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SUMMARY 

This thesis develops an algorithm for solving the vehicle delivery 

problem stated as follows: Consider m points each with a demand for 

deliveries, expressed in some convenient unit and denoted by q^, and a 

terminal point with no demand. Let C be the capacity of the vehicles 

expressed in the same unit as demand and assume that 

max q. < C < q.. ^1 l-l ^1 

Further, assume that a symmetric distance matrix D = E d ^ ] , which indicates 

the distance from any point i to the terminal and to any other point is 

known. Find the routing of the vehicles which will satisfy all demands 

without violating the capacity constraint on the vehicles while minimizing 

the total cost of delivery. 

The algorithm is executed in two phases. Phase I generates a set 

of feasible routes based on vehicle capacity and then assigns a cost to 

each of these routes based on the solution to a travelling salesman 

problem. Phase II then uses the routes generated in Phase I to formulate 

the problem as a generalized set covering problem. The procedure for 

solving this formulation is a branch-and-bound process based on the 

solution of linear subproblems. 

Computational results are obtained for a set of ten test problems, 

drawn from both the literature and actual delivery problems. Finally, 

desirable extensions of the algorithm are examined. 



CHAPTER I 

INTRODUCTION 

Since 1956 a good deal of attention has been given to a problem 

which has been equivalently termed the vehicle delivery problem, the 

delivery problem, the dispatching problem, the truck dispatching problem, 

and the vehicle dispatching problem. The diverse considerations which 

the problem has received result from the fact that it arises in a variety 

of contexts and may exhibit any of a number of distinguishing character­

istics. Basically, the problem concerns the transportation of products 

from one set of locations to another set of locations under certain 

restrictions which govern the nature of deliveries. 

Generally, there are several characteristics of a product--volume, 

weight, length, etc.--which may affect the structure of the problem. 

Correspondingly, the vehicles may impose any of a number of restrictions 

on the problem depending on the number available and their capacities and 

operating characteristics. There may also arise differences in problem 

structure depending on whether deliveries are mandatory or optional, 

whether the quantities to be delivered are prespecified or to be selected, 

and whether these quantities must be delivered on a single visit or may 

be divided into several smaller quantities. Further, restrictions on 

the earliest or latest times for deliveries may appear. Finally, the 

objective in solving the problem may vary from minimizing time spent 

making deliveries, to minimizing the number of vehicles used, to 
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minimizing the total cost of delivery. 

Literature Review 

The earliest description of the vehicle delivery problem appears 

in a paper by Garvin et al. (1957). In an article on the applications 

of operations research in the oil refining industry, the authors dis­

cussed the problem of routing vehicles from a bulk terminal to individual 

service stations. Their problem involved only one product (i. e., one 

grade of gasoline) but did include consideration of vehicles with vary­

ing capacities. The formulation presented, which takes the form of a 

mixed-integer programming problem, had two unfortunate drawbacks: (1) 

at the time there was ano known method of solving an integer-restricted 

problem optimally and (2) the number of variables rapidly became unweildy 

as the number of stations increased. More recent developments in integer 

programming have solved the problem of obtaining optimal integer solu­

tions for small problems; however, due to the number of variables 

involved, it is doubtful that any existing algorithm could be effi­

ciently applied to their formulation. 

Dantzig and Ramser (1959) discussed what they called the truck 

dispatching problem. Their definition is as follows: Consider N points 

each with a demand for deliveries of q^ and a terminal point with no 

demand. Let C be the capacity of the vehicles and assume that 

max q. < C < q. . Mi i~l ^i 

Further, assume that a symmetric distance matrix D = [d ] , which 

indicates the distance from any point i to the terminal and to any 
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other point, is known. Find the routing for the vehicles that will 

satisfy the demands without violating the capacity constraint on the 

vehicles while minimizing the distance travelled. 

The authors were unable to develop a model which would allow an 

optimal solution to be found but did succeed in the development of a 

heuristic which forms the basis for solution of large scale delivery 

problems to this day. The solution is synthesized in a number of 

stages of aggregation in which suboptimizations are carried out on 

pairs of points or groups. The number of stages of aggregation is a 
th 

function of the vehicle capacity and the total demand. In the r stage 
of aggregation only those points or groups of points are allowed to pair 

, N-r 

whose combined demand does not exceed C/2 . I t was noted that the 

method is heuristic; and a twelve-point problem for which the optimal 

solution was not found was presented. 

Clark and Wright (1964) presented a heuristic method based on 

the work of Dantzig and Ramser with the added provision that vehicles 

of differing capacities could be considered. The method can be summa­

rized in the following three step procedure: 

1. Assume one truck visits exactly one customer then returns 

to the terminal. 

2. If customers i and j are joined by a link then (a) one truck 

is eliminated and (b) there is a savings in miles travelled. 

3. If link ij is feasible it is added. Otherwise, all other 

possible links are examined until no more can be added. 

Using this procedure the authors were able to produce a better feasible 

solution for the twelve-point problem of Dantzig and Ramser but were 
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unable to prove optimality. 

Balinski and Quandt (1964) offered a formulation for a problem 

similar to Dantzig and Ramser's with the objective being a minimization 

of cost. Their formulation takes the form of a generalized set covering 

problem which requires the enumeration of all feasible single vehicle 

routes and then selects an optimal set of these routes which meets all 

demands. Because all feasible routes must be generated, application of 

the method is a time-consuming process for problems involving a large 

number of deliveries. However, the authors were able to formulate a 

simple theory of dominance which reduced the number of routes to be 

considered. It was suggested that an integer programming cutting-plane 

algorithm be used to arrive at a solution and computational experience 

was reported as shown in Table 1. 

Gaskell (1967) presented a comparative survey of five methods of 

solving the problem defined by Dantzig and Ramser. The first of these 

methods relied on the subjective judgements of the problem solver and was 

nonquantifiable; the other four were, essentially, variations on the pro­

cedure developed by Clarke and Wright. After solving six sample problems 

with each of the five methods, Gaskell concluded that (1) a computer-

oriented technique performs better than a human-oriented technique and 

(2) none of the variations on Clarke and Wright's procedure were uni­

formly superior to the original method. 

Hausman and Gilmore (1967) culminated several years of research 

in the publication of a heuristic which solved a somewhat different 

problem than had been dealt with before. Their definition is as follows: 

Each of m customers has a minimum required frequency of delivery which 
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Table 1. Computational Experience as Reported 
by Balinski and Quandt 

Problem m n n' Pivots Cuts 

1 5 30 26 9 0 

2 8 57 24 7 0 

3 8 82 68 22 2 

4 9 135 102 142 20 

5 9 255 203 26 1 

6 11 151 145 42 5 

7 11 307 305 36 1 

8 15 166 142 43 7 

9 15 388 270 23 1 

10 15 i< 200+ 

m = number 

n = number 

of points 

of routes 

to which 

generated 

deliveries must be made 

n' - reduced number of feasible routes 

* not reported 
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may be increased to take advantage of economies in routing. Customers 

are classified into groups, and when any customer in a group requires 

a delivery the entire group is serviced. The objective is to construct 

customer groups in such a way as to minimize total annual delivery cost. 

The formulation resulted in a complex nonlinear programming problem. 

What was described by the authors as a complicated heuristic, based on 

the solution of many travelling salesman problems, was developed; but 

it was not tested to determine how close to optimality it could come. 

Hayes (1967) took a different tack in developing a heuristic 

method in which the route assignments are generated randomly from a 

weighted probability distribution. The weighting for each demand point 

is based on its demand for service, its distance from the terminal and 

from other demand points, and a random element. The author suggested 

that since the procedure takes very little time it might be repeated 

for a number of trials and the best solution kept. The optimal solu­

tion for the twelve-point problem of Dantzig and Ramser was found in 

fourteen out of forty trials. 

One of the most recent papers on the delivery problem is that of 

Christofides and Eilon (1969). As did Gaskell, they attempted to compare 

the performance of several different procedures. The first of these was 

a branch-and-bound technique based on the travelling salesman algorithm 

developed by Little et al. (1963). The procedure works as follows: 

1. Assume there will be N single vehicle routes in the final 

solution. 

2. Replace the original terminal by N artificial terminals and 

prohibit travel between them by setting the distances between 
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them equal to 0 0 . 

3. Solve an associated travelling salesman problem. 

4. Repeat for several values of N and take the best result. 

Obviously, optimality cannot be guaranteed. The second procedure was 

that of Clark and Wright. The third procedure, like the first, was 

based on the travelling salesman problem. An r-optimal tour was 

defined to be a tour which could not be improved by removing r links 

and replacing them with r other links. As r increases the number of 

combinations which must be checked for improvement increases rapidly. 

However, it was determined that, in general, a 3-optimal tour provides 

a good approximation of the true optimal. Thus, the procedure assumes 

a random tour and from this produces a 3-optimal tour. Comparative 

computation times for the three procedures were reported as shown 

in Table 2. 

J. F. Pierce has succeeded in developing the most efficient 

optimal algorithm presented to date. Pierce has written on several 

aspects of scheduling and vehicle delivery as well as on the develop­

ment of combinatorial programming algorithms for solving set covering 

problems. His first paper, coauthored with Hatfield (1966), on the 

use of the travelling salesman problem in solving production scheduling 

problems led directly to his first comprehensive paper on vehicle 

delivery (1967) <» The major concern in this work was with single route 

problems with a variety of additional constraints. Pierce was primarily 

interested in techniques that produce feasible solutions early in order 

to permit premature termination with a feasible solution at hand. 

In a later paper (1968) Pierce abandoned his original concepts 
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Table 2. Computational Experience as Reported 
by Christofides and Eilon 

Problem Number of Times (in seconds) 
Delivery Points Method 1 Method 2 Method 3 

1 6 90 6 6 

2 13 900 6 6 

3 21 6 36 

4 22 6 30 

5 29 12 48 

6 30 12 48 

7 32 12 48 

8 50 36 120 

9 75 78 240 

10 100 150 600 
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for the development of a combinatorial algorithm for generalized set 

covering problems. He used a set of delivery problems to test the 

algorithm. The results are shown in Table 3. Pierce's latest paper 

(1970) developed certain modifications of the algorithm which improved 

its efficiency. 

Statement of the Problem 

The vehicle delivery problem has been shown to possess any of a 

number of distinguishing characteristics. The particular problem to be 

considered here is similar to that encountered by Dantzig and Ramser 

and may be stated as follows: Consider m points each with a demand for 

deliveries of and a terminal point with no demand. Let C be the 

capacity of the vehicles and assume that 

max q. < C < DP—, q. . Mi i-l ^i 

Further, assume that a symmetric distance matrix D = C^L^], which 

indicates the distance from any point i to the terminal and to any 

other point, is known. Find the routing of the vehicles which will 

satisfy all demands without violating the capacity constraint on the 

vehicles while minimizing the total cost of deliveries. Two types 

of costs will be considered--a cost per mile of vehicle travel and a 

fixed cost incurred for each delivery made by a vehicle. 

Objectives of the Research and Method of Attack 

Nearly all the authors who have discussed the delivery problem to 

date have characterized it as relatively simple to formulate but difficult 

to solve optimally. For this reason a great many heuristics have been 
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Table 3. Computational Experience as Reported by Pierce 

Problem m n Times (in seconds) 

1 5 31 .050 

2 6 62 .117 

3 8 92 .200 

4 13 91 6.367 

5 11 231 1.383 

6 11 561 2.876 

7 11 1023 14.383 

CO 11 1485 19.317 

9 12 298 3.500 

10 12 538 7.117 

11 12 793 4.567 

12 15 575 69.483 

13 19 1159 2400.000* 

m = number of points to which deliveries must be made 

n = number of feasible routes examined 

* termination without proving optimality 
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developed but very few algorithms presented are capable of producing 

optimal solutions. The primary objective of the research reported here 

was the development of an algorithm which could guarantee an optimal 

solution to the problem. 

The idea of using a two-phase algorithm in which the first phase 

accomplishes the generation and pricing of feasible routes and the 

second phase selects an optimal subset of these routes seems ideally 

suited to the delivery problem. In order to produce such an algorithm 

one must determine an efficient means for generating feasible routes 

which keeps the number of routes to be considered minimal and design 

an efficient method for obtaining an optimal solution to the problem 

given the set of feasible routes. 

Having accomplished the task of developing an algorithm, the 

second objective of the research lay in examining the computational 

aspects of the algorithm in an effort to determine areas in which 

further research might lead to significant modifications. 
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CHAPTER II 

PHASE I 

As previously mentioned, the first step in solving the delivery 

problem is the determination of feasible routes based on delivery quan­

tities and the assignment of costs to each of these routes based on the 

distance which must be travelled to make the deliveries. This is the 

function of Phase I of the algorithm. 

Generation of Feasible Routes 

At the outset, the only information available is the delivery 

quantities for the points on the schedule, the vehicle capacity, cost 

information, and the distances between points. Obviously, separate 

delivery points may be combined to produce multi-delivery routes pro­

viding the sum of the requirements of such points does not exceed the 

capacity of the vehicle. We must then decide how individual deliveries 

can be aggregated without violating the capacity constraint. 

If we represent each feasible route by an m-component binary 

column vector in which element i takes on a value of one if the route 

delivers to point i and a value of zero if not, then a simple and 

efficient scheme for route generation may be developed. 

Initially, we create two single-delivery routes, the first 

delivering to point m and the second to point m-1. Now we wish to 

determine whether a route delivering to points m and m-1 is feasible. 

Recalling that route feasibility is solely dependent on the relation 
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between vehicle load and vehicle capacity, we need only compare the sum 

of the requirements of points m and m-1 to the vehicle capacity to 

check the feasibility of such a route. If the route isl|feasible, it 

is generated by adding the two original route vectors. If the route 

is not feasible then we need not consider further routes which deliver 

to both points m and m-1; and no new route is created. Next, a third 

single delivery route is created, delivering to point m-2, and we 

attempt to generate multi-delivery routes by adding this new route 

vector to each of the vectors previously generated. We continue in 

this manner until the route which delivers to point the only is created 

and combined with other possible routes. A proof that this procedure 

indeed produces all feasible routes appears in Chapter III. Figure 1 

illustrates the procedure using the data from Test Problem One as given 

in Appendix A. 

Reduction Theorems 

The first major problem encountered in solving the delivery 

problem concerns the number of feasible routes generated. With m 3 8 15, 

for example, we might generate up to 19,378 feasible routes. While it 

is true that most practical problems involving fifteen deliveries would 

allow far less than 19,378 routes, the number of routes may still be a 

cause for concern. 

In the literature, one can find several references to this problem 

but very few constructive suggestions for circumventing it. Balinski 

(1965) and Garfinkel (1968) advise the application of four reduction 

theorems which may eliminate a number of feasible routes from considera-



Create Routes 1 and 2 Generate Route 3 Create Route 4 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 

0 1 O i l 0 1 1 0 

1 0 1 0 1 1 0 1 0 

Recursively Apply Procedure 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 

0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 

0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 

1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 

Figures 1. Procedure for Generating Feasible Routes 

1 2 1 2 3 1 2 3 4 
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tion. Discussion of these theorems requires several simple notational 

conventions. 

One may think of a matrix (in this case, the matrix formed by 

the route vector) as composed of either n binary column vectors â  

or m binary row vectors r.. Define the unit vector u as the row vector 
J 1 n 

having a one in element n and zeroes elsewhere. Finally, say that 

r. > r if a. . > a^. for all j. k - t kj - tj 
Theorem One 

If = 0 for any i, there is no solution. 

This theorem simply requires that each delivery point be included 

in at least one feasible route vector in order that a solution to the 

problem exist. Since all single-delivery routes are feasible in the 

problem under consideration, this theorem will be of no use. 

Theorem Two 

If r. = u for any k for any n, then a must be included in the k n J J n 
final schedule. 

Here we make the observation that if any point exists which is 

covered by one and only one route, then that route must appear in the 

solution to the problem. The comparisons required in the application of 

this theorem are simple but are not included in the algorithm developed 

here. 

Theorem Three 

If r, > r then r, may be deleted as well as any column n for 

K. t R. 
which a. = 1 and a t

 = 0. kn tn 
This is to say that if there is any point t to which delivery is 

made only in conjunction with delivery to some other point k then point 
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k need not be considered. Further, any route which delivers to point k 

but not point t need not be considered. Once again, however, we are 

unable to make use of this theorem since the fact that each point is 

accorded a single-delivery route precludes satisfaction of the assump­

tions of the theorem. 

Theorem Four 

Assume it is not true that r, > r or that r > r. . Let G be 
k ~ t t ~ k 

the index set associated with the smallest number of vectors u such 
n 

that 

v, ~ r. +2 ^,u > r k k neG n t 

Let 

w = A a 
neG n 

where A denotes the "logical and," and let 

Then any column p for which q = 1 and for which there exists a row i 

such that a. = w. = 1 may be removed from consideration, lp l 
Application of this theorem is best explained through an example 

Consider the matrix shown below: 

0 0 1 1 0 0 

1 1 0 1 1 0 

0 1 1 0 1 0 

1 0 0 0 1 1 
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Were it not for column three, row two would be greater than row one. 

Thus, through application of Theorem Three, we could omit columns one, 

two, and five from consideration. If route three is in the schedule, 

then we must cover point two with route one, two, or five. However, 

routes two and five both have deliveries in common with route three. 

Therefore, whether route three is in the schedule or not, routes two 

and five may be omitted from consideration. 

Of the four theorems, only the second and the fourth could prove 

of use in solving the problem at hand. However, in his discussion of 

the subject Balinski warns that unless the number of feasible routes 

is extremely large the time required to apply this theorem cannot be 

justified. 

Pricing Feasible Routes 

The generation of feasible routes results in the enumeration of 

all feasible combinations of deliveries. Before we can attempt to 

select an optimal delivery schedule, we must assign a cost to each of 

these combinations. 

Recall that two types of costs are to be considered — a cost per 

mile of vehicle travel and a fixed cost incurred for each delivery made 

by a vehicle. Since we require that each delivery be made, however, the 

fixed cost need not be considered, for any feasible schedule will 

necessarily incur the same fixed cost. Thus, the cost of using a par­

ticular route is determined solely by the distance which the route 

covers. 

Consider a particular feasible route, say route j, which makes 

k deliveries. The distance covered by route j is dependent on the 
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order in which the k deliveries are made. In fact, we could consider 

each of the permutations of these k deliveries as separate routes. 

However, each of these permutations is exactly the same as the others 

with the exception of the associated cost, and so it is only necessary 

to consider the least cost permutation. Thus, to assign a cost to 

route j, we must determine the path that passes through each of the k 

delivery points once and only once while minimizing the total distance 

travelled. The problem of finding this path is, of course, the well-

known travelling salesman problem. This problem has been treated by a 

number of different people using a variety of techniques. We must then 

select the particular technique we will use. In concluding a survey of 

algorithms for the travelling salesman problem, Bellmore and Nemhauser 

(1968) made their choice: "if the authors were faced with the problem of 

finding a solution to a particular travelling salesman problem we would 

use dynamic programming for problems with 13 cities or less, Shapiro's 
"1 

branch-and-bound algorithm for larger problems. . . The dynamic 

programming approach mentioned is that of Bellman (1962). 

The test problems which we will consider here relate to the 

delivery problems of a firm whose customers order material in quantities 

which comprise at least one-tenth truckload. Thus, no route making more 

than ten deliveries would ever be considered. This being the case, 

solving the travelling salesman problem associated with each route by 

the dynamic programming approach would result in the costs which we desire. 

Bellmore, M. and G. L. Nemhauser, "The Travelling Salesman 
Problem: A Survey," Operating Research, Vol. 16, 1968, pp. 538-58. 
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Of course, for single-delivery routes, there is only one path to consider 

so the travelling salesman problem need not be solved. This is true for 

routes making two deliveries also, since we are dealing with a symmetric 

distance matrix. For three-delivery routes the observations given in 

Table 4 indicate that it is more efficient to explicitly enumerate all 

possible paths than to apply the dynamic programming procedure. 

Thus, in order to derive route costs, we may directly calculate 

costs on one and two delivery routes; and we shall enumerate all permu­

tations of deliveries on three-delivery routes and take the least cost 

permutation. For routes making four deliveries or more, application of 

Bellman's dynamic programming algorithm will yield the desired result. 

As we record route costs, we must also record the order in which deliveries 

are to be made in order to supply an optimal schedule upon completion of 

the algorithm. 



Table 4. Computational Comparison Between Explicit 
Enumeration (EE) and Dynamic Programming (DP) 

Additions Comparisons 
DP EE DP EE 

3 8 6 8 2 

4 21 48 21 19 

5 84 480 84 234 

6 245 2880 245 1433 
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CHAPTER III 

PHASE II 

At this point we have generated a set of feasible routes and 

determined the cost and order of delivery for each route. To furnish 

an optimal delivery schedule, we must now select a minimum cost subset 

of these routes which delivers to each point once and only once. This 

is the function of Phase II of the algorithm. 

Mathematical Formulation 

The problem of determining an optimal delivery schedule given 

the routes generated in Phase I may be formulated as a zero-one integer 

programming problem as shown below. 

min S. c . x . 
J J J 

subject to S. a.. x. = 1 for i = 1, 2, . . ., m (1) 

x. = 0 or 1. J 

where c^ is the cost of using route j; x^ is a binary decision variable 

taking on a value of one if route j is used and a value of zero otherwise; 
th 

and a ^ is the i component of the vector which represents route j. 

There are three peculiarities of this formulation which should be 

noted here: (1) all coefficients in the objective function are positive, 

(2) all coefficients in the constraint matrix are zero or one, and (3) 

the right-hand side of the constraint equation is a vector consisting 
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entirely of ones. These properties are commonly associated with a 

specific class of zero-one integer programming problems known as 

generalized set covering problems. 

Of course, there are many existing techniques for solving zero-

one problems. Most notable are the algorithms of Balas (1965) and 

Geoffrion (1967). Likewise, the set covering problem has received 

attention. Gomory's cutting-plane algorithm (1960) has been shown 

to deal with this formulation most effectively, and the algorithm 

developed by Pierce has shown promising results. However, it is felt 

that the special properties of the set covering problem have yet to 

be fully exploited, and so we will depart from existing techniques in 

solving the problem here. 

Development of the Algorithm 

If we drop the integer restrictions on the variables x^ then our 

formulation reduces to 

min S. c. x. 
J J J 

subject to S. a.. x. = 1 for i = 1, 2, . . ., m (2) 

x. > Oo J -

This is, of course, a linear programming problem which retains all the 

special properties of the generalized set covering problem mentioned 

above. Solving this problem by some existing linear programming tech­

nique, such as the simplex method, will yield a solution in which the 

values of the basic variables will fall in the interval [0,l], Denote 
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the objective function value of this solution by Z Q . Then Z Q is a 

lower bound on the value we could have obtained had we retained the 

integer restrictions. 

If the solution to (2) is all integer, it is the optimal solution 

to (1), and we need proceed no further. Unfortunately, we cannot 

guarantee that the solution to the linear programming problem will be 

all integer. In this case, it would seem logical to examine the effect 

of setting one of the variables x_. in (2) equal to zero or one. But 

which variable should we choose? 

The variables x^ represents a yes-no decision on the use of route 

j. Thus, if we could somehow determine a route j which we would like to 

force into the solution, then the corresponding x^ should be set to one. 

The desirability of using a particular route is determined by the cost 

of that route, and so it would seem that we would be working in the 

right direction by requiring the use of the minimum cost route. Suppose, 

however, that routes k and p had the same cost and that this cost was 

lower than that associated with all other routes. Suppose, further, 

that route k made more deliveries than route p. Then obviously we would 

prefer to use route k since it completes more of the schedule than route 

p and at the same cost. Thus, rather than selecting the minimum cost 

route, it is more reasonable to select the route that minimizes the 

ratio of cost to number of deliveries made. 

The variables which comprise the optimal basis of the linear 

programming problem just solved represent the set of routes which would 

be most desirable to use. Confining the search to this set of variables 

then appears justifiable; and by so doing, a savings in computation time 
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will be realized. 

Having completed this search, the customary way of proceeding 

would be to add equations to the final tableau of the simplex and derive 

a solution to the new problem via the dual simplex. However, the 

opportunity presents itself to take advantage of one of the special 

properties of our problem. Since we require that each delivery be 

made exactly once, the act of forcing one route into the solution will 

necessarily force other routes out of the solution and force the corres­

ponding decision variables out of the problem. More explicitly, any 

route which makes a delivery that is made by the route which we have 

chosen to force into the solution nee not be considered. Thus, we 

may reduce the size of the problem by deleting the variables and vectors 

in the constraint matrix which correspond to such routes. 

One of the niceties of (2) is that the single-delivery routes 

guarantee the existence of an initial basis for the simplex. After 

removing a number of variables from the problem, however, no such 

guarantee can be made. This problem may be overcome by adding artifi­

cial variables with very large associated costs. 

Another problem becomes apparent at this point. What if the 

variable which we set to one in the reduced problem took on a value of 

one in the solution to the larger problem? Obviously, nothing would be 

gained. In order to prevent this occurrence, we simply delete basic 

variables with integer values from consideration in determining the 

variable which we wish to fix. 

The procedure described above yields a reduced linear programming 

problem which will have at least one variable at an integer value in the 
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optimal solution. If this problem is then solved, we will be one step 

closer to obtaining an all integer solution to the problem. 

There can be no guarantee that the solution to the reduced linear 

programming problem will be all integer. If it is not, the procedure 

described will have to be repeated. However, care should be taken 

before moving blindly ahead. Recall that the value of the objective 

function in the solution to (2), Z Q , is a lower bound on the optimal 

integer solution. Likewise, the value of the objective function in the 

solution to the reduced problem, which we shall denote by z^, is a 

lower bound on the optimal integer solution under the restriction that 

the variable which we have fixed takes on a value of one. It is quite 
* * likely that z^ will be greater than Z Q . Should this happen, we choose 

to fall back rather than to proceed with our particular variable being 

fixed at one. The logical alternative here is to examine the effect of 

setting the variable to zero rather than one. This is, indeed, what we 

do. (Some type of backtracking procedure could be substituted for this 

process.) The process of setting a variable to zero will not afford as 

great a reduction of the original problem as setting a variable to one. 

In fact, only this one variable will be removed from the problem. 

However, having set this variable to zero and solved the resulting 

linear program, we will have an indication of the desirability of 

including this variable in the final solution. 

Several questions come to mind in light of the discussion to this 

point. Suppose that we solve the reduced linear programming problem and 

find that z^ - Z Q . In this case, we would proceed by setting another 

variable to one and further reducing the problem. Is it not possible 
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that the new variable we set to one represents a route which has a 

delivery in common with the route corresponding to the previous fixed 

variable? The answer is no. The search for a new fixed variable is 

made over the non-integer basis variables only, and these variables at 

their optimal values satisfy the constraints on the problem. Obviously, 

a variable assigned a non-integer value could not have a delivery in 

common with the route forced into the solution. 
•k * 

Suppose, on the other hand, that we find that > Z Q . Here we 

return to the original problem, remove one variable, and solve the 

corresponding problem. Continuing from this point, we could possibly 

encounter a situation in which it would be desirable to remove another 

variable from the problem. In such a case, would it not be possible to 

remove all routes from consideration which make a particular delivery 

and thereby produce a subproblem with no feasible solution? The answer 

here is yes. There is no way to avoid running into this situation. 

Still, by making a simple feasibility check before fixing a variable at 

zero, we can avoid solving a linear program which would prove infeasible. 

Some means of recording the occurrence of an infeasible combination of 

fixed variables must be included to prevent exploring this combination 

of variables again at some later time. 

After obtaining the solution to any reduced problem then, we 

review previous computations to determine the combination of fixed 

variables which has the minimum lower bound. Moving to this point, if 

it is necessary to move, we establish a new variable to be set to an 

integer value, make the corresponding reductions on the problem, and 

solve the resulting linear programming problem. 
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Proceeding in this manner will ultimately result in the case of 

an integer solution at the point with the minimum lower bound. When 

this occurs, the optimal solution to (1) will have been uncovered. 

Summary of the Algorithm 

The discussion in the preceding section of this chapter rather 

loosely develops the basic structure of the Phase II algorithm. A more 

rigorous statement in the form of a step-by-step procedure follows. 

1. Using the routes and costs generated in Phase I, formulate 

the linear programming problem (2). 

2. Set k, k = 0. Solve the linear programming problem. 

3. If the solution to the linear programming problem is all 

integer, then the optimal solution to (1) has been found; terminate. 

4. Record the values z^, the optimal objective function value, 

and x, . , the values of the variables in the optimal basis. k,i 
5. Search over the variables in the optimal basis of problem k 

to find the variable x- which has a non-integer value and which mini-

K 3 S 

mizes the ratio of cost to number of stops made. 

6. Make the problem reductions which correspond to fixing the 

variable x- . (a) If X J - has not been previously fixed, then we wish 
K , S K , S 

to set xk+x g ~ !• Form the reduced constraint matrix by taking the 

vector A g and the vectors corresponding to any other variables fixed 

to one. Add to the matrix all other vectors which do not conflict with 

these mandatory route vectors. Finally, add those single-delivery 

route vectors whose delivery points are covered by routes fixed at one 

and set the associated costs equal to M, where M is a large number, 

(b) If X £ s has been previously fixed, then we wish to set 
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Xk+1 s = ^' ^ t* i e v e c t o r ^ s does not represent a single-delivery 

route, remove this vector from the constraint matrix; otherwise, simply 

set c g
 = M. Determine whether this problem has a feasible solution by 

calculating S. a., for each i. If this sum is zero for any i then set 
* 

z^ +^ - M and go to step 9. 

7. Set k = k+1. Solve the reduced linear program. 

8. Record the values z. and x, .. 
k k,i 

* 
9. Determine the value of k for which z. is a minimum. Denote 

k 

this value by k. If the x^ ^ are all integer, terminate; if this point 

has initiated two previous branches, set z- - M and repeat this step; 

otherwise, go to step 5. 

This procedure is illustrated in Figure 2. Finiteness and Convergence 

The proof of finiteness concerns only the Phase II algorithm 

since the algorithm of Phase I obviously terminates after a maximum of 

3 x 2 m ^ + ^ i = i 2 1 + 1 routes have been generated and their costs 

established. Convergence, however, is dependent upon both phases. 

In order to assure that the algorithm terminates in a finite 

number of iterations—where one iteration is taken to include the steps 

required to set up and solve one linear programming problem--examine the 

method by which variables are fixed. Each of the n variables may be 

fixed at a value of zero or one. The first variable to be fixed will 

initially be set at a value of one and perhaps later at value zero but 

cannot be fixed more than twice. The second variable to be fixed may 

be set four times, once at one and once at zero for each of the two 

values of the initial fixed variable. The third fixed variable may 
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1. Set up linear program given by (2) 

I 

4. Record and the : k,i 

2. Set k = 0. 
Solve LP 

i No 
3. Solution integer? 

5. Determine variable >>. x. which minimizes k, s 
ratio of cost to deliveries 

6. x, previously 
K j S 
fixed? 6a. Make correspo setting 
reductions nding to x* = i k, s 
r 

1 7 . Set k = k+1. 1 Solve reduced LP 
* 8. Record z, k 

and the x̂  ^ 

TERMINATE t* 

6b. Make reductions corresponding to setting x* = 0 
K j S 

Problem feasible? 
* 

zk+l = M 

z = M 

9. Determine k, •fvalue of k for which z£ is minimum 
x, . all k.i 
integer? x̂. ^ set twice previously? 

Figure 2. Summary Presentation of Phase II Algorithm 
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then be set a total of eight times, the fourth a total of sixteen times, 

and so on. Each time a variable is fixed, one iteration is made. Should 

every variable be set as many times as possible then, only a finite 

number of iterations, Z^-^ 2 n L , would be made. 
i~0 

Before showing that the Phase II algorithm will indeed uncover the 

optimal solution to the formulation (1), it is necessary to insure that 

the set of routes generated in Phase I includes every possible feasible 

route. 

In order to accomplish this introduce the notation A.. is a route 

vector with its first nonzero entry in element j and which includes i 

nonzero entries or deliveries. Suppose now that there exists some 

route vector A. . which is feasible but which was not generated in Phase 

I. Obviously, this vector A ^ can be expressed as the sum of two other 
route vectors A., . and A. ., , where A. ., , is a route vector which l,j l-l,k l-l,k 

th 

includes every delivery made by A ^ except the j . The vector A^ ^ 

was generated of necessity since it represents a single-delivery route. 

Thus, because we generated routes by attempting to add the vectors 

representing previously generated routes, A ^ would have been generated 

had A.- , been generated. So we may conclude that the vector A._n , 

was not generated. If A. . , is infeasible then A.. would be infeasible 
l-l,k ij 

so we may further conclude that A. , , is feasible. By applying a 

1 ~ J_ 5 tC 

similar argument to the vector A. , , that we used with A. . we may 
l-l,k ij J 

conclude that a third feasible route vector, say A. _t was not 
~L~ 2., 1 

generated. By recursively applying this argument, we may ultimately 
conclude that the vector A., was never generated. However, the first 

1 ,m 
step of Phase I is the generation of the vector A- . Therefore, the 

& l,m 
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vector A., must be infeasible. 

Now that we can be sure that the formulation (1) accurately 

describes the problem, it is necessary to prove that the Phase II 

algorithm will find the optimal solution to (1). If the solution to 

(2) is all-integer, this fact is obvious. The case of concern is then 

if the solution to (2) is noninteger. If this is the case, we proceed 

by setting a variable to an integer value and determining a lower 

bound on the best all-integer solution we may obtain with this new 

restriction. Continuing in this manner, the algorithm terminates only 

when we have obtained an integer solution whose objective function value 

is lower than the lower bounds obtained with all the other partial integer 

solutions which have been enumerated. Obviously, at this point we will 

have the optimal integer solution to (2) which is, of course, the optimal 

solution to (1). We must guarantee, however, that at some time an all-

integer solution will be found. Again, this point is obvious. If, for 

instance, we never move back to set a variable to zero but continue 

setting variables to one then an all-integer solution must occur after 

at most m iterations. The fact that we do not proceed in exactly this 

manner makes no differences for we will still move in the direction 

indicated above though perhaps in a more roundabout manner. 
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CHAPTER IV 

COMPUTATIONAL ASPECTS OF THE ALGORITHM 

To investigate the computational feasibility of the algorithm, 

computer programs were written in Algol 60 and a number of test problems 

run on a Burroughs 5500 computer. The results of these tests as well 

as a discussion of certain extensions of the algorithm, for which no 

computational experience has been gained, are presented below. 

Computational Experience 

In Table 4 is shown the solution times for a set of ten test 

problems some of which were taken from the literature--the others 

arising from the shipping requirements of an actual firm. The data 

for these problems appear in Appendix A. Problem 9 was taken from 

Pierce and Problem 8 is the twelve-point problem of Dantzig and Ramser. 

To obtain an indication of the efficiency of the algorithm 

relative to existing techniques, note that Pierce obtained an optimal 

solution to Problem 9 in 3.50 seconds and the optimal solution to 

Problem 8 has been found by Christofides and Eilon in 900 seconds and 

by Clarke and Wright in six seconds. All of these results were obtained 

on an IBM 7094 computer. 

As seen from the solution times in Table 4, problem-solving time 

tends to increase both with the number of routes n and the number of 

constraints m in the problem. The time requirement for any given 

problem, however, is quite unpredictable. For example the solution 
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Table 5. Solution Times for Test Problems 

Problem Solution times (in seconds) 
number m n Iterations Phase I Phase II Total 

1 6 22 5 2o63 3.13 5.76 
2 5 24 7 1.87 8.01 9.88 
3 8 83 11 11.82 49.00 60.82 
4 8 68 1 14.38 0.25 14.63 
5 10 100 3 17.58 17.77 35.35 
6 10 155 9 27.32 44.18 71.50 
7 10 122 12 22.46 89.38 111.34 
8 12 298 6 57.35 59.47 116.82 
9 15 139 4 21.67 16.11 37.78 
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time for Problem 7 is substantially greater than that for Problem 9 

even though the deliveries in the smaller problem are a subset of those 

in the larger. 

One important attribute of the algorithm has not been previously 

mentioned--this being that a feasible integer solution to a problem 

may be obtained much sooner than the optimal solution. The importance 

of this aspect can be seen in Problem 7 where the optimal solution was 

not found until 111.34 seconds had passed but the algorithm could have 

been terminated any time after 65.45 seconds with a feasible solution. 

Returning now to the efficiency of the algorithm, it should be 

pointed out that no real conclusions can be drawn on the basis of the 

limited computational experience gained to date. Further, any compari­

sons between this algorithm and other algorithms are greatly hampered 

by the fact that the differences in computing machinery used are 

rather large. 

Extensions of the Algorithm 

As was stated earlier, the vehicle delivery problem may exhibit 

any of a number of distinguishing characteristics. The algorithm which 

we have presented here was developed specifically for the problem as 

stated in Chapter I; however, by making certain modifications, the 

algorithm can be extended to handle a variety of different restrictions 

or assumptions. 

Multiproduct Considerations 

Consider, first of all, the situation in which more than one 

product must be delivered. If the products are homogeneous--that is, 
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they may be loaded on vehicles without discrimination--we need only 

specify individual delivery quantities as the total of all products 

and proceed with the algorithm as stated. Nonhomogeneous products, 

on the other hand, require certain modifications. One possible approach 

in this case would be to divide delivery point i into k separate 

delivery point if there are k products to be delivered to point i. 

After generating all feasible single-product routes, we would then 

attempt to combine routes which deliver different products according 

to capacity restrictions and the restrictions placed on shipping the 

individual products together. 

Limited Number of Vehicles 

Here no modification to the Phase I algorithm is required. In 

formulating the problem in Phase II, however, one additional constraint 

of the form 

x + x + x + . . . + x < V 
1 2 3 n — 

where V is the number of available vehicles, must be added. 

Varying Vehicle Capacities 

When dealing with vehicles that are nonhomogeneous in the sense 

that capacities vary, a simple extension of Phase I will allow use of 

the algorithm. Suppose, for instance, we have vehicles with N c different 

capacities. This is handled by repeating the process of route genera­

tion N c times, varying the vehicle capacity each time. Obviously, a 

large number of routes will be generated, and it would be desirable 

to reduce this number if possible. Such a reduction can be made by 

comparing routes formed for the various classes of vehicles. Speci-
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fically, if identical routes are made by several classes of vehicles 

then only that route with the lowest associated cost need be considered. 

Distance Constraints 

Quite often, especially when a firm must seek the services of 

a contract shipper, restrictions on the maximum route distance may 

appear. These restrictions are easily handled by making the appro­

priate comparisons during the process of route generation. 

Optional Deliveries 

If certain deliveries are specified as optional, the problem 

takes on a new dimension. This consideration should not generally 

pose a great problem, however. By replacing the quality constraints 

in the formulation of Phase II with inequality constraints most such 

cases can be dealt with. 

Time Constraints 

Especially when dealing with perishable products, it is manda­

tory that we consider the amount of time which will elapse before 

delivery is made. In such cases, the measure of effectiveness of a 

particular delivery schedule is expressed in units of time rather than 

cost. If we desire to specify that a particular delivery be made before 

a certain time, we simply make the appropriate comparisons while 

generating feasible routes. 

Minimizing Number of Vehicles Used 

The restrictions mentioned to this point have dealt exclusively 

with the nature of deliveries rather than the objective in solving the 

problem. It may be the case, however, that we are not so concerned 

with the cost of delivery as with the number of vehicles used. This 
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consideration may be effectively handled by eliminating the pricing 

procedure in Phase I and simply assigning a cost of one to each route. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The conclusions which can be drawn from the research involved in 

the development of the algorithm lie in two areas: (1) those dealing with 

the use of the two-phase algorithm for solving delivery problems and 

(2) those concerning the use of the Phase II algorithm alone for solving 

general zero-one integer programming problems. Since the research was 

concentrated in this first area, we will begin there. 

Because most other existing techniques are heuristic in nature, 

it is difficult to make comparisons. However, the two-phase algorithm 

performed for the most part on a level equal to or better than all 

existing techniques, with the notable exception of Pierce's algorithm. 

The criterion used in making this comparison is time required to obtain 

a final solution. Further, since optimality can be guaranteed, we 

would tend to appraise this algorithm as superior to many of the others. 

Additional experience must be gained, however, before any conclusive 

comparisons can be made. The experience gained to date indicates that 

this additional experience is justifiable. 

Due to the variety of characteristics of the delivery problem, 

it would definitely be worthwhile to explore the modifications of the 

algorithm proposed in Chapter IV. Since each type of delivery problem 

exhibits its own special structure, further research should result in 

the development of a variety of schemes to take advantage of these 
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peculiarities. 

Unfortunately, no results have been obtained to date which would 

indicate the effect, computationally, of incorporating any of the modi­

fications mentioned above in the algorithm. However, these modifications 

require more computations in generating and pricing route vectors but 

fewer computations in Phase II since fewer feasible routes will be 

generated. Additional computational experience should bear this out. 

The linear programming code used in this work is felt to be 

somewhat less than perfect. Experiements with other codes should, there­

fore, serve to enhance the efficiency of the algorithm. Again the promise 

which such experiments hold should justify their being carried out. 

Aside from providing a means for solving the delivery problem, 

the research has introduced a somewhat different approach to the 

branch-and-bound technique for integer programming. Results to date 

indicate this approach to be on a par with many of the existing integer 

programming techniques. The advantages of pursuing this line of appli­

cation are many, though it is felt that substantial modifications will 

be required to move outside the realm of the generalized set covering 

problem. 

In summary, the algorithm presented here appears to hold promise, 

both as a technique for the delivery problem and as a technique for zero-

one integer programming. It is recommended that additional research be 

carried out in relation to improving the existing algorithm and extending 

it to the other cases of the delivery problem. 



APPENDIX A 

TEST PROBLEM DATA 



Problem One 

Demand 

.36 

Distance Matrix 

0 1 2 3 4 5 6 

1 78 

2 80 54 -44 

3 82 9 44 -52 

4 89 30 10 39 

5 91 42 25 21 18 

6 98 48 19 34 9 12 

.40 

.32 

.32 

Distance Matrix 

0 1 2 3 

1 25 

2 15 10 

3 3 1 4 

4 14 4 2 15 

5 5 5 5 5 

Problem Two 

Demand 

.20 

.20 

.40 

.30 

.40 



42 

Problem Three 

Distance Matrix 

96 56 59 16 14 11 10 

78 39 41 54 54 53 57 48 

Demand 

Problem Four 

Distance Matrix 

0 1 2 3 4 5 6 7 8 

1 91 

2 98 58 

3 96 59 62 

4 40 45 5 60 

5 73 34 37 46 46 

6 82 48 46 44 44 45 

7 55 16 19 54 54 55 

8 52 16 17 68 68 77 72 69 

Demand 

.30 

.30 

.28 

.60 

.18 

.12 

.56 

.34 

0 1 2 3 4 

41 

38 3 

80 54 56 

80 54 56 3 

97 64 67 19 16 

92 59 62 13 10 

.14 

.44 

.32 

.48 

.32 

.32 

.10 

.34 



Problem Five 

Distance Matrix Demand 

0 1 2 3 4 5 6 7 8 9 10 

1 91 .30 

2 98 58 .30 

3 96 59 62 .28 

4 40 45 5 60 .60 

5 73 34 37 46 46 .18 

6 82 48 46 44 44 45 .12 

7 55 16 19 54 54 58 55 .56 

8 52 16 17 68 68 77 72 69 .34 

9 76 46 49 8 9 19 15 18 44 .52 

10 76 44 46 11 11 20 15 15 42 19 .48 

Problem Six 

Distance Matrix Demand 

0 1 2 3 4 5 6 7 8 9 10 

1 52 .34 

2 76 46 .52 

3 76 44 46 .48 

4 76 50 53 4 .18 

5 72 33 34 53 54 .12 

6 98 58 61 53 30 27 .12 

7 98 58 61 32 29 26 29 .64 

8 93 66 68 14 12 23 18 22 .48 

9 89 55 58 10 9 8 5 7 48 .28 

10 68 32 33 64 64 67 66 57 22 55 .10 
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Problem Seven 

Distance Matrix Demand 

0 1 2 3 4 5 6 7 8 9 10 

1 38 .44 

2 80 56 .32 

3 80 56 3 .48 

4 96 67 19 16 .32 

5 92 62 13 10 7 .32 

6 78 41 54 54 53 57 .34 

7 98 62 20 17 12 13 39 .22 

8 95 61 15 12 8 8 45 6 .22 

9 91 53 25 22 24 19 30 9 15 .30 

10 98 61 19 16 10 10 42 3 4 12 .30 
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Problem Eight 

Distance Matrix Demand 

0 1 2 3 4 5 6 7 8 9 10 11 12 

1 9 .20 

2 14 5 .28 

3 21 12 7 .25 

4 23 22 17 10 .23 

5 22 21 16 21 19 .28 

6 25 24 23 30 28 9 .23 

7 32 31 26 27 25 10 7 .20 

8 36 35 30 37 35 16 11 10 .32 

9 37 37 36 43 41 22 13 16 6 .30 

10 42 41 36 31 29 20 17 10 6 12 .27 

11 50 49 44 37 31 28 25 18 14 12 8 .28 

12 52 51 46 39 29 30 27 20 16 20 10 10 .18 
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Problem Nine 

Distance Matrix Demand 

0 1 2 3 4 5 6 7 8 9 10 11 12 

1 38 .44 

2 80 56 .32 

3 80 56 3 .48 

4 97 67 19 16 .32 

5 92 62 13 10 7 .32 

6 78 41 54 54 53 57 .34 

7 98 62 20 17 12 13 39 .22 

8 95 62 15 12 8 8 45 6 .22 

9 91 53 25 22 24 19 30 9 15 .30 

10 98 61 19 16 10 10 42 3 4 12 .30 

11 96 62 17 14 8 8 44 5 2 14 2 .28 

12 40 5 60 61 71 65 40 66 65 54 65 66 .60 



47 

Problem Ten 

Distance Matrix Demand 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 38 .44 

2 80 56 .32 

3 80 56 3 .48 

4 78 41 54 54 .34 

5 91 53 25 22 30 .30 

6 98 61 19 16 42 12 .30 

7 96 62 17 14 44 14 2 .28 

8 40 5 60 61 40 54 65 66 .60 

9 55 19 54 54 22 38 48 50 18 .56 

10 52 17 68 68 36 57 67 69 14 21 .34 

11 76 49 8 9 44 24 20 18 52 45 59 .52 

12 76 46 11 11 42 18 20 18 47 39 57 6 .48 

13 98 61 32 29 28 7 16 18 60 44 61 34 28 .64 

14 93 68 14 12 65 32 24 22 72 61 79 20 26 39 .48 

15 89 58 10 9 48 18 9 7 62 51 69 15 12 23 15 .28 



APPENDIX B 

ALGOL PROGRAM CODE 



BEGIN 
PROCEDURE INOATA) 

bEGlN 
READC I N P U W ' M ) ; 
REAQCINpuT*/*rO« 1*1 STEp 1 UNTIL M DO QCl])J 
REAO(INPUT#/*FQR 1 * 0 STEP 1 UNTIL M-1 DU 

FOR J + STEP 1 UNTIL M DO D U # J ] ) > 
END UF INDATAJ 

PROCEDURE MAKEROUTEI 
BEGIN 

LABEL L W L 2 J 
A[M,13*U 

A C M - l # 2 m J 
R£2J«-G£MM1 j 
N*2; 
R O W « - M M ; 

Lll 
N E W * 1 \ 

FOR 1*1 STCP 1 UNTIL N'l OO 
IF R C n+RCNJSl THEN 

BEGIN 
RtN + NErtJ^RC n+RCNIJ 
FOR K+1 STEP 1 UNTIL M DO 
IF ACK#I I2A[K#N ] THEN 
A[K#N*NEl.J*ACK*Il ELSE 



A[K>N + N E H ] « - A [ K * N ] J 

N E W 4 - N E W + U 

E N D ; N + N + NEw J RUW*RUW-U IF R0W<1 THEN GO TO L2j 
RlN]*QCRQWU 
G O T O L U 

N « - N - I ; 

tNQ O F M A K E R O U T F ; 

PROCEDURE PR iCERQUTFl dEGlN FOR J+l S T E P 1 U N T I L N bEttlN 
STCJ]4-O; FOR 14-1 STEP 1 UNTIL M IF AU>J3M THEN 

BEGIN 
STC J J>ST[ JHW 
G[ J,K]4-n 

E N O ; 

E N D ; FOR J«-l STFp 1 UNTIL N BEGIN IF STCJI*1 THEN 
ClJJ*2xDC0#GCJ#U J J IF ST[J]*2 THEN 
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CC J 3 « - D £ Q , G r J, 13 3*0£0>GE J,2 3 3+DCGt J>1 3,GC J>2 3 3; 
IF S U J J»3 THEN 

d E Q I N 

CP£ U + D [ 0,GCj# in+ D £ G U # 13, G[j, 2]] 
•D£G£J#2J#G[J#3JJ+DCO>G[J*3J]J 

CPC2 3+U£0>GU>l J 3 * D £ G £ J M 3.GC J*3l 3 
+DEG£J>23 'GCJ'333+D£0 ,Grj>2]j; 

CP£ 3]<-0£ 0,r ,t j,2 ] ]*DtGC J# 13#Gt J#2i ] 
+ D[GU#13#GCJ# 333*D[G,G[J,3:i]; 

C£ J3*CP£l JjJ 
I F CP£23<C£J3 THEN 

BEGIN 
C£ J J4-CPE2J J 
R Q W « - 2 ; 

E N D ; 

IF CP£33<C£J3 THEN 
BEGIN 

C£ J3«-CP£33I 
RQw«-3; 

E N D ; 

I F R Q W * 2 T H E N 

BEGIN 

RQW*G£J>23f 
G£ J#23«-GC J*33; 
G£J*33*RQH; 

E N D ; 

I F R Q W » 3 T H E N 

BEGIN 
RQW+GEJ#13J 
GCJ#13«-G£J>23; 
G£J#23«-ROWJ 
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e n d ; 

ENDi 
IF T H E N 

BEGIN 
FOR 1*1 STEP 1 UNTIL STCjI On 

dEQlN 
FOR K*l STEP 1 u N T I l STCJ] Do 
I f i # k a n d i # f s t a r c i » i * k ] t h f n 

B E G I N 

FClJ»K]*OCGt J*U#Gt J#K Jl*FSTARt I"1*K1J 
FSTAR[I#K3*FtI»Ull 
f o r zz«-1 s t e p u u n t i l s t f j ] d o 

i f f c i * z z ) < f s t a r c i , k ] t h e n 

f s t a r c i * k ] * f c i * z z 3 i 

e n d ; 

E N D ; 

MIN*FSTAR[5TCJ3#13l 
FOR K*2 S T E P 1 U N T I L STCJ3 O O 

IF M I N > F S T A R C S T C J 3 # K 3 THEN M l N * F S T A R C S T C J 3 # K li 
GCJ'13+MINJ 
FOR K*2 STEp 1 UNTIL ST[j3 DO 
GU>K3*FSTAR [ K,GU>KM 33) 

END! 
END U F PRICEROUTEJ 

PROCEDURE pREpARELplj 
BEGIN 

FQR J*l STEP 1 UNTIL N DO 
BEGIN 

NXJU3+JJ 
V A R C j i * j ; 

ENDi 



F O R J « - l S T F P 1 U N T I L N D O 

I F S T U J * 1 T H E N 

B E G I N 

N X H I K - J J 

I * I * l ; 

E N D ; 

F O R I « - L S T F P 1 U N T I L M D O 

F O R J«-l STFp X U N T I L N D O 

B E G I N 

AAC l > J J*-AC I# JJJ 
C J C J ] « - C [ J ] l 

E N D ; 

F O R 1*1 STFP 1 U N T I L M Do B l I J * l l 
E N D Up PREpARELPU 

P R O C E D U R E S O L V E L P ; 

B E G I N 

LA^EL Lp2#Lp3.Lp5.Lp6>Lp7,Lp8,LMlN; 

R O W * O ; 

C O L * O ; 

O P T « - F A L $ E ; 

F O R 1*1 STEP 1 U N T I L M Do 
B E G I N 

F O R J*l S T E P 1 U N T I L N D O 

B E G I N 

I F N X i m « N X J C J J T H E N 

cnn+cJtJi; 
E N D ; 

E N D ; 

I T E R * O ; 

LP2I 



FOR J«-l S T E P 1 UNTIL N D O 

ZCJ ]*0> 
FOR U l STEP X UNTIL M D O 
ZCJUCZC JUCI CI JxAACI,J])J 
ZCCJ J«-Zl J3-CJUJJ 

E N D ; 

O B J + O ; 

F O R 1+1 S T E P 1 U N T I L M D O 

OtfJ*OBJ*CCltI J x B l i m 
LP3I 

I F O P T THEN GO TO LMINj 
I T E R * I T £ R * 1 > 
ZCM*ZC[ 1J J 
J H + H 

FOR J * 2 STEP 1 UNTIL N Do 
BEGIN 

IF ZCCJ3SZCM T H E N G O TO LP6I 
LP5I 

Z C M + ZCU1J 
J M + JJ 

LP6t 
E N D ; 

I F Z C M S Q T H E N G O T O l p t E L S E G O T O L P S * 

LP7I 
OPT+TRUEJ 
G O TO LP3J 

LP8I 
XM*Cl.0x(10*40))J 
I M * 0 | 
FOR 1*1 STEP 1 UNTIL M DO 

BEGIN 
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BEGIN 
IF AA£I>JM3>0 THEN 

BEGIN 
XX+BEIJ/AAT I*JM31 
IF XX<XM THEN 

BEGIN 
XM«-XX; 
IM«-I; 

END; 
ENO J 
ENOI 

XX + AAUM, JM]; 
BC IMUB[ IML/XX) 
FOR J«-L STEP 1 UNTIL N DO 
AALIM'JI+AAIIM'JJ/XXL 
FOR UL STEP 1 UNTIL M DO 

BEGIN 
IF I#IM THEN 

BEGLN 
XX*AA[I*JM1) 
BTU*BU]»CXX»CBTIM3)L 
FOR J*L STEP I UNTIL N DO 
A AT I# J3«.(AAL I,J3-CXXXAAC IM,J3))I 

END; 
END; 

ROHONXICIM]; 
COL*NXJUMI; 
CICIM3*CJCJM3; 
NXICIM3*NXJCJM3I 
GO TO LP2; 

LMINI 



END OF SOLVELPJ 
PROCEDURE SQLUTiONSAvE; 

BEGIN 
ZSTARCLPITHoBJJ 
F O R Ifl STFp 1 UNTIL M DO 

BEGIN 
X S T AR C L P I T ' I I + B L H ) 
«XCLPIT#I3*vARCNXItI33) 

END; 
E N D O F S O L U T I O N S A V E J 

P R O C E D U R E A C T I V E N Q D E L 

BEGIN 
OBJ*ZsTARCLPIT3i 
NODE+LpIT; 
IF LPIU1 THEN 

BEGIN 
FOR 1*0 STEP 1 UNTIL LP*TM DO 
IF ZSTAR[I3<QBJ AND COUNTCII^l THEN 

BEGIN 
QBJ + ZSTARU 3) 
N O D E + I ; 

ENOi 
FOR J*l STEP 1 UNTIL N N D O 
IF SETVCN0DE>J3»1 THEN 
SETV[UPIT*1*J3*1 ELSE 
IF SETVINOOE*J3» *1 THEN 
SETVCLPITH#J3* -11 

ENDJ 
E N D O F A C T I V E N O D E ; 

P R 0 C E 0 U R E V A R Y S E T I 

BEGIN 
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L A B E L L O E T ) 

FOR S T E P 1 U N T I L M DO 

IF X S T A R [ N O D E , I 3 * , O O O O l A N D 

X $ T A R C N 0 D E * I I S t 9 9 9 9 9 T H E N 

BEGIN 
M l N*CtWXtNODE#in/ST(WX[NOOE.I 3 31 
K * I J 

S E T * W X [ N O D F , I 31 

GO TO L O E T I 

E N D I 

L D E T » 

FOR I* K*1 STEP I UNTIL M Do 
IF M l N>CCW^CNOOE#I n / S T C w X t N O D E ' U ] 
A N D XSTARCNQD£#I]i t00001 A N D 

A N D XSTARCNQDE.IJS.9 9 9 9 9 T H E N 

BEGIN 
SET*WXCN0DE*I3) 
M l N+CCrtXCNODE#I]3/STCWXCNOoE.nJ) 

END; 
e n d o f v a r y s e t i 

p r o c e d u r e q n e s e t i 

BEalN 
C O U N T ! N O D E 5 • C O U N T ! N O D E 3 + 1; 

L P I T + L P I T + 1 j 

IF COUNTCN0OE3>I THEN SETV[LPIT#SET 3* -1 ELSE 
SETVCLPlT#SET3«-i; 
FOR 1*1 S T E P 1 UNTIL M Do sUMCl)*OI 
K * U 
FOR J*l S T E P I UNTIL NN DO 
IF SETVCLPlT,J3»l T H E N 

BEGIN 



FOR U l STEP 1 UNTIL M DO 

BEGIN 

AACI«K]4-A(!'J]1 
SUMtll̂ SUMfI]+AII#J]| 

END! 
VARCKJ*JJ 
C j U J + Ct J JI 

END! 
N*K; 
FOR J*L STEP 1 UNTIL NN DO 
IF SETVCLPlT*J3»0 THEN 

BEGIN 
ROw*o; 
FOR 1*1 STEP 1 UNTIL M DO 

BEGIN 
s u M i c n + s u M t n + A C i ' j j ; 
IF SUMl[I]>l THEN ROW*l; 

END; 
IF ROW*0 THEN 

BEGIN 
FOR 1*1 STEP 1 UNTIL M DO 
AA[I*N)+A[I#Ji; 
VARCNI>J; 
CJ[N]«-C[JJ) 
N«-N*U 

END; 
END; 

FOR J*L STEP 1 UNTIL NN DO 
IF SETVCLPIT*J3«1 AND ST[JI#1 THEN 

BEGIN 



pQR U l STEp 1 UNTIL M 00 

IF A l l , J I M THEN 

BEGIN 
FOR K * I STFp 1 UNTIL H 00 
IF K«I THEN AACKjNUl ELSE AA[K,NJ«-01 
VARCNJ+OJ 
CJCN]>10000J 
N * N * I ; 

END! 
E N D ; 

N*N«1 i 
1*11 
FOR J<-1 STEP 1 UNTIL N D O 
NXJUJoJI 
IF VARCJI»0 O R ST tVAR[J ] ]« l THEN 

BEGIN 
NXHI3*J1 

E N D ; 

FOR 1*1 STFP 1 UNTIL M Do B C l l * l l 
END Or 0NESET1 

LABEL CQNT2*C0NT1*L0PTJ 
INDATAi 
NN*N) 
C[OJ*100000J 
STC03*l l 

C0NT2I 
SOLVELPJ 
FOR 1*1 STEP I UNTIL M 00 

BEGIN 
I N T m * O J 
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IF 8 t I J < . G 0 0 0 1 OR B t l ) > # 9 9 9 9 9 THFN INT[I]«- l i 

ENOi 

FOR 1 * 1 S T E P I U N T I L M Oo 

IF I NT 1 1 3 » 0 THEN GO TO CONTl) 

IF LPITsO THEN GO TO LOPTi 

I N E G R C L P I T U I ; 

CONTIl 

S O L U T I O N S A V E ; 

A C T I V E N O D E J 

i p I N E G R C N O D E I * ! T H E N G O T O L O P T I 

V A R Y S E T J 

ONEsETi 
GO T O C0NT2J 

LOPT* 
E N D • 
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