
In presenting the dissertation as a partial fulfillment of
the requirements for an advanced degree from the Georgia
Institute of Technology, I agree that the Library of the
Institute shall make it available for inspection and
circulation in accordance with its regulations governing
materials of this type. I agree that permission to copy
from, or to publish from, this dissertation may be granted
by the professor under whose direction it was written, or,
in his absence, by the Dean of the Graduate Division when
such copying or publication is solely for scholarly purposes
and does not involve potential financial gain. It is under­
stood that any copying from, or publication of, this dis­
sertation which involves potential financial gain will not
be allowed without written permission.

7 / 2 5 / 6 8

A TWO-PHASE ALGORITHM

FOR THE VEHICLE DELIVERY PROBLEM

A THESIS

Presented to

The Faculty of the Graduate Division

Studies and Research

by

Richard Andrew Dun

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

the School of Industrial and Systems Engineering

Georgia Institute of Technology

May 1971

A TWO-PHASE ALGORITHM

FOR THE VEHICLE DELIVERY PROBLEM

Approved:

Chairman, ^ ^ 'ft I //

Date approved by Chairman:

ii

ACKNOWLEDGMENTS

I wish to express my appreciation to Dr. V. E. Unger for his

contributions to the work presented in this thesis and for serving

as my advisor in both course work and thesis research.

I also wish to thank Dr. J. J. Jarvis and Dr. W. W. Hines for

their helpful suggestions while serving on my reading committee.

Finally, I wish to thank my parents for their wisdom, guidance,

and understanding and my wife for her uncommon patience and inspiration.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ii

LIST OF TABLES . iv

LIST OF ILLUSTRATIONS v

SUMMARY vi

Chapter

I. INTRODUCTION 1

Literature Review
Statement of the Problem
Objectives of the Research and Method of Attack

II. PHASE I . . c o 12

Generation of Feasible Routes
Reduction Theorems
Pricing Feasible Routes

III. PHASE II c 21
Mathematical Formulation
Development of the Algorithm
Summary of the Algorithm
Finiteness and Convergence

IV. COMPUTATIONAL ASPECTS OF THE ALGORITHM 32

Computational Experience
Extensions of the Algorithm

V. CONCLUSIONS AND RECOMMENDATIONS . 38

APPENDICES . . o 40

BIBLIOGRAPHY 61

iv

LIST OF TABLES

Table Page

1. Computational Experience as Reported by Balinski
and Quandt 5

2. Computational Experience as Reported by Christofides

and Eilon » . <> 8

3. Computational Experience as Reported by Pierce 10

4. Computational Comparison Between Explicit Enumeration
(EE) and Dynamic Programming (DP) 20

5. Solution Times for Test Problems . 33

V

LIST OF ILLUSTRATIONS

Figure Page

1. Procedure for Generating Feasible Routes 14

2. Summary Presentation of Phase II Algorithm 29

vi

SUMMARY

This thesis develops an algorithm for solving the vehicle delivery

problem stated as follows: Consider m points each with a demand for

deliveries, expressed in some convenient unit and denoted by q^, and a

terminal point with no demand. Let C be the capacity of the vehicles

expressed in the same unit as demand and assume that

max q. < C < q.. ^1 l-l ^1

Further, assume that a symmetric distance matrix D = E d ^] , which indicates

the distance from any point i to the terminal and to any other point is

known. Find the routing of the vehicles which will satisfy all demands

without violating the capacity constraint on the vehicles while minimizing

the total cost of delivery.

The algorithm is executed in two phases. Phase I generates a set

of feasible routes based on vehicle capacity and then assigns a cost to

each of these routes based on the solution to a travelling salesman

problem. Phase II then uses the routes generated in Phase I to formulate

the problem as a generalized set covering problem. The procedure for

solving this formulation is a branch-and-bound process based on the

solution of linear subproblems.

Computational results are obtained for a set of ten test problems,

drawn from both the literature and actual delivery problems. Finally,

desirable extensions of the algorithm are examined.

CHAPTER I

INTRODUCTION

Since 1956 a good deal of attention has been given to a problem

which has been equivalently termed the vehicle delivery problem, the

delivery problem, the dispatching problem, the truck dispatching problem,

and the vehicle dispatching problem. The diverse considerations which

the problem has received result from the fact that it arises in a variety

of contexts and may exhibit any of a number of distinguishing character­

istics. Basically, the problem concerns the transportation of products

from one set of locations to another set of locations under certain

restrictions which govern the nature of deliveries.

Generally, there are several characteristics of a product--volume,

weight, length, etc.--which may affect the structure of the problem.

Correspondingly, the vehicles may impose any of a number of restrictions

on the problem depending on the number available and their capacities and

operating characteristics. There may also arise differences in problem

structure depending on whether deliveries are mandatory or optional,

whether the quantities to be delivered are prespecified or to be selected,

and whether these quantities must be delivered on a single visit or may

be divided into several smaller quantities. Further, restrictions on

the earliest or latest times for deliveries may appear. Finally, the

objective in solving the problem may vary from minimizing time spent

making deliveries, to minimizing the number of vehicles used, to

2

minimizing the total cost of delivery.

Literature Review

The earliest description of the vehicle delivery problem appears

in a paper by Garvin et al. (1957). In an article on the applications

of operations research in the oil refining industry, the authors dis­

cussed the problem of routing vehicles from a bulk terminal to individual

service stations. Their problem involved only one product (i. e., one

grade of gasoline) but did include consideration of vehicles with vary­

ing capacities. The formulation presented, which takes the form of a

mixed-integer programming problem, had two unfortunate drawbacks: (1)

at the time there was ano known method of solving an integer-restricted

problem optimally and (2) the number of variables rapidly became unweildy

as the number of stations increased. More recent developments in integer

programming have solved the problem of obtaining optimal integer solu­

tions for small problems; however, due to the number of variables

involved, it is doubtful that any existing algorithm could be effi­

ciently applied to their formulation.

Dantzig and Ramser (1959) discussed what they called the truck

dispatching problem. Their definition is as follows: Consider N points

each with a demand for deliveries of q^ and a terminal point with no

demand. Let C be the capacity of the vehicles and assume that

max q. < C < q. . Mi i~l ^i

Further, assume that a symmetric distance matrix D = [d] , which

indicates the distance from any point i to the terminal and to any

3

other point, is known. Find the routing for the vehicles that will

satisfy the demands without violating the capacity constraint on the

vehicles while minimizing the distance travelled.

The authors were unable to develop a model which would allow an

optimal solution to be found but did succeed in the development of a

heuristic which forms the basis for solution of large scale delivery

problems to this day. The solution is synthesized in a number of

stages of aggregation in which suboptimizations are carried out on

pairs of points or groups. The number of stages of aggregation is a
th

function of the vehicle capacity and the total demand. In the r stage
of aggregation only those points or groups of points are allowed to pair

, N-r

whose combined demand does not exceed C/2 . I t was noted that the

method is heuristic; and a twelve-point problem for which the optimal

solution was not found was presented.

Clark and Wright (1964) presented a heuristic method based on

the work of Dantzig and Ramser with the added provision that vehicles

of differing capacities could be considered. The method can be summa­

rized in the following three step procedure:

1. Assume one truck visits exactly one customer then returns

to the terminal.

2. If customers i and j are joined by a link then (a) one truck

is eliminated and (b) there is a savings in miles travelled.

3. If link ij is feasible it is added. Otherwise, all other

possible links are examined until no more can be added.

Using this procedure the authors were able to produce a better feasible

solution for the twelve-point problem of Dantzig and Ramser but were

4

unable to prove optimality.

Balinski and Quandt (1964) offered a formulation for a problem

similar to Dantzig and Ramser's with the objective being a minimization

of cost. Their formulation takes the form of a generalized set covering

problem which requires the enumeration of all feasible single vehicle

routes and then selects an optimal set of these routes which meets all

demands. Because all feasible routes must be generated, application of

the method is a time-consuming process for problems involving a large

number of deliveries. However, the authors were able to formulate a

simple theory of dominance which reduced the number of routes to be

considered. It was suggested that an integer programming cutting-plane

algorithm be used to arrive at a solution and computational experience

was reported as shown in Table 1.

Gaskell (1967) presented a comparative survey of five methods of

solving the problem defined by Dantzig and Ramser. The first of these

methods relied on the subjective judgements of the problem solver and was

nonquantifiable; the other four were, essentially, variations on the pro­

cedure developed by Clarke and Wright. After solving six sample problems

with each of the five methods, Gaskell concluded that (1) a computer-

oriented technique performs better than a human-oriented technique and

(2) none of the variations on Clarke and Wright's procedure were uni­

formly superior to the original method.

Hausman and Gilmore (1967) culminated several years of research

in the publication of a heuristic which solved a somewhat different

problem than had been dealt with before. Their definition is as follows:

Each of m customers has a minimum required frequency of delivery which

5

Table 1. Computational Experience as Reported
by Balinski and Quandt

Problem m n n' Pivots Cuts

1 5 30 26 9 0

2 8 57 24 7 0

3 8 82 68 22 2

4 9 135 102 142 20

5 9 255 203 26 1

6 11 151 145 42 5

7 11 307 305 36 1

8 15 166 142 43 7

9 15 388 270 23 1

10 15 i< 200+

m = number

n = number

of points

of routes

to which

generated

deliveries must be made

n' - reduced number of feasible routes

* not reported

6

may be increased to take advantage of economies in routing. Customers

are classified into groups, and when any customer in a group requires

a delivery the entire group is serviced. The objective is to construct

customer groups in such a way as to minimize total annual delivery cost.

The formulation resulted in a complex nonlinear programming problem.

What was described by the authors as a complicated heuristic, based on

the solution of many travelling salesman problems, was developed; but

it was not tested to determine how close to optimality it could come.

Hayes (1967) took a different tack in developing a heuristic

method in which the route assignments are generated randomly from a

weighted probability distribution. The weighting for each demand point

is based on its demand for service, its distance from the terminal and

from other demand points, and a random element. The author suggested

that since the procedure takes very little time it might be repeated

for a number of trials and the best solution kept. The optimal solu­

tion for the twelve-point problem of Dantzig and Ramser was found in

fourteen out of forty trials.

One of the most recent papers on the delivery problem is that of

Christofides and Eilon (1969). As did Gaskell, they attempted to compare

the performance of several different procedures. The first of these was

a branch-and-bound technique based on the travelling salesman algorithm

developed by Little et al. (1963). The procedure works as follows:

1. Assume there will be N single vehicle routes in the final

solution.

2. Replace the original terminal by N artificial terminals and

prohibit travel between them by setting the distances between

7

them equal to 0 0 .

3. Solve an associated travelling salesman problem.

4. Repeat for several values of N and take the best result.

Obviously, optimality cannot be guaranteed. The second procedure was

that of Clark and Wright. The third procedure, like the first, was

based on the travelling salesman problem. An r-optimal tour was

defined to be a tour which could not be improved by removing r links

and replacing them with r other links. As r increases the number of

combinations which must be checked for improvement increases rapidly.

However, it was determined that, in general, a 3-optimal tour provides

a good approximation of the true optimal. Thus, the procedure assumes

a random tour and from this produces a 3-optimal tour. Comparative

computation times for the three procedures were reported as shown

in Table 2.

J. F. Pierce has succeeded in developing the most efficient

optimal algorithm presented to date. Pierce has written on several

aspects of scheduling and vehicle delivery as well as on the develop­

ment of combinatorial programming algorithms for solving set covering

problems. His first paper, coauthored with Hatfield (1966), on the

use of the travelling salesman problem in solving production scheduling

problems led directly to his first comprehensive paper on vehicle

delivery (1967) <» The major concern in this work was with single route

problems with a variety of additional constraints. Pierce was primarily

interested in techniques that produce feasible solutions early in order

to permit premature termination with a feasible solution at hand.

In a later paper (1968) Pierce abandoned his original concepts

8

Table 2. Computational Experience as Reported
by Christofides and Eilon

Problem Number of Times (in seconds)
Delivery Points Method 1 Method 2 Method 3

1 6 90 6 6

2 13 900 6 6

3 21 6 36

4 22 6 30

5 29 12 48

6 30 12 48

7 32 12 48

8 50 36 120

9 75 78 240

10 100 150 600

9

for the development of a combinatorial algorithm for generalized set

covering problems. He used a set of delivery problems to test the

algorithm. The results are shown in Table 3. Pierce's latest paper

(1970) developed certain modifications of the algorithm which improved

its efficiency.

Statement of the Problem

The vehicle delivery problem has been shown to possess any of a

number of distinguishing characteristics. The particular problem to be

considered here is similar to that encountered by Dantzig and Ramser

and may be stated as follows: Consider m points each with a demand for

deliveries of and a terminal point with no demand. Let C be the

capacity of the vehicles and assume that

max q. < C < DP—, q. . Mi i-l ^i

Further, assume that a symmetric distance matrix D = C^L^], which

indicates the distance from any point i to the terminal and to any

other point, is known. Find the routing of the vehicles which will

satisfy all demands without violating the capacity constraint on the

vehicles while minimizing the total cost of deliveries. Two types

of costs will be considered--a cost per mile of vehicle travel and a

fixed cost incurred for each delivery made by a vehicle.

Objectives of the Research and Method of Attack

Nearly all the authors who have discussed the delivery problem to

date have characterized it as relatively simple to formulate but difficult

to solve optimally. For this reason a great many heuristics have been

10

Table 3. Computational Experience as Reported by Pierce

Problem m n Times (in seconds)

1 5 31 .050

2 6 62 .117

3 8 92 .200

4 13 91 6.367

5 11 231 1.383

6 11 561 2.876

7 11 1023 14.383

CO 11 1485 19.317

9 12 298 3.500

10 12 538 7.117

11 12 793 4.567

12 15 575 69.483

13 19 1159 2400.000*

m = number of points to which deliveries must be made

n = number of feasible routes examined

* termination without proving optimality

11

developed but very few algorithms presented are capable of producing

optimal solutions. The primary objective of the research reported here

was the development of an algorithm which could guarantee an optimal

solution to the problem.

The idea of using a two-phase algorithm in which the first phase

accomplishes the generation and pricing of feasible routes and the

second phase selects an optimal subset of these routes seems ideally

suited to the delivery problem. In order to produce such an algorithm

one must determine an efficient means for generating feasible routes

which keeps the number of routes to be considered minimal and design

an efficient method for obtaining an optimal solution to the problem

given the set of feasible routes.

Having accomplished the task of developing an algorithm, the

second objective of the research lay in examining the computational

aspects of the algorithm in an effort to determine areas in which

further research might lead to significant modifications.

12

CHAPTER II

PHASE I

As previously mentioned, the first step in solving the delivery

problem is the determination of feasible routes based on delivery quan­

tities and the assignment of costs to each of these routes based on the

distance which must be travelled to make the deliveries. This is the

function of Phase I of the algorithm.

Generation of Feasible Routes

At the outset, the only information available is the delivery

quantities for the points on the schedule, the vehicle capacity, cost

information, and the distances between points. Obviously, separate

delivery points may be combined to produce multi-delivery routes pro­

viding the sum of the requirements of such points does not exceed the

capacity of the vehicle. We must then decide how individual deliveries

can be aggregated without violating the capacity constraint.

If we represent each feasible route by an m-component binary

column vector in which element i takes on a value of one if the route

delivers to point i and a value of zero if not, then a simple and

efficient scheme for route generation may be developed.

Initially, we create two single-delivery routes, the first

delivering to point m and the second to point m-1. Now we wish to

determine whether a route delivering to points m and m-1 is feasible.

Recalling that route feasibility is solely dependent on the relation

13

between vehicle load and vehicle capacity, we need only compare the sum

of the requirements of points m and m-1 to the vehicle capacity to

check the feasibility of such a route. If the route isl|feasible, it

is generated by adding the two original route vectors. If the route

is not feasible then we need not consider further routes which deliver

to both points m and m-1; and no new route is created. Next, a third

single delivery route is created, delivering to point m-2, and we

attempt to generate multi-delivery routes by adding this new route

vector to each of the vectors previously generated. We continue in

this manner until the route which delivers to point the only is created

and combined with other possible routes. A proof that this procedure

indeed produces all feasible routes appears in Chapter III. Figure 1

illustrates the procedure using the data from Test Problem One as given

in Appendix A.

Reduction Theorems

The first major problem encountered in solving the delivery

problem concerns the number of feasible routes generated. With m 3 8 15,

for example, we might generate up to 19,378 feasible routes. While it

is true that most practical problems involving fifteen deliveries would

allow far less than 19,378 routes, the number of routes may still be a

cause for concern.

In the literature, one can find several references to this problem

but very few constructive suggestions for circumventing it. Balinski

(1965) and Garfinkel (1968) advise the application of four reduction

theorems which may eliminate a number of feasible routes from considera-

Create Routes 1 and 2 Generate Route 3 Create Route 4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 O i l 0 1 1 0

1 0 1 0 1 1 0 1 0

Recursively Apply Procedure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1

0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0

1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0

Figures 1. Procedure for Generating Feasible Routes

1 2 1 2 3 1 2 3 4

15

tion. Discussion of these theorems requires several simple notational

conventions.

One may think of a matrix (in this case, the matrix formed by

the route vector) as composed of either n binary column vectors â

or m binary row vectors r.. Define the unit vector u as the row vector
J 1 n

having a one in element n and zeroes elsewhere. Finally, say that

r. > r if a. . > a^. for all j. k - t kj - tj
Theorem One

If = 0 for any i, there is no solution.

This theorem simply requires that each delivery point be included

in at least one feasible route vector in order that a solution to the

problem exist. Since all single-delivery routes are feasible in the

problem under consideration, this theorem will be of no use.

Theorem Two

If r. = u for any k for any n, then a must be included in the k n J J n
final schedule.

Here we make the observation that if any point exists which is

covered by one and only one route, then that route must appear in the

solution to the problem. The comparisons required in the application of

this theorem are simple but are not included in the algorithm developed

here.

Theorem Three

If r, > r then r, may be deleted as well as any column n for

K. t R.
which a. = 1 and a t

 = 0. kn tn
This is to say that if there is any point t to which delivery is

made only in conjunction with delivery to some other point k then point

16

k need not be considered. Further, any route which delivers to point k

but not point t need not be considered. Once again, however, we are

unable to make use of this theorem since the fact that each point is

accorded a single-delivery route precludes satisfaction of the assump­

tions of the theorem.

Theorem Four

Assume it is not true that r, > r or that r > r. . Let G be
k ~ t t ~ k

the index set associated with the smallest number of vectors u such
n

that

v, ~ r. +2 ^,u > r k k neG n t

Let

w = A a
neG n

where A denotes the "logical and," and let

Then any column p for which q = 1 and for which there exists a row i

such that a. = w. = 1 may be removed from consideration, lp l
Application of this theorem is best explained through an example

Consider the matrix shown below:

0 0 1 1 0 0

1 1 0 1 1 0

0 1 1 0 1 0

1 0 0 0 1 1

17

Were it not for column three, row two would be greater than row one.

Thus, through application of Theorem Three, we could omit columns one,

two, and five from consideration. If route three is in the schedule,

then we must cover point two with route one, two, or five. However,

routes two and five both have deliveries in common with route three.

Therefore, whether route three is in the schedule or not, routes two

and five may be omitted from consideration.

Of the four theorems, only the second and the fourth could prove

of use in solving the problem at hand. However, in his discussion of

the subject Balinski warns that unless the number of feasible routes

is extremely large the time required to apply this theorem cannot be

justified.

Pricing Feasible Routes

The generation of feasible routes results in the enumeration of

all feasible combinations of deliveries. Before we can attempt to

select an optimal delivery schedule, we must assign a cost to each of

these combinations.

Recall that two types of costs are to be considered — a cost per

mile of vehicle travel and a fixed cost incurred for each delivery made

by a vehicle. Since we require that each delivery be made, however, the

fixed cost need not be considered, for any feasible schedule will

necessarily incur the same fixed cost. Thus, the cost of using a par­

ticular route is determined solely by the distance which the route

covers.

Consider a particular feasible route, say route j, which makes

k deliveries. The distance covered by route j is dependent on the

18

order in which the k deliveries are made. In fact, we could consider

each of the permutations of these k deliveries as separate routes.

However, each of these permutations is exactly the same as the others

with the exception of the associated cost, and so it is only necessary

to consider the least cost permutation. Thus, to assign a cost to

route j, we must determine the path that passes through each of the k

delivery points once and only once while minimizing the total distance

travelled. The problem of finding this path is, of course, the well-

known travelling salesman problem. This problem has been treated by a

number of different people using a variety of techniques. We must then

select the particular technique we will use. In concluding a survey of

algorithms for the travelling salesman problem, Bellmore and Nemhauser

(1968) made their choice: "if the authors were faced with the problem of

finding a solution to a particular travelling salesman problem we would

use dynamic programming for problems with 13 cities or less, Shapiro's
"1

branch-and-bound algorithm for larger problems. . . The dynamic

programming approach mentioned is that of Bellman (1962).

The test problems which we will consider here relate to the

delivery problems of a firm whose customers order material in quantities

which comprise at least one-tenth truckload. Thus, no route making more

than ten deliveries would ever be considered. This being the case,

solving the travelling salesman problem associated with each route by

the dynamic programming approach would result in the costs which we desire.

Bellmore, M. and G. L. Nemhauser, "The Travelling Salesman
Problem: A Survey," Operating Research, Vol. 16, 1968, pp. 538-58.

19

Of course, for single-delivery routes, there is only one path to consider

so the travelling salesman problem need not be solved. This is true for

routes making two deliveries also, since we are dealing with a symmetric

distance matrix. For three-delivery routes the observations given in

Table 4 indicate that it is more efficient to explicitly enumerate all

possible paths than to apply the dynamic programming procedure.

Thus, in order to derive route costs, we may directly calculate

costs on one and two delivery routes; and we shall enumerate all permu­

tations of deliveries on three-delivery routes and take the least cost

permutation. For routes making four deliveries or more, application of

Bellman's dynamic programming algorithm will yield the desired result.

As we record route costs, we must also record the order in which deliveries

are to be made in order to supply an optimal schedule upon completion of

the algorithm.

Table 4. Computational Comparison Between Explicit
Enumeration (EE) and Dynamic Programming (DP)

Additions Comparisons
DP EE DP EE

3 8 6 8 2

4 21 48 21 19

5 84 480 84 234

6 245 2880 245 1433

21

CHAPTER III

PHASE II

At this point we have generated a set of feasible routes and

determined the cost and order of delivery for each route. To furnish

an optimal delivery schedule, we must now select a minimum cost subset

of these routes which delivers to each point once and only once. This

is the function of Phase II of the algorithm.

Mathematical Formulation

The problem of determining an optimal delivery schedule given

the routes generated in Phase I may be formulated as a zero-one integer

programming problem as shown below.

min S. c . x .
J J J

subject to S. a.. x. = 1 for i = 1, 2, . . ., m (1)

x. = 0 or 1. J

where c^ is the cost of using route j; x^ is a binary decision variable

taking on a value of one if route j is used and a value of zero otherwise;
th

and a ^ is the i component of the vector which represents route j.

There are three peculiarities of this formulation which should be

noted here: (1) all coefficients in the objective function are positive,

(2) all coefficients in the constraint matrix are zero or one, and (3)

the right-hand side of the constraint equation is a vector consisting

22

entirely of ones. These properties are commonly associated with a

specific class of zero-one integer programming problems known as

generalized set covering problems.

Of course, there are many existing techniques for solving zero-

one problems. Most notable are the algorithms of Balas (1965) and

Geoffrion (1967). Likewise, the set covering problem has received

attention. Gomory's cutting-plane algorithm (1960) has been shown

to deal with this formulation most effectively, and the algorithm

developed by Pierce has shown promising results. However, it is felt

that the special properties of the set covering problem have yet to

be fully exploited, and so we will depart from existing techniques in

solving the problem here.

Development of the Algorithm

If we drop the integer restrictions on the variables x^ then our

formulation reduces to

min S. c. x.
J J J

subject to S. a.. x. = 1 for i = 1, 2, . . ., m (2)

x. > Oo J -

This is, of course, a linear programming problem which retains all the

special properties of the generalized set covering problem mentioned

above. Solving this problem by some existing linear programming tech­

nique, such as the simplex method, will yield a solution in which the

values of the basic variables will fall in the interval [0,l], Denote

23

the objective function value of this solution by Z Q . Then Z Q is a

lower bound on the value we could have obtained had we retained the

integer restrictions.

If the solution to (2) is all integer, it is the optimal solution

to (1), and we need proceed no further. Unfortunately, we cannot

guarantee that the solution to the linear programming problem will be

all integer. In this case, it would seem logical to examine the effect

of setting one of the variables x_. in (2) equal to zero or one. But

which variable should we choose?

The variables x^ represents a yes-no decision on the use of route

j. Thus, if we could somehow determine a route j which we would like to

force into the solution, then the corresponding x^ should be set to one.

The desirability of using a particular route is determined by the cost

of that route, and so it would seem that we would be working in the

right direction by requiring the use of the minimum cost route. Suppose,

however, that routes k and p had the same cost and that this cost was

lower than that associated with all other routes. Suppose, further,

that route k made more deliveries than route p. Then obviously we would

prefer to use route k since it completes more of the schedule than route

p and at the same cost. Thus, rather than selecting the minimum cost

route, it is more reasonable to select the route that minimizes the

ratio of cost to number of deliveries made.

The variables which comprise the optimal basis of the linear

programming problem just solved represent the set of routes which would

be most desirable to use. Confining the search to this set of variables

then appears justifiable; and by so doing, a savings in computation time

24

will be realized.

Having completed this search, the customary way of proceeding

would be to add equations to the final tableau of the simplex and derive

a solution to the new problem via the dual simplex. However, the

opportunity presents itself to take advantage of one of the special

properties of our problem. Since we require that each delivery be

made exactly once, the act of forcing one route into the solution will

necessarily force other routes out of the solution and force the corres­

ponding decision variables out of the problem. More explicitly, any

route which makes a delivery that is made by the route which we have

chosen to force into the solution nee not be considered. Thus, we

may reduce the size of the problem by deleting the variables and vectors

in the constraint matrix which correspond to such routes.

One of the niceties of (2) is that the single-delivery routes

guarantee the existence of an initial basis for the simplex. After

removing a number of variables from the problem, however, no such

guarantee can be made. This problem may be overcome by adding artifi­

cial variables with very large associated costs.

Another problem becomes apparent at this point. What if the

variable which we set to one in the reduced problem took on a value of

one in the solution to the larger problem? Obviously, nothing would be

gained. In order to prevent this occurrence, we simply delete basic

variables with integer values from consideration in determining the

variable which we wish to fix.

The procedure described above yields a reduced linear programming

problem which will have at least one variable at an integer value in the

25

optimal solution. If this problem is then solved, we will be one step

closer to obtaining an all integer solution to the problem.

There can be no guarantee that the solution to the reduced linear

programming problem will be all integer. If it is not, the procedure

described will have to be repeated. However, care should be taken

before moving blindly ahead. Recall that the value of the objective

function in the solution to (2), Z Q , is a lower bound on the optimal

integer solution. Likewise, the value of the objective function in the

solution to the reduced problem, which we shall denote by z^, is a

lower bound on the optimal integer solution under the restriction that

the variable which we have fixed takes on a value of one. It is quite
* * likely that z^ will be greater than Z Q . Should this happen, we choose

to fall back rather than to proceed with our particular variable being

fixed at one. The logical alternative here is to examine the effect of

setting the variable to zero rather than one. This is, indeed, what we

do. (Some type of backtracking procedure could be substituted for this

process.) The process of setting a variable to zero will not afford as

great a reduction of the original problem as setting a variable to one.

In fact, only this one variable will be removed from the problem.

However, having set this variable to zero and solved the resulting

linear program, we will have an indication of the desirability of

including this variable in the final solution.

Several questions come to mind in light of the discussion to this

point. Suppose that we solve the reduced linear programming problem and

find that z^ - Z Q . In this case, we would proceed by setting another

variable to one and further reducing the problem. Is it not possible

26

that the new variable we set to one represents a route which has a

delivery in common with the route corresponding to the previous fixed

variable? The answer is no. The search for a new fixed variable is

made over the non-integer basis variables only, and these variables at

their optimal values satisfy the constraints on the problem. Obviously,

a variable assigned a non-integer value could not have a delivery in

common with the route forced into the solution.
•k *

Suppose, on the other hand, that we find that > Z Q . Here we

return to the original problem, remove one variable, and solve the

corresponding problem. Continuing from this point, we could possibly

encounter a situation in which it would be desirable to remove another

variable from the problem. In such a case, would it not be possible to

remove all routes from consideration which make a particular delivery

and thereby produce a subproblem with no feasible solution? The answer

here is yes. There is no way to avoid running into this situation.

Still, by making a simple feasibility check before fixing a variable at

zero, we can avoid solving a linear program which would prove infeasible.

Some means of recording the occurrence of an infeasible combination of

fixed variables must be included to prevent exploring this combination

of variables again at some later time.

After obtaining the solution to any reduced problem then, we

review previous computations to determine the combination of fixed

variables which has the minimum lower bound. Moving to this point, if

it is necessary to move, we establish a new variable to be set to an

integer value, make the corresponding reductions on the problem, and

solve the resulting linear programming problem.

27

Proceeding in this manner will ultimately result in the case of

an integer solution at the point with the minimum lower bound. When

this occurs, the optimal solution to (1) will have been uncovered.

Summary of the Algorithm

The discussion in the preceding section of this chapter rather

loosely develops the basic structure of the Phase II algorithm. A more

rigorous statement in the form of a step-by-step procedure follows.

1. Using the routes and costs generated in Phase I, formulate

the linear programming problem (2).

2. Set k, k = 0. Solve the linear programming problem.

3. If the solution to the linear programming problem is all

integer, then the optimal solution to (1) has been found; terminate.

4. Record the values z^, the optimal objective function value,

and x, . , the values of the variables in the optimal basis. k,i
5. Search over the variables in the optimal basis of problem k

to find the variable x- which has a non-integer value and which mini-

K 3 S

mizes the ratio of cost to number of stops made.

6. Make the problem reductions which correspond to fixing the

variable x- . (a) If X J - has not been previously fixed, then we wish
K , S K , S

to set xk+x g ~ !• Form the reduced constraint matrix by taking the

vector A g and the vectors corresponding to any other variables fixed

to one. Add to the matrix all other vectors which do not conflict with

these mandatory route vectors. Finally, add those single-delivery

route vectors whose delivery points are covered by routes fixed at one

and set the associated costs equal to M, where M is a large number,

(b) If X £ s has been previously fixed, then we wish to set

28

Xk+1 s = ^' ^ t* i e v e c t o r ^ s does not represent a single-delivery

route, remove this vector from the constraint matrix; otherwise, simply

set c g
 = M. Determine whether this problem has a feasible solution by

calculating S. a., for each i. If this sum is zero for any i then set
*

z^ +^ - M and go to step 9.

7. Set k = k+1. Solve the reduced linear program.

8. Record the values z. and x, ..
k k,i

*
9. Determine the value of k for which z. is a minimum. Denote

k

this value by k. If the x^ ^ are all integer, terminate; if this point

has initiated two previous branches, set z- - M and repeat this step;

otherwise, go to step 5.

This procedure is illustrated in Figure 2. Finiteness and Convergence

The proof of finiteness concerns only the Phase II algorithm

since the algorithm of Phase I obviously terminates after a maximum of

3 x 2 m ^ + ^ i = i 2 1 + 1 routes have been generated and their costs

established. Convergence, however, is dependent upon both phases.

In order to assure that the algorithm terminates in a finite

number of iterations—where one iteration is taken to include the steps

required to set up and solve one linear programming problem--examine the

method by which variables are fixed. Each of the n variables may be

fixed at a value of zero or one. The first variable to be fixed will

initially be set at a value of one and perhaps later at value zero but

cannot be fixed more than twice. The second variable to be fixed may

be set four times, once at one and once at zero for each of the two

values of the initial fixed variable. The third fixed variable may

29
1. Set up linear program given by (2)

I

4. Record and the : k,i

2. Set k = 0.
Solve LP

i No
3. Solution integer?

5. Determine variable >>. x. which minimizes k, s
ratio of cost to deliveries

6. x, previously
K j S
fixed? 6a. Make correspo setting
reductions nding to x* = i k, s
r

1 7 . Set k = k+1. 1 Solve reduced LP
* 8. Record z, k

and the x̂ ^

TERMINATE t*

6b. Make reductions corresponding to setting x* = 0
K j S

Problem feasible?
*

zk+l = M

z = M

9. Determine k, •fvalue of k for which z£ is minimum
x, . all k.i
integer? x̂. ^ set twice previously?

Figure 2. Summary Presentation of Phase II Algorithm

30

then be set a total of eight times, the fourth a total of sixteen times,

and so on. Each time a variable is fixed, one iteration is made. Should

every variable be set as many times as possible then, only a finite

number of iterations, Z^-^ 2 n L , would be made.
i~0

Before showing that the Phase II algorithm will indeed uncover the

optimal solution to the formulation (1), it is necessary to insure that

the set of routes generated in Phase I includes every possible feasible

route.

In order to accomplish this introduce the notation A.. is a route

vector with its first nonzero entry in element j and which includes i

nonzero entries or deliveries. Suppose now that there exists some

route vector A. . which is feasible but which was not generated in Phase

I. Obviously, this vector A ^ can be expressed as the sum of two other
route vectors A., . and A. ., , where A. ., , is a route vector which l,j l-l,k l-l,k

th

includes every delivery made by A ^ except the j . The vector A^ ^

was generated of necessity since it represents a single-delivery route.

Thus, because we generated routes by attempting to add the vectors

representing previously generated routes, A ^ would have been generated

had A.- , been generated. So we may conclude that the vector A._n ,

was not generated. If A. . , is infeasible then A.. would be infeasible
l-l,k ij

so we may further conclude that A. , , is feasible. By applying a

1 ~ J_ 5 tC

similar argument to the vector A. , , that we used with A. . we may
l-l,k ij J

conclude that a third feasible route vector, say A. _t was not
~L~ 2., 1

generated. By recursively applying this argument, we may ultimately
conclude that the vector A., was never generated. However, the first

1 ,m
step of Phase I is the generation of the vector A- . Therefore, the

& l,m

31

vector A., must be infeasible.

Now that we can be sure that the formulation (1) accurately

describes the problem, it is necessary to prove that the Phase II

algorithm will find the optimal solution to (1). If the solution to

(2) is all-integer, this fact is obvious. The case of concern is then

if the solution to (2) is noninteger. If this is the case, we proceed

by setting a variable to an integer value and determining a lower

bound on the best all-integer solution we may obtain with this new

restriction. Continuing in this manner, the algorithm terminates only

when we have obtained an integer solution whose objective function value

is lower than the lower bounds obtained with all the other partial integer

solutions which have been enumerated. Obviously, at this point we will

have the optimal integer solution to (2) which is, of course, the optimal

solution to (1). We must guarantee, however, that at some time an all-

integer solution will be found. Again, this point is obvious. If, for

instance, we never move back to set a variable to zero but continue

setting variables to one then an all-integer solution must occur after

at most m iterations. The fact that we do not proceed in exactly this

manner makes no differences for we will still move in the direction

indicated above though perhaps in a more roundabout manner.

32

CHAPTER IV

COMPUTATIONAL ASPECTS OF THE ALGORITHM

To investigate the computational feasibility of the algorithm,

computer programs were written in Algol 60 and a number of test problems

run on a Burroughs 5500 computer. The results of these tests as well

as a discussion of certain extensions of the algorithm, for which no

computational experience has been gained, are presented below.

Computational Experience

In Table 4 is shown the solution times for a set of ten test

problems some of which were taken from the literature--the others

arising from the shipping requirements of an actual firm. The data

for these problems appear in Appendix A. Problem 9 was taken from

Pierce and Problem 8 is the twelve-point problem of Dantzig and Ramser.

To obtain an indication of the efficiency of the algorithm

relative to existing techniques, note that Pierce obtained an optimal

solution to Problem 9 in 3.50 seconds and the optimal solution to

Problem 8 has been found by Christofides and Eilon in 900 seconds and

by Clarke and Wright in six seconds. All of these results were obtained

on an IBM 7094 computer.

As seen from the solution times in Table 4, problem-solving time

tends to increase both with the number of routes n and the number of

constraints m in the problem. The time requirement for any given

problem, however, is quite unpredictable. For example the solution

33

Table 5. Solution Times for Test Problems

Problem Solution times (in seconds)
number m n Iterations Phase I Phase II Total

1 6 22 5 2o63 3.13 5.76
2 5 24 7 1.87 8.01 9.88
3 8 83 11 11.82 49.00 60.82
4 8 68 1 14.38 0.25 14.63
5 10 100 3 17.58 17.77 35.35
6 10 155 9 27.32 44.18 71.50
7 10 122 12 22.46 89.38 111.34
8 12 298 6 57.35 59.47 116.82
9 15 139 4 21.67 16.11 37.78

34

time for Problem 7 is substantially greater than that for Problem 9

even though the deliveries in the smaller problem are a subset of those

in the larger.

One important attribute of the algorithm has not been previously

mentioned--this being that a feasible integer solution to a problem

may be obtained much sooner than the optimal solution. The importance

of this aspect can be seen in Problem 7 where the optimal solution was

not found until 111.34 seconds had passed but the algorithm could have

been terminated any time after 65.45 seconds with a feasible solution.

Returning now to the efficiency of the algorithm, it should be

pointed out that no real conclusions can be drawn on the basis of the

limited computational experience gained to date. Further, any compari­

sons between this algorithm and other algorithms are greatly hampered

by the fact that the differences in computing machinery used are

rather large.

Extensions of the Algorithm

As was stated earlier, the vehicle delivery problem may exhibit

any of a number of distinguishing characteristics. The algorithm which

we have presented here was developed specifically for the problem as

stated in Chapter I; however, by making certain modifications, the

algorithm can be extended to handle a variety of different restrictions

or assumptions.

Multiproduct Considerations

Consider, first of all, the situation in which more than one

product must be delivered. If the products are homogeneous--that is,

35

they may be loaded on vehicles without discrimination--we need only

specify individual delivery quantities as the total of all products

and proceed with the algorithm as stated. Nonhomogeneous products,

on the other hand, require certain modifications. One possible approach

in this case would be to divide delivery point i into k separate

delivery point if there are k products to be delivered to point i.

After generating all feasible single-product routes, we would then

attempt to combine routes which deliver different products according

to capacity restrictions and the restrictions placed on shipping the

individual products together.

Limited Number of Vehicles

Here no modification to the Phase I algorithm is required. In

formulating the problem in Phase II, however, one additional constraint

of the form

x + x + x + . . . + x < V
1 2 3 n —

where V is the number of available vehicles, must be added.

Varying Vehicle Capacities

When dealing with vehicles that are nonhomogeneous in the sense

that capacities vary, a simple extension of Phase I will allow use of

the algorithm. Suppose, for instance, we have vehicles with N c different

capacities. This is handled by repeating the process of route genera­

tion N c times, varying the vehicle capacity each time. Obviously, a

large number of routes will be generated, and it would be desirable

to reduce this number if possible. Such a reduction can be made by

comparing routes formed for the various classes of vehicles. Speci-

36

fically, if identical routes are made by several classes of vehicles

then only that route with the lowest associated cost need be considered.

Distance Constraints

Quite often, especially when a firm must seek the services of

a contract shipper, restrictions on the maximum route distance may

appear. These restrictions are easily handled by making the appro­

priate comparisons during the process of route generation.

Optional Deliveries

If certain deliveries are specified as optional, the problem

takes on a new dimension. This consideration should not generally

pose a great problem, however. By replacing the quality constraints

in the formulation of Phase II with inequality constraints most such

cases can be dealt with.

Time Constraints

Especially when dealing with perishable products, it is manda­

tory that we consider the amount of time which will elapse before

delivery is made. In such cases, the measure of effectiveness of a

particular delivery schedule is expressed in units of time rather than

cost. If we desire to specify that a particular delivery be made before

a certain time, we simply make the appropriate comparisons while

generating feasible routes.

Minimizing Number of Vehicles Used

The restrictions mentioned to this point have dealt exclusively

with the nature of deliveries rather than the objective in solving the

problem. It may be the case, however, that we are not so concerned

with the cost of delivery as with the number of vehicles used. This

37

consideration may be effectively handled by eliminating the pricing

procedure in Phase I and simply assigning a cost of one to each route.

38

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The conclusions which can be drawn from the research involved in

the development of the algorithm lie in two areas: (1) those dealing with

the use of the two-phase algorithm for solving delivery problems and

(2) those concerning the use of the Phase II algorithm alone for solving

general zero-one integer programming problems. Since the research was

concentrated in this first area, we will begin there.

Because most other existing techniques are heuristic in nature,

it is difficult to make comparisons. However, the two-phase algorithm

performed for the most part on a level equal to or better than all

existing techniques, with the notable exception of Pierce's algorithm.

The criterion used in making this comparison is time required to obtain

a final solution. Further, since optimality can be guaranteed, we

would tend to appraise this algorithm as superior to many of the others.

Additional experience must be gained, however, before any conclusive

comparisons can be made. The experience gained to date indicates that

this additional experience is justifiable.

Due to the variety of characteristics of the delivery problem,

it would definitely be worthwhile to explore the modifications of the

algorithm proposed in Chapter IV. Since each type of delivery problem

exhibits its own special structure, further research should result in

the development of a variety of schemes to take advantage of these

39

peculiarities.

Unfortunately, no results have been obtained to date which would

indicate the effect, computationally, of incorporating any of the modi­

fications mentioned above in the algorithm. However, these modifications

require more computations in generating and pricing route vectors but

fewer computations in Phase II since fewer feasible routes will be

generated. Additional computational experience should bear this out.

The linear programming code used in this work is felt to be

somewhat less than perfect. Experiements with other codes should, there­

fore, serve to enhance the efficiency of the algorithm. Again the promise

which such experiments hold should justify their being carried out.

Aside from providing a means for solving the delivery problem,

the research has introduced a somewhat different approach to the

branch-and-bound technique for integer programming. Results to date

indicate this approach to be on a par with many of the existing integer

programming techniques. The advantages of pursuing this line of appli­

cation are many, though it is felt that substantial modifications will

be required to move outside the realm of the generalized set covering

problem.

In summary, the algorithm presented here appears to hold promise,

both as a technique for the delivery problem and as a technique for zero-

one integer programming. It is recommended that additional research be

carried out in relation to improving the existing algorithm and extending

it to the other cases of the delivery problem.

APPENDIX A

TEST PROBLEM DATA

Problem One

Demand

.36

Distance Matrix

0 1 2 3 4 5 6

1 78

2 80 54 -44

3 82 9 44 -52

4 89 30 10 39

5 91 42 25 21 18

6 98 48 19 34 9 12

.40

.32

.32

Distance Matrix

0 1 2 3

1 25

2 15 10

3 3 1 4

4 14 4 2 15

5 5 5 5 5

Problem Two

Demand

.20

.20

.40

.30

.40

42

Problem Three

Distance Matrix

96 56 59 16 14 11 10

78 39 41 54 54 53 57 48

Demand

Problem Four

Distance Matrix

0 1 2 3 4 5 6 7 8

1 91

2 98 58

3 96 59 62

4 40 45 5 60

5 73 34 37 46 46

6 82 48 46 44 44 45

7 55 16 19 54 54 55

8 52 16 17 68 68 77 72 69

Demand

.30

.30

.28

.60

.18

.12

.56

.34

0 1 2 3 4

41

38 3

80 54 56

80 54 56 3

97 64 67 19 16

92 59 62 13 10

.14

.44

.32

.48

.32

.32

.10

.34

Problem Five

Distance Matrix Demand

0 1 2 3 4 5 6 7 8 9 10

1 91 .30

2 98 58 .30

3 96 59 62 .28

4 40 45 5 60 .60

5 73 34 37 46 46 .18

6 82 48 46 44 44 45 .12

7 55 16 19 54 54 58 55 .56

8 52 16 17 68 68 77 72 69 .34

9 76 46 49 8 9 19 15 18 44 .52

10 76 44 46 11 11 20 15 15 42 19 .48

Problem Six

Distance Matrix Demand

0 1 2 3 4 5 6 7 8 9 10

1 52 .34

2 76 46 .52

3 76 44 46 .48

4 76 50 53 4 .18

5 72 33 34 53 54 .12

6 98 58 61 53 30 27 .12

7 98 58 61 32 29 26 29 .64

8 93 66 68 14 12 23 18 22 .48

9 89 55 58 10 9 8 5 7 48 .28

10 68 32 33 64 64 67 66 57 22 55 .10

44

Problem Seven

Distance Matrix Demand

0 1 2 3 4 5 6 7 8 9 10

1 38 .44

2 80 56 .32

3 80 56 3 .48

4 96 67 19 16 .32

5 92 62 13 10 7 .32

6 78 41 54 54 53 57 .34

7 98 62 20 17 12 13 39 .22

8 95 61 15 12 8 8 45 6 .22

9 91 53 25 22 24 19 30 9 15 .30

10 98 61 19 16 10 10 42 3 4 12 .30

45

Problem Eight

Distance Matrix Demand

0 1 2 3 4 5 6 7 8 9 10 11 12

1 9 .20

2 14 5 .28

3 21 12 7 .25

4 23 22 17 10 .23

5 22 21 16 21 19 .28

6 25 24 23 30 28 9 .23

7 32 31 26 27 25 10 7 .20

8 36 35 30 37 35 16 11 10 .32

9 37 37 36 43 41 22 13 16 6 .30

10 42 41 36 31 29 20 17 10 6 12 .27

11 50 49 44 37 31 28 25 18 14 12 8 .28

12 52 51 46 39 29 30 27 20 16 20 10 10 .18

46

Problem Nine

Distance Matrix Demand

0 1 2 3 4 5 6 7 8 9 10 11 12

1 38 .44

2 80 56 .32

3 80 56 3 .48

4 97 67 19 16 .32

5 92 62 13 10 7 .32

6 78 41 54 54 53 57 .34

7 98 62 20 17 12 13 39 .22

8 95 62 15 12 8 8 45 6 .22

9 91 53 25 22 24 19 30 9 15 .30

10 98 61 19 16 10 10 42 3 4 12 .30

11 96 62 17 14 8 8 44 5 2 14 2 .28

12 40 5 60 61 71 65 40 66 65 54 65 66 .60

47

Problem Ten

Distance Matrix Demand

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 38 .44

2 80 56 .32

3 80 56 3 .48

4 78 41 54 54 .34

5 91 53 25 22 30 .30

6 98 61 19 16 42 12 .30

7 96 62 17 14 44 14 2 .28

8 40 5 60 61 40 54 65 66 .60

9 55 19 54 54 22 38 48 50 18 .56

10 52 17 68 68 36 57 67 69 14 21 .34

11 76 49 8 9 44 24 20 18 52 45 59 .52

12 76 46 11 11 42 18 20 18 47 39 57 6 .48

13 98 61 32 29 28 7 16 18 60 44 61 34 28 .64

14 93 68 14 12 65 32 24 22 72 61 79 20 26 39 .48

15 89 58 10 9 48 18 9 7 62 51 69 15 12 23 15 .28

APPENDIX B

ALGOL PROGRAM CODE

BEGIN
PROCEDURE INOATA)

bEGlN
READC I N P U W ' M) ;
REAQCINpuT*/*rO« 1*1 STEp 1 UNTIL M DO QCl])J
REAO(INPUT#/*FQR 1 * 0 STEP 1 UNTIL M-1 DU

FOR J + STEP 1 UNTIL M DO D U # J]) >
END UF INDATAJ

PROCEDURE MAKEROUTEI
BEGIN

LABEL L W L 2 J
A[M,13*U

A C M - l # 2 m J
R£2J«-G£MM1 j
N*2;
R O W « - M M ;

Lll
N E W * 1 \

FOR 1*1 STCP 1 UNTIL N'l OO
IF R C n+RCNJSl THEN

BEGIN
RtN + NErtJ^RC n+RCNIJ
FOR K+1 STEP 1 UNTIL M DO
IF ACK#I I2A[K#N] THEN
A[K#N*NEl.J*ACK*Il ELSE

A[K>N + N E H] « - A [K * N] J

N E W 4 - N E W + U

E N D ; N + N + NEw J RUW*RUW-U IF R0W<1 THEN GO TO L2j
RlN]*QCRQWU
G O T O L U

N « - N - I ;

tNQ O F M A K E R O U T F ;

PROCEDURE PR iCERQUTFl dEGlN FOR J+l S T E P 1 U N T I L N bEttlN
STCJ]4-O; FOR 14-1 STEP 1 UNTIL M IF AU>J3M THEN

BEGIN
STC J J>ST[JHW
G[J,K]4-n

E N O ;

E N D ; FOR J«-l STFp 1 UNTIL N BEGIN IF STCJI*1 THEN
ClJJ*2xDC0#GCJ#U J J IF ST[J]*2 THEN

51

CC J 3 « - D £ Q , G r J, 13 3*0£0>GE J,2 3 3+DCGt J>1 3,GC J>2 3 3;
IF S U J J»3 THEN

d E Q I N

CP£ U + D [0,GCj# in+ D £ G U # 13, G[j, 2]]
•D£G£J#2J#G[J#3JJ+DCO>G[J*3J]J

CPC2 3+U£0>GU>l J 3 * D £ G £ J M 3.GC J*3l 3
+DEG£J>23 'GCJ'333+D£0 ,Grj>2]j;

CP£ 3]<-0£ 0,r ,t j,2]]*DtGC J# 13#Gt J#2i]
+ D[GU#13#GCJ# 333*D[G,G[J,3:i];

C£ J3*CP£l JjJ
I F CP£23<C£J3 THEN

BEGIN
C£ J J4-CPE2J J
R Q W « - 2 ;

E N D ;

IF CP£33<C£J3 THEN
BEGIN

C£ J3«-CP£33I
RQw«-3;

E N D ;

I F R Q W * 2 T H E N

BEGIN

RQW*G£J>23f
G£ J#23«-GC J*33;
G£J*33*RQH;

E N D ;

I F R Q W » 3 T H E N

BEGIN
RQW+GEJ#13J
GCJ#13«-G£J>23;
G£J#23«-ROWJ

52

e n d ;

ENDi
IF T H E N

BEGIN
FOR 1*1 STEP 1 UNTIL STCjI On

dEQlN
FOR K*l STEP 1 u N T I l STCJ] Do
I f i # k a n d i # f s t a r c i » i * k] t h f n

B E G I N

FClJ»K]*OCGt J*U#Gt J#K Jl*FSTARt I"1*K1J
FSTAR[I#K3*FtI»Ull
f o r zz«-1 s t e p u u n t i l s t f j] d o

i f f c i * z z) < f s t a r c i , k] t h e n

f s t a r c i * k] * f c i * z z 3 i

e n d ;

E N D ;

MIN*FSTAR[5TCJ3#13l
FOR K*2 S T E P 1 U N T I L STCJ3 O O

IF M I N > F S T A R C S T C J 3 # K 3 THEN M l N * F S T A R C S T C J 3 # K li
GCJ'13+MINJ
FOR K*2 STEp 1 UNTIL ST[j3 DO
GU>K3*FSTAR [K,GU>KM 33)

END!
END U F PRICEROUTEJ

PROCEDURE pREpARELplj
BEGIN

FQR J*l STEP 1 UNTIL N DO
BEGIN

NXJU3+JJ
V A R C j i * j ;

ENDi

F O R J « - l S T F P 1 U N T I L N D O

I F S T U J * 1 T H E N

B E G I N

N X H I K - J J

I * I * l ;

E N D ;

F O R I « - L S T F P 1 U N T I L M D O

F O R J«-l STFp X U N T I L N D O

B E G I N

AAC l > J J*-AC I# JJJ
C J C J] « - C [J] l

E N D ;

F O R 1*1 STFP 1 U N T I L M Do B l I J * l l
E N D Up PREpARELPU

P R O C E D U R E S O L V E L P ;

B E G I N

LA^EL Lp2#Lp3.Lp5.Lp6>Lp7,Lp8,LMlN;

R O W * O ;

C O L * O ;

O P T « - F A L $ E ;

F O R 1*1 STEP 1 U N T I L M Do
B E G I N

F O R J*l S T E P 1 U N T I L N D O

B E G I N

I F N X i m « N X J C J J T H E N

cnn+cJtJi;
E N D ;

E N D ;

I T E R * O ;

LP2I

FOR J«-l S T E P 1 UNTIL N D O

ZCJ]*0>
FOR U l STEP X UNTIL M D O
ZCJUCZC JUCI CI JxAACI,J])J
ZCCJ J«-Zl J3-CJUJJ

E N D ;

O B J + O ;

F O R 1+1 S T E P 1 U N T I L M D O

OtfJ*OBJ*CCltI J x B l i m
LP3I

I F O P T THEN GO TO LMINj
I T E R * I T £ R * 1 >
ZCM*ZC[1J J
J H + H

FOR J * 2 STEP 1 UNTIL N Do
BEGIN

IF ZCCJ3SZCM T H E N G O TO LP6I
LP5I

Z C M + ZCU1J
J M + JJ

LP6t
E N D ;

I F Z C M S Q T H E N G O T O l p t E L S E G O T O L P S *

LP7I
OPT+TRUEJ
G O TO LP3J

LP8I
XM*Cl.0x(10*40))J
I M * 0 |
FOR 1*1 STEP 1 UNTIL M DO

BEGIN

55

BEGIN
IF AA£I>JM3>0 THEN

BEGIN
XX+BEIJ/AAT I*JM31
IF XX<XM THEN

BEGIN
XM«-XX;
IM«-I;

END;
ENO J
ENOI

XX + AAUM, JM];
BC IMUB[IML/XX)
FOR J«-L STEP 1 UNTIL N DO
AALIM'JI+AAIIM'JJ/XXL
FOR UL STEP 1 UNTIL M DO

BEGIN
IF I#IM THEN

BEGLN
XX*AA[I*JM1)
BTU*BU]»CXX»CBTIM3)L
FOR J*L STEP I UNTIL N DO
A AT I# J3«.(AAL I,J3-CXXXAAC IM,J3))I

END;
END;

ROHONXICIM];
COL*NXJUMI;
CICIM3*CJCJM3;
NXICIM3*NXJCJM3I
GO TO LP2;

LMINI

END OF SOLVELPJ
PROCEDURE SQLUTiONSAvE;

BEGIN
ZSTARCLPITHoBJJ
F O R Ifl STFp 1 UNTIL M DO

BEGIN
X S T AR C L P I T ' I I + B L H)
«XCLPIT#I3*vARCNXItI33)

END;
E N D O F S O L U T I O N S A V E J

P R O C E D U R E A C T I V E N Q D E L

BEGIN
OBJ*ZsTARCLPIT3i
NODE+LpIT;
IF LPIU1 THEN

BEGIN
FOR 1*0 STEP 1 UNTIL LP*TM DO
IF ZSTAR[I3<QBJ AND COUNTCII^l THEN

BEGIN
QBJ + ZSTARU 3)
N O D E + I ;

ENOi
FOR J*l STEP 1 UNTIL N N D O
IF SETVCN0DE>J3»1 THEN
SETV[UPIT*1*J3*1 ELSE
IF SETVINOOE*J3» *1 THEN
SETVCLPITH#J3* -11

ENDJ
E N D O F A C T I V E N O D E ;

P R 0 C E 0 U R E V A R Y S E T I

BEGIN

57

L A B E L L O E T)

FOR S T E P 1 U N T I L M DO

IF X S T A R [N O D E , I 3 * , O O O O l A N D

X $ T A R C N 0 D E * I I S t 9 9 9 9 9 T H E N

BEGIN
M l N*CtWXtNODE#in/ST(WX[NOOE.I 3 31
K * I J

S E T * W X [N O D F , I 31

GO TO L O E T I

E N D I

L D E T »

FOR I* K*1 STEP I UNTIL M Do
IF M l N>CCW^CNOOE#I n / S T C w X t N O D E ' U]
A N D XSTARCNQD£#I]i t00001 A N D

A N D XSTARCNQDE.IJS.9 9 9 9 9 T H E N

BEGIN
SET*WXCN0DE*I3)
M l N+CCrtXCNODE#I]3/STCWXCNOoE.nJ)

END;
e n d o f v a r y s e t i

p r o c e d u r e q n e s e t i

BEalN
C O U N T ! N O D E 5 • C O U N T ! N O D E 3 + 1;

L P I T + L P I T + 1 j

IF COUNTCN0OE3>I THEN SETV[LPIT#SET 3* -1 ELSE
SETVCLPlT#SET3«-i;
FOR 1*1 S T E P 1 UNTIL M Do sUMCl)*OI
K * U
FOR J*l S T E P I UNTIL NN DO
IF SETVCLPlT,J3»l T H E N

BEGIN

FOR U l STEP 1 UNTIL M DO

BEGIN

AACI«K]4-A(!'J]1
SUMtll̂ SUMfI]+AII#J]|

END!
VARCKJ*JJ
C j U J + Ct J JI

END!
N*K;
FOR J*L STEP 1 UNTIL NN DO
IF SETVCLPlT*J3»0 THEN

BEGIN
ROw*o;
FOR 1*1 STEP 1 UNTIL M DO

BEGIN
s u M i c n + s u M t n + A C i ' j j ;
IF SUMl[I]>l THEN ROW*l;

END;
IF ROW*0 THEN

BEGIN
FOR 1*1 STEP 1 UNTIL M DO
AA[I*N)+A[I#Ji;
VARCNI>J;
CJ[N]«-C[JJ)
N«-N*U

END;
END;

FOR J*L STEP 1 UNTIL NN DO
IF SETVCLPIT*J3«1 AND ST[JI#1 THEN

BEGIN

pQR U l STEp 1 UNTIL M 00

IF A l l , J I M THEN

BEGIN
FOR K * I STFp 1 UNTIL H 00
IF K«I THEN AACKjNUl ELSE AA[K,NJ«-01
VARCNJ+OJ
CJCN]>10000J
N * N * I ;

END!
E N D ;

N*N«1 i
1*11
FOR J<-1 STEP 1 UNTIL N D O
NXJUJoJI
IF VARCJI»0 O R ST tVAR[J]]« l THEN

BEGIN
NXHI3*J1

E N D ;

FOR 1*1 STFP 1 UNTIL M Do B C l l * l l
END Or 0NESET1

LABEL CQNT2*C0NT1*L0PTJ
INDATAi
NN*N)
C[OJ*100000J
STC03*l l

C0NT2I
SOLVELPJ
FOR 1*1 STEP I UNTIL M 00

BEGIN
I N T m * O J

60

IF 8 t I J < . G 0 0 0 1 OR B t l) > # 9 9 9 9 9 THFN INT[I]«- l i

ENOi

FOR 1 * 1 S T E P I U N T I L M Oo

IF I NT 1 1 3 » 0 THEN GO TO CONTl)

IF LPITsO THEN GO TO LOPTi

I N E G R C L P I T U I ;

CONTIl

S O L U T I O N S A V E ;

A C T I V E N O D E J

i p I N E G R C N O D E I * ! T H E N G O T O L O P T I

V A R Y S E T J

ONEsETi
GO T O C0NT2J

LOPT*
E N D •

61

BIBLIOGRAPHY

1. E. Balas. "An Additive Algorithm for Solving Linear Programs with
Zero-one Variables." Operations Research. Vol. 13, No. 4. 1965.

2. Mo Lo Balinski. "integer Programming: Methods, Uses, Computation."
Management Science. Vol. 12, No. 3. 1965.

3. Mo L. Balinski and R. E. Quandt. "On an Integer Program for a
Delivery Problem." Operations Research. Vol. 12, No. 2. 1964.

4. Ro Bellman. "Dynamic Programming Treatment of the Travelling
Salesman Problem." Journal of ACM. Vol. 9. 1962.

5. Mo Bellmore and G. L. Nemhauser. "The Travelling Salesman Problem:
A Survey." Operations Research. Vol. 16. 1968.

6. N. Christofides and S. Eilon. "An Algorithm for the Vehicle-
Dispatching Problem." Operational Research Quarterlyo Vol. 20. 1969.

7. G. Clarke and J. W. Wright. "Scheduling Vehicles from a Central
Depot to a Number of Delivery Points." Operations Research.
Vol. 12, No. 4. 1964.

8. G. Bo Dantzig and J. H. Ramser. "The Truck Dispatching Problemo"
Management Science. Vol. 6, No. 1. 1959.

9. R. S. Garfinkel. Optimal Political Districting. College of Business
Administration, University of Rochester. Rochester, New York. 1968.

10. W. W. Garvin, H. W. Crandall, J. B. John, and R. A. Spellman.
"Application of Linear Programming in the Oil Industry."
Management Science. Vol. 3. 1957.

11. T. J. Gaskell. "Bases for Vehicle Scheduling." Operational Research
Quarterly. Vol. 18, No. 3. 1967.

12c A. Mo Geoffrion. "Integer Programming by Implicit Enumeration and
Balas1 Method." SIAM Review. Vol. 9. 1967.

13. R. E. Gomory. "Outline of an Algorithm for Integer Solutions to
Linear Programs." Bulletin of the American Mathematical Society.
Vol. 64. 1958.

14. W. H. Hausman and P. Gilmore. "A Multi-Period Truck Delivery
Problem." Transportation Research. Vol. 1, No. 4. 1967.

62

15. R. L. Hayes. The Delivery Problem. Carnegie Institute of Technology,
Graduate School of Industrial Administration.. Report MSR 106. 1967.

16. J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel. "An
Algorithm for the Travelling Salesman Problem." Operations Research.
Vol. 11. 1963.

17. J. F. Pierce. "Direct Algorithms for Truck Dispatching Problems*.
Part I." Transportation Research., Vol. 3, No. 1„ 1969.

18. J. F. Pierce. "On the Truck Dispatching Problem: Part I." IBM
Cambridge Scientific Center Report 320-3218. Cambridge, Massachu­
setts. 1967.

19. J. F. Pierce and M. Hatfield. "Production Sequencing by Combinatorial
Programming." Chapter 17 of J. F. Pierce, Operations Research and
the Design of Management Information Systems. Technical Association
of the Pulp and Paper Industry, New York. 196 7.

