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RESPONSE OF SUDDENLY-LOADED
STRUCTURAL CONFIGURATIONS

by

G. J. Simitses

troduction
Dynamic stability or instability of elastic structures has drawn considerable

tention in the past thirty years. The beginning of the subject can be traced to

e investigation of Koning and Taub 247, who considered the response of an imper-

ct (half-sine wave), simply supported column subjected to a sudden axial load of

ecified duration. Since then, several studies have been conducted by various in-

stigators on structural systems, which are either suddenly loaded or subjected to

me-dependent loads (periodic or non-periodic) and several attempts have been made
find common response features and to define critical conditions for these systems.

a result of this, the term "Dynamic Stability' encompasses many classes of pro-
.ems, many different physical phenomena and in some instances the term is used for
70 distinctly different responses for the same configuration subjected to the same
mamic loads. Therefore, it is not surprising that there exist several uses and
\terpretations of the term.

In general, problems which deal with stability of motion have concerned re-
:archers for many years in many fields of engineering. Definitions for stability
1d for the related criteria and estimates of critical conditions,as developed
irough the years, are given by J. J. Stoker [50]. In particular, the contributions
f Thomson and Tait [ 53] and Routh [37] deserve particular attention. Some of these
siteria find wide uses in problems of control theory [30], stability and control
£ aircraft [40], and other areas [9]. The emphasis, in this paper, is placed on
tructural configurations, which are subjected to sudden loads. As already mentioned,
ven for just structural systems the diversity is extremely large.

The class of problems falling in the category of parametric excitation, or pa-
ametric resonance are the best defined, conceived and understood problems of dyna-
ic stability. An excellent treatment and bibliography can be found in the book of
. V. Bolotin [4]. Another reference on the subject is J. J. Stoker's book [49].
or more recent works on the subject sec [10, 26, 38, 5, 22, 28, 32].

The problem of parametric excitation is best defined in terms of an example.
onsider an Euler column, which is loaded at one end by a periodic axial force.
he other end is immovable. It can be shown that, for certain relationships be-
ween the exciting frequency and the column natural frequency of transverse vibra-
ion, transverse vibrations occur with rapidly increasing amplitudes. This is
alled parametric resonance and the system is said to be dynamically unstable.
oreover, the loading is called parametric loading, and the phenomenon parametric
xcitation.

Other examples of parametric excitation include (a) a parametrically loaded
hin flat plate by in-plane forces, which may cause transverse plate vibrations,

b) parametrically loaded shallow arches (symmetric loading) which under certain
onditions vibrate asymetrically with increasing amplitude, and (c¢) long cylindri-
:al, thin shells (or thin rings) under uniform but periodically applied pressure,
thich can excite vibrations in an asymmetric mode. Thus it is seen that, in
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parametric excitation, the loading 1s parametric with respect to certain defq
tion forms. This makes parametric resonance different from the usual forced
bration resonance. In addition, from these few examples of parametric excit:
one realizes that systems that exhibit bifurcational buckling under static cc
tions (regardless of whether the bifurcating static equilibrium branch is st:
or unstable) are subject to parametric excitation,

Moreover, there exists a large class of problems, for which the load is ag
statically but the system is nonconservative, An elastic system is conservat
when subjected to conservative loads [45]; the reader is also referred to Zie
book [57] for a classification of loads and reactions. An excellent review c
subject of stability of elastic systems under nonconservative forces is given
Herrmann [13]. He classifies all problems of nonconservative systems into th
groups. The first group deals with follower-force problems, the second with
blems of rotating shafts (whirling), and the third with aeroelasticity (fluid
interaction; flutter). All of these groups, justifiably or not, are called p
of dynamic stability. 1In the opinion of the author, justification is needed
for the first group. Ziegler [56] has shown that critical conditions for thi
of nonconservative systems can only be obtained through the use of the dynami
kinetic approach to static stability problems. The question of applicability
the particular approach was clearly presented by Herrmann and Bungay [14] thr
a two-degree-of-freedom model. They showed that in some nonconservative syst
there exist two instability mechanisms, one of divergence (large deflection m.
occur) and one of flutter (oscillations of increasing amplitude). They furth:
showed that the critical load for which "flutter" type of instability occurs
only be determined through the kinetic approach, while the "divergence' type «
tical load can be determined by employing any oneof the three approaches (cla
potential energy or kinetic [45])., It is understandable then why many author
to the problem of follower-forced systems as dynamic stability problems. Some¢
more recent works are those of _34, 12, 31, 51, 25, 271]. Furthermore, flow it
vibrations in elastic pipes is another fluid-solid interaction problem that al
falls under the general heading of dynamic stability. The establishment of st
bility concepts, as well as of estimates for critical conditions is an area of
great practical importance. A few references [35, 3, 2] are provided for the
terested reader. In addition, a few studies have been reported that deal witk
phenomenon of parametric resonance in a fluid-structure interaction problem [Z
For completeness one should refer to a few studies of aercelastic flutter [54,

Finally, a large class of structural problems, that has received attention
cently and does qualify as a category of dynamic stability, is that of impulsi
loaded configurations and configurations which are suddenly loaded with loads
constant magnitude and infinite duration. These configurations under static 1
ing, are subject to either limit-point instability or bifurcational instabilit
with unstable post-buckling branch (violent buckling). The two types of loads
be thought of as mathematical idealizations of blast loads of (a) large decay
and small decay times and (b) small decay rates and large decay times respecti
For these loads, the concept of dynamic stability is related with the observat
that for sufficiently small values of the loading, the system simply oscillate
about the near static equilibrium point and the corresponding amplitudes of os
lation are sufficiently small. TIf the loading {s increased, some systems will
perience large amplitude oscillations or, in general, divergent type of motion
this phenomenon to happen, the configuration (turns out) must possess two or m
static equilibrium positions and escaping motion occurs by having trajectories
can pass through an unstable satatic equilibrium point. GConsequently, the meth
logies developed by the various investigators are for structural configuration
exhibit snap-through buckling when loaded quasistatically.

Solutions to such problems started appearing in the open literature in the
1950's. Hoff and Bruce _167] considered the dynamic stability of a pinned half
sine arch under a half-sine distributed load. Budiansky and Roth [8] in study

the axisymmetric behavior of a shallow spherical cap under suddenly applied lo



1ed the load to be critical when the transient response increases suddenly with
little increase in the magnitude of the load. This concept was adopted by nu-
1s investigators [46, 52, 77 in the subsequent years because it is tractable to
iter solutions. Finally, the concept was generalized in a subsequent paper by
ansky 76] in attempting to predict critical conditions for imperfection-sensitive
ctures under time-dependent loads.
conceptually, one of the best efforts in the area of dynamic buckling, under
enly applied loads, is the work of Hsu and his collaborators (18-213. 1In his
ies, he defined sufficiency conditions for stability and sufficiency conditions
instability, thus finding upper and lower bounds for the critical impulse or
ical sudden load. TIndependently, Simitses [43] in dealing with the dynamic
ling of shallow arches and spherical caps termed the lower bound as a minimum
ible critical load (MPCL) and the upper bound as a minimum guaranteed critical
(MGCL). Finally, there exist a few reported investigations for the case of
enly loaded systems with constant loads and finite duration [58, 44]. Note
this entire class of problems falls in the category of dynamic analysis of
ervative systems.
The totality of concepts and methodologies used by the various investigators
stimating critical conditions for suddenly loaded elastic systems (of the last
;gory) can be classified in the following three groups:
(a) The Equations of Motion Approach (Budiansky-Roth [137). The equations of
.on are (numerically) solved for various values of the load parameter (ideal im-
ie, or sudden load), thus obtaining the system response. The load parameter, at
*h there exists a large (finite) change in the response, is called critical.
(b) The Total Energy - Phase Plane Approach (Hoff-Hsu [16, 18-217),Critical
litions are related to characteristics of the system phase-plane, and the emphasis
n establishing sufficient conditions for stability (lower bounds) and sufficient
iitions for instability (upper bounds).
(c) Total Potential Energy Approach (Hoff-Simitses [16, 43, &4, 48]y. cCritical
litions are related to characteristics of the system total potential. Through
5 approach also, lower and upper bounds of critical conditions are established.
The concepts and

s last approach is applicable to conservative systems only,

cedure related to the last approach are next explained, with some detail.

Total Potential Energy Approach; Concepts_and Procedure.
The concept of dynamic stability is best explained through a single-degree-of-

edom system. First the case of ideal impulse is treated and then the case of
stant load of infinite duration.

(a) Ideal TImpulse
Consider a single-degree-of-freedom system for which the total potential (under

o load) curve is plotted versus the generalized coordinate (independent variable)
see Fig. 1). Clearly, points 4, B, C denote static equilibrium points and point

enotes the initial position (B = O) of the system. —
Since the system is conservative, the sum of the total potential, UT (under

ro" load) and the kinetic energy, T 1is a constant, C, or
P+t =c )
‘eover (see Fig. 1), since UD is Tzero at the initial pgsition (8 = 0), the con-
nt C, can be related to somé initial kinmetic energy, Ti' Then
-0 o _ .0
Up+ T° = T; )

it, consider an ideal impulse applied to the system. Through the impulse-momegtum
:orem, the impulse is related to the initial kinetic energy T, Clearly, if Ti

equal to D (see Fig. 1), or U

w° (®II)’ the system will simply oscillate between
and @II' On the other hand, if the initial kinetic energy, Tz, is equal to



the value of the total potential at the unstable static equilibrium point C,
then the system can reach point C with zero velocity (T° = 0), and there exi
possibility of motion escaping (passing position C) or becoming unbounded. ¢
motion is termed "buckled motion" in T43]. In the case for which motion is 1
and the path may include the initial point (B), the motion is termed ''unbuck]
tion" in [43]. Through this, both a concept of dynamic stability is presente
the necessary steps for estimating critical impulses are suggested. Note th:
the unstable static equilibrium positions (pts. A and C) are established, the
critical initial kinetic energy is estimated by

o —o

T, =Uy (© 3)

cr

Moreover, since T? is related to the ideal impulse, then the critical impulse
estimated throughlEq. (3). Observe that an instability of this type can occu
only when the system, under zero load, possesses unstable static equilibrium
Furthermore, if position C corresponds to a very large and thus unacceptable
6 (from physical considerations), one may still use this concept and estimate
mum allowable (and therefore critical) ideal impulse. TFor instance, if one r

motion to the region between 8, and @II’ then the maximum allowable ideal imp

is obtained from Eq. (3), but with D or u° (Y replacing u° {C). Because o
a critical or an allowable ideal impulse gan %é obtained for all systems (inc
those that are not subject to buckling under static conditions such as beams,
etc.).

For multi-degree-of-freedom systems, it is possible to use the same conc
dynamic stability and procedure for estimating critical conditions, but with
ception. For these systems, critical conditions can be bracketed between low
upper bounds (see [16, 46, 19, 43, 48]). oOne final comment for the case of i
impulse: Note from Fig. 1, in the absence of damping (as assumed), the direc
of the ideal impulse is immaterial., If the system is loaded in one direction
that the resulting motion corresponds to positive 8) then a critical conditio
when the system reaches position C with zero kinetic energy. If the system i:
ed in the opposite direction, then some negative 9 position will be reached w:
zero kinetic energy, after that the direction of the motion will reverse, and
nally the system will reach position C with zero kinetic energy. Both of the:
phenomena occur for the same value of the ideal impulse.

(b) Constant Load of Infinite Duration

Consider again a single-degree-of-freedom system. Total potential curve:
plotted versus the generalized corrdinate ® on Fig. 2. Note that the various
correspond to different load values, P,. The index i varies from one to five
the magnitude of the load increases with increasing index value, These curve:
typical of systems that, for each load value, contain at least two static equi
brium points, A, and B.. This is the case, when the system is subject to limi
point instability and/3r bifurcational buckling with unstable branching, under
tic application of the load (shallow arches and spherical caps, perfect or img
cylindrical and spherical shells, two-bar frames, etc.).

Given such a system, one applies a given load suddenly with constant magn
and infinite duration. For a conservati;e system,

U¥+T =C *)

The potential may be defined in such a way that it is zero at the initial
sition (§ = 0). 1In such case, the constant is zero, or

i+ 1t =0 )

Since the kinetic energy is a positive definite function of the generaliz
velocity, then motion is possible when the total potential is non-positive (sh
area, on Fig. 2, for P,). From this it is clear that for small values of the
plied load, the system simply oscillates about the near (point A2) static equi
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position. This is also an observed phy-
sical phenomenon. As the load increases,
the total potential at the unstable point,
B.,, decreases, it becomes zero (point B,),
and then it increases negatively until
points A, and B, (4,, B,) coincide (the
corresponding load, 'P,, denotes the li-
mit point under static loading). For
loads higher than this (P,), the sta-
tionary points (static equilibrium po-
sitions) disappear from the neighbor-
hood, When the sudden load reaches

the value corresponding to P,, a cri-
tical condition exists, becaiise the
system can reach position B, with zero
kinetic energy and then mové towards
larger §-values (''buckled motion" can
occur). Thus, P, is a measure of the
critical conditidn. Note that the val-
ue P, is smaller than the value of the
1imig point, P,. This implies that

the critical load under sudden appli=-
cation (infinite duration) is smaller
than the corresponding static critical
load.

In this case, also, one may wish
to limit the dynamic response of the
system to a value smallythan B,(see
Fig. 2), say ®_. Then the maximum al-
lowable (critical dynamic) load cor-
responds to P,.

Note thag in multi-~-degree-of-
freedom systems, one may easily esta-
blish upper and lower bounds for the
critical dynamic load (see [1l6, 19, 20,
21, 43, 47]). Moreover, it is clear
that for single-degree-of-freedom sys-

.ems the upper and lower bounds are one and the same and therefore,the estimates de-

wote true critical conditions.

Finally, this concept of dynamic stability has been extended to the case of sud-
lenly loaded systems with constant load and finite duration [43] and to actual struc-

.ures (42, 47, 48] rather than finite-degree-of-freedom models.

The effect of sta-

:ic preloading on the critical dynamic conditions has been investigated [44], by

chis concept.

ixtension of the Dynamic Stability Concept

The concept of dynamic stability, discussed in the previous article, is developed
srimarily for structural configurations, which are subject to violent buckling under

static loading.

It is also observed that, the concept can be extended, even for

these systems, when one limits the maximum allowable deflection resulting from the

sudden loads.

This being the case then, the extended and modified concept can be

ised for all structural configurations (at least in theory).

This is demonstrated in this section through a simple model.

some clarifying remarks are in order.

First, though,

All structural configurations, when acted upon by quasi-static loads, respond in

a manner described in one of the four figures, Figs. 3-6.

These figures characte=-

rize equilibrium positions (structural response) as plots of a load parameter, P,



versus some characteristic displacement, €. The solid curves denote the respon
of systems which are free of imperfections and the dashed-line curves denote th
sponse of the corresponding imperfect configuration.

Fig. 3 shows the response of such structural elements as columns, plates, a
unbraced portal frames. The perfect configuration is subject to bifurcational
kling, while the imperfect configuration is characterized by stable equilibrium
(unique), for elastic material behavior,

Fig. 4 typifies the response of some gimple trusses and two-bar frames. Th
perfect configuration is subject to bifurcational buckling, but smooth (stable I
in one direction of the response and violent (unstable branch) in the other. C¢
respondingly the response of the imperfect configuration is characterized by ste
equilibrium (and unique) for increasing load in one direction, while in the othe
the system is subject to limit point instability.

Fig. 5 typifies the response of troublesome structural configurations such ¢
cylindrical shells (especially under uniform axial compression and of isotropic
construction), pressure-loaded spherical shells and some simple two-bar frames,.

These systems are imperfection-sensitive systems and are subject to violent buck
under static loading.
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4 large class of structural elements is subject to limit point instability. In
cases, unstable bifurcation is present in addition to the limit point. The re=-
se of such systems is showm on Fig. 6., Two structural elements that behave in
manner are the shallow spherical cap and the low arch. Both elements have been
extensively, in practice.
Finally, there is a very large class of structural elements, which are always in
le equilibrium for elastic behavior and for all levels of the applied loads. These
ems are not subject to instability under static conditions. Typical members of
class are beams, and transversely loaded plates. For this class of structural
ents, the load-displacement curve is unique and monotonically increasing.
The concept of dynamic stability, as developed and discussed [l6, 8, 18-21, 43,
is always with reference to systems which under static loading are subject to
ent buckling. This implies that dynamic buckling has been discussed for systems
static behavior shown in Figs. 4 (to the left), 5 and 6.
In developing concepts and the related criteria and estimates for dynamic buc-
g it is observed that, even for systems which are subject to violent (static)
ling, critical dynamic loads can be associated with limitations in deflectional
onse rather than escaping motion through a static unstable point. This is es-
ally applicable to the design of structural members and configurations, which
deflection limited. From this point of view then, the concept of dynamic sta-
ty can be extended to all structural systems.
The extended concepts are demonstrated through the simple mass-spring (linear)
em, shown on Fig. 7. Consider a suddenly applied load, P(t), applied at t = O.
load may, in general, include the weight (mg). 1In the case of finite duration,
weight is considered to be negligibly small.
First, the case of constant load, suddenly applied with infinite duration, is
idered.

-0
Y —p
/ Uy Uy
X —P
\ D UT
\ /
\ 7
\ 7
o 2P o~ X
N N 5 B(5 10),
~_ Al O -
"‘X=O \\ _ -~

b

Fig. 7 The Mass-Spring System

Fig. 8 Total Potential Curves

The problem is viewed from energy considerations. First, the total potential,
and kinetic energy, T, for the system are given by

L2
= Ekx - Px; T = lm ()'()2 (6)

U
T 2



Note that the system is conservative, the kinetic energy is a positive defir
function of the velocity (for all t), and that U_ = 0, when x = 0, Then, U_ + I
and motion is possible only in the range of x~-values for which U_ is nonpositive
Fig. 8). It is also seen from Eq-. (6) that the maximum x-value Eorresponds to :
Note that the static deflection is equal to P/k (pt. A on Fig. 8). Therefore, i
maximum dynamic response and maximum static deflection are to be equal to X, the
Pee = z Payn’

Now, one may develop a different viewpoint for this same problem. Suppose
that a load P is to be applied suddenly to the mass-spring system with the condi
that the maximum deflectional response cannot be larger than a specified value X
If the magnitude of the load is such that 2P/k < X, we shall call the load dynam
cally subcritical. When the inequality becomes an equality, we shall call the ¢
sponding load dynamically critical. This implies that the system cannot withsta
a dynamic load P > kX/2 without violating the kinematic constraint. Therefore,
P = kx/2.

dyn

cr

Moreover, on the basis of this concept, one may find a critical ideal impuls
The question, in this load case, 1s to find the ideal impulse such that the syst
response does not exceed a prescribed value X. From Fig. 8 and conservation of

o
UT + T= Ti 7)
and T, is critical if the system can reach position D with zero velocity (zero k
netic energy). Thus,
T, o o
i< UT(D) = UT(X) (8)

From the impulse-momentum theorem, the ideal impulse, Imp, is related to the

initial velocity and consequently to the initial kinetic energy,

Imp = 11%040 (Pto) = mii (€2

where %, is the Iinitial velocity magnitude (unidirectional case) and to is the du
tion time of a square pulse.
From Eqs. (8) and (9) /2X

Tmp_ = (mk)" (10)

Suddenly-Loaded Imperfect Columms

As already mentioned, the field of dynamic stability of structural configurat
started with the treatment of a suddenly-loaded imperfect column [24]. The imper
column, under sudden application of an axial load, typifies structural systems wi
static behavior shown on Fig. 3. B8uch a system, when of perfect geometry, is sut
ject to bifurcational buckling with stable post-buckling behavior (smooth bucklir
On the other hand, if there exists an initial geometric imperfection (small initi
curvature), the system exhibits a unique stable equilibrium path. Moreover, this
system has received the most attention, as far as dynamic buckling is concerned v
loaded axially either by sudden loads or by time-dependent loads. Two complete r
views (with respect to their date of publication) of this problem may be found in
[23, 1]. As mentioned in these references, the problem dates back to 1933 with t
pioneering work of Koning and Taub [24], who considered a simply supported, impe
fect (half-sine wave) column subjected to an axial sudden load of specified durat
In their analysis, they neglected the effects of longitudinal inertia, and they s
that for loads higher than the static (Euler load) the lateral deflection increas
exponentially, while the column is loaded, and after the release of the load, the
column simply oscillates freely with an amplitude equal to the maximum deflection
Many lnvestigations followed this work with several variations. Some included in
ertia effects, others added effect of transverse shear, etc. The real difficulty




the problem, though, lies in the fact that there was no clear understanding by
e investigators of the concept of dynamic stability and the related criteria.
According to [1], definition of a dynamic buckling load is possible only if
re are initial small lateral imperfections in the column. Instability stems then
m the growth of these imperfections. "Buckling occurs when the dynamic load rea=-
s a critical value, associated with a maximum acceptable deformation, the magni-
e of which is defined in most studies quite arbitrarily."” There is some truth
this, primarily because the elastic column does not exhibit limit point insta-
ity or any other viclent type of buckling under static application of the load.
re is need for a cautioning remark to the above statement, though. Analytically,
has been shown [55] that, if a perfect column is suddenly loaded in the axial
‘ection, the fundamental state is one of axial wave propagation (longitudinal
:illations). TFor some combination of the structural parameters, this state can
:ome unstable and transverse vibrations of increasing amplitude are possible.
:refore, for this perfect column, there exists a possibility of parametric reso-
ice, which is one form of dynamic instability. 1In spite of this, mostly all co-~
ms are geometrically imperfect and therefore, it is reasonable to investigate
: dynamic behavior of imperfect columns including all variations of different
lects as reported in {23, 1, 12, 17, 41, 33, 41]. These effects include:
.al inertia, rotatory inertia, transverse shear, and various loading mechanisms.
ceover, experimental results have been generated to test the various theories and
lects.
Finally, the criterion employed in [17] is the one developed by Budiansky and
ch [8], and it is applicable only to imperfection sensitive structural systems,
:h as shallow arches, shallow spherical caps, and axially-loaded, imperfect, cy-
adrical shells. The reason that the application of the Budiansky-Roth criterion
1 possibly yield results for imperfect columns lies in the fact that the corres-
1ding perfect configuration (column) possesses a very flat post-buckling branch.
is means that the corresponding imperfect column can experience, at some level of
2 sudden load or impulse, very large amplitude oscillations (change from small to
rge amplitude oscillations). Note that the static curve for the imperfect column
tatic equilibrium), if the load is plotted versus the maximum lateral deflectioms,
elds small values for the maximum deflection for small levels of the load. As the
ad approaches the Euler load, the value of the corresponding maximum deflection
creases rapidly. On the other hand, if the criterion were to be applied to an im-
rfect flat plate, it is rather doubtful that reasonable answers could be obtained.

ncluding Remarks

It is clearly seen from the material presented so far that some suddenly locad-
structural configurations are subject to parametric resonance and escaping motion
means of a trajectory that passes through an unstable static equilibrium point.

is is the case of system, which under static loading are subject to violent buckling,

On the other hand, these systems which under static loading are prone to bifur-
tional buckling with stable postbuckling branches (such as columns and plates),
ey are subject to parametric resonance, but there is no question of escaping mo-

on type of dynamic instability. This is true, because an unstable static equi-
brium point does not exist. TFinally, systems that do now buckle under static
‘ading are neither subject to parametric resonance nor to escaping motion type
! instability. 1In all systems though, because of the modified dynamic stability
ncept, one might say that when sudden loads are applied, the problem is one of
'mamic response. By this, one means that one needs only find the motion of the
'stem resulting from the sudden loads. Note that for systems which exhibit vio-
mt static buckling, the deflectional limit imposed in the modified concept must
:«clude (be smaller than) the unstable static equilibrium position(s).

Please note that the above remarks are based on various mathematical models,
me of which allow imperfection (geometric or loading type) and some of which do
st.  If one considers real world type of structural configurations, which do pos~-
:8s imperfections, one is inclined to discard parametric resonance for suddenly



loaded systems. For instance, if a perfect column is impacted, see Wauer [55
in-plane motion is accounted for, only then parametric resonance is possible,
the other hand, if there exists a small initial curvature, the impacted colum
vibrate in a nonlinearly combined mode, and there is no parametric resonance

other type of dynamic instability. Similarly, if a symmetric low arch is sym
cally loaded by a sudden load, the possibility of parametric resonance exists
it is virtwally impossible to expect both the arch and the loading to be perf
symmetric. In the presence of imperfections, the arch is expected to become

mically unstable only through escaping motion type of instability,

Finally, one should clearly address one more point. If the sudden loads
present the extreme cases of either the ideal impulse, or constant load of in
duration, elastic dynamic instability of the escaping motion type is possible
means that the level of the internal loads (stresses) is below the proportiom:
limit of the material. On the other hand, for constant sudden loads of relat
short duration, what might be more important is a material-type of instabilit:
cause of the possibly large level of internal loads [58, 48].
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Summary

An imperfect, laminated, circular, cylindrical, thin shell, simply
supported or clamped at the boundaries, and subjected to a uniform axial
compression and torsion (individually applied or in combination) is analyzed.
The analysis is based on nonlinear kinematic relations, linearly elastic
material behavior, and the usual lamination theory. The laminate consists
of orthotropic laminae, which typically characterize fiber reinforced com-
posites. Two types of formulation have been developed; one is referred
to as the W,F-formulation, based on Donnell-type of kinematic relatioms.

The governing equations consist of the transverse equilibrium equation and

the in-plane compatibility equation. These two equations are expressed in
terms of the transverse displacement, w, and an airy stress resultant function,
F. The other, referred to as the u, v,WW-formulation, is based on Sanders'-
type of kinematic relations. The governing equations for this case consist

of the three equilibrium equations. These three equations are expressed in
terms of two in-plane displacement components u, v, and the transverse dis-
placement component, W . Donnell's type of shell theory approximation can be
treated as a special case in theu, v, w-formulation.

Some results are generated for certain geometries (isotropic and lami-
nated) and these serve as bench marks for the solution scheme. Results are
also generated for composite cylinders by changing several parameters. The
scope of these parametric studies is to establish the effect of (a) geometric
imperfections, (b) lamina stacking, (c¢) in-plane and transverse boundary con-
ditions and (d) 1load eccentricity on the critical conditions. Moreover, dynamic
critical loads are obtained for certain configurations under axial load (sud-

denly applied).



CHAPTER I
INTRODUCTION

Shell-1like structural configurations find wide uses in complicated
aerospace structural systems. Thelr use requires sophisticated analyses
in order to answer questions associated with their behavioral response
to external loads and extreme temperature environments. In the past forty
years or so, numerous investigations addresses themselves to several specific
questions of shell behavior, and the answers to these questions have tremen-
dously enhanced our understanding of their behavior. A1l of this was done
primarily for metallic construction of these configurations. 1In particular,
attention was paid to the degree of approximation involved in the use of
various kinematic relations (which led to several linear and nonlinear shell
theories), to the discrepancy between theory and experiment for the buckling
of shells (post-buckling analyses and imperfection-sensitivity studies), to
the use of stiffening for shell configurations (including eccentricity effects)
to the effect of support conditions, cutouts, foreign inclusions and others.
Moreover, as the size of shell-like structures increased and as the computa-
tional capability improved, large computer codes became available, for the
analysis of the configurations.

In the recent few years, the constant demand for lightweight efficient
structures led the structural engineer to the use of nonconventional materials,
such as fiber-reinforced composites. The correct and effective use of these
materials requires good understanding of the system response characteristics
to external causes (loads, properties of the environment, etc.). Several
research programs have been initiated in order to evaluate the physical
properties of such materials. The main emphasis in these studies is placed

on the characterization of physical properties (finding the constants in the



constitutive relations and how the environment affects them). 1In addition,
there are several efforts related to failure criteria and failure-related
effects, such as scissoring and delamination.

In 1975, R. C. Tennyson (1) made a review of previous studies on the
buckling of laminated cylinders. According to Tennyson's (1) review, perhaps
one of the earliest stability analyses of homogeneous orthotropic cylindrical
shells was published by March et al. (2) in 1945. After that time, several
theoretical analyses limited to orthotropic shell configurations were performed
by Schnell and Bruhl (3), Thielemann et al. (4), and Hess (5). 1In these studies,
simply supported end conditions were partially satisfied. The general linear
theoretical solutions to anisotropic cylinders were presented by Cheng and Ho

(6) (7), Jones and Morgan (8), Jones and Hennemann (9) and Hirano (10). Several
papers were involved in the comparison of the efficiency and accuracy between
Flugge's linear shell theory, which was employed by Cheng and Ho (6) (7), and
other shell theories (such as the work done by Tasi (11), Martin and Drew (12)
whose theory was based on Donnell's equations, and the work done by Chao (13),
whose analysis was based on Timoshenko's buckling equations). Stiffened com-
posite cylinderical shells have been analyzed by Jones (14). Terebushdo (15)
and Cheng and Card (16). Theoretical analyses of the effect of initial geo-
metric imperfection based on anisotropic shell theory have been published for
the loading cases of pure torsion (17) axial compression (18) and combined
loads (19) (20). Moreover, several computer codes (21-32) (based on finite
elements and/or differences) that deal with the analysis of stiffened shell
configurations have been modified in order to account for laminated shell
construction. These codes do serve their purpose, and that is that they are

very good analytical tools. On the other hand, it is very difficult, if not



possible, to use these codes for parametric studies or for evaluating
the applicability and limitations of various shell theories. In this
report, the following are presented:

(1) The mathematical formulation and derivation of the governing
equations, based on Domnnell-type (33) nonlinear kinematic relations and
in terms of the transverse displacement component and an Airy stress
(resultant) function, defined in the text.

(2) The mathematical formulation and derivation of the governing
equations, based on Sanders'-type (34) nonlinear kinematic relations and
in terms of the three displacement components (small strains but moderate
rotations about in-plane axes).

(3) Solution schemes for both formulations. The solution methodology
for the first formulation includes post-limit point behavior, while the so-
lution methodology for the second formulation refers only to the pre-limit
point behavior and it is employed to estimate critical static conditions
(limit point loads). The listing of the related computer codes are presented
in the Appendices of this report.

(4) sSome numerical results are generated (and presented herein) with
two objectives in mind. (a) Some serve as bench marks for the solution
schemes and (b) some limited parametric studies are performed in order to
assess effects of boundary conditions and of the lamina stacking sequence,
for axially-loaded laminated cylindrical shells.

In closing, this report should be viewed as the first in a series of
reports dealing with the behavior of geometrically imperfect, stiffened and
laminated, thin, circular, cylindrical shells, supported in various ways
(all possible extreme cases of transverse and in-plane boundary conditions)

and subjected to static, as well as suddenly applied, destabilizing loads.



CHAPTIER II,
MATHEMATICAL FORMUIATION AND SOLUTION
METHODOLOGY
The governing equations are derived, with all necessary steps shown in

detail, in Appendix A. The geometry is a thin, circular, geometrically im-
perfect cylindrical shell. The construction consists of an orthogonally and
eccentrically stiffened laminate (each lemina is orthotropic). Note that a
laminated geometry, an eccentrically stiffened metallic configuration and a
metallic shell are all special cases of the construction used herein. The
stiffeners are uniform in geometry and with constant close spacing, which
allows one to employ the '"smeared'" technique. The boundary conditions can
be of any transverse and in-plane variety. This includes free, s imply-sup-

ported and clamped with all possible in-plane combinations,

The loading consists of transverse (uniform lateral pressure) and eccentric
in-plane loads, such as uniform axial compression and shear. Eccentric
means that the line of action of these loads (applied stress resultants) is

not necessarily in the plane of the reference surface.

In the derivation of the governing equations, the usual lamination theory
is employed. Moreover, thin shell theory (Kirchhoff - Love hypotheses with
two different approximation) and lirmearly elastic material behavior one assumed.
The primary assumptions are listed in Appendix A. On the basis of these
general assumptions two sets of field equations are derived. Ome, referred

to as the w,F formulation, is based upon Donnell-type of kinematic



relations. For this case, the governing equations consist of the transverse
equilibrium equation and the in-plane compatibility equation. These two
equations and the proper boundary conditions are expressed in terms of the
transverse displacement component, w, and an Airy stress resultant function,
F. The second, referred to as the u, v, w ~ formulations, is based on

Sanders' type of kinematic relations, those corresponding to small rotations
about the normal and moderate rotations about in-plane axes. The governing
equations, for this case, consist of the three equilibrium equations, expressed
in terms of the displacement components u, v, and w. Also, the proper boundary
conditions are expressed in terms of u, v, and w. In this formulation, the
Donnell approximation 1s a special case of the more general Sanders' kine-

matic relations.

The solution methodology is an improvement and modification of the one
employed and described in Refs., 36 and 37. For details the reader is referred
to Appendix A. A brief description of the solution scheme is given below and

only for the w,F - formulation.

1). First, a separated form (fourier series type) is assumed for the
dependent variables , w(x,y) and F(x,y). In addition the initial geometric
imperfection is also expressed in a similar form.

2). Next, these expressions are substituted into the compatibility
equations. Use of trigonometric identities and use of the orthogonality of
the trigonometric functions reduces this nonlinear partial differential
equation (compatibility) into a system of (4k + 1) nonlinear ordinary dif-
ferential equations. Furthermore, use of the Galerkin procedure in connection
with the equilibrium equation (in the circumferential direction) yields

(2k + 1) additional nonlinear ordinary differential equations in the (6k + 2)



dependent (on x) functions needed to describe the response of the system.
Thus, through these steps the two nonlinear partial differential equations
are reduced to a set of nonlinear ordinary differential equations.

3). The nonlinear ordinary differential equations are reduced to a
sequence of linear systems by employing the generalized Newton's method
(Ref. 38). I1teration equation are derived, through this, based on the
premise that a solution to the nonlinear set can be achieved by small cor-
rections to an approximate solution.

4)., Finally, the field equations (linearized iteration equations) and
the corresponding boundary terms (linear set of equation) are cast into finite
difference form by employing the usual central difference formula.

Finally, a computer program has been written (see Appendix B for Flow
Charts and Program Listings) for generation of results. The solution
algorithum is a modification of the one described in Ref. 43. This modification

is fully described in Appendix C.



CHAPTER III

DESCRIPTION OF STRUCTURAL GEOMETRY

Three basic configurations are used in generating results, The consist
of a four-ply laminated cylinder, an isotropic cylinder and an orthotropic
cylinder. All configuration are geometrically imperfect but the imperfection
in either symmetric or (virtually) axisymmetric.

The laminated geometries considered in the present study are variations
of the one employed in (44). This reference reports experimental results for
a symmetric angle-ply laminate, subjected to uniform axial compression and

torsion. In addition some isotropic and orthotropic configuration are also used.

III,]1 Laminated Geometry

For the laminated geometries, five different stacking combinations of
the 4-ply laminate are used in the study.
First, the common geometric and structural features are: each lamina is

orthotropic (Boron/Epoxy; AVCO 5505)with properties

E, = 20690 x 10 kN/W (30 X108 PS 1), Y= 0.21;
Evi= 0.1862X /0 kN /m* (27 X06°PS L) s R = 190.6CN(75in) ;

G2 = 0.04482X/0° knfm’ (0.65x10°%s0); L=3%/cm. (/15in);

Rpty = 0.0/3462 Cm(0.0053in.)

Chpry = Ax= bt 5 o k=1.2.3.4, fou plus) (1)



The five different stacking combinations are denoted by I - i, i =

1, 2..5, and correspond to

To|: 45°/-457-457as° ; 1-2: 48/-45°/as’/-45" ; 13=-12

T-4:90/60/30°/0° 5 I-5: 07/30°/60°/90° (2)

Where the first number denotes the orientation of the fibers of the out-

most ply with respect to x, and the last of the innermost. Geometry I-1 is

a symmetric one and it corresponds to that of (44). Geometries I-2 and I-3
denote antisymmetric regular angle-ply laminates, while geometries I-4 and

I~5 are completely asymmetric,

111.2 Isotropic Geometry

The isotropic cylinder has the following geometric and structural fea-

tures (aluminum alloy)
E = 724 X10 KN/ (10.5%10%psi); p =03

R=70/6Cm. (4in); LR =1;R/p=/000 (3)

T17.3 Orthotropic Geometry

Finally, the properties of the orthotropic configuration are (single

00 - ply shell made of the Boron/Epoxy material)

Exx

1

2.06% X 105 kN/m’ (30 X00° psi) 5 Dy = 0.21

Eyy

0.1562 X10° kN/m> € 2.7 10 psi)
Gy = 0.04482 X/0° kN/m(0.65X/0°P5iy; R = 190.5Cm, (7.6in.)

L= 38hoCm. (/5in); t= 0.05385C7. (0.0212in.) (4)



I11.4 Imperfection Shapes

Two imperfection shapes are used in the study, one which is symmetric,

and one which is virtually axisymmetric

Smitic - W = Eh AinZ G (5)
onigymmediic © W (1Y) = Bh (- CoeZ 4 0.1 4inTX cpe?f (6)

where £ 1Is a measure of the imperfection amplitude. Note that for the

symmetyic imperfection, Eq. ( 5), £ = w° max/h’ while for the (virtually)

axisymmetric imperfection, Eq. (6 ), & = W max/l.lh.



CHAPTER IV

NUMERICAL RESULTS AND DISCUSSION

Numerical results are generated, for the geometries described in the
preceeding chapter, using the W-F formulation, for two load cases: (a) uni-
form axial compression and (b) torsion. The loads are applied individually
and in combination. The results consist of finding pre- and post-limits point
behavior, as well as critical, conditions for static and dynamic (sudden-
some results) application of the loads.

The generated results serve a multitude of purpose. Some results serve
as bench marks for the solution methodology and the computer code. These
results are compared with already known and accepted numbers. Some results
correspond to parametric studies, which are performed in order to enhance our
understanding of the behavior of laminated shells., The effects of lamina
stacking on critical conditions is studied. Furthermore, the effect of in-
plane and transverse boundary conditions on critical loads is evaluated for
some geometrles. Moreover, the imperfection sensitivity is fully assessed
for all geometries, Dynamic critical loads are obtained for very few geome-
tries. Most of the generated results are presented in tabular and graphical
form. All generated results are not presented, herein, for the sake of bre-

vity. The conclusions, though, are based on all generated data.

1V. 1.0 Axial Compression

Several studies are performed for this load case. Each one of these

studies 1s described and discussed separately.

10



1V, 1.1 Effect of Lamina Stacking (Static and Bynamic)

For this study, the load is applied through the reference surface (which
is the midsurface of the laminate) and the boundary conditions are $S-3
(classical simply supported). The imperfection shape is symmetric, Eq. {5 ).

Table 4-1 shows critical loads, ﬁix (limit point loads), for each geo-
metry and various values of the imperfection amplitude parameter, E. It
also presents the range of n-values used in finding critical loads, and the
n-value corresponding to the critical condition. These results ae also pre-
sented graphically on Fig. 4.1.

Geometry I-1 is the one reported in (44). According to this reference,
the classical (linear theory) critical load is 165 1lbs./in (ﬁ;x . ) and the
experimental value is 106 1bs./in. Note from Fig. 4.1 that tﬁr;ugh extra-
polation ﬁix at £ = 0 is approximately equal to 148 1bs./in., which is 10%
lower than the reported [44) classical value.

The results for geometries I-2 and I-3 are identical. Both geometries
are antisymmetric. This is reasonable since (a) the imperfection shape
is symmetric with respect to a diametral plane and (b) the axially-loaded
cylinder does not distinguish between a positive 45° direction and a nega=
tive 45° direction.

Moreover, for virtually the entire range of £-values considered, the
1-2(3) geometry seems to be the weakest configuration, while the asymmetric
configuration corresponding to I-5 is the strongest. The order of going
from the weakest to the strongest is 1-2(3), I-l1, I-4 and 1-5. Note that
I~5 is a geometry for which the 0° -ply is on the outside. Now since buck-
ling occurs in an inward transverse displacement mode (w is positive), then
the outside layer is in compression and it is reasonable to expect the strong-
est configuration to correspond to I-5, the fibers of the outer ply are in
the longitudinal direction.

11



Table 4.1 Critical Loads
Geometr it -
y g Nxx n-Range n at 1-\112
1bs/in xX
i-1 .05 145.55 5-7 6
.50 136.0 6
.00 123.0 6
.00 98.3 6
1-2,3 .05 138.80 5-7 6
.50 130.0 6
.00 118.7 6
.00 92.2 6
1-4 .01 243.1 7-9 8
.05 232.03 8
.50 178.0 8
.00 137.2 8
.00 90.0 8
I-5 .05 233.25 7-9 8
.50 191.0 8
.00 150.0 8
.00 109.5 8

12
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Fig. 4.1 Imperfection Semsitivity of the various Configurations
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Furthermore, the difference between I-4 and I-5 geometries is the order
of stacking (one is the reverse of the other). Their behavior, then, can be
compared to the behavior of orthogonally stiffened metallic shells with out-
side and inside stiffening. Geometry I-5 is comparable to outside stiffening,
while geometry I-4 to inside.

Figs. 4.2 and 4.3 present typical equilibrium paths for all geometries.
Fig. 4.2 corresponds to geometry I-1, while Fig. 4.3 to geometry I-4. AS
seen, the response is in terms of plots of applied load ﬁ%x versus average

end shortening, It includes, pre~limit point behavior, limit points

e\
and post-limit point behavior, for each E-value. The entire curves corre-~
spond to the same wave number, n. This n~value is the one that yields cri-
tical conditions (the one at the instant of buckling). If a clear picture
of post~limit point behavior is desired, one should show the plots that cor-
respond to other wave numbers. This would possibly reveal that the post-
limit point curves cross each other, as in the case of isotropic shells (46).
Finally, for the two asymmetric configurations, I-4 and I-5, critical
dynamic loads are calculated of the entire E-range (see Fig. 4.4). These
are obtained by employing the criteria described in (46, 39), and they
correspond to lower bounds of critical conditions when the axial compression
is applied suddenly with infinite duration., According tb this criterion
and methodology for estimating critical dynamic conditions, when § = g
(perfect geometry) the static and dynamic critical loads are the same. As
the imperfection amplitude increases the dynamic loads are smaller than the
static loads. For these geometries, I-4 and I-5, and 0<§<2.0, the dynamic

critical load, ﬁix is never smaller than 607 of the corresponding static

load, ﬁf‘(x.

14
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IV. 1.2 Effect of Boundary Conditions

The effect of both transverse and in-plane boundary conditions are
assessed.

Results are also generated for the isotropic geometry (aluminum alloy)
and various in-plane boundary conditions. These serve as bench marks for
the solution scheme, and the results are presented, in part, on Table 4.2
and Fig. 4.5. For this geometry the shape of the imperfection is taken to
be axisymmetric, Eq. ( 6 ). On Table 4.2, the n-value that corresponds to
the critical load is given in brackets. Note that for small E-values (see
Fig. 4.5), the trend is exactly that suggested by Hoff and Chira, indepen-
dently (see (47)), i.e., the weakest configuration is SS-1, the next one
SS-2, while SS-3 and SS-4 yield the classical results. Note also that,
through extrapolation, (as § — 0), the present results agree with those of
{(47). TFor SS-1 the ratio of critical load to classical load is 0,55, for
SS5-2 0.68, and for SS-3 and SS-4 0.98. (Clearly here (isotropic case) the
geometry for boundary conditions SS-1 and SS-2, is not very sensitive to
geometric imperfection, while for SS-3 (primarily) and SS-4, it is. Note
that, for small €-values, the v = const. in-plane boundary conditions (SS-3
and SS-4) yield a stronger configuration., For higher §-values the stronger
configuration corresponds to u = const. in-plane boundary conditions (SS-2

and §S-4).

18



Tasle 4.2 Effect of In-Plane Boundary'Condition on Critical Load
(Isotropic Geometry, Simply Supported Case).

_1’ 2
£ Nxx, kN/m~ (lbs/in.)

SS-1 i SS-2 SS-3 SS-4
.10 2.52 3.05 3.973 4.307
{14.40) | (17.40) | (22.69) | (24.60)
fn=12] ALn=1$] [0=13] | [n=15]

.50 ' 2.45 2.89 2.905 4.027
1(13.98) | (16.50) | (16.59) | (23.00)
[n=127 | [n=15] | [n=13]! [n=15]

1.00 2.36 2.68 1.985 3.192
(13.50) | (15.30) | (11.34) | (18.23)
[n=12) { [n=15]{ [n=13]} [n=15]

Note that, no attempt is made here to find the shape of the imperfection

that yields the lowest critical load.

the imperfection amplitude parameter, £, is varied from 0.05 to two.

For the case of the laminated shell,

The

first number, 0.05, corresponds to a virtually perfect geometry shell, while

the second number (two) denotes an amplitude in the neighborhood of two shell

thicknesses (this is considered very large for thin construction}.

In order to establish the imperfection sensitivity of the laminated shell

and the effect of boundary conditions on the limit point load (critical load),

geometry I-5 is employed, along with a symmetric type of imperfection, Eq.

(5 ).

As already established, Beometry I-5 yields the strongest configuration for

55-3, by comparison to all other geometries (I-i, 1 = 1, 2, 3, 4).
Table 4.3 Effect of Boundary Conditions on Critical Loads.

(Laminated Geometry I-5).

—1
Nxx’ KN/m (1lbs/in)
g S5-1 $5-2 $5-3 $S-4 cc-1 cc-2 cc-3 cC-4
n=7 n=§ n=8 n=9 n=8 n=9 n=§ n=9 |
0.05 27.32 32.39 40.84 46.79 41.88 46.32 41.97
(156,0 ) | (185.70) 1 (233.25)] (267.26) ] (239.20) |264.46) [(239.70)
0.50 26.76 31.78 33.43 40.15 37.10 | 40.75 37.22 41 .44
(152.83) 1 (181.51) | (190.90) | (229.3) | (211.86) | (232.70)|(212.59)[(236.71)
1.00 25.84 30.04 26.27 32.92 29.53 33.62 29,51 34.63
(147.55) ] (171.58) | (150.00) | (188.00)| (168.62) | (192.00)}(168.57)](197.80)
2.00 20.44 23.21 13,67 21.20 19.65 21.27 19.04 21.95
(116.74) | (132.55) | (106.62) | (121.10)} (108.88) | (121.50)](108.75)|(125.37)
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Table 4.3 lists critical loads for various boundary conditions and € -values

(€ = womax/h; for this case). The value of n denotes the number of full waves
around the circumference at the instant of buckling. These results are shown
graphically on Figs. 4.6 and 4.7. A number of observations are made. First,
for low §-values (see Fig 4.6) SS-3 and SS-4 yield stronger configurations
than SS-1 and SS-2. For higher values of £, SS-2 and SS-4 yield stronger
configurations than SS-1 and SS-3. Another way of stating the same thing is
that for low E-values the v = const. in-plane boundary condition yields a
stronger configuration, while for higher ¥-values the u = const. in-plane
boundary condition yields higher critical loads. This conclusion is the

same for isotropic geometries. On the other hand, for the clamped case,

CC-2 and CC-4 (u = const.) yield stronger configurations than CC-1 and CC-3
for the entire E-range considered. Another observation is that for SS-1

and SS-2 the geometry 1is not as sensitive to initial geometric imperfections
as it is for SS-3, SS-4, and CC-1 (i = 1, 2, 3, 4) [see Figs. 4.6 and 4.7].
It is also worth mentioning that a comparison between the values at § = 0

between SS-1 and SS-4 is reminiscent of what happens in the isotropic case

(the critical load for SS-1 is virtually half the value of that for $S-4).

IV. 1.3 Effect of In-plane Load Eccentricity

Next, the effect of load eccentricity is assessed. In all configurations
for which results are generated, the shell midsurface is taken as the reference
surface., Then it is assumed that the uniform axial compression is applied
eccentrically, which induces a bending moment at the boundary, M=E ﬁxx
[see Eqs A-35 & A-38. Note that this load eccentricity affects only the

simply supported boundary conditions.

21



60

50

A
o

|
x k) —

—N

N
o

10

0 0.5 1.0 1.5 2.0

Fig. 4.6 Effect of In-plane Boundary Conditions on the imperfection Sensitivity
of Geometry T1-5 (ss-1)

22



70

60

50

40

— N;(X(kN/m)

n
o

10

0-5 1-0 1'5 2'0

3

Fig. 4.7 Effect of In-plane Boundary Conditions on the Imperfection Sensitivity
of Geometry (cc-1i)

23



Results are generated and presented for the isotropic geometry, ortho-
tropic geometry, and laminated I-1, I-4 and I-5 geometries, using a symmetric
imperfection shape Eq. ( 5 }, and classical simply supported boundary condi-
tions SS-3.

These results are, in part, presented on Tables 4.4-4.6,

One might expect a negative edge moment (corresponding to positive load
eccentricity) to have a stabilizing effect on an axially-load cylindrical
shell, regardless of the construction. Contrary to this, the generated re-
sults do not support the expectation. For small eccentricities (-0.5<E/h<0.5)
and isotropic geometry (see Table 4.4) the response seems to be insensitive
to the eccentric application of the load. This is true for both imperfection

shapes [axisymmetric and symmetric, Eq. (5 ) & ( 6 )].

Table 4)4 Effect of Load Eccentricity (Isotropic & Orthotropic)

Imperf. e/h ﬁxx ! o w/m (1bs/in.)
Shape
& £y o
Geometry N 12.5 2.5 0.5 Y -0.5 -2.5 12.°
Axisym. |0.5 3.08 2.40 2.84 2 90 292 299 [ 2.47
(17.57) |(13 726 (16.20) |(16.59) |(16.58) (17.€73 . (14.01)
“ Eq.(23)
1.0 1.98 | -1.99 1.98
Isotropic | (11.336)(11.342) | (11.337)
Sym, Eq- |5 ! 3.026 | 3.097 3.100
- (22) e ] (17.284)[(17.686) | (17.704)
. Isotropic ; I
{ Axisym. [1.0 | L 12.61 | 12.39 12.36
' orthotro- i { (70.89) |(70.74) (70.57)
| pic | |
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Tabie 4.5 Effect of Load Eccentricity

(Laminated 1-1 Geometry)

w in kN/m (1bs/in.)
XX
cr
£ E/h = 0.5 E/h =0 E/h = -0.5
Axisym. Sym. ,  Axisym. Sym, Axisym. Sym.
Eq. (23) _Eq. (22)  Eq. (23) Eq. (22) Eq. (23)| Egq. (22)
0.5 C22.21 21.75 23.58 22.85 26.52 23.35
(126.85) (124.2) (134.71) (130.49) (151.48) (133.34)
1.0 19.89 20.31 20.46 20.88 20.78 21.82
(113.61) (115.98) (116.85) (119.25) (118.7) (124.6)
2.0 13.10 17.07 | 13.12 17.21° 13.17 17.33
(74.83) (97.46) ' (74.91) (98.30) (75.22) (99.00)

SS-4 boundary conditions and n = 6

Table 4.6 Effect of Load Eccentricity

Symmetric Imperfection; SS-3 boundary conditions). =

(Laminated I-4 and I-5 Geometries;

ﬁ:; in kN/m (1bs/in.); n = 8
g I - 4 geometry I - 5 geometry

E/h = = o E/h = E/h = = E/h =

0.2569 E/h=0 1 49560 | 0.2560 E/h =01 5 2560

0.5 30.61. 30.66 |  30.67 33.00 | 33.44 36.16
(174.70) | (175.08) | (175.18) (188.49) ' (191.00; (206.52)

1.0 24.07 24,02 24.08 28.76 ' 26.27 |  29.18
(137.45) (137.18) (137.50) (164.27) | (150.00) | (166.62)

2.0 15.78 15.76 | 15.75 18.90 18.67 18.90
(90.10) (90.00) | (89.93) (107.96) (106.62) (107.85)
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For very large eccentricities (lEth > 12), positive eccentricity has a
stabilizing effect, while negative eccentricity has a destabilizing effect.
In the intermediate range an irregularity is observed, It was suspected that
one possible reason for this behavior may be attributed to the Poisson effect.
As the load is applied, quasistatically, the midportion of the shell moves out-
ward because of the Poisson effect; it reaches a maximum expansion, before the
load reaches ifs critical value, and then an inward motion takes place, and
finally at and after collapse this inward motion continues. This sequence of
events and the corresponding stabilization or destabilization of the load ec-
centricity is heavily dependent on the value of Poisson's ratio or the A12
term in the extensional stiffness matrix. For instance, some data are gene-
rated, for the isotropic geometry (E = 0.5; SS-3 and axisyymmetric imperfection)
but with v = 0.1, The limit point loads, Nix’ (critical load) for three values
of eccentricity (E/h) are: 3.305 kN/m (18.88 1bs/in) for E/h = + 0.5; 2.76
kN/m (15.81 1bs/in.) for E/h = 0; and 2.745 kN/m (15.68 1lbs/in) for E/h = -0.5.
This clearly shows that positive eccentricity has a stabilizing effect. This
observation is also true for the orthotropic geometry (see Table 4.4) for which
is small by comparison to A

the value of A . On the other hand, for v = 0.3

12 11

and the laminated geometries for which the values of A12 are of the same order
of magnitude as A11’ it cannot be said that positive eccentricity has a stabi-
lizing effect (see Tables 4.5 and 4.6). 1In reality, for these geometries no de-
finite conclusion should be drawn regarding stabilization through load eccen-
tricity (or applied edge moment). It is worth observing, though, that for all
laminated geometries (see Tables 4.5 and 4.6), whatever the effect is, it does

diminish with increasing amplitude of imperfection.
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IV. 2.0 Torsion with and without Axial Compression

For this particular load case, in addition to the axisymmetric shape for
the geometric imperfection, two additional shapes are employed in the studies.
These additional shapes correspond to approximations of the linear theory

L i‘,‘]

(see Appendix D) buckling modes for positive and negative torsion for all

five geometries.
In particular, Appendix C deals with solutions to the linearized buck-
ling equations for the case of pure torsion. To this end, the Galerkin pro-

cedure is employed and the following approximation is employed for the buck-

ling modes

M

w's 22 (A Coa +Bin i 2 ) [ 150 'F

- ,‘- (HQJRXJ (7)

(+2L

Because of orthogonality, only one n-value is needed In Appendix D, a ten-

term approximation (M=5) is obtained for all five geometries. By studying

the results, one two-term approximation for positive torsion, w°(+), and one
. . X . o .

two-term approximation for negative torsion, w (-), for all five geometries

are used in this study. The various coefficients are first normalized with

respect to BZn’ Eq. (7 ), and then adjusted such that the maximum amplitude

is Eh.
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W) = ER(0.536749 CdB (amZE - Lam 2
- 0.670%1 dinm E -3 Ain T )] (%)
W) = £ h[0.583128 69422%(%%& - '3L/me‘3’fl

4 0.647192 n (o2 - 5 pin* )] (9)
W:WX//L = g (/0)

The generated results for this case are presented, in part, both in tabu-
lar and graphical forms. The discussion, though, and the related conclusions
are based on all data.

First, Table 4.7 shows values of critical torsionm, ﬁ:y’ for the two asym-
metric imperfection shapes, Eqs. (8 ) and ( 9 ) (corresponding perfect geo-
metry buckling modes for positive and negative torsion) and several values of
the imperfection amplitude parameter. The torsion is applied in both directions
and the critical values are recorded. The corresponding minimizing value of n
(number of full waves) is shown in parenthesis.

Note that the linear theory, perfect geometry critical values (from Ap-
pendix p) for geometry I-1 are 39.9 1bs./in. for positive torsion, and -75.5
lbs./in. for negative torsion. Moreover, the experimental results obtained
from (44) for this geometry (I-1) are 26.5 1lbs./in. for negative torsion.

Note that the construction (orientatiomn of the plies) is such that the
configuration is much weaker when loaded in the negative direction, regardless
of which of the two imperfection shapes is used. Furthermore, when wo(+) is
present the configuration is somewhat sensitive for positive torsion (see second
column at € = 0.10, ﬁ#y = 35.32 sensitive for negative torsion (see third

colum). On the other hand, when wo(-) the reverse 1s true, i.e. the
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Table &, 7 Critical Shear Stress Resultant
(Geometyy I-1 ; Positive & Negative Torsion)

——
erve—

For vO(+) ; Eq. (8)

For w’(-) ; Eq. ()

o
4 E:, 1bs./1a, (n) -ii’ 1bs./in. (n) ny 1bs./in. (n) -?:y 1bs./in. (m)
0.1 35.32 (11) -93.9 (13) 36.83 (11) -63.44 (9)
0.5 31.57 (11) -92.80 (13 36.06 (10) -57.61 (8)
1.0 28.32 (11) -$2.00 (13 35.17 (10) -52.11 (8)

Table 2.8 Critical Shear Stress Resglunt

for all geometries and w (+)]

R:z in 1bs./in. (n)

4 I-1 1-2 1-3 1-4 1-5
0.1 3s5.32 46.40 46.36 44.18 66.49
(11) 9 (€)) (12) (12)
0.5 31.57 41.81 41.84 38.75 56.91
1) (¢)) (&) (12) (12)
1.0 28.32 37.89 37.96 34.22 48,72
(11) 149 ¢ (12) (12)

Table. 2 critical Axisl Couwpression-Torsion Table 430 Critical Axial an ression-Torsion
Interaction Data* (Geometry I-1; Iteraction Dats* [Geometry 1-1;
Axisymmetric Imperfect) v(+), 2q. ()]

g‘ n 6 10 0 10 1 ;‘ n 11 12 11 1 u

0.1 # 146.1 135.1 95.9 40.9 0,0 i‘n 141.5 132.1 87.5 31.0 0.0

XX
? 0 10.0 20.0 30.0 36.7 0.1 %l; 0.0 10.0 20.0 30.0 35.3
xy
n 6 10 11 11 11 n 11 11 11 11 11
0.5 ﬁ"n 140.2 128.9 81.9 28.7 0.0 0.5 ?n 137.4 123.0 87.4 43.2 0.0
#. 00 100 200 300 353 ¥, 00 80 160 2%.0 316
xy
n 6 6 10 10 11 - n 11 12 11 11 11
1.0 #n 117.7 117.2 87.3 48.4 0.0 1.0 ?u 126.8 102.9 73.1  40.4 0.0
#. 00 20 160 2.0 33.8 ¥, 00 7.0 .0 210 2.3
xy
n 6 1 10 10 11 n 11 11 11 12 11
1.5 # 93.7 9.2 73.6 37.8 0.0 1.5 ?n 105.7 80.9 63.8 26.2 0.0
XX —J
ixy 0.0 2.0 16.0 24.0 32.3 %y 0 7.0 14.0 21.0 25.4

*The unit of the stress resultant is ibs./in.

29
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configuration is insensitive for positive torsion (fourth column) and rather
sensitive for mnegative torsion (last column). Note that the experimental values
(+ 26.5 1lbs./in, and -65.72 1lbs./in.), compare well with the theoretical values.
Note that the tested specimen (44) is of unknown imperfection shape and ampli-
tude.

Next, Table 4.8 presents critical shear stress resultants (and the mini-
mizing n-value in parenthesis) for all five geometries and an imperfection
shape similar to the positive torsiom buckling mode of the perfect geometry,

Eq. (8 ). These results are shown graphically on Fig. 4.8). Note that the
strongest configuration corresponds to 1-5, while the weakest to the symmetric
geometry I-1. This conclusion holds true for the imperfection shape used, wo(+).

It is worth observing that the regular angle-ply antisymmetric geometries,
1-2 and 1-3, yield virtually the same strength for positive torsion and wo(+).
Moreover, geometry I-4 is much weaker by comparison to the other asymmetric
geometry (I~-5) but not as weak as the symmetric geometry. These observations
are reminiscent of the old extermal versus internal positioning of the ortho-
gonal stiffeners controversy concerning metallic stiffened configurations. In
relation to this, in the case of orthogonally stiffened complete spherical
shells subjected to uniform pressure (see Ref. 48) it is observed that the
weakest configuration corresponds to zero (or close to it) stiffener eccen-
tricity, and fhe strength of the stiffened sphere increases as the eccentricity
increases in either direction (inward or outward). Thus, one can conclude from
Fig. 4.8 that all five configurations are imperfection sensitive, but not as
sensitive as they are for the case of uniform axial compression (See Fig. 4.1).
This conclusion is in line with the behavior of metallic cylindrical shells

with or without stiffening members.
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In Ref. 44, experiments are conducted for geometry I-1, to determine the
interaction curve that separates the stable from the unstable region between
uniform axial compression and torsion. Because of this, numerical results are
obtained fro geometry I-1 and two imperfection shapes. One is virtually axi-
symmetric, Eq. (6 ), and one similar to the (positive torsion) perfect geo-
metry buckling mode, Eq. (8 ). The theoretical interaction curves are gene-
rated for several values of the imperfection amplitude parameter, £, by the
following steps. First, the critical value for pure torsion is obtained.
Then, starting with zero torsion and several valies of the applied shear stress
resultant, but smaller than the critical pure torsion the corresponding cri-
tical axial compression is obtained. In each combination a study of the ef-
fect of n is performed. The results are presented in tabular form on Tables
4.9 and 4.10 and graphically on Figs. 4.9 and 4.10.

The data of Table 4.9 are plotted on Fig. 4.9 and of Table 4.10 on Fig. 4.10
On both figures the experimental (44) interaction curve is shown by the dash-
ed line. Not knowing what the imperfection shape and amplitude of the tested
cylinder are, these plots may suggest a reasonable comparison between theory

and test.
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Iv.

obtained by the W, F-formulation.,

by the u, v, w-formulation.

All of the conclusions are based on the generated results, which are

3.0 CONCLUSIONS

No results have, as yet, been generated

From all results, one may list the following as the most noteworthy com-

clusions.

1.

Buckling, for all configurations, is of the violent type (snap through

buckling through

limit point instability).

For S5-3 boundary conditions and axial compression with zero eccentricity,

the strongest configuration corresponds to the asymmetric congiguration,

I-5, while the weakest configuration corresponds to the antisymmetric

configurations, I-2 and I-3.

Again for SS5-3 and axial compression, the dynamic critical loads (lower

bounds, when the corresponding static loads, but their values are never

smaller than 60% of the static critical loads.

The average end shortening (for axial compression), corresponding to the

limit point for the same €-value, is smaller for the asymmetric geometries

(I-4, 1-5) than for the symmetric (I-1) and antisymmetric (I-2 and I-3)

geometries by almost a factor of three.
For the isotropic geometry (SS-i boundary conditions)

5a:

5b:

of in-plane boundary conditions is such that SS-3 and SS-4 (v

yield stronger configurations than SS-1 and SS-2 (ny

(u =

Y

XX

-F

»XY

const.) yield stronger configurations than SS-1 and SS-3

=F,

yy

XX

)

35

For the perfect configuration and very small imperfections, the effect

const,)

0)

For higher values of the imperfection amplitude, €, 55-2 and SS5-4



10.

11.

12.

For the laminated geometry, the effect of in-plane boundary conditions for
5S-i is the same as for the isotropic geometry. TFor clamped boundaries,
CC-2 and CC-~4 (u = const.) yield stronger configurations that CC-1 and
CC-3, for the entire E-range.

For both geometries, I-5 and isotropic, the sensitivity to initial geometric
imperfection is dependent upon the in-plane boundary conditions for S5-i.
When v = const (8S-1 and SS-2), the geometries are not very sensitive. On
the other hand, when u = const the geometries are very sensitive.

As far as the effect of load eccentricity on critical loads is concerned,
no general conclusion can be drawn. But whatever the effect is (stabi-
lizing or destabilizing for a given geometry), it diminishes with in-
creasing value of the imperfection amplitude parameter (§-values).

When loaded in pure torsion, the strongest configuration corresponds to
geometry 1-~5 (asymmetric), while the weakest corresponds to the symmetric
geometry I-1, for the imperfection shape corresponding to the positive
torsion buckling mode, w°C+).

Geometry I-1 is weaker when loaded in the positive direction than when
loaded in the negative direction regardless of the imperfection shape

(for all that were employed).

When loaded in pure torsion, laminated shell configurations are sensitive
to initial geometric imperfections, but not as sensitive as when loaded

in axial compression.

Comparison between theoretical predictions (corresponding to various im-
perfection amplitudes and shapes) and experimental results is reasonably

good.
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APPENDIX A
MATHEMATICAL FORMULATION

A. 1.0 Introduction

The governing equations are derived, in this section, for the following
geometry and loading. The thin, circular, cylindrical shell is assumed to
be geometrically imperfect, The construction is laminated (each lamina is
orthotropic) and in addition, the shell is orthogonally and eccentrically
stiffened. The stiffeners are uniform and with uniform close spacing,
which allows one to employ the ''smeared" technique. The boundary conditions
can be of any transverse and in-plane variety. This includes free, simply-
supported and clamped with all possible in-plane combinations. The loading
consists of transverse (uniform lateral pressure) and eccentric in-plane
loads, such as uniform axial compression and shear. Eccentric means that
the line of action of these loads (applied stress resultants) is not
necessarily in the plane of the reference surface. 1In the derivation of the
governing equations, the usual lamination theory is employed. Moreover,
thin shell theory (Kirchhoff-Love hypotheses) and linearly elastic behavior
are assumed. The primary assumptions are listed below:

(1) The shell is thin (total smeared thickness is much smaller than
the initial average radius of curvature-cylinder radius).

(2) Normals remain normal and inextensional.

(3) The strains are small, the rotations about the normal are small
and the rotations about in-plane axes are moderate.

(4) The imperfection shape is such that the initial curvature is small
[leo,ii «l; i =x,y].

(5) The stiffness are along principal directions.

(6) The stiffener-laminate connections are monolithic.
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(7) The stiffeners do not carry shear; shear is entirely trans-
mitted by the laminate .

(8) The stiffeness are torsionally weak and thus they do not con-
tribute to the shell twisting stiffness (the equations and related pro-
grams can easily be changed to accomodate the case of torsionally strong

stiffeners).

On the basis of these general assumptions, two sets of field equations
are derived. One, referred to as the w, F - formulation, is based on
Donnell-type of kinematic relations. The governing equations consist of
the transverse equilibrium equation and the in-plane compatibility equation.
These two equations and the proper boundary conditions are expressed in terms
of the transverse displacement component, w, and an Airy stress resultant
function, F. The second, referred to as the u, v, w - formulation is based
on Sanders' type of kinematic relations, those corresponding to small rotations
about the normal and moderate rotations about in-plane axes. The governing
equations for this case consist of the three equilibrium equations. These
equations are expressed in terms of the three displacement components, u, v
and w. Also, the proper boundary conditions are expressed in terms of u, v,
and w. The corresponding Donnell approximation appears as a special case of
the more general Sanders' kinematic relations. The derivation along with all
necessary relations are presented separately for each formulation.

A. 2.0 The w, F - Formulation

The geometry and sign convention for this formulation are shown on Figs.
A.1 and A .2.
The topics of kinematic relations, stress and moment resultants, governing

cquations, boundary conditions and solution procedure are treated separatcly.
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Moment Resultants

Fig. A.2 Sign Convention
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A. 2.1 Kinematic Relations

Let w° be measured from the perfectly cylindrical surface to the
refer surface of the laminated shell. Let w denote the transverse
diéplacement component of reference surface material points and be
measured from the undeformed surface. Let u and v denote the usual
in-plane displaceme nt components along the x and y directions respective-
ly.

The Donnell-type (33) kinematic relations are given by
6::(— kax
€y = En— Zk,y, (A-1)
Yoy = Yoy - 2Z Ky

where the superscript "o' denotes reference surface strains and the #'s

€

i

denote the reference surface changes in curvature and torsion. Note that
the positive z-direction is inward (see Fig. A.1).
. o .
According to Donnell the ¢ 's and #'s are related to the displacement

components by

2 0
u;l( +-2L N:x + W:x V\/:K

m
)

L2 o (A-2)
Uy~ % + T Wy +Wywy

xm
$ o
1]

Uy + Uy T Wix Woy + Wix Wy + Wk Wy

"
)

K™ @Pux = {Wix)x = Wixx

kvy = SO)W

Haxy = Qox,j = gp)ﬂ“ = WJ")’

A 2.2 Stress-strain Relations

(Woy),y = Wy (A -3)

Each lamina is assumed to be orthotropic and the directions of

orthotropy (1,2) make an angle 8 with the in-plane axes (x,y).
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The orthotropic constitutive (it is assumed that the generalized
Hooke's law holds) relations for the kth lamina are given below. WNote
that for an n-ply laminate k varies from one to n, and the first ply
(or lamina) is on the outside, while the nth ply is on the inside

(see Fig. A1),

- ky ¢ N 3

O-qT Qll QIZ O 6”

| =|Q, Q, o || ¢€a (A-4)
{ U S Q33, [ 2€,2)

where 2912 = Y1p and 1, 2 are the orthotropic directions.

Since one is interested in relating the stresses to the strains
in the xy frame of axes, the usual transformation relation for second
order tensors are employed (see Ref. 35 for details) and the transformed

constitutive equations (for the kth ply) become

- — = y(k)
. v Qu Q. @-ls Cux
T, = én sz éz; €y ( A-5 )
O—I) éd éas é 33 Exy

where

[Q]

1}

(TTIQIT] (A-6)

and

[ Cos’6 SiX6  Sin26)
[T]=1 Six'e Cos® -Sin28
-7 Sindf 75028 Cos26 |

Next, the stress-strain relations for the stiffeners are

(A-7)

G;th = ES'E Exx (A -—8)

-~
t

Ev éyy
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where Eg. and Er denote the Young's moduli for stringer and ring material
respectively. Note that according to the smeared technique assumptions,

stiffeners do not transmit shear.

A, 2.3 Stress and Moment Resultants

Instead of dealing with stresses, it is more convenient in thin
shell and plate theory to deal with integrated stresses. This leads to the

introduction and definition of stress (Nij) and moment Gﬁij) resultants.

For a stiffened laminate these are

" . - 3 . 1
N hn | T Gust. ol Ay
Nol = Ow| dX* Do d Ay (A-D)
A. Y
\ny’ he ‘ Oy ) ¢ 0 J
and
r 3 - 1 ( (T 1
Mxx An O'u —% dAx
M,y = | £ | G, dz + ) z %ﬁr d Ay (A-r0)
) © | O | © |
where

lx and Ly are the stringer and ring spacings (respectively), Ai denotes the
proper stiffener cross-sectional area with Ax denoting stringer area and
Ay ring area, and hO hn denote the outer surface and inner surface coordinate
of the laminate (see Fig. A.1l). Note also that the above definitions lead to
the sign convention shown on Fig. A.2

Substitution of Eqs. A-5 and A~8 for the stresses in Eqs. A-9 and A-10
prior substitution of Eqs. A-1 for the strains in Eqs. A-5 and A-8 and

per forming some minor mathematical operations lead to
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bl i °
[ N, €.
hy
N — (k) o
Nyl = Q1 f | €,y
k=1 /‘k !
N")’ . Xt'y )
” E ‘tA 0‘
~7 Ex
E,Ay -
+ 7y_i€>o' "
O
M e
N [
MY)/ = [Q ] f J Z E:y
k=) /(k-n
My Yy
) S J
’/ A o
%;_)( e €

y= o
+ 7___r’y4>’ Qyégg =

O

- Z kyr ’dZ

(A-11)

- Z Hyy ?dz

2)(1,‘/ J

~

S I tA€)
-%—;"—( Ly +Ay€2;)

O

§

~

J

(A-/2)

where e ey are the stiffener eccentricities (positive if on the side of
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positive z) and Ix s I are the stiffener second moment of areas about
c Je
centroidal axes.

After performing the indicated operation [Eqs. p-11 and A-12), one

may write

No] [ Ae A B -Bu-BaBa| [0
Ny A A Aun-B.BuB,| | €,
Nor| | Ais Ao A Bs-B,B| | o (A-13)
Max B, B: Bs -DiDa-Dy | X
My B. Bu Bo -Da-DaDy | Ko
My B, Bu B, "D, -DuDs Koy
shere ) s o .
[/_1;&] = [Aj] +| o %’é—" 0 (A-4a)
I O o Oj
b0 o :
(B = [Byl +| 0 Ego (A -14b)
0 0 0]
and \ _
Ei(T,4004,) O 0
(D] = [Dyl + 0 _E;r(_‘[ng;,qy) o | (A-Hc)
| O 0 o)
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with

Qf:) ( h‘k -/lk-l)

M=

A s

s

x
1

™M=

— (k) N 2
B"-} = Qz} ( }lk - Ak-/) A-15)

»

=1

M=z

Dy = 3 O Ch-he)

>x

=

Since, in the derivation of the field equation for this formulation,
the dependent wvariable are, w and a stress function F (through which the
stress resultants are derived), then it is convenient to express the
mement resultants in terms of the Nij's and the® 's,

Starting with Eqs. A-13, one may write

(N | = " X ]
Ny | = [Ajl| &, — [Byl] ko (A-7€)

o
.nyd LK\IY_, 2)(,()/
From this, one can solve for the strain wvector, or
e N ]
6)()( NXX )’(XX

-l

el = A | Ny + BB Joy|  A=D)
Yo [Ny | 2 Xy

-

Another form for this equation, Eq. (17), is the following

[ €3] [ Nl [ Jix]
eyl = [yl | Nyl + 164X (A-18)

\Xexyj | /\/xy

2)

where

G- A (8- By 40
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Next, substitution of Eqs. A-18 into the expression for the moment

resultants, Eqs. A~13, yields

Mixx _ €5:x - }<x¥
Myy| = [Ba}] E;y - [Dq-] Kyy
Mxy M‘; 2}(;0/

Nxx _ ) OP
- Bi| Ny (B8, (D4l 50,
N xy 2)Cxy
T fJxx }<XX
= [gi}] Nyy| [did'r] Hyy (A-20)
Ny 2Ky

where
() = (Bl [64] - [Dy] | (4-21)

Note that [aij] and [dij] are symmetric three by three matrices, while
[bij] is a nonsymmetric three by three matrix.

A. 2.4 Equilibrium Equations

The equilibrium equations are derived by employing the principle
of the stationary value of the total potential.

According to the principle, for equilibrium

S Uy

I

0 (A-22)

where

U- U+ U, (A-23)

the sum of the strain energy and the potential of the external forces.
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From Eq. A-22 one may write

SUT SUL+ SUP =0

1

1A

f:T(Nxxse,Z’H Niy Sy + Ny 8oy

~ M Ko =My §Xyy = 2 My S X ) dX Y
-ffj?é“wo(xdy - f:l(ff\l’xxé“u + NS U

+ QuSw ~ MaSWy - My § W)g)LLd)’ (A-24)

Where q denote the external pressure (positive in the positive =z-
direction) and the '"bar' quantities denote external loads applied at the
boundaries (ﬁxx and ﬁ%y are in-plane loads, while Qx is applied transverse
shear load and M and M external moments). Note that M  and M could

XX Xy XX Xy
represent moments arising from eccentrically applied ﬁxx and ﬁxy'

Use of Eqs. A-2 and A-3 for expressing the variations, in the reference
surface strains and changes of curvature and torsion in terms of variations

in displacement components yields

s U, :J:"I‘{ Nux [ 8 Usx + Wor SWix + Wi 8 W)

+ Nyy[SUZy-TIQ'SW + W,y dw,y +W,;Sw,y]

+ Niy[SUy 4 SUx + wxSWoy T WyydWix

+ W S Wy + Wiy SWox ] = Mux§ Waex =My 6 Woyy
-2 My SWasy L dx dy -ﬁ‘ggwdxdy
[0 R SU +Rys7 + QySw - 3,

— FlxyS¥ ) dy (A-25)
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Re-writing the above in a convenient form in order to use Green's

theorem, one may write

SUTZIMJL{[N“ SU + Ny (W + Wix) SW
+ Ny (W,y+ Woy) SW = MaxSWox ] x
+[ Ny SU+ Ny (wiy +wis) Sw + NiSU
F Ny (W # Wit) W = MyySWiy 1y
< [Ny SU + [Nax (Wiox +Wox)], SW
+ NSV 1 INxy (Woy twiy) ], §W
~ MaxdW F NyyySU + [ Noy(Wiy
+ Wiy )], SW + NyyydU
+ [ Ny (Wax # Wae )],y W = Myyy SWoy]
- —’-;—’1 SW - 2 My SW,xy} dxdy
~fwf gswolxdy f’”f— NS U + NeySV-

+Qy SW ~ Max 395 = MyS 2] oy
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=1L [T NS N MEISW  NogS 4 Nig (30,
+ W) IW = MaxSWox + Mun,xSW + 2Muyy SW ]
+ [Ny SU + Ny (wiy +1y) Sw + Ny SU
+ Ny (Wix +Wix) SW = My SW,y T MyyySw
+ 2Muy 5w ],y = [Noxx 8U + [Nix (Woxt W], S
+ N, SU + [ Niy (Woy Wiyl SU
+ My SW 1 Nyyy ST + [Ny (Wiy + Woy)]y W
+ Ny SU+ [ Nuy(Wix +w,§)],35w
b MW |~ Dsw
- 2Myy SWjdx dy
[ gswoledy - [T~ N Ut Rysv
+ QW — MuS% f»?x,w,]/fdy (A-26)
By Green's theorem, one obtaims the following equilibrium equations and

associated boundary terms,

Equilibrium Equations

Nxex T Nixyy = O
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NXY'X + va,)’ :O

Mixx + 2 Muyxy + Myyyy + %z + Ny (Wi + W, 2x )
+ 2Nuy( Wixy + Wigy) + Nyy(Wigytwipy) +3 = 0 (4-27)

Boundary Terms

glther or

Nxx = = Nxx SU=0

Nxy = Ny sy =0

Nax (Wix+ W ) + Ny (W,y+W,y)

Mx $2Myy,y = Qut Moy dw =0

Mxx = My SWix =0 (A-28)

The first two equilibrium equations, Eqs. A-27 can be identically

satisfied through the introduction of the following stress function
Nxx = F%xy - ﬁg;x
Ny = Fox
ny = "F,xy 'I'ny (A-29)

With the introduction of the stress function, F, the third

equilibrium equation becomes

|~ - [
Muxoxx T2 Mxy,xy T Myyyy + B Foxx T Py (Woa + W)

+ F)XX(W')’)'—'—W"))')‘) -—2 F"(y (W;xy +W):y) - NXX(W”‘)'+V\/J:Y)
+ 2 Ny (Way+ Wog) 8 =0 (A-30)

A. 2.5 Compatibility Equation

Since the in-plane equilibrium equations are identically satisfied with

the introduction of the Airy stress function, F, then the governing equations
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consist of the transverse equilibrium equation, Eq. A-30 and one more. This
one more results from requiring compatibility of the in-plane displacement

components u and v. From Eqs. A-2 one obtains

[

EXX:)’)'

W

I ) ’ ]
Uiy T 7 Wy (Wix +2Wax) + 7 Wix{ Wixyy 1.2 Waxry)
° i o o
Epx = Uyee = LLE + 5 (2 Wy Wopnx #2 Wos Wiy + 2 Wy Wier)

-] -4
X)(y,xy = Z(H(Y)’ + Zj:xxy -+ W,xxy V\/,y + V\/,x \/\/,xyy + V\/,xyy V\/n(
+ W,y\i\/,:xy + W)XK)’ V\/,; + W,t WJ:’()U (A "3 ! )

Elimination of u and v leads to the following compatibility equation

éx:,yy 1 éy:,xx - Xx;,xy =7 —/_?—H + WXY(V\/;xy+2W,xy)
o / o
_Q" W,xx( W;yy +2V\/,yy) - -Z—W:y)’( W,xx ‘l'_? I/\/J”) (A -32)

Substitution of Eqs. A-18 [Eqs. A-29 for the N's and Eqs. A-3 for the

n's] into the compatibility equation, Eq. A-32, yields

an F:yyyy t au FMKW - alj F,xyyy + 'gu W,xxyy + 4/1 "\/,yyyy "’25/3 V\/,xyyy
+ a;z F,xxyy + azz}:;xxxx - Qg F,xxxy "L-&, W, + ‘@“ Wty "'24;;‘/\/,»::9'

- a,g F,xyyy "azgp,xxxy s Foxxyy = ggfl/\/,wy - @3, Wixyyy =2 Bz Wossry
V\],)O( + \A/,,)‘(W,,gy-f-Z VV,,()) 2 W,xx (W,yy+2 W,yy) - <L W,yy( V\/,Axf‘Q W,::x )

(4-33)

Similarly, substitution of Eqs. A-19 into the transverse equilibrium

H

equation, Eq. A-30. yields
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@'n F:xxyy + 'gzc F)xxxx - ‘g_u /:.xxxy + dn W, oxxx + d,z V\/,xxy‘LQO{u V\/:w‘)’
+2 gﬁ F,x)fy)l +2823 F,xXxy "'2 'gﬁ }:,xxy)' + 2d3l Wa)txk] + stzw'xﬂ)' + 4 CA’ W"U‘)’/

+ @IZ F’yyyy + ‘4}2 F,}\ny - ‘gaz}:‘,xyyy‘f dzl W;XW)’ + dz: M)’YY)’ +2 dlj W”UY)’

* /—%F:XX +F”(W’”+W::X) - NXx (W, xx + V\/u(x)
+ 2 NY)](W)XY"’W,L) _QF,X)I(WM)TV\/,;; ) + F;x)( (ley TLM//yy)
tg =0 (A-34)

A. 2.6 Boundary Conditions

The boundary conditions, Eqs. A-28, can be designated according to
transverse one (simply supported, clamped, free) and in-plane ones. Since
all of the application to be considered deal with supported boundaries,
only simply supported (ss-i; i = 1, 2, 3, 4) and clamped (cc~-i) boundary

conditions are listed. These are (at x = 0, L ).
SS=1: W=0 i M= Mus Nu= - Nux; Ny= Noy
SS-2: w=0 ; M= My Y= Const. Ny = Ny
SS-3:1 w
§S§-4:1 w

I\/]“X:F/"XX 3 Nxx: ~‘[-:/)()c ;U= Cm.st
Mxx = /.\;]xx; 7/( :"Coﬂ.Sé 5 U = Cmsg, (A—BS)

V)
S

1
<
v

and
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i

CC-1: w=0 3 Wx=0; Ni= = Nes Ny = Ny

]

CC-2: W=0 ; Wx=0; U=Cans{-; Niy= Nay

CC-3: W=0 ; Wa=0: Noz-Noi U =Const
CCc-4° W=0; Wox=0; U= Const, i U =Const. 4:36)

The above boundary conditions may be written in terms of the dependent
variables F, and w. The kinematic conditions u = const and v = const are
first expressed in terms of equivalent conditions. This is shown below for
each of the relevant conditions separately.

Note, first that the expressions for the Mij's and Nij's are given by
Egs. A-20 and A-29.

Ss-1: w=0

.g“,f_xx +d,,w,.x+2d,3W,xy= ﬁxx*éu/—\f—xx—g;my

Fay=0  0nd  Fiy=0 (A37)

85-2: W=0
@' i F’)‘)‘ +‘glp Foxt du W,xx +2d/3w,,(y: Mx,{" 'éu Nxx "‘g.ﬁny

Fyw=0 ad  Foxy =0 (4- 38)

The u = const. cadition is expressed in terms of an equivalent condition
by employing the following steps.
The expressions for ny from the kinematic relations, Eqs. A=2, and

from the constitutive equations, Eqs. A-18, are first equated to each other,

or

Xx; = u,y+ U;x +W:X W:y+W!XWJ; +N|: W,y
=ata(Fyy-/_\]xx) + azz.F»xx‘l' a‘,,(/?lx,«F,x,)

1851 Wk + Bz Woyy + 2 By Wity (A-380)
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0

One differention with respect to y and use of the conditions w = 0 and F’xy

yields at x = 0, L

u:y + W.xy N.; +WJX W,;y = a13 s Yyy + a;; F,Xl_'] '* ‘g’lMay
+ -2433 .xyy (A"' 386)

Similarly,

Uy-B +45wWy +Wyw,
al) ( F'W - i\—lxx) + an F;"" t 013 (N—xy'— F”‘)’)
t By Woax + Bz Woyy + 2 By Wy (A-394)

o

1

from which one differentiation with respect to x yields
W,
'Z):,Vx - ‘F'éi + Mxy M; = azz Exxx —aa F:;xxy + 2@43 W,xxy
+ gz:V\/,xxx + ’ggz W;xyy (A _BQA)

Elimination of v,xyand V’yx from Eqe.(A-38) and (A~39)yields the equivalent

(to u = const) boundary term, which is:

aas F;Wy +2 st xxy zzF,xxx
H( 83!”2g13) W, oy = (gzz -2 8:3) Wy = 0

Note that because F’xy = 0 for this boundary condition, the term con-

W,x W’YY '921 WIXXX

taining F, has been dropped.

Thus, };or 55-2 the final form of the boundary terms becomes

W= 0

B.F., gqux + B Wi + 2ds Wy = My * @,, N = @ﬂny

F,xy =0

QusF, »y +2 Q23 F,xxv - aZl F‘zxxx "'%"x ~ Wix Wy, - 4,, W,oxx
+(645,-28:;) Woxxy — (G -2 8'33) Wixyy = O (A-40)

8s-3

w=0

-8” ,yy + @;_, Fxx + du Wxx +2d13 ,xy 93; ,xy F[xx"'QuNXX ga)ny
Foy= 0 and U= Const.
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Similarly, as in the case of SS-2 (u = const), an equivalent condition
is obtained for v = const. From Eq.A-3%a., since w = 0 and Vg = 0, then
the equivalent condition becomes &E,.w=0 or

“au Nx,(+ azz F,xx + azs (NU - Fax)’) + ‘gzi W, ux + Zgzswaxy =0
Thus for SS-3 the final form of the boundary term becomes

W=0

B F‘_:xx + du W.xx + 2d/3 W»xy - '831 F,xy = /\—7-;« 'f"g// N—xt ‘é,, /ny

F%yyz‘O

azzF,xx ~ R Foxy + 821 Wax + 2 B3 Waxy = U,z Nx = a;sﬁxy(A"i/)

SS-4
For this case the equivalent set of the boundary terms becomes

w =0
@u’:wy +G, Fox - 83, Foy tdy Wixx +2 dls Woxy = My + b, Nxx‘-g31ny
OnF:XX +052 F,yy - az; F'X)/ + B Wxx +2 @,;W,xy = sz/T/xx 'a‘g,_f_\l-x,
ayj F,yyy 42a23]:,uy -(Q; +a35) F.xyy s F;xxx - _\%5 - Wox 'W,‘,’,y
+(2 833"822) Wixyy T ('85, -2825) W, xxy ‘Qz, Wiex = O (A-42)

Following similar steps, boundary conditions CC-i, i = 1, 2, 3 and 4, are also

expressed in terms of w and F only, or

cc-1

W= Wx = Foyy = Fy=0 (A-43)
cc-2

W= W)X = P.xy'-'-’ 0

Qi Foy 12 Qs Foxxy = Aoz Fooex — 8. Woxxx #( 83,72 Gas ) Wonny = ofA-44)
cc-3

w = W'X = F,yy =0

Qa2 F,x,x - ang,xy + gu W,xx = Q,;N‘,a - azg N—xy (A -45)
cc-4
- W: W,x = O

GuzFoyy + QuaFooc = QasFoxg + Ba Woxx = GoaNew=Gs Ny

013 F;yyy+2 au Eny - (a!2+ ﬁsJ)F,xyy - aa F;xxx - gu\A/JKXX +(&’~‘? gu)w)x‘)'

= 0 (A-4§)
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I1. 2.7 Solution Methodology - Field Equation

The solution methodology is an improvement and modification of the one
employed and outlined in Refs. 36 and 37.
The separated form, shown below, is used for the two dependent variables

w(x, y) and F(x, y).

oy = Catt 3 [GCo0 ¥ + D) Sint ]

K ; .
wy) = A+ 2 (40 Cs R +Bill) S (A-47)

where n denotes the circumferential wave number.
In addition, similar expression can be employed
for the imperfection parameter wp(x, y) and the external pressure q (x, V).

Note that in most applications the pressure is assumed uniform (qo only),
[ [+] N V] In
ww.y) = AcK) +iif,[Ai(x)Cos%y + B, %) Sin'%]

g0y = glw +é[g;(x)&s% + 20 St ] (A-48)

Because of the nonlinearity of the field equations, Egqs. A-33 and ap-34
substitution of Eqs. A-47 , and A-48 into them yields double summations for
the trigonometric functions. These double summations involve products of
sine and cosine of iny/R in all four possible combinations (cosine-cosine,
sine-cosine, cosine-gsine, and sine-sine). Furthermore, these products have
different origins. Some of them come from products of W’xy W’Xsf others from
products of F,xx W’yy [see Eqs. A-33 and A-34l. In order to simplify the
final expressions (and use single sums instead of double sums), and in order
to cover all possible combinations of double sums, the following simplifying

equations are presented. These are based on trigonometric identifies in-

volving products.
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L
Z [d’b CDS&B_] Ait Cosif = Z_ Amuo (b Q) Cosif

LDJo
L

Z [&ba;Cosﬁ]a LSinif = D AIJ)(X)(b»a)Smi‘g

L= OJ =0
?ﬁiio[‘*bd Sing8] Qi Cosif = L*‘;‘Aw)cb 2)Sini6

L . . L .
Z [& bd’ Sm}ﬁ] L Smif - EZ:E) AIJ4U<)(5;Q) Costf (A‘49)

Y

P

£2 (b, Csd6] it Cosit = £ Araog (b2 Coai

12D ¢4=0

L 2 ¥ L
Z‘S-Z:[bat Cosgb] il Sini = ;‘%LA 1220)(h,0)Sinif
1=0 4=0

£ , 2 K1 ‘
i%—[bd,S/nd‘Q] Git Cosif = 2::. A123ug) (b.ﬂ)Si?’ZLB

S5 (b Sl A 'Sini6 =5 Abaeo (b0)Cosit  (4-50)

i=bg=0

ZL [J' b&&d&ﬁ]a Coala = Z AJM(b a)CoSL9

LDdO

25 (b, ; Cos 01 Qi Sinlf = Zl /lm@(b a)Sini8

.LOJ =)
2 Oéofd bdr Smd@] A;Cost§ = 5——- /41”3(")(5 A)Sini
L KHO G .
> o;Z:o[Gl b} Sinj81QiSmif = 2 Aruf0-0)Cosl8  (p-51)

where

L K _ . 2 .. .
AIJl(k)(b:a) = EIIZO[(“LJ) big +U'Z‘-L+7i)”'<f’b"‘d"]cfad"
dﬁ
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L L& . 2 o .
AIJZ(K)(b'a) =2 %_:0["(”'&)}9“&‘" (I~7}'l+7L )“.-—d,b/l_d'i]d' Qd‘
L | - , :
Ausoc) (b.0) = Zg[(ﬁd)bﬁé‘ +(‘1'*7;-‘}*7;)12-3!bu‘-&:]d’a}

L Ko . .. :
A znaw (b,4) = %%[(L*d)b&(ﬁ(""?i-ﬂ’z Mi-¢l bli-&'!]c}a& (A-52)

) [ 2 2
A;l(m (b a) 2 [b:}d‘. +( I—Z'i+7i) b/l‘.-jl]d" adv

K
P
4=D
Ahwo (b,a)= :zlgi [ b“} 1 (I~7<}2'L+7i) b/Z‘J‘]Jzacf
A:iugog (b,a) = 2""5[ bg+&+(-l +7i_}+7£)bd_é,]fa&
) | K .2
Auw (b8) =2 %— L b”& 1 "’"7&3*%) bu-;:]& Gy (A-53)

- Ko, .,
A;“z](n)(b’ﬁ) - :%-JZ:O[(L-M):[?&& +(/’ 7}-},"’7«:)(&”&) b/,_w]ad-

\

K L2 2 AT
% Z[’(&d) byt U= HE) ) by O

]

AJLzz(/t) (b’a)

0

L K
AJZSUQ) (b)a) = TZLZ— [(L+d) bd&"’ (“'7 d‘+7 )(L'Q() b}zJ;] OJ

0—
0

A;Mlx)(b'a) =3 D[(“‘d) b"?}” - 7”7)(&4) “biiji) G (A-54)

and

| if ¢ >0
K>L g =4 ° if £=0
;L / it 440
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Next, returning to the solution procedure, the expressions for F, w, w and
q, Eqs A-47 and A-48 are substituted into the equilibrium and compatibility
Equations, Eqs A-33 and A-34. This substitution yields the following non-
linear differential equations:

Equilibrium equation

K . ) A A
S Theol Avo Cos B2 + B Sin ) +hyy () (-Aiws Sin'E
L=0

+ BixxxCos %—j) = Raa (%)2 (AixxCos %X +Bixx Sin %X)

i3 (YA xS - Bix Cosi) Fhao(33)(A; %2 + B, Sin'% )
+;[g@(ci.wcos"" + D ax SinBE ) + G5y (4F) (- CoonSin' R

+ DymCos 8 ) =,y (2) (Coon Cos B + D Sin%)

+ G (BY(Cix S ~ Dix Cos 22 ) + Gou (%) Y(Ci Cos i +D,Sim )

T'Q*Z. (CixxCosgg o DixSn %) + L (F, W+W°)

- NXXZ[(AU(X + Aia) Cos B +( Bix+ Bi) Sin ]

+2 Nx,ﬁ( 2) (- Aipthin) S + (Buxt Biy) CosR

+ 5 (G Coat + 5 Sn ] = (4-55)

vhere

L(Fwin') = [Z Cyu Cositlt D, 5 Sni 1[5 B[~ (hs #40Cos 2

- (Bit+B:)SinE}] -2 [é(%“) (~CixSm% +Di,XCos%!)Hé
(BN~ s+ Aix) SmB + (Bis + Biy) Cos B 1, (R (CiCos

+ D S‘in%)J[g{(Ai.xx+l4i?xx) &S% + (Bixt B;o,xx)&nmy” 0 (A-54 Q)
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or

and

LCFowin) = (RIS 3 (4 U44)) Cos ) Cun Cos R
+(%) %%OI‘J(AJ ,-)Cosi,g] Di e ,n%z
""(%)Té’;éo[‘“&z(%fgj)gm J CLXXCOS”"V
+ (%fﬁ g [_J?( BJ + BP)-SM 4%!] D xx Sm-,:r

- (%) Z[‘ (e +’4d ) Cos ] Cii Y Cos

L2040

-( )Z-Z [(Aé.xx +A'.sx)Cos B J D;L Si?t R

iny

- (RJZZ[(BJ o« t B )SindB ] Ci L Cos'R

( )ZZ[( de"+8 xx)sm JD L S/n R

{=04=0
+2(%);,z (4 Uyt Ay S ol Sl
Q)%Z [d‘(Adx+A x)S:?l‘dTQ"JDL XLCO Z
20¢=0

t2(7) %ﬁfétag.x+zsg; )Cos P2 JCixi S

12k K . o \ ;
+2(%) iZ?oJZ::o (~4(Bjx1Bjx) Cos W Dix [ CosT

Rao= di Qo=

hsi= 205 +2d,, Qo= —Bn12by
Ru= dat+ads +da Oz Bn-284+8,,
Ris = 2051 2ds Qs = 265 - &,
Noa= Olaz Qo= Grs
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Note that the operator L(F, w + wo), Egs A-56, can be written in terms of a

single series, which is the most appropriate form, for use in Eg. A-55 This

is accomplished through the use of Eqs. A-49- A-54.

L (F, wiW®) = = (BY2 U M, Cor) # A (B8 Do)
+ Avsicay (Ao FAi, C )+ Aszac (Bt B D)

+2A I340K) (A,t +A,x ’ C X) +2 /4 I3(¢2K) (B'X+BX ;D»()chmy

“’(% IL%‘( (A;.mzk)A A D) +/431312’<)(Bf8 Coxe)

F A et A% D) + A s, (Bt i, C)

"2/4;33(1,()(4,,( +/4:; ,D.x) ’—2/4:;‘2@&)(8){*8,: ) Cx)] Sin%z
(A-51)

Compatibility equation

K a .

gig@(Ai,xxxxCoS%z +B£,xxxx ,717{-]-}-93‘ 2 ( :41 Xxxsﬂﬁ + B W@Q mny
+Gos B iy Cos B - 81 S ) + Gl i Sn - BraCosi)

t o (B (A Cs 2 + B, Sini2)]

+ZL022(Cz,meOS +Dz xxxxS}n ny) +2a23( )(CL xxxsnz R
~Disuxx Cos B + (20124 A5 ) (B)(~ CoppSin' Y = Dy Sini2?
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+2 Qs G2V (= Cox S + Doy Cos i ) + QR J(C,Cos 2 +D, Sin'2)]

K i XX ity | Biw o, nyy | ARk L 0
= (Aﬁ’Co L+ RxXSmlR )_2 (R)?:%[Aﬁfw(“z“ ,Aox)

i=0

b AL (B428 Bt A Ut 245 A) +Arsae( Bast2Bxc, B)

2 A (At 2die, A) $2 A (Bat2B5, Ba)] Cos B
ZJK L [ 1 o
- %(%)ZO[AJ;U:)(A +245Bux) + A 2300 (B#28°5 Axx)

+ Allzzuo (Ao t2Am,8) + /4;’3“’ (Bouat2B.x,A)

Lﬂy

Q/lIJB(k) (Aix 124 ,Bx) -2 AIJJ(K)(B»X"‘)B,X:A:X)J V=

=0 (A-58)

Parenthesis

As far as the equilibrium equation is concerned, the summation starts
from zero and goes up to 3k [see Egs A-55 and A-57) because of the nonlinea-
rity. The Gelerkin procedure will be employed for this equation in the cir-
cumferential direction. This will yield (2k + 1) nonlinear ordinary differen-
tial equations [from the vanishing of (2k + 1) Galerkin integrals].

On the other hand the compatibility equation, Eq. A-58, is written in
series form, from, zero to 2k Because of the orthogonality of the trigono-
metric functions (4k + 1) nonlinear differential equations result, which re-
late the C's and D's to the A's and B's [see Eqs A-47). This set of ordinary
differential equations is shown in & complete form in the pages that follow.

Before showing them, though, some simplification can be made.
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For the case of i = 0, one obtains the following equation, from the

combatibility equation, Eq A-58.

Qi Aoyt 25 Ao+ Qo Cooae = 5 (BI [ Asnaw (A124° Axe)

¥ Aoy (B428%Bu) + Argoro (Aot 245, A)

+ Azizaw(&xx*zg,:x;B) +2 Azo:mu)(/J,x #24,5,4x)

+ 24 ;ch) (Bx#2By, Bx)] = O

Cononx = 'a';{'gqo A o, xxxx “%Amx + f(%ﬁéﬁf{%ﬂﬁ;) Ajxx
+4§(B;12B)) By Jf&l(Ad',xx 12 Ajf(x)/lc} +§ (Bjax+2 Bixx) B

‘f'.?(}l( AJ:X ‘I‘ZAJ’:’x) Ad"’( -/'.2(}2(86,',)(*#284';) de}} (A-59)

Moreover, the displacement component v(x, y) is & continuous and single-valued

function of v (and x), therefore

2R
f Uydy = U2IR) = Ut 0) = O (4-60)

From the second of Eqs A-2 one may write

Uy = Epy +WR ~ W,y (Wy+2W.) /2 (A-61)
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Furthermore, use of Eqs A-18[relation between Eyyand Nl] n ., of Eqs A-29
1]

[definition of stress resultant functlon], and of Eqs A,47 and A-48 [assumed

form for W, F and wo:\ yields the following relation,

R %R
Jz ?Jj,dy ':'j (- a/2Nxx + Qs ny)d)’

iR
t [ Qi F 2y + 022 ) XX azs aXy + ‘923 WV, xx

F0uWay 4200 Wy + 3 = TWy(Wey
+2Wy]dy = 0 (A-62)
N 0aNa Qo) dy + [ [ £ R(-CoCs R

~DiSn BT + A 3 [Co Cos B + Dy Sin')

- O Z (B(-CrSini¥ + DixCos i)

b G 2 [ A Cos B 4Bi Sl ] + B 5 (2T

Ay Cos*R ~ B SmiB ] +2 &32( B-Ai xS + Bin G

+k Rz:(A CosZ + B,Sn'%) - —Lz( )~ 4; Sin%

+B;Cos ] f—(“)[ (A; +2A&)S,n ‘}"yw‘(Bﬁsz)Cao%%y]jdg,t

=0 (A-63)

65



This equation, Eq. A-63, after performing the indicated operations (integra-

tion, becomes

J:m{'aRNxx + &23 NX)’ +a22 Co,xx '/'—8:: Ao,xx + .é_?

’Z@RZ’* o {280 A;+(8;+28)Bl}dy= 0 (A-64)

=0

From which, one may write

K . o
,xx { Qzlexx”"'iE" ’%‘32 [431‘2/4&)/4&

+(B;42B]) B;] + Q2 Nuw = Qs Ny (A-65)

The remaining compatibility (nonlinear, ordinary differential) equations are

For i = 1, 2,... 2k and cosine terms

Q. Ciyon = 203 () Disox = (2012 #Gsn ) () Cinx + 20,3 (29 Dy
FAuBFCt $iL Guo A + G (B) Bioi~Gou (2 A
Q08 B + Gup (A, + A - ()M 2A0A0]
-8 2 [0 Ay + 255 + 2 7)) (Rt i)

j Ad',xx + [(£+c} )I(Bifé + 2 8,_;,) - Z_J (Z’J )2 ( BI}_—JJ + 28 1i-4l )] Bd',xx
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For 1 =1, 2

+ [Aig.xx +»2ALQ‘,XX + (2—7"_2 ) ( A’i-Jb" +2 Al:;;.x:)M'JAJ

+[ BHJ,XX +2 B;;‘,u - 7,.? ( Brié],xx+2 Btoa-d‘;,xx)](j’zBJ‘-

+2 [(H}) (Ai+J-,x +2 A;:J,x) - }7‘-.} fe-¢1 (A;z-gl.x +2 ACZ:Jl,v)J
FApx +2004§) (B2 Bagx) +(2-70) 1141 (Buicjix

+2 B/:-J:,x)]é' BJ"‘} =0 (A-66)

..... 2k and Sine terms

Qo D2 003 () Coax = (2002 Ass) () D

- 2003 G2 Cix+ Q (%)QDL + 8. L0 By

=G (48) Air- 4.(%) By t PREIV I + Qe (% 8;

+ By - L (38,48 And - 7 ( ’ré‘)zé{ (-4 (A 2h)
F Q) @) Ay +2 Ao )] Bt (a7 (Byoit2 By )

£ (45 (Buig #2850] Agoox + 1= At 2Ajons)

+ 275 asiran +2 By ) J& By +L(Bujr 2 Biyjrd)

g Buagivo +2 Buograd)i'Ai =2 Lith) Aujint2A g H Tyl
Arign +2Ai00d Bl =2 [-44) (Bigst 2Bigj) + = ()1

. (BIi’Jl’x +ZBIE’J~|,X)J& Ad.aY} ':O (A —6 7)
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where

0 £_>K - [<0
5€=: . %ﬂ = 0 lg = 0
1 LEK / Z >0

As already mentioned, the Galerkin procedure is employed in connection
with the equilibrium equation, Eq. A-54, in the circumferential direction.
The vanishing of the (2k + 1) Galerkin integrals yields the following set
of nonlinear ordinary differential equations.

For i = 0

Naw Aosseoe + Gro Coverrs +75 Covtr = (Ao +Ase2) N
- (%J}’*gu‘( Ai+4]) Conr +&(Bj+ B ) Djux 1] (Ajiex
+ Ajsx) Cj 1¢°(Bjut Bl ) Dy +24" (Ajix Ao ) G ox
+ 28 Bjx +8) Dju) + Fo = O 1-68)
By employing Eqs. A-59 and A-65 one obtains
B (A= B2) = Arin (B1) = R Aot Ava) =
+ £ LLLAH24) s +( Ayr + 2 A5) A
+2 (4« +2A5x) Agoxt (Bi#2 BY ) Bjax # (B ax #28)x) B
+2 (Bt 285 Bj) + T Rl(A+24) Ayt (By+28]) By
-2 LA 44 )+ (Bj#B;) Djux + 2 (ApxF Ajux) Giox
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For i = 1, 2,

+2(Bjx + Bi) Dy + (Ajun t Apa) G + (B + By ;1]

+ 22N, - &N 44 =0 (A-69

... K (when the weighting function is cos %z)

O Aixox + 43 (B) Bix - (20244 ds3) (%z)z/] £XX

~4s B Bix + 0 (B4, + 62 Comr + (260~ 4D,
~(Bu-2 b5 + 813) (B) Cixx ~(2 8,5 - ész)(%‘)’z);,x

+ B B Cot o Coe = () (ALY - 8, foes -
-+ (—f%féf[(/l”ﬂé’)/l; + (BJ+2B<,~°) 8;1)

- (R (ALY Al - G Ny) = (Arxs + Aiie) Nig

2 Ny () (Box Bix) - (3 E [ (0t 814 (i Aiy)
(203 ) (00 g A 1 414)] C oo

+ (S Surj (Byy +Big) =Ty (174) Suji (Buyi t Bigi)1 Dy
+ 2 ULty Sitg (Augx +z4;id',x) - 71-(,‘/1'}}1 i1 ( Arji.x

1 Alzjl,x )] Gxt2 ((itf) Surg (Bigx +B;d-,x)

+ QI S By 8] d Dyox t LSy (Aigjant A
+(2-753) it Augion + A i) ] 4 Cp 4 (S ( Bigjot Bug.oe)

Tig Sisgr (Begin +Bigo) Dy} + 87 = 0 (4-70)
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For i = 1, 2...k (when the weighting function is sin R

du Bi,xxxx -4 d/j (%)A LXXX (20’/z+4d33)( ) Bz xx + 46{23(—?)’/4;,1
+ du (%)481_ + ‘gzl Di.xv« - (—2 st- —gsr) (%) Ci,xxy
~ (8128 +81) () Diax+ (28 -8.)( 8P Cox + G (DD,
J 2 k., .

D A (i) (Bgib){‘gu/lo,xx —-,_é.? + (%) 5‘5& [(4 +2/JJ-)/)J

+(Bj+28) 851} - (B (828 ) (GuNuw = QusNiy)~ (Bisot Bid N
- s © 2 A .2 6

~ 2 Ney (B) (Aux TAix) — 7 (%) %’{RHJ) Jitj (B + By )
+ Z.&(L-d')z 5::—), (B,i.J, T B,O;_J,)] Coxxt [-(it)) Sitj (Auﬂ/];d‘)
t (2-745-21)(*:‘(})1 S1ixji (Ali-,,u '/'A;:.J;)] Djoax ~2[-0#)) 55’2{( Bajxt 6"3"‘)
+ (2"7}; ) /L"I'J, Sli'd] ( B”:‘J':x_i—B/i‘:fLX )]d- C&,X
= 2 [ Gt Say (At Ai;‘.x )+ i Syt (A iiityx +/4,;;-,,,( )i Dix
t [SHJ (Bby)xx T B;ai,xx) + ZJ S -4l ( Bli-c}l,xx + 8/:31)]32C&_
+ (- 32@ (Aifj,xx + Ai;,xx) + (2“7;1)81&3‘1 (Asgjraxt Alio-‘j],xx)](ja'DJ'j

tg, = o (A-70)
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Clearly the response of the configuration is known provided that one can
solve the nonlinear ordinary differential equations. Their number is (6k + 2)
and the number of unknown dependent variables (functions of x) is also (6k + 2)
These are (k + 1) Ai's, (k) Bi's, (2k + 1) Ci's and (2k) Di's. Note that c,
can and has been eliminated, through Eqs p-59 and A-65 and therefore both the
number of equations and number of unknowms is reduced by one to (6k + 1). 1In
these equations there is one more undetermined parameter, the wave number n.
This number is determined by requiring the total potential to be a minimum
at a given level of the load. 1In other words the response is obtained for
various n-values and, through comparison the true response (n-value and cor-
résponding values for the dependent variables) is established.

So far, the partial differential equations are reduced to a set of (6k + 1)
nonlinear ordinary differential equations. WNext, the generalized Newton's
method (Ref. 38), applicable to differential equations is used to reduce the
nonlinear field equations and boundary conditions to a sequence of linear
systems., Iteration equations are derived by assuming that the solution to
the nonlinear set can be achieved by small corrections to an approximate
solution. The small corrections or the values of the variables at the (m + 1)
step in terms of the closely spaced state m, can be obtained by solving the
linearized differentiate equations. Note below the way that a typical non-

linear term (product of X and Y) in the differential equation is linearized.

XY™ = (X dX) (Y dY)
= XY X dY Y dX +dX dY”
XY YA+ XY XA Y- XY
- XYY +Y O AX) - XY

I

71



‘ mox M M~y mtl m< 7 M
= XY +YXT-X"Y (A-72)
where X & Y can be A,, B,, C. or D,
i i’ i i
By making use of Eqs (72), the linearized set of governing equations
{iteration equation) is obtained from Eqs A-66, A-67, A-69, A-71. These

are:

1. Compatibility (i) [cosine terms, Eqs A-67 )

OnClos =2 0as () D (200t Gs)(2) CTo
+ 20,5 (2D + Qu (B M+ 506 Al e

it

+(-2g25 gﬂ)( )BL”X (gll”2€53+ “éz’i)(ﬁ)/]zn;;
~(26,-8,) (PB4 8.4 AT + 5 AT
F AT Ao 1 ATH2. A7) Ao = AT AT}

- G3%) z{:f (A +24)/.1W+ T+ 24 A = Ty AAD Ay
+)’<,,:|(B+—28)B xx+K (B+28) dex k,:, (B+28)Bd,xx
t 2[&} (A#4) /L,‘,x + Li& (A +24°) Ad‘,x - z(} (/l +2A°)/4ﬂj
+2 (M (8428 8]+ M (B 128) Bl ~ M (B+26) Bl ]
N ARIAT + N2t A= NS 28 A
mtl | m 0 mH » o m
t Oy (B+28)B; + O;J(BHB)BJ - 0, (8+28)8 ]}
=0 (A-73)

where

TgY) = C0t) S Vi + 2G4 Syt iy
n . T R
KO = (" Sy Yo = 7 (154" Sy Yoy

41
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L'Td (Y) = [(U’J) Si,&d' Y;;;,x - 75.3”-'3‘1 g".'d.' Yli-;,x](j'

M;(y) = [it4) St Ve # (2~ T ) 11 Sit Y/z-:':,x]d“
. | " R moo.

N;3(Yl = (dit) Yo (2730 Susgi Yu—;;,xx]dz

o) n .2
O:: (Y)= [S&&Yiq‘,ﬂ "753‘ 515;,1 Xz-d';,xx]cf

(ii) [sine terms, Eq A~68]

For i =1, 2,...K

wit] F 4]

O Dl + 2 oy () Cionx = (2002 + 053 () DL,
=20 (BT + 0B D+ 8 [Bu Biopen - (2 B5-8))

B A = (Bu-28s + B )(B) Bim +(2 Bus- Bo) (B A

+ 82V Byt Bipe - BT+ (874280 A

- BMAe) - B £1 O (B 428 AT+ Q812694
- QL (B+28) At R (A424°) B+ RGARA) B
- R (A4 Bliex =2 [ Sy (B+2804]5+ Si (8287 Ay
- S (B18) ALY <2 LT ga2A) BN + T (4+AY B
- T CARAB ] + UG (BB A7+ U (8428 A]
- U7 (B128) A; + V" (A #24°) B] 4V (A12A) B}

~ Vi (A124) 8]} = 0 (A-74)
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where

" iy " .2 »
Q‘& (Y) = (ug) S“d Yi*d * Za (14) 5;&31 er-d'l

R:(Y) (L+d)5&4\f+a+(2 7 (Ld)tsn.dlyudl

S ()= (=S5 Vi + Q= Flidl Sisip Yiegs )&
m < " . » .
TJ (Y) = ]: (l-+d) 8;*& Y;a.d‘,x +Z-0¢“-"J' S/g.d‘; \ﬂi-jf,xjd'
" .
U: (Y)= [5Lfd \ﬁg‘,u "LZ.& Sli—d‘l \ﬁz-::,xxjdz

» m ) m 2
\/»d (Y) = E— 8[401 X’#J,XX + (2- Z‘-;_ ) Sn-gl %é;,xx] d'

(2) Equilibrium
i) [i = 0, Eq. A~69
(i) [i q. A ]

t] mt) m# — miy
Avwsex (- D) = AT ( 28y~ A7 (e ) ~Now (A

+AD !X)'TL()J-\,): 5 1 ag:l[/} ,4(,xx+(f4d ‘/' AJ)AJXX

AT At A B+ (A2 A A = A B 42455
L2 AT A2A ) A -2 A A + BB

2 (Ajx + 284 ) Ajox =2 Apx Ajwe + Bj - Bjoxe
+(B]428) Bl ~ B Bt (Bl +2Bj) B

4 By T2 B0 B = (Bywe+2 8 ) BY'

m+ m ° m+| m

+2 BlX Bjx + 2 (Bjx#2Bjx)Bix -2 B)x By

___I___ "*' m ] o #H b »”

+a'uR£/4& /40‘ +(AJ' +2/4d')A&’, - /43 AJ
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m+(

L4 » o et
+8]" B +(B[+28)) B B'B."]]

2 Koo o LI +
- S ST ot A G- A7

Ml ?l

+ B Dy + (B4 B} ) Dy - B} Dic ]

¢

N |

P20 T+ 2 Ut A) G- 2 4 O
Vg

m__m o
+ 2 Biu D +(Bjn + B Tivy -2 Bix D

o d

” 0 »m »m
+ d';xx Cf + (AJ,xx ‘f'/{f‘,xx) C& H-‘ AJ;XX C;(

Mt

o m.;.‘l m ”n
+ Bin D} +(83+B) D] - Bin D))

!

Qix 1 Qz Y] —
+'a:;%/\/xx"'§j‘?f\/xy+go = 0 (A-75)

(iidy (1= 1, 2, ...K; weighting function is cos l—;ll]

et . 4 L2 mel
d!( Ai,xxxx ‘f‘d—d;S(%)fox’X - (2d;2+4d33) (%) Ai,xx

mt| o id)

402 BN + ol (BT + B Clrem

n

+ (2 43~ Bu1) () Do = (8- 28, + 80 DT Ty

- (285- 8. Dix + 82 L T

. | nH n " °
- @) [ B AT AT - B AT 4

0, XX

L o wtl o *
FBuli Ao~ FATA - A HAD A AT AT

2 K2 m+ [ ) L ° ! [
+ (k) I T+ A7) CAT 42 AT T (A v 244
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FUAT A A 424D 47 - 2 AT+ A (AT 42400 A
(AT +A0) (B +2B0) B+ (AT+ A0 (B +2B]) B]'

b UTHA) (B 428)) B 24T+ (8] +28)) 8] 1

(m) ( Al +A )(au/\{xx QZSNX)’)

(AT H Ay N +2 Ny CB) (BT #+ Bix)

~f(%)2§f{[J;“(A) e + T (ATA) Con

= To A Ciwd + [ K5'(B) Dl + K3y (B48) Djix

- K3 (B) Dy +2 L L (A) Clix + L a ) G = L0 G3)

+20M'(B) Djx + M (B+8) T - M M5 8) Dix ]

+ NG A+ N AR €= NG G

+ OZ;H(B)D;Jr O;(B 18°) D;H- O;(B)D;j +ZL': 0 (A-76)
(11i) [i = 1, 2,...K; weighting function is sin i—;Z; Eq A.71]

o B =0l () A — (200 + ) (B Bt 4l (24T

P () B+ DD~ (282-Bo) () C e

~(Bu-2 Gt ) DI+ 2 b B) BB + 6B D

mH|

+ B — () (-0 BT (] +B) Ao
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4 " nH » ° et .M
+ Qzu Bi /40»“ "‘;1\3 BL- ,4:[ "7%‘(8; 'fB;)Ao -+ _A"BL /40
+(_21__)2Zk_&’[ mel BO AH+2A0 47’( + 87’(+B‘o (4'Mﬁl+2Ao)A‘h1,
2R/ 5 (8; + 3 ) bt J) § (8: i) i d /"
» v n 0 mt| x o - o m
+(BI+BL Ui +24; ) Aj -2 (BF + B YA +24; )4,
+(BT+BY) (B[ +28)) B + (B +8]) (8] +2B])B]
+ (BI+B)(B12B)B] - 2(B] +B;)(B] +2B)) 8"}

mHl [

- (%)x(B&:Bi) (an N~ Niy) — (B:ﬂ:; +B; 1) N

Nt

2R, )T+ A - 3+ (RTE [ Q) G

+ Q:;(B+B°) G = Q,(BC + /?;';”(4 ) Do

+ Ry (AtA"y D jus = RYj (A) Dy — (S5 (8)Cyx
+.55(8+6)Cix = STU) Gl ) =2 (T4) Djx

+ Ty (AH) Djsc - T Djx) + Uz 8)C' + Uga#8)C
- UF @G+ Vi (A) D} + Vi (AHOD] -1 WD;

2
Finally, the Boundary Conditions [ss-i, cc-i, Eqs A-37, and A-40 - A-46]
are also expressed in terms of the dependent variables, through the use of

Eqs A-47 They are:
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S5 A= 0
buy_ B V4 P NG
A o, %X (d“_a‘i) = -C{';’J("‘ a/ZNXX +C723Nx),)+ Moxx +€HN&x"'—gHNX]
Ai= B; =0
dHAL,XX z,C;,xx'+.2df3(%‘)Bi,x=0 i:/,)."" K
dn Bi xx +4a :Di,xx "Jdlj (%)AL,X =0
Ci=DPix=D;=Ci,x=0 3 (= 2o 2K (A-78)
_.___SS -2 /40 =0
Avur(u=G2)= G (L0 R0 40 R, ) 4 - 6T
A =Bi=0
du Ai,xx +6. Cix - & (%)za +2d13 (%)Bm:o (=h2.Kk
i Biax 14, Dixx —B, (%)IDL - 20/;3(%)4;,x =0

Dz,x: Ci,x =0 ;L =/,2,-- 2k

Qs Conx =205 (R) D, + Qs (27D, +-os Aiiret 2 B 412 B
1280 B) (s + 5 - 255 { LG Ay

+ 005+ 1) () Ay T A jur +{ (i) By,
+(""75-,;“‘7”“'&)13/23;JBJ»J =0 ;0202 2k

Qi Dioxsx +2 Qs (&) Cix = Qs (2 + Boy Biees
(2 Bay - B5) () Aixx (263~ 8.) () Bix
+7B§'x ~ ggz,é‘jéf(‘ (HJ’zlli:J
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=340 g A i) Bunet [(44) By
H= 14 g4 1) (4 By  Aju} = 0 5 i= 1202k (A-19)
SS-3 A.= 0

Aorldn™ 22 )= 200, Nt 0uRp ] 6N B,

AL:BL:O 1

dHB. /N szx+93|(%)c x~'2d13( )B =0 (=2, K

—

du Bixx+ Q’zaDi,xx 4‘83:(%)6,)( -2 d/j(%)Ai;x =0 J

C;_: Di:O

A Cixy “Uu(F)Dix +Euh i +28,(28)Bix =0} i=l2. 2K

\,

Qix Dixx + Qs (B)Cigt BuBise 283 A ix = 0 (A-80)
SS-4 Ao = 0
Aoss (cln =41 ) = 82 [ 2R+ Qs ) o+ G R =GN
A= B;=0
B0 Cine = B (2 Ci = oy () Diy # Ao +20olRBix0 4ix1,2k

Ooi Do ~ G Gy + 8D+, By 200302 Bix=0
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- (B)'Cy Qa2 Cinx -G W2) Dix + 8 fixx 12 6u3(8) Bix=0
- Qs ('D; 4205 () Di i+ (Rt in) Co(2) = Qae Cion

4 (-280) (B)Bis - (2B Bua) () s = G ~ 22

18 S PAL + I G A i) A

+ [ Bujt (~1- Ty +7)(-d)' B, ] By = 0 etz
= GaBY Di + Qo Do + Qs (B)Crx + B Bix 26 )Aix= 0

Qs (BY C, 2003 () Cinx + Cs31 Q2) Dix ()~ Qos Dexe

B-28, ) Arr - (2002~ By B = Bor B~ B

e f_ {0-Catgs* Ay + =54 00) 4T A ) Box

2
2E £

+(Citj) By + I H B G) Bra Ainf =0 JA-81)

CC-1
Ac = Aox =0
Ai= Aix=8Bi= Bix=0 s i=1,2,---K
Ci= Dix=D;=(jx=0 ; 1=1,2.---2K (A-82)

cC-
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Aa = Ac,x = 0

n

Ai. = Ai.x B,‘_=B£,X=O ;o= 1,20 -7,

Di)x:'Ci.X: O 7

_013 (%)ADL +2 au(%‘)a,xx "aazCi,xxX - 821/41::’0‘)’

+(851-28.3) () Biw=0

)L:/,2,-",2K
afs (%)SCL ‘2023 (%)Cuxx “au D xx — 92: Bi.xw

-(@3' ‘_2@;3) (%‘)Ai,xx =0

J (4-83)
CC-3
Ao: /4%)( =0
Ai:Ai-K: B;= Bix=0 5 0= 1.2, - K
Cl =Dy = azzC;,xx *azs (%)D,_x + gz:Ai,xr =0
au.D_,:,xx ",'ali(%)Ci.x'l' 'gz/Bz,xx =0 (/4 "84-)
CC-4
AD = /4 n»x: O

Aii 41,x28i: Bi. x ; L= 1.2, -.K

Qi %)z Cit A Gixx= Qs (%)Di,x + G Aixx=0

—'al3 (%)ZDL +-2 alSC%)’Dilxy -+ (033 +a/2) (’ig)ZCi,,X
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~ Q22 Ciovx = Boy Ainx + (B3 -2 8,3 (B)Bix = 0
- A2 (Dt QuDiss + A ECiix+ B Biex =0
02V C 20008 Coxx+ ( Ass#02) (3 D;

- A2 Dioey = Bas Biwx = (831-260) (B e =0 (A-85)

t~.
it

>~
LY

e 2K

A, 2.8 Solution Methodology-Finite Difference Equations

Before casting the field equations into finite difference form, the
linearized ordinary differential equations of compatibility and equilibrium,

Egs (73) - (77), can be written in matrix form.

(MK e] + T Koo+ (MK ]
MY+ M) MY c0 Aee

where
T
e+

(X} = AT, A BT B O G DY Dk (A-8T)

is the column matrix of the unknown function of position x, and EMj], i=1,
2....5 are square matrices [(6k + 1) by (6k + 1); see Eqs A-73-A-77) with
elements composed of known parameters (applied loads, geometry, and values
of the unknowns evaluated at the previous step, m and therefore known).

{M6} is a column matrix of known elements.

Next, transformation equations are introduced in order to reduce the
order of the linearized differential equations. This step increases (doubles)
the number of equations, but it is introduced for convenience, because it is
easier to deal with low order equations when employing the finite difference

scheme., These transformation equations are
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{1 = (Xl

and they are used in only in connection with the third and fourth derivatives.

By this transformation, Eq. A-87 Eq. A-86 becomes

ok g [P )
(R ) (ST gy *+ LT wl” G}

-

(A -8§)

(ol M]
Mg (M)

(R] = (S]= (1

_ (I] (o] ; (o) (0]

[ (Ms] (M) - (M)
[T] = {G{} )

(0] -[1I] : fol (A -89)

The governing equations (linearized ordinary differential equations) shown

in matrix form, Eqs A-88 are next cast into finite difference form. The

usual central difference formula is employed and the equation become

. | {X} (4+1)
(+ (R)+3£(S)7) i -3 [R)
{X} ) {Xi 41

4 [T](})) 4 (‘E[{[R]M)— z)ih_[s](a')) :{G}
1) | i (A-90)

where j denotes the j th node of the finite difference grid. At each end

(4

i

(x = 0 and L) one more fictitious point is used. This requires (12k + 2)
additional equations at each end [the total number is (24k + 4)]. These
needed additional equations are the boundary conditions at each end, Eqs
A-78 A-79, (whichever set applies from SS-i or CC-i) and their number is

(12k + 2). The boundary conditions may also be, first, expressed in matrix

form and then cast into finite difference form.
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(NI} + (NI Xom § + OND [ | + TN ] ] = 0 (A7)

where {Njw, j =1, 2, 3, 4, are matrices [(12k + 2) by (ék + 1)) with known

element, and iNS} in a column matrix [(12k + 2) by one) with, also, known elements,

Use of the transformation equations, Eq A-87, yields

[85] H;’j} + (B7) m} - (86) (A-92)

where

(BS]

13

(NN

BT = [INJIN)]
and
(8G] = - {NSJ (A-93)
Note that [BS] and [BT] are square matrices [(12k + 2) by (12k + 2)]. 1In
4-72

finite difference form, Eq. A-92, becomes

. 4t . ¥ . - i
= BSJ&{ {{’;ﬁ + (81) {{f’%] -3 (85" i{f;}i} -feed -
where j in the node number at x = 0 and x = L(1l or N)

A. 2.9 End Shortening, Average Shear Strain and Total Potential

Before outlining in detail the numerical scheme of the solution methodo-
logy, it is necessary to write the expressions for the average end shortening,
average shear strain and the total potential in terms of the dependent varia-
bles, Ai’ Bi’ Ci and Di'

The average end shortening and shear strain are defined by
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27LRL WJ dng'

S
<l

Ty

), J(" +3%)dr oy (A-95)

In terms of the variables w(x, y) and F(x, y), the above expressions

become:
— — l MR L -
QAV = au NXx - Q:g ny "mfo L [ 0,, F.yy + an }',xx -0/3 F,xy
+6, W,xx +'€'/2 W,yy T -2‘333 W,xy = }LW,x (W.x +2W.;)J dx dy (/4 -96)
_ _ ] 2Rt
b’;v = 'a/.iNxx +Q”ny +37I—R_E-Ja L [alsEyy 'f'a\st,xx "aBF,xy
'i"@s, W,xx+ 833 W)yy +2 833 W,cxy - EIM)((W,)("' JV\/,;)

- 5 Wy (W +2W,0) ] dxdy (A-97)

Finally, if the expressions for w and F are substituted into Eqs. A-96 and

A-97 these equations become:

O = O N~ ANy~ 3 J. 192 {80 A = Ao /R +CusRe
-0y Niy# G 2 4 (442404, + (8;+28))5,])

$ 80 A - (A +242) A 74424248} 18] r285]dy (A-96)

U == QsNiew + Qos Ny 2 {32 { - Qu Al - Ao

4822 Nox= Qo Ny + QR £ 4T (4424)) Ay
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" k h 2 ’ °
+(B}+23d.')5&]j + Ga Ao - JZ:ZI(QL,’%) (A (Bj+8;)

—BJ(A(}-*A&)-I-AJ B; ~BJ’4JJJ olX (A-99)
Similarly, the expression for the total potential is:

IR o o 0
Us = '_2/_L f(Nxxexx"LN)yéyy T Ny Yy - M k ~Myy sy

= 2My kay )Xy -fﬂf g w dlrdly ~fﬁ?- NXX U

— lld MR L
+ NyUJ| dy +f (Mowox) | dy (A-/00)
]
where M = =~ EN and E is the load eccentricity measured positive in
XX XX

the positive z-direction and
ull= [fUde 5 v <[ Zdx
Thus, the contribution of the in-plane loads to the total potential becomes
—J:m(“ Nxx U+ ny UJ {: dy = _fb”"'?[-_ Nxxf%‘dx +/T/x,f—§—¥0{XJd}’
In terms of w and F the expression for Up becomes
Ur = 5 | mf TG Foy # Qs Fxx +Qu iy + 201 FocFoyy
-2Qi3F.y F,xy =2 QyF,uxFoxy ]d)(dy - _’z_"fom/:(du W,
+ AW,y + 4 Oz Wiy 32 Olia Woe Wiy F 4 Gl Woe Wiy

— MRl -
+ 4oy Wy Wy ) dXdy = Nu [ | (Qu Fryy +GnFoax
— AR , L
- Q:s F,xy)dXdy -+ nyL _L (auF;xx - a33F,xy
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+ A F/yy)o()(dy "Lmli gWﬂley + TR, (an Nx:

+ Qs Ny =27CRL (€ay Ni + by Ny ) = 27TRL Ay Nox Niy

- [TFE Naw.) [ dy (A-ro1)

Finally, the expression for the total potential in terms of Ai’ Bi’ Ci and

Di becomes
1 / y n 1K . e
Ur = TR[ [gul-6uAl- Ak + Gr) 2 & L4+24) A
+ (8‘;"‘2 B;) BJ] + Q2 Nxx - a23 N’Wj +2(au N—xy.—an/'\-/“)
] " 2 .2 °
Bl ETE 21
+ (Bé+28&°)5}] + Q> N,,x - aunyJ ~du (Ao”)z
_L 2K in 4 2 2 5 2 ”
+3 f;{a” (',‘Q‘) (Ci'{'D;_) +6?nf(ci) + (DI)J .
Q) [ +(DD') =2, (3)(CiC.+ D'Dy)
-2 013 ('%')3(' Ci D: + Di, C:) _2azs(%)CCi"Di’ Di"CE)J
! ”3 v 2 Y 2 r
- ’fé {du (A4 (8;)] 'fdzz(%)a(Ai +8;)

+ Ak (A +(B] -2dnE) (44,+8:B;)
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~4d,; (%)(“A;& +B{I/4i,) -4dss (%)B(A;B{‘ 8: /4: )” ol
- Rl (2844 gf 84,42, 8;3}d% ~27RL (o Nixx

— - - —
+r¢ivnv) + 7TRL (Qn Nxx "20;3Nxxny + A Naxy )

- 4TENyR 4, (A-102)

Before leaving this section, it is important to give the expression for
the modified potential an expression needed in the estimation of dynamic cri-
tical loads., As explained in Ref. 39 the modification is associated with the
deflectional response of the system. When an axial load is applied, an axial
motion will result (with some related transverse motion). 1If an instability
of the type described in Refs. 40-43 and 37 is to take plane, under sudden
application of the axial load, it should not be expected to occur through the
primary axial node, but through the existénce of transverse deflectional nodes,
unrelated to the axial node. Because of this and since the governing equation

for dynamic buckling is (though conservation of energy)

U +T=0 (A=103)

where T 1s the kinetic energy (unrelated to transverse deflectional modes),
then the modified potential must not contain in plane node terms, when sud-
denly applied in-plane loads, ﬁgx and ﬁ% , are considered, 1In the case of
lateral pressure, the modification is different, therefore the expression,
given below for the modified total potential, applies only to in-plane loads,

This expression is obtained by excluding strictly load-dependent terms and

those terms related to ¥(x, y), [qoll], which correspond to in-plane motion.
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Ude: UT + ERL [N:x (au - O;/au) + ny(a.’»s

- ajs/azz) + 2N—xxNXy (Qiz Qs /01y - Qs )J (A-104)

A. 2.9 Solution Methodology - Numerical Scheme

A computer program has been written (see Appendix A for flow charts
and Program Listing) for data generation. The linearized finite difference
equations are solved by an algorithm which is a modification of the one de-
scribed in Ref. 43. The modification, which consists of a generalization
of the algorithm of Ref. 43 is fully described in Appendix B. The solution
procedure used for the problem, herein, is based on the algorithm described
in Appendix B.

The field equations, Eq. A-90, can be written as
(e){2,§ + (B + (AJ[2 = (6] (A-108)

where K= 1, 2..... .. N and

(&= (R~ 35 (s)" ; [BJ=-5p[R)+(1)

(A= IR+ ()%, (2] - {f{’,‘é} (A-106)

Note that there are (12k + 2) elements in the {Ek} vector.
In addition, the boundary conditions, Egs. A-94 can be written in a

similar [to Eqs A.105] form.

at x =0 (k = 1)
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-[E)[2}+1BIfE )+ (A)2] = [Baf (4100

- [ EN]{ 2,,& + [§N] {Z;j + [A:N]{z;m,j = {BGN} (A-/08)

= ) = J 3 ..._'.- t
[Cl]’-'“z‘)‘/z[BS] ; [B,J = [BT]L; [AJ‘zh[BSJ ( A-/09)
L= [,N

N

—_ wL 4_ ) .
Note that {ZOJ and LZN + 1 denote the vectors of the unknowns at the fic
titious points (k = 0 and k = N + 1).
By properly arranging Eqs. A-105, A-107 and A-108 for the entire cylinder,

the following matrix representation is obtained.

E; gl Z: “iré.rj‘1 (BCTI’
E' g; ;4-1 é Gl
6: é) Az ‘El Gu
63 _3 ’ZL Zj Gs

Col Bl 2] o Gefeseio

Ci éi Ai Z Gi, ‘

Ciu BiH A it z'm Giilg

EN—; éN—: AN-: gN-z GN~2

Cn-l BN-[ AN‘I _:‘Z:ﬁh GN—-I

QN BN én gN G‘N

\ CN BN A-N ZNN l GBN

~ o )
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FEq. A.110 can be put in the form of Fig C.1 (Appendix C) and it will be a
special case of this form, by the followling changes. First, there is no
common unknown vector Zy and thus all the {di} vectors are zero (tridiagonal

matrix). Next,

(24k+4) by (24k+4)

e
My
A

fu
1

(A] = - (29K +4) by (12k+2)
(A
(18G)]
(3] - 1 ‘ (24K +4) by 0%
\ {G'}J
(C] = [©) (C] (12k+2) by (24k+4)
(G = (3 i< 3.4 N
(8] = (8] §=2.3 - . N-I
[4;] = [ A;] §=2.3. - N=2
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[AN_,] = [[ZN_,] [o] ] (12k+2 ) by (24K+4)

(C\] = (24k+4) by (12K +2)

[BN] = (24k14) by (24k+4)

= (2Uk+4) by Ong
Zo]

{QN} = (kL) by one

Note that my =mN = 24k + 4, while m, = 12k + 2 for 1 = 2, 3, 4, ...,
N - 1.

Note also that Eqs. A-110 represents equilibrium and compatibility equa-
tions in which displacement components (Ai’ Bi) and stress resultant components

(Ci’ Di) [see Eq. A-86a are the
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unknown functions, while the geometry and the loading (taken in increments)

are taken on known parameters (assigned everytime the equations are solved),
Thus, this special case of the algorithm, Eqs A-110, is employed for find-

ing pre-limit point response. When approaching the critical load, the in-~
crement in the applied load parameter is kept small and the sign of the deter-
minant of the coefficients [D in Eq, (C - 19)] must be checked. If convergence
fails, the load level is over the limit point. But if convergence does not
fail and the sign of the determinant changes from what it was at the previous
load level, then the load level is also over the limit point. Desired accuracy

can be achieved by taking smaller and smaller increments in the load parameter.

It is also observed that by employing this procedure (special case of the al-
gorithm in which the load parameter is known), no solution can be obtained
past the limit point. Because of this, the more general algorithm, described
in Appendix B, is employed at this point of the solution procedure. The new
and more general algorithm simply changes the role of one of the displacement
terms with that of the applied load parameter. By so doing the form of the
equations changes and the matrix of the coefficients of the unknown ceases to
be tridiagonal. Depending on the position of the particular term that replaces
the load parameter [which one of the (6k + 2) terms, and at which node (x-position)]
column matrices appear all along the column corresponding to the vector {ZL}
and the new equations assume exactly the form shown on Fig. C-1. Thus, at
some level before, the limit point, the procedure is switched to the more
general algorithm (Appendix (), in which one of the displacement parameters

(AI or BI) at some specified node 1Is taken as known (specified increments)

and the load parameter is the unknown. This solution procedure 1is continued

until the desired portion of the post-limit point response is obtained.
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Finally, in generating data, numerical integration is used to find the
values of the total potential, the average end shortening and the average

shear [see Eqs A-102, A-98, and A-99).

A.3.0 The u, v, w - Formulation

The geometry and sign convention for this formulation are shown on Figs
A.3 and A.4. Note that for this case the x-axis (and therefore the transverse
displacement component w) is taken as positive outward.

In this formulation two distinctly different kinematic relations (dif-
ferent shell theories) are employed. One is due to Sanders (Ref 34) and one
due to Donnell (Ref 33). In the case of Sanders' equations, it is assumed
that the reference surface strains are small, the rotation about the normal
is negligibly small and the rotations about in-plane axes are moderate.

One of the reasons for expressing the governing equations in terms of
u, v, and w, is that it is not possible to define a stress resultant function,
in order to satisfy the in-plane equilibrium equation identically, when using
the Sanders' kinematic relations. The case of using Donnell-type kinematic

relations is a special case of the Sanders case.

A 3,1 Kinematic Relations

2

The kinematic relations derived by Sanders assume a perfect reference
surface. These kinematic relations (Ref 34) are modified to include the ef-

s s PR . O
fect of an initial geometric imperfection w (x,y) as shown below.

Co = Exx + Z Kx

eixy = éE;, tZ )<yy

¥y

i

Yo t2Z Ky (A-111)
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Fig. A.3 Geometry
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Stress Regulfcn’rs
YX

‘L‘S(M X

Moment Resultants

Fig. A.4 Sign Convention
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!
E,o( = u,x+ E—' W;: + W)X W:‘K
X

0 ' ’ : U o
€, = U,,-}—‘% + _—2’~w,3 W, W, +-38—'— [%a -2z (WytWy)]

[
Tov = Uy + Uik + Wy Wiy + Wik Wiy + Wi Wiy - S5 (W +W,y)

qDx = - Whx ’ gﬂ,:— ,);-!‘8,%

KYX = =W,xx ’ ) )(yyz—w)yy-}-g‘_zéi

Ky == Wy + 35, Ex (A-113)
where

{ Jon Sendend kimewolic athdiong
0  Fa  Donmlls kinemlic nthlins (A~114)

_A. 3.2 Stress-Strain Relations

The constitutive equations are the same as in the w, F-formulation. Be-
cause of the different sign convention the relations between the stress and
moment resultants on one hand and the reference surface strains and changes

in curvature and torsions on the other, these equations are

3 r-— Yy I )

FN“ All A.IZ 1—413 B” é:z él} Gx‘;

&
>
Ebl
>
>
®|
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s
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s Di Das D.;;J .‘2}(""1 (A-11%5)
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where the expressions for Aij’ Bij

A, 3.3 Equilibrium Equations

Following the same procudure as the one described in section

the equilibrium equations and associated boundary conditions are:

Equilibrium Equations

NX"»X + ny.y =0

Nxy,x + Nyy,y - S:'%'z(% ~(W, x+wWy)) 4 81 Ny

M My -
+8|"-"%5 +S|'—’%l-0

L Ny (wix + wi) s t CNyy (Woytw,), 1J,x T UNyy (W + Wopdl,y

)
t ENyy(N,y +W,;)J,y - NRQ - ”QL[(nyU),x + (NWU);)IJ

+ Mxx,xx +2Mxy,xy + Myy,yy + 2 = 0

Boundary Conditions (at x = 0, L)

Either Oor
NX)(:NIX Su: 0

_Pjgg - N7 My Su= 0
ny‘f’ R 21 = ny + = 5.

wa(W:x'fW:;)-J- N)y(W,y"’W-;)

= SIN'T?U + Mxx,x +2Ml’)by:éx+ﬂxxy gw = 0

Mex = ﬁxx SW,x =0
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(Wox + Wiy )

and Bij are given by Eqs A-14 and A-15.

A.2.3,

(A-176)

(A-117)



Use of the first equilibrium equation in the third yields
o [ ] [ ]
(er +W'}') ( ny.x + N”,y) + NXX ( W;xx + Wlu) + 2 ny (W'xy + W:Xy)

Ny (Woyy + Wiyy) = —/\g’ - ‘%[ U (Nxy.x +Nyy,g) +NyyUyx + NyyUy)

t M T 2Muyxy 1 Myy,yy 'fg = 0 (A-118)

A,.3.4 Solution Methodology-Field Equations

The solution procedure for this formulation is as follows: assume a
separated solution for u, v, and w; express the known (assigned) parameters
wo(imperfection) and q(pressure) in a similar form; find expressions for
reference surface strains, changes in curvature and torsion and stresgss and
moment resultants; substitute these expressions into the equilibrium equations
and use the G alerkin procedure in the circumferential direction (this changes
the nonlinear partial differential equations to a set of nonlinear ordinary
differential equations); use Newton's method, applicable to differential equa-
tions, to reduce the nonlinear field equations to a sequence of linear systems;
finally cast equations into finite difference form.

All of these steps are shown herein, in detail. Then, once this step is
completed, the solution scheme of Appendix B is used to solve the final set
of equations.

The dependent wariables are the three displacement components u(x,y),

v(x,y) and w(x,y). A separated series form is assumed for each of them
K . .
ny . n
UX,y)= Zofu,;m Coq*g + Z,(,g(X)Am'LT?Z]
is

Vinyy = 5 [0 Cad + U000 din )

i=0

Wy = £ (Walt) Coo Y+ wat)am R (A-119)



Thus, the number of unknown functions of x is (2k + 2) for each variable.
The total number is (bk + 6) subject to the condition that

Uzo = Ve = Wiao = 0 (A-—/20)
Note that the true number of unknown functions is (6k + 3).

Similarly the expressions for w’ and the pressure q(x,y) are:

wWhor L witcee B+ wimtin 2] (A-121)
K iny - W
Jun= = (8 (7 Fri am (4 -122)

o c s
In this case also, the condition wyg = 0 is imposed.

920

In order to express the equilibrium equations in terms of the parameters
of Eqs p-119 -A-122, one needs to first find the expressions for the stress
resultants and therefore reference surface strains and changes in curvature
and torsion,

Use of Eqs A-119 and A-120 in the expression for ?j andzmij, Eqs A-112

and A-113 yields
s L n iy
é:y = é:,,[( i Ui +.éxu',+ éxzi) COQ'T%_

L n .
+ (§; Uaix + fm F e ) Sing) (A-123)

where

L L (] i‘ 0
‘txli = Al(k) (Wix, Wix) T /Iaoa (Wax, Wpy)

L ] o ¢ o
‘ém = Az w (Wix, Wox) + Asw (Wex ,W x)

! L i
t;li =2 { Al(k) (Wix, W, ,x) 4 AMWI,X: W;Jx)j

n
X2

1

:2’— { /4'2(") (W,,x ' W‘IIXJ + A;(ﬂ( Wi x, W;,x}j (A "'25Q)
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0 2K : L 7 :
Ey = l_Zzaf[ (F v+ 4) S +i’g:i + 1y ) Coq'®

4 (R, + Wiy S, 4 -tm + Ty ) SinZ (A-124)

where

L N2 i ° .
t&”i = (TQ-) [AIJ#Uc)(W’ W)t AIJr(k)(W"W*)]
1 % (- AJLIU:)(W‘D‘ Vi) + Agao Wi, Us)
L 7n 2 i . L‘ ?
‘éy:i = (%) [AryauWa - W) t Azzseg (W W)
-" S'n (AJ_;UQ(WJ U) /4J2(k) (Wz U})J
47 - (25 as :
yiip 2R ) (AIJaw(Wn W.) + AU,tk)(Wz,Wz))
JRa(AIUU(U/’Zj/') +/44L(k)(v'zlw))
L .
+ “pzzi (/4:!400("‘/"7-)2) ‘AJLtaq (W2, U;))
L d _ —_{ 7 2 L .
(j:yll ) (72—) (/4132(14) (Wf' Wl)+/4::330<) (Wi.wy) )
"f‘E—R'i (A;L(k)(U:, U Azl(m<Ut; U.))
/i L ¢
+ 25 (Asspo Wi v,) “A:nuo(wa,lfz)) (A-1240)
&y Z-{[( uu_‘l’Unx)S + 'éxy“*‘ xy[tJadlny
'il‘[ (- u”, + Usi,x )54, + .é!()m, t %xyzl] S'n R (A -125)

where

-é L .ﬂ-[AL [ i 0
wi = R LA (W' Wix) = Asag (WS, W, x)
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i [4 i. 0
- Albz;w (Wary ,Wi) T Az (Wix s Wa )]
L p i o
- % ( Al‘zk) (Ul) Wl,x ) +/44(k) (Ull Wz,,())

_lfx:zi = % (A :iszuv (Wi, Wax) = A§3“" (W’ Wix)
- A;(,U(W,,; , W) Ais(Wz,ox,WzJJ
-4 [A,Lw(vz,w,&) F A qu:fx)j
t):ui - %[A;I w (W2, Wix) "4;’4(“) (W, Wax)
At aio Wes, W) F Aty (Woow W)
- % (Afm(u, ,Wix) + Ai(k,(v,,wzfx))
Fan =52 Uy (W Wae) = Ay (Wi, Wa)

1 i
= A3 200 (Wix oW ) F A 1309 (Wag, W)

- %[ A;(x)(Ul‘.V\/;,x) 'f/}zim(ll}, Wi,x)) (A-1254)
and .
Koy = = Z (Wige C"Q’Z +Waixy SinR ] (A-126)

)(y)' = ',é' Z[L?Z(MV\/.L{'S Uu)cmmy

4 in (W =S Un) Sini% ] (4 -127)
Ky = Z‘_L'(— Py +5hUiy) COR
+ (Bwix TSk Uns) SR = (A-128)
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Note that 61 and T]JJ, are the same as before, or

0 L >k o £<0
Si= AN £=0
rooLEk ' : /50 (A-129)
The symbols Ak %k) (i=1,2,3,4), (3)(k) (3= 1,2,3,8), Agy =
1,2,3,6), Ay (= 1,2,3,6) and A, 00 (3 = 1,2,3,4) result from the use

j k)

of trigonometric identifies, which are employed to change double to single
sums [similar to Eqs A-49 = A-5land symbols defined by Eqs A-52 -A-54; note
that some are common]. The needed trigonometric identities and definition

of symbols are given below.

Z.Z ['QJ-CGQJGJ Qi Cedil = Z:-t— Al(k)(b a) CRI(E

L30 =0
é%[%ww] Qi Sintf = Z- A:w (b.a) Sincél
m.
ﬁo o['g SI’(J’BJ aL CMZH 10 Ag(g) (b a) SlﬂLg
L KH. 1 i
é%ofgd'smd'—ﬁ] Q; Sinif = 2 Aaw (6.8) Coa Ll (A-130)

kLo . . ke i .
3.5 116;C0j01 0iCos 16 =3 A (6.2) Coqi
irg 4=0 i=o

k i _
éé%@m&a] A;iSinif = i—t‘ Arw (6.8) Sinib

Kt
ﬁi f&Q&SiWJBJGLCas 29 = A:B(k) (6.2) Sini6

i=o ¢=b

5 (i 8;SinjglAiSini = &5 /4:;4(/:)(5 a)Cx i (A-131)

L=O 3-0
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f QCMotGJatLCGQLﬁ 2‘_‘ Al,w(é a) CM&&
_ (G Cxjo) Ail Amib = Si A (8.0) Amif

(Qdﬂmdo] Ail CaaLh = Z/-]:sur)(@ R} Aenif

[gd Mdﬁ_]a,_L MLH §414u,(4 a) Ceyil
[d"@@ddﬁ]aw Coqib = Z Anuk)(é Q) Cxn.Ll

(§6; Cos (61010 ainif = m Amw(*g a) g
- (j 8} amip) Qi LCRIO =2, Al (8.8) Ainib
. (§ 4} amip) Qii amig = Z Azsay (8.Q) Co218
= (7°Gicn6]Q; coaip = 2 Ak (B.2) CoiB
[J@ Cl%d@) Ai Amib = Z AJD.UC) (4.4) 4@
Q’é&Am,JﬁJ QiCAi6 Z A.mw (4.a).0mi8
(4'84 mis) Qi AMig = 2: AJMU‘,M a) Ceue

WM T R P:Mr

sMxEMx SMr 5w My

:M":Nh

~
(-3

z0

A-.

Mr BMxEMx SMx EMx 3

L0

ranr- :MF:M" e

Mx T™Mx
“Mr “"M

=040

[

p..

where

AI(K)(.g a)
Az(k)(g:a)

1

N
M~ M Mo N
x “"M):A"Mk °"M7¢ “Mx

[Qa& +(1—7d._’i+7i) 8] G¢

- (- aq* U-ZjﬁZ)@ni.] aj
Arow (8.0) = + £ 18,4147, +1) By ) O
Auw (8.0) S (Gugt -1 ~Te§ + 1) Bjr) Gy .
Amc;(@ a) == 2, L) Bugy + (- R a;
Aty (4-0) = T 2, )Gy + (-1 +5) 114164041004
Az (B.0) = [ Cit) Grity + (=14 b M) i B G

Asaw (8.0) =3
A;,(k) (8,6{) = _’2!'

i

)

=0

u\_
Qe

:Mx

[(L"’d-)gu.d +( -] 7 +7)/1_J’g114ljad,
o[&*& + (/- 7 +71)8u¢n}d'ad~

Q—Mx
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L K 2 :
AL w(8.0) = ELE;O( 'gifj, + (1"2;-1 *7&)@1&&;](} Ay
K

/413()‘)(8 a) —QL ?o[ @L‘*& +(-/+ Z_J{- Z) @“‘?‘,J d’ ad.

Ataw(8.0) = %f@y,d- + -1 -Yg +4) Bugll ¢ G (A-137)
An,(k, (4.a) = é[(w)&?—f(z Zq*}])“ d’enda]c}@

Assaon (8.0) = 3 £, 1 G Gyt 0= #0151 D1, iy

Aszson B.0) = 2, [0t Gug # (-1 g+ 1141 6yl

Aliaaw (4a) = 550[(”” Guy t(-1- ZJ'I'}Z)[L"JI Brigl¢Qy (A-138)
Aiilftk)(g'a) ;%E(“Ld) g“d *("Z FR ) (-4 Gt ] By

A B) = 5"550 (4 Botg + (1= 1, ) (i) B 1 G

¥
: L5 (it)) By +(=1+ 5.+ (g ) Buiy ]
Asnw B8 = 32 (1) G o4 ) (44 Gyl Gy

=0

: L s R s I ‘
Ay 6.0)= 37 L) Big 4 1= Py #) (o) 0iad Gy (A-139)

In order to write the strain-displacement relations in matrix form the fol-

x

lowing definitions of column matrices (vectors) are needed.
Em
Gi’ 2K v » wmy L ' .y
Yol = _ZZ;[({c—:,i}+{t,ij+{ti})m-;+({eﬂ}+{ﬁ-,j+{z‘u})z1m %)
Kxx L=
Kyy
2 Kxy (A-740)
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(€3 = L €mis Em Yogr, Kot Mo, 2Ky 5,
(€] = L Em, €, Yon. Ko, K, 2 Ko g
it = Lta Ay to. 0,0, OJT,;

BY = ot bt 0,0.00,
{i‘,,i = fx, i’g,,‘[:,,,,() 0.0,

L%:z,%-’:. x;z,U,O,OJ:

(‘-H
L“F
~:
it

L n
Note that t= and t— elements are given by

the ¢,. and k,, elements are:
ij 1]

éxon = Sillnx
G:xz = Si LUaix

Egp = (Ui +25)8;

M
i“_ o
|

= (“%U;L W,,,) 8‘-

=
"

(%’uli +U;i,x)53.

Yoo = (Rl + Viin)§;
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T

(A-/41)

Eqs A-123a, A-124a and A-1255 while

Kxxv = - Wiixx g,;

Koz = = Whix $;

Ky = E% (inw, +3:Us; J] SL

W= (3 (inwy; +§ U] §;

i )
/’(xy; = [°%Wzi "“373" Uixl§;

}’(xyz = [ h_,x+ 3 MLX]S

(A-142)



Substitution of the expressions for reference surface strains and changes in

curvature and torsion into the stress-strain relations, Eqs A-115, yields

(Ne
Nyy o
Ny x| A B ,_ " )
=% b lUedltdltpe®
My +(fed +t] H ) v F]
My
) | (A-143)
) 32:‘,[( {ﬂ:}i +{7'Z,l}i+{n‘}:)coq_i’_gz
(g H {0 ain ) e
where
M
Nyn1 - .
9;7 /A E3
_ e c.
{%’}L Mo ) B { j
B D
WZyy, \ J
‘%"U (A-145)
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(A-149)
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|
Note that the "€ J and 16 j vectors result from linear portion of the kine-

matic relations; the Ltli,;; and Ltg > from the coupling between the imperfection

o . .
parameter, w , and the displacement components v and w (thus, in a sense, non-

y 1 Fn )
linear relations); and the ltr]‘:ij and JLtn ! vectors from the nonlinear terms

21/
of the kinematic relations (v and w coupling).

Substitution of all the derived expressions into the equilibrium equations,

Eqs A-116, yields in-plane equilibrium

Z[( 72’53(12. X + nX)'ZL + %xxh..y + L 72171:, t 72X)rl¢,X+ n”ryu)c L?
in L Nyt L p” in Py
+ (ﬂxxzi,x =3 77Xy it nxni,x - Tz"ﬂx)m * 72“2*'* - Tz‘”xy“) R
=0 (A-151)
3k , 3 .
zg,,m"‘” 3 50 G0+ B (B30 Coa
] - i s 1 L 3= ’ 3 . 0
+i£=t7 gzi M%!-}%(g:“{.gzin)m-%! * %(Sﬂ},*gun)'am’? <A -,52)

where

i

gli = % nyyzi + Wi x + ‘%%xyn‘,x +'L‘7rl.2i"%¥ﬂi

gl'i - ‘%ﬂyy”: + 72,0”5,)( + %mxm,x - %M»’n‘. (A"IS_;)
i 0 i

gfu = '% N (/4.710:)(“/‘ ! %YY') - AJLlwo (W, Zyy2) )

+ %L( A :L(;o (Wl,:t ,72)()”) +Aiw(W:,x ;ﬂxye))

. L
+ % %Y‘;’zi + 72’0’!!1.)( Mxyu X ‘4' 5 myyzL
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2

gzu, ,?:72 (Anm (wy’, Nyy:) - AJ}(IC) (w.’, Myyr))

B L Asw0 (Wohe , 7y + Ak (Woik 7))
- * Pyes o+ %mx;zi,x - _i_?_zig' Py
g,m 'ﬁ'ﬁyyzL + 72:94! X R %X)’/L X + 2 8 772}72»
+ 721272 [/451&)<W2'7ZV>’I) "AJitk)(Wu%)’Yl)J
- R" 4:(/:) (Ui, yy,) - R’A‘”‘"’ (U2, 7lyy,)
£ LA Wy Zg) + Ay (War, Z2ay))
Eonz = By + Mnie +EMparre =23, My,
4 %72(/4;:&) (Wi, Zyyay - 432309 (W, 2y ]
- % [/4§m(7fz'7zyy') + Aziw(vlr%ywﬂ
+§L [4;(‘/\/1 x 2y ) +/4:(K) (Wi, %"”)J
§,.3 [ /4;,@;:; (wr, yy,) AJ’#(ZK)(W' :ﬂy/:)]
F 2L Ao (W )+ Al g (W, 2]
g}, =3[ Asson) (W, 50 + A draw (W 7))

+ ';5'[443 ok (WS ,x, 200y ) + A oy (Wi, 7y )]

3
g"n {AJIU-U(Wlf'Wl ”yy’) AJ4OKJ(W'* ,,%W,)J
- RIIAIL(M)( v_l ’ 72];, ) + AQL“K) (Vz .71”; )J

+ R (/4 ! cw(Wn,x‘PWa,x ;72;‘;!,) +/41: czk)(Wz,x'f‘Wbi;”x;;)J
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"|'§:,'“sz [ Aisu(w (Wa,%y,) - A;q(zk) (W"%)’;’ )J

- 2 A o (V1 7)Ao (U P2)])

b TA 0 (Wi, o) + A o (Warx o))

= a [ AJ3(2K)(W,+W )+ A ;2 oy (Wit W, 72,5,)]

= B Arews (U0 25) + Ao (U, 2500]
+ % [Af iy (Wox +Wax , 220) + 4 RRCRRLVAE M)
+ % [- A;Uk)(w"”;ﬂ + AJLuuy (W2, 2y, ))
- ——g-; [ A icu) (U, 2yys) +/43Lc») (Vs 2]
+ % [ Agczk) (Wax . ) + '4;'(“9 (W"x’n‘;‘ﬂ (A-155)

Transverse equilibrium

QAL 9] 02 + 3 (it Tt + ) ainE )
+Z[( 7u+ :zn)c"dmy*(zzt*' m)/mej +Z(£L‘”W+ZLM ) = 0 (A-156)

where

7&1 = Wonie + 2 Wapany (B) - (4 £ %yyu *771%'@

71:.- W xxsi.xx .?Mxyu,x(—,:) ( )%lm %& (A-157)

-

)7 %xxu w +2 %xyu X ( ) ( 7/[”“. Z%m
b i 0 i
B [Az1 00 (W', 2gt,x ) - /4;409 (W2, 7Ta.x) ]

+(5 ) U rnio (W Pyya) + Assaar (WL Z2yy,))
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+ U Ay (Wi, o) + Ay (WaSer , 72axs) ]
+ % (A i:uuo (Wa,x , M) = A S’l\ltk) (Worx , 2ay2) ]
HETC- Ao WF s Zn) = A g (W5 70020
7,LL %xm o = 2 () My - () %yy(,_ 77""
+(7:"l) ( A:er(x)( W, Peya,x ) = 4330:) (W.°, Zeyi.x )]
1( %)1 [‘ AiJz te) (wy, ”yw) - AiJB () (W'of ??W!ﬂ
F A 0 (Wi, Zn) + ALy (W, Zlenr)
+ % (s (Wane i) = A sy (Woie i)
+ (%)lf‘A;yizzrkj (W, ) - A.;v (Wa',%y;ﬂ

Wywni

+ ‘;‘3‘[ /43,,,() (Wa, Mxyix) = A:me (Wr, Ay )
+b’%)‘(4§m (W2, 21y, ) +4 '::[JMK)(W' » Myyr))
+¥ Al (V0 Zlne) <Ay (2 Aps)]
4& (- A mk,(?)': Hyy:) +/414w(v1'77m),7

4 A (Woie, 7at) + Ay (Woox, Pars)

+ -QR?-Z [,4;,(,() (Wax, 2lay) = /4;;‘4(*) (Wi, x> Zaga) ]

DAL '
- R [Am:) ( U?,, ,”xy,) '['/44[(.0 (Uz.x,ﬂxp)J

(% ,)1 [- AJilfk) (WI ’ ”yy,) —AJ!:)LL(K) (W! ,”yw)]
+ % [- AJLI(k)(UL”Yy:) + AJida-)(Ulp”yy:)J
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e = Pogsixy 277?xyux(—z~) (32) Wlyps; - 22;51

+ (R)[AJ,UU (W, Zleysx ) = /433(::) (W Puyx )
+ (V-4 inw (W2, 2y ) - /413309 (W1, 2lyy)]
+ "8“' (- 14;:0:) (U, Ay x) = /43i<x)(v‘ Ayix))
+ ?gf [ A ;eruo (U1, 2y:) - A;Jw (V2,70y1) ]
+ As o (Woan M) + Asg W, Zxe)

+ ‘31_%1 [AJi’I(K) (Way, 2yya) - A;B(k)(m"('ﬂ"yl))
+ 81 (= Ao (Ui, Zhyn) - Al (U0, 7001))
+(2)(- 4;2209 (Wi, 2yys) - A;uw(m, Py}

8'7( [ AJ‘J(k)(U;,%yyz) + 433('4)(-U'J ”yyl)J
3

71& =) [Aéruz'k)(wl.' %x;bx) - A;arw (wy, %x;i:x)
+24 ;u:x)( W;fx ,77);1) -2 /4;40&) (Wi, 77:)’2 ) )
+ BV Asaon 2000 + Asgacns W Zone )
- /‘452«2&) (W, aﬂv;r)- /};«,k) (W, ]?:,zﬂ
F At (W s 70m) F Al (Weke, 2
)721 = %EA;Z*)(N: > 77:2}’”) - A .';3(2&) (w,’ :”x;m)

t ° . ) ° ¢
+ 2 Ag20m Wax , 2yy2) = 2A 3300 (Wi )]

N2 L L L
+ (ﬁ) [" AIJZ(:K) (Wzo_, ?’Iy;, ) - /4 IY3(2k) (Wuo 171?72)
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L 12 ) ¢
= /4 J22(2K) (W’ ?77)’2) - /4:03(21:) (U, 77}’)':),7

F A0 (W, 7000) + Aoy (Waw , 725 (A-159b)

3 77 L ,
)/h‘n -3 ( A:mzk) (Watw’ ,%x;l,x) ~ A g0 (Wi +w;, ﬂx;,x)
L L L
+ Aniew (Wa, M) = Azaco(We, Yoagax )
i ” ; o
+ 2 A stem (Wa,x + W;,x ,ay1 ) "2/4;4 ) Wit Wox | 7?:;2)
t L :
+ 2 /4J|(2k) (Wa,y, 77*)':) -2 /434(2/0( Wix, Wx;z)]
2 L n \
t (%) (Azyi a0 (Wat wy° ) Myya) + A;Jdczk) (w,+w.’, ”y::)
1 0 4,7 ) ”
- /4 721 Ky (WitWs ’%yw) - ;43240/:) (Wt W‘o'ﬂ”’)
i 1 L L
+ A XTi2k) (W1 ,ﬂy;r,) +:4 ;ank) (Wnn;yg) - /4 TJ2102K) (Wr:ﬂyy’)
i L S i ” } ”
- A szq(zk)(Wz,”yyz )J + f[“"l ct(m(v' s 72!75,2() - A;(m (% 'n"y?d)
¢ ¢ 7 L ¢
- A,ng (Uhx,ﬂx:'tl) "'Aabwu (ULX ’77)(}2) "Alcw(vl'”’%)r)
A L ( [N l: L L L
- Mqpukx) Vs '7?"71,)() - A ! {2k) ( ?j;,)p??xy/) = Aq(xk)(ULK :%Xyz)J
1 i L n
1 S-L'RZE [‘A;mk) Uy, ﬁy;z) +’414w;) (Uz,ﬂy;,) ~A 31000 )
L ot ! L L L
+ 4 J4 (.U()( ?Jl) %WI)-AII(ZK) (Ul;nny) +AI4[zk)(U;,7Zyy/)
i L L L
- A:;,g;c)(Uz,ﬁyy:) + AJatzk)(U”%M)J
X ° 7 ) o
* /4 LK) ( WI,XX + W. XX ,72)0(!) + A;ak) (WJIXX "'W:,xx, 77;;;)

¢ 1 ¢ L
+ Al Wixx o) F Ay (Waxx s Mxx2)
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3 L ” 3 ) 7
%m = (%)[ AJ:mK) (Wl‘*wla» ”xrz.x) - AJJ(&)(W-'*W' ’”xw,x)

+2 Aza0m0 (Waixt Won , Za) =2 4 &y g (Wox Wi, 713)
+ 4 ;ZUK) (W"%xl:\'z.x) “/43£3czx)( Wi, Zxyix ) + 2A Jizuk) (szx:m;z)
-2 AJ%(IR) (Wh,y, 77::;: )J”'EAlime) (Ws, My ) - AILW”U (W"n”;r)
- A gzzak) (W”??;y:) - /4 .im (2k) (WZ'”)';JJ (%)2
+ ('g)l[“ Ali.n(w(w” W, ) = A 1LJ3 ay (W AW, 2y )
- AJL22MJ (W, +W,’, Zyye) - /4;13 er (Wot WS, 7,51 )]
+ % [‘/4 szg (Y, %r;:fx +7717L4»X) ‘A;tuc) (U, x”x;'l,x "77*;"*)
= Az (Uioxs Riga st 72s) = Asery (Ux, Ty +2op)
-+ %ﬂé [,4;2&,()(2},, 7@;’: "’”y;r) ‘/41‘:3 cuc)(v"%;;’l*??x;z )]

. 0 .
+ AJL()K) ( Wit W),xx :77;;2) + ,4 ;(z,‘) (W et Wzg(x )nx:{;)

+ 42Lcm) (Wl,xx )”xiz )+ /4;(2;:) (Wz,xx, 72)::;) (A-IS?OU

According to Eqs A-119 subject to the constraint of Eq j.120, there
exist 6k + 3 unknown functions of position . These are the displacement co-
efficients uli(x), vli(x), wli(x) for i = 0,1,2...k, and UZi(x), VZi(x)’
WZi(x\ for i = 1,2,3...k. ©Note that if one can solve for the displacement

components the response of the system is fully characterized (deformation

approach).
Next, the Galerkin procedure is employed in the circumferential direction.
The vanishing of the Galerkin integrals leads to (6k + 3) nonlinear algebraic

equations in the (6k + 3) unknowms. These equations are:
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nonlinear field equations to a sequence of linear systems,

is similar as the one in section 1II.2.

ed in deriving the iteration equations,.

in L Lo ” i
%xxli.x +'ﬁ' 72!.‘/25. + 72*"“'* + %XYZL R -~ ?Zxxli,x - 'l:,‘?'%xyzi.

3

t 2 3 )

gli_ + g] iL + §’it 1 gl,‘_n + gu‘,n =0
i 2 3 2 3

}Zi,x +Zu_ "’Zit + 7£n t 7/271 = "(?'L

/‘11:-'-04,,2,-""k

_in . L in,t i 7 ”
%xxzi.x ’E!')ZX)"L + %x'li,x ﬁ‘%xyzi = l}q 7?x)u;, - 7?xm,x
! 2 3 2 3
gzz + 8,18, 7 Beint5in = O
' 1 3 3 3
}Zm + Zi:. * 7liL + Zin * 2 = égzi,

S L= 1,2, - L K

(A-/60)

Next, the generalized Newton's method (Ref. 38) is used to reduce the

need be considered. Thus,

n ¢ M L » m
(t)ﬂi) = A 1) (W'T;‘ ’ M.x,) + A.q.(x) (Wa.x, Wa,:’)
- ..'.. L »n » N m -
2 {A’(x)(wh* » NI,;) + A4(K) (Wz,g, WI,X)}

n m L ~ nH L e
(f)(Zi) = Auk)(WI,x.W,,, ) + /4;04) (W:;;Wl,x)

] L i M »H
—3{ /4.2()() (Wl,’;’ V\/:,'x ) 'lL AJ(K] (WZ,K ’ be )f
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This procedure
Because the final set of equations,
Eqs A-160, contains n's, §'s and MN's, and because these are in turn functions
of other parameters,then Bq A-72 will be applied to all of the elements, need-

In so doing, only the nonlinear terms
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( Jh.) ?{" [ Amw(W, yWa ) + AIJ:(:)(V\/J ,W:"')]

8 L b7 “_ F
2 A w@N U™y + Aiw (VU]
S.n

M+

[AJlllk)(W"v )+ A :zuk)(UuW' )
= A3 V) < 4L, )
~7 ,?z[ /413409("\/, W, )+/413,w (Wi, w))]
2,?,ffél,w(vfnzf )+ gy (D5UT)]
4 R‘ (At g (W, V)~ AL w2 un) (4-163)
(T = =250 A (W2 W™ 4 4 cwn Wi
R A WU ¢ Ak (7))
+ 37 [Agsw(w,,vf )+41,w(2f,,w,""3
- AJz(g(W::V; )"AJS(K)(UI W)

43 ,;.,[,:{umﬂw, W, )+,4 W w™

—

IY300

zg‘{Asw(UuU; ) +Allk)(vln! U]
h ’Ré‘: [AJStk)(W"" U ) - A;ztx)(Wa", U:)J (A-164)
a
(fn R(A:nuv(Wa -W:x)"A:mag(W V\/Jx)

L » N
‘f'AIIUO(W,',( ,W:'H “A7qu(wa:’:{,wﬂﬂ)‘]

3 : ¥
- = [A;w(U' ) W:x) +/44w(v"wl.x)

t Aaw (W, l X U'Ml) + Aabw(wl "'v:H)J
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- 32%[ A;: oo (Wi, Winy) "AJ;}“,Q (W™, W)

A (W W + Az (W W)

1 Z A (U W) Fhw (VWS )] (A -165)
(ﬁ;{)'li) = %EA :irz(x)(w‘nl W;c) - /4 ~TL3 ® (W'"/ M:fﬁ)

' L fad i
~ Ao (W, w™) 4 Azsag (Wix,Wh)]

Wt

= S g (VWD + Ay (0w
Ao W U 4 A tWa, U]
- :2%[ AJiux)(Wsz V\/,,’;() “A:iaw(wﬂwrx)
~ Aéq(k) (Wi, Wln) +/41L: w(W:xJ W:)J
+& [ ,4;‘(,(, (U W) + A,wa (V7 Wox )] (A-166)
( 'Z-x:‘l,x)m’= A IL(K) (W:;x, Wiy) +4 zim (WX, W:x;')
-+ Ajitk) (Wax, W:’ ;’) +4 iw ( W:x P W::r)
= 30 Ao OV o Wir) + A (Wb, Wers)

F Al Wik s Woen) F Ao (Wor » Woore)) (A-147)

~

»nh

(7T g e
’m"‘) = Al(k)(WIJXx:V\/l,X) + ,4 2R (WI.X;WJ,XX)
L " Mt i ] 4
+A3(K)(W1;XX)WI,X) + AS[K) (W-Z,)")be;)
! L i " m
= 3 LA agg Wasges W) + Az g9 Worxs Waxe)

. | .
+ AsigWalke W) 4 Ay Wer, Wines)] (A-168)
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1%
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Mt
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*%—75 [ ,4;4(,9%3‘, U 245 W U + AW )
+ A sl U W) + 2 100U Wik g (0
“Aéuk)(wr" ’ U’m) -2 AJL: w(w,’,", ’ U‘::’) ‘*/4; w(w‘“' U'::)
~A Ii!(m (Ui s W) *2/4;(@(”‘:(: Mi")-Aiw(Uf! Wos )
= 2o [ sog Wi W) 2 A (W W) A OV W

mEl

1 ” » A .
4 ArziooWaxx, We) 2 Az (W, W) + A ILJwg(WzM)Wz,xx)J

123



e

2R2[Auk)(z—jlxx;U)+2/4¢(k1<w U;x)'l'Amq(U U;xx)

1 A‘LH/() ( U:,:’('x, Uy)+2 /41:00 (v, Ui T A aw (Uy u,:lxﬂ

Y
72[43’4“) Wl XX s U; )+24J40() W[ x’z};x)-’-AJl‘&)(W‘ )UZXX)

L »m
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where m is the number of the iteration step.

Substitution of Eqs A-161- A-178into Eqs A-149 and A-150 one may obtain
the iteration equations for the nonlinear part of the stress and moment re-
sultant vectors ({n?}i and‘ing}i>. In so doing, new symbols are introduced
and defined. The part of the t's or nn's that is linearized (linear) with

. ml  ml ml
respect to the iteration parameters (containing u s V & w ) is denoted

[ nL;
by superscript L next to n, i'e'ltlif

The part that only depends on the

value of the parameters at the previous step (um, vm, wm), is denoted by
|’ =y

superscript n next to n, i.e. 1t;:}.
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In a very similar manner, the nonlinear terms of the equilibrium equations are
also linearized by Newton's method:
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After linearization the equilibrium equations, Eqs A-160, can be written in
matrix form

[Cal{ e + LCH{Ta] +TC[7. BN Mo} 4 TE D0
¢ LR + B {n] + (B (B 7 1C 7.0
+ ({7 + LGS+ CE i) + BN+ (B )

BENIE ,x,} RN ARERIE N ETRTY RIS
U] = {g)

(A-193)
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In Egs A-145 4-150 {e}, {t'} and {t"} can be written as:
(€= Lk (X + (k1 {x]
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£= (k2K 4 + (k2K

1= (KN [X .+ k2K

=n<::xuxxg (kIR (K + Lk
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Cosd = (K2 X s 1 U200 ) X e+ (2K HKI(E) (4190

Substitute of Eqs A-145-A-150, and A-194 into Eq A-193 yields a matrix equation
which only contain the vector of unknown, {x}

(R8I (X + [R3IK.cuf + (R2UX.f + L RI{X +[R0) {X}={9} 4-1%3)

As in the case of W-F formulation transformation equation are introduced in
order to reduce the order of the linear equations.

1} = (X

By this transformation, Eq A-195 can be written in the féllowing form:

[R]{ } [s]f }MUU H (A-(76)

A.3.5 Boundary Condition

Boundary condition A+11l7 can be presentted in the following form

Either Or

N = Nxy U = Conak.

Ny = Nixy U = Conal

Q = Q+Myy w=20

M = M , Wiy =0 (A-1174)
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Obviously, the boundary condition can be written in matrix form (at x = 0, L)
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L mll L W:XJ

(A-19§)

where the form of [{2I] and [N] depends on the type of boundary comditions.

The stress and moment results, and the displacements are represented in series

form.
§ (R Cor B+ Moy AR £ Ui Cot® U ain )
e my oy K . Lo
57y Coq 24 0y 4 B S Wi E + U nz
(1] +(A1] ¢
z‘: (Q % +Q" i 5 (Wi Wy am'%
wny
.Z (%xxcwmy'} MxxAany ZK [ML Y@Q 7;<+ W“’M

L=

= {ng (A-179)
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After applying the Galerkin Procedure, the boundary conditions can be written

as:
f— A 8 )
%xxi, u:L
— ¥
mxﬁ 'Uti,
—¥%/
QL Wai,
— |
M Wii.x
[Q] \ —1 F + E)\} 1 u " = {.Q}
%x!i 21
— %2
My Vi
~* =0, . A
N Wi ¢
—
kz)ﬂ’fﬂ‘i,J L Wzl.xJ (A-)OO)
where
! L n
Nxi = Voo 1 Mxxii + Vi
— L n
%;i = Neai T A2t t Nxxei
— L
N = Myii T Wi + Do +—ér;:' (P i + Weysy * %;n)
— 42 L L
%xyi = %xyzi. 1 %xyz,‘, + %x;lz;_ -i-—%—(?ﬂx)m-[- Peyai +?)71;1;_)

— ¥

Qi = Poao + 2 Ty + Ao (Wit ) Ao (Wt W 7o)
+ —g { AJLHZKJ (WatWs's %&) '"/4;4(1K)(Wr1'w‘017?:}’)}
- 7%' (A fw Vi, Zwy) +/4zf<zm (Ul'ﬁ";ﬂ

%ixz,x *—2% 7;1:’1)/ + Aiux) (Wit W, 7x) +/4;(zk)(Wz,xf Wa'x, 7o )

— X2
H

1

" L 6 =2 i -
+ '/i[/qg'ztlk)(wﬂ'w‘ ), Mxy) -A;“,K,(WJW,D, 72;):))
B4 Arao i, Tiay) + Aseo (V2 7))
e n
Moo = Wz + %xLxli + D

— n
77?;(1 = Wi + Vo + Mocai (A-201)
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Using the similar procedure as used in sectionlII, Eqs A-200 can be linearized

and written in matrix form:
(RN + D [X7] 2 [ (INa} +inadHiNgY b 0 X

= {43}
T L) (NN NS + D X = fe} - (0 {ng ] (4-202)

where
f—-,}
XX

TARREL

Substituting of Eqs A-145-A-150, A-194 into Eqs A-202 yields the following form

for the boundary conditions

oy ool [

- {86} (A-203)
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A.3.6 Solution Methodology - Finite Difference Equations

The linearized iteration equations (equilibrium) assume the form

(Xoud (X.4 w5, ]
(R, . +08) ) * (6] (A-196)

Note that the true number of unknown is (6k + 3). These are Uiss vl,, V14
i

(i =1,2...k) and u,,, Vogr Wy, (1= 1,2...k) [see Eqs (119)]. For conveni-

ence though the number of unknown is treated as (6k + 6) with Usgs Voq & Y0
existing for the count, but subject Fo the constraint Usg = Voo = ¥Wop = 0.
Thus with the transformation, 1ﬂj = ix’xxj’ the number of unknowns is (12k + 12),

The equilibrium equation, Eqs A-196, are next cast into finite difference
form, by employing the usual central difference formula. Thus at each node

point j, the equations become (in matrix form)

, (4t) ( 0 W)
(/f[R]w ‘;1[5](“) {z{}}} + (-5 LRY 4 %y (7] ){%}}

| @ @y (&) “ B )
+(7{’[R] — 57 LS] ) Ui - Z(G} (A-204)

At each end one fictitious point is used. This requires (12k + 12)

additional equations at each end (j = 1 and N; the fictitious points are de-
noted by j = 0 and j = N+ 1). These additional equations come from the

boundary conditions.
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Paradoxically, the number of boundary equations is (8k + 8) at each
end. Note that these are either natural (8k + 8 through the Galerkin (pro-
cedure) or kinematic (8k + 8, Uy = Uy, = o, Vig = Vo = 0, Wiy T Wy T 0 &
Wig S Wy oS 0 for 1 = 0,1,2...k). This necessitates the requirement of

’x ’x
(4k + 4) additional conditions at each boundary.

The additional boundary terms are given below and they only involve

u., s U, s Va. y V at each boundary. Their existence deriva-
11, 2i, 1i, 21,
XX XX XX XX

tives with respect to x of the displacement components u and v in the equi-~
1ibrium equations, On the other hand, regardless of whether or not the
boundary conditions are natural or kinematic, they do not contain second de-

rivatives of u and v with respect to x.

.

&:o

)2 un,xx(&?w‘) + ’Z u;,;,xx(d=,:) + 73 L[,w(‘_iéj) = 0

4= 4

U (50) 12 Ui ) + BV unc() =0

d=Ntl

Ny

=2

}—f; Uzi,xx<d"~“) + 7 Z{zu(x(d N) TZL{,MX(& e ‘):0

.

}Z U—zz.)(x(d';lD ) Jr}Z U;LXX( )+7 U;L"‘x ;2) 0 (4-205)

=NH
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Where the constant ﬁl’ ﬁz and ﬁs are assigned to achieve certain goals
(in generating some results ﬁi = 1,“2 = =2 and ﬁB = 1 are used, which implies
that a derivative at a boundary is obtained in a forward manner).

Note that Eqs A-205 are the additional (4k + &) boundary terms and
that these equations are incorporated in the matrix form showm in Eqs A-203.
This means that [DB] and [DC] are square matrices, [(12k + 12) by (12k + 12)].

These boundary equations, Eqs p-203, are also cast into finite difference form.

1 & gl -
, H{X 0 )1/ A PR :
E[DB] ih + [DC] m} %/L (D8] [m} {BCJ (A-206)

where j = 1 or N,

A.3.7 Total Potential & End Shortening

The expression for the total potential for a supported (ss-i, cc-i)

cylindrical shell is given by

Ry L o o 0
U = EI‘JD Jo [ Nxxéxx + Nnyyy +N¥y £
+ Mxx kxx + MY,V Kyy +2 Mxy ny] dXdy
—f' Lzm[— Nxxu - nyv + F”‘x w’x] loL dy

- f:mf:jw O{XO()/ (A-207)

or
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U = [ Dlee €t + P €yt ey Yo + s K
+ Myye Hops + 2 My Hayo 45115_‘_»: ( ki Exei + Xy Ewi
2 Yo + Pogi Cuxi + Py Ewvi + 7lexi Yoys
+ Mo Kori + 77?»’/1: Ko + 2%:31 Joy: + My Ko
+ Myyi Koy + 2772;n}<x§z)]_0(x
4R (= 26X U 4 A UL = Tl U+ Tty U

/0 /

Y o
+ 7/lexﬁ V\/I ~ Muyo We,x )

where
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Vol = {€ 3+ {t] + (]

Kt,fi = {ezé} +{—ézt} * {tjj
}Cui
Ky
2}(1;,;

& £
14 1 14 i 14 14 _ 10 10 10
and N 0 s mkxi’ ui ’ vi , Wi are the values at x = £, nxxi’ nxxi’ mxxi’

ul? 10 , w%o are the values at x = 0

v .
1 1
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APPENDIX B

COMPUTER PROGRAM

B.1 w, F-Formulation

B.2 u, v, w-Formulation

Flow charts and program listing, for both formulations,

will be made available upon request. (Write to Professor

G. J. Simitses).
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APPENDIX C
MODIFICATION AND GENERALIZATION
OF POTTER'S METHOD.

The behavior of several structural configurations is often fully described
by a set of linear algebraic equations. In general, when these linear equa-
tions are put in matrix form, they can be partitioned as shown in Fig. B-1.

The blank spaces in the coefficient matrix are zeroes and [Ci], [Bi] and

[Ai] are matrices of orders miby m _qe My by m, and m, by m respectively

i+l
ziis the vector of unknowns, each of order m, by one and there are N such vec-
tors. Let ZL be the common unknown vector., Moreover, 3 is also a vector of

order m, by one and di is a vector or order m, by one, which includes the co-

i
efficients of the common unknown.

Note that the presence of vectors di make the whole coefficient matrix
nonbanding and irregular. 1If, on the other hand, the di-vectors do not exist
then the coefficient matrix is identical to that of Ref ¢-1. 1In this case,
the matrix is a banded tridiagonal matrix with zeroes everywhere and with,
at most, three submatrices banded along the diagonal as shown on Fig. c-1.

Therefore, the present case is a bit more general than that of Ref ¢-1. The

solution procedure, though, is basically the same on that of Ref. c-1.

C.1 pescription of the Algorithm

The explicit form of the system of linear equations of Fig. C.1 is given

by

[BJ{ZJ +[A,]{Z,} 4 {d:} ZL(J) = igl}
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[C'L]{Za-.} * [BJ{&} + [A;][Zm} 1 {d} ZL(})={%K

with (=2.3, ~---- L N-1

ceafed +taafz] +taafed - {9)

with t=4-1,L,L+]

[CN]{ZN-.} t [BN]{ZN} + {dN} Z,(4)= {?N} (c-1)

Note that ZL(j) is one element of the common unknown vector ZL (see Fig C.1).
A short description of the solution procedure is next outlined.
By using Gaussian elimination for the first (L-2) matrix equations, one

may find the equivalent set of equations, which is

{ZJ t [PL]{Z’*S + {El} Z,(4) = {XL}
L=t,2, 7770 402 (C-2)

where

(p) = [BI'TA) ;s {E} = (BT{d}
(x} = (87 {2 .

and

(P = [(BI-(CICPI] [A]
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(£] = (BA-CCY(P) [l - (afEw)]
(x} = (B - () 8- cca X}

f i=22,3, -, L=2

Note that the order of the various matrices is as follows:

(c.] My Gy M,
(8J M. Gy N;
(A) n by M.,
(P.] N; 8y M

{z.}, {g,}, {a.}, (X} and {E} are allm by 1

Next, for i = L-1, L, and I+l the equivalent equations are:

{Zm} + [Pz-n] {?-2;} = {Xz-:}

for L= l=t, 0,1+

where, for i = L-1

(P) = (B3 -tcatp)) [1a]- €A L En)

() = (BI-tco Pl (18 - (01 [
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with

— ¢ —

(E.)=[ 0 (&} o] (C-7)

-
I

Note that LEi-lj is an m_q by Mol matrix (defined, as shown, for convenience).

and for 1 = L, L+ 1

(P = ((BJ- (CI(P) (A

(x) =[8a-1c (Ped) (184 - (CJ{x.4) (c-8)

Finally, for i = L+ 2, L.+ 3, ....N, before writing the equivalent
i ~

equations, jdi} The elimination

is eliminated from each matrix equation.

N
is accomplished by multiplying tdij with the appropriate terms of matrix

LPL?. This leads to a matrix with only one nonzero column (vector), as shown
below
i i Py )
di@P.(L.2)
[(d)ecpa] = | O 0
L ldmpem) (-9

k,___lt_____44

151



Note that the symbol @ is introduced to define the operation that leads to

the matrix of Eq (C-9).

Similarly, the symbol ® is introduced to define an operation that leads

to a column matrix.

Vi) V&(I)
Vl (2) VZ (2)

(o)

V, (m; VALY,

(C-10)

With these definitions one may now write the equivalent equations for

i =1+2, I+3, ....N-1. These are

{2} + Pz = {4

where

(p.]= [(8]- (GICR.I] TAD

(x} = (8- (EIRIT ({8) - (CD (e}

[C,_] = [C "( l) {d}@ [PL][PLH] """ [R-J
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and

[gt} = [Qtj - {dl} G({XL} B [PL] [XM} + [PL] [PLHJ[X[_H_;
- [PL] [PL-H] [Pm] {ij LRREE (")':—HL’PL] [Rs] [Xi-z}) (C-18)

Finally, for i = N

(24 =[xy} (C-/6)

where iXN: is given by Eq (C-13) with i=N. The recurrence formulae for back-

yA ce 22’ and Z, are

ward substitution, in order to calculate ZN-l’ N-2° 1

{ZNi = {XNS
{ZL} = {XL} - [PJ {Zur} ; L= N-t, N-2,---- ,L~I
{2} = [XL} - [P] fZl-,.,} ~ {Ezj Z (d) iz L2 03,20 (C-17)

G2 Determininant Calculation

In each step of the inversion process, one must calculate the corresponding

determinant e namely

det [B,]

o
1

£, = det((B:1-(CIR.Y]; i=2.3, - 142

At [(B:I-[CJIP.)] ;izt+2.143, - N (C-12)

[
i
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Thus the determinant, D, of the entire coefficient matrix of the system can

easily be computed by

N
D= TFQL

i=|

Reference

C.1 Tene y. Epstein M., and Sheinman I.

(C-17)

"A generalization of potters method"

Computer & Structures vol. 4 pp. 1099-1103 1974.
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Appendix p

INSTABILITY OF LAMINATED CYLINDERS IN TORSION

by

D. Shaw! and G. J. Simitsest?
School of Engineering Science and Mechanics
Georgia Institute of Technology, Atlanta, Georgia

Introduction

A Galerkin-type solution, for the buckling analysis of a perfect
geometry, laminated, circular, cylindrical thin shell subjected to pure
torsion, is presented. The torsion is applied through the reference
surface, which is the midsurface of the laminate and the boundaries
are classical simple supports (S5-3). The analysis is based on Donnell-
type nonlinear kinematic relations and linearly elastic material behavior.
It is assumed that a primary state exists and that it is axisymmetric.
This primary state can be obtained by solving the field equations. Through
perturbation of the governing field equation a set of (linearized buckling
equations is obtaingd, along with the related boundary conditions. A
Galerkin procedure is employed for solving the buckling equations. Thus,
the problem is reduced to an eigen-boundary-value problem. Critical
torsional loads are obtained for several Boron/Epoxy configurations of
symmetric, antisymmetric and asymmetric stacking. Tn addition, approxi-

mate buckling modes are established for both positive and negative torsionm.

+Graduate Research Assistant
++Professor
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Governing Equations and Solution Procedure

The geometry and sign convention are shown on Fig. 1. The torsion
is positive if applied clockwise at the right end (x = L) and counter-
clockwise at the left end (x = 0). The governing equations for a general
laminated circular cylindrical shell, with or without orthogonal stiffen-
ers, without geometric imperfections, and subjected to a pure torsion, con-
sist of two coupled partial nonlinear differential equations in the
transverse displacement component w(X,y) and an Airy stress (resultant)
function, F(x,y). One of the equations characterizes transverse equilibrium
and the other in-plane compatibility. These equations are taken from .1]
by setting ﬁxx =q = wp(x,y) = 0, where ﬁ%x denotes the uniform axial
compression, q lateral pressure and wo(x,y) an initial geometric imperfec-
tion. The two equations are

Equilibrium:

bllF’yyxx+ b21F’xxxx-b31F’xxxy+ dllw’xxxx+ dlZW’xxzz+ 2d13w’xxxy

+ 4 d33va

+ 2b, 4 ,xyyy+ 2b23F,xxyy+ 2b33F,xxyy+ 2dq4, w,xxxy+ 2d32w,xyyy s xXYY

- +d d
* blZF’yyyy+ bZZF’xxyy P32F xyyyt 921 Vryyt “22 Vryyyyt 2923 % xyyy

+ L 5 4F, v, + W w,_ - 25 w, +F, v, =0 1)
R~ "xx yy "xx Xy "Xy Xy Xy XX yy

Compatibility:

811 s guuyt 212F aoyy” 2138 xyyy” P11 xxyyT 21297 yyyyt 2P13V xpyy

+ a12F’xxyy+ aZZF’xxxx— a23F’xxxy+ b21w’xxx:{+ b22w’xxy§+ 2b23w’xxxy

= 8138 pyyy” 83 pxy” 233 xxyy” b31w’xxxy- b32w’xyyy- 2b33w’xxyy =

W,

XX
- D-2
R + w’xy w’xy Yo xx w‘yy ( )
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where

[a; 0 = [a 170 5 Doy ) = [a 070 03]

—
=]

| -
n

- (D-3)
[Bij] [bij] [Dij] D

and [Aij], [Bij] and [Dij] are the extensional, coupling and flexural
stiffnesses appearing in the usual lamination theory.
The expressions for the simply supported boundary conditions (SS - 3)

are given below in terms of w and F (at x = 0, L).

w=20 3 F, =0 ;
yy
d - = - N .
b21F’xx o Y t 2d13w’xy b31F’xy b31ny ’
- = - N (D-4)
a22F’xx a23F’xy + b21w’xx + 2b23w’xy a23ny : '

where ﬁxy is the applied torsional stress resultant. For more details see
lc.1].

It is assumed that, under the action of pure torsion, a primary state
exists, which is axisymmetric (all three reference surface displacment
components, u, v and w, are independent of the circumferential coordinate y).
Note that for symmetric construction (regular angle-ply or cross-ply with
odd number of plies, for example) a membrane state exists and, therefore,
the above is not an assumption. How reasonable this assumption is depends
on the nature and magnitude of the coupling stiffnesses [Bij]' Primary
state quantities are denoted by tilda. With this assumption, the field

equation becomes

~ ~ ”~ _ -5
b21F’xxxx + dllw’xxxx + F’xx/R 0 ©-3)
a22F’xxxx + b21W’xxxx + w’xx/R =0 ( B6)
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Moreover, the expression for the reference surface hoop strain G;
is given by

€ =-AR
gy w/

— ~

3
a221-’xx + 8,3 ny + b21 ¥ xx J (D-7)

These three equations, Egqs. p-5, D=5 and D-7, are employed to

eliminate F and thus there is only a single field equation. This

resulting equation is:

b ~ a
1 ~ =
( 2 ) * XXXX a 2; Yoxx T - 2 - 823R ny (D-8)
22 a, R 22
22
The general solutions for ; and consequently [ from Eq. D~7] for F,xx
become
o L L
W= B1 sinh Rl(x - 2) sin Xz(x 2)
L L -9)
-2 - 2y - D
+ B, cosh Rl(x 2) cos Xz(x 2) R.a23 ny (
A -1 2
F,xx = 822 21 Z(K - A ) + 2 b21311112 +
B
2 L L
+ R) cosh Rl(x - f) cos Xz(x - 2)
L (b (1 - 12) 2b, . B A A, +
a 21 1 2 21 2712
22
+El inh A —l) sin)\(x-L) (p-10)
g) sinh Ay(x -3 2(X = 3
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2 2

- b -% b -1 %
1 2 721 1 21 21 2
A, = {— la, R (= - d )] 0____ <1
1 ) (d )
2 22 (e T n +5G 117 &,
2
e b b =L %
1 2 °21 5L 21
AL = i— la, RO (—= Y] - )( - =) ]} (b -11)
2 2 22 a22 11 2 822R 11 a22

The constants B1 and B2 can be obtained by making use of the
boundary conditions, Egs. p 4

Next, the buckling equations are obtained through a perturbation
of the nonlinear governing equations. The dependent variables, w and F,
are replaced by the sum of the primary state parameters, ; and %, and
small additional quantities, w1 and Fl, necessary to represent the buckled
state, Moreover, the related boundary conditions for the buckling equations
are also obtained in the same manner. ©Note that since the additional
quantities can be made small as one wishes, only the linear terms in

1 1
w and F are retained.

The buckling equations and related boundary conditions are:

1 1 1
D1 ™ (2 P237 Py (P 2P357 Do) s oyt (205D 2)F xyyy
b Pl 4 d ot (245,424 ywl 4 (d, 4 4d, .+ d. ) wh
12" ’yyyy 11 137 " ?xxxy 12 33 21 'XxXyy
1
+ (24d,.+2d )w'1 + d wl +F’xx+% wl
32 237 V’xyyy 22 ’yyyy R ’xx yy
+ W,  Fr 428wl =0 (p-12)
XX yy xy Xy
1 1 1 1 1
822F’xxxx- zaZSF’xxxy+-(2‘alf+a33)F’xxyy- 2a13F’xyyy+a11F’yyyy
+ b 1 + (2b yw + (b 2b,.+ b )w
21¥ 23" 31 ’ XRXY 11° 33" 7227 TVxxyy
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1 1 xx B 7 1
- B el = D'13
+ 2bpymbyyw, o F blZW’yyyy+ Rt Vo Py 0 (p-13)
_ . 1 1 1 1 .
at w=0; b21F, + b31F’xy+ dllw’ + 2d13w,xy =0 ;
x = 0,L
. 1 1 1 1 .
F’yy ’ aZZF’xx+ a23F’xy+ b12w’xx+ 2b23w’xy =0. ©-14)

The Galerkin procedure is employed for both equations. The following
approximate series is used for generating the Galerkin integrals. Note

that the boundary conditions are satisfied by each term in the series.

N M
15 2 ny n [L ,_dimx L (i+2)ﬂx]
w _ﬁél 1=1(AincosR+Binsin—I-¥) T sinT— - ity sin L
N M
1__5; ny .ny. UL imx L (i+2)Tx D
F —n=1 izl(cincosR + Din31ni¥) Liﬂ sinm L a2y sin I (~-15)

Substitution of the above expressions, Eqs. p,15, into the buckling
equations results into a set of systems of linear homogeneous algebraic

equations in A, , Bin’ Cin and Din for each n (decoupled with respect to n).

in
Assuming that the lowest eigenvalue corresponds to the critical load,
ﬁ;ycr, a computer program has been written to this effect. The Georgia
Tech high speed digital computer CDC - CYBER - 170/760 is used for
generating data. Note that a minimization with respect to n is per-

formed in order to find the lowest eigenvalue.

Numerical Results and Conclusions

The geometries considered in the investigation represent variations
of the one report in D.2. Each lamina is orthotropic (Boron/Epoxy;

AVCO 5505) with the following properties:
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2.0690 x 108 kN/m2 (30 x 106psi.) Y

E11 = = 0.21 ;
8 2 6_ . .
E,, = 0.1862 x 100 kN/m“~ (2.7 x 107psi.); R = 190.5 cm(7.5in.);
8 2 6 . .
Gyp = 0.04482 x 10" kN/m~ (0.65 x 10 psi) ; L= 381 cm (15 in.);
h . = 0.013462 cm. (0.0053 in.) (D.16)
ply

(hply = hk - hk-l for k = 1,2,3,4 ; four plies)

Five different stacking combinations of the four-ply laminate

i

comprise the various geometries, I - i, i = 1,2, -- 5. These are

1 -1 : 45°7-45°/-45°/45°

I -2 -« 45°/-45°/45°/-45°

I -3 : -45°/45°/-45°/45° @®-17)
I -4 : 90°/60°/30%/0°

I -5 : 0°30°/60°/90°

where the first number denotes the orientation of the fibers of the
outermost ply with respect to x, and the last of the innermost. A pure
torsion is applied through the midsurface of the four-ply laminate.
Some of the generated results are shown on Table D.l.For each
geometry, the critical torsion (for both positive and negative
application; clockwise and counterclockwise at the end x = 1), the
minimizing value of n (full number of circumferential waves), and the
values of the coefficients Ain and Bin (normalized with respect to B

2n)

are shown. Note that the Ain and Bin when substituted into the first of
Egqs. D.35 yields the buckling mode. It was concluded that M = 5 suffices

for determining critical loads.
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€91

Tablep-1. Numerical Results
Minimi- ﬁ#y in N/m
Geo. zing cr
n (1bs./in.) A, B 4, B, Ay B, Ay, B, As Bs
12 6987 -0.3353 0 0 1.0 | 0.7520 0 0 0.2038 | 0.3439 0
(39.90) L L] - L . L e . - L]
1-1 - '
9 -13220 4 ) '
| (=75.50) 0.7627 :-0.1954 | 0.2561 | 1.0 | 0.0980 | -0.0251 0.1185; 0.4626 | 0.0225 | 0.005:
! ’ : ' ] :
| 9534 } : ? 2
10 L (54.45) -0.5830 | 0. i o E 1.0 | 0.1696 0. 0. | 0.4230 | 0.1023 0.
1-2 — : i f
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Note that Geometry T - 1 is symmetric (with respect to the
midsurface), Geometries I-2 and I-3 antisymmetric, and Geometries I-4
and I-5 asymmetric. For the symmetric geometry (I-1), the positive
direction critical torsion is 6987 N/m (39.9 1lbs./in.), while the
negative critical torsion is 13,220 N/m (75.5 lbs./in.). The
respective reported D-2 experimental values are 4640 N/m (26.5 1lbs./in.)
for the positive direction and 11,508 N/m ﬂ65.72 1bs./in.) for the
negative. This suggest that the geometric imperfection in the tested
cylinder D-2 {s such that the configuration is more sensitive to it, when
loaded in the positive direction, than in the negative (the ratio of the
experimental to theoretical value is 0.664 for the former and 0.87 for
the latter). The difference in response is understandable, because of
the anisotropy. The antisymmetric geometries, I-2 and I-3, yield the
same response when loaded opposite to each other. Note that the positive
direction critical load for I-2 is the same as the negative direction
critical load for I-3 (the same is true for the buckling mode). Also,
observe that the two (+ direction) critical loads are very close (9534
N/m. and 9454 N/m.). This is due to the fact that the extensional, [Aij]’
and flexural, [Dij]’ stiffness have the same form as if the shell were
isotropic. The difference from isotropy is the existence of some small
(in value) terms in the coupling, [Bij]’ stiffnesses.

Finally, for the asymmetric configurations, I-4 and I-5 the response
is completely different when each geometry is loaded in the positive and
in the negative direction. Although the [Aij] and [Dij] stiffnesses, for
the two configurations, are the same and only the signs are different
in the [Bij] stiffness, the geometries behave (radically) differently.

The only similarity is that the number of full waves, n, is approximately

the same (12 and 13).
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SUMMARY

Imperfect, laminated, circular, cylindrical, thin shells supported in
various ways and subjected to a uniform axial compression and torsion (indi-
vidually applied or in combination) are analyzed. The analysis is based on
nonlinear kinematic relations, linearly elastic material behavior, and the
usual lamination theory. The laminate consists of orthotropic laminae, which
typically characterize fiber reinforced composites. Two types of formulation
have been developed; one is,referred to as the w,F-formulation, based on
Donnell-type of kinematic relations. The governing equations consist of the
transverse equilibrium equation and the in-plane compatibility equation. These
two equations are expressed in terms of the transverse displacement, w, and
an airy stress resultant function, F. The other, referred to as the u, v, w-
formulation, is based on Sanders'-type of kinematic relations. The governing
equations for this case consist of the three equilibrium equations. These three
equations are expressed in terms of two in-plane displacement components u, v, and
the transverse displacement component, w. Donnell's type of shell theory approx-
imation can be treated as a special case in the u, v, w-formulation.

Some results are generated for certain geometries (isotropic and lami-
nated) and these serve as bench marks for the solution scheme (both formulatioms).
Results are also generated for composite cylinders by changing several parameters.
The scope of these parametric studies is to establish the effect of geometric
imperfections, lamina stacking, and length to radius ratio. Moreover, theoret-
ically computed critical conditions are compared to experimentally obtained

results.
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CHAPTER 1T
INTRODUCTION

Shell configurations of various constructions (metallic with or
without stiffeners, laminated, plastic etc.) have been widely used as
structural elements, for many decades. These configurations, in many
cases, are primarily designed to withstand destabilizing loads, which are
applied individually or in combination., Various linear and nonlinear shell
theories (based on different approximations of the kinematic reslations)
have been employed in attempting to predict critical loads, as well as,
pre- and post-buckling behavior of perfect and imperfect shell
configurations.

One of the simplest shell theories is that, which is based on the
Donnell (1) approximation (or Mushtari-Vlasov-Donnell approximation) for
both, linear and nonlinear kinematic relations. Donnell's equations have
been widely used in the solution of problems of stability and equilibrium.

From time to time, because of the approximate nature and because of
the extreme simplicity of Domnell's equations, doubt has been raised as to
their accuracy. Hoff (2) in 1955 gave the range of some basic parameters
of perfect, thin, circular, cylindrical shells, for which solutions to
Donnell's and Flugge's (3) equations are approximately equal. Moreover,
Dym (4) in 1973 compared buckling results obtained from Donnell's equations
with those obtained from Koiter-Budiansky (5,6) equations for thin, circu-
lar, perfect cylinders in uniform axial compression. Furthermore, Simitses
and Aswani (7) compared critical loads for the entire range of radius to
thickness and length to radius ratios and for various load behaviors

(during the buckling process) for a laterally loaded thin cylindrical shell



by employing several linear shell theories; Koiter-Budiansky (5,6),
Sanders (8), Flugge (3) and Donnell (1).

Other comparisons of the linear version of the various shell theories
have been reported by Toda (9), Koga and Endo (10), Microys and
Schwaighofer (11, 12) and Akeju (13). All of the above investigations deal
with isotropic thin cylindrical shells except for Ref. 12, which deals with
an orthotropic cylindrical shell.

The only investigation that has any nonlinear flavor is the study of
El Naschie and Hosni (1l4), but even this deals only with initial post-
buckling behavior and for an infinitely long thin cylinder (thin ring).

The present report gives a comparison between critical loads for
imperfect, thin, cylindrical shells (limit point loads) of isotropic and
composite construction, under uniform axial compression for two shell
theories, that of Sanders (8) and that of Donnell (1). The intention here
is to identify the parameters which affect the accuracy of critical
conditions established through Domnell equations, by comparing them to
those established by Sanders equations. The implication here is that the
Sanders equations, which are typical of the more accurate nonlinear shell
equations (5,6,7), should yield accurate results, while the Donnell
equations are viewed as approximate and therefore less accurate.

This report is a contiuation of Ref. 15. 1In Ref. 15 the following
are presented: 1) the mathematical formulation and deviration of the gov-
erning equations, based on Donnell-type (1) non-linear kinematic rela-
tions, and presented in terms of the transverse displacement component, w,
and an Airy stress (resultant) function, F, defined in the text; this is

called the w,F - formulation; 2) the mathematical formulation and deriva-



tion of the governing equations, base on Sanders-type (8) nonlinear
kinematic relations and presented in terms of the three displacement
components, u, v and w; the kinematic relations used correspond to small
strains, small rotations about the normal, but moderate rotations about
in-plane axes; this 1s called the u,v,w-formulation, and the Donnell's
kinematic relations are included in the Sanders relations, therefore this
formulation covers both cases (Donnell is a special case of the Sanders
equations); 3) solution schemes for both formulations; the solution
methodology for the w, F-~formulation 1includes the capability of obtaining
post-limit point behavior, while the solution scheme for the u,v,w -
formulation refers only to pre-limit point behavior (but nonlinear)
including the estimation of critical conditions (limit point loads);
moreover, the flow chart and listing of the respective computer codes are
presented in the appendices of Ref. 15;4) several numerical results,
generated with two objectives in mind, (a) some serve as bench marks for
the solution schemes, and (b) some limited parametric studies are
performed in order to assess effects of boundary conditions, of load
eccentricity and of lamina stacking sequence for axially-loaded laminated
cylindrical shells. Furthermore, some limited studies are performed for
torsion. For both load cases, the imperfection sensitivity of the
configuration is assessed; all of these results were obtained by employing
the w,F-formulation.

In this report, additional results, obtained by the w,F-formulation,
are presented. The objective here is to compare theoretical predictions
with experimetal results. Moreover, results (critical conditions),

obtained by the u,v,w-formulation are presented. The objective here 1is to



establish which parameters affect the accuracy of Donnell-type of equations.
This is accomplished by comparing Donnell-theory results with Sanders -
theory results, the implication being here that the Sanders—theory results
are closer to being exact., This is done for axially-loaded, imperfect
shells of isotropic, orthotropic and laminated construction. These studies
are necessary in order to establish the acceptability of the parametric
studies (conclusions of) presented in Ref., 15. Finally, since the reported

studies are not complete, proper recommendations are offered.



CHAPTER II
MATHEMATICAL FORMULATION AND SOLUTION

The mathematical formulation and a concise description of the
solution scheme, for the u,v,w-formulation are presented in this chapter.
The geometry and sign convention are shown on Figs. 1 and 2. The configu-
ration consists of a laminate, which is orthogonally and eccentrically (in
general) stiffened by closely spaced stiffeners (in the axial and hoop
directions of the cylinder).

In this formulation (u,v,w), two distinctly different kinematic
relations (different shell theories) are employed. One is due to Sanders
(8) and one due to Donnell (1). In the case of Sanders' equations it is
assumed that the reference surface strains are small, the rotation about
the normal is negligibly small and the rotations about in-plane axes are

moderate.

IT.1 Kinematic Relations

The Sanders kinematic relations are based on the assumption of a
perfect reference surface (in our case perfectly circular, cylindrical
surface). These kinematic relations are modified to include the effect of
a small initial geometric imperfection, wP(x,y).

Let w°(x,y) be measured from the perfectly cylindrical surface of the
laminated shell. Let w(x,y) denote the transverse displacement component
of material points on the reference surface and be measured from the
undeformed surface. It is positive outward (see Fig. 1) and the midsurface
of the laminate is taken to be the reference surface (for convenience; the

choice is arbitrary). Let u(x,y) and v(x,y) be the in~-plane displacement
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components (see Fig. 1). The kinematic or strain-displacement relations

are:
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I1.2 Stress—-Strain Relations

The smeared technique (Refs. 16 and 17) is used for the orthogonal
stiffeners and the usual lamination theory for the laminate (see Ref. 18).
Each lamina is assumed to be orthotropic and the directions of orthotropy
make an angle & with respect to the reference axes x and y. Note that if
the orthotropic axis are denoted by "1" and '"2", 8§ is the angle between

axes ""1" and x, measured counterclockwise from the x-axis.



The stress-strain relations for each lamina are transformed to the
xy-axes (18). Moreover, the stress—strain relations for the closely spaced
orthogonal and eccentric stiffeners are written on the basis of the
assumptions (see Ref. 16) that (i) the stiffeners do not carry shear but
only normal stresses, (ii) the stiffeners are torsionally weak and (iii)
the stiffener~laminate connection is monolithic. The stiffener eccentric-
ities are positive if the stiffeners are placed on the outer side of the
laminate (in the positive z-direction).

Next, the usual stress and moment resultants are defined and their
relations to the reference surface (midsurface of the laminate) strains and

changes in curvature and torsion are obtained. These are (in matrix form)
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and Ajj, Bjj and Djj are the usual stiffnesses employed in lamination
theory (18). Furthermore, Eyx and Ey are Young's moduli for the stringer
and ring material, A, and Ay stiffener cross sectional areas, Qx and Qy
stiffener spacings, @y and €, stiffener eccentricities, and Iy and I,

c c
second moment of stiffener areas about centroidal axes.

I1.3 Equilibrium Equations and Boundary Conditions

The governing equations are derived for an orthogonally and eccen-
trically stiffened, laminated, imperfect, thin, circular cylindrical shell,
subjected to eccentric in-plane loads and uniform external constant-
directional pressure. This 1s done in order to have a set of equations,
which can easily be specialized to and accommodate the following construc-
tions and geometries: perfect or imperfect metallic (isotropic) with or
without stiffening; and laminates of symmetric, antisymmetric or completely
asymmetric lamina stacking. The nonlinear field equations (equilibrium)
and related boundary conditions are derived from the principle of the

stationary value of the total potential. These equations are:

Nxx,x + ny)y =0 ]

10 (cont’d)
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The boundary conditions at x = 0 and L are either natural (force and

moments prescribed) or kinematic

Either Or
- N
N = = Naxx w=0
NX1‘+81MX1/R = i}\\; + Simx‘[ /R v=0
(14)

Nxx (W, *Wax)"’Nxv (W,\,+\N,y -9y R)
+MXK)X+2MXY)7 .‘:Qx*’Mxy)y w=0

Myx = M w,, =0 P

Note that the "bar'" quantities denote applied forces and monments.

I1.4 A Solution Methodology
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The solution procedure consists of several steps, which are outlined
herein with brevity (for details see Ref. 15). These steps are:
(1) A separated form is assumed for the three dependent variables

u(x,y), v(x,y) and w(x,y) [displacement components].

k

Wy 2 ) ny L (X) Siw Y
UG,y) = %L iy (-95 2 + U (X) Sin R-]

K | .
vV(xy) = z[vu,txms 2L 4 vt () s Y (a2)
B2+ R R

\L

W(x,y) = LM L) o5 L?ZV W O0) s “a"
\:0

Note that since sin = 0 the functions upg(x), vog(x), and wop(x)

©)ny

R
do not enter into the solution scheme, and thus the number of independent
and unknown functions of position x is (6k + 3).

The known imperfection wO(x,y) can also be expressed in a form similar
to w(x,y). In this case w9 ;(x) and wOy;(x) are known (taken as known)
functions of position.

(2) The expressions for the displacement components are substituted
into the kinematic relations, Eqs. (2) and (4). Because of the nonlinear-—
ity of the in-plane strain—displacement equations, this substitution yields
double summations for the trigonometric functions. These double summations
involve products of sines and cosines in all four possible combinations (sine
- sine, cosine — cosine, sine-cosine and cosine - sine). Use of trigono-
metric identities involving products changes the double summation to single

summation of either sine or cosine terms but with twice as many terms.

12



Through this step, all strain components (stretching and bending) can be
expressed in terms of sines and cosines of iny/R. Some of the sums go from
i =0¢toi =k and some from i = 0 to i = 2k. Note that the coefficients
of the sine and cosine terms involve linear and nonlinear combinations of
the (6k + 3) dependent functions, ujj, Upi, V]jis vy, Wi and wog.

(3) The above separated expressions for the in-plane strains, and
changes in curvature and torsion are then substituted into the constitutive
equations, Eqs. (6). Since these equations relate the stress and moment
resultants to the stretching (Gij's) and bending (Kij's) strains in a
linear manner, then use of Eqs. (6) yields single sums of sines and cosines
of iny/R, similar to those for strains.

(4) Once steps (2) and (3) are completed, the obtained separated
expressions for the stress and moment resultants, along with the assumed
expressions for the displacement components (u, v and w) are substituted
into the equilibrium equations, Eqs. (10).

Note that some of the stress resultants are multiplied by either some
displacement components or their gradients. Because of this one obtaiuns
products of sums (of sines and cosines) and some sums go from i = 0 tori =
k (for the Nij's). Using a procedure similar to the one outlined in step
(2), these products of sums are changed to a single sum and the highest
upper limit of the summation is 3k (the single sums go from i1 = 0 to 1 =
3k). The boundary conditions, Eqs. (11) can also be expressed in term of
the dependent variables, following the above procedure.

(5) The Galerkin procedure is then employed, in the circumferential
direction. The vanishing of the Galerkin integrals leads to (6k + 3)
unknown functions of position x, ujj(x), vij(x), wii(x) for i =0, 1, 2 ...

k, and ugpj(x), voj(x) and woj(x) for i =1, 2, ... k.

13



(6) Next, the generalized Newton's method (19, 17) applicable to
differential equations, is used to reduce the nonlinear field equations and
boundary conditions to a sequence of linearized systems. The linearized
iteration equations are derived based on the conjecture that the solution
to the nonlineaar set can be achieved by small corrections to an approxi-
mate solution. The small corrections or the values of the variables at the
(m + 1)th step, in terms of the values at the closely spaced mth state, can
be obtained by solving the linearized differential equations. The lineari-
zation of a typically nonlinear term (product of X and Y), in the differen-

sl cquations, is shown below.
XTI () (YY)
= XY XY XS Y XY XY
XY YR =X
=Xy L XMY oxy™ (13)

(7) The order of the linearized differential equations is reduced
from four to two by a simple transformation. If the vector of all the

unknowns is denoted by [x] (in matrix form) then

For convenience the number of unknowns is taken as (6k + 6) subject to

the constraint

Wag T Va0 T Wy =0 (*s)
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The iteration equations can be written in matrix form as
[R4] g.xnmxx} ¥ [-Rs‘.‘ ix)')txxa +[R2] ix)‘m& +
CR1J %x{ + [ROI$x% = § 43 (16)

By introducing the transformation

I = ix)xx% (17)

only in connection with the third and fourth derivatives, the iteration

equations, Eqs. (16), become

Wia n%%*{ 3&(\}} Wi id @

where [R], [S], and [T] are 12(k + 1) by 12(k + 1) square matrices, with
elements involving values of the variables at the mth step [see Eq. (1&)]
plus other known parameters. {G}is a 12(k + 1) by one matrix with known

elements.

Moreover, the boundary terms are also put in matrix form
s S."‘}_ |
o9+ i e

The details can be found in Ref. 15.
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(8) The linearized iteration equations, Eqs. (18) are next cast into
finite difference form by employing the usual central difference formula.
At each end of the cylindrical shell (boundaries x = 0 and x = L) one
fictitious point 1s used., The required additional equations are provided
by the boundary terms, Eqs. (19), and some auxiliary equations, which are
also cast in finite difference form.

(9) Finally, the total potential is expressed in terms of the
dependent functions and, at each level of the applied loading, its value 1s
computed by numerical integration.

In closing, a computer program has been written to compute the
response of the shell at each level of the applied loading. Imnitially, at
a low value of the loading, the solution is estimated through the use of
the linear axisymmetric equations. Then, the iteration equations are
employed, and by step increasing the loading the complete response (up to
the limit point) (20) is obtained.

Several results are obtained by employing this formulation (u,v,w) and

are discussed, in detail, in the next chapter.
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CHAPTER IIT
RESULTS AND DISCUSSION; U,V,W - FORMULATION
Numerical results are generated for the u,v,w - formulation, by
employing two different digital computers: (a) the interactive computer
IBM 43/31 at the Technion Computer Center and (b) the VAX 11/780 of the
GTICES (Georgia Tech integrated Computer Engineering System) Systems

Laboratory of the School of Civil Engineering.

III.1 Description of Structural Geometry.

Three basic configurations are used in generating results. They
consist of an isotropic cylinder, an orthotropic one and a laminated one.
All configurations are imperfect, and the imperfection shape is either
symmetric or (virtually) axisymmetric. The laminated geometry is the one

employed in (21). The properties for each configuration are given

separately.

Isotropic Geometry

The isotropic geometry consists of a thin imperfect cylindrical shell

with the following dimensions and properties
- '
E =7.24x10 kNjw? (105 x107psi) ; v=0.30
R -84 cm (4in.) 5 £ L/RLA0

A88.7 £ &/l £4000.0

As seen from the data above, the cylinder length,L, and the shell

thickness, h, are varied in order to cover the range of practical interest.
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Orthotropic Geometry

The properties of the orthotropic configuration are (given in terms of

axes lllll and llzll).

Ej; = 2.069 x 108kN/m2 (30 x 106 psi) ; Wy, = 0.21
Eyp = 0.1862 x 108kN/m? (2.7 x 106 psi) ; Ggp = 0.0448 x 108kN/m2(0.65 x
106 psi)
h = 0.05385 em (0.0212 in.) ; R = 10.16 cm (4in.) or 19.05 cm (7.5 in.)

and 15L/R&10.
If & is the angle between the orthotropic axis "1" and the reference axis

x, both 00 and 900 configurations are employed, herein.

Laminated Geometry

For the laminated geometry, a four-ply laminate is employed. The
orthotropic lamina properties arethe same as those given for the
orthotropic geometry. The total thickness of the laminate and that of each
ply are

hgoe = 0.05385 cm. (0.0212 in.) and

h = hye-1p = 0.013462 cm. (0.0053 in.)
Furthermore, R = 19.05 cm(7.5 in.) and

L/R = 2,5,10.
The stacking sequence is
I~ 1: - 459/+4509/+450/-45°

where the first number denotes the orientation of the outermost ply with
respect to the x-axis, and the last of the innermost. Note that I-1 is a

symmetric geometry (with respect to the reference surface — midsurface).
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Imperfection Shapes

Two imperfection shapes are used in the study, one which is symmetric

and one which is virually axisymmetric.

symmetric: wO(x,y) ='§hs\§n1I-E cos “; (20)
. LR (o} = . __lﬂx - Tt EL
axisymmetric: wO9(x,y) Zh(us T 0.1 sin== cos R) (21)

where g is a measure of the imperfection amplitude. Note that for the
symmetric imperfection § = w%m*/h, while for the (almost) axisymmetric

one, % = wl./1-1h.

IIT.2 Numerical Results

For all geometries considered, results are obtained for classical
simply supported (S5-3) boundary conditions, Egs. (22% and zero load
eccentricity. The load case considered is uniform axial compression. The
primary emphasis in the numerical studies is to establish which (design)
parameters influence the accuracy of the Donnell-type of shell approxi-
mation and establish the range of these parameters for which the accuracy

is acceptable (by comparison to the Sanders-type approximation).

Nyx(0,y) = =Nyy ;3 v(0,y) = w(0,y) = M, (0O,y) =0
_ (22)
Nex(L,y) = =Ngy 5 v(L,y) = w(L,y) = My (L,y) =0

Numerical results were generated by employing two different computers:
(a) the interactive computer IBM 43/31 at the Technion (Israel Institute
of Technology) Computer Center and b) the VAX 11/780 of the GTICES
(Georgia Tech Integrated Computer Engineering System) Systems Laboratory of

the School of Civil Engineering.
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The results for each geometry are presented and discussed separately.

Isotropic Geometry

The results are presented (in part) graphically om Fig. 3 and in
tabular form on Table 1. On Table 1, the geometry, as well as the computed
critical loads (Nxch = 0.606 EhZ/R and N:%: limit point loads), the
corresponding wave number, g, and the imperfection amplitude parameter S
are presented.

One observation is that the discrepancy between critical loads
obtained from the two different shell theory approximations (Sanders and
Donnell), is primarily affected by L/R and there is a small effect of R/h.
Note that as L/R increases the difference between the two results increases.
Moreover, for the same L/R there is a small R/h effect. As R/h decreases
the difference increases. The combined effect is shown on Fig. 3 by
plotting F versus the square root of the Batdorf curvature parameter, Z,

defined by
L

A -y2
Rh

> =

Furthermore, the obtained results substantiate the contention (2) that
the Donnell approximation is dependent on the wave number, n. Clearly,
from Table 1, if n » 4 the two theories yield the same critical load
(within one percent), but for n &4 the computed difference can be as large
as ten percent.

Finally, from Fig. 3, one can see that the imperfection sensitivity
decreases with increasing values for the curvature parameter. This is so

because, for the same value of the imperfection amplitude parameter,g , the

20



TABLE 1.

CRITICAL LOADS (ISOTROPIC GECMETRY) ;

5S-3; AXISYMMETRIC IMPERFECTION
-~
N Nex wave g L3
XX p = : Z
R cl N n: No. Imp
case . L/R R/h kN/cm XX ’
cm{in.) (1bs/in.) ci
© Sanders bDonnell Sanders Donnell Ampl.
1 10,16 (&) 1 1000. 4,457 0.652 0.652 13 13 0.5 30.9
(25.45) B L
-
2 10.16(4) 1 1000. 4,457 0.446 0.6446 13 13 1.0 | 30.9
(25.45)
3 10.16(4) 1 250. 71.319 0.246 0.248 8 8 1.0 | 15.4
(407.23)
4 10.16 (4) 5 250. 71.319 0.703 0.719 A A 1.0 | 77.2
(407.23)
5 10.16(4) 10 250. 71.319 0.790 0.831 3 3 1.0 |154.4
(407.23)
6 10.16(4) 2 188, 125,208 0.395 0.396 6 6 1.0 | 26.8
(714.94)
7 10.16(4) 5 188, 125.208 0.652 0.677 4 4 1.0 | 67.1
(714.94) ’
8 10.16(4) 10 188. 125,208 0.753 0.830 3 3 1.0 [134.2
(714.94)
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computed limit point value approaches the classical value (P increases) as
Z increases. Please note that the curves on Fig. 3 are drawn from points
corresponding to different L/R and R/h values.

In closing, it is worth mentioning that Hoff and Soong (22) plotted
similar results for perfect isotropic cylinders (using linear theory), but
for the 5S-1 boundary condition, i.e.,

at x = 0,L: Nyy = - ﬁ%x,ny =0, w=0 and My, = 0 (23)
Their (22) results show that the two approximations yield very close

critical loads (linear theory eigen-values).

Orthotropic Geometry

The orthotropic geometries and their properties are described in the
previous section. The numerical results are presented in tabular form,
Tables 2 and 3, and graphically in Figs. 4 and 5.

Table 2 contains results for various orthotropic configurations with a
virtually axisymmetric imperfection and 3 =1 [see Eq. (21)]. The first
column denotes the angle that the strong direction makes with the x-axis.
The next three columns describe the geometry. The classical value 1is
estimated from the data of Ref. 23(see Fig. 10c of this reference; Dk/De is
assumed to be one). The value of E;x should only be considered an
approximation used as a weighting function. This classical value, which is
based on a linear eigenvalue approach is independent of the R/L ratio (this
is also true for isotropic geometries). The data of Table 2 are plotted on
Fig. 4. Through the plots one may assess better the effect of certain
parameters, Fig. 4 shows plots of ? (the ratio of the limit point load to

the classical load) versus U L2/Rh, which is similar to the Batdorf
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curvature parameter for isotropic construction, for both shell approxima-
tions and separately for the two angles that the strong direction makes
with the x-axis. It is seen from Fig. 4 that the behavior is similar to
that of the isotropic geometry (see Fig. 3), but it is more pronounced for
the 90°-curves than it is for the 09-curves. In other words, when the
strong axis is in the x-direction, the Donnell approximation is accurate
(within 6%) even for large values of the curvature parameter (for L2/Rh &
20,000). For the 90°-curves the trend is the same, but the Donnell approx-
imation yields less accurate results even for small values of the curvature
parameter. Note that, as in the isotropic case, the effect of L/R is the
predominant one, while the effect of R/h is negligibly small. Moreover,
note that part of the effect due to the construction (orthotropic) is
burried in the weighting parameter ﬁ;xcq, because ﬁ;xcﬂ is dependent upon
the Exx/Eyy ratio. Finally, it 1s worth mentioning that, regardless of the
approximation (Sanders or Donnell), when the strong direction is along the
x—-axis the configuration is more sensitive to the initial imperfection than
when the strong direction is in the hoop direction (efor 0° is smaller
than P for 90°, everything else being equal).

Similar results are presented on Table 3 and Fig. 5, with the same
observations. The main difference here is that the imperfection is
symmetric and the R/h ratio is constant. It is stressed again that the
classical critical load is approximate in nature (taken from data of Ref.
23) and thus the critical load parameter(J-values should be considered as

qualitative rather than quantitative,
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TABLE 2:

CRITICAL CONDITIONS FOR ORTHOTROPIC GEOMETRIES

[wO = h (cos'z—r-r—)—(— 0.1 sin‘-—':E cos?\—é—)]
e 1bs /i N, o = N2 /N.
e xx s/1n. XX P" XX Nxxcl
Angle of
L,'z T
Strong (L2/Rn) Sanders Donnell lbs Sander§  Donnell
n
Direction | R/h L/R (Wave No.)| (Wave No.)
i
0° 188.7 2 27.5 92(7) 92(7) 487 - 0.189 10.189
0° 5 68.7 222(5) 229(5) l 0.456 0,470
0° 10 137 .4 265(4) 283(5) 0.544 0.581
900 2 27.5 230(10) 260(11) 481 0.478 0.541
909 v 1 13.7 157(6) 159(6) % 0.326 0.331
0o 353.8 2 37.6 69(8) 69(8) 270 0.256 ‘0.256
i
00 i 5 94.0 132(6) - 34 0.489 P -
i !
{ )
9009 i 2 37.6 127(7) 144(6) 262 0.485 10.550
i
900 ¢ 1 18.8 108(7) 111(7) * 0.412 10.424
|
+ !
*Yalues estimated (calculated) from data of Ref. 23.

25



M A __ﬂ
35 J 0
i i 1 - i
- s 7
- \\ s
~.Sanders
6=0°
4 | . J L
20 40 60 5 80 y 100 120 140
R a—
-} = 2 %
Fig. 4. Load Parameter p (==NXX/NXX ) vs. (L°/Rh)

ct

(Orthotropic Geometry; SS-3; Axisym. Imp.)

26



TABLE 3.

CRITICAL CONDITIONS FOR ORTHOTROPIC GEOMETRIES

(w© = h sin 3% nY)
w s1n LCOS R
Nex  tw lbs/in. [N P= ﬁlx/ﬁxx
(2] ct R,
Angle of
2 e .
Strong (L4/RH) Sanders | Donnell [lbs/in | Sanders ADonnell
Direction R/h L/R KWave No.) {Wave No.)
00 353.8 2 37.6 85(9) 85(9) 270 0.315 0.315
0o 5 94.0 125(6) 130(6) ! 0.463 0.481
00 10 [188.0 | 155(4) | 165(4) Y 0.574 | 0.611
i
900 2 37.6 145(5) 152(5) 262 0.553 0.580
900 5 1 9.0 195 (4) 215(4) L 0.744 0.821
900 Y 10 1188.0 | 212¢3) |271(3) 0.809 1.034
i

*Values estimated from data of Ref. 23.
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Laminated Geometry

For this geometry, the symmetric imperfection shape, Eq. (20), and the
geometric and material properties are presented in a previous article.

This geometry is taken from (21) in which experimental results are
reported for L/R = 2, Note also that because of the stacking (symmetric
and + 45°), the resulting configuration has Bij = 0, and in-plane (Ajj) and
bending (Dij) stiffness parameters that are similar to an isotropic
configuration,

For this geometry results are generated for several }—values (imperf
fection sensitivity study) and three values of L/R (2,5,10).

The results are presented in tabular (Table 4) and graphical form
(Fig. 6).

As seen from Table 4, the trend is the same as for the isotropic
geometry. For L/R = 2 the two shell theory approximations yield the same
critical load for all values of the imperfection amplitude parameter, but
different for higher values of L/R. Moreover, the wave number for L/R = 2
is six, while for L/R = 5 is four, and for L/R = 10 is three. The
similarity in behavior between the isotropic and the laminated geometries
is primarily attributed to the fact that for the laminated geometry Bij =
0, Aj1 = App and Dy = Dyp, which makes the elements of the Ajj and Djj
matrices be similar to the elements of amn isotropic configuration,

One important difference is that the critical load for the
corresponding perfect laminated geometry appears to be heavily dependent
upon the value of L/R (observation made by extrapolation of the curves in
Fig. 6). Finally, it is seen from Fig. 6 that the laminated geometry,

regardless of the shell theory, becomes more sensitive to initial geometric
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imperfections as L/R increases.

for L/R = 10, the curve drops rapidly.

basis of the generated results (limited), and they should not be

generalized.

For L/R + 2 the curve is rather flat but

These observations are made on the

TABLE 4. CRITICAL LOADS (LAMINATED GEOMETRY)
Critical Load,kN/cm (1lbs/in)
L/R = 2 L/R =5 L/R = 10
g€ Sanders n | Donnell Sanders n | Donnell Sanders n 1 Donnell
0.5 % 22.767 . 6 22.767 25.744 | 4 ¢ 26.444 43.783 | 3 63.047
 (130.00) ! (130.00) | (147.00) 1 (151.00) }(250.00) (360.00)
- T
1.0 | 20.665 6 21.103 | 22.767 | 4| 24.518 | 33.275 | 3 45.534
g(118.00);' ! (120.50) / (130.00) . (140.00) }(190.00) (260.00)
: : ; ! i !
i ! [ Iy I
: ] | | B
2.0 17.368' 6| 17.391 l 19.264 | 4 . 21.366 26.270 i 3¢ 35.902
. (98.60) 3 (99.30) J (110.30) ' (122.00) (150.00)6 }(205.00)
| | | |
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CHAPTER IV
ADDITIONAL RESULTS; w,F - FORMULATION

In addition to the results reported in Chapter III, certain parametric
studies were performed by employing the w,F-formulation (Ref. 15). These
studies include assessment of imperfection sensitivity and of the effect of
lamina stacking on the critical conditions of four-and six-ply laminated
cylinders under axial compression and torsion (individually applied).
These geometries represent variations of two symmetric geometries reported
in Ref. 21. Moreover, the effect of L/R-ratios on critical loads is
assessed for the four-ply and the six-ply geometries. In all of these
studies the load eccentricity is taken to be zero and the boundaries are
simply supported (SS-3). The geometries employed in the parametric

studies and the results are next presented, separately.

IV. 1 Description of Geometry

Two basic laminated configurations are used in generating results.
They consist of four-ply laminates, I-i, using various stacking sequences,
and of six-ply laminates, II-i with different stacking sequences. For both
groups five stacking sequences (i = 1,2,... 5) are employed.

First, the common properties of the orthotropic laminae (Boron/Epoxy;

AVCO 5505) are:

Ejp = 2.0690 x 108 kN/m2 (30 x 106 psi)

Eyp = 0.1862 x 108 wN/m2 (2.7 x 106 psi) (24)

Glp = 0.0448 x 108 kN/m? (0.65 x 10% psi) yf, = 0.21

Furthermore ,
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R =19.05 cm (7.5 in.)
and the length, L, is varied so that
L/R = 1,3 and 5.
The ply thicknesses (hy - hy-]) and the total laminate thickness for each

group 1is:

I-i; hyg-hyg-7 = 0.013462 cm (0.0053 in.) (25a)

h = 4(hy-hp_1) = 0.05385 cm. (0.0212 in.)
and II-i; hy-hy_] = 0.008975 cm (0.003533 in.) (25b)
h = 6(hg=hp_1) = 0.05385 cm (0.0212 in.)

Note that for both groups (I-i and II-1), the radius to thickness
ratio is 353,77 (=R/h).
For each group the five stacking combinations are denoted by I-i or

II-i, i = 1,2, ..5 and they correspond to

I-1 = 459/-459/-450/459; 1-2: 450/-45°/45°/-459; (26a)

-3 = -[1-21; I-4: 90°/60°/30°/0°; 1-5: 0°/30°/60°9/90°
II-1:  00/450/-450/-450/450/00 A
II-2: =459/45°/-45°/459/-450/45°/45°
I1-3 = -[11-2] r (26b)

1I-4 : -9009/72°9/54°/36°/18°/0°

II-5 : 09/18°/369/54°./72°/90° ,J
Where the first number denotes the orientation of the fibers (strong
orthotropic direction) of the outermost) ply with respect to the x-axis,
and the last of the inmermost. Note that in the u,v,w-formulation,
geometry I-1 (same as in this chapter) is listed as -45°9/45°9/450/-450,
This is so because the system of reference axes used in the u,v,w-

formulation (see Fig. 1) is different from the one employed in the
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w,F-formulation (see Ref. 15) [the x-axis is the same as shown on Fig. 1,
but the y-and z-axes are opposite from those shown on Fig. 1].

Geometries I-1 and II-1 are symmetric with respect to the midsurface
and they are identical to those employed in Ref. 21. Geometries I-2,3 and
II-2,3 denote antisymmetic, regular (hp-hy_j = constant) angle-ply
laminates. Finally, geometries, I-4,5 and II-4,5 are completely asymmetric
with respect to the midsurface.

Two load cases are considered and for each load case different imper-
fection shapes are employed. These are:

(%) for uniform axial compression

(a) for geometries I-i (i = 1,2 ..5)
wl (x,y) =§h 31n~'."—ll< cos % @7

(b) for geometries III-i (i = 1,2, ..5)

‘ 27X . X wy
wo(x,y) =¢h (~cos"- + 0.1 sin —~ cos ) 8)
¥ =% C L R ¢
Note that the first one, Eq. (27) denotes a symmetric shape, while the
second one, Eq. (28), an (almost) axisymmetric shape.

() for torsion

(a) for L/R =1
“i: wo = “fin X - 3nx w1
I-i: wo(x,y) = 0.6235383¢ h [(sm > 3 sin225) cos =
(s\mgll‘-~s v\‘”’")sm —1—] (2493)
—i: wO = ox_ 4 X ik
IT-i: wo(x,y) =3h [-0.583 133 (sin T - 3 sin L) cos =
+ 0.647926 (sulz?;f g sinfﬁg) ini‘é”— (241b)
{(b) for L/R = 2 and both groups
: . Mx A L Zrex ny
wo(x,y) = ¢h [-0.536769 (sin—= -~ = sin ) cos
v = 3 L R
ra) .t 4 . 4darx . f
+0.670961 (sin “—= - =sin —=) sin n¥] 3¢
L 2 L 2 ( )
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(¢) for L/R =5 and both groups

13 ’ . A n
wo(x,y) =§h [-0.417060 (sin:}?— %31n :\) cos TZZ—
+ 0,694444 (sinz—?:y. - -1?: sin4n:) sin %—-
+ 0.833333 (% sin *fi'L:’.‘ - %sin 5":") cos%] (31)

For this load case (torsion), the imperfection shape is taken to be
similar to the linear theory buckling mode (see Ref. 15). These shapes,
Eqs. (29), (30), and (31), represent some average of the modes of the

various configurations (the modes are very similar for all configurations)w

IV.2 Discussion of Results

The results for all configurations are presented both graphically and
in tabular form. Each group through, is discussed separately.

Table 5 presents critical loads (limit point loads—uniform axial
compression) for geometries I-i and three values of L/R (1,2 and 5). The
imperfection shape for this group is symmetric, Eq. (27), and the amplitude
parameter is varied from a small number up to two (w°max/h =5}). The
values obtained from the w,F-formulation differ slightly from those
obtained by the u,v,w-formulation (see Table 4). The difference is not
caused by the two different formulations (both based on Donnell equations),
but it is attributed to the fact that the load step in the u,v,w—-formula-
tion is larger than in the w,F-formulation. This is so, because it is
much more expensive (in time and money) to run the program for the former
formulation. It is seen from Figs. 7-9 that, for L/R = 1 and small values

for.z (2.4,0.75), the weakest configuration corresponds to I-2,3 (regular

antisymmetric angle~ply laminate), while the strongest configuration is the
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TABLE 5.

CRITICAL LOADS; UNIFORM AXIAL
COMPRESSION (I-i GEOMETRIES)

Eﬁ% in 1bs/in (wave No. at Limit PtJ)
Geometry L/R =1 L/R = 2 L/R =5
0.05 - 145.6 (6) -
0.10 130.7 (9) - 153.7 (4)
I-1 0.50 118.9 (9) 136.0 (6) 147.7 (4)
1.00 104.5 (9) 123.0 (6) : 135.9 (4)
2.00 67.1 (9) 98.3 (6) ; 121.0 (4)
|
0.05 - 138.8 (6) i -
0.10 126.7 (9) | - 145.3 (4)
I~ 2,3 0.50 115.1 (9) i 130.0 (6) i 140.2 (4)
1.00 98.6 (9) { 118.7 (6) | 129.0 (4)
2.00 61.3 (9) S 92.2. () 111.4 (4)
!
\ :
0.01 - g 243.1 (8) i -
0.05 - i 232.0 (8) 245.4 (5)
I-4 0.10 189.9 (12) i ~ -
0.50 130.7 (11) | 178.0 (8) 211.5 (5)
1.00 86.8 (11) . 137.2 (8) 187.7 (5)
2.00 46.1 (10) 90.0 (8) 153.4 (5)
0.05 - L 233.3 (8) 292.9 (5)
0.10 183.3 (11) | - -
I-5 0.50 146.3 (11) 191.0 (8) 268.3 (5)
1.00 97.5 (12) 150.0 (8) 239.0 (5)
2.00 48.0 (11) 109.5 (8) 194.0 (5)
|

Symmetric Imperfection
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Fig. 7. Critical Conditions for I-i Geometries;
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(85-3; Symmetric Imp.)
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Fig. 8 Critical Conditions for I-i Geometries;

Uniform Axial Compression; L/R = 2

(S5-3; Symmetric Imp.)
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asymmetric I-5 (except for a very small range of extremely small ¥ -
values). But, as L/R increases, I-2,3 yields the weakest configurations for
virtually all g-values. Moreover, for L/R> 2 the order of going from the
weakest to the strongest configuration is I-2,3, I-1,I-4 and I-5. Note
that asymmetric stacking may be compared to eccentric positionning of the
orthogonal stiffeners in metallic shells.

Table 6 presents critical loads (uniform compression) for geometries
I1-1i. The results are similar to those for group I (geometries I-i) but
with one exception; geometry II-1 is among the strong configurations,
while I-1 is among the weak configurations, especially for higher L/R
ratios (see Figs. 10-12 and 7-9). The reason for this is that the II-1
geometry has 0°0 plies on the outside and inside of the laminate, which
increases its stiffness in the axial directiom.

The results, for this group, are also presented graphically on Figs.
10-12. Fig. 10 contains results for L/R = 1. No results are reported
(limit points could not be found) for £ > 1.0. This implies, that for this
L/R value and € > 1 the load-deflection curve does not exhibit limit point
instability, but only stable response. For L/R > 2, the picture changed
and limit points are found. Note from the three figures, Figs. 10-12, that
as L/R increases the imperfection sensitivity of all configurations
decreases (the curves do not fall as sharply as they do for L/R = 1).

It is worth noticing that for L/R <2, there are many crossings of
the curves and it is not easy to identify the strongest or the weakest
configuration (which is g-dependent). On the other hand, at L/R =5, the
strongest configuration is II-5 and the order of going from the strongest

to the weakest is, II-5, II-1 , II-4, II-2,3. As expected, the + 45°
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TABLE 6.

CRITICAL LOADS;

UNIFORM AXIAL

COMPRESSION (II-i GEOMETRIES)

ﬁﬁx in lbs/in. (wave No. at Limit Pt)

Geometry g L/R =1 L/R = 2 .L/R =5
0.10 231.7 (12) 244.86 (8) 255.6 (5)
II-1 0.50 120.9 (11) 171.3 (8) 219.4 (5)
1.00 63.4 (10) 112.5 (8) 182.7 (5)
2.00 - 58.4 (7) 128.2 (5)
0.10 133.5 (9) 140.5 (6) 150.8 (4)
II - 2,3 0.50 120.7 (9) 134.6 (6) 147.8 (4)
1.00 87.2 (9) 114.1  (6) 136.2 (4)
2.00 44.7 (8) 72.6  (6) 111.4 (4)
0.10 | 177.7 (10) 211.3 (8) 227.0 (5)
IT - 4 0.50 101.7 (10) 157.0 (7) 199.3 (5)
1,00 | 57.9 (10) 108.7 (7) 171.0 (5)
| 2.00 i - 56.8 (7) 128.8 (5)
g i
; :
:0.10 ! 173.5 (11) 199.5 275.0 (5)
II-5 { 0.50 124.0 (10) 191.3 261.7 (5)
| L.o00 | 66.7 (10) 139.0 227.9 (5)
| 2.00 i 70.4 (7) 168.4 (5)
|

Axisymmetric Imperfection
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antisymmetric laminate is not the best layup for resisting axial
compression.,

Table 7 presents critical loads for geometries I-i subjected to
torsion. The results are also presented graphically on Figs. 13-15. The
reader is reminded that the imperfection shape for this load case is
similar to the linear theory eigenmode (see Ref. 15) and it is L/R-
dependent. Regardless of the shape, the imperfection paramer, §, is equal
to Wyax/h. For all L/R values the I-1 geometry seems to be the weakest one.
On the other hand, geometry I-5 yields the strongest configuration. For
L/R = 1 the 1I-2,3 configurations seem strong, but as L/R increases they
become weaker by comparison to the asymmetric configurations. If torsion
were to be reversed the strength of the I-2,3 configurations would remain
unchanged (the role of I-2 and I-3 would be interchanged), while the asym-
metric configurations could change for the worse. The reason for this
expectation is that for positive torsion, tension is expected along a
direction making a positive angle with the x—-axis (for isotropic construc-—
tion it would have beenz45%). The fibers are placed from 0° to 90 or from
90° to 0° in the various layers of I-5 and I-4, Thus, the tensile uni-
directional strength of the fibers is utilized. If the torsion is
reversed, these same fibers would tend to be in compression and this would
imply that I-4 and I-5 are weaker for negative torsion than for positive
torsion. Of course no mention is made of the effect of the (negative
torsion) imperfection shape. This could be a totally separate study.
Along these lines, note that the I-1 geometry (see Ref. 15) is stronger
when loaded in the negative direction than in the positive direction,
provided that the imperfection shape is similar to the positive torsion

buckling mode.
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TABLE 7. CRITICAL LOADS;

(I - i GEOMETRIES)

TORSION

=4 . ] ..
Ny in lbs/in (wave No. at Limit Pt.)

Geometries g L/R =1 L/R = 2 L/R =5
0.1 55.34 (15) 35.32 (11) 21.00 (7)
I-1 0.5 45.36 (15) 31.57 (11) 19.43 (7)
1.0 43.62 (15) 28.32 (11) 18.01 (7)
0.1 78.90 (13) 46,4 (9) 24.91 (6)
I~ 2 0.3 73.16 (13) - -
0.5 ‘ 66.36 (13) . 41.81 (9) 23.15 (6)
1.0 % - ' 37.89 (9) 21.57 (6)
nE -
0.1 : 79.34 (13) 46.36 (9) 24.84 (5)
I-3 0.3 : 73.41 (13) - -
0.5 66.50 (13) 41.84 (9) 23.08 (6)
1.0 ; - 37.96 (9) 21.51 (6)
)
0.1 |  56.69 (16) 44.18 (12) 29.81 (8)
I-4 ; 0.5 g 45.91 (15) 38.75 (12) 27.16 (8)
; 1.0 i 39.51 (14) | 34.22 (12) 24.74 (8)
j T
! 0.1 84.83 (16) 66.49 (12) 42.91 (8)
I-5 : 0.5 64.20 (16) 56.91 (12) 38.50 (8)
' 1.0 46.79 (15) 48.72 (12) 34.27 (8)
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Torsion; L/R = 2 [8S-3; Imp. - Eq. (30)].
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TABLE 8.

CRITICAL LOADS:

(II~-i GEOMETRIES)

TORSION

Lo, . . .
Nyx in 1bs/in (wave No. at Limit Pt)

Geometry 3 L/R =1 L/R = 2 L/R =5
|
} 0.1 53.54 (18) 38.49 (13) 25.50 (9)
11-1 1 0.5 43.49 (17) 31.74 (13) 23.10 (9)
! 1.0 40.15 (17) 27.17 (13) 20.92 (9)
?
; 0.1 82.46 (14) 48.25 (9) 26.17 (6)
j 0.3 73.194 (13) - -
I1-2 ! 0.4 69.76 (12) - -
i 0.5 - 42.43 (9) 24.50 (6)
! 1.0 ! - 37.31 (9) 23.00 (6)
i’ ! ‘
0.1 [ 82.12 (13) 48.25 (9) . 26.22 (6)
0.3 L 73,07 (13) - ; -
I1-3 0.4 69.69 (13) - : -
0.5 - ) 42.45 (9) 24.55 (6)
1.0 - { 37.40 (9) 23.06 (6)
0.1 57.13 (16) ! 44,11 (12) 29.69 (8)
11-4 0.5 44.23  (15) 37.73 (12) 27.36 (8)
1.0 37.46  (15) | 32.54 (11) 25.29 (8)
0.1 81.19 (16) | 63.61 (13) 41.96 (8)
11-5 0.5 56.42  (16) 52.33 (12) 38.10 (8)
1.0 42.23  (14) 41.38 (13) 34.51 (8)

50



ioorrrr r--rr T

(Ibs/in)

xy
9)
o

.

——N

OLLIJJIJJIJJ

0] 0.5 1.0

3

Fig. 16. Critical Conditions for II-i Geometries;
Torsion; L/R = 1 [SS-3; Imp. - Eq. (29b)]]

51



100' T T 1T T T T

) .
xyngs/ln)

——N

0 | | N | t | ] |
0 0.5 1.0

Fig. 17. Critical Conditions for IT-i Geometries;
Torsion; L/R = 2 [SS-3; Imp.- Eq. (30)7.

52



ny (Ibs/in)
T
If
I
T
-=[a
N
l‘CO

20 =
10 4
o bt )

o 0.5 1.0

Fig. 18. Critical Conditions for II=i Geometries;
Torsion; L/R = 5 [$S-3; Imp. - Eq. (31)].

53



Table 8 presents critical torques for geometries II-i. The results are
also presented graphically on Figs. 16-18. The conclusions are very
similar to those for geometries I-i. There is one important observation
though derived from the comparison of the two groups. Since both groups
have the same total thickness (0.0212 in.) and radius (7.5 in.) use of more
layers (from four to six) increases the load carrying capacity for the
antisymmetric configurations (I1-2,3 versus I-2,3), but it decreases it for
the asymmetric configuration II-5 (it can even be said for II-4). The
comparison between II-1 and I-1 is not valid, since II-1 contains two
0°-plies (outer and inner), while I-1 has no such plies.

Finally, when the curves (see Figs. 13 and 16) terminate at £ = 0.5,
it means that no limit point could be found for higher & -values.

Experimental results do exist for some of the configurations discussed
in this section (see Ref. 21). These along with other experimental

findings are discussed in the next section.

IV.3 Comparison with Experimental Data

The best means for establishing confidence in an analytical method
is to compare it with experimental results, obtained by researchers not
connected in any manner with those who developed the analytical procedure.
The purpose of the present section is to present such a comparison.
The literature was searched and two sets of experimental results are found;
(a) those for which the imperfect geometry is described in terms of
imperfection shape and amplitude and (b) those for which there is no data
describing the initial geometric imperfection. Moreover, the load cases
considered are uniform axial compression and torsion, applied either

individually or in combination.
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The comparison for class (a) (above) is direct, because both the shape
and the amplitude of the initial geometric imperfection are known. On the
other hand for class (b) geometries, the comparison is made by assuming a
shape for the initial geometric imperfection and by varying the amplitude
from some small fraction of the total thickness (five or ten percent to
approximately 507 of the total thickness}. Clearly, for this latter class

of imperfect geometries, the comparison is more qualitative.

IV.3.1 Description of Geometry

Experimental results, used herein for comparison with theoretical
predictions, are obtained from four sources. The first source is an
unpublished paper presented by Professor Shigeo Kobayashi at the
ATAA/ASME/ASCE/AHS 23rd SDM Conference in New Orleans in 1982 (Ref. 24).
The presentation took place in a "Work in Progress' session (structures).
At this presentation the author supplied the audience with an addendum to
his abstract which described the experimental results on Graphite—-Epoxy
Composite cylinders in axial compression. Through this information and
private communication that followed, the complete description was secured
and is listed herein as Group A, The imperfection amplitude and shape are
not known for this group.

The second source (Ref, 25) is a 1976 University of Toronto report
in which analytical and experimental results are given for imperfect Glass/
Epoxy cylinders subjected to combined loading. Only one set of results is
employed herein and it is listed as Group B. Information concerning the
imperfection shape and amplitude is provided by the author and listed below.
The load case for this group is a combined application of axial compression

and torsion.
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The third source is a 1974 AIAA Paper (Ref. 21) which presents
experimental results for Boron/Epoxy and Graphite/Epoxy imperfect cylinders
subjected to axial compresion and torsion, applied either individually or
in combination. Certain geometries, from this reference are employed
herein. These configurations are listed below as Group C. Information is
not provided for the imperfection shapes and amplitudes.

Finally, the last source is a 1973 Journal of Spacecraft paper (Ref.
26), which describes experimental and theoretical results on axially-loaded
Glass/Epoxy imperfect cylinders. This work was also performed at the
University of Toronto under the direction of Professor Tennyson. Three
geometries from this source are employed herein and they constitute Group D,
The imperfection shape and amplitude are supplied by Ref. 26.

In describing each group, information concerning the following is
provided: ZLoad case, number of plies, stacking description and order,
material and material properties, ply and laminate thickness, length and
radius of the laminate, boundary conditions, and information on the
geometric imperfection. Each configuration in a group (if more than one)
is listed as case-Li, where 1 1is an integer, and L assumes the letters A,
B, C and D (group).

Group A (Kobayashi et al - Ref. 24)
1) Load: Uniform Axial Compression
2) Material: Graphite/Epoxy

3) Material Properties: Ejj] = 17.40 x 106 psi;

Eyy = 1.115 x 10% psi
Gyp = 0.707 x 10% psi
Vi = 0.32
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4) Diameter and Length: 2R = 7.874 in.; L = 7.874 in.
5) Boundary Conditions: €C-4 (u =u, v = w = W, = 0)
6) Imperfection: No information. So far, the data are common for all
cases.
Case-Al: A three-ply laminate (90°/-20°/200°)

h = 0,0055 in., h = 0.0165 in.

ply
Case—~A2: A four-ply laminate (90°/-45°/-45°/0°)

h = 0.0057 in. h = 0.0228 in.

ply
Case-A3: A six-ply laminate (90°/90°/30°/-30°/-30°/30°)

h,1o = 0.0059 in.,

ply
h

0.0354 in.

Note that all three configurations are asymmetric with respect to the
midsurace.

The stacking order starts from the outside of the cylinder and moves
inward. Thus, in case~Al the outer ply strong axis (of orthotropy) makes a
90° angle with longitudinal axis of the cylinder; the next ply makes a
~20° and the inner one a 20° angle with the longitudinal axis.

Case~A4: There is a fourth configuration in this group, for which all

data are the same as Al, A2, and A3 except for the material

properties, thickness and the sequence of stacking. For this

" case,
E11 = 16.78 x 10% psi; Epp = 0.922 x 106 psi;
Gyp = .707 x 10% psi; Vi, = 0.32

hy1y = 0.00667 in; h = 0.04 in, and the stacking sequence for this six-

ply laminate is: (0°/60°/-60°/-60°/60°/0°)
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Note that, unlike the other three configurations in this

laminate is symmetric with respect to the midsurface.

Group B (Booton, Ref. 25)

1) Load: Combined Axial Compression and Torsion.

2) Material: Glass/Epoxy

3) Material Properties: Ej; = 6.32 x 109 psi;
Eggp = 1.74 x 106 psi;
Gy = 0.78 x 10° psi;

Vig = 0.435.

4) Diameter and Length; 2R = 13.2 in.; L = 12.4 in.

5) Boundary Conditions: CC-4 (u=u; v=w=w-=0).

6) Imperfection: wO(x,y) = (0.28) (0.27) cos qux
{(wO is positive inward; axisymmetric imperfection).
Only one configuration is used for this group.
Thus, case-Bl: A three-ply laminate (459/09/-459)

h = 0.009 in.; h = 0.027 in.

ply
Group C (Wilkins et al. - Ref. 21)

1) Load: Combined Axial Compression and Torsion
2) Material: Boron/Epoxy and Graphite/Epoxy

3) Material Properties:

(1) Boron/Epoxy (ii) Graphite/Epoxy

2.17 x 108 psi

fl

= 30.0 x 10%® psi E1g

=
—
—
i

1.44 x 100 psi

= 2.7 x 109 psi E99

i
[N
]

|
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0.65 x 106 psi Gyp = 0.65 x 100 psi

G2

V]_z = 0.21 Vip = 0.28

4) Diamater and Length: 2R = 15 in.; L = 15 in.

5) Boundary Conditions: SS-3 (Nxx=-ﬁxxi v = w = My,= 0)

6) Imperfection: No information

So far, the data are common for all cases.

Case-Cl: A four-ply Boron/Epoxy laminate
(450/-450/-45°/45°) hply = 0.0053 in.

h = 0.212 in.

Case-C2: A six-ply Graphite/Epoxy laminate
(04/45°/-450/-459/0,)
hply = 0.0056 in., h = 0336 in.

Note that both configurations are symmetric about the laminate

. midsurface.

As in Group A, the stacking sequence starts from the outside and moves

inward.

Group D (Tennyson and Muggeridge, Ref. 26)

1) TLoad: Uniform Axial Compression

2) Material: Glass/Epoxy "Skotchply" (XP250)

3) Material Properties: The properties are given separately for each
configuration.

4) Diameter and Length: 2R = 12.5 in., L = 12.45 in,

5) Boundary Conditions: CC-4 (u =14; v =w =w,x = 0),

6) Imperfection: w°(x,y) = &h cos“??
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Note that the laminate thickness (h) wave number (m) and imperfection
amplitude (5) depend on the configurations (case). Furthermore, the
imper fection shape for all configurations, is axisymmetric.

The above data are common to all cases

Case~Dl: A three-ply Glass/Epoxy laminate (0°/70°/-70°)

5.03 x 106 psi; Epp = 2.58 x 106 psij;

Ell

Gy = 0.837 x 108 psi; vy, = 0.345

h] = hyp = hy = 0.009 in (hj thickness of each ply;
from outer to immer: 1, 2, 3).
h = 0.027 in. = 0.0468

(8 = wopax/h) ; m =18 (see the imperfection expression);

Case la of Ref. 26.

Case-D2: A three-ply Glass/Epoxy laminate (45°/-45°/90°)

Ejp = 6.109 x 106 psi;

Epy = 2.69 x 106 psi; Gyp = 0.517 x 106 psi;

Vi = 0.317

hy = 0,009 in; hy = hg = 0.0092 in; h = 0.274 in.
£=0.,034; m = 18; case 4a of Ref. 26

Case-D3: A three-ply Glass/Epoxy laminate (30°/90°/30°)

E11 5.42 x 106 psi; Egp = 2.6 x 106 psi;

Glp = 0.687 x 10° psi; V5 = 0.365
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h; = h3 = 0.009 in., hy = 0.0093 in.; h = 0.0273 in.

e
5

0.0304; m = 17; case 1lla of Ref. 26.

Note that all three confirgurations are asymmetric. Moreover, all data are
taken from Ref. 26. In Ref. 26, the imperfection (axisymmetric) is given
in the form of

wo(x) = Eh cos %% (32)
where the number q is given (Ref. 26). The imperfection expression is
changed, herein, to be compatible with Eqs. (12).

The solution methodology described in Ref. 15 is employed to compute
critical (limit point) loads which are then compared to the experimental
results. This is easily done for the configurations for which the imper-
fection shape and amplitude are fully decribed.

For the geometries, for which no information concerning. the imperfec-

tion is given, the comparison is more qualitative.

IV.3.2. Theoretical Results and Discussion

The theoretical predictions, based on the solution scheme of Ref. 15,
and the comparison with the experimental results is discussed separately

for each group of configurations.

Group A

Since no information is provided (for this group), concerning the
amplitude and shape of imperfection, the comparison is expected to be more
qualitative than quantitative. It is assumed that the shape of imperfec-

tion is almost axisymmetric and the amplitude of imperfection is varied
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from a small fraction of the thickness to almost one thickness of the

laminate.

wo(x,y) = -%h (coszﬂx + 0.1 sin‘T—‘;—)\— cos“l) (28)
v L L. R
Note that |wpay| = 1.1 $ h, where h is the laminate thickness.

Both the theoretical and the experimental results are presented in
tabular form (see Table 9).

On Table 9, the buckling load and the observed circumferential wave
number are listed on columns two and three (data from Ref. 24). The next
three columns contain theoretical results for three values of the imperfec-
tion amplitude parameter }. For case-Al, the comparison suggests that the
maximum imperfection amplitude for the tested geometry might be larger than
one laminate thickness. Note that when '§= 1 (w9max/h = 1.1) the
theoretical load is 133.83 lbs/&n.

For case A2, the comparison suggests, that the "tested geometry”
maximum imperfection amplitude is (approximately) 0.9 h.

Finally, the comparison for the other two cases (AZ and A4) is much
better, since it suggests that the maximum imperfection amplitude is 0.4 h.
Again, it is stressed, that for this group the comparison is rather

qualitative.

Group B

Only one geometry is taken from Ref. 25. According to this reference,
the imperfection is axisymmetric and experimental results are reported for
a combined application of uniform axial compression and torsion. Moreover,
theoretical predictions are reported in Ref. 25, which are obtained by
employing a solution scheme that assumes axisymmetric prebuckling behavior

and finding bifurcation loads corresponding to asymmetric behavior.
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TABLE 9.

THEORETICAL AND EXPERIMENTAL RESULTS FOR GROUP A

Geometry Experimental Theoretical
_ n -7 n
Case- Nyx  1lbs. wave Nyx  lbs. wave g $Imp.
_ in. No. in - No. Amplitude
Al 120.56 10 151.19 12 0.3
140.55 12 0.5
133.83 12 1.0
é
A2 : 248.46 8 362.30 9 0.1
§ 294.54 9 0.5
é i 231.83 9 1.0
A3 L 802.99 - 945.78 9 0.1
i 872.99 9 0.3
' 792.91 9 0.5
A4 : 892.02 - 944 .66 10 0.2
! 895.38 10 0.3
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The present results, along with the theoretical predictions of Ref. 25
and the experimental findings are presented graphically on Fig. 19. It is

clearly seen from this figure that the agreement is very good.

Group C

For this particular group there is no information concerning the
amplitude and shape of imperfection. It is important then, to employ some
shape for the imperfection and vary the imperfection amplitude in order to
accomplish some comparison {(qualitative) with the experimental results
(Ref. 21).

Because the loading consists of both axial compression and torsion,
three imperfection shapes are initially employed. First, a virtually
axisymmetric imperfection is used, which is characterized by Eq. (28).

The other two shapes, used for the imperfection, correspond to
appxoximations of the linear theory (Ref. 15) buckling modes for positive
and negative torsion.

In particular, one of the Appendices of Ref. 15 deals with solutions
to the linearized buckling equations for the case of pure torsion. The
Galerkin procedure is employed and the following approximate form, for the
buckling mode, wl, is employed:

N M ,
Witx)'f] = Zo‘gl (AW\V\ ws % Y B“‘H${V\ %—-)X
" g (33)

[L. simmx _ L S-;n(m»vz)'rrx]
miT L (meyw (.

Because of orthogonality only one n-value is needed. A ten-term

approximation (m = 5) is obtained in Ref. 15. By studying the results it
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is observed that the linear theory buckling mode is well approximated by
two terms. This is accomplished by normalizing all coefficients, in the
ten-term approximation, with respect to By,. A comparison of the order of
magnitude of these coefficients yields that all are negligibly small except
two. Finally, these two remaining coefficients are adjusted such that the
maximum aplitude is}th Thus, one two-term approximation 1s used for
positive torsion, wO(+), and one two-term approximation for negative
torsion, w°(-). These expressionfare (applicable to both configurations;

cases Cl and C2).

W°(+)= gu\E.537cos %(sﬁn “L bm 3\17:) -
(34)
0.674 s\ Y—‘-‘;—(s'm%-‘;-; - 32- s{v\.4L:':’.‘)]
W) =3 h[0.583ces B (sin B - L5waT) 4
(35)
A AT (g 2T NVCALL
0,48 S\V\-'é' (SW\—-E._ - )]
Note that, for both expressions (by design)
Wonax /=3 (36)

The generated results for each configuration are presented (in part)
both in graphical and tabular form. Each configuration is treated

separately.
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Case C-1: For the case of pure torsion, theoretical predictions are
generated for the two imperfection shapes, Egs. (34) and (35), and for pos-
itive and negative torsion for each shape. These theoretical predictions
are shown as plots of the value of the critical (limit point) torsion‘ ﬁxd’
versus the imperfection amplitude parameter, £ , on Fig. 20. Note that as
the imperfection amplitude approaches zero the results corresponding to the
two shapes wO(+) and w9(-), approach the same value (as they should).
Moreover, it is seen that the shape corresponding to Eq. (34) has a
stabilizing effect for small values of § and for negative torsionm.

The experimental values for positive and negative torsion are also
listed on Fig, 20. Note that, for positive torsion the experimental value
is 26.5 1lbs/in, and the comparison with the theoretical result suggests that
the imperfection amplitude is a little larger than one laminate thickness.
On the other hand, for negative torsion, the experimental value is 65.7
lbs/in. and the comparison suggests that the imperfection amplitude is less
than two tenths of the laminate thickness.

In addition, Ref. 21 provides experimentally obtained, buckling
interaction curves (ﬁxx vé ﬁxy) for this geometry. Again since the
imperfection is not known, theoretical interaction cuvres are obtained
analytically for two shapes of imperfection. Eqs. (28) and (34) and
various values for the imperfections amplitude parameter, 5. This
comparison is for positive torsion and the results are shown graphically on
Figs. 21 and 22, The experimental data are shown by the dashed line.

For this case the comparison must be viewed as qualitative rather than

quantitative.
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Case - C2: For this six-ply symmetric laminate, a qualitative type of
comparison is presented only for positive torsion. The results are, in
part, presented graphically on Fig. 23 and in tabular form on Table 10.

Table 10 shows theoretical results obtained by the present analysis,
for two imperfection amplitude parameter values (‘§= 0.05 and §,= 0.50) and
the shape characterized by Eq. (34). First, the critical values corres—
ponding to individual application of the loads are obtained and then the
interaction curve is completed by assigning values for the applied torsion
and finding the corresponding critical (limit point) axial compression.
Note that the assigned values for the torsion are smaller than the

individually applied critical torsion.

TABLE 10. CRITICAL CONDITIONS FOR CASE - C2

Nxﬁ 442 .6 348.1 232.3 70.32 0
lbs/in.
o= t
0.05 4 H »
Nyy ﬂ 0 20 40 60 76.4
lbs/in |
n ’ 13 13 12 13 12
R é
g = i 1bs/in. |  328.3 262.5 70.5 0 -
0.50 i _ j
L Nyy 0 15 14 - 6l.4 -
i 1bs/in.
, n | 12 14 12 12
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On Fig. 23 the experimental results of Ref. 21, and .only the
theoretical prediction corresponding to & = 0.05 are shown. The two curves
seem to be very close for the entire range of interest. Thus, the
comparison between experimental and theoretical interaction curves seems to

be reasonable for this geometry.

Group D

There are several tests reported in Ref. 26. In all of these tests,
the imperfection is axisymmetric and theoretical critical loads are
reported in Ref. 26, which are obtained by employing a linearized bifurca-
tion analysis. The present methodology is employed and a comparison is
made through Table 11. 1In this table, the geometry, Ref. 26 results, and
the present critical loads are listed.

For the first geometry (case-Dl), the agreement between experiment
(buckling load) and present theory (critical load) is excellent. The
theoretical prediction of Ref. 26 is also very good. For the other two
geometries (cases - D2 and D3) the agreement seems to be reasonably good
(acceptable). For the same reason, the theoretical prediction of Ref. 26

may also be called reasonably good.

73



TABLE 11. A COMPARISON BETWEEN THEORY AND EXPERIMENT FOR GROUP D

Present
Description of Geometry Ref. 10 Results Results

Geometry L h R/h m 3 Test  Nyy(lbs/in) - lbs
Case-— in. in. No. Exper. Theor. |Nyy in. n
D1 12.42 0.0270 232 18 0.0468 la 148.9 153.2 151.2 11
D2 12.45 0.276 267 18 0.0340 b4a 142.0 165.1 174.5 11
D3 12,43 0.0273 229 17 0.0304 jlla 149.1 185.2 174.3 11

IV.4 Concluding Remarks

The comments of this section are only related to the work reported in
Chapter 1IV.

The limited parametric studies, reported herein, suggest that, in
order to resist uniform axial compression effectively, 0%-plies should be
placed at the extreme plies of the laminate (I-4,5, II-1,4,5). Clearly the
anti-symmetric +45% layup yields a weak configuration for this load case.
On the other hand for torsion, an asymmetric layup (of the type considered
here, I-4,5 and II-4, 5) can be very efficient for torsion of a specified

direction (say positive), but if the torsion is reversed, its efficiency is

in doubt. The antisymmetric + 45° layup, though, seems to be efficient for
torsion, which is expected to be acting in both directions (for different
load conditions, of course). The symmetric layup (I-1 and II-1) seems to
be the weaker configuration, for torsion (by comparison to all used
herein.)

The comparison with experimental results seems to be rather good.
When direct comparisons (quantitative) were possible (groups B and D) the
agreement was good. The qualitative comparison can also be considerd a
success. These comparisons definitely increase one's confidence in the

theoretical solution scheme.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

On the basis of the generated results and their assessment certain
findings can be reported.

First, theoretical solutions schemes have been developed for analyzing
the behavior of stiffened, laminated, thin cylindrical shells with initial
geometric imperfections, various boundary conditions and subjected to
static or suddenly applied destabilizing loads (eccentric and applied
individually or in combination). Behavior includes the establishment of
critical conditions and post-limit point reponse. This is true for the
w,F-formulation which is based on Donnell-type of kinematic relations. With
the u,v,w—formulation (regardless of the character of the kinematic
relations) dynamic critical loads cannot be found, since the solution
scheme was not carried to the post-limit point response (it was deemed
unnecessary to do so, because it is very expensive in time and money and
the expected benefits did not justify this extra effort).

Next, by comparing critical static loads obtained from two different
sets of nonlinear kinematic relations (Donnell and Sanders) it is seen that
for isotropic constructions or laminates with properties and layups that
yield properties similar to isotropic comstruction (Bjj = 0 Aj) = Ay, Dj)
Dyg, A1z = Ap3 = Dj3 = Dp3 = 0) the L/R ratio is the only influencing
parameter. This means that the two results are virtually the same for
small to moderate values of L/R (L/R& 5),but they differ by as much as 15%
at large L/R values (L/R = 10).

For orthotropic construction the results are similar to the isotropic

case, when the strong direction is along the cylinder axis (0° along
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x-axis) but they start having significant differences, even for small L/R -
values (L/R%2), when the strong direction is in the hoop direction
(y-axis). This conclusion is based on axial compression. No assessment is
made for other load cases and/or other laminate layups (+ 45° anti-
symmetric, asymmetric etc).

It is important (and therefore recommended) to continue this study
and (a) establish which design parameters affect the accuracy, when using
Donnell-type of kinematic relations, and (b) establish limits or bounds on
these parameters inside which the Donnell equations yield accurate results.

Moreover, even through the use of Donnell equations, more parametric
studies are needed (of the type, reported in Chapter IV), in order to
enhance our understanding of the buckling behavior of laminated shells, and
therefore improve our capability of designing efficient laminated shells.

Finally, the comparison between theoretical predictions and
experimentally obtained results serves to increase our confidence in the
developed solution scheme. Thus, this solution methodology may confidently
be used, especially in the preliminary design stage, because it allows a
quick and an inexpensively obtained assessment of the effect of various
design variables on the load carrying capacity of thin cylindrical shells

(when subjected to destabilizing loads),
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