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RESPONSE OF SUDDENLY-LOADED 
STRUCTURAL CONFIGURATIONS 

by 

G. J. Simitses 

troduction  
Dynamic stability or instability of elastic structures has drawn considerable 
tention in the past thirty years. The beginning of the subject can be traced to 
e investigation of Koning and Taub 1 24], who considered the response of an imper-
ct (half-sine wave), simply supported column subjected to a sudden axial load of 
ecified duration. Since then, several studies have been conducted by various in-
stigators on structural systems, which are either suddenly loaded or subjected to 
me-dependent loads (periodic or non-periodic) and several attempts have been made 
find common response features and to define critical conditions for these systems. 
a result of this, the term "Dynamic Stability" encompasses many classes of pro-
ems, many different physical phenomena and in some instances the term is used for 
70 distinctly different responses for the same configuration subjected to the same 
mamic loads. Therefore, it is not surprising that there exist several uses and 
kterpretations of the term. 
In general, problems which deal with stability of motion have concerned re-

:archers for many years in many fields of engineering. Definitions for stability 
Id for the related criteria and estimates of critical conditions, as developed 
trough the years, are given by J. J. Stoker [50]. In particular, the contributions 
E Thomson and Tait [53] and Routh [37] deserve particular attention. Some of these 
:iteria find wide uses in problems of control theory [30], stability and control 
E aircraft [40], and other areas [9]. The emphasis, in this paper, is placed on 
tructural configurations, which are subjected to sudden loads. As already mentioned, 
yen for just structural systems the diversity is extremely large. 
The class of problems falling in the category of parametric excitation, or pa-

metric resonance are the best defined, conceived and understood problems of dyna-
ic stability. An excellent treatment and bibliography can be found in the book of 
. V. Bolotin [4]. Another reference on the subject is J. J. Stoker's book [49]. 
or more recent works on the subject see [10, 26, 38, 5, 22, 28, 32]. 
The problem of parametric excitation is best defined in terms of an example. 

onsider an Euler column, which is loaded at one end by a periodic axial force. 
he other end is immovable. It can be shown that, for certain relationships be- 
ween the exciting frequency and the column natural frequency of transverse vibra-
ion, transverse vibrations occur with rapidly increasing amplitudes. This is 
ailed parametric resonance and the system is said to be dynamically unstable. 
oreover, the loading is called parametric loading, and the phenomenon parametric 
xcitation. 
Other examples of parametric excitation include (a) a parametrically loaded 

hin flat plate by in-plane forces, which may cause transverse plate vibrations, 
b) parametrically loaded shallow arches (symmetric loading) which under certain 
onditions vibrate asymetrically with increasing amplitude, and (c) long cylindri-
al, thin shells (or thin rings) under uniform but periodically applied pressure, 
7hich can excite vibrations in an asymmetric mode. Thus it is seen that, in 
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parametric excitation, the loading is parametric with respect to certain deft 
tion forms. This makes parametric resonance different from the usual forced 
bration resonance. In addition, from these few examples of parametric exciU 
one realizes that systems that exhibit bifurcational buckling under static cc 
tions (regardless of whether the bifurcating static equilibrium branch is su 
or unstable) are subject to parametric excitation. 

Moreover, there exists a large class of problems, for which the load is al 
statically but the system is nonconservative. An elastic system is conservat 
when subjected to conservative loads [45]; the reader is also referred to Zic 
book [57] for a classification of loads and reactions. An excellent review c 
subject of stability of elastic systems under nonconservative forces is given 
Herrmann [13]. He classifies all problems of nonconservative systems into th 
groups. The first group deals with follower-force problems, the second with 
blems of rotating shafts (whirling), and the third with aeroelasticity (fluid 
interaction; flutter). All of these groups, justifiably or not, are called p 
of dynamic stability. In the opinion of the author, justification is needed 
for the first group. Ziegler [56] has shown that critical conditions for thi 
of nonconservative systems can only be obtained through the use of the dynami 
kinetic approach to static stability problems. The question of applicability 
the particular approach was clearly presented by Herrmann and Bungay [14] thr. 
a two-degree-of-freedom model. They showed that in some nonconservative syst 
there exist two instability mechanisms, one of divergence (large deflection m. 
occur) and one of flutter (oscillations of increasing amplitude). They furth. 
showed that the critical load for which "flutter" type of instability occurs 
only be determined through the kinetic approach, while the "divergence" type e 
tical load can be determined by employing any oneof the three approaches (cla: 
potential energy or kinetic [45]). It is understandable then why many author: 
to the problem of follower-forced systems as dynamic stability problems. Some 
more recent works are those of =34, 12, 31, 51, 25, 27]. Furthermore, flow is 
vibrations in elastic pipes is another fluid-solid interaction problem that a] 
falls under the general heading of dynamic stability. The establishment of st 
bility concepts, as well as of estimates for critical conditions is an area of 
great practical importance. A few references [35, 3, 2] are provided for the 
terested reader. In addition, a few studies have been reported that deal witt 
phenomenon of parametric resonance in a fluid-structure interaction problem [2 
For completeness one should refer to a few studies of aeroelastic flutter [54, 

Finally, a large class of structural problems, that has received attention 
cently and does qualify as a category of dynamic stability, is that of impulsi 
loaded configurations and configurations which are suddenly loaded with loads 
constant magnitude and infinite duration. These configurations under static 1 
ing, are subject to either limit-point instability or bifurcational instabilit 
with unstable post-buckling branch (violent buckling). The two types of loads 
be thought of as mathematical idealizations of blast loads of (a) large decay 
and small decay times and (b) small decay rates and large decay times respecti 
For these loads, the concept of dynamic stability is related with the observat 
that for sufficiently small values of the loading, the system simply oscillate 
about the near static equilibrium point and the corresponding amplitudes of os 
lation are sufficiently small. If the loading is increased, some systems will 
perience large amplitude oscillations or, in general, divergent type of motion 
this phenomenon to happen, the configuration (turns out) must possess two or m. 
static equilibrium positions and escaping motion occurs by having trajectories 
can pass through an unstable static equilibrium point. Consequently, the meth, 
logies developed by the various investigators are for structural configuration: 
exhibit snap-through buckling when loaded quasistatically. 

Solutions to such problems started appearing in the open literature in the e 
1950's. Hoff and Bruce [16] considered the dynamic stability of a pinned half. 
sine arch under a half-sine distributed load. Budiansky and Roth [8] in study:  

the axisymmetric behavior of a shallow spherical cap under suddenly applied lo 



led the load to be critical when the transient response increases suddenly with 
little increase in the magnitude of the load. This concept was adopted by nu-
is investigators [46, 52, 7] in the subsequent years because it is tractable to 
ater solutions. Finally, the concept was generalized in a subsequent paper by 
ansky [6] in attempting to predict critical conditions for imperfection-sensitive 
:tures under time-dependent loads. 
:onceptually, one of the best efforts in the area of dynamic buckling, under 
enly applied loads, is the work of Hsu and his collaborators [18-21]. In his 
ies, he defined sufficiency conditions for stability and sufficiency conditions 
instability, thus finding upper and lower bounds for the critical impulse or 
ical sudden load. Independently, Simitses [43] in dealing with the dynamic 
ling of shallow arches and spherical caps termed the lower bound as a minimum 
ible critical load (MPCL) and the upper bound as a minimum guaranteed critical 
(MGCL). Finally, there exist a few reported investigations for the case of 

enly loaded systems with constant loads and finite duration [58, 44]. Note 
this entire class of problems falls in the category of dynamic analysis of 

ervative systems. 
The totality of concepts and methodologies used by the various investigators 
stimating critical conditions for suddenly loaded elastic systems (of the last 
gory) can be classified in the following three groups: 
(a) The Equations of Motion Approach (Budiansky-Roth [13]). The equations of 
on are (numerically) solved for various values of the load parameter (ideal 

or sudden load), thus obtaining the system response. The load parameter, at 
J1 there exists a large (finite) change in the response, is called critical. 
(b) The Total Energy - Phase Plane Approach (Hoff-Hsu [16, 18-21]),Critical 
litions are related to characteristics of the system phase-plane, and the emphasis 
)n establishing sufficient conditions for stability (lower bounds) and sufficient 
litions for instability (upper bounds). 
(c) Total Potential Energy Approach (Hoff-Simitses [16, 43, 44, 48]). Critical 
litions are related to characteristics of the system total potential. Through 
3 approach also, lower and upper bounds of critical conditions are established. 
last approach is applicable to conservative systems only. The concepts and 

:edure related to the last approach are next explained, with some detail. 

Total Potential Energy Approach; Concepts and Procedure. 
The concept of dynamic stability is best explained through a single-degree-of-
edam system. First the case of ideal impulse is treated and then the case of 
stant load of infinite duration. 
(a) Ideal Impulse 
Consider a single-degree-of-freedom system for which the total potential (under 
o load) curve is plotted versus the generalized coordinate (independent variable) 
see Fig. 1). Clearly, points A, B, C denote static equilibrium points and point 
enotes the initial position (8 = 0) of the system. 

—o Since the system is conservative, the sum of the total potential, u
T 

(under 
ro" load) and the kinetic energy, T is a constant, C, or 

TT°  + T°  = C 	 (1 ) 
eover (see Fig. 1), since r-1,7, is Tzero at the initial position (8 = 0), the con- 
nt C, can be related to some initial kinetic energy, T°. Then 

—o 	o 
U
T 
+ T = T. 	 (2) 

:t, consider an ideal impulse applied to the system. Through the impulse-momentum 
:orem, the impulse is related to the initial kinetic energy T i . Clearly, if T° 

equal to D (see Fig. 1), or 177r 
(eII)' 

 the system will simply oscillate between 

the 	equal to 



the value of the total potential at the unstable static equilibrium point C, 
then the system can reach point C with zero velocity (T° = 0), and there exi, 
possibility of motion escaping (passing position C) or becoming unbounded. 
motion is termed "buckled motion" in F43]. In the case for which motion is 1 
and the path may include the initial point (B), the motion is termed "unbuck: 
tion" in [43]. Through this, both a concept of dynamic stability is present( 
the necessary steps for estimating critical impulses are suggested. Note tin 
the unstable static equilibrium positions (pts. A and C) are established, the 
critical initial kinetic energy is estimated by 

Tc) 	= Tip  (C) 	 (3) 
cr 

Moreover, since T? is related to the ideal impulse, then the critical impulse 
estimated through lEq. (3). Observe that an instability of this type can occu 
only when the system, under zero load, possesses unstable static equilibrium 
Furthermore, if position C corresponds to a very large and thus unacceptable 
0 (from physical considerations), one may still use this concept and estimate 
mum allowable (and therefore critical) ideal impulse. For instance, if one r 
motion to the region between B1  and N I , then the maximum allowable ideal imp 

is obtained from Eq. (3), but with D or Ti?1, (B ) replacing UT  (C). Because o 
a critical or an allowable ideal impulse can LI obtained forTall systems (inc 
those that are not subject to buckling under static conditions such as beams, 
etc.). 

For multi-degree-of-freedom systems, it is possible to use the some conc 
dynamic stability and procedure for estimating critical conditions, but with 
ception. For these systems, critical conditions can be bracketed between low 
upper bounds (see [16, 46, 19, 43, 48]). One final comment for the case of i ∎  
impulse: Note from Fig. 1, in the absence of damping (as assumed), the direc 
of the ideal impulse is immaterial. If the system is loaded in one direction 
that the resulting motion corresponds to positive 9) then a critical conditiol 
when the system reaches position C with zero kinetic energy. If the system is 
ed in the opposite direction, then some negative 9 position will be reached w: 
zero kinetic energy, after that the direction of the motion will reverse, and 
nally the system will reach position C with zero kinetic energy. Both of the 
phenomena occur for the same value of the ideal impulse. 

(b) Constant Load of Infinite Duration 
Consider again a single-degree-of-freedom system. Total potential curve: 

plotted versus the generalized corrdinate 9 on Fig. 2. Note that the various 
correspond to different load values, P.. The index i varies from one to five 
the magnitude of the load increases with increasing index value. These curveE 
typical of systems that, for each load value, contain at least two static equi 
brium points, A. and B.. This is the case, when the system is subject to limi 
point instability and/or bifurcational buckling with unstable branching, under 
tic application of the load (shallow arches and spherical caps, perfect or bill 
cylindrical and spherical shells, two-bar frames, etc.). 

Given such a system, one applies a given load suddenly with constant magr 
and infinite duration. For a conservative system, 

71E,  + T
P 
 = c 	 (4) 

The potential may be defined in such a way that it is zero at the initial 
sition (0 = 0). In such case, the constant is zero, or 

U
T 
+ T

P 
 = 0 	 (5) 

Since the kinetic energy is a positive definite function of the generaliz 
velocity, then motion is possible when the total potential is non-positive (sh 
area, on Fig. 2, for P 2 ). From this it is clear that for small values of the 
plied load, the system simply oscillates about the near (point A 2) static equi 



position. This is also an observed phy-
sical phenomenon. As the load increases, 
the total potential at the unstable point, 
B., decreases, it becomes zero (point B 3 ), 
and then it increases negatively until 
points A. and B. (A4 , B4) coincide (the 
corresponding load, P4 , denotes the li-
mit point under static loading). For 
loads higher than this (P 4 ), the sta- 
tionary points (static equilibrium po-
sitions) disappear from the neighbor- 

0 hood. When the sudden load reaches 

Fig. 1 	Total Potential Curve 
(zero load) 

P,=0 

Ve#7 

3 

Aa  ,I34  

P5  

Fig. 	2 	Total Potential Curves 

ems the upper and lower bounds are 
,ote true critical conditions. 

one and 

?,xtension of the Dynamic Stability Concept  
The concept of dynamic stability, discussed in the previous article, is developed 

primarily for structural configurations, which are subject to violent buckling under 
static loading. It is also observed that, the concept can be extended, even for 
these systems, when one limits the maximum allowable deflection resulting from the 
sudden loads. This being the case then, the extended and modified concept can be 
ised for all structural configurations (at least in theory). 

This is demonstrated in this section through a simple model. First, though, 
some clarifying remarks are in order. 

All structural configurations, when acted upon by quasi-static loads, respond in 
a manner described in one of the four figures, Figs. 3-6. These figures characte-
rize equilibrium positions (structural response) as plots of a load parameter, P, 

the value corresponding to P 3 , a cri-
tical condition exists, because the 
system can reach position B 3  with zero 
kinetic energy and then move towards 
larger 9-values ("buckled motion" can 
occur). Thus, P3  is a measure of the 
critical condition. Note that the val-
ue 1, 1  is smaller than the value of the 
limit point, P4 . This implies that 
the critical load under sudden appli-
cation (infinite duration) is smaller 
than the corresponding static critical 
load. 

In this case, also, one may wish 
to limit the dynamic response of the 
system to a value small4.than B3 (see 
Fig. 2), say g i . Then the maximum al- 
lowable (critical dynamic) load cor-
responds to P. 

Note that in multi-degree-of-
freedom systems, one may easily esta-

upper and lower bounds for the 
critical dynamic load (see [16, 19, 20, 
21, 43, 47]). Moreover, it is clear 
that for single-degree-of-freedom sys-
the same and therefore,the estimates de- 

Finally, this concept of dynamic stability has been extended to the case of sud-
lenly loaded systems with constant load and finite duration [43] and to actual struc-
tures [42, 47, 48] rather than finite-degree-of-freedom models. The effect of sta-
tic preloading on the critical dynamic conditions has been investigated [44], by 
:his concept. 



Bifurcation 

Stable 

1 1  

(a) 

Imperfect geometry 

versus some characteristic displacement, O. The solid curves denote the respon 
of systems which are free of imperfections and the dashed-line curves denote th 
sponse of the corresponding imperfect configuration. 

Fig. '3 shows the response of such structural elements as columns, plates, 
unbraced portal frames. The perfect configuration is subject to bifurcational 
kling, while the imperfect configuration is characterized by stable equilibrium 
(unique), for elastic material behavior. 

Fig. 4 typifies the response of some pimple trusses and two-bar frames. Th( 
perfect configuration is subject to bifurcational buckling, but smooth (stable 1 
in one direction of the response and violent (unstable branch) in the other. Cc 
respondingly the response of the imperfect configuration is characterized by stc 
equilibrium (and unique) for increasing load in one direction, while in the othE 
the system is subject to limit point instability. 

Fig. 5 typifies the response of troublesome structural configurations such 
cylindrical shells (especially under uniform axial compression and of isotropic 
construction), pressure-loaded spherical shells and some simple two-bar frames. 
These systems are imperfection-sensitive systems and are subject to violent buck 
under static loading. 

Fig. 3 Bifurcated Equilibrium Paths 

with Stable Branching 

Fig. 4 Bifurcated Equilibrium Pa 
with Stable and Unstable 
ches 

Fig. 5 Bifurcated Equilibrium 
Paths with Unstable 
Branching 

Fig. 6 Snapthrough Buckling Paths 
(Limit Pt. or Ustable Bran-
ching) 



A large class of structural elements is subject to limit point instability. 	In 
cases, unstable bifurcation is present in addition to the limit point. The re-
se of such systems is shown on Fig. 6. Two structural elements that behave in 
manner are the shallow spherical cap and the low arch. Both elements have been 
extensively, in practice. 
Finally, there is a very large class of structural elements, which are always in 
le equilibrium for elastic behavior and for all levels of the applied loads. These 
ems are not subject to instability under static conditions. Typical members of 
class are beams, and transversely loaded plates. For this class of structural 
eats, the load-displacement curve is unique and monotonically increasing. 
The concept of dynamic stability, as developed and discussed [16, 8, 18-21, 43, 
is always with reference to systems which under static loading are subject to 
ent buckling. This implies that dynamic buckling has been discussed for systems 
static behavior shown in Figs. 4 (to the left), 5 and 6. 
In developing concepts and the related criteria and estimates for dynamic buc-
g it is observed that, even for systems which are subject to violent (static) 
ling, critical dynamic loads can be associated with limitations in deflectional 
onse rather than escaping motion through a static unstable point. This is es-
ally applicable to the design of structural members and configurations, which 
deflection limited. From this point of view then, the concept of dynamic sta-
ty can be extended to all structural systems. 
The extended concepts are demonstrated through the simple mass-spring (linear) 
em, shown on Fig. 7. Consider a suddenly applied load, P(t), applied at t = 0. 
load may, in general, include the weight (mg). In the case of finite duration, 

weight is considered to be negligibly small. 
First, the case of constant load, suddenly applied with infinite duration, is 
idered. 

Fig. 8 Total Potential Curves 

Fig. 7 The Mass-Spring System 

The problem is viewed from energy considerations. First, the total potential, 
and kinetic energy, T, for the system are given by 

1 	 1 U = —kx
2 	

—m - Px; T = 	(*) 2  T 	2 	 2 	 (6) 



Note that the system is conservative, the kinetic energy is a positive defir 
function of the velocity (for all t), and that 0 = 0, when x = 0. Then, U, + I 
and motion is possible only in the range of x-vatues for which Ti is nonpositivE 
Fig. 8). It is also seen from Eq. (6) that the maximum x-value 6orresponds to 
Note that the static deflection is equal to P/k (pt. A on Fig. 8). Therefore, i 
maximum dynamic response and maximum static deflection are to be equal to X, the 
p
st 

= 2 P
dvn. 

Now, one may develop a different viewpoint for this same problem. Suppose 
that a load P is to be applied suddenly to the mass-spring system with the condi 
that the maximum deflectional response cannot be larger than a specified value 
If the magnitude of the load is such that 2P/k < X, we shall call the load dynax 
catty subcritical. When the inequality becomes an equality, we shall call the c 
sponding load dynamically critical. This implies that the system cannot withsta 
a dynamic load P > kX/2 without violating the kinematic constraint. Therefore, 
P
dyn 

= kX/2. 
cr 
Moreover, on the basis of this concept, one may find a critical ideal impuls 

The question, in this load case, is to find the ideal impulse such that the syst 
response does not exceed a prescribed value X. From Fig. 8 and conservation of 

U°  + T = Ti  (7) 

and T. is critical if the system can reach position D with zero velocity (zero k 
netic ienergy). Thus, 

Ti cr 
	' 	'T 

uo(D, 	
T 

uo,x, 
(8) 

From the impulse-momentum theorem, the ideal impulse, Imp, is related to the 
initial velocity and consequently to the initial kinetic energy, 

	

Imp = liT 	(Pto) = mzi 	 (9 ) 

where X. is the initial velocity magnitude (unidirectional case) and t is the di 
tion time of a square pulse. 

From Eqs. (8) and (9) 	 1/2 

	

ImPcr 	 X 	
(10) 

Suddenly-Loaded Imperfect Columns  
As already mentioned, the field of dynamic stability of structural configurat 

started with the treatment of a suddenly-loaded imperfect column [24]. The impel 
column, under sudden application of an axial load, typifies structural systems wi 
static behavior shown on Fig. 3. Such a system, when of perfect geometry, is sut 
ject to bifurcational buckling with stable post-buckling behavior (smooth bucklir 
On the other hand, if there exists an initial geometric imperfection (small initi 
curvature), the system exhibits a unique stable equilibrium path. Moreover, this 
system has received the most attention, as far as dynamic buckling is concerned v 
loaded axially either by sudden loads or by time-dependent loads. Two complete r 
views (with respect to their date of publication) of this problem may be found in 
[23, 1]. As mentioned in these references, the problem dates back to 1933 with t 
pioneering work of Koning and Taub [24], who considered a simply supported, impe 
fect (half-sine wave) column subjected to an axial sudden load of specified durat 
In their analysis, they neglected the effects of longitudinal inertia, and they s 
that for loads higher than the static (Euler load) the lateral deflection increas 
exponentially, while the column is loaded, and after the release of the load, the 
column simply oscillates freely with an amplitude equal to the maximum deflection 
Many investigations followed this work with several variations. Some included in 
ertia effects, others added effect of transverse shear, etc. The real difficulty 



the problem, though, lies in the fact that there was no clear understanding by 
e investigators of the concept of dynamic stability and the related criteria. 
According to [1], definition of a dynamic buckling load is possible only if 

re are initial small lateral imperfections in the column. Instability stems then 
m the growth of these imperfections. "Buckling occurs when the dynamic load rea-
m a critical value, associated with a maximum acceptable deformation, the magni-
e of which is defined in most studies quite arbitrarily." There is some truth 
this, primarily because the elastic column does not exhibit limit point insta-
ity or any other violent type of buckling under static application of the load. 
re is need for a cautioning remark to the above statement, though. Analytically, 
has been shown [55] that, if a perfect column is suddenly loaded in the axial 
ection, the fundamental state is one of axial wave propagation (longitudinal 
illations). For some combination of the structural parameters, this state can 
ome unstable and transverse vibrations of increasing amplitude are possible. 
refore, for this perfect column, there exists a possibility of parametric reso-
ice, which is one form of dynamic instability. In spite of this, mostly all co-
Ins are geometrically imperfect and therefore, it is reasonable to investigate 
dynamic behavior of imperfect columns including all variations of different 

sects as reported in 	[23, 1, 12, 17, 41, 33, 41]. These effects include: 
_al inertia, rotatory inertia, transverse shear, and various loading mechanisms. 
-eover, experimental results have been generated to test the various theories and 
Teets. 

Finally, the criterion employed in [1] is the one developed by Budiansky and 
:h [8], and it is applicable only to imperfection sensitive structural systems, 
:h as shallow arches, shallow spherical caps, and axially-loaded, imperfect, cy-
idrical shells. The reason that the application of the Budiansky-Roth criterion 
I possibly yield results for imperfect columns lies in the fact that the corres-
iding perfect configuration (column) possesses a very flat post-buckling branch. 
is means that the corresponding imperfect column can experience, at some level of 
a sudden load or impulse, very large amplitude oscillations (change from small to 
age amplitude oscillations). Note that the static curve for the imperfect column 
tatic equilibrium), if the load is plotted versus the maximum lateral deflections, 
gilds small values for the maximum deflection for small levels of the load. As the 
ad approaches the Euler load, the value of the corresponding maximum deflection 
creases rapidly. On the other hand, if the criterion were to be applied to an im-
rfect flat plate, it is rather doubtful that reasonable answers could be obtained. 

ncluding Remarks  
It is clearly seen from the material presented so far that some suddenly load-

structural configurations are subject to parametric resonance and escaping motion 
means of a trajectory that passes through an unstable static equilibrium point. 
is is the case of system, which under static loading are subject to violent buckling. 

On the other hand, these systems which under static loading are prone to bifur-
tional buckling with stable postbuckling branches (such as columns and plates), 
ey are subject to parametric resonance, but there is no question of escaping mo-
on type of dynamic instability. This is true, because an unstable static equi-
brium point does not exist. Finally, systems that do now buckle under static 
ading are neither subject to parametric resonance nor to escaping motion type 
instability. In all systems though, because of the modified dynamic stability 

ncept, one might say that when sudden loads are applied, the problem is one of 
•amic response. By this, one means that one needs only find the motion of the 
stem resulting from the sudden loads. Note that for systems which exhibit vio-
mt static buckling, the deflectional limit imposed in the modified concept must 
:elude (be smaller than) the unstable static equilibrium position(s). 

Please note that the above remarks are based on various mathematical models, 
ase of which allow imperfection (geometric or loading type) and some of which do 
)t. If one considers real world type of structural configurations, which do pos-
Iss imperfections, one is inclined to discard parametric resonance for suddenly 



loaded systems. For instance, if a perfect column is impacted, see Wauer [55 
in-plane motion is accounted for, only then parametric resonance is possible. 
the other hand, if there exists a small initial curvature, the impacted colum 
vibrate in a nonlinearly combined mode, and there is no parametric resonance 
other type of dynamic instability. Similarly, if a symmetric low arch is sym 
cally loaded by a sudden load, the possibility of parametric resonance exists 
it is virtually impossible to expect both the arch and the loading to be perf 
symmetric. In the presence of imperfections, the arch is expected to become 
mically unstable only through escaping motion type of instability. 

Finally, one should clearly address one more point. If the sudden loads 
present the extreme cases of either the ideal impulse, or constant load of in 
duration, elastic dynamic instability of the escaping motion type is possible 
means that the level of the internal loads (stresses) is below the proportion, 
limit of the material. On the other hand, for constant sudden loads of relat:  
short duration, what might be more important is a material-type of instabilit' 
cause of the possibly large level of internal loads [58, 48]. 
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Summary 

An imperfect, laminated, circular, cylindrical, thin shell, simply 

supported or clamped at the boundaries, and subjected to a uniform axial 

compression and torsion (individually applied or in combination) is analyzed. 

The analysis is based on nonlinear kinematic relations, linearly elastic 

material behavior, and the usual lamination theory. The laminate consists 

of orthotropic laminae, which typically characterize fiber reinforced com-

posites. Two types of formulation have been developed; one is referred 

to as the w,F-formulation, based on Donnell-type of kinematic relations. 

The governing equations consist of the transverse equilibrium equation and 

the in-plane compatibility equation. These two equations are expressed in 

terms of the transverse displacement, w, and an airy stress resultant function, 

F. The other, referred to as the u, v,W-formulation, is based on Sanders'-

type of kinematic relations. The governing equations for this case consist 

of the three equilibrium equations. These three equations are expressed in 

terms of two in-plane displacement components u, v, and the transverse dis-

placement camponent,w . Donnell's type of shell theory approximation can be 

treated as a special case in the u, v, w-formulation. 

Some results are generated for certain geometries (isotropic and lami-

nated) and these serve as bench marks for the solution scheme. Results are 

also generated for composite cylinders by changing several parameters. The 

scope of these parametric studies is to establish the effect of (a) geometric 

imperfections, (b) lamina stacking, (c) in-plane and transverse boundary con- 

ditions and (d) load eccentricity on the critical conditions. Moreover, dynamic 

critical loads are obtained for certain configurations under axial load (sud-

denly applied). 



CHAPTER I 
INTRODUCTION 

Shell-like structural configurations find wide uses in complicated 

aerospace structural systems. Their use requires sophisticated analyses 

in order to answer questions associated with their behavioral response 

to external loads and extreme temperature environments. In the past forty 

years or so, numerous investigations addresses themselves to several specific 

questions of shell behavior, and the answers to these questions have tremen-

dously enhanced our understanding of their behavior. All of this was done 

primarily for metallic construction of these configurations. In particular, 

attention was paid to the degree of approximation involved in the use of 

various kinematic relations (which led to several linear and nonlinear shell 

theories), to the discrepancy between theory and experiment for the buckling 

of shells (post-buckling analyses and imperfection-sensitivity studies), to 

the use of stiffening for shell configurations (including eccentricity effects) 

to the effect of support conditions, cutouts, foreign inclusions and others. 

Moreover, as the size of shell-like structures increased and as the computa-

tional capability improved, large computer codes became available, for the 

analysis of the configurations. 

In the recent few years, the constant demand for lightweight efficient 

structures led the structural engineer to the use of nonconventional materials, 

such as fiber-reinforced composites. The correct and effective use of these 

materials requires good understanding of the system response characteristics 

to external causes (loads, properties of the environment, etc.). Several 

research programs have been initiated in order to evaluate the physical 

properties of such materials. The main emphasis in these studies is placed 

on the characterization of physical properties (finding the constants in the 



constitutive relations and how the environment affects them). In addition, 

there are several efforts related to failure criteria and failure-related 

effects, such as scissoring and delamination. 

In 1975, R. C. Tennyson (1) made a review of previous studies on the 

buckling of laminated cylinders. According to Tennyson's (1) review, perhaps 

one of the earliest stability analyses of homogeneous orthotropic cylindrical 

shells was published by March et al. (2) in 1945. After that time, several 

theoretical analyses limited to orthotropic shell configurations were performed 

by Schnell and Bruhl (3), Thielemann et al. (4), and Hess (5). In these studies, 

simply supported end conditions were partially satisfied. The general linear 

theoretical solutions to anisotropic cylinders were presented by Cheng and Ho 

(6) (7), Jones and Morgan (8), Jones and Hennemann (9) and Hirano (10). Several 

papers were involved in the comparison of the efficiency and accuracy between 

Flugge's linear shell theory, which was employed by Cheng and Ho (6) (7), and 

other shell theories (such as the work done by Tasi (11), Martin and Drew (12) 

whose theory was based on Donnell's equations, and the work done by Chao (13), 

whose analysis was based on Timoshenko's buckling equations). Stiffened com-

posite cylinderical shells have been analyzed by Jones (14). Terebushdo (15) 

and Cheng and Card (16). Theoretical analyses of the effect of initial geo-

metric imperfection based on anisotropic shell theory have been published for 

the loading cases of pure torsion (17) axial compression (18) and combined 

loads (19) (20). Moreover, several computer codes (21-32) (based on finite 

elements and/or differences) that deal with the analysis of stiffened shell 

configurations have been modified in order to account for laminated shell 

construction. These codes do serve their purpose, and that is that they are 

very good analytical tools. On the other hand, it is very difficult, if not 



possible, to use these codes for parametric studies or for evaluating 

the applicability and limitations of various shell theories. In this 

report, the following are presented: 

(1) The mathematical formulation and derivation of the governing 

equations, based on Donnell-type (33) nonlinear kinematic relations and 

in terms of the transverse displacement component and an Airy stress 

(resultant) function, defined in the text. 

(2) The mathematical formulation and derivation of the governing 

equations, based on Sanders'-type (34) nonlinear kinematic relations and 

in terms of the three displacement components (small strains but moderate 

rotations about in-plane axes). 

(3) Solution schemes for both formulations. The solution methodology 

for the first formulation includes post-limit point behavior, while the so-

lution methodology for the second formulation refers only to the pre-limit 

point behavior and it is employed to estimate critical static conditions 

(limit point loads). The listing of the related computer codes are presented 

in the Appendices of this report. 

(4) Some numerical results are generated (and presented herein) with 

two objectives in mind. (a) Some serve as bench marks for the solution 

schemes and (b) some limited parametric studies are performed in order to 

assess effects of boundary conditions and of the lamina stacking sequence, 

for axially-loaded laminated cylindrical shells. 

In closing, this report should be viewed as the first in a series of 

reports dealing with the behavior of geometrically imperfect, stiffened and 

laminated, thin, circular, cylindrical shells, supported in various ways 

(all possible extreme cases of transverse and in-plane boundary conditions) 

and subjected to static, as well as suddenly applied, destabilizing loads. 

3 



CHAPTER II. 

MATHEMATICAL FORMULATION AND SOLUTION 
METHODOLOGY 

The governing equations are derived, with all necessary steps shown in 

detail, in Appendix A. The geometry is a thin, circular, geometrically im-

perfect cylindrical shell. The construction consists of an orthogonally and 

eccentrically stiffened laminate (each lemina is orthotropic). Note that a 

laminated geometry, an eccentrically stiffened metallic configuration and a 

metallic shell are all special cases of the construction used herein. The 

stiffeners are uniform in geometry and with constant close spacing, which 

allows one to employ the "smeared" technique. The boundary conditions can 

be of any transverse and in-plane variety. This includes free, simply-sup-

ported and clamped with all possible in-plane combinations. 

The loading consists of transverse (uniform lateral pressure) and eccentric 

in-plane loads, such as uniform axial compression and shear. Eccentric 

means that the line of action of these loads (applied stress resultants) is 

not necessarily in the plane of the reference surface. 

In the derivation of the governing equations, the usual lamination theory 

is employed. Moreover, thin shell theory (Kirchhoff - Love hypotheses with 

two different approximation) and linearly elastic material behavior one assumed. 

The primary assumptions are listed in Appendix A. On the basis of these 

general assumptions two sets of field equations are derived. One, referred 

to as the w,F formulation, is based upon Donnell-type of kinematic 
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relations. For this case, the governing equations consist of the transverse 

equilibrium equation and the in-plane compatibility equation. These two 

equations and the proper boundary conditions are expressed in terms of the 

transverse displacement component, w, and an Airy stress resultant function, 

F. The second, referred to as the u, v, w - formulations, is based on 

Sanders' type of kinematic relations, those corresponding to small rotations 

about the normal and moderate rotations about in-plane axes. The governing 

equations, for this case, consist of the three equilibrium equations, expressed 

in terms of the displacement components u, v, and w. Also, the proper boundary 

conditions are expressed in terms of u, v, and w. In this formulation, the 

Donnell approximation is a special case of the more general Sanders' kine-

matic relations. 

The solution methodology is an improvement and modification of the one 

employed and described in Refs. 36 and 37. For details the reader is referred 

to Appendix A. A brief description of the solution scheme is given below and 

only for the w,F - formulation. 

1). First, a separated form (fourier series type) is assumed for the 

dependent variables , w(x,y) and F(x,y). In addition the initial geometric 

imperfection is also expressed in a similar form. 

2). Next, these expressions are substituted into the compatibility 

equations. Use of trigonometric identities and use of the orthogonality of 

the trigonometric functions reduces this nonlinear partial differential 

equation (compatibility) into a system of (4k + 1) nonlinear ordinary dif-

ferential equations. Furthermore, use of the Galerkin procedure in connection 

with the equilibrium equation (in the circumferential direction) yields 

(2k + 1) additional nonlinear ordinary differential equations in the (6k + 2) 
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dependent (on x) functions needed to describe the response of the system. 

Thus, through these steps the two nonlinear partial differential equations 

are reduced to a set of nonlinear ordinary differential equations. 

3). The nonlinear ordinary differential equations are reduced to a 

sequence of linear systems by employing the generalized Newton's method 

(Ref. 38). Iteration equation are derived, through this, based on the 

premise that a solution to the nonlinear set can be achieved by small cor-

rections to an approximate solution. 

4). Finally, the field equations (linearized iteration equations) and 

the corresponding boundary terms (linear set of equation) are cast into finite 

difference form by employing the usual central difference formula. 

Finally, a computer program has been written (see Appendix B for Flow 

Charts and Program Listings) for generation of results. The solution 

algorithum is a modification of the one described in Ref. 43. This modification 

is fully described in Appendix C. 
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CHAPTER III 

DESCRIPTION OF STRUCTURAL GEOMETRY 

Three basic configurations are used in generating results. The consist 

of a four-ply laminated cylinder, an isotropic cylinder and an orthotropic 

cylinder. All configuration are geometrically imperfect but the imperfection 

in either symmetric or (virtually) axisymmetric. 

The laminated geometries considered in the present study are variations 

of the one employed in (44). This reference reports experimental results for 

a symmetric angle-ply laminate, subjected to uniform axial compression and 

torsion. In addition some isotropic and orthotropic configuration are also used. 

III.1 Laminated Geometry  

For the laminated geometries, five different stacking combinations of 

the 4-ply laminate are used in the study. 

First, the common geometric and structural features are: each lamina is 

orthotropic (Boron/Epoxy; AVCO 5505)with properties 

EE" = .2,0 6 90 X /0 1  kNble ( 30 x /0 6  p s i) ;  21,2 =  0,21; 

E1 	/862 X /OicAVN 2  ( 2.7 X /0 4P S i.) R - /90 	( 5 ;TO ; 

G,2 7: 0,04482 X/01 	(0,65 X 10 4P S 	; L = 381 cm. PS- 

hp!), - 0,0 /3462 04( 0, 0053;,2.) 

(hpiyz 	 ; 	k = /, 2 , 3 ,4 	id  
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The five different stacking combinations are denoted by I - i , i = 

1, 2..5, and correspond to 

I- I 457 -45°/ -45°/45 °  ; I -2 ; 457- 4.s °  /4i2  /-4,5 °  ; 13 = 12  

— 4: 90e/6o730°/0 
	

1- 5 0 °/307607 90 ° 	 (2) 

Where the first number denotes the orientation of the fibers of the out-

most ply with respect to x, and the last of the innermost. Geometry I-1 is 

a symmetric one and it corresponds to that of (44). Geometries 1-2 and 1-3 

denote antisymmetric regular angle-ply laminates, while geometries I-4 and 

1-5 are completely asymmetric. 

111.2 Isotropic Geometry  

The isotropic cylinder has the following geometric and structural fea-

tures (aluminum alloy) 

E = 2,24 X10 7  kNfirti  (io,5xio‘psi); 	0.3 

P = /0 .M Cm. (41n) ; L /R I ; Rht -z /00 0 	 (3) 

111.3 Orthotropic Geometry  

Finally, the properties of the orthotropic configuration are (single 

00  - ply shell made of the Boron/Epoxy material) 

Ex = 2,00X/08' M/94 2 (30X/06  psi) ; Vxy 7:  0. 21  

Eyy =  0. I862 Po?  A-N/111 3  ( 2 ,7 X/0 6  psi) 

Gxy r: 0.04/42 X/og icN/m2 ( 65x/o 6psi); R= 190.5Dt,(7tin.) 

L 	381,o Cm. (1,5- i7/.) 	0.06-385 c771. (0,02/2171.) 
	

( 4) 
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111.4 Imperfection Shapes  

Two imperfection shapes are used in the study, one which is symmetric, 

and one which is virtually axisymmetric 

5)1 7,11/L14 *c 
	w°(x, y ) = git  4,41 2_1(?_( conaL 	 ( 5) 

wzigiympatic z 	w° (x,y) gh ( — C& e 27LX 4.  0 . 	/it XLX 	 ( 6) 

where t is a measure of the imperfection amplitude. Note that for the 

symmetric imperfection, Eq. ( 5), 	= w
o max/h, while for the (virtually) 

axisymmetric imperfection, Eq. (6 ), 	= w
o 
max/1.1h. 
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CHAPTER IV 

NUMERICAL RESULTS AND DISCUSSION 

Numerical results are generated, for the geometries described in the 

preceeding chapter, using the W-F formulation, for two load cases: (a) uni-

form axial compression and (b) torsion. The loads are applied individually 

and in combination. The results consist of finding pre- and post-limits point 

behavior, as well as critical, conditions for static and dynamic (sudden- 

some results) application of the loads. 

The generated results serve a multitude of purpose. Some results serve 

as bench marks for the solution methodology and the computer code. These 

results are compared with already known and accepted numbers. Some results 

correspond to parametric studies, which are performed in order to enhance our 

understanding of the behavior of laminated shells. The effects of lamina 

stacking on critical conditions is studied. Furthermore, the effect of in-

plane and transverse boundary conditions on critical loads is evaluated for 

some geometries. Moreover, the imperfection sensitivity is fully assessed 

for all geometries. Dynamic critical loads are obtained for very few geome-

tries. Most of the generated results are presented in tabular and graphical 

form. All generated results are not presented, herein, for the sake of bre-

vity. The conclusions, though, are based on all generated data. 

IV. 1.0 Axial Compression  

Several studies are performed for this load case. Each one of these 

studies is described and discussed separately. 
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IV. 1.1 Effect of Lamina Stacking (Static and Dynamic)  

For this study, the load is applied through the reference surface (which 

is the midsurface of the laminate) and the boundary conditions are SS-3 

(classical simply supported). The imperfection shape is symmetric, Eq. (5 ). 

Table 4-1 shows critical loads, 1;? (limit point loads), for each geo-

metry and various values of the imperfection amplitude parameter, t. It 

also presents the range of n-values used in finding critical loads, and the 

n-value corresponding to the critical condition. These results we also pre-

sented graphically on Fig. 4.1. 

Geometry I-1 is the one reported in (44). According to this reference, 

the classical (linear theory) critical load is 165 lbs./in (N 	) and the 
xxcl 

experimental value is 106 lbs./in. 	Note from Fig. 4.1 that through extra- 

polation N 	at t = 0 is approximately equal to 148 lbs./in., which is 10% 
xx 

lower than the reported [44] classical value. 

The results for geometries 1-2 and 1-3 are identical. Both geometries 

are antisymmetric. This is reasonable since (a) the imperfection shape 

is symmetric with respect to a diametral plane and (b) the axially-loaded 

cylinder does not distinguish between a positive 45 °  direction and a nega-

tive 45°  direction. 

Moreover, for virtually the entire range of t-values considered, the 

1-2(3) geometry seems to be the weakest configuration, while the asymmetric 

configuration corresponding to 1-5 is the strongest. The order of going 

from the weakest to the strongest is 1-2(3), I-1, 1-4 and I-5. Note that 

1-5 is a geometry for which the 0 -ply is on the outside. Now since buck-

ling occurs in an inward transverse displacement mode (w is positive), then 

the outside layer is in compression and it is reasonable to expect the strong-

est configuration to correspond to 1-5, the fibers of the outer ply are in 

the longitudinal direction. 
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Table 4.1 Critical Loads 

Geometry t 111  xx 
lbs/in 

n-Range n-Ran _ 
A n at N xx 

I-1 0.05 145.55 5-7 6 

0.50 136.0 6 

1.00 123.0 6 

2.00 98.3 6 

1-2,3 0.05 138.80 5-7 6 

0.50 130.0 6 

1.00 118.7 ' 6 

2.00 92.2 6 

1-4 0.01 243.1 7-9 8 

0.05 232.03 8 

0.50 178.0 8 

1.00 137.2 8 

2.00 90.0 8 

1-5 0.05 233.25 7-9 8 

0.50 191.0 8 

1.00 150.0 8 

2.00 109.5 8 
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Fig. 4.1 Imperfection Sensitivity of the various Configurations 
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Furthermore, the difference between 1-4 and 1-5 geometries is the order 

of stacking (one is the reverse of the other). Their behavior, then, can be 

compared to the behavior of orthogonally stiffened metallic shells with out-

side and inside stiffening. Geometry 1-5 is comparable to outside stiffening, 

while geometry 1-4 to inside. 

Figs. 4.2 and 4.3 present typical equilibrium paths for all geometries. 

Fig. 4.2 corresponds to geometry I-1, while Fig. 4.3 to geometry 1-4. As 

seen, the response is in terms of plots of applied load N versus average 

end shortening, eAV . It includes, pre-limit point behavior, limit points 

and post-limit point behavior, for each -value. The entire curves corre-

spond to the same wave number, n. This n-value is the one that yields cri-

tical conditions (the one at the instant of buckling). If a clear picture 

of post-limit point behavior is desired, one should show the plots that cor-

respond to other wave numbers. This would possibly reveal that the post- 

limit point curves cross each other, as in the case of isotropic shells (46). 

Finally, for the two asymmetric configurations, 1-4 and 1-5, critical 

dynamic loads are calculated of the entire -range (see Fig. 4.4). These 

are obtained by employing the criteria described in (46, 39), and they 

correspond to lower bounds of critical conditions when the axial compression 

is applied suddenly with infinite duration. According to this criterion 

and methodology for estimating critical dynamic conditions, when = 

(perfect geometry) the static and dynamic critical loads are the same. As 

the imperfection amplitude increases the dynamic loads are smaller than the 

static loads. For these geometries, 1-4 and 1-5, and Oq<2.0, the dynamic 

critical load, N is never smaller than 60r. of the corresponding static 
 xx 

load, 1?Q' xx. 
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Fig. 4.3 Axial load , Nxx , Versis Average End shortening, e av  (Conf. 1-4) 
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Fig. 4.4 Static and Dynamic critical loads versus Imperfection Amplitude t 
(Conf. 1-4 and 1-5). 
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IV. 1.2 Effect of Boundary Conditions  

The effect of both transverse and in-plane boundary conditions are 

assessed. 

Results are also generated for the isotropic geometry (aluminum alloy) 

and various in-plane boundary conditions. These serve as bench marks for 

the solution scheme, and the results are presented, in part, on Table 4.2 

and Fig. 4.5. For this geometry the shape of the imperfection is taken to 

be axisymmetric, Eq. ( 6 ). On Table 4.2, the n-value that corresponds to 

the critical load is given in brackets. Note that for small -values (see 

Fig. 4.5), the trend is exactly that suggested by Hoff and Ohira, indepen-

dently (see (47)), i.e., the weakest configuration is SS-1, the next one 

SS-2, while SS-3 and SS-4 yield the classical results. Note also that, 

through extrapolation, (as 	0), the present results agree with those of 

(47). For SS-1 the ratio of critical load to classical load is 0.55, for 

SS-2 0.68, and for SS-3 and SS-4 0.98. Clearly here (isotropic case) the 

geometry for boundary conditions SS-1 and SS-2, is not very sensitive to 

geometric imperfection, while for SS-3 (primarily) and SS-4, it is. Note 

that, for small -values, the v = const. in-plane boundary conditions (SS-3 

and SS-4) yield a stronger configuration. For higher -values the stronger 

configuration corresponds to u = const. in-plane boundary conditions (SS-2 

and SS-4). 
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Ta,fle 4.2 Effect of In-Plane Boundary Condition on Critical Load 
(Isotropic Geometry, Simply Supported Case). 

i 
Fixx, kN/m

2 
(lbsiin.) 

SS-1 	SS-2 SS-3 SS-4 

.10 2.52 3.05 3.973 4.307 
(14.40) (17.40) (22.69) (24.60) 
rn=121 [n=15] rn=131 [n=15] 

.50 	2.45 2.89 2.905 4.027 
(13.98) (16.50) (16.59) (23.00) 
[n=12] [n=15] [n=13] [n=153 

1.00 	1 	2.36 2.68 1.985 3.192 
1 (13.50) (15.30) (11.34) (18.23) 
1 [n=12] in=15] [n=13] [n=15] 

Note that, no attempt is made here to find the shape of the imperfection 

that yields the lowest critical load. For the case of the laminated shell, 

the imperfection amplitude parameter, t, is varied from 0.05 to two. The 

first number, 0.05, corresponds to a virtually perfect geometry shell, while 

the second number (two) denotes an amplitude in the neighborhood of two shell 

thicknesses (this is considered very large for thin construction). 

In order to establish the imperfection sensitivity of the laminated shell 

and the effect of boundary conditions on the limit point load (critical load), 

geometry 1-5 is employed, along with a symmetric type of imperfection, Eq. (5 ). 

As already established, geometry 1-5 yields the strongest configuration for 

SS-3, by comparison to all other geometries (1-i, i = 1, 2, 3, 4). 

Table 4.3 Effect of Boundary Conditions on Critical Loads. (Laminated Geometry I-5 

t 

N1  N 	, kN/m (lbs/in) 
xx 

SS-1 
n=7 

SS-2 
n=8 

SS-3 
n48 

SS-4 
n=9 

CC-1 
n=8 

CC-2 
n=9 

CC-3 
n=8 

CC-4 
n=9____i  

0.05 27.32 32.39 40.84 46.79 41.88 46.32 41.97 
(156.0 ) (185.70) (233.25) (267.26) (239.20) 264.46) (239.70) - 

0.50 26.76 31.78 33.43 40.15 37.10 40.75 37.22 41.44 
(152.83) (181.51) (190.90) (229.3) (211.86) (232.70) (212.59) (236.71) 

1.00 25.84 30.04 26.27 32.92 29.53 33.62 29.51 34.63 
(147.55) (171.58) (150.00) (188.00) 068.62) (192.00) 5168.571_097.801_ 

2.00 20.44 23.21 18.67 21.20 19.65 21.27 19.04 21.95 
(116.74) (132.55) (106.62) (121.10) (108.88) (121.50) (108.75) (125.37) 
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Table 4.3 lists critical loads for various boundary conditions and -values 

(C = w°max/h; for this case). The value of n denotes the number of full waves 

around the circumference at the instant of buckling. These results are shown 

graphically on Figs. 4.6 and 4.7. A number of observations are made. First, 

for low C-values (see Fig 4.6) SS-3 and SS-4 yield stronger configurations 

than SS-1 and SS-2. For higher values of 	SS-2 and SS-4 yield stronger 

configurations than SS-1 and SS-3. Another way of stating the same thing is 

that for low -values the v = const. in-plane boundary condition yields a 

stronger configuration, while for higher C-values the u = const. in-plane 

boundary condition yields higher critical loads. This conclusion is the 

same for isotropic geometries. On the other hand, for the clamped case, 

CC-2 and CC-4 (u = const.) yield stronger configurations than CC-1 and CC-3 

for the entire C-range considered. Another observation is that for SS-1 

and SS-2 the geometry is not as sensitive to initial geometric imperfections 

as it is for SS-3, SS-4, and CC-i (i = 1, 2, 3, 4) [see Figs. 4.6 and 4.7]. 

It is also worth mentioning that a comparison between the values at C = 0 

between SS-1 and SS-4 is reminiscent of what happens in the isotropic case 

(the critical load for SS-1 is virtually half the value of that for SS-4). 

IV. 1.3 Effect of In-plane Load Eccentricity  

Next, the effect of load eccentricity is assessed. In all configurations 

for which results are generated, the shell midsurface is taken as the reference 

surface. Then it is assumed that the uniform axial compression is applied 

eccentrically, which induces a bending moment at the boundary, M = E N xx 

[see Eqs A-35 & A-3a. Note that this load eccentricity affects only the 

simply supported boundary conditions. 
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Results are generated and presented for the isotropic geometry, ortho-

tropic geometry, and laminated I-1, 1-4 and I-5 geometries, using a symmetric 

imperfection shape Eq. ( 5 ), and classical simply supported boundary condi-

tions SS-3. 

These results are, in part, presented on Tables 4.4-4.6. 

One might expect a negative edge moment (corresponding to positive load 

eccentricity) to have a stabilizing effect on an axially-load cylindrical 

shell, regardless of the construction. Contrary to this, the generated re- 

sults do not support the expectation. For small eccentricities (-0.5<E/h<0.5) 

and isotropic geometry (see Table 4.4) the response seems to be insensitive 

to the eccentric application of the load. This is true for both imperfection 

shapes [axisymmetric and symmetric, Eq. (5 ) & ( 6 )]. 

Table 42:.4 Effect of Load Eccentricity (Isotropic & Orthotropic) 

Imperf. 
Shape 

Geometry 

11 \<\ 

/ 	in kN/m (lbs/in.) 
xx 

4 
12.5 2.5 	0.5 0 -0.5 -2.5 -12.f 

Axisym. 

Eq.(23) 

Isotropic 

0.5 3.08 
(17.57) 

	

2.40 	2.84 

	

(13.720 	(16.20) 
2.90 

(16.59) 
2.92 

(16.58) 
2.99 

(17.C7 
2.47 

(14.01) 

1 .0 

0.5 

1.98 
(11.336) 

3.026 
(17.284) 

•1.99 
(11.342) 

3.097 
(17.686) 

1.98 
(11.337) 

3.100 
(17.704) 

Sym, Eq. 
(22) 
Isotropic 

Axisym. 
Orthotro-
ic 

1.0 12.41 
(70.89) 

12.39 
(70.74) 

12.36 
(70.57) 
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Table 4.5 Effect of Load Eccentricity (Laminated I-1 Geometry) 

t 

3 x  x 
cr 

in kN/m (lbs/in.) 

ff/h = 0.5 E/h = 0 t/h = -0.5 

Axisym. Sym. 	1  Axisym. Sym. Axisym. Sym. 
Eq. 	(23) Eq. 	(22) Eq. p3) Eq. 	(22) Eq. 	(23) Eq. 	(22) 

0.5 22.21 21.75 23.58 22.85 26.52 23.35 
(126.85) (124.2) (134.71) (130.49) (151.48) (133.34) 

1.0 19.89 20.31 20.46 20.88 20.78 21.82 
113.61\ (115.98) (116.85) (119.25) (118.7) (124.6) 

2.0 13.10 	i 17.07 13.12 17.21' 13.17 17.33 
(74.83) 	! (97.46) (74.91) (98.30) (75.22) (99.00) 

SS-4 boundary conditions and n = 6 

Table 4:.6 Effect of Load Eccentricity (Laminated 1-4 and I-5 Geometries; 
Symmetric Imperfection; SS-3 boundary conditions). 

t 

R
xx 	

in kN/m (lbs/in.); n = 8 

I- 4 geometry I- 5 geometry 

EE
/h= 

 
E/h = 0 till" E/h 	

E/h " = 0.2569 -0.2569 = 0 0.2569 0.2569 
0.5 30.61. 30.66 30.67 33.00 	33.44 36.16 

(174.70) (175.08) 	(175.18) (188.49) 	(191.00) (206.52) 

1.0 24.07 24.02 	24.08 28.76 	26.27 29.18 
(137.45) I 	(137.18) 	(137.50) (164.27) 	(150.00) 	(166.62) 

2.0 15.78 15.76 	15.75 18.90  18.67 	18.90 
(90.10) (90.00) 	f 	(89.93) (107.96) (106.62) 	(107.85) 



For very large eccentricities (iE/h1 > 12), positive eccentricity has a 

stabilizing effect, while negative eccentricity has a destabilizing effect. 

In the intermediate range an irregularity is observed. It was suspected that 

one possible reason for this behavior may be attributed to the Poisson effect. 

As the load is applied, quasistatically, the midportion of the shell moves out-

ward because of the Poisson effect; it reaches a maximum expansion, before the 

load reaches its critical value, and then an inward motion takes place, and 

finally at and after collapse this inward motion continues. This sequence of 

events and the corresponding stabilization or destabilization of the load ec-

centricity is heavily dependent on the value of Poisson's ratio or the Al2  

term in the extensional stiffness matrix. For instance, some data are gene-

rated, for the isotropic geometry 	= 0.5; SS-3 and axisyymmetric imperfection) 

but with v = 0.1. The limit point loads, N A 
' (critical load) for three values xx 

of eccentricity (E/h) are: 3.305 kN/m (18.88 lbs/in) for E/h = + 0.5; 2.76 

kN/m (15.81 lbs/in.) for E/h = 0; and 2.745 kN/m (15.68 lbs/in) for E/h = -0.5. 

This clearly shows that positive eccentricity has a stabilizing effect. This 

observation is also true for the orthotropic geometry (see Table 4.4) for which 

the value of A l2  is small by comparison to A 11 . On the other hand, for v = 0.3 

and the laminated geometries for which the values of A
12 are of the same order 

of magnitude as A 11 , it cannot be said that positive eccentricity has a stabi- 

lizing effect (see Tables 4.5 and 4.6). In reality, for these geometries no de-

finite conclusion should be drawn regarding stabilization through load eccen-

tricity (or applied edge moment). It is worth observing, though, that for all 

laminated geometries (see Tables 4.5 and 4.6), whatever the effect is, it does 

diminish with increasing amplitude of imperfection. 
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IV. 2.0 Torsion with and without Axial Compression 

For this particular load case, in addition to the axisymmetric shape for 

the geometric imperfection, two additional shapes are employed in the studies. 

These additional shapes correspond to approximations of the linear theory 

(see Appendix D) buckling modes for positive and negative torsion for all 

five geometries. 

In particular, Appendix C deals with solutions to the linearized buck-

ling equations for the case of pure torsion. To this end, the Galerkin pro-

cedure is employed and the following approximation is employed for the buck-

ling modes 

M 

(A Co -7-# + in 
 111LX 

R 	La.. L 

A 	(i.+2)Ax  7 
- /...141/1, 

(i1-2)7L 	 L ( 7 ) 

Because of orthogonality, only one n-value is needed In Appendix D, a ten-

term approximation (M=5) is obtained for all five geometries. By studying 

the results, one two-term approximation for positive torsion, w° (+), and one 

two-term approximation for negative torsion, w° (-), for all five geometries 

are used in this study. The various coefficients are first normalized with 

respect to B2n , Eq. (7 ), and then adjusted such that the maximum amplitude 

is pl. 
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w°(-- = 	0. s.83128 co4 7,1-4(/.t;ity --1.AA-413)Lx 

0.147  .7.2 Ain n# (.401.‘ 27f( _ 	
( 9 ) 

vext,x/A. = 
	 c /o) 

The generated results for this case are presented, in part, both in tabu-

lar and graphical forms. The discussion, though, and the related conclusions 

are based on all data. 

First, Table 4.7 shows values of critical torsion, N , for the two asym- 
xy 

metric imperfection shapes, Eqs. ( 8 ) and ( 9 ) (corresponding perfect geo-

metry buckling modes for positive and negative torsion) and several values of 

the imperfection amplitude parameter. The torsion is applied in both directions 

and the critical values are recorded. The corresponding minimizing value of n 

(number of full waves) is shown in parenthesis. 

Note that the linear theory, perfect geometry critical values (from Ap-

pendix D) for geometry I-1 are 39.9 lbs./in. for positive torsion, and -75.5 

lbs./in. for negative torsion. Moreover, the experimental results obtained 

from (44) for this geometry (I-1) are 26.5 lbs./in. for negative torsion. 

Note that the construction (orientation of the plies) is such that the 

configuration is much weaker when loaded in the negative direction, regardless 

of which of the two imperfection shapes is used. Furthermore, when w ° (+) is 

present the configuration is somewhat sensitive for positive torsion (see second 

column at 	= 0.10, Nxy 
 = 35.32 sensitive for negative torsion (see third 

column). On the other hand, when w
o
(-) the reverse is true, i.e. the 
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n 11 12 11 11 11 

141.5 132.1 87.5 31.0 0.0 

0.1 N xr 
0.0 10.0 20.0 30.0 35.3 

n 11 11 11 11 11 

0.5 itx  137.4 123.0 87.4 43.2 0.0 

14:1, 
0.0 8.0 16.0 24.0 31.6 

n 11 12 11 11 11 

1.0 it  126.8 102.9 73.1 40.4 0.0 

0.0 7.0 14.0 21.0 28.3 

11 11 11 12 11 

1.5 174 x  105.7 80.9 63.8 26.2 0.0 

 	xv 
0 7.0 14.0 21.0 25.4 

g y 	n 

0.1 	N xx 

xy 

n 

0.5 -00  
fexy 

Te 
XV 

n 

6 	10 	10 	10 	11 

146.1 	135.1 	95.9 	40.9 	0.0 

0 	10.0 	20.0 	30.0 	36.7 

6 	10 	11 	11 	11 

140.2 	128.9 	81.9 	28.7 	0.0 

0.0 	10.0 	20.0 	30.0 	35.3 

6 	6 	10 	10 	11 

117.7 	117.2 	87.3 	48.4 	0.0 

0.0 	2.0 	16.0 	24.0 	33.8 

6 	6 	10 	10 	11 

93.7 	93.2 	73.6 	37.8 	0.0 

 0.0 	2.0 	16.0 	24.0 	32.5 

Table 147Critical Shear Stress Resultant 
(Geometry I-1 ; Positive & Negative Torsion) 

For w°(+) ; Eq. (8') 	 For w9 (-) ; Eq. (9) 

Nxy 	 -A 
y 

lbs./in. (n) 	-R4 lbs./in. (n) 	N 	lbs./in. (n) 	-ity  lbs./in. (n) x 

0.1 35.32 (11) -93.94 (13) 36.83 (11) -63.44 (9) 
0.5 31.57 (11) -92.80 (13) 36.06 (10) -57.61 (8) 
1.0 28.32 (11) -92.00 (13) 35.17 (10) -52.11 (8) 

Table 4.8 Critical Shear Stress Resultant 
[for all geometries and w (+)] 

xx in lbs./in. (n) 

I-I 1-2 1-3 1-4 I-5 

0.1 35.32 46.40 46.36 44.18 66.49 

(11) (9) (9) (12) (12) 
0.5 31.57 41.81 41.84 38.75 56.91 

(11) (9) (9) (12) (12) 

1.0 28.32 37.89 37.96 34.22 48.72 

(11) (9) (9) (12) (12) 

Table4. 9 critical Axial Compression-Torsion 
Interaction Data*  (Geometry I-1; 
Axisymmetric Imperfect) 

 

Table....4140critical Axial Compression-Torsion 
Interaction Data*  'Geometry I-1; 
100 (+), 141• (8)3 

   

   

*The unit of the stress resultant is lbs./in. 	*The unit of the stress resultant is lbs./in. 
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Fig. 4.8 Critical shear stress vs. Imperfection Amplitude [SS-3; w ° (+). Eq. 
A -744 ] 
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Fig. 4.9 Critical Interaction curves [Geometry I-1; Axisymmetric Imperfection, 
Eq. A1-2] 
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Fig. 4.10 Critical Interaction curves [Geometry I-1; Imperfection w° (+), Eq. 
A-216: 3 
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configuration is insensitive for positive torsion (fourth column) and rather 

sensitive for negative torsion (last column). Note that the experimental values 

(+ 26.5 lbs./in. and -65.72 lbs./in.), compare well with the theoretical values. 

Note that the tested specimen (44) is of unknown imperfection shape and ampli- 

tude. 

Next, Table 4.8 presents critical shear stress resultants (and the mini-

mizing n-value in parenthesis) for all five geometries and an imperfection 

shape similar to the positive torsion buckling mode of the perfect geometry, 

Eq. (8 ). These results are shown graphically on Fig. 4.8). Note that the 

strongest configuration corresponds to 1-5, while the weakest to the symmetric 

geometry I-1. This conclusion holds true for the imperfection shape used, w ° (+). 

It is worth observing that the regular angle-ply antisymmetric geometries, 

1-2 and 1-3, yield virtually the same strength for positive torsion and w ° (+). 

Moreover, geometry 1-4 is much weaker by comparison to the other asymmetric 

geometry (I-5) but not as weak as the symmetric geometry. These observations 

are reminiscent of the old external versus internal positioning of the ortho-

gonal stiffeners controversy concerning metallic stiffened configurations. In 

relation to this, in the case of orthogonally stiffened complete spherical 

shells subjected to uniform pressure (see Ref. 48) it is observed that the 

weakest configuration corresponds to zero (or close to it) stiffener eccen-

tricity, and the strength of the stiffened sphere increases as the eccentricity 

increases in either direction (inward or outward). Thus, one can conclude from 

Fig. 4.8 that all five configurations are imperfection sensitive, but not as 

sensitive as they are for the case of uniform axial compression (See Fig. 4.1). 

This conclusion is in line with the behavior of metallic cylindrical shells 

with or without stiffening members. 
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In Ref. 44, experiments are conducted for geometry I-1, to determine the 

interaction curve that separates the stable from the unstable region between 

uniform axial compression and torsion. Because of this, numerical results are 

obtained fro geometry I-1 and two imperfection shapes. One is virtually axi-

symmetric, Eq. (6 ), and one similar to the (positive torsion) perfect geo-

metry buckling mode, Eq. (8 ). The theoretical interaction curves are gene-

rated for several values of the imperfection amplitude parameter, 	by the 

following steps. First, the critical value for pure torsion is obtained. 

Then, starting with zero torsion and several vales of the applied shear stress 

resultant, but smaller than the critical pure torsion the corresponding cri-

tical axial compression is obtained. In each combination a study of the ef-

fect of n is performed. The results are presented in tabular form on Tables 

4.9 and 4.10 and graphically on Figs. 4.9 and 4.10. 

The data of Table 4.9 are plotted on Fig. 4.9 and of Table 4.10 on Fig. 4.10 

On both figures the experimental (44) interaction curve is shown by the dash- 

ed line. Not knowing what the imperfection shape and amplitude of the tested 

cylinder are, these plots may suggest a reasonable comparison between theory 

and test. 
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Iv. 3.0 CONCLUSIONS 

All of the conclusions are based on the generated results, which are 

obtained by the W, F-formulation. No results have, as yet, been generated 

by the u, v, w-formulation. 

From all results, one may list the following as the most noteworthy ccn-

elusions. 

1. Buckling, for all configurations, is of the violent type (snap through 

buckling through limit point instability). 

2. For SS-3 boundary conditions and axial compression with zero eccentricity, 

the strongest configuration corresponds to the asymmetric congiguration, 

1-5, while the weakest configuration corresponds to the antisymmetric 

configurations, 1-2 and 1-3. 

3. Again for SS-3 and axial compression, the dynamic critical loads (lower 

bounds, when the corresponding static loads, but their values are never 

smaller than 60% of the static critical loads. 

4. The average end shortening (for axial compression), corresponding to the 

limit point for the same -value, is smaller for the asymmetric geometries 

(1-4, 1-5) than for the symmetric (I-1) and antisymmetric (I-2 and 1-3) 

geometries by almost a factor of three. 

5. For the isotropic geometry (SS-i boundary conditions) 

5a: For the perfect configuration and very small imperfections, the effect 

of in-plane boundary conditions is such that SS-3 and SS-4 (v = const.) 

yield stronger configurations than SS-1 and SS-2 (N xy  = -F ,xy  = 0) 

5b: For higher values of the imperfection amplitude, 	SS-2 and SS-4 

(u = const.) yield stronger configurations than SS-1 and SS-3 

(N 	= F, 	) 

xx 	yy xx 
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6. For the laminated geometry, the effect of in-plane boundary conditions for 

SS-i is the same as for the isotropic geometry. For clamped boundaries, 

CC-2 and CC-4 (u = const.) yield stronger configurations that CC-1 and 

CC-3, for the entire -range. 

7. For both geometries, 1-5 and isotropic, the sensitivity to initial geometric 

imperfection is dependent upon the in-plane boundary conditions for SS-i. 

When v = const (SS-1 and SS-2), the geometries are not very sensitive. On 

the other hand, when u = const the geometries are very sensitive. 

8. As far as the effect of load eccentricity on critical loads is concerned, 

no general conclusion can be drawn. But whatever the effect is (stabi-

lizing or destabilizing for a given geometry), it diminishes with in-

creasing value of the imperfection amplitude parameter (-values). 

9. When loaded in pure torsion, the strongest configuration corresponds to 

geometry T -5 (asymmetric), while the weakest corresponds to the symmetric 

geometry I-1, for the imperfection shape corresponding to the positive 

torsion buckling mode, w° (+). 

10. Geometry I-1 is weaker when loaded in the positive direction than when 

loaded in the negative direction regardless of the imperfection shape 

(for all that were employed). 

11. When loaded in pure torsion, laminated shell configurations are sensitive 

to initial geometric imperfections, but not as sensitive as when loaded 

in axial compression. 

12. Comparison between theoretical predictions (corresponding to various im-

perfection amplitudes and shapes) and experimental results is reasonably 

good. 
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APPENDIX A 

MATHEMATICAL FORMULATION 

A. 1.0 Introduction 

The governing equations are derived, in this section, for the following 

geometry and loading. The thin, circular, cylindrical shell is assumed to 

be geometrically imperfect. The construction is laminated (each lamina is 

orthotropic) and in addition, the shell is orthogonally and eccentrically 

stiffened. The stiffeners are uniform and with uniform close spacing, 

which allows one to employ the "smeared" technique. The boundary conditions 

can be of any transverse and in-plane variety. This includes free, simply-

supported and clamped with all possible in-plane combinations. The loading 

consists of transverse (uniform lateral pressure) and eccentric in-plane 

loads, such as uniform axial compression and shear. Eccentric means that 

the line of action of these loads (applied stress resultants) is not 

necessarily in the plane of the reference surface. In the derivation of the 

governing equations, the usual lamination theory is employed. Moreover, 

thin shell theory (Kirchhoff-Love hypotheses) and linearly elastic behavior 

are assumed. The primary assumptions are listed below: 

(1) The shell is thin (total smeared thickness is much smaller than 

the initial average radius of curvature-cylinder radius). 

(2) Normals remain normal and inextensional. 

(3) The strains are small, the rotations about the normal are small 

and the rotations about in-plane axes are moderate. 

(4) The imperfection shape is such that the initial curvature is small 

ERIw° ,.. <<1; i = x,y]. 11 

(5) The stiffness are along principal directions. 

(6) The stiffener-laminate connections are monolithic. 
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(7) The stiffeners do not carry shear; shear is entirely trans-

mitted by the laminate . 

(8) The stiffeness are torsionally weak and thus they do not con-

tribute to the shell twisting stiffness (the equations and related pro-

grams can easily be changed to accomodate the case of torsionally strong 

stiffeners). 

On the basis of these general assumptions, two sets of field equations 

are derived. One, referred to as the w, F - formulation, is based on 

Donnell-type of kinematic relations. The governing equations consist of 

the transverse equilibrium equation and the in-plane compatibility equation. 

These two equations and the proper boundary conditions are expressed in terms 

of the transverse displacement component, w, and an Airy stress resultant 

function, F. The second, referred to as the u, v, w - formulation is based 

on Sanders' type of kinematic relations, those corresponding to small rotations 

about the normal and moderate rotations about in-plane axes. The governing 

equations for this case consist of the three equilibrium equations. These 

equations are expressed in terms of the three displacement components, u, v 

and w. Also, the proper boundary conditions are expressed in terms of u, v, 

and w. The corresponding Donnell approximation appears as a special case of 

the more general Sanders' kinematic relations. The derivation along with all 

necessary relations are presented separately for each formulation. 

A. 2.0 The w, F - Formulation  

The geometry and sign convention for this formulation are shown on Figs. 

A.1 and A .2. 

The topics of kinematic relations, stress and moment resultants, governing 

equations, boundary conditions and solution procedure are treated separately. 

38 



Ref, Surf. 

h N 

ca001111111• C•1016"111111111.1111111r3 

Y 	ey I Positive, 
Centroid 	if rings are inside 

Fig. A, 1 Geometry 



Y 

Stress Resultants 

Ho 
140 

Nyy 

Moment Resultants 

Fig. A.2 Sign Convention 
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A. 2.1 Kinematic Relations 

Let w° be measured from the perfectly cylindrical surface to the 

refer surface of the laminated shell. Let w denote the transverse 

displacement component of reference surface material points and be 

measured from the undeformed surface. Let u and v denote the usual 

in-plane displacement components along the x and y directions respective-

ly. 

The Donnell-type (33) kinematic relations are given by 

m, = 	- z  Kxx 

Eyy  E 	Z k yy 	 ( 11 - ) 

Yxy = Y;; - 2 Z k Yy  

where the superscript "o" denotes reference surface strains and the n's 

denote the reference surface changes in curvature and torsion. Note that 

the positive z-direction is inward (see Fig. A.1). 

According to Donnell the e ° 's and is are related to the displacement 

components by 

	

2 	0 

,x + 	Pv,„ -+ v4,x W,„ 

2 

E ;), 7-  771Y 	+ 2 	''`4 Y 
„ 

dxy = 	V;x 1^/iX KipY Mx My 	x 

(A -2 ) 

xx = cox,x 	W,x),x = 

)( Yr = Wy,y = WAY ),y 	Wiry 	 (A -3) 

)1",cy = 40),y  = c6x = IV,xy 

A. 2.2 Stress-strain Relations  

Each lamina is assumed to be orthotropic and the directions of 

orthotropy (1,2) make an angle 0 with the in-plane axes (x,y). 
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The orthotropic constitutive (it is assumed that the generalized 

Hooke's law holds) relations for the kth lamina are given below. Note 

that for an n-ply laminate k varies from one to n, and the first ply 

(or lamina) is on the outside, while the nth ply is on the inside 

(see Fig. A.1) .  

(k1 

where 26 12 
= y

12 
and 1, 2 are the orthotropic directions. 

Since one is interested in relating the stresses to the strains 

in the xy frame of axes, the usual transformation relation for second 

order tensors are employed (see Ref. 35 for details) and the transformed 

Gil 

-00, , 
Q /2  0 E 1 I 

Q „ 0 e92 ( A —4 ) 

o Q33 2 €1 2 

constitutive 

Q 1  I 

C121 

01 1 

equations 

00  

0.3 

QiI 
 

(for the 

Q 
	0  13 

Q22 	Q23 

Q4 	Q 13 

kth ply) 
(k) 

Ex„ 

EY),  

Exy 

become 

where 

(A -5 

[Q] = ET I P 1 [ T ] 	 ( A -6) 

cos2e sin2o sin 26 

S; 6 	Co S2  

sin2e .f sm29 c0s29 

and 

[7] = (A -7) 

Next, the stress-strain relations for the stiffeners are 

Gxxst  = Est Ex, 

Cryyst = 	r E r >1  

(A -8) 
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C-xxsi —I A 
7c- 	x  

yyY 
 d

A 
flY 

0 

(A -4) 

(A -to) 

Crxx 

For a stiffened laminate these are 

Nyy 

Nxy 

and 

d. + 

d. + 

e• 	i  

rqxx 

An  

= 	z 

A 

where Est and Er 
denote the Young's moduli for stringer and ring material 

respectively. Note that according to the smeared technique assumptions, 

stiffeners do not transmit shear. 

A. 2.3 Stress and Moment Resultants  

Instead of dealing with stresses, it is more convenient in thin 

shell and plate theory to deal with integrated stresses. This leads to the 

introduction and definition of stress (N..) and moment (M..) resultants. 
13 

Ax  and Ly are the s tr inger and r ing spac ings  (respectively), A i  denotes the 

proper stiffener cross-sectional area with A
x 

denoting stringer area and 

Ay  ring area, and ho 
hn denote the outer surface and inner surface coordinate 

of the laminate (see Fig. A.1). Note also that the above definitions lead to 

the sign convention shown on Fig. A.2 

Substitution of Eqs. A-5 and A.,8 for the stresses in Eqs. A-9 and A-10 

prior substitution of Eqs. A-1 for the strains in Eqs. A-5 and A-8 and 

performing some minor mathematical operations lead to 
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M AX  

M yy 

M xy 

=E tQ 
N 	 (jof 

EAX o  ° 
Lx -x xx 

Er Ay  Q  e° 
Y 

0 

MO. 

0 
Eyy  z 

(A - 12) 

•■• 

0 

E XX 
	 k XX 

Eyy 	Z kYY 

6 xy 
	 2 kxy  

H 	_... (Jo 

fit

hk _E EQ1 
k- 

NXX 

NX V 

 

(A - ) 

O 

 

  

  

where e e are the stiffener eccentricities (positive if on the side of 
x y 
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positive z) and I
x 

, I are the stiffener second moment of areas about 
Yc 

centroidal axes. 

After performing the indicated operation [Eqs. A-11 and A-12],  one 

may write 

    

0 

Exx 

EYY 
0 

ny 

kxx 

kyy 

 Xxy  

 

  

Ai Ao A13 —as - Br2 - 813 

A ,2 An A23 - 	-B.22 - g23 

A13 A23 A33 8/3 - 823-833  

811 B12 821 	-D12  _D13  

812 822 841 -1:::)42 --D22-V1

-D  813 B23 B33 - D13 	-- 

  

NiAx 

   

NYY 

NA/ 

M" 

MYY 

xy 

  

(A -43) 

      

      

      

where 

   

Est  Ax o „ex 	0  
O 	r AY 

-27 

0 0 

( A -40 ) 

   

 

EsfAx  _Ex  -12x  0 	0 
0 	ETA)/ 

_ey  , 

0 	0 	0 

(A - /4 b) 

    

    

and 

  

 

( irc-Ke:A x) 	0 	0 

--7-;(1-y,+.4) 0 (A -14.0 
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NYY 

Nxy 

  

with 

(k) 

A i,a, .7. l'Olk — Ak.. 1 ) 
k =-1 

Q f  
a 	_ (k) 	1 	2 

Bi;ti. = 	Y. ,..4 04  ( AA - ilk-, ) 
k. 1 

to -l5)  

3  
D 

N — 0 	3 

E 6111 ( , 4  — 
k 

Since, in the derivation of the field equation for this formulation, 

the dependent variable are, w and a stress function F (through which the 

stress resultants are derived), then it is convenient to express the 

mement resultants in terms of the N..'s and the t 's. ij 

Starting with Eqs. A-13, one may write 

    

— B id.] yy 

 

(A-/6) 

 

kxy_ 

 

r,IcX 

Nyy = [11] 

NX51 

From this, one can 
O 

K=- )0(  

solve for the strain vector, or 

Eyy 

‘ .o 
V 

Another 

Exx 

0 

E YY 
V 

xy 
where 

Nxx _ -I 
[Au] Nyy  

_Nxy  
form for this equation, 

= [ 0,4,1 

[A„,i[adi 

Eq. (17), is 

Xxx 

YY 

kxx 

Xyy 
	(A - 17) 

2 kxy  
the following 

(A - ) 

[aL] = [A,.; 	[194] = [A,i[a) 
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Next, substitution of Eqs. A-18 into the expression for the moment 

resultants, Eqs. A-I3, yields 

rixx 	 e:'  ), 

Myy = [aii] 	E;y 
o 	

— [ 75 icii 
M xY , 	, rx; 

t\lxx s  
[ = [81;f][ai, 	Nyy 

N xy 

7 -Nx; 

= E-6z,ii 	Nyy 	4 [ Ci 4] 

. Nxyj 
where 

kxx 

k yy 

2 kxy  

kxx 

Xyy 	 CA- 20) 

2)(1,  

[al] = [ad.] [4v] - [ 5 14-] 

	

(A -2 1 ) 

Notethat[a..
13
]and [d ii ] are symmetric three by three matrices, while 

[b..13] is a nonsymmetric three by three matrix. 

A. 2.4 Equilibrium Equations  

The equilibrium equations are derived by employing the principle 

of the stationary value of the total potential. 

According to the principle, for equilibrium 

U, 	0 
	

(A -2 2.) 

where 

UT 	UL + Up 	 ( A-2 3 ) 

the sum of the strain energy and the potential of the external forces. 
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From Eq. A-22 one may write 

s u, = SUL S Up = 0 

ferpr , 

J J (Nxy ExX + Nyy 	Nxy 66; 

- Mxx S kx x frlyy Sky, - 2 Mxy S ko )dXdY 

—1:r:LgThEwoiXcly - rkau Kixy 8 v- 

- 	- Pixy  S w, a )101- dy 	(A-2 4.) 

Where q denote the external pressure (positive in the positive z-

direction) and the "bar" quantities denote external loads applied at the 

boundaries (N
xx 

 and Nxy  are in-plane loads, while Q 
x 

is applied transverse 

shear load and M 

- 

and M external moments). Note that M 

- 

and M could 
xx 	xy 	 xx 	xy 

represent moments arising from eccentrically applied N and N N. 
xx 	xy 

Use of Eqs. A-2 and A-3 for expressing the variations, in the reference 

surface strains and changes of curvature and torsion in terms of variations 

in displacement components yields 

	

_ 	Ilflpt 
	[ 

	

UT — 

	

	t Nxx 	,x 	S 	t 	VI,xj f: 0 

N yy  C S 7)", y — 	W My am), + vv,;sw,y 3 

t\IY(gu ,y t S 2);x + w,x s 	+ vv,y siv,x 

VV,y 4 W,; SIA/,x — Mxx V\itxx — Hy, g Wqj 

- 2 Hxy Siv,,,,1 dx dy f g.sw cixdy 
(21R IL, 	

0 Jo 

Nxy SU + Kixy Sv-  + -C2 x  S - 171xy89°), 

— FlxyScPyJi:dy 	 (A-25) 
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Re-writing the above in a convenient form in order to use Green's 

theorem, one may write 

S U T 
z....iviR I. t

. 11\1xx Su + i\Lex (N.,x 4-1Aex) a Ki 

N x y ( w,y  + vv:y ) 81,v - i`-1 xxSIA4x), x  

4-  [ Nyy S? f + Nyy ( vv,Y + IM;)StAi + NxyDA 

+ Nxy  (Nix + vV:x) Sw - Myy Stv,yly  

- ( NXX,X S U  + ( NX X ( V\I)X + 11\4:  )LX 5N  

4 Noi x SU +C Nxy  ( w,y  i vV,I )y )] ) 1(  SW 

- 11 x x ,x S IN + Nyy, y S 11-  + C IVYy ( My 

+ W,; )3 1y SW + NApy  Su 

+ ( Nxy (w,x —Ftiv,;)), y ‘ev — M YhY W4) 

- -VIZ S W - 2 Mxy Sw,xy} dx d y 

-1021T gSwoiXdY -f: 1 -  NoS ?A + Ki xy .Szr 

4 6, sitv - Fixx sca, - ivixyScyl 1:dy 
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. _for t r
. Nxx EU 4  No ( W,x + W, ();)g W -I-  NxxS2/ 4- Nxy ( w,y 

+ W:Y) SW - /1xy.SW,x it.  PI a, xa W + 2/1xy,yawix 

+ C Nyy  Pi + Nyy  ( W,y  + vv,;) 6w + Nxy lic 

+ Nxy  ( w, x -+ w:;( ) SA/ - myy vv,y -f Igyy,),  Iv 

4 Ztl xy, x 6VV),y —  [Mow( S2X + L/Vxx(VV,,x -VO4:))0(c54/ 

4  1\10,xSU 4  t.  N XY ( W'Y 4  vV,;)3 ,x S 2A 

—V Mxx,xx S.  W + NYy4 c U i' U Nyy (MY + MY )))y SW 

1- Nxy,y  43 u + i Nxy ( M x + W:x )3,01A/ 

+ MY9,YPS'W ] - i\----0.W 

 - 2 t'1,,y,xy  StAd dX dY 

- i 2:1: X 4 1̂ /dX dY - 102/ - Aix), S a + 	s. 7). 

. cixst4  _ Mu Scox  — F4 	1.  xf3 VyJ 10  i. 	 61Y (A-26) 

By Green's theorem, one obtains the following equilibrium equations and 

associated boundary terms, 

Equilibrium Equations  

Nxx,x + Nxy,y ' 0 
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N xy, x Nyhy  = 0 

frixx,xx —1— 2 ivl xy,x,y -4 Myy,YY 	 Nxx ( 14AKI+ VV->'°()(  ) 

4 2 Nxy( vv,xy vv,:cy ) + Nyy(vV,yy 4 W y3,) -F 	= 0 

Boundary Terms  

either 	 or 

(A -27 ) 

N xx = Nxx 

x y = N xy 

1\ixx (Mx +Wb: ) Nxy (kAl,y+W:y) 

+ MXX,x +2 P-1xy,y = 	/74  xy4 

frixx  = Flxx 

,3 	= 0 

S21= 

SKI =o 

The first two equilibrium equations, Eqs. N-27 can be identically 

satisfied through the introduction of the following stress function 

NXX EYY NAX 

Nyy F,XX 

Nixy 	 + slxy 

With the introduction of the stress function, F, the third 

equilibrium equation becomes 

(A -29) 

M xx,xx + 2 M xy,xy  Myy,yy + -7 -R 	+ Eyy (J, 	VV,:x 

)-!ExX(KYY Kry) — 2 F, 	hxy IM:y) — KLx( 	iM:y ) 

+ 2 Flgy  (W,Xy 4 v■/,,;) 	z: 0 	 (A -3 0) 

A. 2.5 Compatibility Equation 

Since the in-plane equilibrium equations are identically satisfied with 

the introduction of the Airy stress function, F, then the governing equations 

51 



consist of the transverse equilibrium equation, Eq. A-30 and one more. This 

one more results from requiring compatibility of the in-plane displacement 

components u and v. From Eqs. A-2 one obtains 

0 exx,yy  7- u,„yy  + 	w,„ + 2 v4) 4 7 WA( 01 ow 4',2 inl,:ry) 

E y),xx = 	y xy ttV4XX 	(2 MY Myxx +2 IV,Yxxv■ey + 2 WI ► 40) 

yvocxy  t AL), + V■/ x  vV,xyy i'Vary 01,7(  0 xy,xy 
u 

XYY 	>xxy 

+ V\/,y  ‘A/7 xaxy + V.4xxy VV/,y 	VV,x tAL:Y.Y 
	 (A-30 

Elimination of u and v leads to the following compatibility equation 

vv,0 
t-xx,yy 	Ey0ypex rxy ,xy 	R T 1/11.01y(W,xy f 2W,xy 

- T W,xx IALYY 2 Woy) - tAloy(VV,xx 	in/,:x) (A -32) 

Substitution of Eqs. A-1$ [Eqs. A-29 for the N's and Eqs. A-3 for the 

K's] into the compatibility equation, Eq. A-32, yields 

ai , F, yyyy 012  F,xxyy r  (2,3 E xyyy f IA4xXyy 	144YYYy + 8/3vvixyyy 

012Exxyy + a 21F gar 0,,,3Exkgy 4' #21  IAI,mx 4.  -8 vs,1,yoy# 2 ga3 ✓,..y 

- 013 F ,xyy y 

	

	2F, XXXY 0 33 F"(xYY 6311A44xxY 

 enKlixyry -2 g33 A Locyy 

„, 
R 	v\10.1",x-Y+ -2  MO

• 

 - 72-  KIPoe(MY9 4-  IA4ri

• 

) 	Vidy vV,Axt2 W:x. 

(A -33) 

Similarly, substitution of Eqs. A-19 into the transverse equilibrium 

equation, Eq. A-30. yields 
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F,xxyy + 4. 21 F■ XXXX "gji FXXX,Y d 11 /41.)XXXX al, 2 ilV,)000 4'24 1#^4xxx,y 

+2 ei3 F,XYYJ 2e23 p,xoy -2 A 3 F,xxyy  + 2 d3 LA/,xxxy 2d3tAhxyry 4- 4 chi t14 ,x,,YY 

-I- 	F,yyyy + -022 F, AXYY 	 ()11IA/x*2' +(L ±-2 d23W-XxYY 

F,xx 	YY ( VI P xx l W 
0 

) - Nxx 	xx VV,xx ) 

+ 2 N xy 	W:xy ) - 2 F,xy ( 1A4xy 0  ) -+ F,xx (wdy t WYY ) 

= 0 
	

(A -3 h) 

A. 2.6 Boundary Conditions  

The boundary conditions, Eqs. A-28, can be designated according to 

transverse one (s imply supported, clamped, free) and in-plane ones. Since 

all of the application to be considered deal with supported boundaries, 

only simply supported (ss-i; i = 1, 2, 3, 4) and clamped (cc-i) boundary 

conditions are listed. These are (at x = 0, L ): 

SS -1 	0 ; i`lxx= vlxx ; 	Alxx ; A1,0„ = NXY 

SS —2 	W = 0 ; Hx2( = rix,c ; 	(17131  • ; NXy = NXy 

SS - 3 	►/V -=0 ; l XX = Flu ; NxX  = 

),/ — 
SS-4: 	W 	AX KO( , 

	

; 	
=Consi ; y z- C;;,15/.(A-35) 

and 

53 



CC - I : w=o ; \M = 0 ; Nxx= - R. 	No  = ITI xY 

CC -2 : 	■A/ = 0 ; Wix = 0 ; U = Gnsi. ; Al o = Fqxy 

CC - 3 • 	IN =- 0 ; W,K = 0 ; My = - Rxx ; 21 = Coms/. 

CC-4: 	\AI  _ 0 ; vV, K =0 ; V = Co Asi . ; '"U = Consi. (4 -3 6 ) 

The above boundary conditions may be written in terms of the dependent 

variables F, and w. The kinematic conditions u = const and v = const are 

first expressed in terms of equivalent conditions. This is shown below for 

each of the relevant conditions separately. 

Note, first that the expressions for the 	
] Mil 's and N ib 's are given by 

Eqs. A-20 and A-29. 

SS-1: W= 0 

i Fool + dri iil, xx 4- 2 CA/31ggy = Fixx 44, Atxx — -e3i  i\ixy 

F ,yy  = 0 	ono( 	F ,Yy  = 0 	 (A-37) 

SS-2: 1 i V r. 0 

61 1 F;yy  4- ,gi , F,,, + d 11 w,, +261/3w,xy = rIte4  4,14,x-1931 -WV 

T,yy :::  0 	and 	F.xy = 0 	 ( 4 - 3 8) 

The u = const. condition is expressed in terms of an equivalent condition 

by employing the following steps. 

The expressions for y
xy 
 from the kinematic relations, Eqs. A-2, and 

from the constitutive equations, Eqs. A-18, are first equated to each other, 

or r 0 

); y = 2),y 4 21,x  4 W, x  W4 + W, xv4 +IV,: IA./,y 

:::: 013 (Fyy - KIXX ) + 0 23 Fax + a33 (A.1-  xy-Fxy) 

± "831W AX + 432KLYY 1.-  2,833  MO' ( A -380) 

54 



One differention with respect to y and use of the conditions w = 0 and F, 	= 0 
xy 

yields at x = 0, L 

Wixy N.; -4- $1/, x W,cyy 	a, 	.L 4923 F,x, 	-63 , 

4-  2 4$3 W,g yy  
Similarly, 

-  E YY = Y 	+ IA4 IMY W, Dy 

01.2  ( 	- 	 ) -I- 	Fxx -1- 0,3  (N0  - F,xyvy 

1A4xx 422 Way + 2 "g23 Pc.Y 

from which one differentiation with respect to x yields 

f 

	

wvay W,y = 	2 F, xxx O3 F xxy  + 210,3 W ,xxy  

4-  .821A/10X + S.22 W,XYY 

(A- 38b) 

(A-396) 

(A -3qi.) 

Elimination of v,
xy

and v,
yx 
 from Eqs.(A-38)and(A-39)yields the equivalent 

(to u = const) boundary term, which is: 
0 

X  

	

0 13F,yyy  -1-  2 0.23 Fizzy - 022F ,xxX 	 WrxW,yy "Ai 1A/, xxxR  

.831 - 2 61.3) 	XXY 	42% -2 ess) hl, x yy  = 

Note that because F,
xy 
 = 0 for this boundary condition, the term con- 

taining F, 	has been dropped . 

xy 

Thus, for SS-2 the final form of the boundary terms becomes 

W = 0 

F YY 	F,xx ÷ -Orr ki,xx 2d,3 Wxy ""FixX 	171Xx -63IFX1 

F, xy 

	

C63 yyy 2 023 R XxY — 22 Fxxx 	 ,x 1A4y  - 	Wixx x 

( G31 -  2 Gz3) 	VV,xxy - (622 - 2 e33)Wixyy = 	 (A 4-0) 

SS-3  

VV = 0 

yy  -6,1  Fm + du P1/4.4xx + 2 da Wow S311:,,xy = R(x l-  airCixx 	Nxy 

F 	o 	and 	 CortSi 
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Similarly, as in the case of SS-2 (u = const), an equivalent condition 

is obtained for v = const. From Eq.A-39a , since w = 0 and v,y  = 0, then 

the equivalent condition becomes Eyy= 0 or 

Ca NzX  4-  022 F XX + a23 TVxy F, v x, ) + 2, Wax+ 2 623141,1(y 

Thus for SS -3 the final form of the boundary term becomes 

W o 

-G21 F,XX d,, W,xx + 2 d,3 IAA Ay 931 Fixy  = Fixx f  4,1 KIKK 	Tqxy 

R yy  o 

azzF,xy aa3 F, xy 	liVaX + 2 S23 tALXy :" 012 1V xx a231\14-41) 

SS -4 

For this case the equivalent set of the boundary terms becomes 

W -  0 

Fry "621 EX7( S31F,XY 	►MXX -I-  2 d/3 Mxy = Roe + 	-401 - 43,Rxy 

F .) 0( # a FIYY a23 F,,(, f -621 I V,xx -12 g23V11,ity = (2127vxx -a2_3 Nxy  

0,3 F,yyy 4 2023F,xxy  - (0,2 +a33) F,x yy  az2 F,xxx  - 1..̂±1( - WA 1A1:151  
4-  ( 2 e33 - -622) VV , xyy ( -631  2 a3) vV,,xy  - 	= 0 	(A -42) 

Following similar steps, boundary conditions CC-i, i = 1, 2, 3 and 4, are also 

expressed in terms of w and F only, or 

CC - 1  

W ALX F aY)1  F,xy  = 0 
	

(A -43) 

CC-2  

v\I=1.A4x=F•xy= 0 

0,3 Fi>01)/ + 2 a231:,xxy alaSxxx - 42/ VV,KXX 431 	= 00 -44) 
CC-3  

W = tV, x = Ryy  0 

022.F )Xx - 023F ,xy 	W,xx = 
	

0231■1 	 -4$) 
CC-4  

W W,x = 0 

a, 2 F.,yy azz Exx - 0 23F ,X(1 	2( WI XX =- 

013 Ryyy  +2 08 F, - 0,24 a3.3)F,x yy - atA F;Yxx 
0 

az14.-02374 Xy 

621WXXX +(A, - .z &MAO 
(A -4 4  ) 
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II. 2.7 Solution Methodology - Field Equation  

The solution methodology is an improvement and modification of the one 

employed and outlined in Refs. 36 and 37. 

The separated form, shown below, is used for the two dependent variables 

w(x, y) and F(x, y). 

F(x, = Co* [C;(x )C041f 7),00S;743 
L.1 

W(X,Y ) ------ A 0 4) ft CO) Cos 	+ 81:00 5";22 41 J 	( A .4 7) 

where n denotes the circumferential wave number. 

In addition, similar expression can be employed 

for the imperfection parameter w° (x, y) and the external pressure q (x, y). 

Note that in most applications the pressure is assumed uniform (c o  only). 

vAx , y = A: (x ) 4 tf [A: (X) Cos WI 	13:(x) 

g (x,y) 	+ ti C gi odcos d-rtz/t g:(1) Sire f] (A-48) 

Because of the nonlinearity of the field equations, Eqs. A-33 and A-34 

substitution of Eqs. A-47 , and A-48 into them yields double summations for 

the trigonometric functions. These double summations involve products of 

sine and cosine of iny/R in all four possible combinations (cosine-cosine, 

sine-cosine, cosine-sine, and sine-sine). Furthermore, these products have 

different origins. Some of them come from products of W,
xy W„xy 

others from 

products of F 	W, 	[see Eqs. A-33 and A-34]. In order to simplify the xx yy 

final expressions (and use single sums instead of double sums), and in order 

to cover all possible combinations of double sums, the following simplifying 

equations are presented. These are based on trigonometric identifies in-

volving products. 
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L 	 15E- 
Z._ 	b‘ 	o] Oil. cos Le = 2_ Alswo (I) ,a) cane 

i.0 ci: o  

Cosj 83 Oi E j 	i 	z A n..100(b ,a)sin 1. ,=0 	v 	 1.0 

bi sin 8] aLL Cosi@ 	AL:„, (it  )(b,a)S771 
4.0 	 i„.0   

L 	, 	 . 
b Sini53 azi 54t 16  g A z400 (b, a.) Cos i8 

L=o d (t• 	 1 , 0 

b cosjej 	CoSi.0 = 
L:0 (1 1 0 	 L= 0 

K L 	 KtL. 
Cosjej 	Sinio X- A 1.72(g)(h,o)Sini6 

k L. 

LEL-  bi% Sinje] 	Cosi...8 	An3m(b,c0Sinie L-gy-0 	a 	 L=0 
2 

	

(be Srnitej az i Sirde 	A.12400 (bA)Cosie L=ob =ob 

0 •LID 	(f.  

(A-49)  

(A-50)  

A  
A JRIO‘b a ) Cos i9 

E.  A L  Wh,a)sini67 
-= 0 122  

A L  7230„ 
L:4) 

L 
A j24ab a)Cos Le (A -.51) 

where 

k  
AIL  J100( b,a) _TZC(i+4)b1+.4. -1- ( 1-11-A)li -j) b liAjaej" 

41-0  
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b 	I 	 (' • 	
1- 72 	- - lb 	3 . 	' 

	

x) ( , a) = 	- 04 ) iti+ 	 e 4- 
132(   a- 0  

A .1' 3300 (b -a)  721--  t_[0:44)bit,i+ 

AiJcic, ,a) 	
0_52) 

J.0 

K 	 2 

Al2W0 (b a) = 1 

	 ) ba-413 (j. a(r  

	

A Dwo (b)a) z. 	C- 	 b/i-pi (1, 204 

A li  23w  (b,a) C 	(- I  .1•i-4 -f 7i) bil...jiVa ,  

i.IL 	
k 	

; 

/-1 12400 ko,a) = 	 ( 	
ii4-1-7L)Dii-jod-21,Ad, 	

(A -53) 

1 k r  
foL(L+4) 

 

A Ji  22 00(b '60 = 	-..(i-fci.)2b i+it"f  (1 - 74-i,f7z) (i-a; 

A 

/-1 523(4  (b )  ) 	2 2_ (1-4.,r})2 bi.f .4 + (1 	L+4)2.bii-di] 
4:0 

A324v) (b ,  a) ( (L+ j)2  bi+4 4 (- /- 	 aj. (A -64) 
z--o 

 

and 

L 

/ 	if Q 7 0 

0 	if 

/ 	4  L< ° 
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Next, returning to the solution procedure, the expressions for F, w, w c)  and 

q, Eqs A-47 and A-48 are substituted into the equilibrium and compatibility 

Equations, Eqs A-33 and A-34. This substitution yields the following non-

linear differential equations: 

Equilibrium equation 

Kr- 

h40( A i,xxxx Cos 
in  + 8 E,,xxxx .3;7t 	+/-231 (4)( —  A i .xx,x S 

L,0 

t3i,xxxCos-1) '" / tn. (-7.-t )z  (A i,xxas 	8i,xx S 

h13 (47 ( A Lxsin l,*-' - 8i,x Co 	) *114o(112)( A i C6‘2 1-31.  

(c,.. as ill +Di,xxxx Si) g3, (4)(-ci.,„,siya 

Dimcos ) -6„(4.1 )2 (cz ,xxcos*Y + Di ,. Sin l) 

+ (0(Ci,x Sin .1 — nix Cos 4) ge4 ( 14)4( C1 Cps t +Di  Sin :11 

.2k 
.4.-75- 	(Ci,xyCo il4 Di,x)cSin i2A) 	L (F ,wtw °

) • itzb 

f\txx 
k 

E( A i,xx + A 41,4,) Cos if +( 81,xx+ 8:xx)SinW 

+2 -17\ixy  ( 2-4)C-  z,x+Ai,°x)SiniktY  f(81,x -t 8:0 C04 -1  

4 	 inY 431 	 2 

L -zo 	i c°42 -/T + „Y. S. 	0 

where 

L(F,w+w) --z: C Ci,xx Cis 	+Di,xx &71 1V3E„. 

(1 - 55) 

I- -f4:)co5iku 

(Bi+ K)si4 WI] -2 t .  L,p  41)( — Ci,x SinjW Di,x Cos )] g 
(iaa- 641,x + A:45;74 + ( 8i,x+ 8i °,x) Cos *1  B -t(41 - (4)2(C, Col 

Di C;714)J[AiUlz,xx -f•Ai °,u)Co,s iq' 4 	+ 8:0.x)Si71 -11) 	( A -,56 a) 
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or 

L (F ,vv+w°)= 	'±` f —ita( Ai+ 

[1( 4  Al.) CO5 	Di,XX Sj7I4Y  

( . ")2 ,24:4 C ( 	gi) Sin R J Ci,xx Cos "4 
(14 J . (_,i 2(6, 4 Bp S;7t  a J Di,xxS;n 11R-1-)1  

2.2K 
Lo.f:.4 C(14,x.X ij0,0 ) CoSli C Z2  CoS if 

— 	t-3(Mi,i 0C +11:dv)CO351) 	Sin 

fi)ag ±.( ((ft,xx 8;:xx)S;43 Cii- 4  Cos*/  
d=o 

1.2k cny 
X Z C( Bcj,xx B: xx )SinAliti Di Sin iz 
LID cirD 
2-2K K 

+2(,) i.foo N (A j,y*Aci °x)Si7t 414-1)13  Ci ,x 

+2 (71)1 ''il td (Aj,x 	JDL,xi,Cos lil  

71 	K 
± (Ti) 	4. (8 j,x+ 8 ci,°x)CoSql  iCi,xLS4 

-+ 2()It-C 	(BP M.%) COS ;1-1---,:`,Y3 Di,x /Cos if 
L=o4.0  

(A-6-6b) 

h4o = d i , 

h31 2c13 , 1.2c43  

hz2.= 61,2+46/33 +cizi 

ha 2613, +2d,, 

h o 4 

g40' 621 

g31 = 	2123 

g 2 2 = -On -2'e33 "e 2 : 

g i, = 26/3 — 3= 

o4 = iz  

and 

d 1 
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Note that the operator L(F, w + w° ), Eqs A-56, can be written in terms of a 

single series, which is the most appropriate form, for use in Eq. A-55 . This 

is accomplished through the use of Eqs. A-49-A-54. 

L ( F, WiV) 	
, 7? )2  42-C  r 	I 	r  

1/4r1.12/ 	tfrl 	ax T 412 44 WO ( 8  48 ' *c)  

+ A l21(.49 ( A ocx ±A,QAx , C 	A i24 (1x)( 8,01- 6,:x ,p) 

A  L 
+2,9134449 	

Ao 
 C,,)-1-  2 A -310x) (43,x+ ,D„OC,e0;;-i 

2 3k 

14:-, (MA °  7) LT:_o 	 A 	xx) + 323 (..2k) 8 1.87,Cxx) 

Azi22( (A 4 -  A D  ,D) 4-  A L3(.,k)(8, ,, 718-:,c 219 	,xx 

A  i. 	 A o 	 A i 	I 0 	no 	n  

/1 1,330K) (AA ff ,A ,D,x) --2/9 1.120g) to, x+0,: 	S ■ nTR-  

(A-57) 

Compatibility equation 

E 94o(Az,xxxxCos j---,---,tY 
	

Sift-" 1 y,'3  I 	 8Lx06-022?) 

--149 (-Ai,xx co,s 2 --,7Rtv g2  ( 	 3c11(4i,xsmiz - ai,x cos r-) 

+ 6,4 (V)4  (A i cosL-ktY + Bi  Sm ile )) 

-}E Ea 2a (Ci,vocx CoS 1141Y  ÷ Di.,xxxx gin:IV) +.2a234)Cci,xxxsinl' L.0 

Co,ciZ) + (2 alz  033 ) 42( — Cti,v(S;72 	Di,xx S1)10 
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+ 2 013(4)3(-C,,xS40..0T1 4 D,,„ Cos ) + 

k 	 illy 	i,xy 	ix)/ \ 	I 21 	21(x)  
R COS IT+ 	3In — 	1(R )  ZIA- 012A°  , A xx) 

i = b 

+ A i2400 ( 428° ) i3,xx) 4 A 12100 (A.xy+2A:, PA) 	24v)(8,,x+2 8 .;,x , 8) 

o 	A  
2

A 
'Jot.) (A ,x 4  2A ,x 1-1 ) 2 A ,v(k) 	, 8,43 LA's R 

.1*(1),i)(. A Ji2200(1 1" 2 A D   ,xx) 	A 3236c) (8+28°, /1,kx) 

	

A.--Li2204) A ,)( .1.) A dc. 8) 	A 123(X) (8 xx 	I3 k , A ) 

- 2 A il  (k) (Ai,X 1.24)°,< )8,-k) — 2 A lie 	f .28; , 4,43 4.01-41Y-  

0 	 (A— 58) 

Parenthesis  

As far as the equilibrium equation is concerned, the summation starts 

from zero and goes up to 3k [see Eqs A-55 and A-57J because of the nonlinea-

rity. The Galerkin procedure will be employed for this equation in the cir-

cumferential direction. This will yield (2k + 1) nonlinear ordinary differen-

tial equations [from the vanishing of (2k + 1) Galerkin integrals]. 

On the other hand the compatibility equation, Eq. A-58, is written in 

series form, from, zero to 2k Because of the orthogonality of the trigono-

metric functions (4k + 1) nonlinear differential equations result, which re-

late the C's and D's to the A's and B's [see Eqs A-47]. This set of ordinary 

differential equations is shown in a complete form in the pages that follow. 

Before showing them, though, some simplification can be made. 
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For the case of i = 0, one obtains the following equation, from the 

combatibility equation, Eq A-58. 

4. I A 	4. 	r  
go Ao,xxxx 	rio,xx ..A22 	 12100 f 	(A 7'1A° Au) 

A 	now 	 A 	 A ° 

	

3-240() 0 +2 8°,  axX) 	fri 12(k) ( A ,xx ,J. 2,, xx  , A ) 

;.) 	 0 

,t9I24(K1 k 415, XX +20/yx )3) 4 2 A13409 (4)x 'i24,;)A ,x) 

2 A LII(k) Bp)( 4-2 81: 8,x) 3 = 0 

or 

	

1 i /2 
ri 
A 	 . 

CO MM - 0 2 2  L - ;-0,40 c,xxxy —0 4  Tii, A0, 	( -7A ) 2,  ) :__ : i [d-
2 
 (iii-f2ApAi,xx 

+ 4,1( 84 1-2 5)Bjoor +4'2  (Ad,x t) AJ:00 4 + d (ad,. 4,2 8:x),) 8j. 

-+ _2 (r( Ati,x i2 /44,c ) Ai, x  -i'.-2 j 1 (8d4 /28,pbx )  Bpi' 	(A -sq) 

Moreover, the displacement component v(x, y) is a continuous and single-valued 

function of y (and x), therefore 

acy  dy = 7)-(x,2 R) 	(x) o) =. 0 	 (11 -6o) 

From the second of Eqs A-2 one may write 

12-Trr EY; 4" 	— 	(My -f 2 Ai; )/2 	 (A -61) 
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Furthermore, use of Eqs A-18 [relation between e; and N.., 	of Eqs A-29 
1 3 	13 

[definition of stress resultant function], and of Eqs A,47 and A-48 [assumed 

form for W, F and w() ] yields the following relation, 

2gR 	 otR 

Z.T.,ydY 7:  Jo 	Oa RxX + 0 2 3 Kixy) 01Y 

yR 

C C ,z F,yy  -t- OZ 2  F xx - 023 F..xY 	'623 lAl 

- 	2 .6, 3  vki, x), 	14- .2 W y ( tAi.y 

+ v\l,; )j cIY = o 	 (A - 62) 

Or 

ruz 

	

	 (2AR 	.2K , i n  2? r  r 

 (-01.2Nxx + aa 3 1Cixy) dy 	z 
0 	 ifo 

2k i71Y 
- S172 R 3 + a z[ci C 	+D ,xx Cos R 	-V] 

2x 

- 013 ( 14)[— COSi741  D,xCo,s 
i=0 

inv 
+ 62i -7- A ,xx Co,S f-7 4. 13i,xx &n il/3 	0292( .12 

L=0 

inY k • 
- A 	— 	Si-743 +.2 	 csinYj 

23 	 R 	4—w 
i=o 

k - 
+ k.<  (11' Cos 4Y  8 LS44 	-AL   Sin if 

izo 

+ a z  CO33 	(-4) [- (A4 +24) Sin f- (84 -i 	'jig- 

= 0 	 (A-63) 
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This equation, Eq. A-63, after performing the indicated operations (integra-

tion, becomes 

2112  

Jo 	+ 023 N* "f  022 C 0 ,XX 	A.,xx +R  

712 g  " 	4' (A1. -2k' )A + (8 • 	- 1-28')8.3idY = 4R' ;1 ,0 	 GI 	 (A-64) 

From which, one may write 

= ,,„f--ig21A0,XX ,XX  A2 ,i2C(A 1.2A °  )A .  
J 

( 844 2BP 13(i3 al2Al - 	Slcyj 	 (A - 65) 

The remaining compatibility (nonlinear, ordinary differential) equations are 

For i = 1, 2, .. 2k and  cosine terms  

a 2z C1 , XXXX — 2013 (4)Di.XXX - pcia a33)(4) 3  ci,xy 4. .2013 (-YD i,x 

an (Le Ci.+ Sic gto A i,xxxx T gi 	8i,xxx , XX7--z 	I: r9A 

A L ,) 
go4(z 

R
-2.-)4A. 	.xx 	(22 4-) " 

—TR— 	R LCAL+2Ai)A. , )„d 

(4. )2  1?-[ (L+4; 	+ A ti;i4) 	( 2  - 174-1 )(-j) 	24-0) 

Aj,xx 4 (1-1-4 ( B i.f4 2 8i;) 	(Z-4 	8fi.-4) it' 28  1°L-ii 	gp XX 
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+1Az+4,0+2Aitj
0 
 ,xx --I-  ( 2 - 114.1i ) ( A 	+2 Aii; i ,x.W a  A4 

+{ 8,114,xx+ 2 Bi;,,x - 	( 81i4,,,fx+ 2 Bii-41,,a 84- 

4- 2 (i.-4) (A 	+2 Ai14,x) - )44 1 i -ji ( 	Aci 4i,x)3 

Aa.x + 21(1.44) ( 13i+4,x +2 Bi.:4,x) 

4 2 B I:..4 ,,djj- B,d,x1 = 0 
	

(A-66) 

For i = 1, 	2k and Sine terms  

a21Did00( +-2 023 (4) Ci,xxx ( 2012 4  (/L3.3) (4;a, 

- 2a13 (4)3  Ci,x - 0,, (4)4 Di, + Sz.C940 ,xxxx 

-9 ( in )/1- -g ( i ' jL i3 	093,4 v 31 	LAC( 	22 if 	i,xY 	i3 	i,X (4)45L 

Bidoc 	01\2  " 	 f±c  f 	L  — / k—R-7 ( 8LfBic)A° , xx, —  4 /q 4= 1 ,. [-(141) (A  'CI + 2/4 .  ) 

• ( 2 11i) ( 1- --4)1 (A1141 4)  A 	6,00(+Cutd) 2 (13Ji.+28;;) 

+ )7 ( 	(Brill f 2 8 - )) A j,xx + 

2 

(2 -14-L) ( Ati+411xx +2 "Cii-ii,xx)34.2  84. 	Bi+jo 	B 

(1911-41,0 +1 61:-41xx)3(iAi- -2 Cfit) (A 	+2 px)+ 

•(AlidlrX 421114,x)34 13,joe - 11- a4a) t 	8:+j,x) + (.2 - 

• ( ii-ji,x 1. 2  i *i—cii,x).34 A ci,y1 = 0 	 (A -67) 
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where 

K 

< 0 

0 

> 0 

As already mentioned, the Galerkin procedure is employed in connection 

with the equilibrium equation, Eq. A-54, in the circumferential direction. 

The vanishing of the (2k + 1) Galerkin integrals yields the following set 

of nonlinear ordinary differential equations. 

For i = 0 

I A 	A  0 
ho Ao,xxxx gctoco,xxxx 

J. 	
L 

 r .,xx 	tiodtx -1- ric,xx) Nxx 

(ff)21,;4} rli' 2 	+4; ) 	+(i'o3j, 4 8!)Dd,xx -fj 2(A ci,xx 

-I- A;xx) C4 44 2( 8J,A 4 B)Dj. 42 4.1 (4,x 	Q ,x 

2,jk Bcjix +84°,x)Ddix + goi 	0 
(A-68) 

By employing Eqs. A-59 and A-65 one obtains 

A.,.. (du - 	- xx( 2 ;--tz ) N.(A0,04 ALK) — Re 

+(aId ic  4 2 1 -it i(Ailt-24.°)Aj.,, -±(A ci,xx 42,41,00,44_ 
4-1 

- (4.ci,x  +2 4;A) Ad, 4-  (Bp-213j ) 4,xx f ( 84.)0( -IL.  2 13d%,()B 

-1- 2 (Bad( + 24:0 8d,xj a*.Ra A4.÷ 24,1)Ap (BJ--f28,i )84.3 

t(i-j -f4;)Cd„xx + (8471-B; ) Dd,xx -1. 2 (44 , x+ Adc.,A)Cci)x 
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+ ( gd , x 	 + (Aci,xA A:dm) 	+ 	+ 8,4,.x.)D3] 

Ti  _ . 222 . 0 Q = 0  
( A - 69) a-Tye V)ix 0 22R NXy 

For i = 1, 2, ... K (when the weighting function is cos Rte) 

di A i,xxxx t 4c113 (4) BL,xxx - (201/2 44 C133) (VA L,xx 

4d  3 	B i,x .+ 6112. (4) 14  + 421Ciixxxx ( 2  413 -  

— Cell -  -2 6733 	(irJ2  Ci,xx — (2 g/3 - '.g32)( 1.71) 3 Di,x  

( )̀ JCL ci,xx (%1)2 ( 	 - 	, 

(

4' 1  
)2 	4-2I(A4 -1-_24)4 4 ( 8 -2 8  ) 88 JJ  

	

(Z( 4 1 21 4 )(a12No - az, ijxy) — 	A:xx) ATxx  

2 1\ixy  (4) (Bi,x 8i7x - L CRY { ((U(' )2 Sifi (A 	AL:4)1 

4 ( 2- 42i) (L-(P1c5ii-jr (A1141 4 Ka-cp )j Cd,xx 

4 C 	i,tcj ( 	+ Biata) 
	

Sti4 1 	81:41)3D,id9i 

+ 2 (i+ S 	(Aitip 	 Sti-a1( A li r ^ X  

/44,x )1(}Q,A 34- 2 aitj) Sind ( iti, x  4x) 

4 ( -14_1 ) ii41 	(Baj bx +8,:di,A)3S pd,x [Sita (A i_v,xx 4 i44.,xx) 

+ ( 	il-(11 (A1141,0 	A 6: 	)1i r 4 r 	( + 	, 	k t_rifd xx 

Sa-di (B/1-41,0 	 t 	= 0 
	

- 70) 

A D  
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For i = 1, 2...k (when the weighting function is sin 1121) 

C111 Biduay  - 4 Ch3 (4) A i,xxx (2 d12 + 4 C(33)(x ) 28Lxx 4. 4 C/23 ( 	-)( 

cl„(04  8 i + Z7s1 Vi.XxxK - (.2 -623- -g3i) (4) CidOeW 

-2 A, 	(igtvi,xx 4  (-2 4/3 - -,432)( -i1)3 Ci,x -62/2(i/4947)1, 

(41(T: 	le21 A v,xx -Ad 4 (124.  ,cricAd 	Aj. 
d'i 

4 ( Ba-Q /3,1) 1 — (VA V) 	- 0231-1y)- (8i,o+ 8i,civr) 1\10 

2 Afxy(*. 	tAi°,x)— (F 	(5-i4j( 8,:fd 

_t 	s „Ai 	di)3 	 (A +4,:+a) 

(2- V0 (c 4 )181 i -di (A 	A :E.J1 ).} D ci,xx 2 	) (114,4  &tja 8it,j,x) 

0 , 

4 (2 - 4.i )/i.-/-cii 	8n-ep,x oli_ipAj 

A  0 

 - 2 (Hi) szti. (A itdixi 	1--4 S' 1 '41 (A  '141'x 	

7

1)4. 
z 

CSaj (81.4-j,xx 8:4,* ) 721- S I 	( 	,xx 8ap)i j C4. 

A  o 

C Si+J. (A itj.xx 	A4it,x) 	-0 ( 2 '4 	ri-4 	'r 
A  o 	1 , a 

 

0 	 (A -70 
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Clearly the response of the configuration is known provided that one can 

solve the nonlinear ordinary differential equations. Their number is (6k + 2) 

and the number of unknown dependent variables (functions of x) is also (6k + 2) 

These are (k + 1) Ai 's, (k) B i 's, (2k + 1) Ci 's and (2k) Di 's. Note that Co 

 can and has been eliminated, through Eqs A-59 and A-65 ;:ind therefore both the 

number of equations and number of unknowns is reduced by one to (6k + 1). In 

these equations there is one more undetermined parameter, the wave number n. 

This number is determined by requiring the total potential to be a minimum 

at a given level of the load. In other words the response is obtained for 

various n-values and, through comparison the true response (n-value and cor-

responding values for the dependent variables) is established. 

So far, the partial differential equations are reduced to a set of (6k + 1) 

nonlinear ordinary differential equations. Next, the generalized Newton's 

method (Ref. 38), applicable to differential equations is used to reduce the 

nonlinear field equations and boundary conditions to a sequence of linear 

systems. Iteration equations are derived by assuming that the solution to 

the nonlinear set can be achieved by small corrections to an approximate 

solution. The small corrections or the values of the variables at the (m + 1) 

step in terms of the closely spaced state m, can be obtained by solving the 

linearized differentiate equations. Note below the way that a typical non-

linear term (product of X and Y) in the differential equation is linearized. 

Xm+I y- 9N+ ' = 0C+c1_4(r dy) 

)(my' +x7c1Y m + 	dX 

)(Ply"' +rcor-Fryni +x`oYft-Xm Y *1  

= X 74 (r-i. 	--1-YCY-1-cuCi) -Z4 Ym 
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M ym+ 1  yrnx7nfi T, ary M 

(A-72) 
where X & Y can be A., B., C. or D. 1 	1 	1 

By making use of Eqs (72), the linearized set of governing equations 

(iteration equation) is obtained from Eqs A-66, A-67, A-69, A-71. These 

are: 

1. Compatibility  (i) [cosine terms, Eqs A-67] 

For i = 1, 2,....K 

1022(:7;xy -2 £L (-7-) 1):7, 1,--(-2(212 1 033)(41)Cx/A 

+ 2 0,3  (--; )3 D7+,: al (4)4c7" 4 Si, -Ai A 7:x. 

(.2 8 - -6.31)( t) 8:x#X1N — (.611-2.633-t  AOC-VA: 1 :x' 

- ( 2 6,3 - -632) ( 1:1)3  8: #;(' 4 gf2.(0-)447 1 1--k-  47:x' 
- (irjEA7A7,xy "it (47+2 A:) AO,XY - 	A:,.xx.31 

z2 k v 	f 
L2-71) 	' fl ( A -I-24°) A!'l 	(A + 24°) A:: - ji7 	° (442,4 )41 

1 	 j.xx 

+ k7:1 1  (8 4  -2 8 °) 8:x x  k!,:j  (8 + .2 8° ):: tx' 	(8428°) adly 

± 2( L7 (A +M C) A4 14,), + 	1-24 o) 4:7): L7j (A +24 0  ) 4.7x J 
4 2 N',"s+1(8-k 28 °  ) 	+ 1-1:1 (8 128) [3,17,Xi  Micist  (8+28) B:17,d 

▪ NL:+1 ( A +24 0) 	+ Nct14 ( A +.2°) Awl  - 1\1.7( A + 2A° ) A: 

+ O d I  ( 8+ 280  )8: 07; (8 ± 2 13°  ) 871 	( 2 By  ') Bpi 

2-4 0 	 CA - 73) 
where 

4(Y) (i+j) Sii-44 ( Z 21) 6" -.4 

k L A 
 )ifeSi tj. 	 )S/i-jt Y1/4/ 
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(y) 	caa sikci 	 Yil-14/,Ji 

(y). [ci-44)S1+4 	(2— 7i -2/-, 	Sa-ji Yii-7hx] 

L.11; ( y ) 	C 	Yi:a% 	( 	74-zi 8/iji YU-71,0 

	

Oid(Y)= [Si.f(iYi+4 ,xx 	Yii_i'l xx 3 ei 

(ii) [sine terms, Eq A-68] 

For i = 1, 2,...K 

at 
a22Di

/r
xxxx + 2 a ( i21) I  C PI° 	(2/1 -/) 

	

R 	i,xxx 	4- . 	21) 2  D71" 
"I 	i,xx 

- 20,3 (4)3  C7,+: + a (%4D, f'-i- 	8,71„,` - ( 2 --6z3 --g,) 

Ittti 	 3 voi 
' (10 L Adixx ( 81 '2 433 4" 	xx +( So-  432)4-) Ai.x 

2,)(zizr 8,71 

+ -6, 2 4) 4  87' + 	- 	 (8r -1.2 8:) 

- 8,7,4 07,0 - 	Cc( 8 -71. .2 87) Ar,xx+ (:)::(E028)A7x 

- 074  (3+28° ) AjN,xx Ri7 ( +2"1 °) 5:0( fr<-.  G4 I-211) g, 

- R tj't  (A 424°) e+ - 2 S7- 4d  (8+24 ° )/e + S' 7,1  (Bi-.28°) d'" 	 x 
9n* ►  

(8+28°) ill -2C Tr (4+24`) 8m + 7i7(4 4.24 b)8;:' 

- 71;(4+24 °) .8a",x  + (.1,7 ( 8- -2,$) A; 4 Li:,;(13+28 °) Arc  

- Li(8 -1•28)4 4 Vi.7f  ( A 4-2 ° ) 81 Vii(A 1-),4 °)871  

- 11im (4 t24 ) 55j = 0 	 (A - 74) 
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= 0, Eq. A.-69] 
A  X) 

/10,xxX(C61 

[i 

where 

`01 

L., (1  (Y) = ci+j)zs itci 	4 • ( L-citc5n-di Yid 

Rd (
Y) = i+d f&t,i 	+ (2-V 

(Y) = C —( i+4 ) 5  ifaY0(7,x ( 2—  

T y) = r 	&id 	+ 	&,L a , 

. z 
u!' (y) = D'ad Yi4j,A), 4-  17i4 S 1141)/a-di doi 

2 
(Y ) 	S 	( r)S,V

m 

	

d apx 	4-1 	 a 

(2) Equilibrium 

)  m+1 -- '41 	( -2  411 	/1 0 %'( 	) 	64: —21 	"x RC22J-- 	Via:, 

	

4 7-1 0, xx) -± (Zi.) 	f 	[A !t+1,4 	f A 	,0 „9itti Ao 	 a 	, 
atz 	11xx 	j 	44 j )11 d,xx 

Acr,xy Ar„+,,J, 	(4,-7. +2 Ajc,„)A7— /44"x 

(in, x  /Ad, x)/Ici7; 1 — 4,-1.9n,x Arx 	Br" 171. 

cp“ 

opt 

 (B11 +28(1) gd7oti  — j BB, 4  (8j
'N

,xx
H/ 

28d c
0 

x) Bd 

4 (B ejm,yy ± Bj:tx) Br — Sal 4.2 8;dor ) Ba7 

+ BP 8d :1x  4 2  (B;:x + 2 B 	;1  34x 13,71,2  

-f,,,„L/47,414+ (A: +.2 ) ATI  — /41 A IL  
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+ Br" 8'.; 4 ( +2 8 	- B7 )I 
- 4+74)1 1 id- 2[Ar41  C;XX ( A 1.4 ( -F  4; ) 	Cd1 = I 

Bii'D47,,, +(13d + 8 ) 	137 P,0( 

4 	71 	0 	271 

- Ajtxc 
9frt :I  6 1,, + -2 (ide 	Cd,x 	px 

pt 	 0 	9M1-  1 	74 -+ 2 ad,„734 ,, 	8j,), + 	2 Bj, xDa)x 

A
N+ 	 1 0 	let/  

atxx 	+ ( A1,. 4.) c4, 4,xx 

-f 81: 	4 ),L /3;:o) 751441- 8:,x„Dn 

CitZ 71 	a, 
CtR \to cFiTT?Alxy 	= 0 	 (A-7) 

(ii\ Li = 1, 2, ...K; weighting function is cos IF 

wi 	 1,01 	 m4.1 
d11 AL,xxxx 4 4 01/3 (4) 8 i..xxx - L .2 cL 4 4 0( 33 ) (-1.-1) A • x R 

911.1 
— 4d 13(14 

3 
gi 1X + 012 Z ( 1111-)4/4 74j, t1  + -62 I Ci91:::)ot 

4  ( 2  6:23 — S31) 4) D7,1 'en - 2 -A3 + -Sax) ( 1/4) 2C 

- (.2- .s3x)(-LeDr,x' IL. _on (4)4cmn_i_ 
	

Lixx 

01-) 7a; -8 I( A:in  A 014.xx — 441 (4,4  +A- ) A 07x' 

-6.11 47 A:xx 	— 	(A7 -i- A: ) 	Ar 4:et  

(CI  A: )(A: +2 4)4: (riA:) (447+40  )444.  
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-i-(A7+A:)(474.2 4;)/447 1 -2(4411:)(Ar-.2 44°)A: 

4 (A7 + A: )(e 1-2 8c1) 	+ (A l + A:) (87 - f BA°  ) 

-I- CA57+ Aip.) (8;4+2 B; ) Br- 2 07 I.  A: ) (874-2i3; ) 

142-)( A70LFA  0') ( 	xx 023 j\-70) 
— (

- (A rot 4  A:A(0 Kik( +2 Kt,ey (4) (5ni + 8 i.°)x) 

./x 	1/1-1 In 	• f 
" (-0 2 (I.  t{ jiti. (A) Cdpot + J ig( A+A °) C;:ix 

aj 

(A) C(11.J L K7(B)Dsci",04- Ki(e48°)74. 1: 

— 	(8) Dr,x),3 2 C eni; (A) Cd7 x 4 L74  (A4/1 °  C.017: 1  --1;W CI,,t(j 

± 2 (/471+1 (8) D;:tx mzNii (B .8°  )4:1  — 	(B) Dj7x] 

4 Ni!dtj(A ) 	+ 	 1j  (A) Cort  

4 017-1“(8) 4+ 07; (8 1;a° ) 	o; (B)Dd  1+2: = 0 	( A - 76) 

(iii) [i = 1, 2,...K; weighting function is sin liX; Eq A.71] 

B7,x+x'xx — 4 c1,3 (4) 	— (2 do + 4-0133) (-V 7:0: 4 4 e/23(1)3A 

Cliz(4)4  Br + 	- (.2 '623430( )Czxxx 
Prt/ 

- ( 41-2  1633#22)(4/Dim4,,p(1 (2 40-432)(4)3C7I-F -4/2 ( Ile Dr 

1  - fly 
4. 	

a 4.1  A 7t1 	 !DX 	0 	A 9" I  

R 	R 	a„ 	ui /-1 0)XX 	kpl: Bi) /10,XX 
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mti 7/I 	 wf 	0 	VI' 	 74 NC ▪-02 I 8i /10,x), 	Ao 	Bi)A6 4  —g 8 4 

▪(1-4.)2  tc't a[ ( B 
fit 	

+ 4; pc -I- (87 + 4)(47°- . 2 A °4 )47 

+ 87, -I- 	) 647 +2 A ) /117ti  -2 (87 4. 48: ) 01(17  +.24(;)/41:-  

+ (871-1-  8,7) CB: + 2 8;) 	+ 	E3:) 	 13 8  

(gi7 B(-11.) 	*2 8; ) 871  - 2( 87 + )( 8'1 + 215:p Bpi 

ci,F(V9 (012Rxr az3 Kixy)—(87,:÷8:0)1c7xx 

• n 	T ot 
—2 Nyy  ( -L,)(A 	Aid() 

L.2)‹ r 	N 
± (-CZ (Qij (8) CJAX 

47-. 1 

+ Q7 (8 +B:3 	Q. (8) C -f- RiTh '(4) D 9;:xx 

4 R;GvA°)D cii:K 	0 — 4) D;" - (,S7( 8)  Cit,x 

/57)  (8 1- 80) C: tx1 	) 	- 2 (TinA)41 

4 lid (A fil ° ) D;)( T67(A) D) + U:14"(3)ce7 	u,:(Bh8°)cdfitI  

- u:; (a) cr !' Vid(A) D4 	CA +A) 	— 410 )D:j 

-t- 	 (A -77) 

Finally, the Boundary Conditions [SS-i, CC-i, Eqs A-37, and A-40 - A-46 

are also expressed in terms of the dependent variables, through the use of 

Eqs A-47 They are: 
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SS —1 	A.= 0 

(d 	b2 	4 f 	 _i_ Aa 7,7 „a -f\-1  A 0,xx ks,• 11 	) = 	 vxx 	LA231N)ry 1 IF XX 	It 	3 1 , •XY 

Ai 8i = C 

cin4i.,xx 421 Ci,xx -f..2 ci13( )Bia= 0 

8i,xy 4.S21 Di, ix  -2cii3( 149AL,x = 0 

Di = Ci,X = Q • 
	 21c 	to -78) 

SS-2 	A0= 0 

A 0 dor (dil 	 anTlyy + 1223K I v)4FIXX II."6111C(Xx - 

AL Bi = 

GI,'A 	+ t92, ci,xx - 	(g)2 ci  2d1, 6-4 )8i,x ,  

(111 8i,xxvi,Di1xx)2^L 2063049Aide = o 

Ci,,x 0 	 2k 

-1,2, 

+a3(4?-)3D,:4-4g,„4,,,,x,+(24,3-4,48,,xx 

+ ( .2  '633 -624) ()2  Ai- 4. Ale -24 	Rii-02 A:4 

( 1-rj i  + 7;_ ) (Z-j) 2 A l 2°--p3 /1 a,  

+ 	( i.4)213 / 1)-p 3 B(pxJ 

+-2 663 PP ci,xx a13 (1-y 5+ 

-(2 623- 430 (4) A i,xx 4( 633 62 z) (4 )2  Bi ■ X 

8,4( 	922 	fE- (i-44)
2 
 4 zia  .2R2 ,„ 

- 2k 
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-80) 

(i--,p',4;14 ,) 8 Jar+ (u-4cii 2  8:+4 

= 0 ; 	2)( (A -7?) 

SS -3 	A. = o 
A 0,x, 	_ cor:i ). 	r_anN-.  a23  i-10] 

Ai - B s --  0 

do 8-,,,x+ 	I 1idcx-i-1 31(4)Ci,x -20134)13i,x= 

c111 Bi,xx+ 	443,3-Ki,x 2 do  (4)4 x = 0 

.1,2,- -- 

Di -7--  0 

Ci,xx - 023 OR) Did( + -021A i,xx 42 4234)
8 :a 0  

all 	xx 023(4)ax 16218i,xx -.2 1623 A 1,x = o 

SS— 4 
	

A0 0 

A o,xx ((1111—  )=—*
‘..."21 

E- aa N. 4 19,31\1 0J-1- Fixx 	ixx 	7C1XY 

BL=0 

r Ci, XX - 	( 1141 2 Ci Ai ( 14)Di + d 1141,XX 42 dlitiP 	= I, 2, 

621 xy Szt (4)47)i. 1934)D,,x+d„ 8„„-2d3(49 	0 
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012(4Y CL —1-  022 Ci,XX 023 41) Di, 	AidOc "1 -2 

- 	(OD +-2  .04 (la ) Diixy4 (61334a.) ci,x(i7V-auci,x,x 

+ (431-2&)(4)81,xx - (26.33- 62)(4) 2A i ,x Avel i , xxx 

a  L C(i-tjfir, 	— 	(Ni l  ii-413 Aide z4.4 
d't)  

+ (0:4-df Bifj ( — I —  7z.4. 7i)(i -j)2 23/% 1 J BaixJ = 

- a Alm 	i-a23( ci,,-k-gisi,xx =2643 	0 

013 4)3 cs, -2o23 (4) axx 4 (033 l 012 ) 2 1x (41-)s  

—(631-2 -6„)61) 	- ( 2  633 gt)(4) 213 ii X -621  Bid" 

a 
491- 	 f C-afj? A3j, 4 ( — Z-14. 	A1:413 skx 

-2R2  fi=0 

-+ 	Bi7+4 4 ( - 1+ i-,i+ 171) i -1)2 	44'41 = ° 

CC-  I 

. (A - 

AL= Ai3x = 

=0 

a1= Bidc = ; L=1, 	, 

A. = A 01 

CC -2.  

Di = = 	= 0 L I , 2 . -- - • ,21‹ 	CA -84 
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1 

(4-83) 

A o = Ao,x --= 0 

A L = Az.), = Qi = Bi,x = 0 	; L = 1, -2 . - - 

Di ,x = Ci,x = 

Q13 )Di01.3(0)Di•AX ataACiarr 	11A id(XY 

-4- ( 63i -2 623) (-1)8idtx = 

fin)3r *) 	i9c- 	D /3 t7f/...-, 	( 	xx 	,xx)r 	621 Bi,xx )( 

— (83 , -.2.64)( 14),4z,xx=0 

CC —3  

A o = A" 

Ci vL =  azaCi,xx 	63 ()D i,X + Sit A 1,XY = 0 

a z 	-1-azI(W)Cia + 42/ B i 	:7- 0 

i=1,1, , - -.2k 

01-84) 

CC-4 

AO -  Ao 

AL- 	1,,1( = Bi = Bi,x  L= 1,2. --- .1( 

-0)2 (4)1  Ci t a z2. 	 "i* 	Ai,Xx =0 

-L2,3 (4) 2Di +-2 zi(4) p i ,xy  -F (a33 + 01.2)(4ki , X 
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- 02 C i ,70( X - L21 A i.xxx 4 (431-.2 .62 .3  ) (Bi,Kx = 0 

- 012(4)2DL+ ax37)01K 025cpc,Y + 	B. = 0 

06 (V)CL --20234)Ci,xy 4 ( 033 fa2)( 44)D;or 

 

 

DI,XXY 621 B i 	631 .623) 	) A i,xx - 0 	- (A-85) 

A. 2.8  Solution Methodology-Finite Difference Equations  

Before casting the field equations into finite difference form, the 

linearized ordinary differential equations of compatibility and equilibrium, 

Eqs (73) - (77), can be written in matrix form. 

(MIP,xxxxj 	tiAj 	Cr/133{X , xY) 

4  [MzdiX,x} 	{/1.5] {Xi 4 {I`/1 6 • = 0 	(A-86) 

where 

T 
A" 	

A PO 	WI 	j  ettl 	*00 	7,01 	104.1 

L 110 	kik • Bi ;- 	Ok y CI )- ',C1X I DI ---• D2K 3 	(A -87) 

is the column matrix of the unknown function of position x, and [M.1, j = 1, 

2....5 are square matrices [(6k + 1) by (6k + 1); see Eqs A-73-A-771 with 

elements composed of known parameters (applied loads, geometry, and values 

of the unknowns evaluated at the previous step, m and therefore known). 

[M6} is a column matrix of known elements. 

Next, transformation equations are introduced in order to reduce the 

order of the linearized differential equations. This step increases (doubles) 

the number of equations, but it is introduced for convenience, because it is 

easier to deal with low order equations when employing the finite difference 

scheme. These transformation equations are 
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= 
and they are used in only in connection with the third and fourth derivatives. 

By this transformation, Eq. A-87 Eq. A-86 becomes 

 

CR) i)7,x)ri 	Cs3 	+ 	iG1 
f 7,1 

 

where 
(A -88) 

  

o3 
	C 11 .3 

   

(R) 

  

Cs) = 

 

 

	

( 1 3 	C 01 

	

- Cris] 	C r1 3f 

	

(off 	II 
tGrl 

 

I o} 

 

(A -R9) 

    

The governing equations (linearized ordinary differential equations) shown 

in matrix form, Eqs A-88, are next cast into finite difference form. The 

usual central difference formula is employed and the equation become 

►  I (i) 
[R]"4" TA-  CS] ) 

U) 

1  T1  r RP", cs3")) i (4-0 	ci.  i  
= {6} 

fid 	(A -90) 

where j denotes the j th node of the finite difference grid. At each end 

(x = 0 and L) one more fictitious point is used. This requires (12k 4-2) 

additional equations at each end [the total number is (24k + 4)]. These 

needed additional equations are the boundary conditions at each end, Eqs 

A-78-A-79, (whichever set applies from SS-i or CC-i) and their number is 

(12k + 2). The boundary conditions may also be, first, expressed in matrix 

form and then cast into finite difference form. 
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at either x = 0 or L 

[N,]fx,,,„xj + CI\L]f X,xx + (N3) 	frx 4 [N4114 i[Nd = 0 (A__?) 

where [N.], j = 1, 2, 3, 4, are matrices [(12k + 2) by (6k + 1)] with known 

element, and 1 ,N J in a column matrix [(12k + 2) by one with, also, known elements. 

Use of the transformation equations, Eq A-87, yields 

CBS] ip7:xxii 	1871 	= [8G] 

where 

[B,s] 	f‘ ti\131N113 

CB -r) 	ttN43N2)) 

and 

[IA] - NS} 

Note that [BS] and [BT] are square matrices [(12k + 2) by (12k + 2)]. In 
A - 72  

finite difference form, Eq. A-92, becomes 

(A-92)  

(A-93)  

,4_ Easji 	
.2h 

[BT.? ItxT 	l ixlia- 1 
I3 - 	CBS) 	= f1 	( A - ?4) 

where j in the node number at x = 0 and x = L(1 or N) 

A. 2.9 End Shortening, Average Shear Strain and Total Potential 

Before outlining in detail the numerical scheme of the solution methodo-

logy, it is necessary to write the expressions for the average end shortening, 

average shear strain and the total potential in terms of the dependent varia-

bles, A i , B i , C i  and Di . 

The average end shortening and shear strain are defined by 
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e AV 	2ARL 	-53< d  
27LRJ L au  

27 .  A.a 	dU 
YA V  : 	TLR 	0 	 OiX dry (A -9E) 

In terms of the variables w(x, y) and F(x, y), the above expressions 

become: 

( L. 

 

ZXR 

42AV = 	Nxx  - 1.3r\-Ixy .21RL 0 	Q1, Fdy + 0  a 17  - 013 Fxy 

+6„ N,xx +15,2 myy + 	wm 	(mx +.214:0] AdY (A -96) 

aR t. 

rAv 	aoNxx a33Kxy ' 	fe  J. 100F,yy  az3 xx OBF,xy 

±4 w,xx+ 632 WAYy +2 4933 1  ,xy - h1,x  (v+1,y  4- 1A/,;) 

My(Woc +2  hi;)) (511XCI Y 	 (A -9 7) 

Finally, if the expressions for w and F are substituted into Eqs. A-96 and 

A-97 these equations become: 

-QAv = Q11 iSixx - al3F1xy - 	Itt -  &A: Aoli2+aafgYA 

-063 F1xy + (1 	(4.0.2A;) A, -(B + 2 8; ) Bcd 

+ 4911 AO —  PO I  A:) Ao' -44,1(Ai4211:5 48i (Bit 	( A - 

ri v  = 013I\l"  xx 4  033 A7X, ifo4  q:[-02101: - 

4 a!2 Nxx - 023 Nxy 4  (24)2  :47  ci r (444-24;) A c.}. 
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( 84, + 2 BP 
	

431 

-8(A-4 P+A /B‘ - 	 Jj dx 	 (A -?9 ) 

Similarly, the expression for the total potential is: 

UT 
27 ( exx°  Nyy  Cy; Nxy )7(; - Plxx Myy  k„ 1  

-2m7k,ocudy -rTg v dx 01Y E(- 1■:bix U 

+ Tqxy  zy dy 4 fl Rxx  iv,x) 
le 

	 (A --loo) 

where M = - EN and E is the load eccentricity measured positive in 
xx 	xx 

the positive z-direction and 

II I: 'A 	 otx j ox f L  -01 dx 

Thus, the contribution of the in-plane loads to the total potential becomes 

-121RE-ILU + D3 dY = 	Rot-g-Px 	
&{J dy 

 

In terms of w and F the expression for UT  becomes 

(2411R( IC 
"

F..4 uza hxy (43.3 	+ 2 01.2 &Kr • yy I 
- _2 laI3 FYY Exy  - 2 023  F,xx Fixy  jdxdy 	 INAL 

4 d22 W)  + 4 ot33 	dnw..x.xW, yy  4 4 de  W,xxw,xy  

+ 40(23 W,yy  Way ) dx 	Axf,2"f61 (621) Fqy 4 ao I:: XX 

— 0/3 F.,xy)dXdY 	Flxy f7(a2 3  F;xx - a 33F, 5CY 0 

UT 
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••• 2 

a,3 F/YY)0(XdY 
f 	

gw oudy 	71.R1, (al Nxx- 0 

4 033 -My 	T (-eiv Flxx+ ki'v rClxy ) - 2 ARC. a,3  ICixy  

1. 	MW,Atoc 	dy 
	

(A -10 

Finally, the expression for the total potential in terms of A :1 , B., C. and 

D. becomes 

UT RRV- z-Ef 	A:- AelRi( --21-)It:1 4-2 (Mi+24;)4 

.2 
(8j +2 ) 	01.2 -A-  - 	Nxyj 2 (au Airy -  OaT\l' 

• izzl i.  821 A: -Ac/ -f 	 -)2^ i2  /614°  

+ (B,i + 28a: ) 84.] 	0/2 -1\1 XX - 
 

0,3&xyi 	(A: )2  

„ 	„ 
ccci) + (Di ) 

L=1 

4. 0334)2  CCC0 -1-  (D;)13 	, a OR )2  CCiCt fDLv  Di) 

-2 a, (14/ 	+ D C;) az3(4-1  )(C.:fp D 

- 2 	del C CAi") 2 4 (8023 0124)4(14:-ta:) i= 

4d33 (31)2 1- (A 3-  (83.3 -2 d/ 24)2(1;'4i:f 8:81) 
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- 4c113(()( -A:8;+8M) -  4 d3(-%) 3(1,1E3:- 	)I.1 dx 

- )tRI,L PY:4.+ kc A. 4?. 8.0X 	( 	1\7 -27ZR- .-eiv • Xi( 4 	.1 

4 4171v 	71.R L, (a ti TVL Oil Rxx Nxy t a33 Nxy 

- 47CE Flx,R 	 ( A.-/ 02 ) 

Before leaving this section, it is important to give the expression for 

the modified potential an expression needed in the estimation of dynamic cri-

tical loads. As explained in Ref. 39 the modification is associated with the 

deflectional response of the system. When an axial load is applied, an axial 

motion will result (with some related transverse motion). If an instability 

of the type described in Refs. 40-43 and 37 is to take plane, under sudden 

application of the axial load, it should not be expected to occur through the 

primary axial node, but through the existence of transverse deflectional nodes, 

unrelated to the axial node. Because of this and since the governing equation 

for dynamic buckling is (though conservation of energy) 

U
T 	+ T = 0 Mod. 

(A —103) 

where T is the kinetic energy (unrelated to transverse deflectional modes), 

then the modified potential must not contain in plane node terms, when sud- 

denly applied in-plane loads, N 	and N , are considered. In the case of 
xx 	xy 

lateral pressure, the modification is different, therefore the expression, 

given below for the modified total potential, applies only to in-plane loads. 

This expression is obtained by excluding strictly load-dependent terms and 

those terms related to F(x, y), [q0 11 ], which correspond to in-plane motion. 
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UTpumi = U7 + TRL Ci\Ixx (af( - cill/a22) + Nix ), Ca33 

023/022) 4 2f\lxx fixy  0/2 a23 /02 2 013 )3 

	 (A _/04) 

A. 2.9 Solution Methodology - Numerical Scheme  

A computer program has been written (see Appendix A for flow charts 

and Program Listing) for data generation. The linearized finite difference 

equations are solved by an algorithm which is a modification of the one de-

scribed in Ref. 43. The modification, which consists of a generalization 

of the algorithm of Ref. 43 is fully described in Appendix B. The solution 

procedure used for the problem, herein, is based on the algorithm described 

in Appendix B. 

The field equations, Eq. A-90, can be written as 

r U tzx_ ii A- C tIk3fzk  (AkOct = (1  &k] 

where A = 1, 2 	 N and 

( 4) —Tt2 rRf 	 Pk] 	2;t7  C 3 CT3 ic  

CA 	JAT U?3k  7f 	1241 

Note that there are (12k + 2) elements in the 	vector. 

(A -/48-) 

( A -106) 

In addition, the boundary conditions, Eqs. 	A-94 can be written in a 

similar [to Eqs A.1053 form. 

at x = 0 (k = 1) 
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—[c=jpel-fr 
and at x = L(K = N) 

C -644281 rAOPN411 

whete 

B GNI 

(A- bp? ) ----. 2/1[1353i  3 gi] = (BT) t ; CALI= -2TLEBS3 L  
I,N 

Note that iioJL  and liN ly denote the vectors of the unknowns at the fic-

titious points (k = 0 and k = N + 1). 

By properly arranging Eqs. A-105, A-107 and A-108 for the entire cylinder, 

the following matrix representation is obtained. 

	

o 	r  BG, 

	

z, 	G, 

G2 

G3 

< Gi- A -Ito) 

GI 

C j E313 A3  

Ci-i i- I 

Ci 81 Ai 

( A --/o 

(A-10 8 ) 

CI+ I Bi+I i+ I 

C N-2 

CN- A N-, 	ZN-t 

/3,4  AN ZN 

814 AN  ZNtl 

8N.  

CN 

CN 

GN-2 

GN-1 

GN 

GBn  
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Eq. A.I10 can be put in the form of Fig C.1 (Appendix C) and it will be a 

special case of this form, by the following changes. First, there is no 

comonunknownvectorZ.and thus all the {d i} vectors are zero (tridiagonal 

matrix). Next, 

(24k+4) by  (24k-f4) 

(24k4-4) by  one 

(.24/0-4) by (/2k-i..2) 

(24k-F4) by 07k 

(Lv(+2) by (24k+4) 

3,4. --- 

= 2 , 3 , - --- • IN( - 1 

= .2,3, - - 	N-.2 
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r. 2 , 3 , 

N = 

LAN_,]=[cAN...],[03] 

(c„,1 

[gNi CAN) 
rB„,1 

[IAJ [AN] 

= { {iZ,1+,1] 

- 	N-1 

(/.2k+2 ) by  (24k+ 4) 

(24M4) by (/ 2k IQ) 

(-24M4) by (24k+4) 

(24k+4) by one 

(24A+4) by one 

NotethatmI 	N = 111=2111(+4,whilem.=12k + 2 for i = 2, 3, 4, ..., 

N - 1. 

Note also that Eqs. A-110 represents equilibrium and compatibility equa- 

tions in which displacement components (A
i' 

B) and stress resultant components 

(C 	Di
) [see Eq. A-86a] are the 
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unknown functions, while the geometry and the loading (taken in increments) 

are taken on known parameters (assigned everytime the equations are solved). 

Thus, this special case of the algorithm, Eqs A-110, is employed for find-

ing pre-limit point response. When approaching the critical load, the in- 

crement in the applied load parameter is kept small and the sign of the deter-

minant of the coefficients [D in Eq.(C - 19)] must be checked. If convergence 

fails, the load level is over the limit point. But if convergence does not 

fail and the sign of the determinant changes from what it was at the previous 

load level, then the load level is also over the limit point. Desired accuracy 

can be achieved by taking smaller and smaller increments in the load parameter. 

It is also observed that by employing this procedure (special case of the al-

gorithm in which the load parameter is known), no solution can be obtained 

past the limit point. Because of this, the more general algorithm, described 

in Appendix B, is employed at this point of the solution procedure. The new 

and more general algorithm simply changes the role of one of the displacement 

terms with that of the applied load parameter. By so doing the form of the 

equations changes and the matrix of the coefficients of the unknown ceases to 

be tridiagonal. Depending on the position of the particular term that replaces 

the load parameter [which one of the (6k + 2) terms, and at which node (x-position)] 

column matrices appear all along the column corresponding to the vector jZj 

and the new equations assume exactly the form shown on Fig. C-1. Thus, at 

some level before, the limit point, the procedure is switched to the more 

general algorithm (Appendix C), in which one of the displacement parameters 

(AI or B I
) at some specified node is taken as known (specified increments) 

and the load parameter is the unknown. This solution procedure is continued 

until the desired portion of the post-limit point response is obtained. 
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Finally, in generating data, numerical integration is used to find the 

values of the total potential, the average end shortening and the average 

shear [see Eqs A-102, A-98, and A-99]. 

A.3.0 The u, v, w - Formulation  

The geometry and sign convention for this formulation are shown on Figs 

A.3 and A.4. Note that for this case the x-axis (and therefore the transverse 

displacement component w) is taken as positive outward. 

In this formulation two distinctly different kinematic relations (dif-

ferent shell theories) are employed. One is due to Sanders (Ref 34) and one 

due to Donnell (Ref 33). In the case of Sanders' equations, it is assumed 

that the reference surface strains are small, the rotation about the normal 

is negligibly small and the rotations about in-plane axes are moderate. 

One of the reasons for expressing the governing equations in terms of 

u, v, and w, is that it is not possible to define a stress resultant function, 

in order to satisfy the in-plane equilibrium equation identically, when using 

the Sanders' kinematic relations. The case of using Donnell-type kinematic 

relations is a special case of the Sanders case. 

3.1 Kinematic Relations 

The kinematic relations derived by Sanders assume a perfect reference 

surface. These kinematic relations (Ref 34) are modified to include the ef-

fect of an initial geometric imperfection w ° (x , y) as shown below. 

exx = Exx z X 

(iYy = (1".; 4 	kyy 

rXy = rvo + 2 z kx y 	 (A- / f) 
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where 

0 	 / 	2 	 0 

e,,, = u,x+ 	I/4x 	1/N4x 
0 

221.,y -F R 4 w:# 	W 1 ; 4 	11-R2 81  r 1  -2 --A (w,y +vv,vi 
v•-° 

+ tiv)x kA4y 4 (A/A°  W,y v4,x v\l, y  - S 	+W,:) 
x  = - 1> x 	C°Y = V )Y S i R  

kxx = - W,xx 	i Kyy  = 141,1Y 
)( xy 	 3.!.." 	 (A " 3) 

where 

404 S4seleA4' 	 4.144.-4 

M TAtool 1 's 	freet, rtia.q (A-04) 
A. 3.2 Stress-Strain Relations  

The constitutive equations are the same as in the w, F-formulation. Be-

cause of the different sign convention the relations between the stress and 

moment resultants on one hand and the reference surface strains and changes 

in curvature and torsions on the other, these equations are 

     

 

NX X 

Nyy 

 Nxy  

M xX 

My, 

Mx>,  

 

o 
Xx 

0 
C yy  

Oxy 

k xx 

kyy 

2 kyy  

 

     

     

     

     

  

- - 

All B/2 a3 	I, 7:)12 Da 

B,2 B23  IZ 	 5,3  

8/3  8 23  B33 D D 12 	 D31 
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0 U = 

where the expressions for . 
1_3 B

id  and D id i
. are given by Eqs A-14 and A-15. 

A. 3.3 Equilibrium Equations  

Following the same procudure as the one described in section A.2.3, 

the equilibrium equations and associated boundary conditions are: 

Equilibrium Equations  

Nxxo; Nxy,Y = 

Nxy,x 	Nyy,y N̂yy ( IV) 	".,X) 	I  N xy 	xrz+ v1/4/,:  

-1- 8, 11/1kwx  + S I  Prii--/F 

Nixx(Psi,x+ v1/4/,°x )3, x  + (Nxy  (w, y + w,;)], x  + C Nyy  (w,x-+ M; )3,y 

-1" (Nlyy (Wi y  +w,y°  )1 y 	(C\ 	(Nrylf ), y3 

Mxx,xx -1- 2 Nixy, xy  + Myy,yy f g = 0 

Boundary Conditions (at x = 0, L)  

(A — u 6 ) 

Either 	 Or 

S 	0 

	

L./11R S I 	-acy  + 14 -(Y S 

Nxx(Axiw,,04 N xy (w,y +w,;) 

— S14 U 	xy,x  + 21virmi = ra)x fFrxr,y  S IA/ = 

	

NIXx = Mxy 
	 SvV,x  0 	 (A —11 7) 
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Use of the first equilibrium equation in the third yields 

(194,y v4sy) ( 1 xy,x N yy ,y ) f Nxx (w,xx 4  W,xx°  ) 4 2 Nxy (14hxy v\la°  Y) 

Nyy (v/40- 04y ) - 	-.4-qU(Nxy, x  4Nyy,y )-1-Nxy lzx  4 Nyy ll y) 

xx,xx 2 Mxy,xy f Myy, yy, t 	= 0 
	

( A 	8 ) 

A.3.4 Solution Methodology-Field Equations  

The solution procedure for this formulation is as follows: assume a 

separated solution for u, v, and w; express the known (assigned) parameters 

o . 
w (=perfection) and q(pressure) in a similar form; find expressions for 

reference surface strains, changes in curvature and torsion and stress and 

moment resultants; substitute these expressions into the equilibrium equations 

and use the G alerkin procedure in the circumferential direction (this changes 

the nonlinear partial differential equations to a set of nonlinear ordinary 

differential equations); use Newton's method, applicable to differential equa-

tions, to reduce the nonlinear field equations to a sequence of linear systems; 

finally cast equations into finite difference form. 

All of these steps are shown herein, in detail. Then, once this step is 

completed, the solution scheme of Appendix B is used to solve the final set 

of equations. 

The dependent variables are the three displacement components u(x,y), 

v(x,y) and w(x,y). A separated series form is assumed for each of them 

it (X ,Y) 	Z Z,( 1 1 (X ) 	 ZA2i(X ) 
1.70 

21(X , Y) -7- 	E tra (x) 	 401 
i.0 

w (x. y) = -4 ( v,h; (x) 	+ 14, L tx)Ain 12--,;)13 	(A -,19) 
Lt0 
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Thus, the number of unknown functions of x is (2k + 2) for each variable. 

The total number is (6k + 6) subject to the condition that 

7)20 = V; 0 = Wio = 0 	 (A-/20) 

Note that the true number of unknown functions is (6k + 3). 

Similarly the expressions for w°  and the pressure q(x,y) are 

vetyy, 1:c mloOcAqig f lo40)010t2) 	 (A -12 J ) Iro 

g(GY)= 	( 	W 	g Ain 1;.-1 •:) 
ite 	 0 	

(A-122) 

In this case also, the condition w 20  = c20 = 0 is imposed. .  

In order to express the equilibrium equations in terms of the parameters 

of Eqs A-119 -A-122, one needs to first find the expressions for the stress 

resultants and therefore reference surface strains and changes in curvature 

and torsion. 

Useo""A-119anciA-1213intheexpr"sionf"e—andKVEcis A-112 
13 

and A-113 yields 

where 

2)c r 	 L 	91 , 
° 	.L( 13i 2Atide 	txi i, 4 	) uag R )0, 	1,.. 0  

- ( 	1.(21,x 	tx2 i 	) 	14] (A 4.2 3) 

..I L  
Lxa - A   i(k) 141 Id( A 144,a) + A i  400(w2%,012.0c) 

A i 	 4 Z  t .., ° .6(.2( 1 = /4{2 00 l. W t,x , IA/2,0 -I.  bi 3a) (W 2 ,DX AW 11X) 

A  
= 2 I hi, ocAVVI,x 	 A24 Wado 

A' 	
, A  

— 2 	200( 1411,X , W1,x) -1* /13Gv(VV2,X, W pdi (A -123a) 
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r  

Cyy 	 ( 42.fro 21- 	+i t 	-1 111  

	

. 	rad 
1=0 	

--R- 

4 CC-k lli 4 249Si  4 	4 --Cm Sin I] 
where 

21-12  
— 	A 154 (k) W W,) "1,3 	,w,)) 

A  
+ AJ4(g) ( W 	 M e  )) 4 6-1 -1 	fiji(k) (  4 	) " 

(4-)2rAit.72.)0v:,iv,) 4  A 3 00 (w, °  'w:)] 

(A j  j'3G19 ( 04., Ut) — A ,17-2(x)  (tat° ,V1)) 

aii(x)(Wi 	A1;1 (lc) (W2  'WI)) 

4 17 1i ( A  Ck,l Ii Uj . ) 	(z12,u2)) 

CA14w(V/r , va) 	(via 	)) 

Cy21, = — 	/4/3200 ( VV2,  ) 	i3300 ( W, 	) 

( A 31  00 (7.12, 	) 4 Aziou ( 	12 )) 

4 V- (A;L3w  (w„ v-, 	(w.,14)) 

[t- 	I- i.x css 	6;i C144V 

4C - 1,k4  U,i  f Vii,x )di"6(;4, ix;2 1] 
where 

-ta 	AL,,,(wa° 	/4.74(ig (W,°, MA) 

(A -/24) 

(A -/-24a) 

(A -125) 
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L 
1-xy 

A  i. 	
4 /914(kJ(11V2ik i• V41)  7 fill (k) (W" 

— 	( A tiot, col , 	) ,44i0c) (1/2, twa°,()) 

9z  CA 	
A i. 	1 , 0  

R 	us) UV:, 	2 oe) 	A73(x) v v 1 °, yv , ,x 

0 
2(k) ( Wtd: W,) 7  /1 1 3  CIA/2,x W2,)) 

A i3-(k) (11 , ki„;) * AL) (V), tv:/ x 

2-?-4- CA 	(W , VV,,x ) Ajzi (k) (Wi VV.2 .x) 

- A 	w 4  Arit(k) (vVi.x ,VV2.1) 

- (rJ, 00( 7  ,m,x) A4' (k) (n w 27x)) 

yyxi =2R r A lac) OA/ W2,x) A.43(k) (V (W, 1 L A) 

A  
1-11a09 (v,, 	

A 
 1,x J 	) 	13(k) "V l i)e W  1..)] 

- -WC A 3 (x) ( 712  Wt,x) /Lt (*) ( tr,, 1A/2.,x )3 

k t 
C 	Ce1 	+ w 	r,ai,xy ; pi  

Lto 

in (in vhi,+ 	c942  i2rzt  

-+ 	CinWiL - S.  Zia ) S;n 

L 	IV2i, x  TA Zit i,x) 	FZ 

+ Wi 	.4LR 1/) i , x  ) Sin iR'19 

and 



Note that 6 i  and 	are the same as before, or 

OL D  

 

> k 
..e< 0 

1= o 

1 >0 	(A-/2 ?) 

 

I 

i) 
(k) 	 Afj(k) The symbols A (i) 

k) 
(i = 1,2,3,4)' A

(Jj
. 	(j = 1,2,3,4), 	(j = 

j(  

	

1,2,3,4), AIj 	(j = 1,2,3,4) and Aj2j(k)  (j = 1,2,3,4) result from the use 
j(k) 

of trigonometric identifies, which are employed to change double to single 

sums [similar to Eqs A-49 - A-51and symbols defined by Eqs A-52 -A-54; note 

that some are common]. The needed trigonometric identities and definition 

of symbols are given below. 

	

„ 	 T. 

	

Ce</P9 ] aiCe4ie = 	A (k)(6,aJ &Nil) 
i.e 

e  
64 6940 ai Sinie 00 (b a) Si 

A Lr 	 k4-1. 

S 	03 	1.0 3(k) 	- 

	

(Alio = 	A (b a) Sin id' 
1=o 4= 0 	E  

( A -/3 o) 

	

Zr *84 	ei ai Sinl0 = 	A 4(k) ( b . 6 ) C040 
1.=0 4=0 	v 	 Lro 

Ar-M. 
Ki CA 9 (.1 0 a iCoS Le = 	A.71(10 (6  'C) CO-lie 

i=0 	 i=o 

k L 	 kft 
Uo ci 44.C4SjOi a isle je = 	J2(10 (b,a Sinie 

k 

i=0 tt)
C -ad. Si7sjoj Clicos ie 

k 
o p, C,j. 	Siniel .  

A44. 	L 
Aj.309 (h , a) sr/xi° L=0 

ictL 	1. 
4740 (h ,a)  Ni 61  1.=0 

(A -13 
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x t.  

44.00403 aliC0j0 w (4, a) Coqi6 

Ati,C -ed ovje.) aii tie =g2 

A 	
(-6-, ) Ahtie 

t to C 4,4 Ain?) 	cA vie = 	(4. a) idinio 

io  (6d 41-41.0_3 	= gAlL400(6, ) ce/ i8 

tot-0- 4d cm (IWO, C6  18 = A ,j., 1(k)  ( 4-,a) 

ktoCi 44 cas je3a),LA;nie = go&  A ..32(g) (4.a) 4,14.1LB 

tit( tg,:i A tIti 83 alicelie 	A 3-3 00 (-6,a) Air/Jo 

totep 64 41401 ail Ainie =1:1-  A1:74,, (4,a) com 
) 

..̀...ttyig,i65Q4 63 ai 	?;- Loc) (8 ,a) on L 

00 C4 2-64cmjc Q i Ainie = L  A 322 00 (4,0) zatio 
'cof0 142 -14j.niptvieJ °LC* ie fa to  Aa23(K3 	a)Ain. jo 

tc4Cif 2.6j.Aindo3 414tie =:c4:AJi  1400 (4' ) C#Qie  

(A( A 3 2) 

(A--433) 

(A -434) 

where 

= z foC -6 ,1+4 + 	) 6 1 141 3 04. 
= 	 as 

= 	440 C 404 4 ( -1÷ 74 +t)4g/i41.104- 

f 	ell+(--/ 	+1.) 41 1:413 ai. 
eit(ti.+4. )  414+ (1- t.2,i4)1i-41 4140 ad 

f to  C- ( 144)&144, 0-742 :  +X) iz-Jteii-j(3lai 

fa ( cue') ea.#4 ♦ 	 aj. 

Irci-Pensisj  

= 	̀()( 	+ 	ell-4114- 

 

(A-13s) 

(A -136) 
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00(-6 	=-60' -I" (I - 	411-ji j 
a  

2 0   

A uo 	a = 	gi.44 +(-f + 4+ ) ct 

k 
4(k)(4,0) 	cf,o r oitj (- i -tti qi) (A-/37) 

jick, (4,0) 	.fo rat<i)41:1 4- (1- tpl+t) 	61,413,71. act  

Ali-3200(6,a) 	r -  afdoei.,4 4. 	"IL  L)/14/ 

 i. 	 A ,30,(g,a) 3-  Z 	4114  (-/ 	/71, / 	6/i-jtJdaci. 4.0 

A zyium (B,a) =z to  r( LI) 	I ti 	411.-ji] 614 

A i 	41 	e L 	 2 

/9;1'21000-M) y -T U-kt) vdd 	ti  1 ) 02,ga  364 

k A J22 (k) (AO) = 
1 
Z 	i44)2  'Igifj (I .'" 	( &if tg /N. 3 acf 

A 	
A 

AI 4723 (K) ( iC = :2L1 	i+drigiq +(-/ 	)(i-d )6,i413a4. 

3- 241X) (e,a). 	a+dil 	+ 	) (L-d) 34/i4i)acj- 	(A -139) 

(A-68) 

In order to write the strain-displacement relations in matrix form the fol-

lowing definitions of column matrices (vectors) are needed. 

E: 
e,7). 
rig 
kxle 

kyy 

2 kxy 

= 2ĵ l [Gi l} + 	147,1)C49/14+( TE313 [Ld f izxd Akin 
1=0 

(A -/40) 
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E;y ►  = ( JO Ua- L 

where 

= 
p 	 0 f_ 	,v  

L 	Cyya , 0  xal kxx 	)'(yri , 2  

0 	0 	0 

L E XX1 	YY2 rXY1 K,( 2 , kyy2 • 2 kXY2 J 

	

fi t►i = 

..4  L i I 1 L 	 T 

0 , 0 , o j id  L ("XI . za, , Lxyl , 

	

L'zii = 4.  L IL 	L 

 L

. 	 7 

0 0 0 _I • 
L 1.X2 0  LP, TX" 2 ) 	A 	• 	I, 

{ -kii = .12/ 	
T 

	

J.  n 	1  71 
L I.40 .. (II • -C'q i  ' 0  ' 0  ' 0  j1  

T { -ei i r- L -t: , t , -Clz, 0,0, 0, i  (A-141 ) 

Note that t—  and t—
n 

elements are given by Eqs A-123a, A-124a and A-125a, while 

the s ib  and k. elements are: 

k xx ,= 	tv,i,xx,51 

C xxa = Si 1,111, X 	 3 K xx2 	V1/412i.xx 

I . 
6.71 = 	zjii.x 

na1 = (--j-RAL 4.  ni,x)ai. 

kyy
► 
 ,r4t.(invvIctsiaL)1SL 

kyyl , 	(in vtra +.3,741)3 

kzyr = 

XY2 	 Vii,,x1Si 	(A -/42) 

106 



Substitution of the expressions for reference surface strains and changes in 

curvature and torsion into the stress-strain relations, Eqs A-115, yields 

NXX 

NYY 

B 
c( tEtil+Rij + itT ceR 

+(tEul+fL,1 4 1t404] 
(A-/43) 

al< r 
= Z. L(02.1 1  4 1.71,T fnif ce4  

i= 0 

+ f7i:j +fn:11)At-f J (A-/44) 

or 

Nxy  

rixx 
tl yy  

Nix),  

AS D 

where 

1111--. 4  

A s 

8 5 
feid 92xYl 

't xxl  

t. 

9401 (A -(45) 
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96yt, 	

A 	e) , 74, 1 
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Note that the 	) and "1. 4 21j vectors result from linear portion of the kine- 

L 
matic relations; the - Ltiti and 	from the coupling between the imperfection 

parameter, w
o
, and the displacement components v and w (thus, in a sense, non- 

	

n I 	
n 

	

linear relations); and the -ttlif 	it and 
2ij 

vectors from the nonlinear terms 

of the kinematic relations (v and w coupling). 

Substitution of all the derived expressions into the equilibrium equations, 

Eqs A-116, yields in-plane equilibrium  

2x r An 	 L 	 t 	 1,3  ,t r  

	

( xxriof + 	27xyzi 	ftoriot 4  R /4,q1i+ 71xxii,x T ;/(rpi) GM 
Lza 

L 	- 	L 
11 	 in 	. 7.7 	in 71 / 	do  

"4.  (XXxzi,X -q • (xy i 	 + ( 02,,x - TR ,  ( rya 

= 0 	 (A-/Si) 

1C 	! IXY 	.2X 	2 	 ..4k 	3 	3 
E.,0 	fit. 	- R C9 —A- 	 )09/--ei" 	(gq 

1 =0  

.2)( 

	

21,1 

	key 
= 

	

21  414t12-1)112 	 • 	C14iLkY 	(.512L1 . ailt) I  4 1  R 	(A 

Lz0 	— 	1=0 	 1=0 

where 

yj 

	

(Yr21 	22xY/i.,x 	254mcItixyri,x 4 -Li 4I  
_ 	

ficl#1yyal 

2i 
	yyrz 2ixylik 	R-111271" 

...1717 yyd 	 (A-Is3) 

	

'i° 41 	% 	i 	t.rO 
71(4 rL  - 	 .71(k) ." f  ( ) 	

A
J4(x) 016 dqyy2 ) I 

	

,--831-( A L  (wn 	(w= n )) , 	xy, 	 xy2 

--R-  • LYy2L 	il,x 4 
apr  In  I. 

atxylidc ;41‘ S Myyz 
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+ -  ( g ( 	
, ,,„ ) 

_ ex) .. 1A/2,ex  , Nxy) -IL A 211  ck.1 (" IOC i / t xya ) j 

- in L  ÷ 71` . N 	 1 2,7 1-  - - in  S N L  R Vii 	xyzi. , x 	---,z xy2 t , k —0 i yy, I 
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-81P1 A ji  iu)( 1A11,71YY1) Alti(k) (WI 1 71YY 2 )] 
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A
I A  L 
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in n _L. S, 414 n 	in - 	/tyy, 1' 71,t2i,x 	--Irz (xy 21,x — 	s 

' (A 	
A 	 II 
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A i 
193 00 (7-A INyy j ) ± A I_ WW1 Nyy2)) 

1  / 	
Ai 

R 	3 N. — 2,)c , 71,y1) 	192 (k, (wr, Yfr 91,11 Y 2 )) 	 (A' Vi. ) 

L 
- (31-R11 	 ,4yy,) -ii4(2,v(t tv, ° , 77yp)3 

C 	01 	Ai  
rRL/-11 cak„) vv ,:c o'EXLyi 	r 	tvc) ( 1V=,x 22:$2)...1 

0 	L 3 
	7/ r A i 	I 	 \ 

1 0 , ,v) 2 ,1 

314 = 
81 	

(.2/0 ■. • • 	, cxy l 	,9 0- 2  (2,k) " 	1j 

Sir Ai 	 A st 	 L 

L 	ox) Wje,N,nryi  ) Maw) (. 11V/d< 

5 r  A  
° 	) 	

,A, 
1.? 1-131(10,W xft#V2 ,P1yyl 	.74(2k)(.v4+ " I lityplj 

16Pl2 t il1 toxi ( 711, 	) 	A (2 $9 (711, 7t,;:))] 

+ 	(A Li-cou (W. , x tA11; , 7471  )•+A4i  (.2k)( 1412,X+ WZX1242)) 
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4 [ A' y 	 NyLys) - A JL  qok) 04  • 71YY2 

rA i 
- R. k 	(ix) Zli, 	yLy1) 	/44(2k) 	27YY )  

I r i  (. IA1 1 , x , X xyl, x ) 	 taw Waoe nry 2 

S?j r A 
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L 
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in 
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Si r  A L 
4  R 113 tax) ( VVa,X WZX y X),  I) 	A 2i  (19 0141,1 V1/44,°X In:y2D 

, Sin r A L 	L l t A i- -r 	E— j3 c2j9 k.vv,,Xypi 	j2 tug ( lAt ,72yy, ) ) 
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A WCI) 
r 

k 	"Y;2  ) 11-1 (219 ( V.2  nyyL  11) 

Qt C A L 	( 	
A  j 

R 3t2v _W 1,x 	) /11(liv C IA& x ) 7190..1 

Transverse equilibrium 

(A-ass) 

+ )4: 4141AW + gc(z:,.+7,:oavo+(72,11-7:..)Amtili 

+en) ciKi' ♦ (C+!7i) 1Jkfrt t-f3-f i,( aiesilf +34,444t iin = 0  (A -1s6) 
31( 	3 

+ Er(
,_ 

 

where 

xxlidor + 2  MAY2 14 	7-7R 	)51/i -  
in ) 	1*.. 29 4  

L,7  
21. 1  9 Xx2i,xx - 2 Niyti,x (4) — 	)2 2  _ 212&_24 fy1. 

t. 
Xty21,x (V) — 

YY11 	R 

4 7 ( Aji  I (k) 	741,x) - A J409 ( 'NJ% 71xY2,x)3 

4 (i )C A .7-3L  100 ( w: , 71Yy2) ± A 34(k) (vvi',74)01)_3 

14 	4.44 
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(A-/57) 
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4 24 I A Ji  100 ( 1Al2 :7)( ,Nryi) - A .740) ( 	) 21xY2)3 
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According to Eqs A-119 subject to the constraint of Eq A-120, there 

exist 6k + 3 unknown functions of position . These are the displacement co-

efficients uli (x), vii (x), w/i (x) for i = 0,1,2...k, and u 2i (x), v2i (x), 

w2i (x\ for i = 1,2,3...k. Note that if one can solve for the displacement 

components the response of the system is fully characterized (deformation 

approach). 

Next, the Galerkin procedure is employed in the circumferential direction. 

The vanishing of the Galerkin integrals leads to (6k + 3) nonlinear algebraic 

equations in the (6k + 3) unknowns. These equations are: 
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Next, the generalized Newton's method (Ref. 38) is used to reduce the 

nonlinear field equations to a sequence of linear systems. This procedure 

is similar as the one in section 11.2. Because the final set of equations, 

Eqs A-160, contains n's, Vs and 'T's, and because these are in turn functions 

of other parameters,then Bq A-72 will be applied to all of the elements, need-

ed in deriving the iteration equations. In so doing, only the nonlinear terms 

need be considered. Thus, 

, 

X I 

711-it 

I NI (t 	= 	
gk 
 In?"' 4 A too (rvi•x, 4(k)  

 

- 1LA it,0 0\f/,;, 11A/i7x) 4  A4(x)(1^1:14, w2:401 ( A - 6 ) 

/ 	yt *ft 

VEX2i )  Il i  ( "41 Mtitiq .2(k) ' 1A/2a ) 4 Auk) (W,, x  Whx) 

 

Inh 
Abcx) 	, Wi i  (A 	.2) 

116 



" 1"1923  AL 	 L 	 forti 
W 1A/ ) 4 All/0)(W ,  W2 ).1 

( tvi) = 7 	z34(x) 	) 

A4w(7) 2`,v -27").3 
sin 

( 
A  Ir  

ittk) (W► 1, 	) -7-  /-A 
L 

 1 14 (k) Zja W  ) 

74 	Nth 
— A i ( WI 17A ) 	( V; )Pti 1V4 ifl)  

I A I Ai 
- 17q1( 1131409 (will, W ► ") + Axjuk) (km,e)] 

i 	2ff 	 i 

- 57?- 2 	(1c/ 1); 	) 44 (A) ( u  37:)3 

8,77 r  A 
4 R2 HJ4(k.) i4 ", V:5 — /4 ji  t4/22% u,'") 

AILIz(e , wi's#5 Ai`33 ) (w,114/7#5) 

4  44 	al: 	+ A alit) Z4 7f) Ualy#53 

8,4  r  AL (w7 	 w a3 

L 	 atii 1 — „ (,) 	)14 ) — .73Uc) (U IV )) 

4  -4-  la/ r Aficl w ( wi", vv►  4) 4 A:3.3  00(K/  Wa ),3 

4:3 
- 2R 4  r 3  CV ( 244 Z  f, ' ) + A ai",x)(7Y,u.)) 

62 ( 
• R=3309 w 7-4w  ) 	Ai 

ri32(x)(W, 

(ix; Jr= R  (A J.  1 00 ( 	 ) A ivwc,(w," 1, 	) 

Aziov(vv,7x 	 ,w,"' +51 

8 	; II 	70+1 	i 	W/ 	Yr*/ 
7-? ( A ►  (Jo ( Zi►  1V/A) /44/00 n 1A/2„ ) 

, 0 7,1 	7101+i 	L A i- 	“ i„ 	frott ( 
I 00 vv 	 ) -1' /14 Lk) 	A,X V ) 

4  

, 

+A 



„ L 
27 /-1.7 	(Ws 1) vv,7,) 	cvv,m, v1/4( :7„ ) 

- A 	(wal ,w.v) + 	,(„) (\iv's; tiv:" ) 

r A L  (v- 	
A L 	„7 	711 

icx) 	m 	) 	friz t 	t 	
1 
, 	).] 

±7/ 

(1-)720 	4CA i3200 	td::x) — A z.3(k) 	im,7) 

vf 	 Ntis 
A 
/11200 (W, 'WI ) 	IlL300 ( W2, X1 VV3 )3 

- 131 1" /131:uo 	W7X5 + A IR) ( 	1/1/2,x) 

A 

(k) l
,C7Pf

i 	
A i 	lit 	r  7011 1 -7  

vVa (12 ) 4 fri300(W 2, x ,  ()I )j 

A l (t)( 4, vv :x ) — ALIA)  ( mat, 14/1,x 

- 	4tog(vv7x.,14e)-+ 	(„) (wf:x,14431) 

4  ft? 	00  (v",',14) 441 1k) ( 2)371, 111/17x)i 

,ifi-ff 	A i• 	I , At 	% . / 141 1 	A 	IA/ at tr 

" 	410 — flux) Cvvi , XX ,  vvi,X) 'phi' 1 (10 vv 	, VV1,X)r ) 

, A 	 7'1 	 _ L  A  
-7  /14(k) W 	VV2, X ) 	/94 oo 	2.0) 

C A oc, (vvi 	M,x_ 	4 ov  "dfx  ) A 	( 

4 Aim, ( tAb:11 V■ii,rx ) A 4 ov 1Al27x 11■4:70j 

m 

(A -10) 

(A- /‘‘) 

(A-147) 

.n vri I 

( TX 2 1. , X) 
,

2 Os) 	/, xx 11./ .1,xx ) 

7.1 	1ff +1 
LL  A3 (X) ( Wx) 	W/, X 

A  i 	74 	Imo 
z(Pt) 	vide ... 1A14,XX) 

i A 	, 	7Phti 
4  /93 00 (Wa, x  , 	) 

( 	(x) (vvi,x, 	2",x) + A 	(vvi 	tiv orj 	 .2,XX 

A  L 	7,1 	 A  
It 	

1) 

4 3 ck) orii 1.xx W, 1,--) 	Ai 3 (K) ( 144, X , 1000 j (A-/68) 

118 



1±n Nwift 	r A L 	/1A11:: = 	IJ400 

-4 AIL 	(vv27,, ,vv7+  

-i- A2`,40, 	v\I 

4  A 
 A 	701 

131 (k) Wa 1Wa•X 
1.., 

 

Si r  A L 	NT , 1,01 	 70, 

R2 	
, 

ubx) Ui)x ) 	
A 	

U2,x U2 ) 

A L 	7  op 7  rke t 	A  i 	 n 1_214 

4 1-4100( 	) -1.  714(x) 	ti2dc
f, 

 

8:4 C 	
01 	"et 	 ,., 

77' 	(A) CA/ 	U) A Ji cio 	) 

L 	/it 	 i f 

/VA) C "A 3 WI  ) 	

f 
I4 (k) ( 	vvi,7 ) 

"_ #, 
- 	(vv 2,x , 	) 

Z. 	im 

 
vot 	79,41 

A j 100 	1 

r 
X ) 

mot! 	. i 

_.A 11 00 ( 711,x ,w2 ) - A 1100  (U.  1 7111 W 27;1)] 

	

72, 1  r  A i 	, 	74 	,,,INI ) , A i 	,,„if , „m , 
- 2 re ( frii.74.0v k.IN r ,x , vv, 1 -r A. 4o 	, vv,,x) 

	

L. 	m W IN 	I. 	74 	" s ) 

i A 131(X)
(vv 

 " ' ) IL A Ij" (IV' )Wajxij  

- 	AtKi c zit iwtx , 2J, 	A 400(z)::x) u ) 

A oc, (7-71 7",ZI:x) + A 4i  00 (V: V.  2 79i 

( 4 A li-4(X) (U21 ) W1441 ) 4-  Aii4v) 1/2P b‘117(+1  

Oc ( 1411210 X U:141  ) A - 104) 0^1  iv.77x5 

	

?r iff 1.1 	) 1 

014x )14117) 	
A Mx) k,1/2 vv2„.xij (A-169) 

119 



( 	im+ ►  

\ Pia) 	
- 	

L 

1  frt 1J2(x) 

4 A i  13309(M:ix 

v x , ve 49 + 	J2(k)  (tAIP,A47 ) 

2w45 	A zJ3 (x) w", 1^12753 

A 00 ( 2'117X ' 211") 	1421 )c) ( 247r ) U:41) 

4 31(k)  C 	ZZ7) (741 _3 
LE, m,  

cV1 r L 
Ur) 1  / hvf  V; ) + A 7111.1 	J3L  ( A J3 	 cic)  (w ", 

Ittft 
Lib X ) 

Wfi 	 NW 

A 
2(t 	

) 	D uo  ( 21; • v`i 1.x ) 

_A i we 
3.2ekik.vv2/x.,u2 J 

, 7/141 
(k) 	. 	) 

t 	' WM 	A  A 13 k. 	". 	1 3 6k) (Z2 , W2x)J 

	

2,R1CA 3(x) ( 	 ) A:(k )  (A: „v .:) 

A 31' 00 ( 	ur:FX) + Aioo  Cu:, U2:0) 

1-  C A J 3 ov (1A117X 	Aji  3(k) (1AI 'yr ZI-17() 

1123 tk)(ZII7x 'Kt") + 22 (k) (7111 
A 	 A  i 	,.;Nt 	)11  

7-13.2q  ( W=7, U.:) /132 a) vv I  • U2'" 

*1 
	

t( - Az 3 00( 112,X V ) 	13 (k) ZeY) 14.1-2:40j 

I I  7,1 \1 	A 	 741 	 Ai 	 „ 

	

fiZJ209 " 2, X) 	""r I3 (k) ( w4vv1.4) 

4 
A

2J3(k) t A  / 1 .7.ett )V4 -f A lin (X) (Vtit ifil lA4 4] ( A -/ 7 0  ) 

120 



	

NI*1_ yl L 	

• 	

ta10111 	A L 	1 ,

v2  A 

 
LXYlior) 	"7- (1-13.1(k) (14/2 1X ) VV1'" 7  /`-1,7loc) v 	

fi‘ 
,vvi.xx ) 

141 

	

M 	A 	m 	mtt 
- A.,1414(X)(tAi)ik ) W 4•X ) "- 	J4(k) OW  I / 1413-xx,) 

	

L 	lit 
+ II 100 ( W j" W  ZW# 5 Azi  104)(W:: , W275 

A  

— 14 (X) ( 427XX VV, ?If f.) — 4 j'hi(k)(w:v,x ,w,77 

, 
- R1  C 14:" ocu (v5 .x vvia + A ,ito cui7 vv 

	

-I.  A 4'  oc U27,sx W *#t 	
i 

) 2  ,x 4 A 4k) of ',wi,7() 

	

4  /9 (K)( WI7XX 	) -f 

A4+ /94 (x) ( VV:Xx Z12. ") —Mil(k)( W2"1, y ) 2)-2":;51 

2t 
- 	r A alov 1147 	)- A I RI (W,'" , W,, 

	

A 	711 	uti 	A 
193 IWO (VV 1 1X Vv" ) H.7400(Wi m •h,xx 

W11');11 W 	/i
A i. 	 " 

I( (k) 1v2, 	w ox 

+ 
A1(19 

  , 	, , 
(0.  by 	 -} " t ) 

(11,7; 	A4L(10 ( 7i2)1' 1A41)  

	

A,i (tv,:ifx,v-,"') -1. 	o) (047 olz 7x) 

4  44(x) ( 	ua") W:,1)071.27X) 

	

+ .272R 4 /i  4 (k) NI :XX .111:27 	A=400 (w7„c,u-a,x'q.).3 

121 



( 1_ ,f 

L Gxx2,0 
Noi 

C /17.2ou 	J VV4,X ) 

, , 
(10 "%X , VV/,A) — 

A i  72(k) 	,"x1x , vv :Ns)  

, A 	
"Y

)Ito 
7-1 23(k) (" i ,v  V 1  ) 

a  A 
-7- 11  J20g(vV:4.■ W 

X,

) 

A (k)  _vv,1w,7,07 

4' 
/11 	731#1 Ar3(k) ry 4,  31' ' WI  "X 

I 	

• 	

wtH 	 .111 	'Mt 1 
- R A3u0 ( 112.) 	) A309(Va JI(Vi,xx 

i•or 
4 A .(x) 7-71 1Y 3 VV.2,X ) 	 ZA WI, W27txxl  

+ A 2 a) OM; )11-1?"1) 	( w ailim  200 _ 1,x, 

t A 3„ (4„,u," 	, x4.1)] 

(iAil",),,w,, x) 4 ,4 43200 (W z)lf,tA4 140) - 2R 	3.2(k) 

A 	A  Wf 1,0 1 	A 	IA/  
7-1 nut) 	1,X .  5 w vbXj /1 J300 	owl, 

A  1. 	

• 

, 71f 	 A 	le 
12(k)k vv i+XX VII 	.01 .1.261v 

A smo 	, vv:") 4 A i3(x) W2X,'VV27,Q.) 

a, r 	71, 
77- 1  1 A 3 00 212,)0 ith,x)-FAR,(u-,71,w1,7),) 

A aov V;:x 1 W27x) 	..tk.) (z) v 27;0) 

± 2(10 ( WI,:ja Us2'1  ) 	42(k)(1A//::,Zii:) 

A3uo(1,1121,U,'") f 41(k)(WZ , Z);47)..1 (A-172) 

122 



W " 	 (w 	(vv m  - 2 ( A!uv( 	) 2 .2 (k) 	,xx 	1..x 	2IK) 	lar ■ 11\11 ,XXX) 

tft41 

Lat.xx, - uo IA/ xxx 
70 	, 	i  A 	 *14•1 

74#1,..L1 At 
X ) r 111(k) ( livt,XX) vvi,lx+1 ) + 	(Iv (W1,x ,  W,.,04 

A 	, "
W 	

win Mal 

/414 (09 	2, XXX YV2,X 	2A4cio (1"/J,xx) W  2,xx) A400 	, 144, xxx) 

.1 	i 	 70 
A'• 	24 	

P 

2 	" 	

„ DF , 	•^) 	 .. 1 	A  
" 400r , 	) -i- 4fri I(k) 	 vvbx,y) T/1 ►  mt vv 

A  i 
fri4(k) Wairt,XX X 	4 2,44w  ( v\ill.xx, W274.) 1 - /t4rx) ( 142:4x JAI)] 	(A - 73) 

, i n  7,t+, 	A  i 

	

, A i 	, „ 4

1,
1 	Mt) In 	Mt 1 	 'P( 	'MN 1  

0c) -KI  1.XX 7 K12,X7f) T i'10c., k "" ' /A/2,  ) VEL2,XX) = li=a)(11 v i ,xxx ,i,v 2, x  ) + 2 A 2
z 

( 
i. 	,,t 	01+1 	 i. 	 i  . . 1,74 	, . i  7n+1 II 	.. , Mt, 1 	A  

-t. A3 (k)(W 2 ,AX ) 1  M •X ) 4. 2 A3(k)(WzdOf Jit\ii,J01) -I.  fri3(k) t VV.2 .. YOJX0) 

A 	f 	 t 	 A  L 	 , 	 i. 	w  

	

1-13(g)k,VV10-X 1VV I ■ X ) 	hi 3(X) (012,xx ,VVI,xX )11' A 3 t,t) (wl,x , vvt , xxx)J 

n+ 	a r 	74 	*+1 	 , 	A  i 	I al  tv  "" 

Lai i,xx) 	-7"- 5  1 A 114 W"x 	) +4 /-1474(x)VA,7 	
I 	 0 

, 	)411 1)00 k • •• ,,Ax j 

rt m 	.wit) 

4* A 2, 	(tv ,xx, tiv.1 ) + 2 	v „w,,x + rv,k) (wi ov2.xx).] log  

+t=(/1 	'Zit) +2 A, 	z;:;#  + A ► (00( 07' , 

4  A ifL(K1( ?1,21Xx U:1) -1- 2 4 	(.11.2 71k Urn.) fAtiLlk) 	)] 

	

400 	 2,x 

4 -43" 	A 	v\ 	zn+ 2A 	(w"` umt 1 )-t- 

	

aog( I x 	 J-40) 	2,X 
	

4U9 (W LY2. XX , 

4 A 141,„(z;,"`,,, 	)-t- 2 ilitug 41)(ti +A/Ligic) 2):1' Wi7Xx44 ) 

	

7it 	71
►

H 	 Jot 

	

Aux) (114, X 	) 	As ji(k)(11V)111-,  X ) —Ajtc19(447xy) 

	

9ft 	)01 	p 7If 	7/114 	A 	 offs 
— 	

0 
11/4 (KJ L./ 1,NA , W2 ) 	ff rim( 	x NA. X ) 	/I Wk. 11 1A4,XX A 1- 1 

A-1 74) 

2tz r A 	(w 
57 4nI5409 '1 ( 

4  iL113.14xi (  "x ,  

e) 	409 (vVil , 4,1) ,1113L  4ctrn ?a,  W17(5 

" 
W.) +2 Azijr(x)(vV:4,x Wam. Kt') 4 Jr(k)(W2 

123 



r AL 	 A  i 	ot ,) r ig*/ 	A i 

	

.2 Ra 	111(X) 	,XX U ) 	Ai (it 	 1 ,1k 	(11,X 	1-109 0.4 4., Vi rn,xx"  

At oo  u;,7x 	A4ick) ( 2)-Al ; 7);:nx) + A 114/kr ( 11: 24,1) 

. 	. 

- (exy , zin+-2A;400(wil)Z12,74,) 4 AJ4(k)(e; U2,x0 

	

R, 	J4 

r 2fli 	,

i  ) 
. / 24 	 t 	'Nf 	k 	A 	of 

1-114K? ( (22, 	vv1L-4,11400 U-2,X JvvoX) T 	IC*/ (C,12. vvr,xx) 

7.t 
A j, ( vv2 	)— 2 A l 	tiv, 	r 	RAI 71: 

Ji 	( 	.X C./1,Y J -1  13100 k vv:, ,-, 1710) 

o 
AzL 	

( 
ia)( 	 ) - -2 A, 4,0-Jim,x ,tv,m,x) — A (1CP47  "X0-) 	(A -17s ) 

7101 / 	r 	L 	It( 	9r01 i 	! IN wint1 	A 	 "Ph+, 

L C,y2i,xx) 	 frt ij  20c)  12 ,XX IV\  ) 	
A 	

vv2,x,vvi,x ) +di /3,20q1 	MAI() 

71f 	701 	i.. 
7ft 	"+1  ) 	AL 	

, 
4  A 2.33(k)(  

	

IV 1  X X A/  ) +2 Iiincoo 	, v'h‘x ,+ 1330AKI ivv2,xx11 

A 	k 

(v- v us') +.2 4:,„( 	 )93a)(n,a,xx) .±7...z  

(zz' u m" ) A ( 
I. 	 )pt 	7n3 1 

4 /1200 Cari ,xx 	 1 200 	• ,X 	2„X 	2 (kJ 	(-12,  KY) J 

0-1 7t[A L 	1/6.1)  2 A j300 i  tw 	U,x V+) A iJ_ ( 
77 a7 

)IVt,XX 	 1 .•X 	1 CV 	,t4,0. 
R' 

yn, 	por 	 74 	Intl 	L 	 ittfl 

112.(k)( 1-76 XX V1/4 	) "i^ .2 	IgN(LI-1,x,k/ a X )q-  nil(kAUI 	i x
) 

A 	
IN4-f 	 74 	V+ 

, 2/7) - -2 A J200 (tm,,,,U,x - AJ2000Al2 , 112xx 

A
I 	i , r 9rt 	 n A 	r 	s.  VI#1 	A L 	 747  I 

.1.300u2, xx , vv a ) 	A 13 (IV ku2,x vv2,x 	/913(k)k 

	

r71 	 Nt 
Vk I X 	. 	r vig 	1, 	, anwkv2“IiI,xxj 

	

—2 R 	(132(x) . 	W  '") 	A s L (wa.x* 	x 74 ) 4 A 

A 	 A  L 	 is yt 	 74 	Ai 
471 I.7.3(K)( V‘6,7110 , IW:t) 4 2 mijic,,,,(Wi,1 	x) 4 A 1.730V(W , V\11,XX)] 

.2R 	3 00 C 112 	, 	) +.2A30q( 21-2 1,1 a 214X ) 	A 	( 2)11)1  ZI ,:t  X ) 

	

f 1- 	 Ai 	(7r  

21-00 k. Zito XX u,'")+-/-120, (11:X 9 61-21) 	2(K) k 1"1,  U2 ,x0.) 

124 



	

xt 	 , 74 	itt 

844( AJI 300 (vVHAI '14""-111 rit)  +2143i3(k)(g,X,V),X ) 4 A „3 ,„„kwi. 

/9 	

1 Ir s i ii  In 1  

4 	( ZI 	) .47A L  IM 	) + A 
1209 	/,XX , W / v... ri Voci % — ,,y) Why/ 	3200 'I  

A  L 	74 	M 	L i IA
2  ,
/ 	7  F1 —2 A 	to  

	

i

- i

1J2(X) \." a i 1/2 ) 	11.72(k)k"27( ' 1)::;) - AJi  .2(k)(Wa ,1)-2,7x) 

Ai i 	( 73-..wf ,Aii 	1 	" lk 	A  

— / 1 13 (10 ".' XX ' " 2

m 

 ' .."`" III3(k.jk EP, # VV 2,X) — 192.3(v( Z411,  W-a703 

Xy/1,xx 	A juk) (Yv.i.,xy vvi,x) -I-  2A 3' 	( vJ 	3 , (,)  W2 ,W ,XXX, 11 	9'1 	 ( 	 t^i) -1.  A 	) 

A 	I IA 1 91 	N+1 	A  i. ,m , 
.74(K)kyv 1,xx ,  W X) '2  11 34(1(A W 	W  .2)0( ) 	 V \I2 ,XXXJ 

-f A7109  (w1  ,Wr +1) +.2A 
/iuk, 	AL 	 1,01 

11(K)011  1xX 	) 11 it ocAvY ,x ,VV1,xx 

Avom (mI,vv:4+5 A ( __„1.400  _VVA,xx , Wit7x 1) - 	oci(m7 , 14174.4] 

—L A w  cutorx ,m,x) 
i 

	

1 211100( U117 I WI#24XX1  ) 4 4 'w( 	) 

A 4  (v-7' W*45+2 Ati  ovw21 ,N117() Alii11(0:1 , 1W21:) 

	

, 	.2, y 

,vi 
m 	)00/ 	MN 	L 	1,,1 

	

A loo( vvidpv+ 2 4 lucl ovuy 	) 4 A ov 
10 

1  (,) 	„x 	I 	) 

A itfic) (Iv37.„v,",) +2 A: 0„04/27 Qoufr Aziwg(tvalu::)3 

L 	(wa 	 N — 	[ Al ,W1') 2  .710Q(Wi , 	A .71("1- •A4.,X#W) 
..27:z 	SUM 	

1)( 

	

7.1 	74 	A 	 Pi k 

	

A34(K)(1Ali, xx 	x) —2/9,140c) ( 	, W:xx ) A .3-40)to
"

i 

on, 
-f A iioNiAcxoiva ) 4 2 ilItuo 	

0/1 
(Who J tA/2 :7( ) A 1:t 	

In 
i 	

„
W2,XV 

125 



)01 	A  i 	, 	, *I 	 A 	In IA/  

	

— A I4(k) (W2rXxX W I  ) —2 /97400tW2,XX 	 ii ii4(10"4 I 2 	'1X>> 

	

(S' r 	 71 A 74 

4 	/-1 ILK) ( 7, 1xx 	) 42A 109  (1Z,7, Wi7Xx ) 4 A , (",,( v, vv,,xxx) 

+ 4.'" (g) (u)7xx vv,",x ) t 2A 4L(k) ( 	vt/27xx) + A (, ) (u.:4,1Al2,7„) 

	

/Pr 	r  74 	A  i 	1,1 	r 	AL 	
%I M ..0.

l

71  

U It 

	

Li I 	( W ,XXX .7 	) f-2  frt uovVi,xx 	) Hi 	
A 

(vv 

	

A 	7t. 	rm 	A 	P.( 	, 	 A i, 	911 	22: 
+ /9400 	/ ),XXX (-)2 ) 42 Rzwo  (Vih,gx, u2,x) t fri 4u0 ( w2,Y Ei2.xx!..) 	(A -/ 7 7) 

i 	701 7)7 	 m++
(Ixyli,x) =- 71(  C A j.,,,,,(Md0( ,W2,X) 4 2A 	(W W Y.H.) 4. A 	(viz , Wa ,ux) 

	

.720c) 	2.x., 2.x.x 

_A 
A 	If( 	'221+1, 	A i. 	xi( 	WI 

3 301 VV 
	%V 	 1.13.30c)( 1A/I. , 1A A.XX ) 	(k)(Wi W1.0x) 

7,1 	Mt 	L 	11 	'Mil 

— A 11(k)(WhYvx , W,  ) 2Al2(k) (IVIM , V✓I , X) —  
• 114, 

A ,200  (w,, x  

i_ 	Itt 	74+, 	, 	„4+1, 	A 
 I3

L 	(27x,)] 
i_\ 13(k) (vvi 2  , xxx  ,vkl2  ) 	71 13w  kvVa ,xx  ,vv.)x) 	ookW." 

r 	
t 	, 

) A i  al' w'n" N A L. 	3 00 
, 

(12xx, VV2,X ) 	/13gc.) 	VV2,Xx, 	100 	a 	-LXXX 

	

A  L 	twt 	Mt; 	n  A i 	lat  

I—I 2 (io l■ L  I 	/ RX ) 	/JAW 
1, X ,  W2 ) A, („) (74 , wz„.0 

	

L. 	 1719 

• /42(k)(VVI'"X 	
+ 2 A wc)(w,,xxx 21.),x) 	.A2(k)( 

	

xtfi 	 701 
3(4, 	,cli,xx • 1-k 3 00 (tA/2,xxx, 	) 42A3i(k) ( 1All.xy 31r,x ) 1" A 	NI 

M  

	

nr A L 	( IA/ A 
( 	741 	14  ) .+A 	(IV 

rl 32 Qc.) —1.11, XY ' N-1,X ) 4.471 	/9 J209  Wa,) , Whxx, 	7204 	2 .1 1,0X. 

" A ___ 	„,„ 	V\h,  X ) 	A .330,(iA ikxx ) 	j3k) 	Midoo() 

12 6 



1112(k)(^11, xxx 	) -2  Al=oc) (w),70A1_7,x)-AiLlook(e,x , v1/44,xx) 

X ) W ) A L  -f Aloo(W2,xxx,Vla) 2 A 	( -4- 	. 1309  W1, 	2, X 4 13v) 

, r iff 
(-)2, X X ) 1AA ,X) 

VI 

4 2/4 309 (2)24 Wm) 	( 11  ji(k) , 214, WI7 , 	i, 	 XXX) 

A  
4 /1209 

71, 
(111,xx )W2,x) 4 2 A 	2), 7ix A42,XX) 

z f  
12(k) W, v V 25xxx) 

-I
A 	„, 2.1 	 A 

. 19 2 (k)
1 
 Yvi ,xxx ) 7)-2h5 + 2  A 2 V() 	 , 	) 

+ A 3  ( I v2,1, v;' )") + 2 A3 (k)( W ,9"XY 211:; ) /43 0() Kil7X Vil 7410( ).3 (A - /7?) 

where m is the number of the iteration step. 

Substitution of Eqs A-161- A-178into Eqs A-149 and A-150 one may obtain 

the iteration equations for the nonlinear 

ni sultant vectors . 11.1
n
1,1_  and - i, n2s i). In so 

and defined. The part of the t's or nn 's 

part of the stress and moment re-

doing, new symbols are introduced 

that is linearized (linear) with 

m+1 m+1 m +1 
respect to the iteration parameters (containing u , v 	& w ) is denoted 

nL 
by superscript L next to n, i.e.lt -. The part that only depends on the 

value of the parameters at the previous step (u m, v m m , w ), is denoted by 

superscript n next to n, i.e. 
_ 
A 

A 8.  

A -17?) 

(A -18) 0) 

127 



   

21 1 7,1111:4#1  

1K+1 	 7tt 
he 

i,x} 4  

 

  

Am 

121 Cl ,x ( A -/ ) 

[8A  

*4 1 

A+1 
M n 

7( i  

*In 

L2z.,)(1 

?IL ct#1  

f I 1 

xn ) 

(A -1(N) 

( A - 1 8'3) 

A  

>g 	r.t 72.1. 	
M+( nn 

it,xy 

A14.1 	
/14  VI 

vt 
{ 

71t,xxi 	f /(r,xxi 

A g 

L B 
f -C4, xx  °'+i4. 	-LI,I1Xx 't  

J 

  

( A 484) 

In a very similar manner, the nonlinear terms of the equilibrium equations are 
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After linearization the equilibrium equations, Eqs A-160, can be written in 
matrix form 

[c1,3171,,,,„}+ (c1i].192,,x1- (04,][71,)--1- E„]i22,',„i+rE „][21 1',4 

91,„18„][22/,,(xj tiB„ile,iq8/03{2?:".1 .ftc„j{222,0} 

+ cc2Jf212 	cEvjf722',x,x1 L E-21if4t,x1+1E10)In xj 

-+cal]tnil,':1 	821]{72 71!)̀(J 	tcA„]fx,xxl -q-A 110,, 
+cAio][xi = fqj 	 (A-/43) 

where 
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In Eqs A-145 A-150 fel, {t 1} and {tn} can be written as: 

Ck fx,x1 + Cki.)[X] 

tC- 2i1 Lk2,31X.x.1 4  rk2 .1(Xi 

[k i La][Xi 

136 



= k ► 1, 1] [Li [1(201{x} 
U. ,70= 	jfX,xyl 00:13( J {x,x} 	kl:x jtX1 
I i2:1= 1<-2:xitX, x)3 4-  (1(274 [Li +(i(2:,][Ai 

1 -1-,:,1=Ex73:x1[X,xxxl 	+( kl :txxill)(1 4 [ 10:xx][11 
ii27, 1xxl= (k231dIX,xxi.i+L-  ic2,111Xixx 4  Ek2:XxIitX1 xxJ Xi 	(A-194) 

Substitute of Eqs A-145-A-150, and A-194 into Eq A-193 yields a matrix equation 
which only contain the vector of unknown, {x} 

CR4J fx...4 4 (R3.3{x.x.} 4 iR2]{xxxj 	P 1 3 bc,„j ER0106 = /41 (A -- /Y-6) 

As in the case of W-F formulation transformation equation are introduced in 
order to reduce the order of the linear equations. 

i7) 1x 
By this transformation, Eq A-195 can be written in the following form: 

(R) r'
, KY 
	cs]i);;:l 4-E73)1(.1 z [GI 
	

(A -in) 
A.3.5 Boundary Condition 

Boundary condition A4117 can be presented in the following form 

Either 
	 Or 

N XX = Nxy 	 = Coned . 

Aixy = Xy 
	 = Cout. 

4  itlxAY 
	 N=0  

Vlxy = MXX 	 0 
	

( A - 7 0, ) 
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where 

Nxy 	Alxy + 

Nxx( 	) 4 Nxy(MY+ 1A4 ; 	OUSI 

Nixx,x +2Mxy,Y (A-197) 

Obviously, the boundary condition can be written in matrix form (at x = 0, L) 

  

w( (A -M) 

 

where the form of [CII] and [J depends on the type of boundary conditions. 

The stress and moment results, and the displacements are represented in series 

form. 
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where 

After applying the Galerkin Procedure, the boundary conditions can be written 

as: 

0,-- 

W.210( 

4,1  L 

Z XXi = 9401 + /( xxii 4 Ausi, 
L 	 n 

2?xx2i 	Axv2i 	/( 
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Qcyl 	 2ixya 	( 211 	 27/xy a) 

(4-200) 
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Using the similar procedure as used in sectionII, Eqs A-200 can be linearized 

and written in matrix form: 

C-ai Naj (A 	= {113 ([N81 f Ni31 t [Nal I N,n)-+ EA) LX, 

z f-eJ 
or 

C-0.3 (1N81 + 	1-1Ni841, ) + (A] [xi = [kj - ( 3 fiv:1 

where 

XX 

Xy 

( A - 2 2) 

Substituting of Eqs A-145-A-150, A-194 into Eqs A-202 yields the following form 

for the boundary conditions 

PC) 	r [xi ) 	ftei -C-Q3 I•12 

	

[D8j iltil 4 ipc3W 	° 

( A -2 0 3 ) 
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A.3.6 Solution Methodology - Finite Difference Equations 

The linearized iteration equations (equilibrium) assume the form 

[ R]
t 	

csi I II 
Note that the true number of unknown is (6k + 3). These are u li , vii , wii 

 (i = 1,2...k) and u2i , v2i , w2i  (i = 1,2...k) [see Eqs (119)]. For conveni-

ence though the number of unknown is treated as (6k + 6) with u20, 
v20 15' w20 

existing for the count, but subject to the constraint 
u20 = v20 = w20 = 0.  

Thus with the transformation, 1 1 = 
I

xxj, the number of unknowns is (12k + 12). 

The equilibrium equation, Eqs A-196, are next cast into finite difference 

form, by employing the usual central difference formula. Thus at each node 

point j, the equations become (in matrix form) 

rixo' 	(4) 	(a) ftxli`j)  ii 	"). [ R] +  Acsj") 	+(- 27e [R] - 4 Li) ) / id/ 

rx) 	I) 

( 	 .1,tsj („ ) 	= fain 
(A-204) 

At each end one fictitious point is used. This requires (12k + 12) 

additional equations at each end (j = 1 and N; the fictitious points are de-

noted by j = 0 and j = N + 1). These additional equations come from the 

boundary conditions. 
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Paradoxically, the number of boundary equations is (8k + 8) at each 

end. Note that these are either natural (8k + 8 through the Galerkin (pro-

cedure) or kinematic (8k + 8, u li  = u 2i  = 0, vii  = v2i  = 0, wij  = w2i  = 0 & 

w = w2i = 0 for i = 0,1,2...k). This necessitates the requirement of 
x 	

,
x 

(4k + 4) additional conditions at each boundary. 

The additional boundary terms are given below and they only involve 

uli 	
, u

2i 	
at each boundary. Their existence deriva- .. 	, v21 , 	, 	

, v
ii , 	, 

xx 	xx 	xx 	xx 
tives with respect to x of the displacement components u and v in the equi-

librium equations. On the other hand, regardless of whether or not the 

boundary conditions are natural or kinematic, they do not contain second de-

rivatives of u and v with respect to x. 

(4= 0 	 i 
)71 ukd‘q47,+,) 	 u/i.xx( 4.0.=.2 ) 	0 

	

4=N 	 ct =N-1 

\ -4- 97 I r 	( 	--1- 	
14=2 

21 	k41,41) I - ( 1  LA i.,XX\. (i.ji / I 	1  LIM 	° 

=2 N 

7.12 -  XX( 	) 4 172  7./(2i,XX .461;11 ) 	2161,,XX( r-_N-1) 1 	" 

,A=0 	 4 /47-1 	 =2 1 ) 	 or ) 	"t3 U2i,xxk 
4 	

)= 0 
LT2idiX 4 =N+1 	z 	.2L,xX • 

4.=N 	 7-PH 
(A-20 S) 
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Where the constant 	11.2  and 1713  are assigned to achieve certain goals 

(in generating some results 	= 11 2  = -2 and f3  = 1 are used, which implies 

that a derivative at a boundary is obtained in a forward manner). 

Note that Eqs A-205 are the additional (4k + 4) boundary terms and 

that these equations are incorporated in the matrix form shown in Eqs A-203. 

This means that [DE] and [DC] are square matrices, E(12k + 12) by (12k + 12)]. 

These boundary equations, Eqs A-203,  are also cast into finite difference form. 

(X 
1h [D1) 	II 	[fX1 - 	ij  fairI = ,B6T j 	(A.:206) 

where j = 1 or N. 

A.3.7 Total Potential & End Shortening  

The expression for the total potential for a supported (ss-i, cc-i) 

cylindrical shell is given by 

	

on.R 1 	

° UT = 2 Jo  j ( abtexx + N yy  E yy ± xy rxy 

Mxx kix f MYY ICY +2 Pi xy  kxyj oiXdY 

or 

f21Pr- iv- ou - Kixy -u -1- Five vv, x ] f 01Y 

L211
1:"Yvv o ( dy 
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t 	n',' 

4 14:1, +fel, 

where 

f
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0  "/Cxxo -r nyy. yy0 fay. ryy ,, -t mxxo kxxo 

!gyp + 	
„„ 	,,,, 	,... 

!gyp nYy0 	//Up xyo +12_ C /Mt 	Xxi /(yYi (=YY/.. 
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i2 	2 	 2 	2 	 2 
itX:Yi nri 4 	-e-xxL 22yy 	 771i fxyi 

icxxl  + 274;i 	22/14i, kxyl i. 	xyi kxvi 

2yi 	-t 71/xlyL, kx; M y  dx 

ri 	it 	r 
.27.R (— 21x 1-  )€c D ILI)  + 	1/1 1,0  — 	7.1. 	9780 Zio 0  

It 	11 	10 	b 
Xxx. 1,41 	2'4  xxo tA4, y  (A - 2 8 ) 
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lt 	1t 12 	1R 	U 	It 	 10 	10 	10 
andnxxi, nxxi' mxxi' u

i  , vi  , wi  are the values at x = t, 
nxxi' nxxi' mxxi' 

	

10 10 	
10 u., v 	, w. are the values at x = 0 

1 	1 	i 
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APPENDIX B 

COMPUTER PROGRAM 

B.l 
	

w, F-Formulation 

B.2 	u, v, w-Formulation 

Flow charts and program listing, for both formulations, 

will be made available upon request. (Write to Professor 

G. J. Simitses). 
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APPENDIX C 

MODIFICATION AND GENERALIZATION 
OF POTTER'S METHOD. 

The behavior of several structural configurations is often fully described 

by a set of linear algebraic equations. In general, when these linear equa-

tions are put in matrix form, they can be partitioned as shown in Fig. B-1. 

The blank spaces in the coefficient matrix are zeroes and [C.], [B.] and 

[A.] are matrices of orders m.by 	mi  by mi  and m. by m i41.  respectively 

Z.
1
is the vector of unknowns, each of order m.

1 
 by one and there are N such vec- 

tors. Let ZL  be the common unknown vector. Moreover, g i  is also a vector of 

order m. by one and d. is a vector or order m
i 
by one, which includes the co- 

efficients of the common unknown. 

Note that the presence of vectors d. make the whole coefficient matrix 

nonbanding and irregular. If, on the other hand, the d i -vectors do not exist 

then the coefficient matrix is identical to that of Ref c-1. In this case, 

the matrix is a banded tridiagonal matrix with zeroes everywhere and with, 

at most, three submatrices banded along the diagonal as shown on Fig. c-1. 

Therefore, the present case is a bit more general than that of Ref c-1. The 

solution procedure, though, is basically the same on that of Ref. c-1. 

C.1 Description of the Algorithm 

The explicit form of the system of linear equations of Fig. c.1 is given 

by 

[aJf2.1 + ciA,)14 4  [01 4 Z4(4) 	0,1 
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4 [E3dZii [ 	lzd 
with L = 2, 3, 	 , N-1 

Ccilfzd +r131]frii 	--= fg,1 
with 	i= L-1, L, L+1 

cc ,,,31- z4 + [ 8,4] {LI 4 fdNi ZL 	gr} (C-0 

Note that ZL (j) is one element of the common unknown vector Z L  (see Fig C.1). 

A short description of the solution procedure is next outlined. 

By using Gaussian elimination for the first (L-2) matrix equations, one 

may find the equivalent set of equations, which is 

c p,){z„,i E4(i) = fxij 
c-2 	 ( C -2) 

where 

(PI] = 	; fE = CB,f ild4 

= CBIV 
and 

= CCU - CCi) CR-33 1 C AL) 

(C-3) 
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t E .3 
(Xii = r[Bi3 - cCii[Pi_ i ))

-1
03 - CCL)fri.,il 

2,3, 
Note that the order of the various matrices is as follows: 

( C-4) 

CCi l 

(83 on 

CAJ 

CPJ 

i+ 1 

0(% 211 itt 

[z i.),[gd,[dil,Wand(Eilareallm.by 1 

Next, for i = L-1, L, and L+1 the equivalent equations are: 

 

 

L. L-1, Z. CC-S) 

where, for i = L-1 

(Pi] = [ C13 i) - 	 M.] C gi-13 3 

ni = rEsil- tcd (R:4 1 ( 	 ( c i l (xi.11) 
	

(C-C) 

150 



0.• 

0 

with 

1•0-- 	--0+ 

( E L _,) = C a  [E1,1 01 (C-7) 

Note that LE i _ li is an 
m.1-1 

 by m
f1 

matrix (defined, as shown, for convenience). 

and for i = L, L + 1 

PL) 	(8 13 - C CI) (Pi_,)] (Ad 

(C80 - [CI] CPL-131( {gd - (cdixd (c -g) 

Finally, for i= L + 2, L + 3, ....N, before writing the equivalent 

equations, Ld ij is eliminated from each matrix equation. The elimination 

is accomplished by multiplying ld it with the appropriate terms of matrix 

LPL  . This leads to a matrix with only one nonzero column (vector), as shown 

below 

r ot,o)a(t, ► ) 
oti(2)7),(L,2) 

pciti e CPL3] = 

d (Pt) ) ( 

4. 	•-i 

1 0 

(C-9) 

151 



with 

(0-12) 

( C -13
) 

(C -/4) 

Note that the symbol 	is introduced to define the operation that leads to 

the matrix of Eq (C-9). 

Similarly, the symbol 0 is introduced to define an operation that leads 

to a column matrix. 

(i) m 
V, ( 2 ) vz ( ) 

v,} 01 vai 

v, (m i. ) V1 (k) 	 ( c- 1 o 

With these definitions one may now write the equivalent equations for 

i = L+2, L+3, ....N-1. These are 

4 Cpi lf&sti = 
( C -I!) 

where 

  



and 

[41- 	- [old 0 (1-xkl - CR.] {x,+ ,} (P,JCP,+,][k„.} 

- Cal C 	[Poll In 	( -- d"."[Pk) 	(-3)142i ) 
	

C 

Finally, for i = N 

(C-/6) 

where <l- is given by Eq (C-13) with i=N. The recurrence formulae for back-

ward substitution, in order to calculate Z N _ 1 , 	 Z2 , and Z 1  are 

fzki = 

{z i,} 	(Pd fz itij 	L. N-1, 14-2 , --- • , L-1 

fZii 	[731. 3 1Z 	- (Ed i!L ( i ) 
	

( C - /7) 

C2 Determininant Calculation  

In each step of the inversion process, one must calculate the corresponding 

determinant e., namely 

_Q 1  = de C8.3 

tht [CE3i.3- (cd(Pi-,33 ; i= .23. ---- 

-ei.= cid [(Bo - C c'1)1PL-3] 
	

N 	 (C-Is) 
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Thus the determinant, D, of the entire coefficient matrix of the system can 

easily be computed by 

N 
D= 7T e L 	 (C-I?) 

Reference  

C.1 Tene y. Epstein M., and Sheinman I. "A generalization of potters method" 
Computer & Structures vol. 4 pp. 1099-1103 1974. 
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Appendix D 

INSTABILITY OF LAMINATED CYLINDERS IN TORSION 

by 

D. Shawt and G. J. Simitsestt 
School of Engineering Science and Mechanics 

Georgia Institute of Technology, Atlanta, Georgia 

Introduction  

A Galerkin-type solution, for the buckling analysis of a perfect 

geometry, laminated, circular, cylindrical thin shell subjected to pure 

torsion, is presented. The torsion is applied through the reference 

surface, which is the midsurface of the laminate and the boundaries 

are classical simple supports (SS-3). The analysis is based on Donnell-

type nonlinear kinematic relations and linearly elastic material behavior. 

It is assumed that a primary state exists and that it is axisymmetric. 

This primary state can be obtained by solving the field equations. Through 

perturbation of the governing field equation a set of (linearized) buckling 

equations is obtained, along with the related boundary conditions. A 

Galerkin procedure is employed for solving the buckling equations. Thus, 

the problem is reduced to an eigen-boundary-value problem. Critical 

torsional loads are obtained for several Boron/Epoxy configurations of 

symmetric, antisymmetric and asymmetric stacking. Tn addition, approxi-

mate buckling modes are established for both positive and negative torsion. 

tGraduate Research Assistant 
ttProfessor 
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Fig.D./ Geometry and Sign Convention 
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Governing Equations and Solution Procedure  

The geometry and sign convention are shown on Fig. 1. The torsion 

is positive if applied clockwise at the right end (x = L) and counter-

clockwise at the left end (x = 0). The governing equations for a general 

laminated circular cylindrical shell, with or without orthogonal stiffen- 

ers, without geometric imperfections, and subjected to a pure torsion, con-

sist of two coupled partial nonlinear differential equations in the 

transverse displacement component w(x,y) and an Airy stress (resultant) 

function, F(x,y). One of the equations characterizes transverse equilibrium 

and the other in-plane compatibility. These equations are taken from [D.1] 

— 
by setting N = q = w

o (x,y) = 0, where N denotes the uniform axial 
xx 	 xx 

compression, q lateral pressure and w
o
(x,y) an initial geometric imperfec-

tion. The two equations are 

Equilibrium: 

bF 	+bF 	-bF 	+dw 	+dw 	+ 2d 
11 'yyxx 	21 'xxxx 31 'xxxy 	11 'xxxx 	12 'xxzz 	13

w, 
 xxxy 

, 	-i- 2 d w, 	+ 2 d w 	+ 4 d33 w, yyxx + 2b
13
F 'xyyy

+ 2b
23

F
'xxyy+ 2 b 33 33 xxyy 	31 xxxy 	32 'xyyy 

+bF, 	+bF 	-bF 	+d w 	+d w, 	+ 2dw 
12 yyyy 	22 'xxyy 	32 'xyyy 	21 'xxyy 	22 'yyyy 	23 'xyyy 

+— 
1 
F +F w, + 	

' 
- F w, +F w, 	= 0 

R 'xx 	'yy 'xx 	xy xy 	'xy 'xy 	'xx 'yy 

Compatibility: 

a F 	+ a F, 	- a F, 	+ b w, 	+ b w, 	+ 2b w, 11 'yyyy 	12 xxyy 	13 xyyy 	11 xxyy 12 yyyy 	13 xyyy 

+ a12F 'xxyy
+ a

22
F 'xxxx

- a23F 'xxxy
+ b 21

W 	b22
w
'xxyil- 

2 b
23

w
'xxxy 

- a13F, xyyy-aF 	+aF 	-bw, 	-bw, 	- 2 b33
w, xxyy 

= 
23 'xxxy 33 xxyy 31 xxxy 32 xyyy 

w, 
xx 
R 	w'xy w'xy- w 'xx w 'yy 

( D1) 

( D- 2) 
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where 

[a..] = [Aid ]
-1 
 ; 	[bid ]  = [Aid ]

-1 

[B..] 

[d..1.3 ] = [B.. ] [b ij 
	ED. ] - ED ] ij 

and [A1 .], [B..] and [Did ] are the extensional, coupling and flexural 

stiffnesses appearing in the usual lamination theory. 

(D-3)  

The expressions for the simply supported boundary conditions (SS - 3) 

are given below in terms of w and F (at x = 0, L). 

w = 0 	F,
YY 
 = 0 ; 

b 21F, xx 	dll 
w, xx  + 2 d 13 w, xy  - b 31F, xy  = - b31Nxy  ; 

a 22F, xx - a 23F 'xy 	b2lw ' 
+ 2 b 23  w, xy  = - a 23Rxy  . 

xx 
(D-4)  

where N 	is the applied torsional stress resultant. For more details see 
xy 

[c.1]. 

It is assumed that, under the action of pure torsion, a primary state 

exists, which is axisymmetric (all three reference surface displacment 

components, u, v and w, are independent of the circumferential coordinate y). 

Note that for symmetric construction (regular angle-ply or cross-ply with 

odd number of plies, for example) a membrane state exists and, therefore, 

the above is not an assumption. How reasonable this assumption is depends 

on the nature and magnitude of the coupling stiffnesses [B id ]. Primary 

state quantities are denoted by tilda. With this assumption, the field 

equation becomes 

b 21
F
'xxxx dllw'xxxx F 'xx/R  = 
	

(D -5) 

a
22

F
'xxxx 

+ b
21
w
'xxxx 

 + w 'xx/R = 0 
	

(R6) 
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Moreover, the expression for the reference surface hoop strain c o 

is given by 

e 	= - w/R 
YY 

= a22F 'xx + a 23 171xy + 
b
21 

w,
xx 

YY 

( D - 7) 

These three equations, Eqs. D-5, D-5 and D-7, are employed to 

eliminate F and thus there is only a single field equation. This 

resulting equation is: 

2 
b 

^ 	
a23 — 

(d11 a2a:
1) ;

'xxxx 2 	
21 w

' xx 
w 

a22R 	22 
2 	aR Nxy 	(D-8) 

A 	 A 

The general solutions for w and consequently [from Eq. D-7] for F, xx 

 become 
d% 
w = B 1 sinh X 1

(x 
2
) sin X 2 (x - —) 2 

+ B 2  cosh X 1 (x - 22 cos X 2 (x - 1) -R a 23  Nxy 	 (D-9 ) 

A

xx 	
2

1 -

2  F ' 	= 	(1321B2(X12 	
X21 + 2 b 20 1X 1X 2  + 

B 2 
+ --) cosh X 1 (x - 2) cos X 2

(x -) 

1 

	

(b21 B 1 
 (X 2 	2 - X 2) - 2 

b21
B2X1X2 + 

	

a22 	
1  

1 
+ --

B1
) sinh X

1 
 (x - 2) sin X 2 (x - 3) ( D-10 ) 
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b 2 '1 	 1 
b
21 	b21 

X2 	2 
= 	[a

22  R
2 ( 21 

d )3- 	()(d 11 

	

a
22 	11 	2 a22R 22 

CD -11) 

The constants B
1 

and B
2 
 can be obtained by making use of the 

boundary conditions, Pp. D.4. 

Next, the buckling equations are obtained through a perturbation 

of the nonlinear governing equations. The dependent variables, w and F, 

are replaced by the sum of the primary state parameters, w and F, and 

small additional quantities, w
1 

and F
1
, necessary to represent the buckled 

state. Moreover, the related boundary conditions for the buckling equations 

are also obtained in the same manner. Note that since the additional 

quantities can be made small as one wishes, only the linear terms in 

w
1 

and  F
1 

are retained. 

The buckling equations and related boundary conditions are: 

b
21

F
'
1 moot+ (2 

b23-b31
)F'1  xxxy+  (b

11
-  2b

33
+b

22
)F,1 3pcyy+ (21313 -b32 )F,

1  
xyyy  

A 1 	 1
xxxy+ (d12+ 
	

1 
(2 d 3/+2 d13) w,

4- 4d33+ d21 ) w 'xxYY '12
rl
"yyyy+ - 11w'xxxx+  

	

F ' 	A 
+ (2d + 2 d ) 47, 	

xx 
d w, 	+ 	+ F 	w 1 

32 	23 	xyyy 	22 yyyy R 	' 	
l 

xx 'yy 

	

— 	1 
+ w, F,1 

yy 
 + 2 Nxy  w, = 0 xx 	 xy 

	

1 	 1 	 1 	1 
a F1 	- 2a F, 	+ (2a +a )F, 	- 2a F, 	+a F, 
22 'xxxx 	23 xxxy 	12 33 xxyy 	13 xyyy 11 yyyy 

+ b wl 	+ (2 b - b )w 	+ (b - 2 b + 
b) 

 w1, 
21 'xxxx 	23 31 '

1 
 xxxy 	11 	33 	22 	xxyy 

(D-12) 

1 
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w1 
'xx 	1 + (2 b - b )w

1 	
+ b w1 	+ 	+ w, w, 	= 0 

13 32 'xyyy 	12 'yyyy 	R 	xx 	yy 
(D-13) 

w = 0 • b F l  + b Fl  + d11 
'x 
 + 2d wl  = 0 ; 

at 	 ' 	21 'xx 	31 'xy 	x 	13 'xy 

x = 0,L 

F, yy ; 
1 	1 a

22
F

'
1 
 xx+ a 23F1  xy+ b 12w, xx+ 2b 23w, xy = 0 . (D..14) 

The Galerkin procedure is employed for both equations. The following 

approximate series is used for generating the Galerkin integrals. Note 

that the boundary conditions are satisfied by each term in the series. 

N M 
1 7  

w  =L 
n=1 i=1 

N M 

F 1  = 
n=1 =1 

L 	sin(i+2)71c] Aincos ril BinsinT1Z) 	sini7X  
R 	in 	 (i+2)17 

rL 
Cin 	R cos1-11. + D

in 	R 
sin121\ L iTT  sin 	(i+2)rr 

	

L    sin (i+2)7x] 	m   	( v-15) 

Substitution of the above expressions, Eqs. D.15, into the buckling 

equations results into a set of systems of linear homogeneous algebraic 

equationsinA
in ,Bin' 	n 

c 	
in 

and 	each n (decoupled with respect to n). 

Assuming that the lowest eigenvalue corresponds to the critical load, 

N y 
 , a computer program has been written to this effect. The Georgia 

x 

generating data. Note that a minimization with respect to n is per-

formed in order to find the lowest eigenvalue. 

Numerical Results and Conclusions  

The geometries considered in the investigation represent variations 

of the one report in D.2. Each lamina is orthotropic (Boron/Epoxy; 

AVCO 5505) with the following properties: 
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E 11 = 
2.0690 x 10

8 
kN/m

2 
(30 x 10

6
psi.) 	; 4 = 0.21 	; 

E22 
= 0.1862 x 10

8 
kN/m2 (2.7 x 10

6
psi.); R = 190.5 cm(7.5in.); 

G12 
= 0.04482 x 10

8 
kN/m

2 
(0.65 x 10

6 
psi) ; L= 381 cm (15 in.); 

h 	= 0.013462 cm. (0.0053 in.) 
ply 

(hply  = hk  - h
k-1 

 for k = 1,2,3,4 ; four plies) 

Five different stacking combinations of the four-ply laminate 

comprise the various geometries, I - i, i = 1,2, -- 5. These are 

(0.16) 

I - 1 : 45°/-45°/-45°/45°  

I 	-2 
 450 / _450/450 / _450 

I - 3 : -450/450/-450/45°  (D-17) 

I - 4 : 90°/60° /30°/0°  

I 	- 5 : 0° /30°/60° /90°  

where the first number denotes the orientation of the fibers of the 

outermost ply with respect to x, and the last of the innermost. A pure 

torsion is applied through the midsurface of the four-ply laminate. 

Some of the generated results are shown on Table D.1.For each 

geometry, the critical torsion (for both positive and negative 

application; clockwise and counterclockwise at the end x = L), the 

minimizing value of n (full number of circumferential waves), and the 

valuesofthecoefficientsAinand B
in (normalized with respect to B 2n

) 

areshown.NotethattheAth andB in when substituted into the first of 

Eqs. D.1 5, yields the buckling mode. It was concluded that m = 5 suffices 

for determining critical loads. 
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Table D -1. Numerical Results 

Geo. 
Minimi- 
zing 

n 

N 	in N/m 
xy cr 
(lbs./in.) A2 

B
1 

A
2 

B
2 

A
3 

B 3 A4 B
4 

A
5 

B
5 

I-1 

12 
6987 

(39.90) 
-0.3353 0. 0. 1.0 0.7520 0. 0. 0.2038 0.3439 0. 

9 
-13220 

(-75,50) 0.7627 -0.1954 	0.2561 	1.0 0.0980 -0.0251 0.1185 0.4626 0.0225 0.005 

1-2 
10 	(54

5
. 45) 
34 

-0.5830 0. 	, 	0. 	1.0 0.1696 0. 0. 	0.4230 0.1023 0. 

-9454 10 
(-53.99) 0.5804 0. 	0. 	1.0 -0.1753 0. 0. 	0.4218 - 0.1063 0. 

1-3 

9454 
10 

(53.99) 
-0.5830 0. 	0. 	1.0 -0.1753 	0. 0. 	0.4212 	-0.1063 0. 

-9534 10 
(54.45) 

0.5804 0. 	0. 	1.0 0.1696 	0. ' 0. 	0.4230 ' 	0.1023 0. 

I-4' 

8597 
13 

(49.01) -0.3290 ' 0.0226 	;0.0685 	1.0 0.7107 	0.0487; 
i 

I 0.0189' 	0.2759 	0.4182 
1 

-0.028 

-7790 12 0.3431 
+ 	(-44.59)  

0. 	0. 	1.0 I 0.7355 	0. 1 0. 	0.1037 	-0.2708 0. 

15 

13082 
(74.71) 

-0.4035 

T 
-0.0062 	0.0153 	1.0 

t 

0.5681 ' 	0.0087 1   0.0056 , 	 0.3666 0.3994 0.006 

, 	-7 
(-448

.46 
12 	

1 81) 0.3413 .3 
i 

10.0183 0.0536 

1  
1.0 -0.8158 	-0.04371 0.0010 

L 
0.0184 -0.263 -0.014 



Note that Geometry I - 1 is symmetric (with respect to the 

midsurface), Geometries 1-2 and 1-3 antisymmetric, and Geometries 1-4 

and 1-5 asymmetric. For the symmetric geometry (I-1), the positive 

direction critical torsion is 6987 N/in (39.9 lbs./in.), while the 

negative critical torsion is 13,220 N/m (75.5 lbs./in.). The 

respective reported D-2 experimental values are 4640 N/m (26.5 lbs./in.) 

for the positive direction and 11,508 N/m (65.72 lbs./in.) for the 

negative. This suggest that the geometric imperfection in the tested 

cylinder D-2 is  such that the configuration is more sensitive to it, when 

loaded in the positive direction, than in the negative (the ratio of the 

experimental to theoretical value is 0.664 for the former and 0.87 for 

the latter). The difference in response is understandable, because of 

the anisotropy. The antisymmetric geometries, 1-2 and 1-3, yield the 

same response when loaded opposite to each other. Note that the positive 

direction critical load for 1-2 is the same as the negative direction 

critical load for 1-3 (the same is true for the buckling mode). Also, 

observe that the two (-+ direction) critical loads are very close (9534 

N/m. and 9454 N/m.). This is due to the fact that the extensional, [A id ], 

and flexural, [D id ], stiffness have the same form as if the shell were 

isotropic. The difference from isotropy is the existence of some small 

(in value) terms in the coupling, [B ii], stiffnesses. 

Finally, for the asymmetric configurations, 1-4 and 1-5 the response 

is completely different when each geometry is loaded in the positive and 

inthenegativedirection.Althoughthe[A.13 ]and [Did ] stiffnesses, for 

the two configurations, are the same and only the signs are different 

in the [B id ] stiffness, the geometries behave (radically) differently. 

The only similarity is that the number of full waves, n, is approximately 

the same (12 and 13). 
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SUMMARY 

Imperfect, laminated, circular, cylindrical, thin shells supported in 

various ways and subjected to a uniform axial compression and torsion (indi-

vidually applied or in combination) are analyzed. The analysis is based on 

nonlinear kinematic relations, linearly elastic material behavior, and the 

usual lamination theory. The laminate consists of orthotropic laminae, which 

typically characterize fiber reinforced composites. Two types of formulation 

have been developed; one is l referred to as the w,F-formulation, based on 

Donnell-type of kinematic relations. The governing equations consist of the 

transverse equilibrium equation and the in-plane compatibility equation. These 

two equations are expressed in terms of the transverse displacement, w, and 

an airy stress resultant function, F. The other, referred to as the u, v, w-

formulation, is based on Sanders'-type of kinematic relations. The governing 

equations for this case consist of the three equilibrium equations. These three 

equations are expressed in terms of two in-plane displacement components u, v, and 

the transverse displacement component, w. Donnell's type of shell theory approx-

imation can be treated as a special case in the u, v, w-formulation. 

Some results are generated for certain geometries (isotropic and lami- 

nated) and these serve as bench marks for the solution scheme (both formulations). 

Results are also generated for composite cylinders by changing several parameters. 

The scope of these parametric studies is to establish the effect of geometric 

imperfections, lamina stacking, and length to radius ratio. Moreover, theoret-

ically computed critical conditions are compared to experimentally obtained 

results. 
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CHAPTER I 

INTRODUCTION 

Shell configurations of various constructions (metallic with or 

without stiffeners, laminated, plastic etc.) have been widely used as 

structural elements, for many decades. These configurations, in many 

cases, are primarily designed to withstand destabilizing loads, which are 

applied individually or in combination. Various linear and nonlinear shell 

theories (based on different approximations of the kinematic reslations) 

have been employed in attempting to predict critical loads, as well as, 

pre- and post-buckling behavior of perfect and imperfect shell 

configurations. 

One of the simplest shell theories is that, which is based on the 

Donnell (1) approximation (or Mushtari-Vlasov-Donnell approximation) for 

both, linear and nonlinear kinematic relations. Donnell's equations have 

been widely used in the solution of problems of stability and equilibrium. 

From time to time, because of the approximate nature and because of 

the extreme simplicity of Donnell's equations, doubt has been raised as to 

their accuracy. Hoff (2) in 1955 gave the range of some basic parameters 

of perfect, thin, circular, cylindrical shells, for which solutions to 

Donnell's and Fliigge's (3) equations are approximately equal. Moreover, 

Dym (4) in 1973 compared buckling results obtained from Donnell's equations 

with those obtained from Koiter-Budiansky (5,6) equations for thin, circu-

lar, perfect cylinders in uniform axial compression. Furthermore, Simitses 

and Aswani (7) compared critical loads for the entire range of radius to 

thickness and length to radius ratios and for various load behaviors 

(during the buckling process) for a laterally loaded thin cylindrical shell 
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by employing several linear shell theories; Koiter-Budiansky (5,6), 

Sanders (8), FllIgge (3) and Donnell (1). 

Other comparisons of the linear version of the various shell theories 

have been reported by Toda (9), Koga and Endo (10), Microys and 

Schwaighofer (11, 12) and Akeju (13). All of the above investigations deal 

with isotropic thin cylindrical shells except for Ref. 12, which deals with 

an orthotropic cylindrical shell. 

The only investigation that has any nonlinear flavor is the study of 

El Naschie and Hosni (14), but even this deals only with initial post-

buckling behavior and for an infinitely long thin cylinder (thin ring). 

The present report gives a comparison between critical loads for 

imperfect, thin, cylindrical shells (limit point loads) of isotropic and 

composite construction, under uniform axial compression for two shell 

theories, that of Sanders (8) and that of Donnell (1). The intention here 

is to identify the parameters which affect the accuracy of critical 

conditions established through Donnell equations, by comparing them to 

those established by Sanders equations. The implication here is that the 

Sanders equations, which are typical of the more accurate nonlinear shell 

equations (5,6,7), should yield accurate results, while the Donnell 

equations are viewed as approximate and therefore less accurate. 

This report is a contivation of Ref. 15. In Ref. 15 the following 

are presented: 1) the mathematical formulation and deviration of the gov-

erning equations, based on Donnell-type (1) non-linear kinematic rela-

tions, and presented in terms of the transverse displacement component, w, 

and an Airy stress (resultant) function, F, defined in the text; this is 

called the w,F - formulation; 2) the mathematical formulation and deriva- 
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Lion of the governing equations, base on Sanders-type (8) nonlinear 

kinematic relations and presented in terms of the three displacement 

components, u, v and w; the kinematic relations used correspond to small 

strains, small rotations about the normal, but moderate rotations about 

in-plane axes; this is called the u,v,w-formulation, and the Donnell's 

kinematic relations are included in the Sanders relations, therefore this 

formulation covers both cases (Donnell is a special case of the Sanders 

equations); 3) solution schemes for both formulations; the solution 

methodology for the w, F-formulation includes the capability of obtaining 

post-limit point behavior, while the solution scheme for the u,v,w - 

formulation refers only to pre-limit point behavior (but nonlinear) 

including the estimation of critical conditions (limit point loads); 

moreover, the flow chart and listing of the respective computer codes are 

presented in the appendices of Ref. 15;4) several numerical results, 

generated with two objectives in mind, (a) some serve as bench marks for 

the solution schemes, and (b) some limited parametric studies are 

performed in order to assess effects of boundary conditions, of load 

eccentricity and of lamina stacking sequence for axially-loaded laminated 

cylindrical shells. Furthermore, some limited studies are performed for 

torsion. For both load cases, the imperfection sensitivity of the 

configuration is assessed; all of these results were obtained by employing 

the w,F-formulation. 

In this report, additional results, obtained by the w,F-formulation, 

are presented. The objective here is to compare theoretical predictions 

with experimetal results. Moreover, results (critical conditions), 

obtained by the u,v,w-formulation are presented. The objective here is to 
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establish which parameters affect the accuracy of Donnell-type of equations. 

This is accomplished by comparing Donnell-theory results with Sanders—

theory results, the implication being here that the Sanders-theory results 

are closer to being exact. This is done for axially-loaded, imperfect 

shells of isotropic, orthotropic and laminated construction. These studies 

are necessary in order to establish the acceptability of the parametric 

studies (conclusions of) presented in Ref. 15. Finally, since the reported 

studies are not complete proper recommendations are offered. 
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CHAPTER II 

MATHEMATICAL FORMULATION AND SOLUTION 

The mathematical formulation and a concise description of the 

solution scheme, for the u,v,w-formulation are presented in this chapter. 

The geometry and sign convention are shown on Figs. 1 and 2. The configu-

ration consists of a laminate, which is orthogonally and eccentrically (in 

general) stiffened by closely spaced stiffeners (in the axial and hoop 

directions of the cylinder). 

In this formulation (u,v,w), two distinctly different kinematic 

relations (different shell theories) are employed. One is due to Sanders 

(8) and one due to Donnell (1). In the case of Sanders' equations it is 

assumed that the reference surface strains are small, the rotation about 

the normal is negligibly small and the rotations about in-plane axes are 

moderate. 

II.1 Kinematic Relations  

The Sanders kinematic relations are based on the assumption of a 

perfect reference surface (in our case perfectly circular, cylindrical 

surface). These kinematic relations are modified to include the effect of 

a small initial geometric imperfection, w°(x,y). 

Let w°(x,y) be measured from the perfectly cylindrical surface of the 

laminated shell. Let w(x,y) denote the transverse displacement component 

of material points on the reference surface and be measured from the 

undeformed surface. It is positive outward (see Fig. 1) and the midsurface 

of the laminate is taken to be the reference surface (for convenience; the 

choice is arbitrary). Let u(x,y) and v(x,y) be the in-plane displacement 
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(2) 

(5 ) 

components (see Fig. 1). The kinematic or strain-displacement relations 

are: 
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11.2 Stress-Strain Relations  

The smeared technique (Refs. 16 and 17) is used for the orthogonal 

stiffeners and the usual lamination theory for the laminate (see Ref. 18). 

Each lamina is assumed to be orthotropic and the directions of orthotropy 

make an angle() with respect to the reference axes x and y. Note that if 

the orthotropic axis are denoted by "1" and "2", 9  is the angle between 

axes "1" and x, measured counterclockwise from the x-axis. 

V ) 
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The stress-strain relations for each lamina are transformed to the 

xy-axes (18). Moreover, the stress-strain relations for the closely spaced 

orthogonal and eccentric stiffeners are written on the basis of the 

assumptions (see Ref. 16) that (i) the stiffeners do not carry shear but 

only normal stresses, (ii) the stiffeners are torsionally weak and (iii) 

the stiffener-laminate connection is monolithic. The stiffener eccentric-

ities are positive if the stiffeners are placed on the outer side of the 

laminate (in the positive z-direction). 

Next, the usual stress and moment resultants are defined and their 

relations to the reference surface (midsurface of the laminate) strains and 

changes in curvature and torsion are obtained. These are (in matrix form) 
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and Aij, Bij and Dij are the usual stiffnesses employed in lamination 

theory (18). Furthermore, Ex  and Ey  are Young's moduli for the stringer 

and ring material, Ax  and Ay  stiffener cross sectional areas, t x  and ty 

stiffener spacings,e x  and ey  stiffener eccentricities, and I x  and I, 
'c 

second moment of stiffener areas about centroidal axes. 

11.3 Equilibrium Equations and Boundary Conditions  

The governing equations are derived for an orthogonally and eccen-

trically stiffened, laminated, imperfect, thin, circular cylindrical shell, 

subjected to eccentric in—plane loads and uniform external constant-

directional pressure. This is done in order to have a set of equations, 

which can easily be specialized to and accommodate the following construc-

tions and geometries: perfect or imperfect metallic (isotropic) with or 

without stiffening; and laminates of symmetric, antisymmetric or completely 

asymmetric lamina stacking. The nonlinear field equations (equilibrium) 

and related boundary conditions are derived from the principle of the 

stationary value of the total potential. These equations are: 

N ) + 	0 
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The boundary conditions at x = 0 and L are either natural (force and 

moments prescribed) or kinematic 
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Note that the "bar" quantities denote applied forces and monments. 

11.4 A Solution Methodology  
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The solution procedure consists of several steps, which are outlined 

herein with brevity (for details see Ref. 15). These steps are: 

(1) A separated form is assumed for the three dependent variables 

u(x,y), v(x,y) and w(x,y) [displacement components]. 

WA, ) 	 LuiLf-x)  s 	+ 1A2L (x) Si'“ 

tc 

V (x)y)[Viipc) Cos 	V2t, (x) 	64-2-1Y-] 

— 

w(x ) y) = 	LW, jx, Goo* .4-vy,..,,of) 	" L./ 

Note that since sin (PitY = 0 the functions u20(x), v20(x), and w20(x) 

do not enter into the solution scheme, and thus the number of independent 

and unknown functions of position x is (6k + 3). 

The known imperfection w°(x,y) can also be expressed in a form similar 

to w(x,y). In this case w°ii(x) and w°2i(x) are known (taken as known) 

functions of position. 

(2) The expressions for the displacement components are substituted 

into the kinematic relations, Eqs. (2) and (4). Because of the nonlinear-

ity of the in-plane strain-displacement equations, this substitution yields 

double summations for the trigonometric functions. These double summations 

involve products of sines and cosines in all four possible combinations (sine 

- sine, cosine - cosine, sine-cosine and cosine - sine). Use of trigono-

metric identities involving products changes the double summation to single 

summation of either sine or cosine terms but with twice as many terms. 
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Through this step, all strain components (stretching and bending) can be 

expressed in terms of sines and cosines of my/R. Some of the sums go from 

i = 0 to i = k and some from i = 0 to i = 2k. Note that the coefficients 

of the sine and cosine terms involve linear and nonlinear combinations of 

the (6k + 3) dependent functions, uli, u2i, vii, v2 i , wii and w2i. 

(3) The above separated expressions for the in-plane strains, and 

changes in curvature and torsion are then substituted into the constitutive 

equations, Eqs. (6). Since these equations relate the stress and moment 

resultants to the stretching (Eii's) and bending (Xii's) strains in a 

linear manner, then use of Eqs. (6) yields single sums of sines and cosines 

of iny/R, similar to those for strains. 

(4) Once steps (2) and (3) are completed, the obtained separated 

expressions for the stress and moment resultants, along with the assumed 

expressions for the displacement components (u, v and w) are substituted 

into the equilibrium equations, Eqs. (10). 

Note that some of the stress resultants are multiplied by either some 

displacement components or their gradients. Because of this one obtains 

products of sums (of sines and cosines) and some sums go from i = 0 to i = 

k (for the Nib's). Using a procedure similar to the one outlined in step 

(2), these products of sums are changed to a single sum and the highest 

upper limit of the summation is 3k (the single sums go from i = 0 to i = 

3k). The boundary conditions, Eqs. (11) can also be expressed in term of 

the dependent variables, following the above procedure. 

(5) The Galerkin procedure is then employed, in the circumferential 

direction. The vanishing of the Galerkin integrals leads to (6k + 3) 

unknown functions of position x, uli(x), vli(x),  wii(x) for i = 0, 1, 2 ... 

k, and u2i(x), v2i(x) and w2i(x) for i = 1, 2, ... k. 

13 



(6) Next, the generalized Newton's method (19, 17), applicable to 

differential equations, is used to reduce the nonlinear field equations and 

boundary conditions to a sequence of linearized systems. The linearized 

iteration equations are derived based on the conjecture that the solution 

to the nonlineaar set can be achieved by small corrections to an approxi-

mate solution. The small corrections or the values of the variables at the 

(m + 1)th step, in terms of the values at the closely spaced mth state, can 

be obtained by solving the linearized differential equations. The lineari-

zation of a typically nonlinear term (product of X and Y), in the differen-

tial equations, is shown below. 

(xv4+I1 (Y 411-ci r") 	0  
xlINYA4 	Y*44 x'4 dril̀em-4-A l"Y'4-X 4"t" 

XVA011.14c1 a ) Y"(e4  C( *) )(4'41  

.1 xV44 4 y  'ON XV4 biA 

(7) The order of the linearized differential equations is reduced 

from four to two by a simple transformation. If the vector of all the 

unknowns is denoted by [x] (in matrix form) then 

4-i 	 w4+ 	110. t 	 \T /X? 	
, 	

i‘A2L I 	) V2j,  7 .sf  L 

For convenience the number of unknowns is taken as (6k + 6) subject to 

the constraint 

IA 2. 0 = V20 VV2.0 0 
	

(is
) 

43) 

(14) 
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The iteration equations can be written in matrix form as 

[R4J lx,„„„„i [kS lx„txxi -v[R273 ix,,,c i + 

CRin. 	[RoJ x = 431 
By introducing the transformation 

(i7) 

only in connection with the third and fourth derivatives, the iteration 

equations, Eqs. (16), become 

+E-1:1 15)(1.," - 	• 	0-0 s 

where [R], [S], and [r] are 12(k + 1) by 12(k + 1) square matrices, with 

elements involving values of the variables at the mth step [see Eq. (14)] 

plus other known parameters. (G) is a 12(k + 1) by one matrix with known 

elements. 

Moreover, the boundary terms are also put in matrix form 

b'Ami + ED  c3 	48 GI 
04) 

The details can be found in Ref. 15. 
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(8) The linearized iteration equations, Eqs. (18) are next cast into 

finite difference form by employing the usual central difference formula. 

At each end of the cylindrical shell (boundaries x = 0 and x = L) one 

fictitious point is used. The required additional equations are provided 

by the boundary terms, Eqs. (19), and some auxiliary equations, which are 

also cast in finite difference form. 

(9) Finally, the total potential is expressed in terms of the 

dependent functions and, at each level of the applied loading, its value is 

computed by numerical integration. 

In closing, a computer program has been written to compute the 

response of the shell at each level of the applied loading. Initially, at 

a low value of the loading, the solution is estimated through the use of 

the linear axisymmetric equations. Then, the iteration equations are 

employed, and by step increasing the loading the complete response (up to 

the limit point) (20) is obtained. 

Several results are obtained by employing this formulation (u,v,w) and 

are discussed, in detail, in the next chapter. 
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CHAPTER III 

RESULTS AND DISCUSSION; U,V,W - FORMULATION 

Numerical results are generated for the u,v,w - formulation, by 

employing two different digital computers: (a) the interactive computer 

IBM 43/31 at the Technion Computer Center and (b) the VAX 11/780 of the 

GTICES (Georgia Tech integrated Computer Engineering System) Systems 

Laboratory of the School of Civil Engineering. 

III.1 Description of Structural Geometry. 

Three basic configurations are used in generating results. They 

consist of an isotropic cylinder, an orthotropic one and a laminated one. 

All configurations are imperfect, and the imperfection shape is either 

symmetric or (virtually) axisymmetric. The laminated geometry is the one 

employed in (21). The properties for each configuration are given 

separately. 

Isotropic Geometry  

The isotropic geometry consists of a thin imperfect cylindrical shell 

with the following dimensions and properties 

E •r7.z4x1.07 AcNity; (los x•106ps;,) 	1":: 0,30 

r 10 , 14; 	(4 	 L/R‘. JO 

4.88,7 t Ca. / 	11300 , 0 

As seen from the data above, the cylinder length,L, and the shell 

thickness, h, are varied in order to cover the range of practical interest. 
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Orthotropic Geometry  

The properties of the orthotropic configuration are (given in terms of 

axes "1" and "2"). 

Ell = 2.069 x 10 8kN/m2  (30 x 10 6  psi) ; 412 = 0.21 

E22 = 0.1862 x 10 8kN/m2  (2.7 x 10 6  psi) ; Gigt= 0.0448 x 10 8kN/m2 (0.65 x 

10 6  psi) 

h = 0.05385 cm (0.0212 in.) ; R = 10.16 cm (4in.) or 19.05 cm (7.5 in.) 

and 	L/R' 10. 

If e is the angle between the orthotropic axis "1" and the reference axis 
x, both 0 0  and 90 0  configurations are employed, herein. 

Laminated Geometry  

For the laminated geometry, a four-ply laminate is employed. The 

orthotropic lamina properties arethe same as those given for the 

orthotropic geometry. The total thickness of the laminate and that of each 

ply are 

htot = 0.05385 cm. (0.0212 in.) and 

hk - 	= 0.013462 cm. (0.0053 in.) 

Furthermore, R = 19.05 cm(7.5 in.) and 

L/R = 2,5,10. 

The stacking sequence is 

I - 1: - 45°/+45 0 /+45 0 / -45 0  

where the first number denotes the orientation of the outermost ply with 

respect to the x-axis, and the last of the innermost. Note that I-1 is a 

symmetric geometry (with respect to the reference surface - midsurface). 
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Imperfection Shapes  

Two imperfection shapes are used in the study, one which is symmetric 

and one which is virually axisymmetric. 

symmetric: w°(x,y) =i1-15%;n 11-21- cos !IA- 	 (20) 
Ft 

axisymmetric: w° (x,y) 7--1h(.GS 1.-1--174 	0.1 sinittle  cos -I) 	 (21) 
L. 

where g is a measure of the imperfection amplitude. Note that for the 
symmetric imperfection 	= wc4lo /h, while for the (almost) axisymmetric 

one, 	= wL01 /1.1h. 

111.2 Numerical Results  

For all geometries considered, results are obtained for classical 

simply supported (SS-3) boundary conditions, Eqs. (22)1  and zero load 

eccentricity. The load case considered is uniform axial compression. The 

primary emphasis in the numerical studies is to establish which (design) 

parameters influence the accuracy of the Donnell-type of shell approxi-

mation and establish the range of these parameters for which the accuracy 

is acceptable (by comparison to the Sanders-type approximation). 

Nxx (° , Y ) 	--"kx 	v(O,y) = w(0 ,Y) = Mxx (° , 0 = 0 

Nxx (L,y) = - 	v(L ,Y) = w(L,y) = Mxx (L,y) = 0 

Numerical results were generated by employing two different computers: 

(a) the interactive computer IBM 43/31 at the Technion (Israel Institute 

of Technology) Computer Center and b) the VAX 11/780 of the GTICES 

(Georgia Tech Integrated Computer Engineering System) Systems Laboratory of 

the School of Civil Engineering. 

(n) 
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The results for each geometry are presented and discussed separately. 

Isotropic Geometry 

The results are presented (in part) graphically on Fig. 3 and in 

tabular form on Table 1. On Table 1, the geometry, as well as the computed 

critical loads (NxxCQ  = 0.606 Eh 2 /R and Nxx : limit point loads), the 

corresponding wave number, n, and the imperfection amplitude parameter 

are presented. 

One observation is that the discrepancy between critical loads 

obtained from the two different shell theory approximations (Sanders and 

Donnell), is primarily affected by L/R and there is a small effect of R/h. 

Note that as L/R increases the difference between the two results increases. 

Moreover, for the same L/R there is a small R/h effect. As R/h decreases 

the difference increases. The combined effect is shown on Fig. 3 by 

plotting f versus the square root of the Batdorf curvature parameter, Z, 

defined by 

Furthermore, the obtained results substantiate the contention (2) that 

the Donnell approximation is dependent on the wave number, n. Clearly, 

from Table 1, if n > 4 the two theories yield the same critical load 

(within one percent), but for n ‘4 the computed difference can be as large 

as ten percent. 

Finally, from Fig. 3, one can see that the imperfection sensitivity 

decreases with increasing values for the curvature parameter. This is so 

because, for the same value of the imperfection amplitude parameter, 3 , the 
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TABLE 1. CRITICAL LOADS (ISOTROPIC GEOMETRY) 
SS-3; AXISYMMETRIC IMPERFECTION 

_;ase 
R 

cm(in.) L/R R/h 

N 
XX

CI 
kN/cm 

(lbs/in.) 

N 
XX wave 

n: 	No. Imp. 

Ampl. 

z1/2 P 	- 
N 
XX

ci 
Sanders Donnell San ■ er.  Donne 

1 10.16(4) 1 1000.0 4.457 0.652 0.652 13 13 0.5 30.9 
(25.45) 

2 10.16(4) 1 1000.0 4.457 0.446 0.446 13 13 1.0 30.9 
(25.45) 

3 10.16(4) 1 250.0 71.319 0.246 0.248 8 8 1.0 15.4 
(407.23) 

4 10.16(4) 5 250.0 71.319 0.703 0.719 4 4 1.0 77.2 
(407.23) 

5 10.16(4) 10 250.0 71.319 0.790 0.831 3 3 1.0 154.4 
J407.23) 

6 10.16(4) 2 188.7 125.208 0.395 0.396 6 6 1.0 26.8 
(714.94) 

7 10.16(4) 5 188.7 125.208 0.652 0.677 4 4 1.0 67.1 
(714.94) 

8 10.16(4) 10 188.7 125.208 0.753 0.830 3 3 1.0 134.2 
(714.94) 
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Fig. 3. Load Parameter, p (=N 2  /N 	) vs. Curvature xx xx
cA 

Parameter (Isotropic Geometry; SS-3, Axisym. Imp.) 
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computed limit point value approaches the classical value (p increases) as 

Z increases. Please note that the curves on Fig. 3 are drawn from points 

corresponding to different L/R and R/h values. 

In closing, it is worth mentioning that Hoff and Soong (22) plotted 

similar results for perfect isotropic cylinders (using linear theory), but 

for the SS-1 boundary condition, i.e., 

at x = 0,L: Nxx  = - Nxx)Nxy = 0, w = 0 and Mxx  = 0 
	

(23) 

Their (22) results show that the two approximations yield very close 

critical loads (linear theory eigen-values). 

Orthotropic Geometry  

The orthotropic geometries and their properties are described in the 

previous section. The numerical results are presented in tabular form, 

Tables 2 and 3, and graphically in Figs. 4 and 5. 

Table 2 contains results for various orthotropic configurations with a 

virtually axisymmetric imperfection and 3 = 1 [see Eq. (21)]. The first 
column denotes the angle that the strong direction makes with the x-axis. 

The next three columns describe the geometry. The classical value is 

estimated from the data of Ref. 23(see Fig. 10c of this reference; DkiDe is 

assumed to be one). The value of Nxx 	should only be considered an 

approximation used as a weighting function. This classical value, which is 

based on a linear eigenvalue approach is independent of the R/L ratio (this 

is also true for isotropic geometries). The data of Table 2 are plotted on 

Fig. 4. Through the plots one may assess better the effect of certain 

parameters. Fig. 4 shows plots of ? (the ratio of the limit point load to 

the classical load) versus 	L2/Rh, which is similar to the Batdorf 
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curvature parameter for isotropic construction, for both shell approxima-

tions and separately for the two angles that the strong direction makes 

with the x-axis. It is seen from Fig. 4 that the behavior is similar to 

that of the isotropic geometry (see Fig. 3), but it is more pronounced for 

the i0°-curves than it is for the 0 0-curves. In other words, when the 

strong axis is in the x-direction, the Donnell approximation is accurate 

(within 6%) even for large values of the curvature parameter (for L 2 /Rh 1; 

20,000). For the 90°-curves the trend is the same, but the Donnell approx-

imation yields less accurate results even for small values of the curvature 

parameter. Note that, as in the isotropic case, the effect of L/R is the 

predominant one, while the effect of R/h is negligibly small. Moreover, 

note that part of the effect due to the construction (orthotropic) is 

burried in the weighting parameter N 	because N 	is dependent upon xx et 	 xxet 

the Exx /Eyy ratio. Finally, it is worth mentioning that, regardless of the 

approximation (Sanders or Donnell), when the strong direction is along the 

x-axis the configuration is more sensitive to the initial imperfection than 

when the strong direction is in the hoop direction ( ?for 0° is smaller 

than p for 90°, everything else being equal). 

Similar results are presented on Table 3 and Fig. 5, with the same 

observations. The main difference here is that the imperfection is 

symmetric and the R/h ratio is constant. It is stressed again that the 

classical critical load is approximate in nature (taken from data of Ref. 

23) and thus the critical load parameterf-values should be considered as 

qualitative rather than quantitative. 
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= Nxx/Nxxct. 

Sanders Donnell 

	

0.189 	0.189 

0.456 0.470 

0.544  0.581 

	

0.478 	0.541 

	

0.326 	0.331 

	

0.256 	0.256 

0.489 

	

0.485 	10.550 

	

0.412 	0.424 

TABLE 2: CRITICAL CONDITIONS FOR ORTHOTROPIC GEOMETRIES 

[w° = h (cos lall"g  - 0.1 sin /14 cos '-6-1  )] 

Angle of 

Strong 

Direction R/h L/ R 

(L 2 / Rh ) 

Nxx 	lbs/in. ]c)cc( 

lbs 
IN 

Sanders 

(Wave No.) 

Donnell 

(Wave No.) 

00 

0° 

0° 

90° 

90° 

0° 

0 0  

90° 

90° 

188.7 

353.8 

2 

5 

10 

2 

1 

2 

5 

2 

1 

27.5 

68.7 

137.4 

27.5 

13.7 

37.6 

94.0 

37.6 

18.8 

92(7) 

222(5) 

265(4) 

230(10) 

157(6) 

69(8) 

132 (6) 

127(7) 

108(7) 

92(7) 

229(5) 

283(5) 

260(11) 

159(6) 

69(8) 

144(6) 

111(7) 

487 

481 

270 

262 

*Values estimated (calculated) from data of Ref. 23. 
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Sanders Donnell 

0.315 0.315 

0.463 0.481 

0.574 0.611 

0.553 0.580 

0.744 0.821 

0 1.034 

TABLE 3. CRITICAL CONDITIONS FOR ORTHOTROPIC GEOMETRIES 

(w° = h sin 7T-1( cosni) 
R 

0 
Angle of 

lbs/in. * xxc t 

Strong 

Direction R/ h L/ R 

1$1. 
(L /RH) Sanders 

(Wave No.) 

Donnell 

(Wave No.) 

lbs/in 

0° 353.8 2 37.6 85(9) 85(9) 270 

0° 5 94.0 125(6) 130(6) 

0° 10 1 188.0 155(4) 165(4) 

90° 2 	37.6 145(5) 152(5) 262 

90° 5 	94.0 195(4) 215(4) 

90° 10 188.0 212(3) 271(3) 

*Values estimated from data of Ref. 23. 
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Fig. 5. Load Parameter p ( =N /N 	) vs (L
2
/Rh) 

xx xx
c/ 

(Orthotropic Geometry; SS-3; Sym. Imp.) 

28 



Laminated Geometry 

For this geometry, the symmetric imperfection shape, Eq. (20), and the 

geometric and material properties are presented in a previous article. 

This geometry is taken from (21) in which experimental results are 

reported for L/R = 2. Note also that because of the stacking (symmetric 

and + 45 0 ), the resulting configuration has Bid = 0, and in-plane (Aid) and 

bending (Did) stiffness parameters that are similar to an isotropic 

configuration. 

For this geometry results are generated for several I-values (imper-

fection sensitivity study) and three values of L/R (2,5,10). 

The results are presented in tabular (Table 4) and graphical form 

(Fig. 6). 

As seen from Table 4, the trend is the same as for the isotropic 

geometry. For L/R = 2 the two shell theory approximations yield the same 

critical load for all values of the imperfection amplitude parameter, but 

different for higher values of L/R. Moreover, the wave number for L/R = 2 

is six, while for L/R = 5 is four, and for L/R = 10 is three. The 

similarity in behavior between the isotropic and the laminated geometries 

is primarily attributed to the fact that for the laminated geometry Bid = 

0, A11 = A22 and D11 = D22, which makes the elements of the Aij and Did 

matrices be similar to the elements of an isotropic configuration. 

One important difference is that the critical load for the 

corresponding perfect laminated geometry appears to be heavily dependent 

upon the value of L/R (observation made by extrapolation of the curves in 

Fig. 6). Finally, it is seen from Fig. 6 that the laminated geometry, 

regardless of the shell theory, becomes more sensitive to initial geometric 
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imperfections as L/R increases. For L/R + 2 the curve is rather flat but 

for L/R = 10, the curve drops rapidly. These observations are made on the 

basis of the generated results (limited), and they should not be 

generalized. 

TABLE 4. CRITICAL LOADS (LAMINATED GEOMETRY) 

Critical Loadi kN/cm (lbs/in) 

I L/R = 2 L/R = 5 L/R = 10 

Sanders n Donnell Sanders n f 	Donnell Sanders n Donnell 

0.5 22.767 6 22.767 25.744 4 26.444 43.783 3 63.047 
(130.00) (130.00) (147.00) (151.00) (250.00) (360.00) 

1.0 	1 	20.665 	6 21.103 22.767 4 	24.518 33.275 3 45.534 
1 (118.00) 	(120.50) (130.00) (140.00) (190.00) (260.00) 

2.0 	17.368 ° 	6 17.391 19.264 4 21.366 26.270 3 35.902 
(98.60) (99.30) (110.30) (122.00) (150.00) .1  (205.00) 

i P 

30 



E 
50 

I Z 40 

10 
0 0.5 
	

1.0 	1.5 
	

2.0 

80 \
\ 

\ 
70 r- 

60 

\ 
L 

=10(b) 
\ 

\cri=10(a 

L 	N. 
30.. -.. ...,r  - r7=5(b) 

-__ 

20 

Fig. 6. Critical Loads for the Laminated Geometry 

(SS-3; Symmetric Imp.) 

31 



CHAPTER IV 

ADDITIONAL RESULTS; w,F - FORMULATION 

In addition to the results reported in Chapter III, certain parametric 

studies were performed by employing the w,F-formulation (Ref. 15). These 

studies include assessment of imperfection sensitivity and of the effect of 

lamina stacking on the critical conditions of four-and six-ply laminated 

cylinders under axial compression and torsion (individually applied). 

These geometries represent variations of two symmetric geometries reported 

in Ref. 21. Moreover, the effect of L/R-ratios on critical loads is 

assessed for the four-ply and the six-ply geometries. In all of these 

studies the load eccentricity is taken to be zero and the boundaries are 

simply supported (SS-3). The geometries employed in the parametric 

studies and the results are next presented, separately. 

IV. 1 Description of Geometry  

Two basic laminated configurations are used in generating results. 

They consist of four-ply laminates, I-i, using various stacking sequences, 

and of six-ply laminates, II-i with different stacking sequences. For both 

groups five stacking sequences (i = 1,2,... 5) are employed. 

First, the common properties of the orthotropic laminae (Boron/Epoxy; 

AVCO 5505) are: 

Ell = 2.0690 x 10 8  kN/m 2  (30 x 10 6  psi) 

E22 = 0.1862 x 10 8  kN/m2  (2.7 x 10 6  psi) 
	

(24) 

G12 = 0.0448 x 10 8  kN/m2  (0.65 x 10 6  psi) 162 = 0.21 

Furthermore , 
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R = 19.05 cm (7.5 in.) 

and the length, L, is varied so that 

L/R = 1,3 and 5. 

The ply thicknesses (hk - hk_i) and the total laminate thickness for each 

group is: 

I-i; hk-hk_1 = 0.013462 cm (0.0053 in.) 	 (25a) 

h = 4(hk-hk_1) = 0.05385 cm. (0.0212 in.) 

and II-i; hk-hk_i = 0.008975 cm (0.003533 in.) 	 (25b) 

h = 6(hk-hk_1) = 0.05385 cm (0.0212 in.) 

Note that for both groups (I-i and II-i), the radius to thickness 

ratio is 353.77 (=R/h). 

For each group the five stacking combinations are denoted by I-i or 

i = 1,2, ..5 and they correspond to 

1_1 = 45o/_45o/_45o/45o; 1-2: 45°/-45°/45 ° /-45°; 	(26a) 

1_3 = _[1_21 ;  1_4: 90°/60°/30°/0°;  1_5:  0°/30°/60°/90° 

II-1: 0°/45°/-45°/-45°/45°/0° 

11-2: -45 °/45°/-45°/45°/-45°145 °/45 ° 

 11-3 = -[II-21 

11-4 : -90°/72°/54°/36°/18°/0° 

11-5 : 0°/18°/36°/54°./72°/90° 

(26b) 

  

    

Where the first number denotes the orientation of the fibers (strong 

orthotropic direction) of the outermost) ply with respect to the x-axis, 

and the last of the innermost. Note that in the u,v,w-formulation, 

geometry I-1 (same as in this chapter) is listed as -45°/45 0/450/_450 .  

This is so because the system of reference axes used in the u,v,w-

formulation (see Fig. 1) is different from the one employed in the 
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w,F-formulation (see Ref. 15) [the x-axis is the same as shown on Fig. 1, 

but the y-and z-axes are opposite from those shown on Fig. 1]. 

Geometries I-1 and II-1 are symmetric with respect to the midsurface 

and they are identical to those employed in Ref. 21. Geometries 1-2,3 and 

11-2,3 denote antisymmetic, regular (hk-hk_1 = constant) angle-ply 

laminates. Finally, geometries, 1-4,5 and 11-4,5 are completely asymmetric 

with respect to the midsurface. 

Two load cases are considered and for each load case different imper-

fection shapes are employed. These are: 

0%) for uniform axial compression  

(a) for geometries I-i (i = 1,2 ..5) 

w°  (x ,Y) = h sin Lcos 	 (7) 

(b) for geometries III-i (i = 1,2, ..5) 

wcqx ,y) = g h (-cos 22-T2-(  + 0.1 sinTr—X   cos -) 	 (-8) 

Note that the first one, Eq. (27) denotes a symmetric shape, while the 

second one, Eq. (28), an (almost) axisymmetric shape. 

(5) for torsion  

(a) for L/R = 1 

w°(x,y) = 0.6235383i h Din 3r1  - sin  3L) cos v" 
L 

(54 ■A 2-f:x  - S';vi 	s ∎ m R 3 	 (24 a) 

w°(x,y) 	[-0.583 133 (sin ---z-1T)t - 	 sinT) cos 

+ 0.647926 (sin
L 	

sin 41" 	" ) sin 	] 	 (2 9 "6) L- 

(b) for L/R = 2 and both groups 

w°(x,y) = gh [-0.536769 (sin -211-  - 	sin 3 ) cos " 
L 	 R. 

+0.670961 (sin1" 	
2 
-1-"- 	4tsin 7C ) sin nV] 	 (3c) 

L 
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(c) for L/R = 5 and both groups 

w°(x,y) =ih [-0.417060 (sin:L.12 - Isin-12!) cos Y-11— 

L 3 	L 	R 

	

2 11- k 	i + 0.694444 (sin-- - --sin
4 n-x 

) sin 
Ay 

	

L. 	a 	L
- 

+ 0.833333 (I sin =1-/I 2! - j-- - sin 52--") cos 21 ] 	0'0 3 	L 5 	L. 	R 
For this load case (torsion), the imperfection shape is taken to be 

similar to the linear theory buckling mode (see Ref. 15). These shapes, 

Eqs. (29), (30), and (31), represent some average of the modes of the 

various configurations (the modes are very similar for all configurations). 

IV.2 Discussion of Results  

The results for all configurations are presented both graphically and 

in tabular form. Each group through, is discussed separately. 

Table 5 presents critical loads (limit point loads-uniform axial 

compression) for geometries I-i and three values of L/R (1,2 and 5). The 

imperfection shape for this group is symmetric, Eq. (27), and the amplitude 

parameter is varied from a small number up to two (w°max/h 1). The 

values obtained from the w,F-formulation differ slightly from those 

obtained by the u,v,w-formulation (see Table 4). The difference is not 

caused by the two different formulations (both based on Donnell equations), 

but it is attributed to the fact that the load step in the u,v,w-formula-

tion is larger than in the w,F-formulation. This is so, because it is 

much more expensive (in time and money) to run the program for the former 

formulation. It is seen from Figs. 7-9 that, for L/R = 1 and small values 

fork (i•c 0.75), the weakest configuration corresponds to 1-2,3 (regular 

antisymmetric angle-ply laminate), while the strongest configuration is the 
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TABLE 5. CRITICAL LOADS; UNIFORM AXIAL 
COMPRESSION (I-i GEOMETRIES) 

Geometry 

A 	. 
Nxx  in lbs/in (wave No. at Limit Pt) 

L/R = 1 L/R = 2 L/R = 5 

0.05 - 145.6 (6) - 
0.10 130.7 (9) - 153.7 (4) 

I - 	1 0.50 118.9 (9) 136.0 (6) 147.7 (4) 
1.00 104.5 (9) 123.0 (6) 135.9 (4) 
2.00 67.1 (9) 98.3 (6) 121.0 (4) 

0.05 - j 	138.8 (6) - 
0.10 126.7 (9) - 145.3 (4) 

I - 	2,3 0.50 115.1 (9) 130.0 (6) 140.2 (4) 
1.00 98.6 (9) 118.7 (6) 129.0 (4) 
2.00 61.3 (9) 92.2 (6) 111.4 (4) 

0.01 - 1  243.1 (8) - 
0.05 - 232.0 (8) 245.4 (5) 

1-4 0.10 189.9 (12) - - 
0.50 130.7 (11) 178.0 (8) 211.5 (5) 
1.00 86.8 (11) 137.2 (8) 187.7 (5) 
2.00 46.1 (10) 90.0 (8) 153.4 (5) 

0.05 - I 233.3 (8) 292.9 (5) 
0.10 183.3 (11) - - 

1-5 0.50 146.3 (11) 191.0 (8) 268.3 (5) 
1.00 97.5 (12) 150.0 (8) 239.0 (5) 
2.00 48.0 (11) 109.5 (8) 194.0 (5) 

Symmetric Imperfection 
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asymmetric 1-5 (except for a very small range of extremely small ! - 

values). But, as L/R increases, 1-2,3 yields the weakest configurations for 

virtually all F-values. Moreover, for L/R > 2 the order of going from the 

weakest to the strongest configuration is 1-2,3, 1-1,1-4 and 1-5. Note 

that asymmetric stacking may be compared to eccentric positionning of the 

orthogonal stiffeners in metallic shells. 

Table 6 presents critical loads (uniform compression) for geometries 

II-i. The results are similar to those for group I (geometries I-i) but 

with one exception; geometry II-1 is among the strong configurations, 

while I-1 is among the weak configurations, especially for higher L/R 

ratios (see Figs. 10-12 and 7-9). The reason for this is that the II-1 

geometry has 0° plies on the outside and inside of the laminate, which 

increases its stiffness in the axial direction. 

The results, for this group, are also presented graphically on Figs. 

10-12. Fig. 10 contains results for L/R = 1. No results are reported 

(limit points could not be found) for > 1.0. This implies, that for this 

L/R value and ! > 1 the load-deflection curve does not exhibit limit point 

instability, but only stable response. For L/R 	2, the picture changed 

and limit points are found. Note from the three figures, Figs. 10-12, that 

as L/R increases the imperfection sensitivity of all configurations 

decreases (the curves do not fall as sharply as they do for L/R = 1). 

It is worth noticing that for L/R 52, there are many crossings of 

the curves and it is not easy to identify the strongest or the weakest 

configuration (which is -.-dependent). On the other hand, at L/R = 5, the 

strongest configuration is 11-5 and the order of going from the strongest 

to the weakest is, 11-5 , II-1 , 11-4 , 11-2,3. As expected, the + 45° 
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TABLE 6. CRITICAL LOADS; UNIFORM AXIAL 
COMPRESSION (II-i GEOMETRIES) 

Geometry 

NXX  in lbs/in.(wave No. at Limit Pt) 

L/R = 1 L/R = .L/R = 

0.10 231.7 	(12) 244.86 	(8) 255.6 	(5) 
II-1 0.50 120.9 	(11) 171.3 	(8) 219.4 	(5) 

1.00 63.4 	(10) 112.5 	(8) 182.7 	(5) 
2.00 58.4 	(7) 128.2 	(5) 

0.10 133.5 	(9) 140.5 	(6) 150.8 	(4) 
II - 	2,3 0.50 120.7 	(9) 134.6 	(6) 147.8 	(4) 

1.00 87.2 	(9) 114.1 	(6) 136.2 	(4) 
2.00 44.7 	(8) 72.6 	(6) 111.4 	(4) 

0.10 	177.7 	(10) 211.3 	(8) 227.0 	(5) 
II - 4 0.50 	101.7 	(10) 157.0 	(7) 199.3 	(5) 

1.00 57.9 	(10) 108.7 	(7) 171.0 	(5) 
2.00 - 56.8 	(7) 128.8 	(5) 

0.10 	173.5 	(11) 199.5 275.0 	(5) 
11-5 	 0.50 124.0 	(10) 191.3 261.7 	(5) 

1.00 66.7 	(10) 139.0 227.9 	(5) 
2.00 70.4 	(7) 168.4 	(5) 

Axisymmetric Imperfection 
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Fig. 10. Critical Conditions for II-i Geometries; 
Uniform Axial Compression; L/R = 1 
(SS-3; Axisymmetric Imp.) 
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Fig. 11. Critical Conditions for II-i Geometries; 
Uniform Axial Compression; L/R = 2 
(SS-3; Axisymmetric Imp.) 
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antisymmetric laminate is not the best layup for resisting axial 

compression. 

Table 7 presents critical loads for geometries I-i subjected to 

torsion. The results are also presented graphically on Figs. 13-15. The 

reader is reminded that the imperfection shape for this load case is 

similar to the linear theory eigenmode (see Ref. 15) and it is L/R-

dependent. Regardless of the shape, the imperfection paramer, t, is equal 

to wmax /h. For all L/R values the I-1 geometry seems to be the weakest one. 

On the other hand, geometry 1-5 yields the strongest configuration. For 

L/R = 1 the 1-2,3 configurations seem strong, but as L/R increases they 

become weaker by comparison to the asymmetric configurations. If torsion 

were to be reversed the strength of the 1-2,3 configurations would remain 

unchanged (the role of 1-2 and 1-3 would be interchanged), while the asym-

metric configurations could change for the worse. The reason for this 

expectation is that for positive torsion, tension is expected along a 

direction making a positive angle with the x-axis (for isotropic construc-

tion it would have bee=45°). The fibers are placed from 0° to 90 or from 

90° to 0° in the various layers of 1-5 and 1-4. Thus, the tensile uni-

directional strength of the fibers is utilized. If the torsion is 

reversed, these same fibers would tend to be in compression and this would 

imply that 1-4 and 1-5 are weaker for negative torsion than for positive 

torsion. Of course no mention is made of the effect of the (negative 

torsion) imperfection shape. This could be a totally separate study. 

Along these lines, note that the I-1 geometry (see Ref. 15) is stronger 

when loaded in the negative direction than in the positive direction, 

provided that the imperfection shape is similar to the positive torsion 

buckling mode. 
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TABLE 7. CRITICAL LOADS; TORSION 
(I - i GEOMETRIES) 

Geometries 

X, 
Nx 	in lbs/in (wave No. y at Limit Pt.) 

L/R = 1 L/R = 2 L/R = 

0.1 55.34 (15) 35.32 (11) 21.00 (7) 
I - 	1 0.5 45.36 (15) 31.57 (11) 19.43 (7) 

1.0 43.62 (15) 28.32 (11) 18.01 (7) 

0.1 78.90 (13) 46.4 (9) 24.91 (6) 
I - 2 0.3 73.16 (13) - - 

0.5 66.36 (13) 41.81 (9) 23.15 (6) 
1.0 - 37.89 (9) 21.57 (6) 

0.1 79.34 (13) 46.36 (9) 24.84 (5) 
I - 3 0.3 73.41 (13) - - 

0.5 66.50 (13) 41.84 (9) 23.08 (6) 
1.0 - 37.96 (9) 21.51 (6) 

0.1 56.69 (16) 	' 44.18 (12) 29.81 (8) 
1-4 0.5 45.91 (15) 38.75 (12) .27.16 (8) 

1.0 39.51 (14) 34.22 (12) 24.74 (8) 

0.1 84.83 (16) 66.49 (12) 42.91 (8) 
1-5 	 0.5 64.20 (16) 56.91 (12) 38.50 (8) 

1.0 46.79 (15) 48.72 (12) 34.27 (8) 
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Fig. 13. Critical Conditions for I-i Geometries; 
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Fig. 14. Critical Conditions for I-i Geometries; 

Torsion; L/R = 2 [SS-3; Imp. - Eq. (30)]. 
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Fig. 15. Critical Conditions for I-i Geometries; 
Torsion; L/R = 5 [SS-3; Imp. - Eq. (31)] 
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TABLE 8. CRITICAL LOADS: TORSION 
(II-i GEOMETRIES) 

Geometry 

-I, 
Nxx  in lbs/in (wave No. at Limit Pt) 

t L/R = 1 L/R = 2 I 	L/R = 5 

0.1 53.54 (18) 38.49 	(13) 25.50 	(9) 
II-1 	 0.5 43.49 (17) 31.74 	(13) 23.10 	(9) 

1.0 40.15 (17) 27.17 	(13) 20.92 	(9) 

0.1 82.46 (14) 48.25 	(9) 26.17 	(6) 
0.3 	 73.194 (13) - - 

II-2 0.4 	 69.76 (12) - - 
0.5 - 42.43 	(9) 24.50 	(6) 
1.0 - 37.31 	(9) 23.00 	(6) 

0.1 	 82.12 (13) 48.25 	(9) 26.22 	(6) 
0.3 73.07 (13) - - 

II-3 	 0.4 69.69 (13) 	 - - 
0.5 - 42.45 	(9) 24.55 	(6) 
1.0 - 37.40 	(9) 23.06 	(6) 

0.1 57.13 (16) 	44.11 	(12) 29.69 	(8) 
11-4 0.5 44.23 (15) 	37.73 	(12) 27.36 	(8) 

1.0 37.46 (15) 32.54 	(11) 25.29 	(8) 

0.1 81.19 (16) 63.61 	(13) 41.96 	(8) 
11-5 0.5 56.42 (16) 	52.33 	(12) 38.10 	(8) 

1.0 42.23 (14) 	41.38 	(13) 34.51 	(8) 
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Fig. 16. Critical Conditions for II-i Geometries; 
Torsion; L/R = 1 [SS-3; Imp. - Eq. (29b)] 
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Fig. 17. Critical Conditions for II-i Geometries; 
Torsion; L/R = 2 [SS-3; Imp.- Eq. (30)]. 
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Fig. 18. Critical Conditions for II=i Geometries; 
Torsion; L/R = 5 [SS-3; Imp. - Eq. (31)]. 
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Table 8 presents critical torques for geometries II-i. The results are 

also presented graphically on Figs. 16-18. The conclusions are very 

similar to those for geometries I-i. There is one important observation 

though derived from the comparison of the two groups. Since both groups 

have the same total thickness (0.0212 in.) and radius (7.5 in.) use of more 

layers (from four to six) increases the load carrying capacity for the 

antisymmetric configurations (11-2,3 versus 1-2,3), but it decreases it for 

the asymmetric configuration 11-5 (it can even be said for 11-4). The 

comparison between II-1 and I-1 is not valid, since II-1 contains two 

0°-plies (outer and inner), while I-1 has no such plies. 

Finally, when the curves (see Figs. 13 and 16) terminate at 	= 0.5, 

it means that no limit point could be found for higher ;-values. 

Experimental results do exist for some of the configurations discussed 

in this section (see Ref. 21). These along with other experimental 

findings are discussed in the next section. 

IV.3 Comparison with Experimental Data  

The best means for establishing confidence in an analytical method 

is to compare it with experimental results, obtained by researchers not 

connected in any manner with those who developed the analytical procedure. 

The purpose of the present section is to present such a comparison. 

The literature was searched and two sets of experimental results are found; 

(a) those for which the imperfect geometry is described in terms of 

imperfection shape and amplitude and (b) those for which there is no data 

describing the initial geometric imperfection. Moreover, the load cases 

considered are uniform axial compression and torsion, applied either 

individually or in combination. 
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The comparison for class (a) (above) is direct, because both the shape 

and the amplitude of the initial geometric imperfection are known. On the 

other hand for class (b) geometries, the comparison is made by assuming a 

shape for the initial geometric imperfection and by varying the amplitude 

from some small fraction of the total thickness (five or ten percent to 

approximately 50% of the total thickness). Clearly, for this latter class 

of imperfect geometries, the comparison is more qualitative. 

IV.3.1 Description of Geometry  

Experimental results, used herein for comparison with theoretical 

predictions, are obtained from four sources. The first source is an 

unpublished paper presented by Professor Shigeo Kobayashi at the 

AIAA/ASME/ASCE/AHS 23rd SDM Conference in New Orleans in 1982 (Ref. 24). 

The presentation took place in a "Work in Progress" session (structures). 

At this presentation the author supplied the audience with an addendum to 

his abstract which described the experimental results on Graphite-Epoxy 

Composite cylinders in axial compression. Through this information and 

private communication that followed, the complete description was secured 

and is listed herein as Group A. The imperfection amplitude and shape are 

not known for this group. 

The second source (Ref. 25) is a 1976 University of Toronto report 

in which analytical and experimental results are given for imperfect Glass/ 

Epoxy cylinders subjected to combined loading. Only one set of results is 

employed herein and it is listed as Group B. Information concerning the 

imperfection shape and amplitude is provided by the author and listed below. 

The load case for this group is a combined application of axial compression 

and torsion. 
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The third source is a 1974 AIAA Paper (Ref. 21) which presents 

experimental results for Boron/Epoxy and Graphite/Epoxy imperfect cylinders 

subjected to axial compresion and torsion, applied either individually or 

in combination. Certain geometries, from this reference are employed 

herein. These configurations are listed below as Group C. Information is 

not provided for the imperfection shapes and amplitudes. 

Finally, the last source is a 1973 Journal of Spacecraft paper (Ref. 

26), which describes experimental and theoretical results on axially-loaded 

Glass/Epoxy imperfect cylinders. This work was also performed at the 

University of Toronto under the direction of Professor Tennyson. Three 

geometries from this source are employed herein and they constitute Group D. 

The imperfection shape and amplitude are supplied by Ref. 26. 

In describing each group, information concerning the following is 

provided: Load case, number of plies, stacking description and order, 

material and material properties, ply and laminate thickness, length and 

radius of the laminate, boundary conditions, and information on the 

geometric imperfection. Each configuration in a group (if more than one) 

is listed as case-Li, where i is an integer, and L assumes the letters A, 

B, C and D (group). 

Group A (Kobayashi et al - Ref. 24) 

1) Load: Uniform Axial Compression 

2) Material: Graphite/Epoxy 

3) Material Properties: Ell = 17.40 x 10 6  psi; 

E22 = 1.115 x 10 6  psi 

G12 = 0.707 x 10 6  psi 

v 12 = 0.32 
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4) Diameter and Length: 2R = 7.874 in.; L = 7.874 in. 

5) Boundary Conditions: CC-4 (u = u, v = w = w, x  = 0) 

6) Imperfection: No information. So far, the data are common for all 

cases. 

Case-Al: A three-ply laminate (90 0/-20 0/200 ) 

h p l y  = 0.0055 in., h = 0.0165 in. 

Case-A2: A four-ply laminate (90 °/-45°/-45°/0°) 

h p l y  = 0.0057 in. h = 0.0228 in. 

Case-A3: A six-ply laminate (90°/90°/30°/-30°/-30°/30°) 

hp l y  = 0.0059 in., 

h = 0.0354 in. 

Note that all three configurations are asymmetric with respect to the 

midsurace. 

The stacking order starts from the outside of the cylinder and moves 

inward. Thus, in case-Al the outer ply strong axis (of orthotropy) makes a 

90° angle with longitudinal axis of the cylinder; the next ply makes a 

-20° and the inner one a 20° angle with the longitudinal axis. 

Case-A4: There is a fourth configuration in this group, for which all 

data are the same as Al, A2, and A3 except for the material 

properties, thickness and the sequence of stacking. For this 

case, 

Ell = 16.78 x 10 6  psi; E22 = 0.922 x 10 6  psi; 

G12 = .707 x 10 6  psi; V12 = 0.32 

h p l y  = 0.00667 in; h = 0.04 in. and the stacking sequence for this six-

ply laminate is: (0 °/60°/-60° /-60°/60°/0°) 
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Note that, unlike the other three configurations in this group, this 

laminate is symmetric with respect to the midsurface. 

Group B (Booton, Ref. 25) 

1) Load: Combined Axial Compression and Torsion. 

2) Material: Glass/Epoxy 

3) Material Properties: Ell = 6.32 x 10 6  psi; 

E22 = 1.74 x 10 6  psi; 

G12 = 0.78 x 10 6  psi; 

\)12 = 0.435. 

4) Diameter and Length; 	2R = 13.2 in.; L = 12.4 in. 

5) Boundary Conditions: 	CC-4 (u = u; v = w = w = 0). 

6) Imperfection: w°(x,y) = (0.28) (0.27) cos 1717x 

(w° is positive inward; axisymmetric imperfection). 

Only one configuration is used for this group. 

Thus, case-Bl: A three-ply laminate (45 0/00/ _450) 

hp ly  = 0.009 in.; h = 0.027 in. 

Group C (Wilkins et al. - Ref. 21) 

1) Load: Combined Axial Compression and Torsion 

2) Material: Boron/Epoxy and Graphite/Epoxy 

3) Material Properties: 

(i) Boron/Epoxy 	(ii) Graphite/Epoxy 

Ell = 30.0 x 10 6  psi 	Ell = 2.17 x 10 6  psi 

E22 = 2.7 x 10 6  psi E22 = 1.44 x 10 6  psi 
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G12 = 0.65 x 10 6  psi G12 = 0.65 x 106  psi 

v12 = 0.21 	 '1'112 = 0.28 

4) Diamater and Length: 2R = 15 in.; L = 15 in. 

5) Boundary Conditions: SS -3 (Nxx=-  Nxx; v = w = Mxx =  

6) Imperfection: No information 

So far, the data are common for all cases. 

Case-Cl:  A four-ply Boron/Epoxy laminate 

(45°/-45°/-45°/45°) h p l y  = 0.0053 in. 

h = 0.212 in. 

Case-C2:  A six-ply Graphite/Epoxy laminate 

(00 /45 °/-45°/-45 °/00 ) 

h p l y  = 0.0056 in., h = 0336 in. 

Note that both configurations are symmetric about the laminate 

. midsurface. 

As in Group A, the stacking sequence starts from the outside and moves 

inward. 

Group D  (Tennyson and Muggeridge, Ref. 26) 

1) Load: Uniform Axial Compression 

2) Material: Glass/Epoxy "Skotchply" (XP250) 

3) Material Properties: The properties are given separately for each 

configuration. 

4) Diameter and Length: 2R = 12.5 in., L = 12.45 in. 

5) Boundary Conditions: CC-4 (u = CI; v = w = w, x  = 0). 

6) Imperfection: w°(x,y) = gh cos Irrrlx 
L 
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Note that the laminate thickness (h) wave number (m) and imperfection 

amplitude () depend on the configurations (case). Furthermore, the 

imperfection shape for all configurations, is axisymmetric. 

The above data are common to all cases 

Case-D1: A three-ply Glass/Epoxy laminate (00/ 700/_700) 

Ell = 5.03 x 10 6  psi; E22 = 2.58 x 10 6  psi; 

G12 = 0.837 x 10 6  psi; V12 = 0.345 

hl = h2 = h3 = 0.009 in (hi thickness of each ply; 

from outer to inner: 1, 2, 3). 

h = 0.027 in. 	= 0.0468 

( g = w°max/h) ; m = 18 (see the imperfection expression); 

Case la of Ref. 26. 

Case-D2: A three-ply Glass/Epoxy laminate (45 0 /-45 0 /90° ) 

Ell = 6.109 x 10 6  psi; 

E22 = 2.69 x 10 6  psi; G12 = 0.517 x 10 6  psi; 

v 12 = 0.317 

h1 = 0.009 in; h2 = h3 = 0.0092 in; h = 0.274 in. 

= 0.034; m = 18; case 4a of Ref. 26 

Case-D3: A three-ply Glass/Epoxy laminate (30°/90°/30°) 

Ell = 5.42 x 10 6  psi; E22 = 2.6 x 10 6  psi; 

G12 = 0.687 x 10 6  psi; v12 = 0.365 
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h1 = h3 = 0.009 in., h2 = 0.0093 in.; h = 0.0273 in. 

= 0.0304; m = 17; case lla of Ref. 26. 

Note that all three confirgurations are asymmetric. Moreover, all data are 

taken from Ref. 26. In Ref. 26, the imperfection (axisymmetric) is given 

in the form of 

w° (x) = h cos gLc 	 (32) 

where the number q is given (Ref. 26). The imperfection expression is 

changed, herein, to be compatible with Eqs. (12). 

The solution methodology described in Ref. 15 is employed to compute 

critical (limit point) loads which are then compared to the experimental 

results. This is easily done for the configurations for which the imper-

fection shape and amplitude are fully decribed. 

For the geometries, for which no information concerning the imperfec-

tion is given, the comparison is more qualitative. 

IV.3.2. Theoretical Results and Discussion  

The theoretical predictions, based on the solution scheme of Ref. 15, 

and the comparison with the experimental results is discussed separately 

for each group of configurations. 

Group A 

Since no information is provided (for this group), concerning the 

amplitude and shape of imperfection, the comparison is expected to be more 

qualitative than quantitative. It is assumed that the shape of imperfec-

tion is almost axisymmetric and the amplitude of imperfection is varied 
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from a small fraction of the thickness to almost one thickness of the 

laminate. 

w°(x,y) = 	(cos2-132- + 0.1 sinlI2L cos) 	 (28) 
ti ft 

Note thatlwmaxl = 1.1 g h, where h is the laminate thickness. 
Both the theoretical and the experimental results are presented in 

tabular form (see Table 9). 

On Table 9, the buckling load and the observed circumferential wave 

number are listed on columns two and three (data from Ref. 24). The next 

three columns contain theoretical results for three values of the imperfec-

tion amplitude parameter 	For case-Al, the comparison suggests that the 

maximum imperfection amplitude for the tested geometry might be larger than 

one laminate thickness. Note that when 	= 1 (w°max/h = 1.1) the 

theoretical load is 133.83 lbs/in. 

For case A2, the comparison suggests, that the "tested geometry" 

maximum imperfection amplitude is (approximately) 0.9 h. 

Finally, the comparison for the other two cases (A2 and A4) is much 

better, since it suggests that the maximum imperfection amplitude is 0.4 h. 

Again, it is stressed, that for this group the comparison is rather 

qualitative. 

Group B  

Only one geometry is taken from Ref. 25. According to this reference, 

the imperfection is axisymmetric and experimental results are reported for 

a combined application of uniform axial compression and torsion. Moreover, 

theoretical predictions are reported in Ref. 25, which are obtained by 

employing a solution scheme that assumes axisymmetric prebuckling behavior 

and finding bifurcation loads corresponding to asymmetric behavior. 
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Geometry 

Case- 

TABLE 9. 	THEORETICAL AND EXPERIMENTAL 

Experimental 

RESULTS FOR GROUP A 

Theoretical 

-1 
Nxx 	lbs. 

n 
wave 
No. 

- / 
Nxx 	lbs. wave 

No. Amplitude in. in 

Al 120.56 10 151.19 12 0.3 
140.55 12 0.5 
133.83 12 1.0 

A2 248.46 8 362.30 9 0.1 
294.54 9 0.5 
231.83 9 1.0 

A3 802.99 945.78 9 0.1 
872.99 9 0.3 
792.91 9 0.5 

A4 	 892.02 944.66 10 0.2 
895.38 10 0.3 
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The present results, along with the theoretical predictions of Ref. 25 

and the experimental findings are presented graphically on Fig. 19. It is 

clearly seen from this figure that the agreement is very good. 

Group C  

For this particular group there is no information concerning the 

amplitude and shape of imperfection. It is important then, to employ some 

shape for the imperfection and vary the imperfection amplitude in order to 

accomplish some comparison (qualitative) with the experimental results 

(Ref. 21). 

Because the loading consists of both axial compression and torsion, 

three imperfection shapes are initially employed. First, a virtually 

axisymmetric imperfection is used, which is characterized by Eq. (28). 

The other two shapes, used for the imperfection, correspond to 

appxoximations of the linear theory (Ref. 15) buckling modes for positive 

and negative torsion. 

In particular, one of the Appendices of Ref. 15 deals with solutions 

to the linearized buckling equations for the case of pure torsion. The 

Galerkin procedure is employed and the following approximate form, for the 

buckling mode, wl, is employed: 

N AA , 
*it X)1) r". 	(kY 	"2-Lv%  + 	lati"- ) X 

ytzip 04:i 

Li I_ 	war), __ L. 	Sin 	Tot  

Because of orthogonality only one n-value is needed. A ten-term 

approximation (m = 5) is obtained in Ref. 15. By studying the results it 

( 33 ) 
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is observed that the linear theory buckling mode is well approximated by 

two terms. This is accomplished by normalizing all coefficients, in the 

ten-term approximation, with respect to B2 n . A comparison of the order of 

magnitude of these coefficients yields that all are negligibly small except 

two. Finally, these two remaining coefficients are adjusted such that the 

maximum aplitude isih. Thus, one two-term approximation is used for 

positive torsion, w°(+), and one two-term approximation for negative 

torsion, w°(-). These expression$are (applicable to both configurations; 

cases Cl and C2). 

0 	 _ w (+)= 011).537(46  (stwrt 
L 3 „3y  3 x) 

0.671 510 	t5i Y1
I
n 	

51 %1 4-rr-11\-] 

v-/° ( 	It, [0,583 cos 	(6;in 	- 5.0,1 117.,  ) 

0.648 Siw R (S , 2-7r)1  — -4=-5:A 4-11-2c-)1 
L 2 

Note that, for both expressions (by design) 

aX 	=- 

The generated results for each configuration are presented (in part) 

both in graphical and tabular form. Each configuration is treated 

separately. 

(34)  

(35)  

(36)  
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Case C-1: For the case of pure torsion, theoretical predictions are 

generated for the two imperfection shapes, Eqs. (34) and (35), and for pos-

itive and negative torsion for each shape. These theoretical predictions 

are shown as plots of the value of the critical (limit point) torsionl 

versus the imperfection amplitude parameter, , on Fig. 20. Note that as 

the imperfection amplitude approaches zero the results corresponding to the 

two shapes w°(+) and w°(-), approach the same value (as they should). 

Moreover, it is seen that the shape corresponding to Eq. (34) has a 

stabilizing effect for small values of 	and for negative torsion. 

The experimental values for positive and negative torsion are also 

listed on Fig. 20. Note that, for positive torsion the experimental value 

is 26.5 lbs/in, and the comparison with the theoretical result suggests that 

the imperfection amplitude is a little larger than one laminate thickness. 

On the other hand, for negative torsion, the experimental value is 65.7 

lbs/in. and the comparison suggests that the imperfection amplitude is less 

than two tenths of the laminate thickness. 

In addition, Ref. 21 provides experimentally obtained, buckling 

interaction curves (NXX vs Nxy  ) for this geometry. Again since the 

imperfection is not known, theoretical interaction cuvres are obtained 

analytically for two shapes of imperfection. Eqs. (28) and (34) and 

various values for the imperfections amplitude parameter, F;. This 

comparison is for positive torsion and the results are shown graphically on 

Figs. 21 and 22. The experimental data are shown by the dashed line. 

For this case the comparison must be viewed as qualitative rather than 

quantitative. 
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Case - C2: For this six-ply symmetric laminate, a qualitative type of 

comparison is presented only for positive torsion. The results are, in 

part, presented graphically on Fig. 23 and in tabular form on Table 10. 

Table 10 shows theoretical results obtained by the present analysis, 

for two imperfection amplitude parameter values (1= 0.05 and 	= 0.50) and 

the shape characterized by Eq. (34). First, the critical values corres-

ponding to individual application of the loads are obtained and then the 

interaction curve is completed by assigning values for the applied torsion 

and finding the corresponding critical (limit point) axial compression. 

Note that the assigned values for the torsion are smaller than the 

individually applied critical torsion. 

TABLE 10. CRITICAL CONDITIONS FOR CASE - C2 

R = 
0.05 

- / 
Nxx  
lbs/in_ 

442.6 348.1 232.3 70.32 0 

1   Nxy 
lbs/in , 

0 20 40 60 76.4 

n 13 13 12 13 12 

0.50 

1114 
lbs/in. 328.3 262.5 70.5 0 

lbs/in. 
0 15 14 61.4 

n 12 14 12 12 
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On Fig. 23 the experimental results of Ref. 21, and only the 

theoretical prediction corresponding to 	= 0.05 are shown. The two curves 

seem to be very close for the entire range of interest. Thus, the 

comparison between experimental and theoretical interaction curves seems to 

be reasonable for this geometry. 

Group D  

There are several tests reported in Ref. 26. In all of these tests, 

the imperfection is axisymmetric and theoretical critical loads are 

reported in Ref. 26, which are obtained by employing a linearized bifurca-

tion analysis. The present methodology is employed and a comparison is 

made through Table 11. In this table, the geometry, Ref. 26 results, and 

the present critical loads are listed. 

For the first geometry (case-D1), the agreement between experiment 

(buckling load) and present theory (critical load) is excellent. The 

theoretical prediction of Ref. 26 is also very good. For the other two 

geometries (cases - D2 and D3) the agreement seems to be reasonably good 

(acceptable). For the same reason, the theoretical prediction of Ref. 26 

may also be called reasonably good. 
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Ref. 10 Results 
Present 
Results 

Test 
No. 

Nxx(lbs/in) -/ 
N, 

lbs 
Exper. Theor. in. 	n 

la 148.9 153.2 151.2 11 

4a 142.0 165.1 174.5 11 

lla 149.1 185.2 174.3 11 

3 

0.0468 

0.0340 

0.0304 

TABLE 11. A COMPARISON BETWEEN THEORY AND EXPERIMENT FOR GROUP D 

Geometry 
Case- 

Description of Geometry 

L 	h 	R/h 
in. 	in. 

D1 

D2 

D3 

	

12.42 	0.0270 

	

12.45 	0.276 

	

12.43 	0.0273 

232 

267 

229 

18 

18 

17 

IV.4 Concluding Remarks 

The comments of this section are only related to the work reported in 

Chapter IV. 

The limited parametric studies, reported herein, suggest that, in 

order to resist uniform axial compression effectively, 0°-plies should be 

placed at the extreme plies of the laminate (1-4,5, 11-1,4,5). Clearly the 

anti-symmetric +45° layup yields a weak configuration for this load case. 

On the other hand for torsion, an asymmetric layup (of the type considered 

here, 1-4,5 and 11-4, 5) can be very efficient for torsion of a specified 

direction (say positive), but if the torsion is reversed, its efficiency is 

in doubt. The antisymmetric + 45° layup, though, seems to be efficient for 

torsion, which is expected to be acting in both directions (for different 

load conditions, of course). The symmetric layup (I-1 and II-1) seems to 

be the weaker configuration, for torsion (by comparison to all used 

herein.) 

The comparison with experimental results seems to be rather good. 

When direct comparisons (quantitative) were possible (groups B and D) the 

agreement was good. The qualitative comparison can also be considerd a 

success. These comparisons definitely increase one's confidence in the 

theoretical solution scheme. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

On the basis of the generated results and their assessment certain 

findings can be reported. 

First, theoretical solutions schemes have been developed for analyzing 

the behavior of stiffened, laminated, thin cylindrical shells with initial 

geometric imperfections, various boundary conditions and subjected to 

static or suddenly applied destabilizing loads (eccentric and applied 

individually or in combination). Behavior includes the establishment of 

critical conditions and post-limit point reponse. This is true for the 

w,F-formulation which is based on Donnell-type of kinematic relations. With 

the u,v,w-formulation (regardless of the character of the kinematic 

relations) dynamic critical loads cannot be found, since the solution 

scheme was not carried to the post-limit point response (it was deemed 

unnecessary to do so, because it is very expensive in time and money and 

the expected benefits did not justify this extra effort). 

Next, by comparing critical static loads obtained from two different 

sets of nonlinear kinematic relations (Donnell and Sanders) it is seen that 

for isotropic constructions or laminates with properties and layups that 

yield properties similar to isotropic construction (Bij = 0 A11 = A22 ,  D11 

D22 ,  A13 = A23 = D13 = D23 = 0) the L/R ratio is the only influencing 

parameter. This means that the two results are virtually the same for 

small to moderate values of L/R (L/R4 5),but they differ by as much as 15% 

at large L/R values (L/R z  10). 

For orthotropic construction the results are similar to the isotropic 

case, when the strong direction is along the cylinder axis (0° along 
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x-axis) but they start having significant differences, even for small L/R - 

values (L/R 42), when the strong direction is in the hoop direction 

(y-axis). This conclusion is based on axial compression. No assessment is 

made for other load cases and/or other laminate layups (+ 45° anti- _ 

symmetric, asymmetric etc). 

It is important (and therefore recommended) to continue this study 

and (a) establish which design parameters affect the accuracy, when using 

Donnell-type of kinematic relations, and (b) establish limits or bounds on 

these parameters inside which the Donnell equations yield accurate results. 

Moreover, even through the use of Donnell equations, more parametric 

studies are needed (of the type, reported in Chapter IV), in order to 

enhance our understanding of the buckling behavior of laminated shells, and 

therefore improve our capability of designing efficient laminated shells. 

Finally, the comparison between theoretical predictions and 

experimentally obtained results serves to increase our confidence in the 

developed solution scheme. Thus, this solution methodology may confidently 

be used, especially in the preliminary design stage, because it allows a 

quick and an inexpensively obtained assessment of the effect of various 

design variables on the load carrying capacity of thin cylindrical shells 

(when subjected to destabilizing loads). 
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