pp. 611–629, Nov. 2004.

[17] N. Singh, “Swarm intelligence for electrical design space exploration,” in 2007 IEEE
Electrical Performance of Electronic Packaging, Atlanta, GA, 2007, pp. 21–24.

[18] C. Wesley, B. Mutnury, N. Pham, E. Matoglu, and M. Cases, “Electrical design space
exploration for high speed servers,” in Proceedings 57th Electronic Components and
Technology Conference, Reno, NV, 2007, pp. 1748–1753.

[19] P. J., S. D., and B. G, “Optimization strategies in design space exploration,” in Hand-
book of Hardware/Software Codesign, H. S. and T. J, Eds., Dordrecht: Springer,
2017.

[20] M. Arumugam, M. Rao, and A. W. Tan, “A novel and effective particle swarm op-
timization like algorithm with extrapolation technique,” Applied Soft Computing,
vol. 9, no. ue 1, pp. 308–320, 2009.

[21] R. Adve, T. Sarkar, S. Rao, E. Miller, and D. Pflug, “Application of the cauchy
method for extrapolating/interpolating narrowband system responses,” IEEE Trans-

129

actions on Microwave Theory and Techniques, vol. 45, no. 5, pp. 837–845, May
1997.

[22] S. Narayana, “Interpolation/extrapolation of frequency domain responses using the
hilbert transform,” IEEE Transactions on Microwave Theory and Techniques, vol. 44,
no. 10, pp. 1621–1627, Oct. 1996.

[23] S. Ho and M. Xie, “The use of arima models for reliability forecasting and analysis,”
Computers Industrial Engineering, vol. 35, no. 1, pp. 213–216, 1998.

[24] W. Na, W. Liu, L. Zhu, F. Feng, J. Ma, and Q. Zhang, “Advanced extrapolation
technique for neural-based microwave modeling and design,” IEEE Transactions on
Microwave Theory and Techniques, vol. 66, no. 10, pp. 4397–4418, Oct. 2018.

[25] R. Kim, J. Doppa, and P. Pande, “Machine learning for design space exploration and
optimization of manycore systems,” in 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD, San Diego, CA, 2018, pp. 1–6.

[26] S. Sen and N. Imam, “Machine learning based design space exploration for hybrid
main-memory design,” in Proceedings of the International Symposium on Memory
Systems (MEMSYS ’19, DOI : NY, USA: Association for Computing Machinery,
2019, pp. 480–489.

[27] B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Efficient system design space ex-
ploration using machine learning techniques,” in 45th ACM/IEEE Design Automa-
tion Conference, Anaheim, CA, 2008, pp. 966–969.

[28] M. Larbi, R. Trinchero, F. Canavero, P. Besnier, and M. Swaminathan, “Analysis
of parameter variability in integrated devices by partial least squares regression,” in
2020 IEEE 24th Workshop on Signal and Power Integrity (SPI, Cologne, Germany,
2020, pp. 1–4.

[29] D. Xu, Y. Shi, I. Tsang, Y. Ong, C. Gong, and X. Shen, “Survey on multi-output
learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31,
no. 7, pp. 2409–2429, Jul. 2020.

[30] Bayesian analysis #1: Concepts, https : / /kevintshoemaker.github. io /NRES- 746 /
LECTURE6.html, (Accessed on 03/16/2022).

[31] M. Fortunato, C. Blundell, and O. Vinyals, Bayesian Recurrent Neural Networks”.
NeurIPS, 2017.

[32] H. M. Torun, “Machine learning based design and optimization for high-performance
semiconductor packaging and systems,” Ph.D. dissertation, Georgia Institute of Tech-
nology, 2020.

130

https://kevintshoemaker.github.io/NRES-746/LECTURE6.html
https://kevintshoemaker.github.io/NRES-746/LECTURE6.html

[33] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of ma-
chine learning algorithms,” Advances in neural information processing systems, vol. 25,
2012.

[34] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, 3.
MIT press Cambridge, MA, 2006, vol. 2.

[35] D. Duvenaud, “Automatic model construction with gaussian processes,” Ph.D. dis-
sertation, University of Cambridge, 2014.

[36] R. M. Neal, “Slice sampling,” The annals of statistics, vol. 31, no. 3, pp. 705–767,
2003.

[37] H. M. Torun, J. A. Hejase, J. Tang, W. D. Beckert, and M. Swaminathan, “Bayesian
active learning for uncertainty quantification of high speed channel signaling,” in
2018 IEEE 27th Conference on Electrical Performance of Electronic Packaging and
Systems (EPEPS), IEEE, 2018, pp. 311–313.

[38] Normalizing flows, https:/ /deepgenerativemodels.github.io/notes/flow/#:∼ : text=
The%20name%20%E2%80%9Cnormalizing%20flow%E2%80%9D%20can ,
create%20more%20complex%20invertible%20transformations., Accessed: 2022-
09-14.

[39] S. Hochreiter and J. Schmidhuber, Long short-term memory” joural of neural com-
putation, 1997.

[40] O. Bhatti and M. Swaminathan, “Impedance response extrapolation of power de-
livery networks using recurrent neural networks,” in 2019 IEEE 28th Conference
on Electrical Performance of Electronic Packaging and Systems (EPEPS, Montreal,
QC, Canada, 2019, pp. 1–3.

[41] D. Grujić, “Numerical hilbert transform algorithm for causal interpolation of piece-
wise polynomial even and odd functions,” IEEE Transactions on Microwave Theory
and Techniques, vol. 65, no. 6, pp. 2000–2007, Jun. 2017.

[42] H. Torun, A. Durgun, K. Aygün, and M. Swaminathan, “Causal and passive parame-
terization of s-parameters using neural networks,” IEEE Transactions on Microwave
Theory and Techniques, vol. 68, no. 10, pp. 4290–4304, Oct. 2020.

[43] M. Fortunato, C. Blundell, and O. Vinyals, Bayesian Recurrent Neural Networks”.
NeurIPS, 2017.

[44] O. Bhatti, H. Torun, and M. Swaminathan, “Machine learning framework for extrap-
olation of frequency response”,” IEEE Transactions on Electromagnetic Compata-
bility, 2020 (under review).

131

https://deepgenerativemodels.github.io/notes/flow/##:~:text=The%20name%20%E2%80%9Cnormalizing%20flow%E2%80%9D%20can,create%20more%20complex%20invertible%20transformations.
https://deepgenerativemodels.github.io/notes/flow/##:~:text=The%20name%20%E2%80%9Cnormalizing%20flow%E2%80%9D%20can,create%20more%20complex%20invertible%20transformations.
https://deepgenerativemodels.github.io/notes/flow/##:~:text=The%20name%20%E2%80%9Cnormalizing%20flow%E2%80%9D%20can,create%20more%20complex%20invertible%20transformations.

[45] J.-H. Kim and M. Swaminathan, “Modeling of irregular shaped power distribution
planes using transmission matrix method,” IEEE Transactions on Advanced Packag-
ing, vol. 24, no. 3, pp. 334–346, 2001.

[46] J. Kim et al., “Chip-package hierarchical power distribution network modeling and
analysis based on a segmentation method,” IEEE Transactions on Advanced Pack-
aging, vol. 33, no. 3, pp. 647–659, 2010.

[47] L. Y., H. P., B. L., and B. Y, “Object recognition with gradient-based learning,”
in Shape, Contour and Grouping in Computer Vision. Lecture Notes in Computer
Science, vol. 1681, Berlin, Heidelberg: Springer, 1999.

[48] O. W. Bhatti and M. Swaminathan, “Design space extrapolation for power delivery
networks using a transposed convolutional net,” in 2021 22nd International Sympo-
sium on Quality Electronic Design (ISQED), 2021, pp. 7–12.

[49] V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning, arXiv
preprint arXiv:1603.07285. 2016 Mar 23.

[50] M. Ali, “First demonstration of compact, ultra-thin low-pass and bandpass filters
for 5g small-cell applications,” IEEE Microwave and Wireless Components Letters,
vol. 28, no. 12, pp. 1110–1112, Dec. 2018.

[51] H. Yu, H. M. Torun, M. U. Rehman, and M. Swaminathan, “Design of siw filters in
d-band using invertible neural nets,” in 2020 IEEE/MTT-S International Microwave
Symposium (IMS), 2020, pp. 72–75.

[52] Latin hypercube sampling, Dec. 2021.

[53] I. Goodfellow, “Generative adversarial nets”,” in Advances in Neural Information
Processing Systems 27, 2014.

[54] D. Tait and T. Damoulas, Variational autoencoding of pde inverse problems.

[55] L. Ardizzone, J. Kruse, C. Rother, and U. Köthe, “Analyzing inverse problems with
invertible neural networks”,” in International Conference on Learning Representa-
tions (ICLR, 2019.

[56] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real nvp,” in
International Conference on Learning Representations (ICLR, 2016.

[57] H. Torun et al., “Design space exploration of power delivery in heterogeneous inte-
gration,” GOMACTECH, Mar. 2019.

[58] Matlab based tool for pdn impedance analysis, accessed as of June 7th, 2021.

132

[59] K.-I. Funahashi, “On the approximate realization of continuous mappings by neural
networks,” Neural Networks, vol. 2, no. 3, pp. 183–192, 1989.

[60] S. Ferrari and R. Stengel, “Smooth function approximation using neural networks,”
IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 24–38, 2005.

[61] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” CoRR, vol. abs/1411.1784,
2014. arXiv: 1411.1784.

[62] N. Ambasana et al., “Invertible neural networks for high-speed channel design pa-
rameter distribution estimation,” in 2021 IEEE 30th Conference on Electrical Per-
formance of Electronic Packaging and Systems (EPEPS), 2021, pp. 1–3.

[63] H. M. Torun, A. C. Durgun, K. Aygün, and M. Swaminathan, “Enforcing causality
and passivity of neural network models of broadband s-parameters,” in 2019 IEEE
28th Conference on Electrical Performance of Electronic Packaging and Systems
(EPEPS), 2019, pp. 1–3.

[64] O. W. Bhatti, O. Akindwande, and M. Swaminathan, “Ainns: Adversarial invert-
ible neural networks for high-dimensional inverse design,” IEEE Transactions of
Microwave Theory and Techniques, 2022, submitted.

[65] H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network inverse modeling and
applications to microwave filter design,” IEEE Transactions on Microwave Theory
and Techniques, vol. 56, no. 4, pp. 867–879, 2008.

[66] Y. Tang et al., “Generative deep learning model for inverse design of integrated
nanophotonic devices,” Laser & Photonics Reviews, vol. 14, no. 12, p. 2 000 287,
2020.

[67] S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse
design in nanophotonics,” Nanophotonics, vol. 9, no. 5, pp. 1041–1057, 2020.

[68] I. O. Tolstikhin, B. K. Sriperumbudur, and B. Schölkopf, “Minimax estimation of
maximum mean discrepancy with radial kernels”,” in Advances in Neural Informa-
tion Processing Systems 29, 2016.

[69] O. W. Bhatti et al., “Comparison of invertible architectures for high speed chan-
nel design,” in 2021 IEEE Electrical Design of Advanced Packaging and Systems
(EDAPS), 2021, pp. 1–3.

[70] A. Ramdas, S. J. Reddi, B. Póczos, A. Singh, and L. Wasserman, “On the decreasing
power of kernel and distance based nonparametric hypothesis tests in high dimen-
sions,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29,
2015.

133

https://arxiv.org/abs/1411.1784

[71] G. Peskir, “A change-of-variable formula with local time on curves,” Journal of
Theoretical Probability, vol. 18, no. 3, pp. 499–535, 2005.

[72] M. Yi et al., “Surface roughness modeling of substrate integrated waveguide in d-
band,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 4,
pp. 1209–1216, 2016.

[73] O. W. Bhatti, O. Akinwande, and M. Swaminathan, “Uncertainty quantification with
invertible neural networks for signal integrity applications,” in 2022 IEEE MTT-S
International Conference on Electromagnetic and Multiphysics Modeling and Opti-
mization (NEMO2022), accepted.

[74] R. Sjiariel, R. Enjiu, J. Costa, and M. Perotoni, “Power integrity simulation of power
delivery network system,” in 2015 SBMO/IEEE MTT-S International Microwave and
Optoelectronics Conference (IMOC), 2015, pp. 1–5.

134

VITA

Osama Waqar Bhatti (Graduate Student Member, IEEE) received the bachelor’s degree in

electrical engineering from the National University of Sciences and Technology, Islamabad,

Pakistan, in 2017. He is currently pursuing the Ph.D. degree at the Georgia Institute of

Technology, Atlanta, GA, USA.,His current research interests include designing machine

learning algorithms for signal and power integrity applications.,Mr. Bhatti was a recipient

of the Best Paper Award at the 22nd International Symposium on Quality Electronic Design

(ISQED’21).

135

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 | Introduction
	Motivation
	Summary of Contributions
	Outline of the Dissertation

	2 | Literature Survey
	Design Space Exploration methodologies
	Machine Learning Preliminaries
	Bayesian update Rule
	Stochastic Models
	Gaussian Processes for Machine Learning
	Normalizing Flows

	3 | Neural Network Architecture for Frequency Response Extrapolation
	Problem Statement
	Recurrent Neural Networks (RNN) for Spectrum Extrapolation
	Hilbert Transform for causal extrapolation
	Numerical Example 1: Microstrip Circuit
	Numerical Example 2: Co-planar waveguide
	Numerical Example 3: RF Filter
	Numerical Example 4: Power Delivery Network
	Computation time and cost
	Conclusion

	4 | Design Space Extrapolation Neural Network
	Problem Statement
	Numerical Example 1: RF filter
	Numerical Example 2: Power Delivery
	Timing Analysis
	Conclusion

	5 | Inverse Design: Response Space to Design Space
	Problem Description
	Invertible Architectures
	Numerical Example: Power Delivery
	Conclusion

	6 | Uncertainty Quantification and Comparison of Invertible Architectures
	Invertible Architectures
	Numerical Example: High-Speed Channel Link
	Uncertainty Quantification
	Numerical Example: Differential PTH Pair in Package Core
	Conclusion

	7 | AINN: adversarial invertible neural networks
	Problem Statement
	AINN Architecture
	Numerical Example 1: Patch Antenna
	Numerical Example 2: Substrate Integrated Waveguide
	Numerical Example 3: Differential via pair for high-speed signalling
	Conclusion

	8 | Summary and Future Work
	Dissertation Summary
	Publications
	Future Work

	Appendices
	A | Power Delivery Rails and Plane Splitting

	References
	Vita

