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ABSTRACT 

The modeling via transfer matrices of mixed 
lumped-distributed parameter systems with feedback 
control is discussed and novel methods of obtain
ing il·l£0i:matiuLl 'un the controlled sY3tl2m's d;i:.laiilic 
response via numerical methods is presented. 

These methods utilize numerical searches in the 
complex plane for the roots of the transcendental 
characteristic equation to determine the closed 
loop system eigenvalues. The fast Fourier 
transform (FFT) algorithm is utilized but in the 
inverse fashion (from frequency domain to time 
domain). The information obtained is identical to 
that contained in a model in modal coordinates, and 
can be used to construct such a model. An interactive 
computer program to do the required calculations is 
described, as well as its application to' a manipulator 
arm design problem. 

INTRODUCTION 

As technology attempts higher dynamic system 
perforn~nce various ,of the approximations used in 
their design become q'uestionable. Faster ,and more 
accurate performance requires that higher order 
dynamic models be used and in the limit the true 
distributed nature of many components must be 
recognized. This realization may be painful since 
most popular analysis techniques require an approxi
mation at some level; either as a more detailed 
lumping or as a modal truncation, procedures which 
rely largely on the experience of the designer, as 
well as extensive analytical work with uncertain 
resulting cmnplexity. 

By utilizing the power of the digital computer 
the requirements on the designer can be shifted to 
Lhe recognition of types of ideal components: 
distribut~d beams, distributed shafts, essentially 
rigid masses, point compliances,feedback control 
loops, etc. ,The computer program can take this " 
'definition, process it, and give to the designer 
inforn~tion he can readily assimilate: frequency 
responses, eigenvalues, modal shapes, and time 
responses. This has been done effectively in the 
case of lumped par.amet"r. 'Systems, for. example the 
ENPORT modeling program for bond graph representations. 

The topic her.e is the analysis o( mixed lumped
distributed parameter system models via numerical 
methods. Well understood distributed components 
when connected form very complex systems which are 
not ammenable to analytical techniques. The 
numer.ical techniques descr.ibed below ar.e capable of 
providing the necessary information ,to evaluate 
the dynamic response of such systems directly and 
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provide the information needed to construct approxi
mate models needed in various synthesis techniques. 
The techniques have been used in several practical 
design situations with success. 

RATIONALE FOR l·jUHERICAL HODEL DEVELOPHENT 

An important class of practical engineering 
systems are vlell modeled by a combination of lumped 
and distributed parameter elements. Examples of 
distributed parameter components include long 
drill stems, sucker rods, hydraulic transmission 
lines, flexible beams, and shafts. These may be 
interfaced with components such as control ·systems, 
'actuators, gear, boxes, bearings, etc., which are 
well descr.ibed by lumped parameter models. Demands 
for higher system performance may require the 
distributed effects in these systems to be modeled 
more accurately [1]. 

Much o'f the theoretical control work dealing 
with partial differential equations does not admit 
the complexity of mixed lumped and distributed 
parameters or of interfacing at their boundaries 
distributed parameter components ~ith different 
parameter values or describing equations. Such 
complexities would be useful in practice. For 
example, beam vibration control studies in the 
time dcmain have been published [2,3,4], for single 
uniform bean~. A manipulator model based on a single 
distributed beam described in terms of its lower modes 
of vibration with control optimization in the time 
domain has been studied by Hirro [5]. Hhen connect
ing two or more dis tributed beams the prob 1 ,!m of 
boundary conditions between the systems of partial 
differential equations restricts time domain models 
severely. llaizza-Neto [6,1] has derived in modal 
coordinates a model for a two beam system from 
Lagrange's equations but much analytical manipulation 

.is required. 
Impedance methods, which rely on transformation. 

of the describing equations to the Laplace domain 
are useful here. Previous papers [7] have indicated 
their usefulness in arriving at the controlled 
response of distributed systems. Their value results 
largely from the ability to solve generally and 
e~B~tly in terms of transformed b0undry conditions 
the simple partial differential equations (PDE's) of 
the distributed components. By equating the boundary 
conditions of interfacing components the impedance .of 
the composite system may be obtained [8]. These 
methods are especially adaptable to the above cited 
distributed examples and others which have only one 
independent space variable. Since the characteristic 
impedance of a distributed element may in general be 
a complex transcendental function, a combination.of 
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such elements is likely to be too complex for analyti
cal treatment. Some application of impedance techni
ques to the control or a single distributed.element is 
found in the literature [9]. Theory is not adequate 
for dealing. directly with many control problems via 
impedance methods. 

A body of theoretical work [10,11,12,13,14] has 
evolved over the past several years for dealing with 
the control of distributed parameter systems which 
seems appropriate to the demands of applications " 
mentioned abeve. The application of the resulting 
techniques is dependent however, on obtaining an 
appropriate model. Such models frequently involve 
state space equations .in modal coordinates, perhaps 
truncated to a finite number of modes.' Required for 
such models are the eigenvalues and the eigenfunctions 
or . equivalently .the control and observation matrices, 
not readily obtainable for many systems. 

The techniques discussed in this paper make use 
of the impedance formulation of dynamic systems to 
obtain numerically information on the'controlled 
response of mixed distributed-lumped parameters 
systems and to obtain the required information for 
accurate st·ate- spac'e models. The techniques have 
been implemented and applied to the control of flexi
ble manipulator arms. This application is a prime 
example ~vhere new applications (e.g. the. 60 foot long 
space shuttle remote ma.nipulator) and high performance 
requirements demand consideration of distributed 
effects. 

MATHEMATICAL BASIS FOR THE PROPOSED MODEL 

The linear elements' we consider a system to be 
modeled by (e.g. beams, masses, springs) are described 
most fundamentally by their differential equations 
(ordinary. or partial). Using the general form of the 
steady state solution (particular solution) of these 
equations the transfer matrices can be derived. This· 
is a process of replacing the arbitrary constants of 
the assumed solution with the systeln boundary con-

. ditions, which remain unspecified at this point. The 
reSUlting equations can be placed in a convenient 
matrix form. When arranged to describe the variables 
at one point in the element by multiplying the vector 
of variables at another point of the element, the 
matrix is termed a transfer matrix. 

The approach described has been specifically 
used to analyze flexible manipulator arms and thus 
the examples appear in that context. 

Transfer Matrix Approach 

The transfer matrix. approach provides a versatile 
method of describing the interaction between the 
linear components of a system when that interaction 
occurs at no more than two stations of the component. 
For beams these two stations correspond physically 
to the two ends of the beam. For pure rotary springs· 
these stations correspond to the ends of the springs. 
For rigid body inertias these stations correspond 
to the points of attachment. When three or more 
components interact at a single station it is still 
possitle to use the transfer matrix approach if this 
interaction is well defined. The transfer matrix 
method is well explained by Pestel and Leckie [8] and 
only the essentials will be discussed here. ' 

The interaction between' two components is described 
by means of a vector of state variables. The transfer 
matrix state ,variables should not be confused with the 
state variables of the state variable formulation of 
modern control theory. At the station where two 

comporients are joined the ~alue of their state 
variables is identical. A transfer matrix is used to 
describe the relation between·the state variables at 
the two stations of each component. If the component 
is a static component (does not involve differentials 
with respect to time) such as an ideal spring, the 

. transfer matrix is a function only of the 'component 
.parameters .. For dynamic components such' as an ideal 
mass, the transfer matrix is also a function of the 
time derivatives of the state variables. For linear 
components .. (described by linear differential equations) 
it is cOllvenient to deal with the Fourier transform of .' 
these equations which yields the steady ~tate amplitude 
and phase (or complex amplitude) ·of ehe state' variables:. 
under a pure sinusoidal excitation of frequency w. . 
The transfer functions for these components are 
functions of w.· 

The state vector z that was used in an arm model 
consisted of four variables'displayed in Figure I for 
a: beam with flexure in the x-z plane. These 'four state 
~ariables are sufficient to describe most arm vibrations 
of interest. Arm flexure in two planes can be described 

. if these motions are decoupled. In addition torsional 
compliance of beams 'can be accounted for w'hen vibrations 
out of the plane of two' beams is studied .. In general' 
the neutral axis o!: ·the undeformed arm must lie in 'a 
plane for these four state variables to sufficiently 
describe the arm. Two link designs which predominate 
arms built today (except for short ~.,rist segments) , 
automatically qualify. Additional arm links or beam 
like supports modeled as part of the arm may of course 
b'e arranged in nonplanar configurations. There is no 
conceptual difficulty in extending the state vector to 
the ~omplete three dimensional case. The twelve state 
variables then needed (flexure in, two planes, t'.vis ting, 
and compression) lengthen .. I:umerical computa tion dis
proportionately' to the infor.mation obtained. State 
vectors with bet~veen 4 and 12 variables may give 
added information in some specific cases. Four st~te 
variables are all that will be considered here. 

Given the transfer matrix B for a component and 
the state·vector at one of its stations z., the state 
vector z. at the other station is give~by the 
matrix j;Glhplication. 

~i-l = B ~ 

It is thus a simple matter when components are con
nected serially (two components per station except 
for the end components) to find an overall transfer' 
matrix by multiplication of the individual matrices 
to eliminate the intermediate state vectors. This 
iG de!'!!cnstrc~ted for an Arm m(')t1p.l in Figure 2. 

Numerical Operations with Transfer Hatrices. 
The product of matrices such as appears in Figure 2 
essentially is the implementation of the model of 
the arm which consists of beams, lumped masses, 
controlled joints and angles, joined end on end. 
The. impleme~tation of the model provides ways 'of 
getting useful information from that model. One 
possibility is to express analytically the elements 
of each component matrix, multiply the matrices and 
obtain a single matrix each element of which is a 
sum of products of the original matrix elements. 
While this in fact can usefully be done for simple 
cases it is not recommended for more complex case~, 
unless the same configuration is to be used many times 
because of the complexity of useful elements, such as 
appears in Figure 3. The alternative is to e~aluate 
each term before the matrix product is taken, then 
multiply the numerical values. This is a procedure 
which can be carried out in a straightforward 
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. i fashion by digital computer. 

Thp.advantage to numerical evaluation of this 
nature is that the complex functions need not be 
~anipulated avoiding largi amounts of designer time, 
and potential for mista~~s. 

The disadvantages are for three types: 
(1) Hore computer time is required to evaluate 

expressions which might be simplified using trigono
metric and hyperbolic identities. The simplification 
is not apt to be great unless there are identical 
components or at least many identical parameters. 
Additional computer savings may be observed when 
some of the transfer matrices have many zero or 
unity elements. It may not be difficult for the 
designer to combine several simple elements into 
one matrix analytically if thiS,combination is to 
be used frequently. 

(2) Numerical errors may become significant. 
The larger number of calculations may cause roundoff 
errors to become significant especially in some cases 
(evaluation of determinants) which require taking the 
difference of t\~O large, nearly equal numbers. This 
difficulty has been encountered only in rare and un
usual cases and been solved by using extended precision 
in those cases. It is also possible to get I'! l11.imerical 
overfluw .ill the product of the t'ransfer ;;;atrices. 

(3) For simple cases the analytical expressions 
resulting from the matrix product may give the designer 
insight into the problem that the numerical results 
obscure. 

Boundary Conditions and Forcing Functions. The 
transfer matrix, whether it describes a single com
ponent or a group them, expresses the relationship 
between the state variables at its two stations. In 
order for the transfer relation to be valid 'between 
state vectors, at most half of the state variables may 
be arbitrarily established. Hore precisely for the , 
state vectors of physical systems only one of the 
complimentary variables of ,displacement or force and 
angle or moment, etc., may be arbitrarily specified. 
This',specification may be as a Simple boundary con
dition, as a forcing function, or as a linear combi
nation of va.riables which may implicity include the 
other variables of the same state vector. This last 
case is in essence \~llat one does when he appends 
another component by multiplying another transfer 
matrix. In this case one merely transfers the specifi
cation to another station in the ,extended system. 

For simple TIoundary conditions one prescribes two 
non-associated variables of an arm. Figure 4 displays 
the physically possible combinations of zero state 
variables. The non-trivial solution of this case can 
result in solving for the natural frequency o~ complex 
eigenvalues (for damped systems). Additionally one can 
solve for the eigenfunctions of the system (the mode 
shape at the eigenvalue). The imposition of a forcing 
function yields the steady state forced response of the, 
system, assuming the forcing function is a sinusoid of 
frequency w. These techniques will be discussed in the 
following sections. 

Natural Fr.equencies and Eigenvalues 

If disturbed from the equilibrium position and then 
allO\~ed to move freely after t = 0 (\~ithout disturbance 
or outside input) the state variables of a linear system 
will be described over time by a function of the form 

(1) 

th 
zi the i ' element of ~ 

k 

'w 
a eJ j 

j 

. For a lumped system there will be a finite number of 
these terms while a distributed system may theoreti
cally have a countably infinite number. When the Wi 

are complex they occur in conjugate pairs, and it is 
more common to refer to the eigenvalues si = jWi · 

The values of Wi for an arm syste~ model depend 
only on the parameters of, and the boundary conditions 
on, the system. They are independent of initial con
ditions, independent of which state variable is 
observed, and independent of the point in the system 
at which it is being observed. The values a. depend 
on all of these quantities. ~ 

The transfer matrix technique allows one to 
simultaneously consider all the components and the 
boundary conditions on the system and thus determine 
the w. of interest. Multiplying transfer matrices 
elimi~ates the intermediate 'state variables at the 
interface between components and expresses state 
variables at one end of an arm directly in terms of 
the other end. Imposing two boundary conditions at 
each end res tricts the values W. ,can assume for a non
trivial solution of the remainiffg state variables. 
These ware the same w. 'appearing in Eq. 1. The rp
stricti~n is developed in Fig. 5 for specific boundary 
conditions on a specific arm model. In general for a 
system represented, .by a matrix pJ;oduct U such that 

zlO ull u12 u13 u14 zln 

z20 
Uz 

u
2l 

u22 
u

23 
u

24 z2n 
~ -n 

z30 u3l u32 u33 
u34 z'3n 

z40 u
4l 

u42 
u

43 
u44 z4n 

With the boundary conditions 

and 

Z - 0 at station G jO -

Zkn " 0, ,z£n " 0 at station n 

(implying the remaining two variables at station n 
are zero) requires for a nontrivial solution that 
the frequency determinant 

(2) 

o 

W = W 
i 

The elements of U and thus the terms of the frequency 
determinant are generally complex functions of w. This 
being th~ case one must numerically search for values 
of w where d = O. When dealing 'with systems with no 
damping one can restrict the search to real values of 
w or imaginary values of the eigenvalue s. In general 
hO\~ever, s = s., where both the real and imaginary parts 
of d are zero.~ In order to use conventional search 
routines one can search for minimum values of 

1. The assumption here is that the w. are distinct. 
For ,physical systems this is always ttue if one cares 
to look at the values with enough accuracy. The more 
general case Wi = ~ does not restrict the results 
presented. 
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Idl ~(Im d)2+(Re d)2, then check to see if 
d = 0 + jO for the values of s returned. This topic 
will be discussed in more detail in a later section. 

For sin~le beams and variable impedance termina
tions Vande Vegte [3] found solutions to complex -
eigenvalues and displayed them as root loci. He 
reversed the procedure that was used in this paper. 

Now 

-w 

V 

The real and imaginary parts of the eigenvalues wete 
specified, as ,,,ell as some of the termination impedances. 
The remainder of impedances ,,,ere then solved for by Assum~ the rows and columns of V are rearranged to , 
requ~r~ng the frequency determinant .to be zero. This form U such that the first two state variables of the:. 
procedure is acceptable for analysis but might. be . rearranged state vectors io and ~ are forced w~tJ1 a . 
cumberson for design, since it assumes that an . sinusoid of ar~itrary but constant complex ampl~tude, 
eigenvalue can exist at a given position, and that Then 
eigenvalue is the one desired (i.e. that it corresponds ~ 

, -=o,z 
v z 

to the mode of interest and not some higher mode). 
This ,,,ouid be difficult to determine fot complex arms. 

Modal Shapes. Ass.ociated with each eigenvalue is 
an arm shape called the modal shape which describes the 
relative amplitude of all points of the arm ,.hen 
vibrating at that frequency. Looking at the problem 
from another.perspective, there is an arm shape which 
when i·t cons titutes the initial' condition will result 
in arm vibration described by a single eigenvalue, to 
the exclusion of all other system eigenvalues. 

The transfer matrix, method can be employed to 
find the mode shape after the eigenvalue has been 
found. Consider the boundary conditions resulting in 
Equation 2. The homogeneous equations which precede 
the frequency determinant are 

[::: . ::J U 0 

If zin is required to equal one, the solution for Zjn 

is 

Selecting the 
enable one to 
at station O. 

Uj~ 
appropriate 2 x 2 submatrix from V will 
solve for the unspecified state variables 

In order to visualize the modal shape values of 
the state variables at intermediate points are helpful. 

" For this one must refer to the transfer matrices of 
the separate components. For distributed beams, for 
example, the trigonometric and hyperbolic functions 
J"sc:rIuIng the shape wIthin che component are far 
from obvious. For plotting these functions one can 
essentially divide the component into smaller com
ponents thus creating additional intermediate state 
vectors (for purposes of plotting only, not for find
ing eigenvalues). mlen plotted versus distance along 
the axis of the arm the state variables indicate the 
shape, angle, moment and shear amplitudes along the 
arm. 

Steady State Frequency Response 

Another way tO,specify the system boundary con
ditions is to impose sinusoidal forcing functipns of 
frequency ~ and arbitrary but constant amplitude on 
form one to four of the state variables as for boundary 
conditions indicated in Figure 4. The procedure here 
is actually mQre straightforward than for finding 
eigenvalues. 

Consider once again an arm model with describing 
transfer matrix V. 

- -n 

Let us partition this matrix expression such that 

r~ [" 
" 'f Vl2 --n 

Z = jj z 
-=0 -n 

~ V
2l 

VZ2 I' 
-n 

10 
I' 

and f contain the 'forced st;ate variables and .Eo 'and 
cont~n the remaining state variabl~s, termed tfie 

variables. -n 
r~sponse 

(3) [: j 
-1 

Assuming V12 exists. 

Equation (3) expresses the four response s:ate 
variables in terms of the four forced state var~ables. 
The value of w at which the transfer matrices will be 
evaluated will be the forcing frequency~. Complex 
amplitudes can be used to represent a phase shift 
between the various forced state variables 40 and ~ 
will contain the amplitudes of responses. In practice 
it is seldom informative to force more than one, state 
variable simultaneously. 

Once again it is usually preferable to numerically 
evaluate the individual component transfer matrices 
prior to multiplication, enabling straightforward 
implementation on the digital computer. 

Impulse Time Response. It is well known that the 
steady state frequency response is equivalent to the 
Fourier transform of the impulse time response for 
linear systems. Thus if one desires the impulse 
response of·a given state variable to an impulse dis
urbance at another state variable one first uses 
Equation (3) to solve for the frequency response of 

, that variable. One then uses the inverse Fourier 
transform given by 

(4) zhi(t) = 1 
271 

00 jw 
zhi (jw)e t dw 

h = response state variable index 

i = respunse station index 
to determine the time inpu1se response. 

In pr.actice we desire to evaluate this response 
digitally using discrete samples of both the time and 
frequency responses. This approach to visua1izi.ng 
the impulse response of distributed systems was 
described by Kadymov et al[15,16] for certain 
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uractical 5ys~ems. It is one of few methods for 
directly obtaining the responge of mixed systems and 
can be efficiently obtained lia a Fast Fourier 
Transform (FFT) a.lgorithm. 

Inverse Fourier TransIorm via Digital Nethods 
The calculations of the small motion response of 

'the system can be carried out as described in the 
frequency domain. This information is related to the 
time domain response via an almost symmetrical pair 
of transformations--the Fourier transform and its 
inverse. 

A periodic time function f(t) may be represented 
in terms of ,its Fourier series 

(Sa) 

f(t) = 1. 
T i t Fi exp (jnt),i ••• -2,-1,0,1,2, ... 

= (X) 

Where j 1=1 
n the fundamental frequency in rad/sec 

(5b) 
T~.2 

F. 
~ J f (t) exp (-jHlt) dt 

-T/2 

Where T = 2n/n = Period of one cycle in sec. 

The F. are the Fourier coefficients. 
~ 

It is usually possible to truncate the series at a 
finite number of harmonics, which depends on the 
accuracy desired. 

An aperiodic function may be described as a 
signal with infinite period, or infinitesimal funda
mental frequency: In fact in the limit 

(6a) 

"f(t) = ~n _1 i.(jw) exp (jwt) dw 

(6b) 

F(jw) = _I' f(t). exp (-jwt) dt 

F(jW) is the Fourier integral and is equivalent to 
the Fourier transform of the time signal. The 
transformation is defined when the in'tegral, in (6b) 
converges. 

Starting in either the frequency or time domain, 
one can at least formally transform to the other do
main via Equations(6). It is also possible to approx'
imate the transform by replacing the integration with 
summation and replacing the differential dw with the 
increment 6w'resulting in 

(7) 
. nL: F (j i6w) eX)) (j i 6wt) 
~=-n 

f(t) '" f(t) -. 2n 

By comparing this with Equation (5) one realizes that 
this approximation must be periodic and of period 
2n/6w, indicating that distortion of some sort has' 
occurred. 

Certain steps must'be taken to assure that the 
distortions reSUlting from the discreteAapproximations 
do nQ t render the approxima te response f (t) us e 1 e s s. 
For f(t) to result frem 3. stable physical system Elle re
sponse for t<O (before any inputlmust be zero. Re
calling the periodic nature 0f f(t) one can correctly 
conclude that the results of Equation (7) must be at 
least approximately zero at the end of each period. 
This requires sufficient time for the i~pulse response 
to settle out, placing a lower constraint on the period 
.2n/6w (or upper constraint on 6w) . 

It is not readily apparent in the frequency domain 
what an adequately small value of 6w is. If one knows 
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the location of the system eigenvalues 
the settling time of each exponential. 
conjugate root pairs for example 

~ r 
t '" s w 

n 

he can estimate 
For complex 

Where 1;; damping ratio of the root pair 

wn ~ distance from origin of the pair 

t = time to point where response remains within 
s 2% of steady state 

One may make 6w smaller by either increasing the number 
of samples or by limiting the upper value of the fre-

t quency n
f 

that will be considered.·TI:iis'removes the com
ponents of the time response with frequency greater 
that n

f
. By looking at the frequency response for 

the system one can estimate n£. Resonant peaks that 
are not down at least 20 db. from the magnitude at 
w = ° should be included if feasible. Thus for given 
settling times and given frequency nf one arrives at 
a minimum sampling interval in the frequency domain 
analogous to the Nyquist sampling interval in the time 
domain. Just as small time intervals between samples 
are required to evaluate the frequency response for 
large frequency, small frequency intervals are required / 
to evaluate the time response for long times. 

NUMERICAL INPLENENTATION 

The above described modeling method has- been im
plemented on a digital computer. This section will 
describe briefly the program and hO\>I the user may 
interact with it. Also described are numerical diffi
culties that have arisen'in use and how they have been 
handled. A listing of the computer programs is found 
in reference' [171.. 

Host Computer 
Although it was originally intended to include 

all the programs in one package fer interactive use 
by the designer, this goal was abandoned initially 
due to the modest core storage of the machine ~sed. 
The Interdata Model 70, with 40K 16 bit words of 
core storage at the N. I. T. Joint Civil-Nechanical 
Engineering Computer Facility was initially used. 
This is a mini computer handling interactive graphics 
and console i.nput which is veI;'y useful in a design 

situation. An Interdata Model 80 with 32 K 16 
bit words of storage was used for some of t;.2 more 
extensive eigenvalue ·searches due to a lmver price 
structure and a faster CPU. The program as it pres
ently exists is divided into several compatible pack
ages. Table 1. classifies the programs in seven more 
or less related categories. At this writing the 
program is being :i.mplemented at the Georgia Institute 
of Technology on a CDC Cyber 70 with a DEC PDP 11 
minicomputer and graphics terminal handling the inter
active graphics. Categories I, II, and III utilize 
descriptions of the arm and subroutines in VI and VII. 
Categories IV and V use output from II and III to 
obtain additional information. 

Nature of User Input 
This section will briefly describe the nature of 

the user input to the system to indicate the designer' 
effort required. 
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TABLE 1 
PROGM}! CATEGORY OUTLINE FOR 

NUNERICAL DIPLEHENTATION 

I. Natural frequency calculation (no damping) 

A. Single Precision 
B. Double Precision 

II. Eigenvalue search (two dimensional s,earch, systems 
~vith damping) 

A. Card and console input only 
B. Interactive graphics implementation 

III. Frequency response calculation 

A. Logarithmic frequency scale 

1. Bode plot 
2. Polar (nyquist) plot 
3. Modified p~lar plot 

B. Linear frequency scale (equal increment in 
frequency for FFT input) 

IV. Node s:.ape calculation and display 

V. Fast Fourier transform 

,VI. Component transfer matrix calculation 

A. Distributed Beam 

1. Bernoulli-Euler model 
,2. Timoshenko model (includes shear and rotary 

inertia) 

B. Rigid Body 

1. General 
2. Uniform cross section' 

C. Angle in the arm shape 

1. In the plane of vibration 
2. Perpendicular to the plane of vibration 

D. C~ntrolled Rotary Joint 

1. Transfer function control 
2. With flexible shaft and gear reduction 

E. Parallel elements (combines certain elements in' 
parallel by clamping them at each end). 

F. Discontinuity in one state variable (with its 
associated variable equal to zero e.g. pinned 
r.onnectinn between beams or pinned connection 
to Braund) 

VII. Search Routines 

A. Pattern search--2 dimensional 
B. IBM SSP root finding algorithm 

Arm Description. -The description of the arm to 
be modeled is in terms of the arm elements or corn
ponents selected from Category VI of Table 1. Each 
element requires one and sometimes more data cards 
'fiving its parameters and are arranged in the order 
of occurrence on the arm. In certain cases there are 
restrictions as to what combinations of .elements can 
be usee. For instance angles in and out of the plane 
of vibration woule! result in a nonplanar arm whic.h 
'C;lnnnt ,he handlec! ?y four s tate variables. 

Calculation 'Description. Presently the descript
ion of the desired calculation for natural frequencies 
and frequency response requires one card for des crib
'ing arm boundary conditions, calculation type, number 
of inc'cements, an'd extreme frequencies considered. 
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A number of selections of output alternaL.Lves' and 
extended calculations are available by data switch and 
console input at run time. 

For eigenvalue ~alculations additional starting 
points for the two dimensional search can be read in 
from card·or console ih one implement<!tion, or input 
graphically via joystick and crosshairs in another 
implementation: ' 

Mode shape calculations require the input of th'e 
eigenvalues ·for the system for tlie mode for whiclJ the 
shapes are to be calculated, boundary conditions, and 
the number of points at Ivhich the shape is to be 
calculated for each b~am element. 

To calculate the inverse Fourier transform to 
obtain the time impulse response, tbe. frequency response 
must be calculated ~vith equal spacing betlveen calcu
lations (Table 1, IIIB). The specificat~on of the 
totai number of points to be used and the frequency 
range they cover is input by card. 

Nature of Program'Output 
The program output is of the nature described 

in Table 1. In cases where there are arrays of data 
(such as the values of frequency respons~) this data 
can either be plotted or plotted and printed to allow 
more precise comparisons. In this case there is also 
'a selection of which endpoint state variables are to 
be plotted. The three types of frequency plots are 
the Bode diagram, Polar plot of magnitude and phase 
and the modified polar plot which can be used in 
stability analysis for certain nonlinear arm elements. 
The graphics assisted eigenvalue search program also 
yields a plot of the roots as t~ey are found. 

Numerical Difficulties 
The arms modeled to date have resulted in few 

numerical difficulties. The difficulties encountered 
and ways of dealing with them are described bela\". 

False Roots in Eigenvalue Search. For a damped 
arm system the frequency determinant is a complex 
npmber. Evaluated at the system eigenvalue both real 
and imaginary parts should be zero. The procedure is 
to minimize the complex modulus via a pattern search. 
program developed by Prof. D. E. lfuitney. The global 
minimums must be zero, but the search routine may 
return false eigenvalues corresponding to local min
imums. To resolve this ambiguity one can look at the 
real and imaginary parts of the determinant. If an 
actual system root has been returned, and it is a 
single distinct root, the real and imaginary parts 
must both change signs in the neighborhood of the root. 
In normC!.l operation where the change in roots with 
design changes is being observed the user confidence 
in root positions is high, and only when unexpected 
root locations are returned is the doubt sufficient 
to check the sign change. 

Convergence to the "Wrong" Eigenvalu~. Since the 
eigenvalue search bases its actions on the shape of 
the determinant modulus over the complex plane, it will 
converge to different roots depending on where the 
search is begun. Thus one can repeatedly "find" the 
same root and not find a cleslred root. Under chese 
circumstances graphical display and input becomes very 
helpful, allowing the user to quickly modify the start
ing point of the search based on the displayed results 
of the previous search. Search routines specifically 
designed to take advantage of the particular problem 
of complex root finding might do much better and cut 
down on the user interaction required. 

A more critical numerica.l problem arises when it 
is practically impossible to make the routine converge 
to a root that exists. This has been observed for 
extreme values of arm se/vo control parameters. It 

/ 
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corresponds to shapes of the determinant that change 
very rapidly in the region of the eigenvalues and is 
aggravated by two roots which are very close. Fortu
nately when this happens it also seems that the root 
changes very slowly with parameter changes so that 
roots determined witn different parameter values can 
be used. 

aumen.clIl Overflow. In only one case has the 
problem of numerical overflow been encountered. The 
problem was solved foi that case by using extended 
computer word size, which may not be practical in all 
cases for all computers. 

USE OF THE NETHOD IN A DESIGN CONTEXT 

The model described above was first used in a real 
manipulator design context. The example model output 
given here was part of the evaluation of the arm 
struct~re for a manipulator under design at the Charles 
Stark Draper Laboratory. 

The arm ,."as to be a high performance arm slightly 
more than one meter in length and capable of carrying 
a payload of ten kilograms. An estimate was made of 
the weight of the hydraulic actuators and control 
valves which I."ould supply the torque required. One of 
the design goals was to build an arm capable of re
sponding to input frequencies of up to 10 hz. The 
question that the modeling exercise was to ansl."er was, 
"What structure will provide the rigidity necessary 
to build a 10 hz arm?" The transient response desired 
was one with minimal overshoot. For the second order 
system which approxiroated the control of each joint 
minimal overshoot implied a damping ratio near one. 
Thus the first approach was to establish feedback gains 
which would yield dominant eigenvalues with a damping 
ratio of one and a magnitude of 10 hz for a rigid 
inertia equivalent to that of the structure, bctuators 
and payload. 

The model of the arm is indicated schematically in 
Figure'"6 . Nine elements are used in this model of the 
arm; four distribu.ted beams, one controlled joint, ,and' 
four rigid masses. .A five e).ement model was also used 
for some studies. That model was obtained by increas
ing the density of the outer link to account for the 
nJass of the 4 kg and 8 kg masses. 

, Figure 7a shows the log magnitude and phase versus 
frequency of the frequ~ncy response of the five element 
model for a structure outer radius of 0.04 m. The 
j oint feedback gains I%uld achieve 10 hz. eigenvalues 
.,ith damping ratios of 1.0 for an equivalent rigid 
inertia. The real and imaginary parts of this fre
quency I'esponse are displayed in Figure 7b, arranged 
for inverse Fourier transformation via the Fast Fourier 
Transform Algorithm. This (inverse) transformation 
Yields the time impulse response displayed in Figure 
7c. 

As would be expected from the peak in the magni
t,ude plot Figure 7a and verified by the impulse re-
sponse , one does not have minimum overshoot as 
desired, or expected from a rigid analysis. 

A better understanding of the nature of these 
occurrances may be obtained from Figure 8. Figure 8a 
gives a close up of the imaginary plane near the origin,' 

'and displays the complex,roots responsible for the 
oscilla tory oeilavior. 

These root locations are influenced by the flexi
bility of the structure, and show a maximum damping 
with variations in velocity feedback which occurs at 
values ~f the velocity gain which are lower, not 
higher, than the gains first used. 

Figure 8 also displays the locus of the dominant 
closed loop eigenvalues as the outer radius is varied 
for the nine element model, with feedback gains that 
would produce second order roots of magnitude 10 hz. 
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and damping ratio 1.0 in an equivalent rigid intertia. 
As can be seen, the oscillatory conjugate root pair 
that dominates for small radii moves to the left, 
eventually leaving a real root to dominate. That real 
root approacheo; the -10 hz. expected for a rigid system 
as the arm radius becomes larger. Roots Qf 0, higher, 
lightly damped mode displayed in Figure 8b move away 
from· the origin and remain lightly damped. 

An acceptable outer radius for the arm might in 
fact be 0.05 m., and the impulse response for that 
case is shown in Figure 9. It displays the third order 
nature one might expect from the root locus plots of 
figure 8. 

Additional details on this application and other 
aspects of the techniques used are found in (18). 

SUMMARY AND CONCLUSIONS 

The modeling via transfer matrices of mixed 
lumped-distributed parameter systems with feedback 
control has been discussed and novel methods of ob
taining information all the controlled system's dynamic 
response via numerical methods have been presented. 
These methods utilize numerical searches in the 
complex plane for the roots of the transcendental 
characteristic equation to determine the closed loop 
system eigenvalues. The fast Fourier transform (FFT) 
algorithm is utilized but in the inverse fashion (from 
frequency domain to time domain) to that usually found 
in the literature. An interactive computer program 
to do the required calculatio~s has been described, 
as well as its application to a particular design 
problem. 

It is possible to conclude from the work summa
rized above that the numerically ,based modeling proce
dure is a valuable tool for working with systems where 
distributed effects maybe important. It provides one 
of the few methods for obtaining results on systems 
described by linear partial differential equations 
interacting through their boundary conditions at the 
two extremes of a single spatial variable. Further
more the information necessary to provide a st~te 
space formulation in modal coordinates is obtained 
should that formulation be perferred. The.alternative 
in many cases is a laborious manual development of 
equations which must be repeated for relatively minor 
adjustments in the system description. The techniques 
presented do require considerable computer time and 
are limited to linear sys terns. The increas:i.ng avail
ability and economy of computations is decreasing the 
importance of the' former of these limitations. 
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