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Abstract 

A new de3nition of affine invariant erosion of 3 0  sur- 
faces is introduced. Instead of being based in terms of Eu- 
clidean distances, the volumes enclosed between the surface 
and its chords are used. The resulting erosion is insensitive 
to noise, and by construction, it is afine invariant. We prove 
some key properties about this erosion operation, and we 
propose a simple method to compute the erosion of implicit 
sugaces. We also discuss how the afine erosion can be used 
to dejine 30  @ne invariant robust skeletons. 

1. Introduction 

This work deals with a new definition of affine erosion 
of 3D shapes. Erosion is a fundamental operation in math- 
ematical morphology and shape analysis in general (e.g., 
for the computation of skeletons and general filters follow- 
ing Matheron's representation theorem). In the classical 2D 
definition [8, 19, 15, 71, the erosion er(V)  of a set V is 
computed as 

e r ( V )  = V 8 B  = {x: B, c V } ,  

where B is the structuring element, 8 is the Minkowski 
substraction, and B, denotes the translation of B so that its 
origin is located at 2. In the isotropic case, B is a circle of 
radius T .  The extension to three dimensions is straightfor- 
ward, using a sphere instead of a circle. In a different def- 
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inition, the erosion er(V)  is the shape that results by prop- 
agating a distance T the boundary dV of V in the direction 
of its inwards normal N .  This is equivalent to thresholding 
the distance function [ 181. 

This operation is often used in combination with other 
morphological operations in order to perform different 
tasks, as for example, to morphologically smooth out noisy 
data and to compute skeletons. 

Here, we construct a different definition of erosion 
r,(V) which is invariant under the special afine transfor- 
mation 

X ' = A . X + T ,  (1) 

where X, X i  and T are vectors in R3 and A is a 3 x 3 
matrix of determinant equal to one. By aflne invariant we 
mean that if the points on the volume V are transformed 
by Eq. ( l ) ,  then the erosion I',(V) will be transformed in 
the same way. The parameter v, which has dimensions of 
volume, plays the same role of T in the Euclidean erosion. 
For the two-dimensional case, the affine erosion was studied 
in [ 12, 131, and then used and extended in [ I ]  to compute 
affine invariant skeletons. 

Here we make an extension to three dimensions, and de- 
fine the erosion in terms of the volumes enclosed between 
the surface and its chords. We use chordal volumes because 
they are invariant with respect to Eq. (1). F' irst we construct 
an affine erosion level-set function E ( x ,  V )  as the absolute 
minimum of the volumes of the chordal sets containing x ,  
and then the erosion-sets as the points enclosed by the con- 
tour surfaces of E ( x ,  V ) .  The erosion defined in this way 
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is insensitive to the noise in the original data, due to the 
averaging effect of the volume computation. 

Another operation that we want to study in connection 
with the erosion is the affine invariant skeletonization of a 
3D set [5, 61. Roughly speaking, the skeleton is a set of 
points that passes through the “middle” of an object. The 
computation of skeletons of planar shapes is a subject that 
received a great deal of attention from the mathematical (see 
[4,3] and references therein), computational geometry [ 171, 
biological vision [9, IO], and computer vision communities 
(see for example [14, 191 and references therein). In the 
classical Euclidean case, the skeleton of a planar curve is 
defined as the set of points equidistant from at least two 
different points on the given curve, provided the distances 
are global minima. A number of equivalent definitions ex- 
ist, and one of them, given by Blum [2, 201, is to define 
the skeleton points as the shocks on the evolution of the 
curve which follows the Huygens principle. We define in 
this paper an analogous skeleton for volumetric sets, the 
aDne skeleton, as the shocks of the affine erosion. 

In Section 2 we give the basic definitions and we prove 
basic results about the affine erosion. In Section 3, we de- 
scribe a numerical procedure to find the affine erosion and 
to compute an approximation for the skeleton, and in Sec- 
tion 4, we give examples. 

2 Definitions and properties 

First, we need a definition for the key building block of 
the affine erosion: the chord set. For a convex volume V,  
the chord set is the volume contained between an oriented 
plane and the boundary of V, d V .  However, for a concave 
volume, we can give several different definitions, depending 
on how do we treat the crossings between the plane and 
dV.  Here we give a definition that later will simplify our 
numerical computations: , , 

DEFINITION 1: Chord set 
Given a bounded set of points V C R3, and a plane II 
with normal n that contains the point x E V, we define a 
chordal sector set (or for short chord set) C(x, n, V), as the 
connected set of points x’ E V that contain x and that are 
in the side of the normal n of the plane II, i.e. satisfying 
(x - x’) . n 5 0. We shall denote by w (C(x, n, V)) the 
volume of the chord set. 

Like any other volume, the volume of a chordal sector 
set is invariant under special affine transformations (Eq. I ) .  
This definition implies that any point x’ E C ( x , n , V )  is 
connected to x by a path L C(x,  n, V)  (see Fig. 1). We 
can make an interesting hydrostatic analogy: if we slowly 
inject a liquid in a point P of the surface d V ,  the chord 
will be the volume of liquid in hydrostatic equilibrium in a 

Figure 1. Definition of chord set. In the hy- 
drostatic analogy, the chord C(x,  n, V) is the 
liquid volume injected to the interior of V in 
hydrostatic equilibrium with a uniform gravity 
field g parallel to n. The point x is on the free 
surface of the liquid. 

gravity field parallel to n, and the total volume injected will 
be w (C(x,  n, V))  as depicted in Fig. 1 .  

DEFINITION 2: Erosion level-set function 
We define the erosion level-set function E ( x ) , V  as the 
greatest lower bound of the volume of all chord sets defined 
by all x E V, 

E ( x ,  V) = inf U (C(x, n ,  V)) 
nES 

where inf is computed with the normals n pointing in all 
the directions of the unit sphere S .  (See Fig. 2.) E ( x ,  V) is 
undefined outside the volume. 

DEFINITION 3: Erosion-set 
The erosion-set ru is defined as the set of points x satisfy- 
ing w 5 E ( x ,  V). 

With these definitions, we can prove a few theorems, 
which are analogous to the two-dimensional case [ 12, 131. 

LEMMA 1: If VI C V2, then C(x, n ,  V I )  C C(x, n, V2). 
Proof If x’ E C(x,  n, VI) then (x - x‘) . n 5 0 and it is 
connected to x by a connected path L VI C V2. Thus, x 
is in a connected subset of V2 that contains x. From Defini- 
tion 1, x’ E C(x, n, V2). (See Fig. 3) Q.E.D. 
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Figure 2. According to the definition, E(x, V) 
is the volume of the chord C(x,n* ,V)  if for 
all the other chords C(x, n ,  V) the volume is 
larger or equal than w(E(x, V ) ) .  

THEOREM 1 [Monotonicity respect to VI: If VI C_ V2 
and x E VI, then E(x, VI) 5 E(x, V2). 
Proof: lets consider any point x in the volume VI. For 
any direction n, the chord set satisfies C(x,n,Vl)  
C(x, n, Vz) in virtue of Lemma 1. Then, 

and 

THEOREM 2 [Inclusion principle]: If VI C V2, then 

Proof: if x E rv(Vl) then w 5 E ( x ,  VI). From Theorem 
1 ,  'U 5 E(x,Vl) 5 E(x,V2),  and thus, x E L(V2) .  
Q.E.D. 

The following theorem will serve to optimize the com- 
putation of the erosion set. 

THEOREM 3 [Bounds for the erosion level-set func- 
tion]: E(x, V) satisfies 0 5 E(x,  V)  5 v0/2 where uo 

Figure 3. Sketch for Lemma 1. 

is the volume of V. 
Proof: The two chord sets C(x, n, V) and C(x, -n, V) 
have non-negative volumes w1 = w (C(x, n ,  V)) and ' u ~  = 
U (C(x, -n,  V)) ,  respectively. The volume of the intersec- 
tion of Lhese chord sets is zero because the intersection is 
a subset of a plane. As these chords are subsets of V, (see 
Fig. 4.) 

211 + 'U2 5 WO. 
Then, min(w1, ~ 2 )  5 v0/2. From Definition 2, 

E(x, V) = n E S  inf (U (C(x, n ,  V))) = 

n E S  inf (min [w (C(x, n ,  V)) , U  (C(x, -n, V ) ) ] )  

(3) 

= inf (min(v1,vz)) 5 inf (wo/2) = v0/2 

Finally, since the volumes of the chord are non-negative, 
we have from Definition 2,O 5 E(x,  V). Q.E.D. 

n E S  nES 

THEOREM 4 [Monotonicity respect to the chord 
volume w]: If w 1  2 w2 then rVl C rv2.  (Here both erosion 
sets are computed for the sanze volume V.) 
Proof: if x E rvl then E(x, V) 2 w1 2 v2, thus, from 
Definition 3, x E rv,. Q.E.D. 

The next definition is about a possible use of the 3D 
affine erosion. We define an skeleton in the analogous 
way that Blum [2] defined Euclidean skeletons in terms of 
shocks. 

DEFINITION 4: 3D Affine invariant skeleton 
We define the afJine skeleton of V as the set of shocks 

(or discontinuities on the normals) of the contour surfaces 
E(x, V) = const (corners of the erosion-sets). 
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Figure 4. Sketch for Theorem 3. 

This definition is consistent with the Euclidean case and 
makes sense because an affine transformation will preserve 
shocks. 

3 Numerical computation of the affine ero- 
sion 

In principle, we could use Definition 2 to compute 
E(x, V ) ,  by computing the volumes of all the chord sets 
C(x, n, V )  and taking the minimum over every normal n.  
This approach was used in [l] for the 2D case. However, 
in the 3D case we have many more possible orientations for 
the chords and many more points in the volume, which ren- 
ders this approach computationally infeasible from a prac- 
tical point of view. 

Thus, we propose an alternative algorithm to compute 
the affine erosion, which is much faster because it takes ad- 
vantage of the fact that the volume of the chords C(x, n, V )  
is the same for all the chordal points lying on the plane 
(x’ - x) . n = 0. We present the algorithm it in a high- 
level “pseudocode” format. 

The input of our algorithm is the surface dV enclosing a 
connected volume V ,  given implicitly in terms of the level 
set function 

F(x) > 0 for interior points, 
F(x) = 0 for points on the surface, (4) 
F(x) < 0 for exterior points. 

This level-set function is discretized in a volumetric array 
Fijk, 1 I 2 ,  j ,  k 5 d and x = iAx, y = j a y ,  z = kAz. 

1- Find a triangulation for the surface. We shall denote 
by Ti, 1 5 i 5 n the individual oriented triangles on the 
surface. Here we used the marching cubes algorithm to do  

2- Compute the volume vo of V .  We used a boundary 
so [ll]. 

integral formula approximated with the triangles T,, 

where ASi is the area of the triangle Ti times its normal, 
and xi is its center of mass. 

3- For each triangle Ti do 
3a- Compute its inwards normal ni and its center of mass 

3b- Define a plane no with normal ni containing xi , i.e., 
xi. 

(x - xi) . ni = 0. 
do for 1 = 1,2 ,  ... : 

0 Advance the plane a distance Ad = 
min(Ax,Ay,Az) in the direction of its normal 
(towards the interior of the volume). The advanced 
plane is given by 

xf = xi + n i l a d  

n’ E (x - xi) . ni = 0. 
and 

0 Next, find the connected chordal points x’ by recur- 
sively visiting the neighbors of the volume elements 
that are inside the surface and under the plane, i.e. sat- 
isfying 

F(x’) 2 0 
and 

(xf - x‘) . ni 5 0. 
For efficiency, just visit the volume elements that are 
between n2-l and II’. Save the,chord set points x’ in 
a list L.  The boundary of this chord set must be care- 
fully triangulated. Here we used again the marching 
cubes algorithm. Let’s call the. oriented triangles on 
the boundary of this region T,b, 1 _< k _< m (the nor- 
mals of these triangles point towards the interior of the 
volume). When a triangle lies across the cutting plane 
II” the triangle must be split accordingly. 

0 Compute the volume v’ enclosed between the plane TI’ 
and the surface with a boundary integral: 

U’ = 1 f (x - xi) dS o 
3 

l m  - 
3 (xk - x:) 1 AS:, 

k=l 

where AS: is the area of the triangles T i  of the bound- 
ary of the chord set times their normal. 
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end do (3b) until d 2 v0/2. 
3c- With the values U’,  Z = l..Zmax, make a linear in- 

terpolation vint(l) that represents the volume of a chord 
defined with a plane at a distance lad from the ’injection 
point’ xi. 

3d- Compute E ( x , V ) :  for each one of the chord set 
points with coordinates x saved in the list L in step (3), 
the volume corresponding to a chord C(x ,n i ,V)  will be 
q n t  ( (x  - xi) . ni). Compute 

E ( x ,  V)  := min (E(x, V),uint ((x - xi) . ni)) 

When computing the minimum, save in a three dimensional 
vector N ( x )  the normal that produces the minimum vol- 
ume. We shall use this quantity later for computing the 
skeleton. 

4- Repeat (3) until all the triangles of the surface are 
used. 

The method is optimized with the help of Theorem 4, by 
avoiding the computation of those volumes that are greater 
than u0 /2 .  Most of the computing time is approximately 
distributed as follows: computation of the boundaries of the 
chord sets T,b, 33%, search of the connected elements for 
the chords, 53%, and the computation of the chord volumes, 
14%. 

The output of this program is a tree dimensional array de- 
scribing E ( x ,  V) and another array with the normals N(x) 
that define the optimal chords. 

Introduction of more cutting planes. 
In this algorithm we are dealing with n (= number of 
triangles) cutting planes. In order to approximate properly 
the erosion defined by Eq. (2), we should use a very large 
number of planes. The algorithm described above may 
have problems with surfaces that have little variety of 
normals in the surface, like a cube, which will generate just 
six different planes if we apply the algorithm as described 
above. In order to introduce a richer distribution on the 
normals, we can use a Monte Carlo technique, where in 
Step 3 we select a normal at random (i.e. the normalized 
vector (711,722, ns)/Jn? + ni + n$ where each ni is a 
pseudo-random number in (-1,l) with uniform devi- 
ate [16]). When the number of triangles on the surface is 
large enough, the effect of the randomness is not noticeable. 

In order to find a numerical approximation for the skele- 
ton, we must look for the shocks in E(x, V) = constant. 
This can be accomplished by selecting those points where 
the absolute value of the mean curvature K(X) of the sur- 
faces E ( x ,  V) = constant is greater than a fixed threshold 
of the order of the inverse of the discretization size, 

( 5 )  
CY 

K(X) = V . N ( x )  z 
min(Az, Ay, Az) 

where CY is a number of the order of unity. We compute the 
divergence with finite differences using the optimal-chord 
normals N given by the algorithm in step 3e, and we store 
the curvatures in a three dimensional array. In order to find 
the points satisfying Eq. (5) we use marching cubes. 

4 Examples 

In Fig. 5 we show the erosion of a volume that was gen- 
erated by elongating and deforming a sphere 

(sa: + 2 sin ~ 2 ) ~  + (3y + 2 cos ~ 2 ) ~  + 2’ - 1 = ‘0. 

In order to represent this surface we generated a grid of 
100 x 100 x 100 points where we evaluate the left hand 
side of the above expression. In the bottom of Fig. 5 we 
corrupted the initial shape by adding a random number of 
uniform deviate to each of the points of the volumetric grid. 
This example shows the insensitivity of the erosion sets re- 
spect to the noise. 

Figure 5. A non-convex volume obtained 
by elongating and twisting a sphere. The 
discretized domain has 100 cubed points. 
Above, without noise, below, with noise. The 
volumes are E(x,V) = 0,1306,5228,11772 and 
the total volume is 20929. 

In Fig. 6 we show the erosion of a cube, and the erosion 
of the same cube in which we cut a groove on one side. This 
example illustrates two important properties: 
a) The erosion sets of a simply connected volume may be 
either connected or not, depending on the initial shape. 
b) The inclusion principle: if the whole cube contains the 
grooved-cube, then the erosion sets of the first contains the 
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Figure 6. Illustration of the maximum princi- 
ple and topology change. Left: a cube with 
a groove, and its erosion for E(x,V) = 0, 2496, 
9986, 17742 (from bottom to top). Right: the 
whole cube, and the corresponding erosion 
for the same volumes. 

erosion sets of the second. In Fig. 7 we show the erosion of 
a shape with a more complex topology. This example also 
shows clearly that may be topological changes on the affine 
erosion. We next consider an ellipsoid. First note that ac- 
cording to our definition, the erosion of a sphere is a set of 
concentric spheres. The only discontinuity on the erosion 
level set normals is at the center of the sphere, and thus, ac- 
cording to Definition 4, this is its skeleton. We can generate 
an ellipsoid by making an affine transformation to a sphere, 
thus, in virtue of the affine invariance, the skeleton of an el- 
lipsoid is its center. In Fig. 8 we show the numerical skele- 
ton of an ellipsoid with noise. The search of good criteria to 
detect shocks on the affine erosion is still an open problem. 
Here we are approximate the shock position with the point 
where the medial curvature is greater in magnitude than a 

Figure 7. The erosion of a shape with a more 
complex topology. 

Figure 8. A noisy ellipsoid discretized in a box 
of 64 points cubed. The skeleton is the black 
piece in the middle. 

given threshold. However, i t  is still unclear which value has 
to be used. In order to show how the approximated skele- 
ton depends on this value, in Fig. 9 we show the skeleton 
of the shape of Fig. 5. Here we computed two approxima- 
tions for the shocks with IC = 0.75/ min(Az, Ay, A t )  and 
rc = 1.5/ min(Az, Ay, Az). 

5 Conclusion and Further Research 

In this paper we discussed a new approach to 3D ero- 
sion and 3D skeletonization based on the notion of affine 
distance. This methodology has significant advantages over 
the classical Euclidean case since the operations are much 
more resistant to noise. 

However since affine distance is based on areas and vol- 
umes (in the 3D case), i t  is a more global object than the 
Euclidean distance which makes it slower to compute. We 
have discussed ways of speeding up the computation. We 
would like to find faster implementations. The algorithm 
which we have proposed for affine erosion is O(N5I3)  
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[8] A. K. Jain, Fundamentals of digital Image Processing, Pren- 
tice Hall Information and system sciences series, 1989. 

[9] I .  Kovics and B. Julesz, “Perceptual sensitivity maps within 
globally defined visual shapes,” Nature 370 pp. 644-646, 
1994. 

Figure 9. Contour surfaces of the median cur- 
vature of the erosion level-set function: From 
left to right: original surface, k= 0.75 and 
k=1.5. They may be used as a first approx- 
imation for the skeleton. 

where N is the number of voxels discretizing the volume, 
because we are touching every point of the volume as many 
times as there are triangles on the surface. We are investi- 
gating ways of speeding this up. 

Another open problem is the definition of more advanced 
criteria for the detection of shocks on the erosion sets. The 
fundamental problem here is the reliable detection of a 
shock for a function discretized in a regular array of real 
numbers, without confusing the real shocks with discretiza- 
tion effects (see [20] for a related work on the context of 
euclidean skeletons). 
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