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Abstract

Distributed Shared Memory (DSM) is becoming an accepted abstraction for pro-
gramming distributed systems. Although DSM could simplify the programming
of distributed applications, maintaining a consistent view of shared memory op-
erations across processors in a distributed system can be expensive. The causal
consistency model of DSM can allow more efficient implementations of DSM
because it requires that only causally ordered memory operations be viewed
in the same order at different processors. Also, weakly ordered systems have
been proposed which advocate the use of synchronization information to reduce
the frequency of communication between processors. We have implemented
a system that exploits both the weaker consistency of causal memory and the
synchronization information used in weakly ordered systems. Consistency is en-
sured by locally invalidating data that is suspected to be causally overwritten
and this is only done when certain synchronization operations complete at a pro-
cessor. Data-race-free programs can be developed in this system assuming that
the system provided sequentially consistent memory. By implementing appli-
cations that have a variety of data sharing patterns, we show that performance
close to message passing implementations of the applications can be achieved
in the causal DSM system. The improved performance is due to a significant
reduction in communication costs compared to a strongly consistent memory
system. These results show that causal memory can meet the consistency and
performance requirements of many distributed applications.
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1 Introduction

Distributed Shared Memory (DSM) is becoming an accepted abstraction for programming
distributed systems. DSM can simplify programming of distributed applications since the
user can access both local and remote information uniformly by using memory operations.
This simplification is at the cost of maintaining a consistent shared memory. DSM can be
implemented by using variants of multiprocessor cache consistency protocols but applica-
tions executing with such implementations of DSM may not perform well in distributed
systems. The main reason for this loss in performance is the unnecessary communication
that they incur compared to message passing implementations of the applications. For ex-
ample, when several processors make copies of a shared data item to read it, a future write
could result in communication with all these processors even when they will not access the
data in the future. Such extraneous communication can be avoided in message passing
systems because the application programmer determines when data needs to be exchanged
between processors.

A DSM is an interface between the program and the memory system, and the mem-
ory model implemented by the DSM system defines what values can be returned when
processors read shared data. Ideally, a distributed shared memory should provide all the
consistency guarantees of a true shared memory. Lamport [31] defined a memory model
called sequential consistency which requires that the execution of all processors must be
equivalent to some sequential order in which memory operations are executed and read
operations return values consistent with this order. The sequential order must maintain
the order of memory operations issued by a particular processor (program order). In the
first system that implemented DSM [32], a writer-invalidate-readers protocol was used to
provide sequentially consistent DSM. Maintaining sequential consistency in a distributed
system can be shown to limit performance and does not lend itself to scaling [34] due to
high latencies and communication costs.

One way to reduce communication between processors in shared memory system is to
guarantee consistency only at certain points in the execution of a program. This approach
was first outlined by Dubois et al. [18], who observed that parallel programs define their
own consistency requirements through the use of synchronization operations. Dubois et
al. define a weakly ordered system, where synchronization operations are made explicit to
the memory system and consistency maintenance is done only at synchronization points.
The DASH multiprocessor [21] is a weakly ordered system that implements a memory
model called release consistency. Release consistency allows remote memory accesses to
be propagated asynchronously, as long as they complete by the end of a critical section
(a release operation on a synchronization variable). Such systems guarantee sequentially
consistent behavior only for programs that are data-race-free [1] or properly labeled [21].
In other words, when these programs are executed on a sequentially consistent memory
system, conflicting accesses to the same shared location (two writes or a read and write to
the same location conflict) will always be separated by accesses to synchronization variables
in the equivalent serial order. Since consistency is guaranteed at synchronization points,



data-race-free programs can be written on weakly ordered memory systems assuming a
sequentially consistent memory.

Hardware implementations of weakly ordered systems use optimizations such as in-
struction reordering, pipelining and write-buffering but still maintain a coherent cache.
In contrast, software implementations sacrifice coherence by delaying consistency related
operations to certain specific points in the program execution. The Munin system [12]
implements release consistency in software by delaying propagation of the changes made
inside a critical section till the release operation. Munin also identified several data shar-
ing patterns and corresponding annotations that users can provide to reduce the cost of
consistency maintenance in a DSM system. More recently, lazy release consistency [26]
and entry consistency [13] memory models have been proposed, which use synchronization
information to further reduce communication by propagating information about changes
to shared data to only the processor that next acquires the lock.

The second approach advocated to improve the performance of shared memory systems
is by weakening the consistency guarantees provided by the system. The weaker consistency
does not guarantee that the execution of memory operations of all processors is equivalent
to some sequential execution of these operations, as in a sequentially consistent system.
Examples of weakly consistent memory systems included pipelined RAM (PRAM) [34],
processor consistency' [4, 21, 22|, and causal memory [5]. To execute applications in such
weakly consistent memory systems, either the applications must have data sharing patterns
that are not effected by the weaker consistency (e.g., conservative programs for PRAM [34]),
or the program must explicitly deal with the lack of strong consistency.

In this paper, we explore efficient implementations of DSM by exploiting ideas from both
approaches described above — we make use of synchronization information, as advocated by
the weakly ordered memory systems approach, for implementing causal memory [6], which
is a weakly consistent memory. The causal memory model requires that a read operation
return a value that is consistent with the causal order of the memory operations that
are ordered before it. We extend causal memory by allowing synchronization operations
and develop an implementation that exploits the fact that programs are data-race-free.
We experimentally demonstrate that for a range of applications, the weaker consistency of
causal memory coupled with the data-race-free nature of parallel and distributed programs,
leads to a system with significantly better performance. More specifically, we show the
following:

e Causal memory can be efficiently implemented and is a viable architecture for dis-
tributed programming since data-race-free programs can be programmed on it the
same way as on sequentially consistent memory.

e The execution of distributed applications results in far less communication on causal
memory compared to their execution on a sequentially consistent memory. Also,
the execution of the applications on causal memory provides performance close to
message passing systems for most applications.

!The DASH system implemented processor consistency only for labeled operations.



e Scalable shared memory systems can be built using the causal memory model, since
global synchronization (e.g., invalidation of copies at several processors, which re-
quires broadcasts or multicasts) is not required.

We precisely define causal memory in the next section and two different implementa-
tions are described in Section 3. In Section 4 we describe the applications with which we
experimented and provide performance results. We discuss related work in Section 5 and
conclude in Section 6.

2 Causal Memory

2.1 The Model

Causal memory has been defined in [6] by characterizing the possible values that could
be returned when a read operation is executed by a processor. We use a more general
framework here, as it allows us to easily relate causal memory to a range of memory
models that have been proposed. The model is motivated by the ones used by Misra [36]
and by Herlihy and Wing [23]. We define the system to be a finite set of processors that
interact via a shared memory consisting of a finite set of locations. Processors execute read
and write operations. Each such operation acts on a named location and has an associated
value. For example, a write operation executed by processor p, denoted by w,(z)v, stores
the value vin location z; a similarly denoted read operation, r,(z)v, reports that v is stored
in location z. The execution of a processor is defined by a processor evecution history,
which is a sequence of read and write operations. The execution history of processor p,
denoted by H,, is the sequence 0,1 , 0,2, ..., 0, ... where o,; is the i'" operation issued
by processor p. A system execution history is a collection of processor execution histories,
one for each processor in the system. Thus, a system execution history H = {H,|p € P}
where P is the set of processors in the system.

It is possible to establish orderings on the operations that appear in a system execution
history H. The following orders are used in defining causal memory.

. po

e Program order: For operations o,; and o, ;, we say o,; — 0, ; when o,; precedes o, ;
in the program, i.e., 1 < j. In this case, we say o; is ordered before o; by the program
order. This defines program order to be total; it orders all operations of a given

processor2 .

e Writes-before order: If o; (we drop the first subscript where it is unimportant) is a
write to some location, and o; is a read by a processor (which may be different from

the writer), and o; returns the value written by o;, then o; 8 0j. We call this the
writes-before order and it captures the natural requirement that if a read operation
returns the value written by a certain write operation, then the write operation must
be ordered before the read.

2As defined here, program order totally orders the operations of each processor. In other memory
models, the ordering between the local operations of a processor could be partial [21].

3



o Causal order: The happens before relation defined by Lamport [30] can be adapted to
a shared memory system; this captures the causal relationship between the read and
write operations. For any two operations o; and oy in H, 0; =% o0y if

po

— 01 — 03 OT
wb

— 01 — 03 O

— 1 . ’ co d o cq
or soine operatlon 0,01 — 0 and 0 — 03.

Ideally, a processor should be able to assume that a shared memory system executes a
set of read and write operations one at a time, in a sequential order, and that the value
returned by a read of location z was stored by the most recent write to z preceding the read
in the sequential order. We call such an ordered sequence of memory operations the view
of the processor. A memory model can be characterized by the types of views that result
when processors execute with that type of memory system. For example, if the memory is
sequentially consistent, all processors have a single view. Furthermore, the order in which
the operations appear in the view is consistent with program order. Weakly consistent
memories can be defined by allowing each processor to develop a different view. Views can
be different because they may differ in the set of operations included in them, or in the
order in which common operations appear in the views. By choosing the set of operations to
be included in a processor view and the orders that must be maintained between them, we
have developed implementation independent definitions of several memory systems [4, 29].
We now present such a characterization of causal memory.

2.2 Defining Causal Memory

Causal memory requires that values returned by read operations respect the causal order
between memory operations. Since the effects of concurrent operations (operations not
related by the causal order) can be observed in different order at different processors,
causal memory allows each processor to develop a different view of shared memory.

Causal orderings between the operations of processor p and the operations of other
processors are established when p reads values written by other processors. Since write
operations update the state of shared memory and p’s reads can return values written by
other processors, a processor’s view in causal memory needs to include all write operations.
The causal ordering established by a read operation of processor p can propagate to another
processor ¢ but that happens only as a result of p writing a value that ¢ reads. Thus, the
values that can be read by ¢ are affected by only the write operations of other processors.
As a result, p does not become aware of the read operations of other processors directly.
This observation, coupled with the fact that orderings of operations in views must respect
causality, leads to the following definition of causal memory. For system execution history
H. H,, refers to the history resulting after read operations of all processors other than p
are deleted from their processor execution histories.



Causal Memory A history H is causal if, for each processor p, there is a view 5,,
such that, for all operations oy and oy in Hyyy, if 04 2 0y then o
precedes o0y in S,.

A memory system implements causal memory if all histories allowed by it are causal.

The example execution in Figure 1 is possible with causal memory because the cor-
responding views exist for each processor as required by the definition of causal memory.
We assume that all variables have an initial value of zero. This history is not sequentially
consistent since both processors would not “agree” on a common sequence of operations
(there is no single view that includes all operations and respects program order established
by each processor).

pr: w(z)l w(y)2 r(2)0 Spy o wi(x)] wi(y)2 r1(2)0 wa(z)1
p2: w(z)l r(z)0 r(y)2 r(z)l Spy o wa(2)1 re(2)0 wi(x)]l wi(y)2 ra(y)2 re(x)l
(a) Two Process Execution (b) Causal Views

Figure 1: An execution which is causal but not sequentially consistent

Causal memory differs from other weakly consistent memories. Figure 2 shows an ex-
ecution that is permitted by causal memory which is not allowed by processor consistent
memory as implemented by the DASH multiprocessor [21]. Causal memory allows concur-
rent writes to a memory location to be read in any order by different processors. The DASH
implementation of processor consistency requires memory to be coherent, that is, writes to
a single memory location are serialized and observed in the same order by all processors.
For this reason, the execution would not be permitted by processor consistent memory.
Pipelined RAM [34] is strictly weaker than causal memory because it only requires that
processors order two write operations in the same order in their views only if the writes are
executed by the same processor.

pr: ow(x)l
p2 o w(x)2
ps: r(x)l r(x)2
pa: r(x)2 r(x)l

Figure 2: Causal but not processor consistent execution



2.3 Synchronization Operations

Causal memory has been defined using the read/write model of shared memory. In par-
allel applications, communication between processors also takes place via synchronization
operations, which are used to ensure that a sequence of memory operations (e.g., a crit-
ical section) are executed atomically. When a processor p acquires a lock released by
another processor ¢, memory operations of ¢ that precede the unlock operation on the lock,
are ordered before memory operations of p that follow the operation in which the lock
is acquired. In addition, parallel and distributed programs achieve parallelism by forking
computation onto different processors. Domain decomposition is a commonly used method
for developing parallel programs, where a “parent” process initializes the domains and then
creates “child” processes on different processors, each working on a different partition. The
semantics of fork assumes that the initializations done by the parent will be visible to
the children. Similarly, at fork-joins, the programmer assumes that the changes made by
the children will be visible to the parent. Thus, orderings between memory operations of
different processors would arise due to such synchronization operations too.

Our model can be extended to include the orderings induced by the synchronization and
forking operations. Causal orderings would now arise between memory operations due to
synchronization acquires and releases and also between the forking parent process and the
forked child processes. We can now define the following orders induced between memory
operations o; and o; by lock, barrier and fork-join operations (similar orders can be defined
for other synchronization constructs).

e Lock order: We say o; 3 0j, when o; and o; are two memory operations such that
o; immediately precedes a lock release and o; immediately follows the corresponding
lock acquire. This order captures the orderings induced by read-write locks and
semaphores.

: b : :

e Barrier order: We say o; = oy ;,k = 1..n, when o; immediately precedes a n-process
barrier operation and oy ; immediately follows the matching barrier operation in pro-
cess pj.

o Fork order: We say o; Eid 0j, when o; immediately precedes a fork (or join) operation
and o; is the first memory operation executed by the forked child process (or after
the join).

Let 0, =% 0; be the order induced by the synchronization operations. Two memory
operations o; and o, are related by =% if
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— there exists an o' such that o; = o' and o' = o0,.

We can now extend our causal order definition to include these orderings. Two opera-
tions o; and oy in H are ordered by the extended causal order, 0, =5 04, if 01 = 03 or 01 =3 0,
or for some operation o, 0; =5 o' and o' =¥ 0,. The causal memory definition is extended
to include the non-memory operations by using this new causal ordering®. The definition
remains the same but we require that, if two operations o; and o, appear in a processor’s
view and 0; =¥ 0,, then o; must be ordered before 0, in the view. Thus, orderings between

memory operations in a processor’s view must respect the extended causal order.

2.4 Causal Memory and Data-Race-Free Programs

The memory models motivated by the weakly ordered systems approach have demonstrated
that memory system performance can be improved when synchronization operations are
made visible to the hardware that implements shared memory. When programs use suf-
ficient synchronization to control access to shared data, they need not be aware of the
optimizations carried out by the hardware and can simply assume that it provides sequen-
tially consistent memory. Adve and Hill [1] formalized this and introduced the notion of
data-race-free programs. In these programs, conflicting accesses to a shared location by
different processors (two accesses to a memory location conflict when they are not both
reads) are always separated by one or more synchronization operations when the program
is executed on a sequentially consistent memory. More precisely, all conflicting memory

operations must be ordered by a happens before relation, Eﬁ, that is derived from program
order and the order in which synchronization operations are executed. We have used this
fact to show that data-race-free programs can be developed on causal memory the same way
as on sequentially consistent memory. Thus, programming of this class of programs is not
made more complex when we use causal instead of sequentially consistent memory. This is
formally proved in [7]. Intuitively, it follows from the fact that writes to a location must all

be ordered by the happens before relation, ﬂ, as there can be no conflicting writes. The

extended causal order, =¥, includes all orderings induced by ﬂ, and hence it follows that
writes to a single location must appear in the same order in all processor views. Since this
holds for each location and causality is respected for all memory operations, it can be shown
that an execution of a program on causal memory is also possible on sequentially consistent
memory. Thus, if the program executes correctly on sequentially consistent memory, its
execution on causal memory is also correct.

Data-race-free programs also allow more efficient implementations of causal memory.
Causal orderings between memory operations at different processors are established when
a processor reads a value written by another. Thus, each time a processor caches a data
value written at another processor, it must ensure that the newly cached value is causally
consistent with the data values already existing in its memory. In particular, any new

3Recently, the Maya system has also proposed a causal memory system that includes orderings induced
by synchronization operations [3].



causal orderings that get established by the reading of the newly cached data value must
not cause the existing data to be overwritten in the causal sense. In the example shown in
Figure 3, when ps caches the value of y written by py and reads it, the cached value of z
at ps has become overwritten (the write to @ by p; causally precedes the write to « by p2),
and 1 must not be returned by a future read to x by ps.

pr:w(z)l w(y)l

r(y) () w(y)2
(2)1

Figure 3: Example that shows causal over-writing of data

When programs are known to be data-race-free, the check to determine that existing
data remains causally consistent with information received from another processor only
needs to be performed when acquire synchronization operations complete. This optimiza-
tion is possible because the order induced between memory operations by synchronization
operations, 2%, is identical to the extended causal order =¥. This follows from the fact that
conflicting operations, for example two operations 01 = w(x)v and 0, = r(z)v, must be
ordered by the happens before order defined by synchronization operations when o; and
0y are executed by different processors. Thus, the synchronization operations will order o,

and oq, and the writes-before order, ﬂ, between 0, and 0y cannot create any new orderings
between memory operations. As a result, we do not need to check for causal consistency
of data at a processor when a new data value is added to its memory. The algorithms we
develop in the following sections make use of this fact to avoid extra processing overhead.

3 Implementing Causal Memory

We develop an implementation of causal memory for a system that consists of a set of
processors connected by a network. Access to causally consistent shared data is provided
by caching the data in the memories of the processors. Processes at a processor can freely
read data that is cached locally. Communication with other processors may be required
when the data to be accessed is not locally cached or when it is written. To locate a data
item, we introduce the notion of a manager as is used by Li and Hudak [32]. A manager
is a processor that either caches a data item z assigned to it or knows the identity of the
processor that caches a current copy of 2. One of the processors that caches a current copy
of z is also called its owner. The identity of the owner processor for a data item is known
to the manager of the data item.

Similar to the implementation developed in [6], the algorithm that we develop ensures
that data items cached at a processor are mutually consistent from the point of view of
causal consistency. In other words, one cannot violate the consistency requirements of



causal memory by reading locally cached data. When a new data item or a new value of
already cached data is added to the cache, its reading by a process at the processor can
create new causal orderings between memory operations. As a result, some of the cached
data values can become overwritten (the reading of an overwritten value will violate causal
consistency). In the algorithm presented in [6], we invalidated cached data items that
could be potentially overwritten when a new data item was added to the cache. In the
implementations developed in this paper, we assume that the data is shared by data-
race-free programs, and this allows us to develop more efficient schemes for maintaining
causal consistency. Also, the implementation presented here works at the granularity of a
page. This allows us to integrate consistency maintenance operations with virtual memory
operations such as page faults.

The Clouds distributed operating system has been used as the test-bed for implementing
causal memory. Clouds is an object based distributed operating system which provides the
programmer with the notion of a globally shared memory across processors connected over
a local area network. The implementation of DSM in Clouds is integrated with virtual
memory. Consistency actions are performed on page faults or on protection violations. We
have implemented causal memory by rewriting the existing DSM protocol on Clouds.

3.1 Implementation Approach

The key features of our implementation of causal memory include (1) use of page fault
mechanisms for providing access to shared data to processes on different processors, (2) use
of vector timestamps for maintenance of causality information, (3) allowing a single writer
and multiple readers to access a page concurrently, and (4) delaying consistency related
actions to well defined points in a program (certain synchronization operations).

Our implementation maintains consistency of shared data at the level of a page. Thus,
each processor’s memory caches a subset of the shared pages. When a page not present in
the local memory is accessed, it generates an access fault. A write on a page that is cached
with read access causes a protection fault.

We use vector timestamps to track changes in the state of shared data. Vector times-
tamps [35] precisely capture the causal relationships between memory operations. Each
processor maintains a vector clock and timestamps derived from this clock are stored with
each copy of a page. More specifically, the timestamp on a page copy reflects the vec-
tor time at the processor that last wrote this copy of the page. Three operations can be
performed on vector times, which are described below:

e increment: inc(VT), when executed by processor p;, adds one to the i th component
of VT and returns the incremented vector time.

® mazrimum: ma:r(VT, VT/) returns the component-wise maximum of the vector times-
tamps VT and VT". We will also refer to this operation as the clock update opera-
tion.



o comparison: VI' < VT" returns true if, for all 4, VT'[{] < VT"[i], and there is at
least one component of VT that is less than the corresponding component of VT".

Although causal memory permits multiple writers and readers to access a page concur-
rently, concurrent writers introduce the problem of merging the modifications to a page
done at multiple processors. There could be concurrent writes to the page because of false
sharing even when synchronization controls access to data stored in the page. The diff
mechanism employed in [11, 26] can be used to handle the merging problem but it does
have copying and processing overheads, which we have found to be quite high [25]. We
deal with false sharing by making the restriction that a page can only be accessed by a
single writer and multiple readers at a given time. Thus, a page cannot be cached at
multiple processors with write access at any time. This does, however, serialize concurrent
writes to a page. We pin a page to a processor [20] for a certain amount of time to control
the situation where concurrent writers move a page between processors continuously (page
thrashing). It must be noted that false sharing, where a single writer is concurrent with
multiple readers, does not create any problems in our implementation of causal memory.

Finally, because we implement causal memory for data-race-free programs, we will only
perform consistency maintenance operations when a synchronization variable is acquired
at a processor. In particular, these operations are only performed on acquiring a lock, on
returning from a barrier, and at fork and join points. We require that synchronization vari-
ables also carry vector timestamps so that the causal orderings induced by synchronization
operations are reflected in the consistency maintenance operations. Below, we present the
details of the implementation.

3.2 Implementation Details

Each processor maintains several data structures to provide access to shared pages. In
particular, processor p; maintains a vector clock VT;, which is used to timestamp pages
written at p;. A table that has an entry for each shared page is also kept at each processor.
An entry for page z in this table indicates if the page is currently cached, the page’s vector
timestamp, the manager and owner processors of the page, and its access information. Since
we allow only a single writer to a page, the owner field in the entry stores the identifier of
the processor that has the most recent copy of the page. The access field specifies the access
privileges to the page at the local processor. It can be null, readonly or readwrite. When
a processor accesses a page which is not locally cached, it generates an access violation. A
protection violation is generated when a page with readonly access is written.

Initially, each component of the vector clock is set to 0 at all processors. Only the
manager processor of a page has the owner and manager fields set to itself for that page.
Processors other than the manager have the access field set to null for the page and the
manager field appropriately initialized (other fields for a page do not need to be defined at
these processors). We now discuss the handling of access and protection violations and the
manipulation of the data structures stored at each processor.
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Read Access Fault:: [READ, x]::

send [READ, x] to x.manager recv [READ, x] from p;
recv [DATA, x, VT'] if (x.owner = self)
x.access := readonly x.access := readonly
x.VT := VT’ send [DATA, x, x.VT] to p;
else
Write Access Fault:: send [FWD, x, i, read] to x.owner

send [WRITE, x] to x.manager
recv [DATA, x, VT']

x.access := readwrite [WRITE, x]::
x.owner := self recv [WRITE, x] from p;
VT; := max(inc(VT;), V1) xX.owner := i
x.VT := VT, if (x.owner = self)
x.access := readonly
Protection Fault:: send [DATA, x, x.VT] to p;
if (x.owner != self) else
Handle similar to Write Access Fault send [FWD, x, i, write] to x.owner
else
x.access := readwrite [FWD, x, i, mode]::
x.owner := self recv [FWD, x, i, mode] from x.manager
VT, :=inc(VT;) if (mode = write) x.owner := i
x.VT := VT, x.access := readonly

send [DATA, x, x.VT] to p;

(a) Actions Executed at p; (i is p;’s identifier) (b) Manager & Owner Actions

Figure 4: Causal memory implementation using vector timestamps

3.2.1 Handling Page Faults

The actions executed when page faults occur at processor p; are shown in Figure 4. We also
show the actions executed by the owner and manager processors for servicing page faults.

On a read access fault, a processor sends a READ message to the manager of the page.
If the fault is due to a write access, a WRITE message is sent. On a protection fault, the
faulting processor checks first whether it is the owner of the page. If it is, it upgrades the
access to the page to readwrite. Otherwise, a WRITE message is sent to the manager.
The manager on getting a request, supplies the page if it is the owner or else forwards the
request to the current owner. If a WRITE message was sent, the current owner downgrades
its access to the page to readonly (we do not need to make its access null since we allow
readers to concurrently exist with a writer), and sends a copy of the page to the faulting
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processor, which assumes ownership. If the fault was due to a read, the owner supplies a
copy of the page and downgrades its access to readonly but retains ownership of the page.
This is done so that the processor’s vector time can be incremented the next time it writes
to that page. We explain why this is necessary in the next section. The faulting processor,
on receiving the page in a DATA message, installs the page with the appropriate access
rights.

3.2.2 Vector Clocks and Timestamps

In general, vector timestamps are incremented between local events and are also included in
all messages. A processor’s clock is also updated when a message is received by performing
a maz operation using the current value of the clock and the timestamp received with the
message. The result is assigned to the vector clock of the receiving processor.

In our implementation, the value of clock, VT;, is not sent when p; sends request
messages to other processors. This is because causal dependencies between processors in
a shared memory system are only created when data written by one processor is read by
another. Thus, a request message does not create a causal dependency. Furthermore, since
the causal order created by a read only orders the associated write operation before the
read, the timestamp sent in a DATA message is the vector time at which the page was
written, and not the current value of the sender’s clock. Thus, in Figure 4, only DATA
messages carry the timestamp associated with the page being sent. If the page is received
as a result of a read fault, VT;, the vector clock at p;, is not advanced when the page is
received. A clock update is not necessary when we only consider the execution of data-
race-free programs. When a page is received in a DATA message due to a write fault, the
clock is incremented and updated because a timestamp read from the clock is assigned to
the new version of the page data that will be created by the processor. We explain in the
next section why V7T is updated on write faults but not when a page is received due to a
read fault.

The actions that handle the various types of faults in Figure 4 show how page times-
tamps are determined. When p; requests and caches a page in readonly mode, the timestamp
associated with it is received in a DATA message with the copy of the page. Page times-
tamps are used to decide when the page copy may be overwritten according to causality.
If a processor is caching a page in readwrite mode, its timestamp stores the time at which
the processor last write faulted on the page. Multiple writes at a processor that fall within
a single page will result in a single increment operation to the writer’s vector clock because
only the first write generates a fault. However, there are situations when the clock needs
to be incremented several times. This happens when other processors get copies of the
page while a processor is writing it (we allow concurrent readers with a writer). The clock
is incremented to ensure that different versions of a page data have different timestamps
associated with them. We achieve this by downgrading a processor’s access to a page that
it owns to readonly when it sends a copy of the page in response to a READ message (or
FWD when the owner is different from the manager). By making the page readonly, we
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ensure that a future write by the owner would generate a protection fault which will result
in incrementing the clock and a new timestamp being assigned to the page. Thus, the new
version of the page data will have a higher timestamp than the preceding version that has
been supplied to another processor.

3.2.3 Synchronization Operations

Our implementation is designed to work correctly when programs are data-race-free. Thus,
we need to consider the effects of synchronization operations on the implementation of
causal memory. In distributed systems, synchronization operations are implemented by
a server (many distributed synchronization algorithms exist but they have high message
costs or latency). Examples of these operations include lock, semaphore and barrier calls.
Since synchronization operations order memory operations, their implementation must be
modified to carry the ordering information. We do this by associating a vector timestamp
with each synchronization variable.

We show the acquire and release actions on a lock variable in Figure 5(a). Each lock
[ has an associated vector timestamp [.ts. On a release operation by processor p; on lock
l, p; assigns the current value of VT; to [ts. When [ is acquired by another process p;,
VT, is updated by assigning to it the component-wise maximum of the current value of
VT, and lts. By updating its clock, processor p; ensures that its clock orders all memory
operations at p; that were executed before the corresponding release operation on lock L
The invalidate operation shown in Figure 5 is explained in the next section.

Barriers are implemented by having a barrier server do an update of its clock based on
the timestamps received from every processor in the request messages that are sent when
a process reaches a barrier. A timestamp read from the updated clock is transmitted with
the barrier release and every processor updates its vector clock to reflect the timestamp
received. Thus, each processor participating in the barrier call orders memory operations
at all processors that are executed before the barrier call. Object invocations (or forks)
also induce orderings between memory operations. Their handling is shown in Figure 5(b).
When processor p; invokes an object on p;, the value of the vector clock at p;, VT}, is
sent with the invocation request. Before executing the invocation, processor p; updates
its clock to reflect the timestamp received with the invocation request. On return from
the invocation, VT; is updated to reflect the timestamp that comes from p; in the return
message.

The updating of clocks when acquire operations complete and the fact that programs are
assumed to be data-race-free, make it unnecessary to advance clocks when DATA messages
containing a page are received due to read faults. In a shared memory environment, causal
relationships arise between processors either when one processor reads what is written by
another processor, or due to synchronization operations. Since timestamps are transferred
with synchronization variables, and the vector clock of the processor acquiring a synchro-
nization variable is updated, we consider the case when a processor reads a value written
by another processor. In particular, when p; reads a value of location x which is written
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Figure 5: Synchronization and Invocations

by p;, VT; should be updated to include the value of VT; at the time p; wrote z. In our
implementation, for p; to read the value of z, it must have generated a page fault to fetch
the page that contains z after the page was written by p;. Although VT; is not updated
when the DATA message is received at p;, V'T; still orders all operations of p; including
the write that produced the value being read. This is because we assume data-race-free
programs and hence p; must have done a release on a synchronization variable after its
write to x. Furthermore, p; must have acquired the synchronization variable which would
advance VT; to include all operations up to the release by p;. Thus, the value of V1 will
be greater than the time at which = was written and it is not necessary to update the clock
when DATA messages are received for servicing read faults.

In Figure 4, the write fault action does update the vector clock VT; before generating
a timestamp for the page being written. This is necessary, even when programs are data-
race-free and a lock is acquired before the write is done, due to false sharing problems. We
explain this using the execution shown in Figure 6. Assume that both data items, z and
y, are stored in a single page. po first acquires a lock, [y, that controls access to z, writes
x and then releases [;. It then acquires [, that controls access to y and writes it. Assume
that p; now acquires [; and reads z after py has written y. Clearly, the timestamp received
with [; will be less than the timestamp on the page when p; read faults and receives it
after acquiring ;. If po now acquires the lock and writes to location « without having first
updated its clock, the page cached at p; will not have a timestamp that is smaller than
the timestamp assigned to the new version of the page at p;. Our consistency maintenance
operations require that writes to a page be totally ordered, and this be reflected in the
timestamps associated with the copies of the page. An increment followed by a clock
update in the write fault action in Figure 4 guarantees that this property holds.

False sharing could lead to a similar situation when p, only reads the page. In this case,
p2’s clock need not be advanced because only the data written by pg before it released [;
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is read. In our example, p; advances the clock because it writes the page. Thus, when
p1 acquires [ again, its copy of the page will have a lower timestamp than the timestamp
received with the lock.

po: lock(ly) w(z)l unlock(ly) lock(ly) w(y)0
pi lock(ly) r(z)1 unlock(ly) lock(ly)

Pa: lock(ly) w(z)2 unlock(ly)

Figure 6: Example to show why clock update is necessary on write faults

3.2.4 Maintaining Data Consistency

Our implementation must ensure that when a processor reads data from a page, the locally
cached copy of a page has not been overwritten. In other words, if the page contains a
value for location x which was written by operation oy, then it is not the case that there is
another write operation oy, such that o, =% 0, and o, causally precedes the read that returns
the value written by o;. We ensure that only causally consistent data is read by locally
invalidating cached pages when it is suspected that they contain causally overwritten data.
The vector timestamps maintained for cached pages are used to determine when they may
contain potentially overwritten data.

Causal orderings between operations are established when a processor reads data written
by another processor. In our system, this would happen because a processor faults on a
page and receives it from another processor. Since reading the data in a newly cached
page could result in new causal orderings, consistency operations need to be executed
when a page is added to the cache of a processor. When only data-race-free programs are
considered, data consistency operations can be limited to synchronization acquires, fork-
joins and barrier points in the execution of a program. This does not affect the correctness
of the implementation because of the argument that with such programs, the extended
causal order =¥ is the same as the order defined by the synchronization operations, =5. As
a result, no new causal orderings can be created by a read operation o, because the acquire,
that preceded o,, has already ordered the write operation that produced the data being
read by o,.

The basic consistency maintenance operation, invalidate(timestamp TS), is shown in
Figure 7. It is performed for a set of pages with respect to the timestamp 7'S. When it
is executed at processor p;, pages in C;, which is the set of shared pages cached at p;, are
checked. If a page in C; is cached with readonly access, p; is not the owner of the page, and
the page timestamp is less than 7'S, the page is locally invalidated by setting its access to
null. Since the invalidation is local, no messages are sent to other processors that cache
the page.

We claim that the local invalidations guarantee that if a page is locally cached, the
data stored in the page is not causally overwritten according to the view of the processor.
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invalidate(timestamp TS)
{
Vye (C;
if ( (y.access = readonly) A (y.owner # self) A (y.VT < TS) )
y.access := null

Figure 7: The invalidate operator

Consider data item z and the time at which the page containing = was brought to the
memory of processor p; for reading. For simplicity, assume that the page only contains the
data item z. The vector timestamp stored at p; for this page is assigned from the clock
of the processor p; that last wrote x. In particular, the timestamp was the value of VTj
when p; wrote z. Since p; was the owner of the page at the time the request due to p;’s
read fault was serviced, the value of z received by p; in the page was up-to-date. Assume
that x is now written again by another processor py. This processor must have acquired
a synchronization variable such as a lock before it writes . Furthermore, the lock must
have been released by p; which had acquired it to read x. A lock carries a timestamp that
is the value of the vector clock at the processor that last executed the release operation.
Also, a processor updates its clock when it acquires a lock. Therefore, before p,’s write,
the value of VT}, will be greater than or equal to the timestamp that was assigned to the
page by p; (this timestamp was assigned before p; released the lock to p; and is also stored
with the page at p;). Furthermore, V1), is incremented when p; performs its write to z. To
read a page that has been written since the time the page was cached, p; must acquire the
lock again. It is easy to see that the timestamp received with the lock will be greater than
the timestamp of the cached page. As a result, the consistency actions executed at the
time the acquire operation completes will invalidate the old copy of the page at p;. Thus,
when the page is read again, it will be requested from the current owner and the causally
overwritten data will not be read.

A page can store multiple data items and hence several locks may be used to control
access to the data stored in it. Causal consistency is maintained for shared data even when
we have such false sharing. For example, the page containing data item z in the discussion
in the previous paragraph, could have been written by another processor after p; wrote z
(such a processor could have written data item y which is also stored in the same page). In
this case, the timestamp p; receives from p; with the lock that controls access to x will be
lower than the timestamp p; receives with the page when it reads . However, because a
processor updates its clock when it receives a page for writing, pi’s clock will be advanced
beyond the timestamp that p; stores for the page that contains z. Thus, when p; acquires
the lock again to read = the second time, it will receive a timestamp that is higher than
the timestamp it stores for z’s page. As a result, the page will be locally invalidated and
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hence the overwritten value of z cannot be read.

Since we allow a single writer for a page, reading a page that is cached with readwrite
access rights can never result in overwritten data being read. Thus, a cached page at an
owner processor always contains data that is causally consistent.

We can consider more complex situations but because of the the fact that programs are
data-race-free, a processor will first acquire a synchronization variable before it accesses the
data in a page. Since timestamps are transmitted with synchronization variables, a page
that has been written by a causally later write and the release operation that follows it, will
ensure that the synchronization variable carries a timestamp higher than the timestamp
associated with the page copy that stores the value of the old write. This will always
guarantee that causally overwritten data is invalidated before a processor can access it.

Locally invalidating pages obviates the need for explicit invalidation messages. Per-
forming local invalidations reduces the number of messages; it also saves the extra software
overhead of network interrupts and context switches associated with invalidation messages.
The saving in the number of messages is at the cost of the extra computation required to
determine and invalidate causally older pages. Also, we may invalidate more pages than
strictly necessary.

3.2.5 Unnecessary Invalidations

We argued that, by locally invalidating pages with lower timestamps than the timestamp
received when an acquire operation is completed, we guarantee that causally overwritten
data cannot be read. Such local invalidations are sufficient to ensure correctness but they
are not always necessary. This is because not all pages that are older with respect to a
timestamp are causally overwritten. The vector timestamps allow us to determine if a page
is old but they do not have information that allows us to decide if a more recent version of
the page exists. For instance, consider the execution shown in Figure 8. Assume that z and
y are on different pages and that the read by p; of z returns the value written by po. When
p1 completes lock(/3), the page containing « would get invalidated even though it still holds
the current value of z. This is because the clock at py, VT, gets incremented when y is
written so the timestamp received with [y is greater than the timestamp associated with
page x. The problem is that vector timestamps, with a component for each process, do not
accurately track the exact set of pages that have been modified. Because a write by py to
either « or y would have resulted in the same timestamp being received at p; when lock(/5)
completes, py must assume that = could be overwritten and invalidate the page.

po: lock(ly) w(z)l unlock(l;) lock(ly) w(y)l unlock(ly)

\

pi: lock(ly) r(x)l unlock(ly) lock(ls)

Figure 8: Unnecessary invalidation of page containing data item z
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When most of the shared data accesses to a page are reads, the page could get unnec-
essarily invalidated quite often, leading to significant performance degradation. In many
of the applications with which we have experimented, there are data that are only read or
that are once written at the beginning of the execution and then only read. Such data,
which does not change during the course of program execution, could get unnecessarily
invalidated when the consistency maintenance operations are executed. One solution is to
use an approach similar to the annotations used in the Munin system [12]. We provide lan-
guage level support, where the user can annotate such data as read-only or write-once. Such
data pages are not considered for invalidation. This annotation is used only for improving
performance and is not required for correct execution.

Data which have mostly read characteristics but are not read-only or write-once would
still get invalidated unnecessarily. We modify the algorithm given here to ensure that
only those pages that have been causally overwritten are invalidated when an invalidate
operation is executed. This requires that we expand the vector timestamp to include a
component for each shared data page. In the following section, we first present the modified
algorithm and then discuss the performance improvements and the overhead introduced by
it.

3.3 Causal Memory Implementation Based on Versioned Pages

In our implementation of causal memory, we allow only a single writer to access a page
concurrently with multiple readers. As a consequence, a sequence of writes to a page can
be tracked with a version number. In the second implementation of causal memory shown
in Figure 9, which eliminates the unnecessary invalidations, version numbers associated
with pages are used to determine when the data in a page are causally overwritten®. Each
processor maintains a version number (instead of a vector timestamp) with each of its
cached pages. Also, the vector clock at processor p; is replaced by a version array, VA;,
which stores the latest version number known to p; of each of the shared pages. VA;[z.num]
is the latest version of page z (the field z.num stores the index of page z) as known to
p;- The basic idea is to transfer the value of VA; with synchronization variables and to
use these versions in consistency maintenance operations. In particular, when an acquire
operation completes on a synchronization variable, a cached page = is locally invalidated if
the version number stored with it is less than the version number received for & with the
synchronization variable. We now explain the operation of the second implementation and
discuss how it differs from the first one.

3.3.1 Page Fault Handling and Version Management

On a page fault, the same actions are executed as before. A read fault results in a
request message for the page which is sent to the manager which either sends the page or
forwards the request to its current owner. The DATA message that contains the requested
page also includes the version number of the page. On a write fault, since a new version of

4Version numbers were used in the Locus file system for detecting concurrent updates to a single file
[37]. Our version vectors are used to ensure causal consistency for a set of data pages.
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Read Access Fault:: [READ, x]::

send [READ, x| to x.manager recv [READ, x| from p;
recv [DATA, x, version’] if (x.owner = self)
x.access := readonly x.access = readonly
x.version := version’ send [DATA, x, x.version] to p;
else
Write Access Fault:: send [FWD, x, i, read] to x.owner

send [WRITE, x| to x.manager
recv [DATA, x, version’]

x.access = readwrite [WRITE, x]::
x.owner := self recv [WRITE, x| from p;
x.version := version’ + 1 X.owner = i
VA,[x.num] := x.version if (x.owner = self)
x.access = readonly
Protection Fault:: send [DATA, x, x.version] to p;
if (x.owner != self) else
Handle stmilar to Write Access Fault send [FWD, x, i, write] to x.owner
else
x.access := readwrite [FWD, x, i, mode]:
x.version := x.version + 1 recv [FWD, x, i, mode| from x.manager
VA,[x.num] := x.version if (mode = write) x.owner := i

x.access := readonly
send [DATA, x, x.version] to p;

(a) Actions Executed at p; (i is p;’s identifier) (b) Manager & Owner Actions

Figure 9: Causal memory implementation using versioned pages
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the page data will be created by the processor, the received version number of the page is
incremented and the corresponding entry in VA; is updated. If a processor owns a page, a
protection fault on that page does not require any communication but the version number
and the version array are similarly updated. In the case where the processor is not the
owner of a page, a protection fault is handled similar to a write access fault.

To ensure that different page versions have different numbers, an owner downgrades its
access to a page to readonly when it sends a copy of the page to another processor even
when the request for the page was due to a read fault. This guarantees that the version
number is incremented if the owner writes the page again. This is a local operation and
does not require any messages. The same page, cached at different processors, may have
different version numbers. The current owner of the page has the latest copy of the page
and will always have the highest version number.

Although DATA messages contain only the version number of the page being trans-
ferred, synchronization operations need to transfer the version array information between
processors. For example, when a lock is released by processor p;, the lock is assigned a
timestamp which is the current value of VA;. When processor p; next acquires this lock,
the lock’s timestamp is used to update VA;. Similar to Figure 5 for vector clocks, a maxi-
mum operation is performed on each component of VA; and the timestamp received with
the lock, and the result is assigned to VA;. Other synchronization constructs such as
barriers similarly update the version arrays at the participating processors.

3.3.2 Maintaining Data Consistency

Causal consistency of shared pages is maintained by calling the invalidate operation, shown
in Figure 10, when a lock is acquired or a barrier completed. The operation is also executed
at fork and join operations. As before, (; is the set of all pages in the cache of processor
p;. The timestamp received with the synchronization variable is passed as a parameter to
the invalidate operation. It locally invalidates a page if the version number associated with
the page is smaller than its version in the timestamp (y.version is the version number of
page y and y.num is the page number).

invalidate(version_array VA)

{
VyeC;
if (y.version < VAly.num])
y.access = null

Figure 10: The invalidate operator for versioned pages

We do not need to check if a processor owns a particular page or if it caches it only in
readonly mode before invalidating the page. This was done in the previous implementation
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because a vector clock could have been advanced due to writes to other pages. Thus, a
timestamp received with a synchronization variable could have been greater than the page’s
timestamp at the owner even when it had the most recent copy of the page. Since the owner
of the page has the highest version number for the page, a page at the owner will never be
invalidated.

3.4 Comparing the two Implementations

The two implementations differ in the state maintained and exchanged by processors. In
the first implementation, vector clocks are maintained which have a component for each
processor in the system. The second implementation based on version numbers, has a
component for each shared data page of the application. The storage and communication
costs of the implementations depend on the sizes of these data structures. It may appear
that a version array may have a much larger number of components compared to a vector
clock (when the number of processors is smaller than the number of shared pages). This
could result in higher storage and communication overheads for the second implementation.
This is not the case for many of the applications that we studied. One reason is the relatively
large page size (typical page sizes for most workstations are 4K and 8K bytes). Also, only a
single version number is sent in DATA messages in the second implementation whereas these
messages include vector timestamps in the first implementation. Thus, only the messages
that transfer synchronization variables incur the overhead of transmitting the version array.
Version numbers also reduce the processing overhead in consistency maintenance operations
because version numbers instead of vector timestamps are compared.

A version based implementation could have excessive storage and communication over-
head when the shared data space is very large. The annotations discussed in the previous
section can also be used to reduce the size of version arrays. Pages that are read-only or
write-once are not considered for invalidation and do not need to have version numbers
associated with them.

3.5 Additional Optimizations

Our implementations of causal memory also allow several other optimizations. We briefly
describe two of them here.

3.5.1 Avoiding Page Copying

Our implementation allows a writer to be concurrent with readers. While a page is being
transferred by the owner of a page in response to a READ request, it is quite possible
that the owner processor continues to write into that page. This is because a page has
to be broken down into several messages, each the size of a protocol data unit, and the
application could run while the protocol code is blocked waiting for an acknowledgement
for a previous message. In general, the protocol code copies the data to be transmitted in
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a separate buffer to avoid the problem of the data being modified while it is sent. In our
system, such copying is not necessary because programs are assumed to be data-race-free.

Consider the case in which an owner processor p; receives a request for a page due to
a read fault at processor p;. At p;, the execution of the communication protocol code can
be interleaved with the execution of the application code. Since we downgrade the access
to the page at p; on processing a READ or FWD message to readonly before sending the
page, the application code at p; would raise a protection fault on a write, which would be
handled locally as p; is still the owner. Also, because programs are free of data races, the
data in the page being written by p; will not be read by ps, the processor to which the page
is being sent. In fact, the concurrent access to the page must be due to false sharing and
p1 writes to parts of the page for which p; holds an exclusive lock. Thus writes by p; while
the page is being transmitted to p, will not change any data that is accessed by p; and
hence the page need not be copied by the communication protocol. If py acquires a lock
in the future for data in the page which got modified while the page was being transferred
previously, its copy of the page would be invalidated because p; generated a newer version
since the last acquire operation of p;. Thus, consistency is guaranteed even when copying
is not done. Recently techniques have been proposed that can be used to reduce copying
overhead in message passing systems [33, 17]. However, they require additional flexibility
from the underlying operating system.

3.5.2 Avoiding Page Transfers on Double Faults

A double fault occurs when a page that is not cached locally is first read and then writ-
ten [28]. This would cause a page to be transferred once due to the read and again due
to the write. The second page transfer will occur because the processor is not the owner
of the page when the protection fault is handled. In cases where the page has not been
modified since it was fetched as a result of the read fault, transferring the page the second
time is wasteful since the faulting processor already has the current version of the page.
Although not shown in Figures 4 and 9, a processor includes the version number (or the
vector timestamp) of the locally cached page in the request message sent to the manager
on a protection fault. The current owner compares this version number (timestamp) with
its version (timestamp) for the page. If they are the same, the owner does not transmit
the page in the DATA message.

4 Evaluation of Causal Memory

To evaluate the performance benefits made possible by causal memory, we implemented
both of the algorithms discussed in the previous section. To compare causal memory with
a strongly consistent memory, we also implemented a DSM system that provides sequential
consistency®. In addition, our system provides support for message passing on the same
platform. The sequentially consistent DSM protocol implements a fixed manager writer-

5In Section 5, we address how the performance of causal memory compares with other memory systems
such as release consistency, lazy release consistency and others.
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invalidate-readers protocol similar to the one described by Li and Hudak [32]. We optimized
it in several ways. For example, we use pinning to control thrashing and also use a technique
similar to the one described by Kessler and Livny [28] to avoid re-sending a page due to
a double page fault. All of the DSM protocols are implemented in the Clouds operating
system using low level communication mechanisms. Thus, coherence related activities,
which are performed on page or protection faults (and also on certain synchronization
events), are implemented in the kernel. The synchronization constructs used by the memory
system are implemented by central servers. For a given synchronization variable, a single
server maintains its state and the queue of processes blocked on it.

For the message passing system, we provide two system calls, msgsend and msgreceive
to the application level. These calls allow processes to only exchange the data they share
and the data transfer is not tied to pages. A msgsend call results in copying of the data
being sent to a buffer in kernel space. At the receiving processor, the received data buffer is
enqueued until a msgreceive is executed by the process. The msgreceive call is synchronous
— it blocks the process until the data is received. Since message passing only sends the data
that needs to be shared and only to those processes that will use it, it provides a lower
bound for execution time for most applications and also allows us to quantify the extra
overhead in providing a shared memory abstraction.

We first provide brief descriptions of the applications used in the evaluation of the causal
memory system. The performance measures used in the study are described next. Finally,
we present and analyze the experimental results.

4.1 Applications

We have implemented a number of applications to evaluate causal memory. The appli-
cations include Embarrassingly Parallel (EP), Integer Sort (IS), and Conjugate Gradient
Method (CGM) from the NASA Ames NAS kernels [9], and traveling salesperson (TSP),
matrix multiplication (MM), and successive over-relaxation (SOR). These applications have
been used in the study of several distributed shared memory systems. We chose them to
ensure that we evaluate causal memory for a variety of data access patterns, synchroniza-
tion patterns, communication patterns, computation granularity (which is the amount of
work done between synchronization points), and data granularity (which is the amount of
data manipulated between synchronization points). The last two together define the task
granularity of a parallel application.

We first provide details of the applications and then discuss how they have been pro-
grammed in the different systems.

e Embarrassingly Parallel (EP) kernel evaluates integrals by means of pseudo-random
trials and is used in many Monte Carlo simulations. As the name suggests, the kernel
requires very little synchronization and communication among the parallel threads
executing on different processors. Each thread computes an equally large number
of floating point random numbers and performs certain floating point operations on
them. The only communication that happens is toward the very end when all the
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processes participate in a reduction operation to generate a global sum. The kernel
also has a very high task granularity.

Integer Sort (IS) kernel uses bucket sort to rank a large set of integers. The input data
is partitioned among participating processors. A reasonable parallel kernel for this
problem would replicate the buckets at each processor, with each processor sorting
the partition assigned to it using the local buckets (phase I). These buckets are then
merged at a single processor, which then generates the ranks for the keys in the
input data (phase II). The algorithm uses barrier synchronization between phases to
synchronize the processors. We chose an input size of 4M integers. There is very little
communication (non-local data access) in phase I, while phase Il involves considerable
amount of data communication for merging the replicated buckets.

Conjugate Gradient (CGM) kernel computes the smallest eigen value of a sparse sym-
metric positive definite matrix. There are alternating phases of parallel and sequential
parts in each iteration of this kernel. The computation intensive part of this kernel is
the multiplication of this sparse matrix by a vector. The sparse matrix is represented
using a row-start, column index format to reduce the amount of data transfer during
the vector-matrix multiplication. Each processor is pre-assigned a set of rows of the
sparse matrix on which to work. Thus, each processor computes the elements of the
result vector assigned to it with very little communication or synchronization with
the other processors. The parallel part is followed by a sequential part that uses the
result vector in a dot product operation. While there is considerable task granularity
during the parallel part, the data movement for the serial part increases with the
number of processors used in the algorithm. We chose a matrix size of 14000 x 14000.

Matrix multiplication (MM) multiplies two square matrices. The job is partitioned
such that each processor computes a set of contiguous rows of the output matrix.
The task granularity is large and there could be some amount of false sharing but,
since the writes to shared data at a processor display a high spatial locality, it does
not interfere with activities at other processors. The matrices were of size 256 x 256.

SOR is an iterative method for solving discretized Laplace equations on a grid. The
program is based on the parallel red/black SOR algorithm as described by Chase
et. al. [16]. The grid is partitioned among the processors and all the communication
occurs between neighboring processors. Only the boundary elements of the grid need
to be communicated between iterations. We ran the program for a 512 x 512 size

grid.

TSP is unique because of the high degree of dynamic behavior of data sharing ex-
hibited by it. Our implementation is similar to the one reported by Bal et al. [10]
and uses a branch-and-bound method. A set of partial tours are generated and pro-
cessors evaluate these partial tours in parallel. They all share a work queue that
stores the partial tours. The value of the best tour that has been found so far is

24



also shared. If the value of a certain tour being explored exceeds the current best
value, the tour is abandoned and the process starts on another pending tour. The
application completes when all tours have been explored. To prevent excessive syn-
chronization, processes read the best-tour value without locking the variable, leading
to a program that is not data-race-free. The application was run for a 13 city tour.

The six applications have differing types of data sharing characteristics. For instance,
EP is characterized by no or very little sharing; MM and IS both have large shared state but
spatially dispersed accesses. CGM is an iterative program that exhibits producer-consumer
type sharing and also write-write false sharing. SOR is also an iterative algorithm but a
processor shares data only with its neighbors. It also exhibits write-read false sharing.
Finally, we chose TSP because it has data dependent sharing patterns.

All of these applications, except TSP, are data-race-free. Thus, the same code for these
applications was used for both causal and the sequentially consistent memory systems. The
same is also true for TSP. This is because the only data race is for reading the best-tour
value, and the program still executes correctly if a process reads older values of the best
tour variable. We did use some simple annotations in the program for causal memory. For
example, readonly data was tagged to reduce the size of the version array in the second
implementation of causal memory.

The programming of the message passing implementations of the applications was sig-
nificantly different. If the process that needed the new data values is known, new values
were sent to such a process directly. For example, data produced by the processes in the
parallel phase in SOR is sent to the process that executes the sequential part. When the
process that needs a new data value is not known because the data item is shared between
several processes, it was maintained by a server process. A new value of such an item was
sent to the server. Other processes get the new value by communicating with the server.

4.2 Performance Measures

To quantify the performance of the applications on the memory systems and with message
passing, we use several measures. Completion time is the total execution time of an appli-
cation in a given system. Completion times are measured when the application is the only
computation in the system and there is no extraneous communication on the network. To
gain a better understanding, we also measured the following four component times that
define completion time. These represent the costs of the corresponding activities of the
application and are accumulated over the execution of the application.

e Computation time: The time spent by the processor actually executing application
code. Thus, during this time the processor is not blocked waiting for synchronization,
communication or coherence activities to complete. For an application that does not
have time or data dependent behavior, this component must be the same on all the
systems.
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e Synchronization time: The time the processor spends blocked on a synchronization
call. This time will be zero in the message passing system since processes do not
execute any synchronization operations.

e Communication time: For the memory systems, this is the time spent in handling
page faults and installing pages. The clock is started at a page fault trap and read
just before returning from the fault handler. For the message passing system, this is
the time spent in the msgsend and msgreceive system calls.

e Network Handling time: This time is spent in responding to network messages
(invalidation and forward requests for the memory systems). A processor may get
a message while the user process is blocked on a synchronization call or if it has
requested a page. In these cases, the time spent in handling the message is not
included, since it is accounted for in the other costs. For the message passing case,
this is the time spent in handling a message that arrives before the process does a
corresponding receive.

Apart from completion time and its four component times described above, we also
recorded page fault counts (for the memory systems), the number of messages exchanged,
and the size of data communicated in these messages. We present a general overview of
the results and then give a detailed analysis for three of the applications.

4.3 Results

All the applications were run on SUN 3/60’s connected over a 10Mbits/s ethernet®. The
page-size, which is the unit of sharing in the memory systems, is 8K bytes. All applications
were run using 1 to 8 processors. The same program was run without any synchronization
calls to get the time for the single processor case. For causal memory, the results are for
the implementation based on versioned pages. Thus, the timestamp had a component for
each shared page. The completion times for the two implementations were not significantly
different and we discuss this later.

Figure 11 shows the completion times of the six applications with causal and sequentially
consistent memories and also with message passing. The different systems do not have a
significant impact on completion times if one or more of the following attributes hold for
an application:

1. There is very little sharing or most sharing is by concurrent readers and hence the
execution of the application does not result in much communication between proces-
sors.

2. The computation granularity is sufficiently large. In this case, the computation time
between communication points dominates the time spent in communication.

5We discuss the impact of faster processors and networks in Section 4.4.4.
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Figure 12: CGM analysis

3. The writes to shared data at different processors are to disjoint parts of the data and
thus do not interfere with the data accesses at other processors.

EP and IS exhibit the first two attributes while MM exhibits all three. All three
applications, EP, IS and MM, give almost identical speedups for the three systems. Both EP
and MM show good speedups. IS, because of its large serial fraction, shows poor speedups
but its execution time with the memory systems is within 1-2 % of the message passing
system. In all the applications, the performance with causal memory is between sequentially
consistent memory and message passing. Since the differences between the three systems
are appreciable only for CGM, TSP and SOR, we discuss these three applications in more
detail in the following subsections.

4.3.1 CGM

Data Sharing Characteristics: CGM uses two temporary arrays of floats that are
actively shared. The first array exhibits a producer-consumer sharing, where processor pg
(processors are numbered from pg to pr) writes all elements in the array in the sequential
phase, which is followed by a parallel phase in which all processors read the array. The
second array is write-shared; all processors write to different parts of the array in the
parallel phase and only processor py reads it in the serial phase. We ran the program with

matrices of size 14000 x 14000. The temporary arrays are of size 14000.

1. Completion time: Figure 11(d) compares the performance of CGM with the three
systems. While this application on sequentially consistent memory has around 28%
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higher completion time compared to message passing when the application is ex-
ecuted on 8 processors, the completion time on causal memory is within 12% of
message passing. Thus, causal memory does improve the completion time of CGM
over sequentially consistent memory. The execution profile shown in Figure 12(c)
breaks down the extra overhead for the memory systems, explaining this difference
in completion time. For the 8 processor case, causal memory reduces communica-
tion time by 78% compared to sequentially consistent memory. However, with causal
memory, the application spends more than twice the time in synchronization calls.
This is to be expected since causal memory does all the consistency related actions
at synchronization time. The communication time is reduced because causal memory
uses local invalidations whereas invalidation messages are sent on writes in the se-
quentially consistent memory system. This also explains the fact that causal memory
has lower network-handling time.

2. Page Faults: Figure 12(a) compares the number of page faults on the two memory
systems. For 8 processors, the page fault count is around 15% more on the sequentially
consistent memory system. In this system, when processors read the array having
the producer-consumer data sharing pattern, access to the page at the producer (po)
is downgraded to readonly. In the next iteration the producer has to fault again
before it can write the page. In contrast, with causal memory, a producer can write
the page without communicating with other processors, as a writer can co-exist with
readers. This leads to fewer page faults in the causal memory system. Note that, in
the causal memory implementation, a producer processor does downgrade access to
readonly when another processor gets a copy of the page for reading. However, such
protection faults are handled locally and do not result in messages to other processors.

3. Messages: Figure 12(b) shows the number of messages sent when the CGM applica-
tion is executed on the three systems. The message passing system provides a lower
bound on the number of messages that need to be sent. The causal memory system
sends 41% fewer messages compared to the sequentially consistent system when the
application is executed on 8 processors. The message passing system sends signifi-
cantly fewer messages because the shared array of size 14000 floats (56000 bytes) can
be sent as a single message’ whereas a separate message is sent for each page in the
memory systems. As a result, these systems send 7 messages to transfer the array.
Although the message counts are significantly different, the amount of data trans-
ferred, which is 13.1MB and 12.9MB, for sequentially consistent and causal memory
systems, is close. Furthermore, in the message passing system, 10.5MB are sent,
which is only about 20% less than causal memory. Both memory systems send more
data because they transmit in units of 8 Kbytes, while only the actual data is sent in
the message passing system.

“The underlying protocol could fragment this message but we are counting only the number of times
the protocol is invoked to send a message.
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4.3.2 TSP

Data Sharing Characteristics: In TSP, two data structures are shared between proces-
sors. The first is a global shared queue. The actual queue is shared in readonly mode and
only a next-job pointer, which points to the job in the queue that has to be searched next,
is written to when processors choose jobs to work on. The other shared data item is a
best-tour variable which is both read and written. The best-tour value is typically cached
at all processors, which read it to compare it with the current tour value and is updated
by a processor only if it has found a better tour.

The behavior of TSP on the three systems is very different. With sequentially consis-
tent memory, the best-tour value gets propagated immediately to all processors whenever
it gets updated, since any cached value would be invalidated before the write. Causal
memory allows out-of-date values of best-tour because a writer can co-exist with readers.
A processor gets a new value of best-tour only when the page containing its old value
gets locally invalidated as a result of a synchronization operation. This is done when a
processor chooses the next job to be searched (since the queue is shared, a lock has to be
acquired before the processor chooses the next job). The message passing implementation
of TSP has a server that maintains the work queue and the best-tour value. Whenever a
processor needs new work or if it has found a better tour, it communicates with the central
server. As the best-tour value does not get propagated to all processors immediately in the
message passing version of TSP, it may search more nodes in the search tree than sequen-
tially consistent memory. This extra computation overhead could become significant if we
allow processors to continue with very old values of best-tour®. This was observed in the
experiments that we ran. The number of nodes searched in the three cases are shown in
Figure 13. The number of nodes searched by the message passing code is 7% higher than
sequentially consistent memory. We discuss the various component times for TSP below.

Protocol Atomic DSM | Causal DSM | Message Passing
Nodes Searched 2,226,682 2,383,553 2,386,386

Figure 13: Nodes visited for TSP

1. Completion time: Figure 11(e) shows the performance of TSP with the three
systems. Its execution on the sequentially consistent system, with 8 processors, takes
102% more time than the message passing system. In contrast, its completion time
with causal memory is within 28% of the message passing time. Although more nodes
are searched when TSP is executed on causal memory (see computation time in Figure
15(c)), it has significantly lower communication and synchronization times than the
sequentially consistent system. There is another reason that message passing provides
better completion time. Both the memory systems suffer because of the mismatch

8We can make the sender transmit new best-tour values as soon as they arrive but this does not solve
the problem. The other processors must receive these values and due to the asynchronous nature of when
these values arrive, one cannot code points in the program where a msgreceive should be executed.
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Figure 14: TSP analysis

between the amount of shared data and the page size, which is the unit of coherence.
We discuss this when we consider the number of messages and the amount of data
transferred.

Page faults: The causal memory system has significantly fewer page faults compared
to the sequentially consistent memory system. For example, for 8 processors, causal
memory has almost two thirds less number of page faults. This is easily explained. In
sequentially consistent memory, whenever a new best-tour is found, its update results
in invalidation messages being sent to all processors since this variable is used and
cached at all processors. A subsequent access to best-tour will generate a page fault
at all processors. With causal memory, other processors can continue to read old
values and the new value is requested by them only when an acquire operation on a
lock variable is executed to find the next job.

Messages: Figure 14(b) compares the number of messages sent in the three systems
when the TSP application is executed. The sequentially consistent system requires
significantly more messages because invalidation messages are sent whenever the next-
job and the best-tour variables are updated. For 8 processors, the number of messages
sent is 33723, 7913, and 1403 for sequentially consistent, causal and message passing
system. Another interesting observation is that the number of messages exchanged
does not increase after 3 processors for causal memory and after 2 processors for
message passing because the same number of jobs are searched by the processors. In
contrast, the message count increases almost linearly in the sequentially consistent
system. This, again, is due to the invalidation messages that are sent to all processors.
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Causal memory never requires more than 3 messages to complete a memory request,
which explains why the number of messages does not increase as more processors
execute the application.

As mentioned earlier, in both memory systems, the unit of coherence is a page and
hence 8K bytes are transferred even when two integers (current-job and best-tour)
are shared. This explains why the message passing system sends around 18 Kbytes of
data, whereas the sequentially consistent and causal memory systems send 48.8MB
and 20.2MB of data respectively. As seen in Figure 14, avoiding unnecessary data
transfer does result in better completion time for message passing because it reduces
the communication time significantly.

4.3.3 SOR

Data Sharing Characteristics: The data sharing pattern in SOR is quite different from
the applications discussed so far. The computation consists of a sequence of iterations. Each
iteration consists of two phases, an odd phase and an even phase, which are separated
by barriers. Each processor computes grid elements that are assigned to it (the grid is
partitioned horizontally and each processor is assigned equal number of elements). The
computation of a grid element requires the reading of its four neighbor elements. Thus,
there is a producer-consumer data sharing pattern because one processor reads the values
of grid elements written by another processor (this is true only for boundary elements).
Also, only the processor that is assigned a partition writes to the elements in its partition;
neighbors only read the elements in this partition. The two phases in an iteration help
avoid the synchronization that will be necessary before reading the elements of neighbor
Processors.

1. Completion time: Figure 11(f) shows the completion times for SOR on the three
systems for a 512 x 512 grid. The completion times are not significantly different on
the three systems. For example, with 8 processors, the completion time with sequen-
tially consistent memory is within 10% of the message passing time. The completion
time for causal memory is almost the same as message passing (2% difference for 8
processors). As can be seen from Figure 15(c), the computation time dominates the
completion time and, since it is the same in all three systems, the completion times
are not significantly different. The sequentially consistent memory system does have
higher communication time because it generates additional page faults. The small
difference between message passing and causal memory is due to the mismatch be-
tween the data granularity (512 elements of floats — 2048 bytes) and the large page
size (8192 bytes).

2. Page faults: Figure 15(a) shows the number of page faults on the two memory
systems. SOR on causal memory takes 62% fewer page faults compared to the se-
quentially consistent memory when the application is run on 8 processors. This is
for two reasons. First, because of the producer-consumer nature of data sharing, a
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processor will always be able to write pages in its partition without requiring commu-

nication with other processors in the causal memory system. Although page access
will be downgraded to readonly when the neighbor processor gets a copy of the page
for reading, this will result only in a protection fault which is handled locally. In
contrast, in the sequentially consistent memory system, such a fault requires commu-
nication with the neighbor processor whose copy of the page has to invalidated.

The second reason why the sequentially consistent memory system has higher com-

munication time is because it transmits more pages due to faults. In fact, it generates
four faults in each iteration (twice during each phase) to get the boundary elements
whereas, with causal memory, only three faults are generated. We use Figure 16 to
explain this difference. In the first phase of the iteration, because of the order in

Figure 16: Data sharing for SOR

Py

which processor p; computes the grid elements assigned to it, p; first read faults and
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receives page x;_; from its left neighbor, processor p;_;. At the very end of the phase,
p; read faults again and receives page z;,1 from its right neighbor, processor p;y1. By
this time, processor p;y; has already finished computing the new values of the ele-
ments on page x;;; that will be read in the next phase by p;. Notice that the writing
by piy+1 and reading by p; do not result in data races because different elements on
the page are accessed by the two processors. In causal memory, when the processor
arrives at a barrier after these data accesses in the first phase, the version of z;14
that p; caches has the same version number as p;;; and is thus not invalidated. Page
x;_1, however, does get invalidated as it should, since it was received from processor
pi—1 before p;_; wrote it. In the next phase, p; read faults on page z;_; but reads
the cached copy of z;11. Thus, only three faults are generated in the two phases. At
the barrier after the second phase completes, both pages will be invalidated because
they have been written again by the neighbor processors is the second phase. In the
sequentially consistent system, the computation of the second phase will generate
two faults. This is because, x;4; will be written by p;11 as soon as the second phase
starts, which will result in an invalidation at p;. This invalidation is a result of false
sharing because, in the second phase, p; does not read the values written by p;4; in
this phase. Thus, when p; reads z;;; towards the end of the second phase, an extra
page fault will be generated and hence a total of four faults per iteration are experi-
enced. Causal memory has one less fault per iteration because it allows a writer to
co-exist with readers.

3. Messages: Figure 15(b) compares the number of messages sent by the three systems
while executing SOR. Causal memory sends 68% fewer messages than sequentially
consistent memory because of fewer page faults and the fact that invalidations are
local. The amounts of data transferred in the messages in sequentially consistent,
causal and message passing systems are 20.6MB, 15.4MB and 5.1MB respectively.
The memory systems send more data due to the large page size as explained earlier.

4.4 Discussion

In our results, we see that causal memory performs better than sequentially consistent
memory system. This is due to two primary reasons: it tolerates false sharing between
readers and a writer, and it sends fewer messages. We discuss both of these issues and
also comment on performance of causal memory when vector timestamps instead of version
numbers are used in its implementation. We compare causal memory with other memory
systems in Section 5.

4.4.1 False Sharing

To study the effects of false sharing, we ran CGM and SOR with several problem sizes.
While CGM illustrates the effects of write-write false sharing on the performance of the
memory systems, SOR shows how the systems handle read-write false sharing. Figure 17(a)

34



Completion Time (in seconds)

800

700 |
600} )
s00}
400}
300}

200 f

100

Conjugate Gradient Method (1400x1400)

"SC o

Causal +- |
Message Passing -&-

Numbgr of Progessors

(a) CGM

Completion Times (in seconds)

200
180

160}
40}
120}
100}
8ot
60}
401}

20

Successive Over Relaxation (128x128)

"SC -
Causal +- 1
Message Passing -&-

Numbgr of Progessors

(b) SOR

Figure 17: Effect of False Sharing

shows the completion times for CGM when the problem size is 1400 (the result discussed
earlier were for size 14000). We chose this size so that the array which is write-shared
would fit in one page. Consequently, when the processors concurrently write to different
parts of the array, the same page would experience write-write false sharing. Both memory
systems suffer and have much higher completion times than message passing because the
writes to the single page get serialized. Message passing allows these writes to be done
in parallel which leads to much better performance. For example, with 8 processors, the
percentage difference between causal memory and message passing is 37%. This difference
was only 12% when the problem size was 14000 because writes to different pages could be
done in parallel.

We also ran SOR with grid size 128 x 128, which results in only 8 pages of shared
data (the earlier results were for 512 x 512 grid). For the 8 processor case, each processor
would compute and write elements on exactly one page. Thus, there is no write-write
false sharing. However, there is read-write false sharing because some of the elements read
by a processor are written by its neighbor. As shown in Figure 17(b), causal memory
has much better completion time than sequentially consistent memory because it does not
require any communication between processors when there is read-write false sharing. For
the 8 processor case, causal memory has 53% lower completion time. The completion
time with causal memory does not decrease monotonically as the number of processors
is increased. This is because for some number of processors, the data partitioning leads
to load imbalances (due to the fact that a processor’s partition could lie across different
number of pages) and write-write false sharing.

4.4.2 Causal Memory Implementations

We ran all the applications with both implementations of causal memory that have been
discussed in this paper. The implementation based on vector timestamps that have a

component for each processor does suffer from the problem of unnecessary invalidations.
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As a result, its performance is not as good as the implementation based on page versions
(the results discussed so far are for this implementation of causal memory). Since the state
sharing method has minimal impact on the performance of EP, IS and MM, we only show
the completion times for CGM (size 1400x1400), TSP (13 cities) and SOR (size 512x512)

for the two implementations of causal memory in Figure 18.

Vector Timestamp Version Pages
# of Processors # of Processors
2 4 8 2 4 8

CGM | 455.96 | 316.56 | 291.08 | 445.46 | 295.85 | 271.64
TSP | 507.79 | 292.02 | 188.84 | 493.13 | 275.64 | 169.29
SOR | 1370.51 | 706.45 | 378.03 | 1366.88 | 701.60 | 373.77

Figure 18: Comparing the two implementations

As seen in the table, the applications take between 1% to about 12 % more time to
execute with the vector timestamp based implementation compared to the version based
implementation. For these application sizes, the size of the shared data space which was
actively shared for CGM, TSP and SOR was 2, 1 and 128 pages respectively. These small
sizes favor the version based implementation. The vector timestamp based implementation
also suffers from unnecessary invalidations in TSP and SOR.

4.4.3 Scalability

The size of the experimental test-bed limited us to only 8 processors. We can extrapolate the
behavior of causal memory for a larger size system. We believe that causal memory provides
a more scalable implementation of DSM because any memory access can be completed by
exchanging at most three messages. Thus, a constant number of messages are exchanged
even when a page cached by many processors is written. We see this behavior of causal
memory in Figures 12, 14, and 15 where we show the number of messages for CGM, TSP
and SOR. In a sequentially consistent memory system (and also in a release consistency
system — see Section 5), the number of messages required to complete a memory operation
can increase with system size because all processors may have a page copy that has to be
invalidated.

Although the communication required for completing a memory access does not increase
with system size in causal memory, the size of the vector timestamps or version vectors
could limit the scalability of the implementations. Since version vectors only need to be
sent with synchronization variables, we believe that this is not a problem for data-race-free
programs. Furthermore, there exist techniques that can be used to limit the information
carried in timestamps [41] by maintaining at each processor how far the clocks at other
processors have advanced.
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The performance benefits due to better scalability of causal memory or message passing
are not easily seen for the applications and their sizes that we used in the study. This
is because in all of them, the completion time curves become flat because of reduced
computation granularity as the number of processors are increased. Thus, a large number of
processors will only be useful when the application has very large computation granularity.

4.4.4 Impact of Faster Processors and Network

Our experimental test-bed consisted of Sun 3/60 machines connected by a 10Mbits/s eth-
ernet. An obvious question is if the differences in the three systems would persist with
faster processors or when the processors are connected by a high speed network such as
an ATM. It can be easily argued that the results will still be valid with increased CPU
speed because that will reduce computation time which will shift all the completion time
curves down. Furthermore, causal memory will experience further improvements because
synchronization time will also be reduced. This is because on certain synchronization op-
erations, causal memory incurs considerable processing overheads. A faster network will
make the difference among the different systems less significant. This is because the mem-
ory systems that send large messages (pages) will benefit more from the increased network
speed [40]. The memory systems will also become more competitive with message passing
in architectures that have smaller page sizes or support multiple page sizes.

5 Related Work

Many approaches for building DSM systems have been proposed. In his pioneering work,
Li adapted a multiprocessor cache coherence protocol to develop a software based imple-
mentation of shared memory in a distributed system. Although several improvements have
been suggested to this approach [20, 28], exploiting synchronization information and weaker
consistency for shared memory represent two significant advancements in handling the per-
formance problems associated with DSM systems. In this section, we compare the causal
memory system presented in this paper to systems that make use of synchronization infor-
mation in maintaining coherence. We also relate causal memory to other weakly consistent
memory systems.

5.1 Memory Models

The use of synchronization information in coherence maintenance was first advocated by
Dubois and Scheurich [18] for multiprocessor systems. They argued that only the execu-
tion of synchronization operations needs to be sequentially consistent as long as coherence
actions for other memory operations complete by the time a following synchronization op-
eration is executed. Thus, on a write to a shared data item, invalidation messages need not
be delivered and processed by all processors that have the data cached, before the writing
processor is allowed to issue the next memory request. These invalidations must complete
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before a following synchronization operation is completed. This approach can provide im-
proved performance because execution of a non-synchronization operation is not delayed
until communication completes between processors.

Release consistency (RC), proposed by Gharachorloo et. al., further refined the weakly
ordered approach by dividing synchronization operations in two types: acquire and re-
lease [21]. It is only necessary that coherence actions are performed before a release opera-
tion is completed. In the version of RC where synchronization operations are sequentially
consistent, it was shown that with proper labeling of memory operations (acquire or re-
lease synchronization operations or ordinary operations), one can develop programs on a
RC system assuming that it provides sequential consistency. Thus, the optimizations made
possible by RC in implementing memory consistency do not increase the complexity of
programming. Adve and Hill [1], also developed a similar approach and introduced the
notion of data-race-free programs. Hybrid consistency [8] and buffered consistency [38] are
examples of other memory models that are based on classifying synchronization operations
and defining coherence relative to them.

Lazy release consistency (LRC) [26] and entry consistency (EC) [13], both of which
were proposed after RC, make even more aggressive use of synchronization in performing
coherence actions. Although their implementations differ, the key idea used by both is
that changes to shared data are made inside critical sections controlled by synchronization
variables (e.g., locks), and such changes only need to be propagated to the processor that
next enters the critical section. In contrast, RC requires that when shared data is modified
in a critical section, all processors caching the data item be sent a request to invalidate
or update its cached value before the release operation completes. The determination of
which processor next acquires a synchronization variable is done at runtime. Thus, in LRC
and EC, coherence actions can be delayed at a processor until it succeeds in acquiring a
synchronization variable.

RC, LRC, EC and other similar systems maintain a sequentially consistent memory
interface for programmers as long as their applications are properly synchronized (e.g.,
are data-race-free). Other memory models have been proposed that make the weaker
consistency of a memory system visible to the programmers. Examples of these include
pipelined RAM (PRAM) [34], processor consistency (PC) [22, 21], and causal and slow
memories [5, 24]. Programmers must either show that programs are not affected by the
weaker consistency (e.g., conservative programs with respect to PRAM [34]) or must include
code in their applications that deals with such weak consistency. It is argued that better
performance can be achieved in these systems because strong consistency is not provided
for any set of memory operations.

The causal memory system that we explore in this paper bears similarities to both ap-
proaches: providing weak consistency and exploiting synchronization. Weak consistency is
provided because processors are not guaranteed a single view or serial order of all memory
operations as is done in a sequentially consistent memory system. By assuming that pro-
grams are data-race-free, we exploit synchronization information because it ensures that
memory operations on non-synchronization data do not create additional causal orderings.
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This observation allows important optimizations in the implementation of our system which
are discussed next.

5.2 DSM Systems

Several DSM systems have been implemented. Ivy, the first DSM system, implemented se-
quentially consistent memory by using a writer-invalidates-readers protocol. In Mirage [20],
pinning was implemented to avoid certain problems in the Ivy protocol. Munin [11], im-
plemented a family of protocols, including the first software implementation of RC. Munin
showed that performance competitive with hand coded message passing programs can be
achieved if data sharing patterns of an application can be identified and appropriate consis-
tency protocols can be associated with shared data items. User specified annotations were
used in Munin for this purpose. LRC is implemented in the TreadMarks system [27] and the
Midway system implements EC. In LRC, writes to shared data are propagated when locks
are transferred between processors. To ensure that the processor that acquires the lock
next receives all changes to shared data that were known to the processor that released the
lock, causal dependencies are recorded using vector timestamps and a history based mech-
anism is used to determine what data modifications have to be transmitted with the lock
transfers. LRC handles false sharing by allowing multiple concurrent writers for a page but
a diff mechanism is used to merge changes made by concurrent writes. The implementation
of EC in the Midway system guarantees optimal data transfer. This is achieved by two
separate mechanisms. First, like LRC, modifications to shared data are transmitted with
transfer of synchronization variables. Second, Midway requires programmer to establish
associations between shared data items and synchronization variables. This allows it to
transfer changes to only the data items that are associated with the synchronization vari-
able being transferred. LRC, on the other hand, must include information about changes
to all shared data.

Our implementation of causal memory differs from Ivy and the Munin implementation
of RC because processors that cache a data item being written are not notified either on
the write or when a release operation on a synchronization variable is executed. Since data-
race-free programs allow us to perform consistency related actions only when an acquire
operation completes at a processor, the operation of our implementation resembles the
TreadMarks and Midway systems that implement LRC and EC, respectively. However, not
only do we differ in how we arrive at this particular implementation of causal memory, there
are also several significant operational differences. We use synchronization to propagate
causal dependencies whereas TreadMarks uses it to identify the processors at which data
must be made consistent. TreadMarks handles multiple writers by creating page copies
and by using diff operations. We have found that the processing overhead associated with
diff operations can be significant [25].

The other difference between causal memory implementation and TreadMarks is in the
amount of state which is maintained to track pages that have been actually modified.
TreadMarks tries to identify exactly the pages which have been modified and invalidates
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only those pages. Although this leads to fewer invalidations/updates, the state grows
rapidly in size and garbage collection is required to limit it. Our approach with vector
clocks is rather pessimistic, in that we invalidate any page which has a lower timestamp
even though the page may not have been modified. This may lead to more messages but the
additional complexity of maintaining write records and garbage collection is avoided. In
the version array implementation, we avoid unnecessary invalidations but more data may
be sent when synchronization variables are transferred between processors. LRC could
also perform some unnecessary invalidations (or updates) due to false sharing. Note that
LRC only maintains the information that a certain page has been modified in a particular
synchronization interval. However, due to false sharing, another processor p; could read
the page after it has been modified. But if p; now acquired the synchronization variable, its
page would still get invalidated (or updated) even though it would have the current copy
of the page.

The Midway implementation uses compile-time support to track updates to shared
data. It can send with a synchronization variable the exact set of data items that will be
accessed because of the explicit associations. Because of this, it does not need to transfer
information about updates to other data items as is done in TreadMarks or with causal
memory.

We have compared the performance of applications running on causal memory with an
Ivy like protocol that implements sequentially consistent memory and a message passing
system. A natural question is how it compares with the implementations of RC, LRC or EC.
We have also implemented RC and our results show that causal memory performs better
than RC [25]. This is because RC does not reduce the number of messages; invalidation or
update messages have to be sent to all processors caching the modified data items when
a release operation is executed. Causal memory does not send any messages on a release
operation. In fact, we found that the causal memory implementation performed better
than the RC implementation for all of the applications we described.

We feel that despite the many differences in the operation of their implementations,
the performance of causal memory will be close to LRC and EC. This is because synchro-
nization is used to provide memory coherence in a similar way in these systems. The most
recent implementation of LRC includes many optimizations (including latency reduction
techniques) which could provide somewhat better performance. Such optimizations, which
may require programmer assistance, can also be used with causal memory. EC has an
advantage over both causal and LRC because of the explicit associations it requires. These
associations allow it to determine the exact set of data to be transmitted with little process-
ing overhead. Thus, it could provide better performance but requires that programmers
do additional work to specify the associations. Since its performance must be between
message passing and causal memory, we believe the differences in these systems will not be
significant.

Other implementations of DSM systems have also been reported. Boyer [15] describes
an implementation of causal DSM on Mach using external pagers. Simple message counting
arguments are presented to show its superior performance over conventional atomic DSM.
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There have been several hardware implementations of weakly ordered systems and are

described in [21, 2, 39, 14, 19].

6 Concluding Remarks

We have presented a DSM system based on causal memory and have given two imple-
mentations for it. These implementations make use of the optimizations made possible by
weakly ordered as well as weakly consistent systems. Since these are the two fundamental
techniques that have been proposed for improving the performance of DSM systems, we
feel that the causal memory system that we present does provide a highly efficient im-
plementation of shared memory in a distributed system. By actually implementing this
system along with a sequentially consistent memory system and message passing, we are
able to evaluate it experimentally. We used six applications to capture a wide range of data
sharing patterns. These applications can be programmed on causal memory the same way
as on sequentially consistent memory. Our results show that causal memory does lead to
improvement in performance. In particular, it significantly reduces the number of messages
exchanged between processors when the applications are executed. We believe that our re-
sults support our claim that causal memory is easy to use and can provide performance
close to message passing systems.

Future research must address many problems to further evaluate causal memory. For
example, it needs to be evaluated with faster processors and higher speed network than the
one we had available in our study. Furthermore, a user level implementation can make the
implementations accessible to a wide range of researchers. As the implementations of LRC
and EC become mature, it is necessary that causal memory be implemented along with
these memory systems using a uniform set of mechanisms. This will allow us to evaluate
the relative strengths and weaknesses of these systems.

We used scientific applications to evaluate the memory systems. Such applications do
not capture data sharing patterns of many distributed applications. For example, appli-
cations that support cooperation between asynchronous users (e.g., collaborative editors),
have very different kind of state sharing requirements. In future, we plan to develop causal
memory support for such applications.
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